
Proceedings of the 2020 EMNLP (Systems Demonstrations), pages 70–76
November 16-20, 2020. c©2020 Association for Computational Linguistics

70

COSATA: A Constraint Satisfaction Solver and Interpreted
Language for Semi-Structured Tables of Sentences

Peter A. Jansen
School of Information, University of Arizona, Tucson, AZ, USA

pajansen@email.arizona.edu

Abstract

This work presents COSATA, an intuitive con-
straint satisfaction solver and interpreted lan-
guage for knowledge bases of semi-structured
tables expressed as text. The stand-alone
COSATA solver allows easily expressing com-
plex compositional “inference patterns” for
how knowledge from different tables tends to
connect to support inference and explanation
construction in question answering and other
downstream tasks, while including advanced
declarative features and the ability to operate
over multiple representations of text (words,
lemmas, or part-of-speech tags). COSATA
also includes a hybrid imperative/declarative
interpreted language for expressing simple
models through minimally-specified simula-
tions grounded in constraint patterns, helping
bridge the gap between question answering,
question explanation, and model simulation.
The solver and interpreter are released as open
source.1

1 Introduction

Performing inference for complex question answer-
ing typically requires combining multiple facts
from a knowledge base to arrive at a correct an-
swer, where this set of facts can then be used to
generate detailed human-readable explanations for
the reasoning behind those answers. Combining
multiple facts to perform natural language infer-
ence is extremely challenging, with contemporary
methods generally unable to reliably combine more
than two facts together. This is a significant limita-
tion, as even elementary science questions require
an average of six (and, as many as 16) atomic facts
to answer and explain (Jansen et al., 2018; Xie
et al., 2020) – particularly when those explanations
include detailed world knowledge. For example,

1Demo: https://youtu.be/t93Acsz7LyE

1 N
solid water is called ice

liquid water is called liquid water

melting changes from solid to liquid

melting requires heating

liquids have variable shape

water

water

water

nitrogen

is called

is called

is called

is called

solid

liquid

gaseous

liquid

melting

boiling

freezing

condensing

changes from

changes from

changes from

changes from

solid

liquid

liquid

gas

to

to

to

to

liquid

gas

solid

liquid

melting

boiling

freezing

condensing

requires

requires

requires

requires

heating

heating

cooling

cooling

solids

liquids

gasses

solids

have

have

have

have

de�nite

variable

variable

de�nite

shape

shape

shape

volume

inferencepattern ChangeOfState

 // Table Constraints

 row substanceFrom = [TABLE:”SUB_STATES”, STATE:<fromState>, SUBSTANCE:<substanceName>]

 row substanceTo = [TABLE:“SUB_STATES”, STATE:<toState>, SUBSTANCE:<substanceName>]

 row statechange = [TABLE:”CHANGES”, PROCESS:<pName>, FROM:<fromState>, TO:<toState>]

 row heatsource = [TABLE:”REQUIRES”, PROCESS:<pName>]

 row propToShape = [TABLE:”STATE_PROP”, STATE:<toState>, PROP:“shape”]

 // Imperative Code (run if pattern is executed in IML Interpreter)

 // ...

endinferencepattern

ice

liquid water

steam

liquid nitrogen

liquid water is called liquid water

gaseous water is called steam

boiling changes from liquid to gas

boiling requires heating

gasses have variable shape

Q: What might happen to an ice cube left in the sunlight? A: become liquid

melting

ice cube liquid water

sunlightSubstance
Form

Temperature
State

water
ice

- 4 C
solid

Substance
Form

Temperature
State

water
liquid water

+ 2 C
liquid

SUBSTANCESTATE STATE DEFVAR PROP

PROCESS FROM TO PROCESS HEATCOOL

SUB_STATES TABLE STATE_PROP TABLE

CHANGES TABLE REQUIRES TABLE

FORMNAME

Semi-Structured Knowledge Base of Tables

Table-Based Constraint Patterns

Solutions of Constraint Patterns

Micro-Simulations based on Executing Constraint Patterns

CO
SA

TA
 S

cr
ip

t
So

lv
er

 O
ut

pu
t

In
te

rp
re

te
r

Kn
ow

le
dg

e
Ba

se

Figure 1: An overview of the proposed system. A semi-
structured knowledge base of tables (top) serves as input to
the COSATA scripting language for expressing multi-hop in-
ference patterns as constraints over table rows. A stand-alone
constraint solver and full interpreter are provided.

explaining the common process of an ice cube melt-
ing in sunlight (see Figure 1) can require a large
number of facts, especially when those facts are
expressed at a fine level of granularity.

Compositional (or “multi-hop”) inference solv-
ing methods tend to exist on a formality continuum.
At one end of the continuum, logical or declara-
tive methods (e.g. Lenat et al., 1990; Forbus, 2019)
model a knowledge base as a set of assertions, and
inference as sets of axioms and combinatorial rules

https://youtu.be/t93Acsz7LyE

71

acting on those assertions. While logical meth-
ods provide provably correct inference and detailed
explanations, these methods tend to be brittle in
practice (MacCartney and Manning, 2007). At
the other end of the formality continuum are infer-
ence methods that use unstructured text as knowl-
edge (modeled at the level of the word (Fried et al.,
2015), sentence (Valentino et al., 2020), or para-
graph (Yang et al., 2018)), which is typically com-
bined using connectivity (e.g. Jansen et al., 2017),
embedding (e.g. Tu et al., 2020), or other features.
Due to the difficulty of combining free text (Jansen,
2018), these methods typically reach peak perfor-
mance when combining only a small number of
facts together – typically two or three.

A middle-ground exists between these two ex-
tremes, where semi-structured knowledge bases of
text (such as tables) are used to support multi-hop
inference (e.g. Sun et al., 2016). This approach
offers many practical benefits, such as ease of
knowledge base creation (over logical decompo-
sition methods), and providing structure to help
infer when combining facts is appropriate (versus
free text methods). In spite of these benefits, it
is often still challenging to implement inference
models that compose (or “hop” between) facts ex-
pressed in tables of language data in practice, and
practitioners tend to resort to using complex models
(such as integer linear programming (e.g. TableILP;
Khashabi et al., 2016)) that significantly increase
development time and limit interpretability, main-
tainability, and reuse.

This work presents an easy-to-use scripting lan-
guage paired with an open source solver and inter-
preter designed to make compositional inference
over semi-structured knowledge bases of tables
easy, particularly when those tables express knowl-
edge as lightly structured sentences. The contribu-
tions of this work are:

1. The COSATA SOLVER, a stand-alone solver
for Constraint Satisfaction over Tables of text.
The COSATA language allows easily express-
ing large multi-hop “inference patterns” that
describe how facts typically connect across
tables in a knowledge base to express a larger
compositional solution. The optimized multi-
threaded solver supports advanced features for
dealing with text, including enumerative vari-
able span detection, and robustness to surface
form variations with patterns that can match
words, lemmas, or parts-of-speech.

2. The COSATA INTERPRETER, a hybrid imper-
ative/declarative interpreted language for mod-
eling simple inferences through minimally-
specified simulations grounded in constraint
patterns.

2 Language Description

The COSATA language includes declarative fea-
tures for performing constraint satisfaction over
tables, and imperative features for expressing and
executing models. The fundamental unit is the
pattern, analagous to a class in object oriented pro-
gramming, which (at a minimum) contains a declar-
ative constraint pattern of table rows. The declar-
ative features are sufficient for easily expressing
variablized compositional patterns over collections
of table rows, and the output of the stand-alone con-
straint satisfaction solver (e.g. solutions in JSON
format) can serve as input to further processing.

The language also supports a suite of imperative
features for expressing and executing models. In
this paradigm, each pattern is considered a process
that, if executed, imparts some change upon a small
model of the world (such as an object warming
from heat transfer) by executing a pattern code
block. Agents, physical objects, and environments
in the model are represented as objects, here sets
of property-value pairs. A control script imports a
library of patterns, initializes objects, and executes
a small subset of patterns in a particular order to
create a simulation. A state space keeps a log of
each object, it’s properties, the patterns executed,
and their resulting changes, to form a detailed and
human-readable record of a simulation performed
to arrive at a particular inference.

2.1 Declarative: Constraints over tables
Table Row Constraints: Each pattern contains
one or more table row constraints, which collect
interconnected sets of facts (table rows) from one
or more tables based on satisfying constraints on
the content of those facts. Each table row constraint
requires: (a) a name for the row, (b) a table where
rows are drawn from, and (c) a list of variabalized
constraint expressions that specific cells (columns)
in a given row must satisfy in order for the entire
constraint pattern to be valid. An example pattern
with 8 table row constraints surrounding Changes
of State of Matter is shown in Figure 2.

Constraint Expressions: Constraint expressions
for table cells can be expressed as mixtures of

72

// Constraint Pattern: Changing States of Matter
inferencepattern changeStateOfMatter

// Plain text description
description = "A substance changing its state of matter"

// Row definitions
// e.g. solid/liquid/gas is a kind of state of matter
row som1 = [TABLE:"KINDOF", HYPONYM:<SOM1>, HYPERNYM:"state of matter"]
row som2 = [TABLE:"KINDOF", HYPONYM:<SOM2>, HYPERNYM:"state of matter"]

// e.g. melting/boiling/freezing is a kind of change of state
row cos = [TABLE:"KINDOF", HYPONYM:<ChangeOfState>, HYPERNYM:"change of state"]

// e.g. state of matter is a property of a substance
row somprop = [TABLE:"PROP-GENERIC", PROPERTY:"state of matter", OBJECT:<obj>]

// e.g. a boiling point is a kind of phase transition point
row point = [TABLE:"KINDOF", HYPONYM:<PhaseTransitionPoint>, HYPERNYM:"phase transition point"]

// e.g. melting means (matter; a substance) changes from a solid to a liquid by increasing heat energy
row change = [TABLE:"CHANGE", PROCESSNAME:<ChangeOfState>, PROPERTY:"state of matter", OBJECT:<obj>, FROM:<SOM1>, INTO:<SOM2>,

BY_THROUGH_HOW:<incDec> + "heat energy"]

// e.g. melting occurs when the temperature of a substance is increased above the substance’s melting point, and below it’s
boiling point

row thresh = [TABLE:"CONDITION-VEC", EVENT:<ChangeOfState>, OBJECT:<obj>, INCREASE_DECREASE:<tempDir>, ABOVE_BELOW1:
<aboveBelow>, VALUE1:<PhaseTransitionPoint>, ABOVE_BELOW2:<*aboveBelow2>, VALUE2:<*PhaseTransitionPoint2>]

// e.g. heating means the (temperature; heat energy) of an (object; substance) is increased
row heatcool = [TABLE:"CHANGE-VEC-PROP", PROCESS_NAME:<heatingOrCooling>, PROPERTY:"heat energy", INCREASE_DECREASE:<incDec>]

endinferencepattern

(a) An example listing for a constraint satisfaction pattern that collects 8 facts surrounding Changes of State of Matter.

Row Name Table Row
som1 a <solid> is a kind of “state of matter”
som2 a <liquid> is a kind of “state of matter”
cos <melting> is a kind of “change of state”
somprop "state of matter" is a property of a <substance>
point a <melting point> is a kind of “phase transition point”
change <melting> means the “state of matter” of <substance> changes

from a <solid> into a <liquid> by <increasing> “heat energy”
thresh <melting> occurs when the temperature of a <substance> is

<increased> <above> the substance ’s <melting point>
heatcool <heating> means the “heat energy” of a substance is <increased>

(b) An example enumerated solution of the above constraint pattern.

Constraint Variable Name Value
<aboveBelow> above
<aboveBelow2> not populated
<ChangeOfState> melt
<heatingOrCooling> heat
<incDec> increase
<obj> substance
<PhaseTransitionPoint> melt point
<PhaseTransitionPoint2> not populated
<SOM1> solid
<SOM2> liquid
<tempDir> increase

(c) The variable values from this solution.

Figure 2: (Top) An example constraint satisfaction pattern expressed in the COSATA. (Bottom) One of several solutions
provided by the COSATA solver when evaluating this pattern with a semi-structured knowledge base of tables.

strings (words, lemmas, or part-of-speech tags) and
variables. Elements can be combined with simple
boolean operations, as well as advanced booleans
(e.g. optional elements, enumerative ANDs that
automatically determine variable spans). Example
constraint expressions are shown in Table 1.

Inheritance and Composite Patterns: Similar to
object oriented programming, patterns can con-
tain their own table row constraints, and/or inherit
their table row constraints from one or more other
patterns. This enables software engineering prac-
tices like problem decomposition into objects to
be applied to constraint patterns. For example, the
ChangeOfStateWithSubstanceFromTo pattern in Ta-
ble 4 inherits table row constraints from three other
patterns: one that describes the general concept of
changes of state, another that describes the idea
of a substance having a particular melting or boil-
ing point, and a final pattern describing the sub-
stance being in it’s changed state. Because of this

decomposition, these smaller generic patterns are
available for reuse in other patterns.

2.2 Imperative: Executable Micro-Models

Objects: Objects are expressed as lists of property-
value pairs that can be added, modified, or exe-
cuted against. For example, an object named ice
cube might have properties location:fridge and
temperature:-4C.

Pattern Code Block: Each pattern can contain
an imperative code block that, if executed, typi-
cally imparts changes to the objects or knowledge
base suggestive of a particular process having taken
place. For example, a heatTransfer pattern might
have rows that match on any two objects that are
touching, while its code block could decrease the
temperature of the warmer object, and increase the
temperature of the cooler object. Similarly, the
code block in Figure 4 changes the state of matter
of an object (for example from a solid to a liquid).

73

Example 1: Single variable assignment
Expression: ORGANISM: <organismName>
Cell Text: “large green plants”
Variables: <organismName> = “large green plants”

Example 2: Boolean AND with variables and strings
Expression: LOCATION: “in” + <northSouth> + “hemisphere”
Cell Text: “in the northern hemisphere”
Variables: <northSouth> = “northern”

Example 3: Matching part-of-speech tags
Expression: TIME: <month> + “POS:CD”
Cell Text: “June 21st”
Variables: <month> = “June”

Example 4: Enumerative AND (multiple adjacent variables)
Expression: BY_THROUGH: <incDec> + <energy>
Cell Text: “increasing heat energy”
Variables: Two possible enumerations provided for constraint satisfaction:
<incDec> = “increasing”, <energy> = “heat energy”, or
<incDec> = “increasing heat”, <energy> = “energy”

Example 5: Optional elements
Expression: DURATION: <dur1> + *“to” + <*dur2> + “hour”
Cell Text: “two to four hours”
Variables: Two possible enumerations provided for constraint satisfaction:
<dur1> = “two”, <dur2> = “four”, or
<dur1> = “two to four”, <dur2> = <unpopulated opt>

Table 1: Example constraint expressions for a given table
cell, evaluated against example cell text.

Requirements Specification: Code typically re-
quires certain preconditions to be satisfied for exe-
cution to be valid, such as heatTransfer requiring
two objects that have non-empty temperature prop-
erties. Patterns have specific functions for verifying
that preconditions are met, as well as levels of pre-
conditions (required, or recommended).

Model Control Script: Models take the form of
small, easily-composed control scripts that import
a library of patterns, initialize the objects required
for a model, then sequentially execute a series of
patterns that impart changes on those objects. For
example, the control script in Figure 3 initializes
three objects: an ice cube, freezer, and outside
environment. The ice cube begins in the freezer,
and is then moved to the outside environment. Heat
transfer happens between the ice cube and outside
environment until the ice cube meets the conditions
for a Change of State. The Change of State then
happens, in this case melting, changing the ice
cube’s state of matter property from solid to liquid.

3 Solver and Interpreter

Both the constraint satisfaction solver and inter-
preter are implemented in Scala, with Stanford
CoreNLP (Manning et al., 2014) used to provide
tokenization, lemmatization, and part-of-speech
tags for the knowledge base of tables. The solver
pipeline first creates shortlists of rows that may po-
tentially satisfy individual table row constraints for

1

2

3

4

5

6

7

8

9

Q: What might happen to an ice cube left outside a freezer? A: become liquid

execPat(giveCommonProperties, iceCube1, “ice cube”)

execPat(giveCommonProperties, outside1, “outside”)

execPat(giveCommonProperties, freezer1, “freezer”)

execPat(moveObjectEnvironment, obj->iceCube1, fromEnv->freezer1, toEnv->outside1)

while(not meetsRequirements(ChangeOfStateSubstanceFromTo, substance->iceCube1))
 execPat(heatTransferEnvironmentObject, obj->iceCube1, env->outside1)
endwhile

execPat(ChangeOfStateSubstanceFromTo, substance-> iceCube1)

execPat(setInitialEnvironment, obj->iceCube1, env->freezer1)

ice cube freezeroutside
environment

Substance
Location

Temperature
State

water
—

 - 1 C
solid

Name
Location

Temperature

freezer
kitchen

—

Name
Location

Temperature

outside
outside

—

Substance
Location

Temperature
State

water
—

- 1 C
solid

Name
Location

Temperature

freezer
kitchen

—

Name
Location

Temperature

outside
outside

22 C

Substance
Location

Temperature
State

water
outside

- 4 C
solid

Name
Location

Temperature

freezer
kitchen

- 4 C

Name
Location

Temperature

outside
outside

22 C

Substance
Location

Temperature
State

water
outside

- 1 C
solid

Name
Location

Temperature

freezer
kitchen

- 4 C

Name
Location

Temperature

outside
outside

22 C

Substance
Location

Temperature
State

water
outside

1 C
solid

Name
Location

Temperature

freezer
kitchen

- 4 C

Name
Location

Temperature

outside
outside

22 C

Substance
Location

Temperature
State

water
—

- 1 C
solid

Name
Location

Temperature

freezer
kitchen

- 4 C

Name
Location

Temperature

outside
outside

22 C

Substance
Location

Temperature
State

water
freezer

- 4 C
solid

Name
Location

Temperature

freezer
kitchen

- 4 C

Name
Location

Temperature

outside
outside

22 C

Substance
Location

Temperature
State

water
outside

- 2 C
solid

Name
Location

Temperature

freezer
kitchen

- 4 C

Name
Location

Temperature

outside
outside

22 C

Substance
Location

Temperature
State

water
outside

1 C
liquid

Name
Location

Temperature

freezer
kitchen

- 4 C

Name
Location

Temperature

outside
outside

22 C

State
#

O
bj

ec
t I

ni
tia

liz
at

io
n

M
ov

in
g

H
ea

tin
g

Ch
an

ge

Figure 3: An example micro-model control script (numbered
states and instructions) with three objects (ice cube, outside
environment, freezer), and the resulting state space changes
(red highlights). This control script simulates the result of
leaving an ice cube outside of a freezer. The full script and
COSATA interpreter output is provided in the distribution.

each pattern, then implements a backtrack search
(e.g. Davis et al., 1962) to exhaustively find all com-
binations of table rows that meet the constraints
for a given pattern (each unique collection of ta-
ble rows that satisfies a given pattern is termed a
solution of that pattern).2 While some powerful
declarative features (such as enumerative ANDs
with automatic variable span detection) are expen-
sive to evaluate, nearly all stages of evaluation are
multi-threaded for speed, and rely heavily on pre-
computed look-up tables for evaluating constraint
expressions. In practice, the patterns presented in
Section 4 below are typically evaluated in between
several seconds to a few minutes each.

2Constraint satisfaction solvers are typically formulated to
efficiently find a single solution that satisfies the constraints.
In contrast, the solver presented in this work finds all possible
solutions that can then be used for downstream processing.

74

inferencepattern ChangeOfStateWithSubstanceFromTo
patterndescription = "Change the state of a substance from " + COS.<SOM1> + " to " + COS.<SOM2>

// Requirements: This pattern acts on a single object (sub1), that is a kind of substance, and should have a state of matter.
require instance sub1 = [KINDOF:"substance"]
shouldhave (sub1."state of matter" != "")

// Composite requirements: This pattern inherits rows from 3 other patterns
infpat COS = changeStateOfMatter // Change of state (fundamentals, requirements, etc.)
infpat fromSOM = substanceInSOMWithPhaseTransitionPoint // A substance, and its melting/boiling/freezing point
infpat toSOM = substanceInSOM // A substance, in a particular state of matter
rowequiv COS.som1 = fromSOM.subSOM.som // To be valid, COS.som1 and fromSOM.subSOM.som should be the same fact.
rowequiv COS.som2 = toSOM.som // To be valid, COS.som2 and toSOM.som should be the same fact.

instmap sub1 = COS.substance1 // The substance in this pattern refers to the same substance in the
instmap sub1 = fromSOM.substance // changeStateOfMatter (COS), substanceInSOMWithPhaseTransitionPoint (fromSOM),
instmap sub1 = toSOM.substance // and substanceInSom (toSOM) patterns.

// Additional constraints
// Combined patterns must be talking about the same (melting/boiling/freezing) point, and same material, to be valid.
musthaveoromit(COS.<PhaseTransitionPoint> == fromSOM.<PhaseTransitionPoint>)
musthaveoromit(fromSOM.<materialName> == toSOM.<materialName>)
// The substance object (sub1) should be in state of matter <SOM1>, and have changed temperature above/below <pointTemp>.
musthave(sub1."state of matter" == COS.<SOM1>)
musthave(sub1."temperature" CHANGE [direction:COS.<tempDir> threshold:fromSOM.<pointTemp>])

// Row definitions: All rows in this pattern are inherited from COS, fromSOM, and toSOM.

// Code: Run the imperative code below if a given enumeration of this pattern is executed.
// If the object (sub1) recently changed temperature above/below <pointTemp>, and is in state of matter <SOM1>
if ((sub1."temperature" CHANGE [direction:COS.<tempDir> threshold:fromSOM.<pointTemp>]) && (sub1."state of matter" == COS.

<SOM1>)) then
// Set the object (sub1)’s new state of matter to be <SOM2>
sub1."state of matter" = COS.<SOM2>
// Add a human-readable explanation to the state space describing what this inference pattern did.
addExplanationText("Substance (" + sub1."name" + ") made of (" + sub1."material" + ") is within the temperature range to

change from a (" + COS.<SOM1> + ") to a (" + COS.<SOM2> + ").")
endif

endinferencepattern

Inference Pattern: ChangeOfStateWithSubstanceFromTo

Inherited Pattern 1: COS:changeStateOfMatter
Row Name Table Row
som1 a <solid> is a kind of “state of matter”
som2 a <liquid> is a kind of “state of matter”
cos <melting> is a kind of “change of state”
somprop “state of matter” is a property of a <substance>
point a <melting point> is a kind of “phase transition point”
change <melting> means the “state of matter” of <substance> changes from a <solid> into a <liquid> by <increasing> “heat energy”
thresh <melting> occurs when the temperature of a <substance> is <increased> <above> the substance ’s <melting point>
heatcool <heating> means the “heat energy” of a substance is <increased>

Inherited Pattern 2: fromSOM:substanceInSOMWithPhaseTransitionPoint
Row Name Table Row
somHasPoint a <solid> has a <melting point>
point1 the <melting point> of <water> is <0.0> <C>

fromSOM.subSOM:substanceInSOM (nested)
Row Name Table Row
som a <solid> is a kind of “state of matter”
propSomTemp the <water> is in the <solid> state, called <ice>, for temperatures below 0.0 C

Inherited Pattern 3: toSOM:substanceInSOM
Row Name Table Row
som a <liquid> is a kind of “state of matter”
propSomTemp the <water> is in the <liquid> state, called <water>, for temperatures between 0.0 C and 100.0 C

Figure 4: (Top) An example composite pattern that (i) inherits row constraints from three other simpler patterns, and (ii)
includes imperative code that effects the change described by the constraint satisfaction pattern. (Bottom) One example solution
of this pattern, melting ice into liquid water. All other combinations of state changes (e.g. freezing, boiling) for all substances
described in the knowledge base of semi-structured tables are also enumerated, but not shown here for space.

4 Example Solutions

Here the feasibility of generating constraint pat-
terns (for downstream processing) or executable
patterns (for modeling) is empirically demonstrated
in the context of generating detailed multi-hop ex-
planations to standardized elementary and middle
school science exam questions drawn from the AI2
Aristo Reasoning Challenge (Clark et al., 2018).

4.1 Explanation Regeneration

The explanation regeneration task (Jansen and
Ustalov, 2019) requires models to reconstruct large
multi-fact gold explanations by selecting a set of
interconnected facts from a knowledge base that
match gold explanations provided in an explana-
tion corpus. The task is very challenging, and cur-
rent state-of-the-art models (e.g. Das et al., 2019)
achieve nearly all of their performance by evaluat-

75

Solutions Avg. Ceiling Avg. Extra
Combined Accuracy Facts @ Ceiling
Automatically Converted Patterns Only (N=353)

1 56.0% 7.8
2 67.5% 11.2
3 70.8% 12.6

Automatic and Manually Curated Patterns (N=385)
1 58.3% 5.9
2 72.3% 7.7
3 78.0% 8.5

Table 2: Ceiling performance of the converted explana-
tory patterns from the WorldTree V2 corpus evaluated using
COSATA on the explanation regeneration task.

ing facts independently rather than jointly.
The Worldtree V2 corpus (Xie et al., 2020) in-

cludes detailed multi-fact explanations for 4,400
standardized science exam questions grounded
in a knowledge base of 63 tables and approxi-
mately 10k table rows, as well as a set of 353
semi-automatically authored collections of facts
surrounding specific subtopics, such as changes
of state, inherited characteristics, or seasonal
changes in daylight. Here, those 353 inference pat-
terns were converted to the COSATA constraint lan-
guage using a prototype automatic converter, and
all solutions to each pattern were enumerated with
the COSATA solver. 42 of the automatically con-
verted patterns were selected based on frequency
of use for manual curation, where they were further
abstracted, decomposed, and debugged. Ceiling
performance on the explanation regeneration task
was calculated for a shortlist of ranked solutions, in
terms of both single solutions, and combinations of
up to 3 solutions, with results shown in Table 2. Per-
formance is evaluated in terms of accuracy (propor-
tion of gold rows included in the explanation) and
the average number of “extra” facts included in the
solutions but not included in the gold explanation.
The results show that the pattern solutions enu-
merated by COSATA have a ceiling performance
of regenerating up to 58% of gold explanations
when using a single solution, and up to 78% when
combining up to three solutions. This empirically
demonstrates the potential utility of using COSATA

patterns as input to downstream inference models
that are able to accurately select which patterns to
combine to generate an explanation. The inference
patterns in this experiment and their solutions are
included as examples in the distribution.

4.2 Micro-models and Interpreter

Constructing micro-models from scratch requires
(i) authoring a knowledge base of semi-structured

Figure 5: Screenshots of the prototype IDE. (Top) The de-
bugger/editor for micro-model control scripts. (Bottom) The
visual taxonomy editor, a component of the table editor.

tables, (ii) authoring patterns that reference those
tables (such as those in Figures 2 and 4), and (iii)
constructing micro-model control scripts (such as
the example in Figure 3) that describe, in a short
series of steps, how processes interact with objects
and agents to reach a given outcome.

To demonstrate this workflow, a series of 23 pat-
terns including imperative code were authored for
topics in heat transfer and changes of state, as well
as a supporting semi-structured knowledge base
containing several hundred facts across 21 tables in-
cluding taxonomic relations, locations of common
objects, processes causing discrete changes, and
physical properties of substances. To support this
effort, a prototype IDE called Procession (shown in
Figure 5) was implemented using ELECTRON that
integrates a table-editor (including D3-based visual
taxonomy editor), MONACO-based code editor, and
side-to-side debugger/editor for micro-model con-
trol scripts that enables fast debug cycles. These
example imperative patterns and the resulting inter-
preter output of the control scripts are included as
examples in the distribution.

5 Conclusion

COSATA is an open-source constraint satisfaction
solver for easily expressing and evaluating multi-
fact compositional patterns in semi-structured ta-
bles of text, paired with an interpreted language
that allows expressing micro-models. The tool,
source, examples, and documentation are available
at http://www.github.com/clulab/cosata/ .

http://www.github.com/clulab/cosata/

76

Acknowledgments

Thanks to Sebastian Thiem, who assisted in con-
ducting the ceiling test of the WorldTree V2 pat-
terns, and to Peter Clark for thoughtful discussions.
The prototype IDE was developed in part under
contract by Soft Design SRL. This work supported
in part by the National Science Foundation (NSF
Award #1815948, “Explainable Natural Language
Inference”, to PJ).

References
Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,

Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the ai2 reasoning challenge. arXiv
preprint arXiv:1803.05457.

Rajarshi Das, Ameya Godbole, Manzil Zaheer, She-
hzaad Dhuliawala, and Andrew McCallum. 2019.
Chains-of-reasoning at textgraphs 2019 shared task:
Reasoning over chains of facts for explainable multi-
hop inference. In Proceedings of the Thirteenth
Workshop on Graph-Based Methods for Natural
Language Processing (TextGraphs-13), pages 101–
117.

Martin Davis, George Logemann, and Donald Love-
land. 1962. A machine program for theorem-
proving. Communications of the ACM, 5(7):394–
397.

Kenneth D Forbus. 2019. Qualitative representations:
How people reason and learn about the continuous
world.

Daniel Fried, Peter Jansen, Gustave Hahn-Powell, Mi-
hai Surdeanu, and Peter Clark. 2015. Higher-
order lexical semantic models for non-factoid an-
swer reranking. Transactions of the Association for
Computational Linguistics, 3:197–210.

Peter Jansen. 2018. Multi-hop inference for sentence-
level textgraphs: How challenging is meaningfully
combining information for science question answer-
ing? In Proceedings of the Twelfth Workshop on
Graph-Based Methods for Natural Language Pro-
cessing (TextGraphs-12), pages 12–17.

Peter Jansen, Rebecca Sharp, Mihai Surdeanu, and Pe-
ter Clark. 2017. Framing QA as building and rank-
ing intersentence answer justifications. Computa-
tional Linguistics, 43(2):407–449.

Peter Jansen and Dmitry Ustalov. 2019. Textgraphs
2019 shared task on multi-hop inference for expla-
nation regeneration. In Proceedings of the Thir-
teenth Workshop on Graph-Based Methods for Nat-
ural Language Processing (TextGraphs-13), pages
63–77.

Peter Jansen, Elizabeth Wainwright, Steven Mar-
morstein, and Clayton Morrison. 2018. WorldTree:
A corpus of explanation graphs for elementary
science questions supporting multi-hop inference.
In Proceedings of the Eleventh International Con-
ference on Language Resources and Evaluation
(LREC-2018), Miyazaki, Japan. European Lan-
guages Resources Association (ELRA).

Daniel Khashabi, Tushar Khot, Ashish Sabharwal, Pe-
ter Clark, Oren Etzioni, and Dan Roth. 2016. Ques-
tion answering via integer programming over semi-
structured knowledge. In Proceedings of the Twenty-
Fifth International Joint Conference on Artificial In-
telligence, pages 1145–1152.

Douglas B Lenat, Ramanathan V. Guha, Karen Pittman,
Dexter Pratt, and Mary Shepherd. 1990. Cyc: to-
ward programs with common sense. Communica-
tions of the ACM, 33(8):30–49.

Bill MacCartney and Christopher D Manning. 2007.
Natural logic for textual inference. In Proceedings
of the ACL-PASCAL Workshop on Textual Entail-
ment and Paraphrasing, pages 193–200.

Christopher D Manning, Mihai Surdeanu, John Bauer,
Jenny Rose Finkel, Steven Bethard, and David Mc-
Closky. 2014. The stanford corenlp natural language
processing toolkit. In Proceedings of 52nd annual
meeting of the association for computational linguis-
tics: system demonstrations, pages 55–60.

Huan Sun, Hao Ma, Xiaodong He, Wen-tau Yih, Yu Su,
and Xifeng Yan. 2016. Table cell search for question
answering. In Proceedings of the 25th International
Conference on World Wide Web, pages 771–782.

Ming Tu, Kevin Huang, and Guangtao Wang. 2020.
Select, answer and explain: Interpretable multi-hop
reading comprehension over multiple documents. In
Proceedings of the Thirty-Fourth AAAI Conference
on Artificial Intelligence.

Marco Valentino, Mokanarangan Thayaparan, and An-
dré Freitas. 2020. Unification-based reconstruction
of explanations for science questions. arXiv preprint
arXiv:2004.00061.

Zhengnan Xie, Sebastian Thiem, Jaycie Martin, Eliz-
abeth Wainwright, Steven Marmorstein, and Peter
Jansen. 2020. Worldtree v2: A corpus of science-
domain structured explanations and inference pat-
terns supporting multi-hop inference. In Proceed-
ings of The 12th Language Resources and Evalua-
tion Conference, pages 5456–5473.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio,
William Cohen, Ruslan Salakhutdinov, and Christo-
pher D Manning. 2018. Hotpotqa: A dataset for
diverse, explainable multi-hop question answering.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2369–2380.

https://doi.org/10.1162/tacl_a_00133
https://doi.org/10.1162/tacl_a_00133
https://doi.org/10.1162/tacl_a_00133
https://doi.org/10.1162/COLI_a_00287
https://doi.org/10.1162/COLI_a_00287
https://www.aclweb.org/anthology/L18-1433
https://www.aclweb.org/anthology/L18-1433
https://www.aclweb.org/anthology/L18-1433

