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Abstract

The classic deep learning paradigm learns a model from the training data of a single task and
the learned model is also tested on the same task. This paper studies the problem of learning a
sequence of tasks (sentiment classification tasks in our case). After each sentiment classification
task is learned, its knowledge is retained to help future task learning. Following this setting, we
explore attention neural networks and propose a Bayes-enhanced Lifelong Attention Network
(BLAN). The key idea is to exploit the generative parameters of naı̈ve Bayes to learn attention
knowledge. The learned knowledge from each task is stored in a knowledge base and later used
to build lifelong attentions. The constructed lifelong attentions are then used to enhance the
attention of the network to help new task learning. Experimental results on product reviews from
Amazon.com show the effectiveness of the proposed model.

1 Introduction

In recent years, deep learning methods have brought sentiment classification to a new height with big
data, see a survey paper (Zhang et al., 2018). However, these deep learning methods primarily focus
on learning a model from the training data of one task and the learned model is tested on the same
task. In this paper, we study the problem of learning a sequence of sentiment classification tasks. This
learning setting is called lifelong learning. Lifelong learning is a continual learning process where the
learner learns a sequence of tasks; after each task is learned, its knowledge is retained and later used
to help new/future task learning (Thrun, 1998; Silver et al., 2013; Ruvolo and Eaton, 2013; Mitchell et
al., 2018; Parisi et al., 2019). Lifelong learning has been introduced extensively in a book, see (Chen
and Liu, 2018). The first lifelong learning method for sentiment classification (called lifelong sentiment
classification) was introduced in (Chen et al., 2015). Following Chen et al. (2015), several other lifelong
sentiment classification approaches were proposed respectively in (Xia et al., 2017; Wang et al., 2019;
Lv et al., 2019; Xu et al., 2020). We will discuss these and other related work in the next section. Among
these, (Lv et al., 2019) is a pioneering lifelong sentiment classification method based on deep learning.
Following these existing works, we treat the classification in each domain (e.g., a type of product) as a
learning task. Thus, we use the terms domain and task interchangeably throughout the paper. Formally,
we study the following problem.

Problem Definition: At any point in time, a learner has learned n sentiment classification tasks. Each
task Ti|ni=1 has its own data Di. The learned knowledge is retained in a knowledge base. When faced
with a new sentiment classification task Tn+1, the knowledge in the knowledge base is leveraged to help
learn the new task Tn+1. After Tn+1 is learned, its knowledge is also incorporated into the knowledge
base for future task learning.

The above-defined problem is a reformulation from the work of Chen et al. (2015). As can be seen, the
main challenges of this problem are 2-fold: (1) what forms of knowledge should be retained from each
task and (2) how does the learner use the knowledge to help future task learning? These are also the
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challenges faced by lifelong learning. This paper studies the problem of lifelong learning for sentiment
classification. Below let us consider an example in sentiment classification.

“I bought this camera last month. It works good although a little heavy. Would recommend this.”

We (humans) can observe that (1) the first sentence shows a neutral sentiment (or no sentiment), (2)
the second sentence expresses both positive (i.e., good) and negative (i.e., heavy) sentiments, and (3)
the third sentence shows a strong positive (i.e., recommend) sentiment. The overall sentiment polarity
of this example is positive. One reason why we can understand these clearly is that we give different
focuses/attentions to each word and each sentence. We give strong attentions to the words (good, heavy,
and recommend) and the last two sentences. Another crucial reason is that we have accumulated a
large amount of knowledge in the past, and use it now to help understanding. For example, we know
that the word “good” is positive for all products, and the word “heavy” is negative for camera but may
be positive for some other products. Such a problem is called domain generality and domain specificity
as introduced in (Li and Zong, 2008). The problem is particularly acute in lifelong learning as lifelong
learning needs to tackle a large number of (possibly never ending) domains/tasks. Thus, we motivate and
propose to use attention from previous tasks as knowledge to help future task learning.

Attention has become enormously popular as an essential component of neural networks especially for
a wide range of natural language processing tasks (Chaudhari et al., 2019). Attention neural networks
was first introduced for machine translation (Bahdanau et al., 2014). Since then, a large body of sentiment
classification models using attention mechanisms have been arrived — to name a few (Zhou et al., 2016;
Yang et al., 2016; Gu et al., 2018; He et al., 2018; Peng et al., 2019; Zhang et al., 2019; Yu et al., 2019).
However, none of them is a lifelong sentiment classification method. Most of them learn in isolation as
the classic deep learning paradigm learned, although some methods work for multi-domain sentiment
classification which focus on leveraging data in source domain to help target domain. So, they are far
from sufficient for our goal as we aim at building a model to learn a sequence of sentiment classification
tasks and learn them successively. In addition, whether attention is explainable (or interpretable) was
recently discussed in (Jain and Wallace, 2019; Serrano and Smith, 2019; Wiegreffe and Pinter, 2019).
Letarte et al. (2018) and Clark et al. (2019) show the importance of attention for neural networks.

In this paper, we introduce a knowledge-enhanced attention model which we call BLAN (as shorthand
for Bayes-enhanced Lifelong Attention Network) for learning a sequence of sentiment classification
tasks. The idea is that the model parameters of naı̈ve Bayes are first generated from each task. These
parameters are then transformed to knowledge, retained in the knowledge base and later used to build
lifelong attentions. Frequent Pattern Mining (Agrawal et al., 1994) is used in extracting lifelong atten-
tions. The extracted lifelong attentions are used to enhance attention neural networks. This enhancement
is especially useful when the training data of a task is small and thus, attention neural networks do not
work well. The proposed lifelong attention mechanism using naı̈ve Bayes and Frequent Pattern Mining
is helpful and promising. These will be clear later. The experimental results demonstrate the superiority
of the proposed model against multiple baseline methods. In summary, the paper makes the following
contributions:

• The paper studies a problem of learning a sequence of sentiment classification tasks, where the tasks
are learned incrementally.

• It proposes a Bayes-enhanced Lifelong Attention Network to address the aforementioned problem.
The proposed method exploits the generative parameters of naı̈ve Bayes to learn attention knowl-
edge and the knowledge learned from each previous task is retained and later used to build lifelong
attention to enhance neural networks for new task learning.

• Experimental results using two Amazon review datasets (involving 20 and 24 types of product
domains) show that the proposed method achieves remarkable results.

2 Related Work

Lifelong learning, an advanced machine learning paradigm has been recently researched significantly in
a relatively short time, see the book (Chen and Liu, 2018). In brief, lifelong learning aims to imitate
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“human learning” process and capability, i.e., accumulating the knowledge learned in the past and using
it to help future learning and problem solving. Lifelong learning for sentiment classification (called life-
long sentiment classification) was first introduced in (Chen et al., 2015), which is based on optimization
considering the knowledge from previous tasks to help future task learning. Following this work, Xia et
al. (2017) investigated lifelong sentiment classification based on voting of each individual task classifier.
Wang et al. (2019) proposed a heuristic naı̈ve Bayes which achieves forward knowledge transfer to im-
prove any future task learning and also achieves backward knowledge transfer to improve the model of
any past task without retraining using the past task training data. Xu et al. (2020) proposed a continuous
naı̈ve Bayes learning framework for e-commerce product review sentiment classification by extending
the parameter estimation mechanism in naı̈ve Bayes. Lv et al. (2019) introduced a deep learning method
for lifelong sentiment classification by jointly training two networks, a feature learning network and a
knowledge retention network. Such a method is the first lifelong sentiment classification method based
on deep learning. We have compared this deep learning method in our experiments and show that it is
inferior to our proposed method. (Shu et al., 2017; Wang et al., 2018a; Wang et al., 2018b) also proposed
lifelong learning methods for sentiment classification, but they focus on aspect-based analysis, which is
different from document-level sentiment classification (our focus in this paper).

There are currently several research topics that are closely related to lifelong learning — most notably,
multi-task learning and transfer learning.

Multi-task learning vs. lifelong learning: Multi-task learning (Zhang and Yang, 2017) jointly opti-
mizes the learning of multiple tasks. Although it is possible to make it continual, multi-task learning
does not retain any knowledge. Lifelong learning is a continual learning process where the learner learns
task incrementally, accumulates knowledge from each task and later uses it to help future task learning.

Transfer learning vs. lifelong learning: Transfer learning (Pan and Yang, 2010) uses the source domain
labeled data to help target domain learning which has no or little labeled data. Unlike lifelong learning,
transfer learning is not continual and has no knowledge retention. The source should be similar to the
target (which are normally selected by the user). Domain adaptation is a type of transfer learning by
establishing knowledge transfer from a labeled source domain to an unlabeled target domain. Domain
adaptation with multiple sources (or called Multi-source Domain Adaption) aims to use the labeled data
collected from multiple sources to help target domain learning (Sun et al., 2015; Wu and Huang, 2016).
However, these methods are only one-directional, i.e., sources helps target because the target has no or
little labeled data.

Our work is also related to knowledge-enhanced attention neural networks. Knowledge-enhanced
attention models have been introduced in (Chen et al., 2017; Zhou et al., 2018; Yang et al., 2019; Peters
et al., 2019; Chen et al., 2019; Huang et al., 2020). However, they do not concern sentiment classification
task. Although there are a large body of attention models for sentiment classification as we mentioned in
the previous section, none of them uses enhanced attention mechanisms. They mainly use self-attention
learned from the networks. Our proposed attention mechanism is a combination of self-attention and
enhanced-attention. We detail our attention mechanism and the proposed model next.

3 Proposed Model

The proposed BLAN model is a hierarchical architecture as shown in Figure 1. The key characteristic of
BLAN is the Bayes-enhanced lifelong attention (to build knowledge-enhanced attention). This is done
by using the generative model parameters Pwi|ck of the naı̈ve Bayes, formulated as

Pwi|ck =
λ+Nck,wi

λ|V |+
∑|V |

v=1Nck,wv

(1)

where wi is a word, ck is the positive (+) or negative (-) class in our case, Nck,wi is the number of
times that word wi occurs in the training documents of class ck, |V | is the vocabulary V size, and λ
is the smoothing parameter. Below we provide an “ideal” case to illustrate how our model uses these
parameters to perform Bayes-enhanced lifelong attention in a lifelong learning setting.
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Figure 1: Architecture of the proposed Bayes-enhanced Lifelong Attention Networks (BLAN).

From Parameters to Knowledge (Attention): Recall the example mentioned in the introduction. Sup-
pose the three words “good, heavy, recommend” appear in the camera domain. We first transform the
parameters to ratios as shown in Table 1, whereRw|+ = Pw|+/Pw|− andRw|− = Pw|−/Pw|+. Then, the
ratios are treated as attentions (i.e., knowledge) and retained in the Knowledge Base (KB). We use the
ratios (not the original parameters) as we aim to reinforce the sentiment intensity for a sentiment word.
Thus the KB stores two types of attention knowledge (i.e., positive ratioRw|+ and negative ratioRw|−) 1

for each task. From Table 1, we can see that the attention knowledge for each word here is useful, also
meaningful and interpretable in such a way.

Word Parameters → Ratios
Pw|+, Pw|− Rw|+, Rw|−

Good 0.8, 0.2 4.0, 1/4
Heavy 0.3, 0.7 3/7, 7/3

Recommend 0.9, 0.1 9.0, 1/9

Table 1: An “ideal” case from parameters to ratios. (Note, this is an ideal case. In practice, it is hard to
achieve such a result for each word but each word should have a relative sentiment polarity.)

Lifelong Attention: Suppose we are given a task sequence (T1, ..., Tn, Tn+1, ...), our model has
learned the first n tasks. The above two types of knowledge (i.e., Rw|+ and Rw|−) of each task has
also been retained in the KB. The knowledge mining process is marked using a Knowledge Miner in
Figure 1. Again, we use the terms domain and task interchangeably throughout the paper because we
treat the classification in each domain as a learning task following the existing lifelong sentiment classifi-
cation works. We now focus on using the retained knowledge and the newly learned knowledge from the
new/target task Tn+1 to generate lifelong attentions (namely lifelong word-level attention and lifelong
sentence-level attention as shown later) for the target task. As introduced early, we need to tackle the
problems of domain-generality and domain-specificity. For each word w in the target task, we rely on the
knowledge from all domains to solve the former. We filter/remove the domain-specific knowledge from
previous domains to address the latter when helping new task/domain learning. Here we follow Wang

1In practice, we can store one of the Rw|+ and Rw|− into the KB because Rw|+=1/Rw|−.
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et al. (2018a) and propose to filter the domain-specific knowledge using Frequent Pattern Mining (FPM)
(Agrawal et al., 1994). A frequent pattern is a set of items that appear frequently (above a minimum
frequency threshold, e.g., 10, called minimum support) in a database of transactions. Taking positive at-
tention knowledge as an example, we treat the positive attention knowledge of all words in each domain
as items. A set of items in one attention distribution form one transaction. Given all transactions, FPM
can find frequent items. Then, we treat those infrequent items as domain-specific knowledge and filter
out the domain-specific knowledge of each previous domain. Let R̂tw|+ and R̂tw|− denote the results of
the word w after performing FPM in the t-th previous domain/task. The lifelong word-level attentions 2

of this word for the target task Tn+1 are formulated as

α+
l,w =

n∑
t=1

R̂tw|+ +Rn+1
w|+ , α−l,w =

n∑
t=1

R̂tw|− +Rn+1
w|− . (2)

Assume that all words in a sentence s are conditionally independent given the class (which follows the
naı̈ve Bayesian assumption). Then, the lifelong sentence-level attentions of s are formulated as

β+l,s =

A∏
i=1

α+
l,wi

, β−l,s =

A∏
i=1

α−l,wi
(3)

where A is the number of words in s.

Bayes-enhanced Lifelong Attention Network: When the target task Tn+1 comes, our model first
extracts the above two types of lifelong attentions. The extracted lifelong attentions are used to enhance
the hierarchical neural networks. Given a document d with Q sentences {s1, ..., sQ} and the sentence sj
with words {wj1, ..., w

j
A}, where j denotes the j-th sentence sj , the proposed BLAN works as follows:

Word-level learner (WLL): For each word in the sentence sj , WLL first looks up the embedding
vector from pre-trained word embedding vectors. The embedding vectors of all words in this sentence
are fed into a bidirectional GRU (Bi-GRU) (Bahdanau et al., 2014). Then WLL can learn a representation
hji = [

−→
h ji ,
←−
h ji ] for each word (e.g., wji ) by concatenating the forward hidden state

−→
h ji and the backward

hidden state
←−
h ji . The representations of these words in sentence sj with positive and negative attentions

are fed into a positive sentence-level learner (pSLL in Figure 1) and a negative sentence-level learner
(nSLL in Figure 1), respectively.

Let Hj
w = [hj1, ..., h

j
A] and wj = [wj1, ..., w

j
A], then the network attentions α̈wj in a vector form are

formulated as

uwj = tanh(WwH
j
w + bw)

α̈wj = softmax(vwuwj ) (4)

where tanh() is a tanh function, Ww, bw and vw are trainable parameters.
From Eq. (4), we can see that the values of any attention of the network is a quantity bounded in

magnitudeO(1) as we perform softmax. To keep lifelong attentions in the same scale, we also perform
softmax for lifelong word-level attentions:

α̃+
l,wj = softmax(α+

l,wj ), α̃−
l,wj = softmax(α−

l,wj ) (5)

where α+
l,wj and α−

l,wj are lifelong word-level attentions for words wj using Eq. (2).

2Here let us describe some notational conventions. Throughout the paper, word-level attention is denoted by symbol α and
sentence-level attention is denoted by symbol β.
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For each word wji (i = 1, ..., A) in wj , we propose to use the lifelong word-level attention to enhance
the network’s attention, formulated as -

α̂+

wj
i

= α̈
wj

i
+ α̃+

l,wj
i

, α̂−
wj

i

= α̈
wj

i
+ α̃−

l,wj
i

(6)

α+

wj
i

=
α̂+

wj
i∑A

i=1 α̂
+

wj
i

, α−
wj

i

=
α̂−
wj

i∑A
i=1 α̂

−
wj

i

(7)

where α+

wj
i

and α−
wj

i

are the final attentions on the word wji . Then, positive and negative unified represen-

tations of the words in sentence sj are respectively formulated as

s+j = Hj
w(α

+
wj )

T , s−j = Hj
w(α

−
wj )

T . (8)

Sentence-level learner (SLL): Two SLLs (positive and negative, i.e., pSLL and nSLL in Figure 1)
receive the output (i.e., Eq. (8)) of WLL. Similar to WLL, pSLL and nSLL use Bi-GRU to learn repre-
sentations (h+j = [

−→
h +
j ,
←−
h +
j ] and h−j = [

−→
h −j ,
←−
h −j ]) for each sentence.

Let s = [s1, ..., sQ] denote the sentences of document d, then we have H+
s = [h+1 , ..., h

+
Q] and H−s =

[h−1 , ..., h
−
Q]. Then, the network’s sentence-level attentions β̈+s and β̈−s in a vector form are formulated as

u+ = tanh(W+
s H

+
s + b+

s )

β̈+s = softmax(v+
s u

+) (9)

u− = tanh(W−s H−s + b−s )

β̈−s = softmax(v−s u
−) (10)

where W+
s , W−s , b+

s , b−s , v+ and v− are trainable parameters.
As introduced above, we use Eq. (3) to compute the lifelong sentence-level attentions β+l,s and β−l,s for

the sentences s in document d. These lifelong sentence-level attentions are further normalized as

β̃+l,s = softmax(β+l,s), β̃−l,s = softmax(β−l,s). (11)

Similar to WLL, each SLL also learns a unified representation of the sentences {s1, ..., sQ} in the
document d by using knowledge-enhanced attentions. For each sentence sj (j = 1, ..., Q), we propose
to use Bayes-enhanced lifelong sentence-level attention to enhance the network’s attention:

β̂+sj = β̈+sj + β̃+l,sj , β̂
−
sj = β̈−sj + β̃−l,sj (12)

β+sj =
β̂+sj∑Q
j=1 β̂

+
sj

, β−sj =
β̂−sj∑Q
j=1 β̂

−
sj

(13)

where β+sj and β−sj are the final attentions on the sentence sj .
Then, the unified representation of all sentences in this document d is formulated as follows

d+ = H+
s (β

+
s )

T , d− = H−s (β
−
s )

T . (14)

Document-level learner (DLL): The learned d+ and d− are fed into a full connection layer (FCL) to
produce the positive sentiment score P+|d and the negative sentiment score P−|d for this document. DLL
learns the class label by performing argmax{P+|d, P−|d}. For the objective function, the motivation
is that the proposed model should assign a large positive sentiment score P+|d (meanwhile, a small or
even zero negative sentiment score P−|d) to a positive document, and the reverse results to a negative
document. Thus, we propose to maximize the objection function below

max
∏
d∈D

{
θ(d)δ(d∈+)θ̂(d)δ(d∈−)

}
(15)
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Algorithm 1: BLAN in lifelong learning for sentiment classification
Input : Target domain training documents D, knowledge Rtw|+ and Rtw|− (t = 1, ..., n) of the

previous n tasks (stored in the KB)
Output: BLAN in the target domain

1 Learn knowledge Rn+1
w|+ and Rn+1

w|− of the target domain and store the newly learned knowledge in

the KB ;
2 for each document d in a training batch do
3 for each sentence sj in d do
4 for each word wji in the sentence sj do
5 Learn word-level attention α+

wj
i

and α−
wj

i

using Eq. (7) ;

6 end
7 Learn unified representation s+j and s−j for the sentence sj using Eq. (8) ;
8 Learn sentence-level attention β+sj and β−sj using Eq. (13) ;
9 end

10 Learn unified representation d+ and d− for the document d using Eq. (14) ;
11 end
12 Update parameters of the BLAN networks using loss function (i.e., Eq. (17)) with Adam

optimizer.

where D are the training documents, θ(d) = sigmoid(P+|d − P−|d), θ̂(d) = sigmoid(P−|d − P+|d),
and the activation function δ(z) is defined as

δ(z) =

{
1, if z is true,

0, otherwise.
(16)

In practice, we solve a logarithmic minimization problem with a regularization term. Formally, the
objective function to train our model is formulated as follows

L =
∑
d∈D

{
− log(θ(d)δ(d∈+))− log(θ̂(d)δ(d∈−))

+λ(P+|d + P−|d)

}
(17)

where λ is a regularization parameter (set to 0.01 in training). For the new/target domain Tn+1, the
training process of the proposed BLAN model is presented in Algorithm 1.

4 Experiments

4.1 Datasets
Since the most related work to ours is lifelong sentiment classification (Chen et al., 2015; Xia et al.,
2017; Wang et al., 2019; Lv et al., 2019), we evaluate sentiment classification using the same dataset as
in (Chen et al., 2015). Wang et al. (2019) and Lv et al. (2019) also used this dataset. The dataset contains
Amazon reviews of 20 types of product domains, denoted by Amazon(20) 3. Each domain consists of
1,000 reviews. Each review has been assigned a sentiment label, i.e., positive (+) or negative (-). We did
not use the dataset in (Xia et al., 2017) as their data for each task/domain are from the same domain. In
addition, we sampled a large Amazon review dataset from the SNAP corpus 4, which contains product
reviews from 24 types of product domains. Following the existing works (Pang et al., 2002; Blitzer et
al., 2007; Chen et al., 2015), we treat reviews with rating > 3 as positive and reviews with rating < 3 as
negative. We randomly sampled 10,000 reviews for each domain from the SNAP corpus. The sampled
dataset is denoted by SNAP(24).

3http://anthology.aclweb.org/attachments/P/P15/P15-2123.Datasets.zip
4http://jmcauley.ucsd.edu/data/amazon/

http://anthology.aclweb.org/attachments/P/P15/P15-2123.Datasets.zip
http://jmcauley.ucsd.edu/data/amazon/
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The Dataset Amazon(20)
Alarm Clock 30.51 Home Theater System 28.84
Baby 16.45 Jewelry 12.21
Bag 11.97 Keyboard 22.66
Cable Modem 12.53 Magazine Subscriptions 26.88
Dumbbell 16.04 Movies TV 10.86
Flashlight 11.69 Projector 20.24
Jewelry 19.50 Rice Cooker 18.64
Gloves 13.76 Sandal 12.11
Graphics Card 14.58 Vacuum 22.07
Headphone 20.99 Video Games 20.93
The Dataset SNAP(24)
Amazon Instant Video 10.96 Health and Personal Care 10.64
Apps for Android 18.39 Home and Kitchen 10.22
Automotive 5.99 Kindle Store 6.42
Baby 11.85 Movies and TV 13.74
Beauty 12.47 Musical Instruments 4.94
Books 9.28 Office Products 5.94
CDs and Vinyl 9.32 Patio Lawn and Garden 10.26
Cell Phones and Accessories 14.07 Pet Supplies 12.45
Clothing Shoes and Jewelry 10.84 Sports and Outdoors 7.12
Digital Music 10.02 Tools and Home Improvement 8.17
Electronics 12.40 Toys and Games 7.27
Grocery and Gourmet Food 10.24 Video Games 14.02

Table 2: Name of each domain and the proportion of negative reviews in each domain.

The name of each domain from the datasets Amazon(20) and SNAP(24), and the proportion of negative
reviews in each domain are shown in Table 2. We can see that the proportion of negative reviews in each
domain is in the range [4%, 31%]. It is worth stressing that the negative reviews in each domain in both
datasets are minorities and thus very hard to classify.

4.2 Baselines
In this work, we use naı̈ve Bayes (NB) parameters to enhance attention neural networks and propose
a lifelong sentiment classification model. So, we compare with three types of methods, namely naı̈ve
Bayes, neural networks, and lifelong sentiment classification.

• Naı̈ve Bayes: we compare our model with the classic NB method. We also compare with a strong
variant of NB, called NBSVM (Wang and Manning, 2012). There are two models of NBSVM with
uni-grams and bi-grams, denoted by NBSVM-uni and NBSVM-bi, respectively.

• Neural Networks: we compare with Conv-GRNN (Tang et al., 2015), LSTM-GRNN (Tang et al.,
2015) and HAN (an attention based model) (Yang et al., 2016).

• Lifelong Sentiment Classification: we compare with the the existing works LLV (Xia et al., 2017),
LSC (Chen et al., 2015), LNB (Wang et al., 2019) and SRK (Lv et al., 2019).

For our BLAN, we also created a variant without the Bayes-enhanced attentions, denoted by nBLAN.
nBLAN is to evaluate our Bayes-enhanced attentions are helpful.

4.3 Settings
Our experiment settings and model parameters are set as follows.

Training set, validation set and test set. For each dataset, the review documents in each domain are
partitioned into training set, validation set and test set with 80%, 10% and 10% respectively. For each
review document, we use NLTK 5 to split it into sentences, then tokenize and lemmatize each sentence
into a sequence of words. We filter out words that appear less than 3 (and 5) times in the training data of
each domain of the dataset Amazon(20) (and SNAP(24)) in building the vocabulary of each domain.

5NLTK: Natural Language Toolkit, see http://www.nltk.org/

http://www.nltk.org/


588

Method Non-lifelong SC Evaluation Lifelong SC Evaluation
Amazon(20) SNAP(24) Amazon(20) SNAP(24)

ACC F1 ACC F1 ACC F1 ACC F1
NB 85.29 47.68 81.99 38.49 82.51 53.01 79.26 37.17

NBSVM-uni 88.04 49.31 92.31 44.46 91.07 67.25 93.07 57.30
NBSVM-bi 85.54 28.80 91.27 31.15 90.52 64.59 93.89 61.53

Conv-GRNN 87.68 54.97 92.23 50.63 91.39 72.77 93.39 64.75
LSTM-GRNN 85.43 35.83 92.43 47.27 91.64 70.39 93.88 61.53

HAN 86.57 47.83 93.01 56.06 91.17 68.90 93.94 66.05
LLV 87.12 40.85 90.98 30.38 86.98 48.02 90.76 31.10
LSC 87.71 46.95 91.01 33.59 88.75 58.62 90.94 41.81
LNB 86.92 47.18 91.97 39.86 88.69 61.25 91.74 43.25
SRK 85.43 45.23 90.44 40.69 87.25 60.46 90.57 57.63

nBLAN 86.67 50.00 87.12 56.17 91.50 71.07 93.80 66.76
BLAN 88.66 60.78 93.13 57.88 92.38 74.78 94.65 69.66

Table 3: (Evaluation results) Average ACC and F1 on the datasets Amazon(20) and SNAP(24). Note,
the F1 of negative class should be more reliable than the ACC of both classes as negative reviews are
minorities in each dataset.

Model parameters. For the NB, the smoothing parameter is set to 1 (Laplacian smoothing). For the
other non-neural networks models (i.e., NBSVM-uni, NBSVM-bi, LLV, LSC and LNB), we use their
default parameter settings. In addition, we followed Pang et al. (2002) to deal with negation words as
performed in (Chen et al., 2015) for NB, LSC and LNB. For the neural networks models (i.e., Conv-
GRNN, LSTM-GRNN, HAN, SRK, nBLAN and BLAN), we use pre-trained GloVe.840B 6 (Pennington
et al., 2014) to initialize the word embeddings and the embedding dimension is 300. The number of
convolutional filters is 3 with kernel sizes 1, 2 and 3 respectively. The size of LSTM and GRU hidden
states is 300. The network parameters are updated using the Adam optimizer (Kingma and Ba, 2015)
with a learning rate of 0.001. The learning rate is clipped gradually using a norm of 0.9 in performing
the Adam optimization. The dropout rate is set to 0.5 in the input layer. We use Accuracy (ACC) of both
classes in evaluation. We also use F1 of the negative class because the number of reviews in the negative
class is small (see Table 2) and thus not easy to classify.

4.4 Result Analysis

We evaluate sentiment classification performance using both non-lifelong setting and lifelong setting. For
the non-lifelong setting, we train and test all systems on each single domain (no knowledge from other
domains). For the lifelong setting, we follow (Chen et al., 2015) to treat each domain as the future/target
domain with the remaining domains as the past domains. That is, we run each system 20 (and 24)
times on the dataset Amazon(20) (and SNAP(24)). Note that those non-lifelong baselines are tailored
for a single domain. To have a fair comparison, we combine the training data of all domains (past and
target domains) to train each non-lifelong model and test the model on each target domain test data. The
average accuracy (ACC) of both classes and the F1 of negative class over the 20 domains of Amazon(20)
and 24 domains of SNAP(24) are shown in Table 3.

From the results, we make the following observations:

• The results of each method in lifelong setting are better than in non-lifelong setting on each dataset.
This show that lifelong learning is a promising research direction.

• Our BLAN achieves the best ACC and F1 on both datasets respectively. The results clearly show
the superiority of BLAN.

6http://nlp.stanford.edu/data/glove.840B.300d.zip

http://nlp.stanford.edu/data/glove.840B.300d.zip
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Figure 2: Left: Positive lifelong word-level and sentence-level attentions, and Right: Negative lifelong
word-level and sentence-level attentions. (Color online)

• BLAN outperforms the existing lifelong sentiment classification baselines (i.e., LLV, LSC, LNB
and SRK) markedly. This shows that our work presents a new margin to beat.

• Attention based baseline (i.e., HAN) is inferior to our BLAN, especially on the smaller dataset
Amazon(20). nBLAN (a variant of BLAN without Bayes-enhanced attention) is also inferior to
BLAN. This shows that Bayes-enhanced attention (i.e., lifelong attention) works and is useful.

• Most of the neural network baselines (i.e., Conv-GRNN, LSTM-GRNN, HAN and SRK) are slightly
superior to the non-neural network baselines (i.e., NB, NBSVM-uni, NBSVM-bi, LLV, LSC and
LNB), especially on the large dataset SNAP(24). This shows that neural network based methods are
superior in dealing with sentiment classification using large-scale data.

4.5 Case Study
Recall the example given in the introduction:

“I bought this camera last month. It works good although a little heavy. Would recommend this.”

The final learned lifelong attentions from the dataset Amazon(20) are shown in Figure 2, where each
number above the axis corresponds to a sentence ID and its location on the axis represents the attention
value (i.e., the value below the axis) of that sentence. The color depth in the textbox represents the
attention value of each word. We can see that our model works well for attention learning. The learned
lifelong attentions here are also interpretable in our human cognition.

5 Conclusions

In this work, we studied deep learning for a sequence of sentiment classification tasks. After each task
learned, its knowledge was retained to help subsequent task learning. This problem is called lifelong
sentiment classification. This paper proposed a novel knowledge-enhanced attention network model for
lifelong sentiment classification. The proposed model learns to build two types of lifelong attentions by
exploiting the model parameters of naı̈ve Bayes. The built lifelong attentions are used to enhance the
overall attention networks. Experimental results showed that the proposed model outperforms a wide
range of baselines markedly. The proposed model works for two-class (positive and negative) problem.
In our future work, we plan to extend it to multi-class problem. We also plan to address catastrophic
forgetting problem (Kirkpatrick et al., 2017) in neural networks and bring our method to a new height.
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