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Abstract

This paper describes the HUJI-KU system
submission to the shared task on Cross-
Framework Meaning Representation Parsing
(MRP) at the 2020 Conference for Computa-
tional Language Learning (CoNLL), employ-
ing TUPA and the HIT-SCIR parser, which
were, respectively, the baseline system and
winning system in the 2019 MRP shared
task. Both are transition-based parsers using
BERT contextualized embeddings. We gener-
alized TUPA to support the newly-added MRP
frameworks and languages, and experimented
with multitask learning with the HIT-SCIR
parser. We reached 4th place in both the cross-
framework and cross-lingual tracks.

1 Introduction

The CoNLL 2020 MRP Shared Task (Oepen et al.,
2020) combines five frameworks for graph-based
meaning representation: EDS, PTG, UCCA,
AMR and DRG. It further includes evaluations
in English, Czech, German and Chinese. While
EDS, UCCA and AMR participated in the 2019
MRP shared task (Oepen et al., 2019), which fo-
cused only on English, PTG and DRG are newly-
added frameworks to the MRP uniform format.

For this shared task, we extended TUPA (Her-
shcovich et al., 2017), which was adapted as the
baseline system in the 2019 MRP shared task
(Hershcovich and Arviv, 2019), to support the two
new frameworks and the different languages. In
order to add this support, only minimal changes
were needed, demonstrating TUPA’s strength in
parsing a wide array of representations. TUPA is a
general transition-based parser for directed acyclic
graphs (DAGs), originally designed for parsing
UCCA (Abend and Rappoport, 2013). It was pre-
viously used as the baseline system in SemEval
2019 Task 1 (Hershcovich et al., 2019), and gener-
alized to support other frameworks (Hershcovich

et al., 2018a,b).
We also experimented with the HIT-SCIR

parser (Che et al., 2019). This was the parser with
the highest average score across frameworks in the
2019 MRP shared task, and has also since been
applied to other frameworks (Hershcovich et al.,
2020).

2 TUPA-MRP

TUPA (Hershcovich et al., 2017) is a transition-
based parser supporting general DAG parsing.
The parser state is composed of a buffer B of to-
kens and nodes to be processed, a stack S of nodes
currently being processed, and an incrementally
constructed graph G. The input to the parser is
a sequence of tokens: w1, . . . , wn. A classifier is
trained using an oracle to select the next transi-
tion based on features encoding the parser’s cur-
rent state, where the training objective is to maxi-
mize the sum of log-likelihoods of all gold transi-
tions at each step.

The MRP variant (Hershcovich and Arviv,
2019) supports node and edge labels, as well as
node properties and edge attributes. The code is
publicly available.1

2.1 Transition set
The TUPA-MRP transition set, shown in Fig-
ure 1, is the same as the one used by Hersh-
covich and Arviv (2019). It includes the tran-
sitions SHIFT and REDUCE to manipulate the
stack, NODEX to create nodes compositionally,
CHILDX to create unanchored children, LABELX

to label nodes, PROPERTYX to set node proper-
ties, LEFT-EDGEX and RIGHT-EDGEX to create
edges, ATTRIBUTEX to set edge attributes, SWAP

to allow non-planar graphs and FINISH to termi-
nate the sequence.

1https://github.com/danielhers/tupa/
tree/mrp

https://github.com/danielhers/tupa/tree/mrp
https://github.com/danielhers/tupa/tree/mrp
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Before Transition
Transition

After Transition
Stack Buffer N. Edges Stack Buffer Nodes Edges Extra Effect
S x | B V E SHIFT S | x B V E
S | x B V E REDUCE S B V E
S | x B V E NODEX S | x y | B V ∪ {y} E | (y, x) `E(y, x)← X
S | x B V E CHILDX S | x y | B V ∪ {y} E | (x, y) `E(x, y)← X
S | x B V E LABELX S | x B V E `V (x)← X
S | x B V E PROPERTYX S | x B V E p(x)← p(x) ∪ {X}
S | y, x B V E LEFT-EDGEX S | y, x B V E | (x, y) `E(x, y)← X
S | x, y B V E RIGHT-EDGEX S | x, y B V E | (x, y) `E(x, y)← X
S B V E | (x, y) ATTRIBUTEX S B V E | (x, y) a(x, y)← a(x, y) ∪ {X}
S | x, y B V E SWAP S | y x | B V E
[root] ∅ V E FINISH ∅ ∅ V E terminal state

Figure 1: The TUPA-MRP transition set, from Hershcovich and Arviv (2019). We write the stack with its top to
the right and the buffer with its head to the left; the set of edges is also ordered with the latest edge on the right.
NODE, LABEL, PROPERTY and ATTRIBUTE require that x 6= root; CHILD, LABEL, PROPERTY, LEFT-EDGE and
RIGHT-EDGE require that x 6∈ w1:n; ATTRIBUTE requires that y 6∈ w1:n; LEFT-EDGE and RIGHT-EDGE require
that y 6= root and that there is no directed path from y to x; and SWAP requires that i(x) < i(y), where i(x) is a
running index for nodes. `E and `V are respectively the edge and node labeling functions. p(x) is the set of node
x’s properties, and a(x, y) is the set of edge (x, y)’s attributes.

2.2 Transition Classifier

To predict the next transition at each step, TUPA
uses a BiLSTM module followed by an MLP and a
softmax layer for classification (Kiperwasser and
Goldberg, 2016). The BiLSTM module is ap-
plied before the transition sequence starts, run-
ning over the input tokenized sequence. It con-
sists of a pre-BiLSTM MLP with feature embed-
dings (§2.3) and pre-trained contextualized BERT
(Devlin et al., 2019) embeddings concatenated as
inputs, followed by (multiple layers of) a bidirec-
tional recurrent neural network (Schuster and Pali-
wal, 1997; Graves, 2008) with a long short-term
memory cell (Hochreiter and Schmidhuber, 1997).

Whenever a LABELX /PROPERTYX /ATTRIBUTEX

transition is selected, an additional classifier is
evoked with the set of possible label/property/at-
tribute values for the currently parsed framework,
respectively, as possible outputs. This hard sep-
aration is made due to the large number of node
labels and properties in the MRP frameworks.

2.3 Features

In both training and testing, we use vector embed-
dings representing the lemmas, coarse POS tags
(UPOS) and fine-grained POS tags (XPOS). These
feature values are provided by UDPipe as compan-
ion data by the task organizers. In addition, we
use punctuation and gap type features (Maier and
Lichte, 2016), and previously predicted node and
edge labels, node properties, edge attributes and
parser actions. These embeddings are initialized

randomly (Glorot and Bengio, 2010).
To the feature embeddings, we concatenate nu-

meric features representing the node height, num-
ber of parents and children, and the ratio between
the number of terminals to total number of nodes
in the graph G (Hershcovich et al., 2017). Nu-
meric features are taken as they are, whereas cat-
egorical features are mapped to real-valued em-
bedding vectors. For each non-terminal node, we
select a head terminal for feature extraction, by
traversing down the graph, selecting the first out-
going edge each time according to alphabetical or-
der of labels.

2.4 Intermediate Graph Representation

We mostly reuse Hershcovich and Arviv (2019)’s
internal representation of MRP graphs in TUPA,
where top nodes and anchoring are combined into
the graph by adding a virtual root node and vir-
tual terminal nodes, respectively, during prepro-
cessing. Similarly, we introduce placeholders in
the node labels and properties matching the tokens
they are aligned to, and collapse AMR name prop-
erties. In the case of DRG and PTG, the newly
added frameworks, where graphs may contains cy-
cles, we break those cycles in order for them to be
parseable by TUPA, which supports general DAG
parsing. Only 0.27% of the DRG graphs in the
provided dataset are cyclic. In the case of PTG,
33.97% are cyclic. Figure 2 shows an example
PTG graph, and Figure 3 the graph in TUPA’s in-
termediate representation. As the latter demon-
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Figure 2: PTG graph, in the MRP formalism, for the sentence “*Actual performance, not annualized”. Edge labels
are shown on the edges. Node labels are shown inside the nodes, along with any node properties (in the form
|property value|). Anchoring is also provided for PTG.

strates, cycles are broken by removing an arbitrary
edge in the cycle (the coref.gram edge in this
case).

2.5 Constraints
As each framework has different constraints on
the allowed graph structures, we apply these con-
straints separately for each one. During training
and parsing, the relevant constraint set rules out
some of the transitions according to the parser
state.

Some constraints are task-specific, others are
generic. For the new frameworks, DRG and PTG,
all the constraints, except for one (PTG being
multigraph), are derived from the graph proper-
ties as defined by their component pieces.2 For
example, both require node labels, but only PTG
requires node properties. No new types of con-
straints were needed to be added to TUPA to sup-
port these frameworks.

2http://mrp.nlpl.eu/2020/index.php?
page=15

2.6 Training details
The model is implemented using DyNet v2.1
(Neubig et al., 2017).3 Unless otherwise noted,
we use the default values provided by the pack-
age. We use the same hyperparameters as Her-
shcovich and Arviv (2019), without any hyperpa-
rameter tuning on the CoNLL 2020 data.

We use the weighted sum of last four hidden
layers of a BERT (Devlin et al., 2019) pre-trained
model4 as extra input features, summing over
wordpiece vectors to get word representations.

2.7 Cross-framework track
In the cross-framework track, we use the English
bert-large-cased pre-trained encoder, and
train separate TUPA models for each of the PTG,
UCCA, AMR and DRG frameworks. Table 1
shows the number of training epochs per frame-
work, as well as validation and evaluation results.

3http://dynet.io
4https://github.com/huggingface/

pytorch-transformers

http://mrp.nlpl.eu/2020/index.php?page=15
http://mrp.nlpl.eu/2020/index.php?page=15
http://dynet.io
https://github.com/huggingface/pytorch-transformers
https://github.com/huggingface/pytorch-transformers
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Figure 3: Converted PTG graph in the TUPA intermediate graph representation. Same as in the intermediate graph
representation for all frameworks, it contains a virtual root node attached to the graph’s top node with a TOP
edge, and virtual terminal nodes corresponding to text tokens, attached according to the anchoring with ANCHOR
edges. Same as for all frameworks with node labels and properties (i.e., all but UCCA), labels and properties are
replaced with placeholders corresponding to anchored tokens, where possible. The placeholder 〈`〉 corresponds to
the concatenated lemmas of anchored tokens. For graphs containing cycles, like this one, the cycles are broken by
removing an arbitrary edge in the cycle (the coref.gram edge in this case).

2.8 Cross-lingual track
For the cross-lingual track, as a generic con-
textualized encoder that supports many lan-
guages, we use multilingual BERT (bert-
base-multilingual-cased) and train the
models exactly the same as in the cross-framework
track (separate model for each framework’s re-
spective monolingual dataset from the cross-
lingual track), for Czech PTG and Chinese AMR.

For German DRG, as the provided dataset con-
tains a relatively small amount of examples, 1575
as opposed to 6606 in English DRG (from the
cross-framework track), we first pre-train a model
on the DRG data in English and then fine-tune it
on the DRG German dataset, in this case using
mBERT to facilitate cross-lingual transfer. Sur-
prisingly, this improves our validation F1 score
only by 0.013 points as opposed to training on
the German dataset only, showing that the con-

tribution of cross-lingual transfer is limited (but
at least not detrimental) with this architecture and
data sizes.

3 HIT-SCIR Parser

The HIT-SCIR parser (Che et al., 2019) is a
transition-based parser, which extended previous
parsers by employing stack LSTM (Dyer et al.,
2015) to allow computing homogeneous opera-
tion within a batch efficiently, and by adopting and
fine-tuning BERT (Devlin et al., 2019) embedding
for effectively encoding contextual information.
The parser is implemented in the AllenNLP frame-
work (Gardner et al., 2018). It supports parsing
DM, PSD, UCCA, EDS and AMR, all included in
the 2019 MRP shared task. The official dataset
would be pre-processed for system input and post-
processed for output.

In our experiment, we modified the HIT-SCIR
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Track Framework System # Epochs Best Epoch Validation F1 Eval F1 Rank Best System
CF EDS HIT-SCIR 6 2 0.82 0.80 5 0.94 (H)
CF PTG TUPA 32 19 0.53 0.54 4 0.89 (H)
CF UCCA TUPA 99 66 0.79 0.73 4 0.76 (Ú)
CF UCCA HIT-SCIR 6 3 0.78
CF AMR TUPA 8 2 0.44 0.52 5 0.82 (H)
CF DRG TUPA 200 99 0.52 0.63 5 0.94 (Ú)
CL PTG TUPA 20 13 0.60 0.58 4 0.91 (Ú)
CL UCCA HIT-SCIR 13 6 0.77 0.75 4 0.81 (Ú)
CL UCCA TUPA 100 95 0.43
CL AMR TUPA 21 12 0.44 0.45 4 0.80 (H)
CL DRG TUPA 100 (*) 68 0.52 0.62 4 0.93 (H)
CL DRG TUPA 100 81 0.51
CF Overall 0.64 4 0.86 (H&Ú)
CL Overall 0.60 4 0.85 (H&Ú)

Table 1: Training details and official evaluation MRP F-scores. For comparison, the highest score achieved for
each framework and evaluation set is shown: H stands for Hitachi (Ozaki et al., 2020) and Ú for ÚFAL (Na and
Min, 2020). HIT-SCIR for English UCCA (CF) and TUPA for German UCCA (CL), both in gray, were not used
in the submission, since their validation F1 were lower than the other system. For German DRG (CL) we trained
2 parsers: one on only the CL DRG dataset (in grey), not used in the submission, and another (*) trained on the
English DRG dataset in per-training. The number of epochs does not include pre-training on English DRG.

MRP 2019 parser to support the 2020 data for
English EDS (for the cross-framework track) and
German UCCA (for the cross-lingual track). We
also explored the possibilities of employing multi-
task learning with the parser (§5). A repository
containing our modified version of the parser is
publicly available.5

3.1 Transition set

Che et al. (2019) defined a different transition set
per framework, according to framework’s charac-
teristics. As UCCA and EDS are already targets
of 2019 MRP shared task, we inherit the existing
transition sets for both frameworks. For UCCA,
the transition system was modelled after that of the
UCCA-specific (not MRP generic) TUPA (Hersh-
covich et al., 2017), which includes SHIFT, RE-
DUCE, NODEX , LEFT-EDGEX , RIGHT-EDGEX ,
LEFT-REMOTEX , RIGHT-REMOTEX and SWAP.

The parser’s EDS transition set is based on Buys
and Blunsom (2017)’s work, from which NODE-
STARTX and NODE-END are two steps to create
concept nodes and form node alignment. Apart
from these two, SHIFT, REDUCE, LEFT-EDGEX ,
RIGHT-EDGEX , DROP, PASS and FINISH are also
used to represent EDS transition process.

5https://github.com/ruixiangcui/
hit-scir-mrp2020

3.2 Transition Classifier

The parser state is represented by (S,L,B,E, V ),
where S is a stack holding processed words, L is
a list holding words popped out of S that will be
pushed back in the future, and B is a buffer hold-
ing unprocessed words. E is a set of labeled de-
pendency arcs. V is a set of graph nodes include
concept nodes and surface tokens. Transition clas-
sifier takes S,L,B and also the action history as
input, all are modeled with stack LSTM, and out-
puts an action. The input to the parser is a se-
quence of BERT embedding. A transition classi-
fier takes S,L,B and the action history as inputs
and maximizes the log-likeihood of the correct ac-
tion given the current state using an oracle to get
the correct action.

3.3 Preprocessing

MRP 2019 provided companion data (contain-
ing the results of syntactic preprocessing) in both
CoNLL-U and mrp formats. However, this
year’s task only provides mrp-formatted compan-
ion data. Since the HIT-SCIR 2019 parser can
only take CoNLL-U-formatted companion data,
we update it to allow converting companion data
provided by 2020 MRP shared task from mrp for-
mat to CoNLL-U format.

https://github.com/ruixiangcui/hit-scir-mrp2020
https://github.com/ruixiangcui/hit-scir-mrp2020
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3.4 Anchoring
The parser itself is also modified to support the
MRP 2020 task. For EDS parsing specifically, in
this year’s task’s provided data, anchoring for a
token containing spaces, such as an integer num-
ber followed by a fraction number (e.g., “3 1/2”)
is treated as one token, while the original parser’s
node anchoring treats the two parts separately. An-
other example would be: “x-Year-to-date 1988
figure includes Volkswagen domestic-production
through July.” In this sentence, “x-Year-to-date
1988” is marked as a node anchored from char-
acters 2 to 26, but the provided companion data
treats “x-Year-to-date” as anchored from charac-
ters 0 to 14 as the corresponding token anchor. To
handle these cases, we allow the parsing system to
perform partial node alignment regardless of over-
lapping token anchors.

3.5 Constraints
The second problem we encounter when parsing
EDS is that there are a few instances that are too
short, and no valid actions can be performed ac-
cording to the existing transition system. In this
case, we allow the FINISH action, adding it di-
rectly to the allowed action set when no valid ac-
tion exists, with the effect that the transition se-
quence is terminated and the current graph is re-
turned.

3.6 Training
We train the modified HIT-SCIR parser on En-
glish and German UCCA (in the cross-framework
and cross-lingual tracks, respectively) and English
EDS (in the cross-lingual track). The training time
is 2 days 1 hour for English UCCA, 22 hours
for German UCCA, and 4 days 6 hours for En-
glish EDS. The training details are shown in Ta-
ble 1. Since HIT-SCIR parser’s validation score
on cross-framework UCCA is 0.01 lower than
TUPA, we opt for TUPA in that category. Hy-
perparameters are taken directly from Che et al.
(2019).

4 Results

Table 1 presents the averaged scores on the test
sets in the official evaluation, for our submission
and for the best-performing system in each frame-
work and evaluation set.

Validation vs. evaluation scores. The valida-
tion scores of 5 out of the 9 parsers is lower than

their evaluation score: CF PTG by 0.01 F1 points,
CF AMR by 0.08, CF DRG by 0.11, CL AMR
by 0.01 and CL DRG by 0.1. We hypothesize it
is due to the randomness in the evaluation met-
ric: the MRP scorer uses a search algorithm to
find a correspondence relation between the gold-
standard and system graphs that maximizes tuple
overlap. This search algorithm runs for a limited
number of iterations. In order to decrease its run-
ning time, we used a lower limit on its param-
eters (10 random restarts, 5,000 iterations) than
the default (20 random restarts, 50,000 iterations),
which may have affected the accuracy of our val-
idation score and potentially our system perfor-
mance.

CF vs. CL tracks. Surprisingly, the CL track
scores are mostly on-par with the CF tack ones,
even though the CL parsers were often trained
on significantly less examples. While the CF
UCCA training dataset contains 6,872 examples
and the CL UCCA contains only 3,713, both
parsers gained similar scores. Similarly, the CF
DRG dataset contains 6,606 example, while the
the CL DRG contains only 1,575. TUPA trained
only on the 1,575 examples gained a similar score
to the CF one, while training on less then a fourth
of the examples. The CF PTG dataset contains
42,024 examples. And while the CL PTG contains
a lower, however similar, amount (39,560), it got a
higher score (0.07 F1 point in validation, and 0.04
in evaluation). And while the CL AMR dataset is
only a third of the CF AMR datsaet (16,529 and
57,885 examples respectively), both parser gained
the same validation score. However, the evalua-
tion score of the CF AMR is higher by 0.07 F1
points. This could be possibly attributed to our
MRP scorer low iteration limit.

5 Multitask Cross-Framework Parsing

In addition to training separate models per frame-
work and language, we also experiment with train-
ing multitask cross-framework parsers, using a
neural architecture with parameter sharing (Peng
et al., 2017, 2018; Hershcovich et al., 2018a;
Lindemann et al., 2019; Hershcovich and Arviv,
2019). We use the HIT-SCIR parser as a ba-
sis, with different variations of shared architecture
on top of it. For our experiments we choose the
UCCA and EDS frameworks. The code is pub-
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Figure 4: Illustration of the first variant of the HIT-SCIR multitask model, parsing the sentence “The fox gazed at
the little prince.” Top: Dedicated HIT-SCIR parsers for each framework. Bottom: Encoder architecture. BERT
embeddings are extracted for each token and are concatenated with framework-specific learned embedding. Vector
representations for the input tokens are then computed by a shared stacked self-attention encoder. The encoded
vectors are then fed to a framework-specific HIT-SCIR parsers as input tokens.

Hyperparameter Value
Task embedding dim 20
Shared encoder
Input dim 1024
Framework-specific encoder
Input dim 768
Both encoders
Input dim 768
Projection dim 512
Feedforward hidden dim 512
# layers 3
# attention heads 8

Table 2: HIT-SCIR multitask model hyperparameters.

licly available.6

5.1 Model

We try two different sharing architectures. In both
architectures, both frameworks share a stacked
self-attention encoder (see Table 2 for details). In
the first variation, we additionally use task embed-
dings; in the second, we use task-specific encoders
instead.

Task embedding. In the first sharing archi-
tecture, both frameworks share a stacked self-
attention encoder whose input is a BERT em-
bedding concatenated with a learned task embed-

6https://github.com/OfirArviv/
hit-scir-mrp2020/tree/multitask

ding of dimension 20. This has been shown to
help in shared architecture multitask models (Sun
et al., 2020), as well as cross-lingual parsing mod-
els, where a language embedding is used (Ammar
et al., 2016; de Lhoneux et al., 2018). In our case,
the “task” has two possible values, namely UCCA
and EDS. The output of the shared encoder is then
fed into two separate “decoders”, which are HIT-
SCIR parser transition classifiers. We use one for
each framework, whose architecture and hyperpa-
rameters are the same as in the single task setting.
Figure 4 illustrates this architecture.

Task-specific encoders. In the second archi-
tectures, both frameworks share a stacked self-
attention encoder whose input is a BERT embed-
ding, and in addition each framework has another
stacked self-attention encoder of it own, similar in
concept to Peng et al. (2017, 2018)’s FREDA1 ar-
chitecture (which, however, used BiLSTMs), also
employed by Hershcovich et al. (2018a); Linde-
mann et al. (2019). The outputs of these encoders
are processed the same as in the first variation
(task-specific decoders). Figure 5 illustrates this
architecture.

5.2 Training details

Each training batch contains examples from a sin-
gle framework, while the model is alternating be-
tween the different batch types. As the EDS train-
ing dataset is much larger than the UCCA one,

https://github.com/OfirArviv/hit-scir-mrp2020/tree/multitask
https://github.com/OfirArviv/hit-scir-mrp2020/tree/multitask
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Validation Validation Validation
Sharing architecture # Epochs Best Epoch Average F1 UCCA F1 EDS F1
Shared encoder
+ task embedding 13 2 0.55 0.68 0.43
+ task specific encoders 13 4 0.38 0.49 0.27

Table 3: HIT-SCIR multitask model training details and scores.

Figure 5: Illustration of the second variant of the HIT-SCIR multitask model, parsing the sentence “The fox gazed
at the little prince.” Top: Dedicated HIT-SCIR parsers for each framework. Bottom: Encoder architecture. BERT
embeddings are extracted for each token. Vector representations for the input tokens are then computed by a shared
stacked self-attention encoder and by a framework-specific self-attention encoder. The encoded vectors are then
fed to a framework-specific HIT-SCIR parsers as input tokens.

we balance them out by training the same number
of examples from each framework in each epoch.
Due to time constraints we tried out only a single
set of hyperparameters, chosen arbitrarily without
tuning. We select the epoch with the best aver-
age MRP F-score on a validation set, which is the
union of both validation sets of EDS and UCCA.

5.3 Results

Table 3 presents the average scores on the val-
idation sets for multitask trained models. The
multitask HIT-SCIR consistently falls behind the
single-task one, for each framework separately
and in the overall scores; but it is clear that our
first multitask architecture (with task embedding)
outperforms the second one (with task-specific en-
coders).

5.4 Discussion

Previous results on multitask MRP showed mixed
results, some showing improved performances
(Peng et al., 2017; Hershcovich et al., 2018a; Lin-
demann et al., 2019). Others failed to show im-
provements (Hershcovich and Arviv, 2019), and
argued that the large multitask models were un-
derfitting due to insufficient training. In our case,
however, the multitask models underperform de-
spite reaching convergence.

We hypothesize that with better hyperparam-
eters or different sharing architectures, more fa-
vorable results could be obtained. However, it
is possible that multitask learning would be more
helpful in a factorization-based parser (Peng et al.,
2017; Lindemann et al., 2019), where inference is
global and more uniform across frameworks. A
transition-based parser may be less suited for uti-
lizing information from different tasks that have
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different transition systems, as in the HIT-SCIR
parser. Adapting it to have a more uniform tran-
sition system, like TUPA does, could facilitate
cross-framework sharing. Alternatively, improv-
ing TUPA’s training efficiency would also enable
such experimentation.

6 Conclusion

We have presented TUPA-MRP and a modified
HIT-SCIR parser, which constitute the HUJI-
KU submission in the CoNLL 2020 shared task
on Cross-Framework Meaning Representation.
TUPA is a general transition-based DAG parser
with a uniform transition system, which is easily
adaptable for multiple frameworks. We used it for
parsing in both the cross-framework and the cross-
lingual tracks, adapting it for the newly intro-
duced frameworks, PTG and DRG. HIT-SCIR is
a transition-based parser with framework-specific
transition systems, which we adapted for this
year’s shared task and used for English EDS and
UCCA parsing in the cross-framework track. The
HIT-SCIR parser was additionally used in exper-
imenting on multitask learning, with negative re-
sults for that approach.

Future work will tackle the MRP task with more
modern transition-based-like parser architectures,
such as pointer networks (Ma et al., 2018), which
have so far only been applied to bilexical fram-
works, i.e., flavor-0 SDP (Fernández-González
and Gómez-Rodríguez, 2020).
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