
Proceedings of the 3rd Clinical Natural Language Processing Workshop, pages 136–145
November 19, 2020. c©2020 Association for Computational Linguistics

136

Knowledge Grounded Conversational Symptom Detection
with Graph Memory Networks

Hongyin Luo1 Shang-Wen Li2 James Glass1
1MIT CSAIL
2Amazon AI

hyluo@mit.edu, shangwel@amazon.com, glass@mit.edu

Abstract

In this work, we propose a novel goal-oriented
dialog task, automatic symptom detection. We
build a system that can interact with patients
through dialog to detect and collect clinical
symptoms automatically, which can save a
doctor’s time interviewing the patient. Given
a set of explicit symptoms provided by the pa-
tient to initiate a dialog for diagnosing, the sys-
tem is trained to collect implicit symptoms by
asking questions, in order to collect more infor-
mation for making an accurate diagnosis. Af-
ter getting the reply from the patient for each
question, the system also decides whether cur-
rent information is enough for a human doc-
tor to make a diagnosis. To achieve this goal,
we propose two neural models and a training
pipeline for the multi-step reasoning task. We
also build a knowledge graph as additional in-
puts to further improve model performance.
Experiments show that our model significantly
outperforms the baseline by 4%, discovering
67% of implicit symptoms on average with a
limited number of questions.

1 Introduction

In a typical clinical conversation between a patient
and a doctor, the patient initiates the dialog by
providing a number of explicit symptoms as a self-
report. Based on this information, the doctor asks
about other possible symptoms, in order to make
an accurate diagnosis and suggest treatments. This
is a multi-step reasoning process. At each step,
the doctor choose a symptom to ask or concludes
the diagnosis by considering the dialog history and
possible diseases.

With recent advances in deep reinforcement
learning (Mnih et al., 2013) and task-oriented dia-
log systems (Bordes et al., 2016; Wen et al., 2016),
recent studies have proposed human-computer di-
alog systems for automatic diagnosis (Wei et al.,
2018). The automatic diagnosis system applied

a deep Q network (DQN) to decide whether to
continue the dialog by asking about a symptom or
conclude the diagnosis by predicting a disease. Xu
et al. (2019) proposed a knowledge-routed DQN
that improves this process by considering relations
among diseases and symptoms. The systems de-
scribed above can achieve around 70% accuracy in
making a diagnosis among 4 common diseases and
detects a few implicit symptoms.

However, the automatic diagnosis systems is far
from being ready for clinical diagnosis, since there
is still a gap in accuracy between the system and
human doctors. Furthermore, he current legislation
system has to be amended such that liability can
be clarified when the system mis-diagnoses. As a
result, current machines are not ready to replace
human doctors, but they can still detect symptoms
automatically to assist doctors making decision
more efficiently.

In this work, we propose a system that auto-
matically detects clinical symptoms of a patient
through dialog, instead of diagnosing. With such
symptom information collected, a doctor can be
more knowledgeable before interviewing the pa-
tient. Only those symptoms not covered by the
dialog system should be asked during the interview.
Thus both the time and cost of the clinical inter-
views can be reduced. Meanwhile, the diagnosis
is still made by the doctor, which guarantees the
accuracy and responsibility.

Table 1 shows two example conversations gen-
erated by a dialog agent for automatic diagnosis
(AD) and a dialog agent for automatic symptom
detection (ASD). AD and ASD agents conclude the
conversations differently. The goal of the AD sys-
tem is making the correct diagnosis, so it concludes
the conversation with a prediction of the possible
disease. The ASD system aims at discovering as
many implicit symptoms as possible, thus it stops
the conversation when after deciding that current

137

I. Automatic Diagnosis (AD)

User: The baby has a Runny Nose.
Agent: Does the baby cough?
User: Yes, the baby is coughing.
Agent: Does the baby have a fever?
User: I am not sure.
Agent: It is upper respiratory infection

II. Automatic Symptom Detection (ASD)

User: The baby has a Runny Nose.
Agent: Does the baby cough?
User: Yes, the baby is coughing.
Agent: Does the baby sneeze?
User: Yes, the baby is sneezing.
Agent: Does the baby have a fever?
User: I am not sure.
Agent: Does the baby have a headache?
User: Yes, the baby has a headache.
Agent: Does the baby have Phlegm?
User: Yes, the baby has Phlegm.

Agent: Thank you for the information!
A report has been sent to your doctor.

Table 1: Two examples of dialog between different sys-
tems and a user. Conversation I is generated by an au-
tomatic diagnosis system, and conversation II is gener-
ated by an automatic symptom detection system. The
explicit symptom is highlighted in blue, the implicit
symptoms are highlighted in red, and unrelated symp-
toms are marked in green.

information is enough for a doctor to make diag-
nosis. As shown in Table 1, the number of turns
of the ASD system is possibly more than an AD
system, and it covers more implicit symptoms that
are not mentioned in the patient’s self-report.

In this work, we focus on the conversational
ASD task. We propose a system that predicts im-
plicit symptoms and whether to conclude the con-
versation with neural networks. To train the neural
networks, we borrow the idea of the masked lan-
guage model (Devlin et al., 2018) and simulate
both training and test datasets. To improve the
performance of the system, we annotate a medi-
cal knowledge graph based on an online medical
dictionary. Then we propose a graph memory net-
work (GMemNN) architecture to utilize the exter-
nal knowledge graph. We also propose two metrics:
symptom hit rate and unrelate rate to evaluate the
performance of the system.

We make following contributions in this paper,

• We propose the conversational symptom de-
tection task and evaluation metrics.
• We annotate a knowledge graph in the medical

domain to enrich the current corpus.
• We propose a graph memory network

(GMemNN) architecture to build the dialog
agent, which produces the state-of-the-art per-
formance.

2 Related Work

2.1 Task-Oriented Dialog Systems

Task-oriented dialog systems aim at completing a
specific task by interacting with users through nat-
ural language, and the main challenge is learning a
dialog policy manager (Papineni et al., 2001). Typ-
ical applications include flight booking (Seneff and
Polifroni, 2000), movie recommendation (Dodge
et al., 2015; Fazel-Zarandi et al., 2017), restaurant
reservation (Bordes et al., 2016), and vision ground-
ing (Chattopadhyay et al., 2017). Recently, such
systems have been applied in automatic diagnosis
(Wei et al., 2018; Xu et al., 2019; Luo et al., 2020).
The authors of De Vries et al. (2017) proposed
the GuessWhat game, which requires computers
to guess a visual object given a natural language
description by asking a series of questions. The
GuessWhat game is similar with our task in the
medical domain.

2.2 Knowledge and Graph Processing

Many tasks require processing knowledge in dif-
ferent formats. Sukhbaatar et al. (2015) proposed
memory networks (MemNNs) for question answer-
ing. The context of the question, or knowledge, is
stored in an external memory bank and the model
reads information from the memory with an at-
tention mechanism. The MemNN model is also
applied in question answering in the movie domain
(Miller et al., 2016), video question answering (Luo
et al., 2019), and stance detection (Mohtarami et al.,
2018). The neural Turing machine (Graves et al.,
2014) and the neural computer (Graves et al., 2016)
also applied external memory banks, and enable
the models to write into and read from the external
memory cells dynamically.

In many tasks, knowledge can be organized as
graphs. Recent studies have proposed different
neural models for processing graph-structured data.
The graph neural networks (GNNs) (Scarselli et al.,
2008) uses neural networks to perform message
propagation on graphs. The graph convolutional

138

networks (GCNs) (Kipf and Welling, 2016) em-
ployed a multi-layer architecture to learn node
embeddings by integrating the information of the
nodes and their neighbors. The graph attention
networks (Veličković et al., 2017) integrates node
embeddings with an attention mechanism. Shang
et al. (2019) proposed a graph augmented memory
network (GAMENet) model for medication recom-
mendation. A similar idea that combines graphs
and memory networks is proposed in Pham et al.
(2018) for molecular activity prediction. In this
work, we also propose a memory network archi-
tecture that processes graph-structured knowledge,
but focus on bipartite graphs.

3 Data and Task Definition

In this section, we formally define the automatic
symptom detection task and describe the corpus
used to train and evaluate the model. We first in-
troduce the Muzhi corpus (Wei et al., 2018), then
describe the task based on the corpus. Lastly, we
describe the medical knowledge graph we anno-
tated and the annotation method.

3.1 Muzhi Corpus

We train and evaluate our models using the Muzhi
corpus. The corpus was collected from a online
medical forum1, including 4 common diseases and
66 symptoms. The corpus contains 710 dialog
sessions represented as 710 user goals. Each user
goal includes a set of explicit symptoms as the
user’s self report, and a set of implicit symptoms
queried by doctors. An example of a user goal is
shown in Table 2.

In the example, 1 means that the patient con-
firms a symptom, while 0 means that the patient is
confident that the symptom does not exist. Other
symptoms not listed in the user goal are considered
either unrelated to the diagnosis, or the patient is
not sure about their existence. In the Muzhi corpus,
each user goal contains 2.35 explicit symptoms and
3.26 implicit symptoms on average.

3.2 Automatic Conversational Symptom
detection Task

The goal of the automatic conversational symptoms
detection (ASD) task is detecting as many implicit
symptoms as possible through dialogs with the pa-
tients, limiting the number of dialog turns. The
initial input of a dialog agent is the set of explicit

1http://muzhi.baidu.com

Disease tag Bronchiolitis

Exp Sym Runny Nose: 1 Cough: 1
Imp Sym Sore Throat: 1 Emesis: 0

Harsh Breath: 1 Fever: 0

Table 2: An example of a user goal in the Muzhi corpus,
containing explicit symptoms and implicit symptoms. 1
means a symptom is confirmed by the patient, while 0
means that a symptom is denied by the patient.

symptoms. Based on the query and user response
of each step, the system decides a new symptom to
ask, or stop the dialog.

All implicit symptoms, including the positive
and negative ones, are considered as the target of
the system. The user goals are collected from real
doctor-patient conversation, so we consider every
queried symptom a necessary step of making an
accurate diagnosis. The systems are evaluated with
two metrics. We say model A outperforms model
B if model A discovers more implicit symptoms,
and queries less unrelated symptoms.

3.3 Medical Knowledge Graph

We annotate a medical knowledge graph to provide
information about the relations among symptoms
and diseases based on the symptoms included in
the Muzhi corpus. As described above, we have
66 symptoms in total. We regard each symptom
and disease as a node in the graph and annotate
symptom-symptom and symptom-disease edges
based on the A-Hospital2 website, which contains
webpages for both symptoms and diseases.

We propose a novel annotation method to build
the medical knowledge graph considering compli-
cations. The symptom pages in A-Hospital de-
scribes a series of diseases that can cause a symp-
tom. Meanwhile, it also listed most possible symp-
toms to appear if the target symptom is caused by
a certain disease. We regard these symptoms as
complications and make use of this information. In
practice, we annotate the knowledge graph with the
following method,

1. For each symptom s and its related disease d,
add edge (s, d).

2. For each symptom s, its related disease d, and
complication c, add edge (s, c).

An example of the annotated knowledge is
shown in Figure 1, and Table 3 summaries the

2http://www.a-hospital.com/

http://muzhi.baidu.com
http://www.a-hospital.com/

139

Cough

Common
Cold

Fever

Harsh
Breath

Phlegm

Asthma

Pneumonia

Bronchitis

Bronchial
Asthma

Cardiac
Asthma

Runny
Nose Sweating

Cold Hand
and Feet

Chest
Pain

Figure 1: An example of an annotated symptom in the
knowledge graph. Red blocks represent symptoms and
blue blocks stands for disease. “Cough” is the target
symptom and other symptoms are complications.

Items Statistics

Num. Sym. 66
Num. Dise. 28
Num. Edge 1094
Num. S-D Edge 284
Num. S-C Edge 810

Table 3: A statistics of the annotated knowledge
graph of symptoms, diseases, and complications. Note
that both symptom-disease and symptom-complication
edges exist.

knowledge graph we annotated. In the table, S-
D edge stands for symptom-disease edge and S-C
edge stands for symptom-disease-symptom edge.
The number of S-C edge is lower than multiplying
the number of symptoms per disease and diseases
per symptom is that only a subset of symptoms
caused by a disease are regarded as significant com-
plications of a given symptom.

4 Methods

In this section, we introduce the structure and
pipeline of the proposed automatic symptom detec-
tion system, including dialog state representation,
the neural models for predicting symptoms and dia-
log actions, the training strategy, and the evaluation
metrics.

4.1 Dialog State Representation

Automatic symptom detection is a multi-step rea-
soning task handled by action and symptom pre-
dictions. Both tasks are accomplished with neural
networks based on the current dialog state.

The first step of building such a system is rep-
resenting dialog states with vectors that can be
processed by the neural networks. Following the
method applied in Wei et al. (2018) for vectorizing
the dialog states, each dialog state consists of 4
parts:
I. UserAction: The user action of the previous
dialog turn. Possible actions are:
• SelfReport: A user sends a self-report con-

taining a set of explicit symptoms.
• Confirm: A user confirms that a queried

symptom exists.
• Deny: A user indicates that a queried symp-

tom does not exist.
• NotSure: A user replies “not sure” when an

unrelated symptom is queried.
II. AgentAction: The previous action of the dialog
agent. Possible actions are:
• Initiate: The system initiate the dialog and

ask the user to send the self-rport.
• Request: The system query about the exis-

tence of a symtom.
III. Slots: Contains all symptoms appeared in the
dialog history and their status. Each symptom has
4 possible status,
• Confirmed: Confirmed by the user.
• Denied: Denied by the user.
• Unrelated: The symptom is not necessary for

the doctor to make an accurate diagnosis.
• NotQueried: A symptom has not been

queried by the agent.
IV. NumTurns: Indicates the length of the dialog
history, in other words, current number of turns.

In each step, only one value is selected for User-
Action, AgentAction, and NumTurns, and we repre-
sent them with one-hot vectors au, ar, and n respec-
tively. We use a 66-dimension vector s to represent
the Slots, where each dimension indicates the sta-
tus of a symptom. If a symptom is confirmed, the
corresponding dimension is set to 1. If a symptom
is denied, the corresponding dimension is set to−1.
If a symptom is unrelated to the diagnosis process,
and the dimension is set to −2. All other dimen-
sions are set to 0. The final input of the neural
networks at the t-th step is represented as

xt = [aut , a
r
t , nt, st] (1)

which is genereted by concatenating all the vectors
decribed above

140

(a) Initiate patient embedding
with edges with input slots.

Attention

(b) Integrate disease informa-
tion with attention.

Attention

(c) Integrate symptom infor-
mation with attention.

Linear Dialog
Actions

Symptom
QueriesLinear

(d) Predict action and symptom
with linear transformations.

Figure 2: The 4 steps for processing an input dialog state with a graph memory network (GMemNN). The gray
nodes stand for patient, the red nodes represent symptoms, and the blue nodes represent diseases. The edges with
arrows, which are labeled with same color as their source nodes, indicate the direction of message propagation.

4.2 Models

4.2.1 Multi-Layer Perceptrons
The first neural model we apply in this work is a
multi-layer perceptron (MLP) with 1 hidden layer.
The same neural network is applied in Wei et al.
(2018) and Xu et al. (2019) for the automatic diag-
nosis task. With input x, the feed forward process
of the MLP is shown as follows,

h = ReLU(W1 · x+ b1)

y = Softmax(W2 · h+ b2)
(2)

where Softmax calculates probabilistic distribution
by

Softmax(ai) =
eai∑
j e

aj
(3)

The MLP is used for both implicit symptom and
dialog action predictions. Note that the MLP model
only uses the dialogs in the training set, and does
not use the knowledge graph we annotated.

4.2.2 Graph Memory Networks
Limited by the structure, MLPs cannot directly
utilize the knowledge graph, which contains nec-
essary medical knowledge for clinical diagno-
sis. Inspired by previous studies on processing
knowledge and graphs (Sukhbaatar et al., 2015;
Veličković et al., 2017), we propose graph mem-
ory networks (GMemNN) that utilizes the medical
knowledge graph to improve the performance of
the automatic symptom detection system.

The knowledge graph is stored in an external
memory bank. In each step, we regard a patient
as a node connected with the known symptoms
in the graph. Our purpose is to learn the embed-
ding of the patient node and predict dialog actions
and symptoms based on it. The prediction using
GMemNN contains 4 steps: 1. encoding dialog
states, 2. integrating potential disease information,

3. integrating complication symptoms, and 4. pre-
dicting action/symptom. The 4 steps are illumi-
nated in Figure 2.
Dialog State Encoding The GMemNN encodes
the input dialog states with a lookup matrix, or a
linear transformation. Given an input dialog state
representation x, the network encodes the dialog
state with

u0 =Wx · x+ bx (4)

Note that no non-linear activation is applied on
u at this step, and u is considered as the initial
embedding of the patient node in the graph.
Integrating Disease Information After encoding
the dialog state, we update the patient embedding
using the embeddings of possible diseases. We
calculate an embedding to summarize potential dis-
eases using the attention mechanism for reading
from the memory bank applied in the memory net-
works (Sukhbaatar et al., 2015).

Similar with the method applied in the MemNN,
we first calculate two sets of embeddings for the
diseases based on their neighbors, or related symp-
toms, in the knowledge graph. In this paper, we use
W s

m to denote the symptom embedding matrices
for calculating attentions on memory, and W s

c to
denote the symptom embeddings for calculating
outputs. The related symptoms are summarized
with the adjacency matrix Ad between symptoms
and diseases.

d1i,m = d0i,m +Ai
dW

s
mD

−1
d,i

d1i,c = d0i,c +Ai
dW

s
cD
−1
d,i

(5)

where d1i,· represents the updated embedding of
disease i, d0i,· is the initial disease embedding, W s

·
stands for the symptom embedding matrix for up-
dating disease embeddings. Ai

d is the i-th row of
Ad, and Dd,i is the disease node degree for nor-
malization. This is a variant of the normalization
method proposed in Kipf and Welling (2016).

141

Then we summarize potential diseases using d1m,
d1c , and the initial input embedding u0.

ed =
∑
i

αd
i · d1i,c

αd
i = Softmax(u0 · d1i,m)

(6)

Then we update the initial patient embedding u0

by integrating disease embeddings.

ud = ReLU(u0 + ed) (7)

Integrating Symptom Information After inte-
grating the information of possible diseases, the
model continues integrating the complication symp-
tom information to produce the final patient em-
bedding. For symptom i, given the initial symptom
embeddings s0i,·, the adjacency matrix As between
symptom and symptom, we calculate symptom em-
beddings with

s1i,m = s0i,m +Ai
sW

s
mD

−1
s,i +A·,id W

d
mD

−1
d,·,i

s1i,c = s0i,c +Ai
sW

s
cD
−1
s,i +A·,id W

d
cD
−1
d,·,i

(8)

where W s
· is the complication symptom embed-

ding matrix, W d
· is the disease embedding matrix.

Ds,i is the number of neighbor symptoms of symp-
tom i, and Dd,i is the number of neighbor diseases
of symptom i.

Similarly, we summarize the complication symp-
toms by

es =
∑
i

αs
i · s1i,c

αs
i = Softmax(ud · s1i,m)

(9)

Then we get the final patient embedding by in-
tegrating ud with the complication symptoms em-
bedding

ud,s = ReLU(ud + es) (10)

ud,s stands for a patient embedding that has inte-
grated both disease and symptom information.
Action/Sympotom Prediction The GMemNN
model predicts both dialog actions and symptoms
with linear transformations based on the same pa-
tient embedding ud,s.

yact =W act · ud,s + bact

ysym =W sym · ud,s + bsym
(11)

The action and symptom distributions are calcu-
lated with yact and ysym with the Softmax func-
tion. The available dialog actions are Conclude and
Query, and the prediction space of the symptom
prediction network is the 66 symptoms except the
known symptoms.

4.2.3 Training
The Muzhi dataset does not contain any dialog his-
tory to mimic. Inspired by the masked language
model training pipeline proposed by Devlin et al.
(2018), we construct our own training set by ran-
domly masking and sampling symptoms.
Symptom Prediction We build the training set by
simulating dialog states from user goals in the orig-
inal training set of the Muzhi corpus. We con-
sider user goal gi with explicit symptom set Se
and implicit symptom set Si as an example, where
|Se| = ne and |Si| = ni. We simulate t dialog
states based on gi with the following steps.
• Select the entire explicit symptom set Se.
• Randomly select n′i ∈ [0, ni) and sample n′i

implicit symptoms to construct S′i ⊂ Si
• Randomly select nu ∈ [0, Tmax − n′i) and

sample nu unrelated symptoms to construct
set Su. Tmax stands for the maximum number
of symptoms can be queried.
• Set the number of turns with t = n′i + nu.
• If n′i = nu = 0, set AgentAction to “Initiate”.

Else set the AgentAction to “Request”.
• Randomly select a symptom s ∈ Si ∪ Su. If
s ∈ Su, set UserAction to “NotSure”, else set
it to “Confirm” or “Deny” based on gi.
• Set current slot to Se ∪ S′i ∪ Su.
• Randomly select a implicit symptom sl ∈
Si − S′i as the prediction label.

Action Prediction We simulate dialog states for
the dialog action prediction task with the same
procedure as described above, except that we can
involve all implicit symptoms. If all implicit symp-
toms are included, the training label will set to
“Conclude”, otherwise the label will be “Query”.

We train MLPs and GMemNNs on both tasks
after the training sets are generated. The models
are trained with the simulated dialog states and
labels with the stochastic gradient descent (SGD)
algorithm.

5 Experiments

We train and evaluate our models on the Muzhi
corpus. The symptom predictor and the dialog
action predictor are trained separately. Using the
same strategy of simulating the training set, we
also generated test sets for symptom prediction and
action prediction respectively using the test user
goals with the same method. The generated test
sets are used for evaluating the performances of our
models on both unit tasks.

142

Unit Task Model Acc (%) Stdv (%)

Action
Prediction

MLP 94.14 0.27
GMemNN 94.50 0.42

Symptom
Prediction

MLP 45.10 0.62
GMemNN 47.88 1.18

Table 4: Unit task evaluation results of the action and
symptom prediction tasks. Acc stands for average accu-
racy, and Stdv stands for the standard deviation of the
accuracies. The statistics are obtained by running 10
experiments for each model on each task.

After evaluating the models in with the unit tasks,
we conduct conversational evaluations using the
trained models and a user simulator. We evalu-
ate the performance of the models by accounting
the number of implicit and unrelated symptoms
queried in the conversations.

5.1 Action Prediction

For action prediction, we simulate 20 dialog states
for each user goal in both training and test sets. All
simulated states contain the entire explicit symp-
tom sets. 10 of the 20 states also contain the com-
plete implicit symptom sets, thus they are labeled
with “1”, meaning that the dialog system should
conclude the dialog given these states in a dialog.
The other states only contains a proper subset of
implicit symptoms. These states are labeled with
“0”, meaning that the agent should continue query-
ing symptoms. We have 11,360 training states and
2,840 test states.

We train an MLP and a GMemNN model on the
simulated training sets. The MLP model has one
hidden layer with 128 neurons, while the size of
the hidden layers of GMemNN is set to 64. The
models are trained with stochastic gradient descent
(SGD) algorithm. The learning rate for training the
MLP is 0.025, and is set to 0.035 for training the
GMemNN. A weight decay rate of 0.001 is applied
for training both models. Both models are trained
for 40 epochs.

The experimental results are shown in Table 4.
All experimental results are obtained by running 5
independent experiments for each model from data
simulation. The GMemNN model outperformed
the MLP model with a small margin. The experi-
mental results indicated that action prediction is not
a hard classification task that external knowledge
and complex neural networks do not help much.

5.2 Implicit Symptom Prediction

For implicit symptom prediction, we simulate 10
dialog states for each user goal in both training and
test sets. All dialog states contains the complete
explicit symptom set and a proper subset of im-
plicit symptoms. A random number of unrelated
symptoms are also included. The label for training
set is randomly sampled from implicit symptoms
that are not included in the dialog state.

We train the neural networks for the implicit
symptom prediction task with SGD. The architec-
tures of MLP and GMemNN are the same as the
models applied for action prediction respectively.
We also apply the same hyper-parameter settings
for training as the previous task.

The experimental results of symptom prediction
are shown in Table 4, which are also collected by
runing 5 independent experiments from data simu-
lation. The GMemNN model significantly outper-
formed the basic MLP model by 2.7% on average
and the performance is more stable. Comparing
with the action prediction task, symptom predic-
tion is much more difficult. As a result, domain
specific knowledge can improve the performance
more significantly.

5.3 Conversational Evaluation

We also evaluate our model by conducting dialogs
using the original test split of user goals in the
Muzhi corpus. For each test user goal, we generate
a conversation using the dialog action predictor, the
implicit symptom predictor, and a rule-based user
simulator.

The user simulator initiates a dialog by providing
a set of explicit symptoms as the initiate state. In
each dialog step, the action predictor decides if the
current state is informative enough to conclude the
dialog. If a conclusion action is predicted, the sys-
tem stops the conversation. Otherwise, the system
queries the user simulator with a symptom selected
by the symptom predictor. If the selected symptom
is positive in the implicit symptom set, the user
simulator confirms the query. If it is negative in
the implicit symptom set, the user simulator denies
the query. If the selected symptom is not in the
implicit, the user simulator responses “NotSure”.
The dialog continues until the “Conclusion” action
is selected, or the maximum limit of dialog turns is
reached.

For each test user goal, we calculate the number
of unrelated symptoms queried Nu, the number of

143

Model Hit (%) UnRel (%) F1 (%)

MLP-AD 9.62 83.37 18.75
MLP-ASD 63.26 81.88 31.35
GMemNN 67.30 81.05 32.59

Table 5: The experimental results of the conversational
evaluation. MLP-AD stands for the pretrained state-of-
the-art MLP model for automatic diagnosis (AD) pro-
vided by the authors of Xu et al. (2019). MLP-ASD
stands for the MLP model for automatic symptom de-
tection (ASD) in this work. Hit stands for average hit
rate Rh, UnRel stands for average unrelated rate Ru.

dialog turns N , and the ratio of detected implicit
Rd. Given the number of all implicit symptoms Ni

and the number of the detected implicit symptoms
N ′i , we calculate the hit rate Rh, unrelated rate Ru,
and the F1 score by

Rh =
N ′i
Ni
, Ru =

Nu

N
, F1 =

2Rh(1−Ru)

Rh + 1−Ru
(12)

We evaluate the models by calculating and com-
paring Rd, Ru, and F1 score averaged by the num-
ber of conversations. The experimental results are
shown in Table 5.

The experiments are conducted by setting the tol-
erate rate (TolR) to 10, meaning allowing the agent
to query up to 10 symptoms. The experimental
results showed that the MLP-ASD and GMemNN
models detected significantly more implicit symp-
toms than the MLP-AD model (Xu et al., 2019),
which makes diagnosis by querying only 9.62% of
implicit symptoms that a human doctor would ask
about. Comparing the MLP-AD and GMemNN
models, the GMemNN model significantly outper-
formed the MLP model by 4.04% hit rate with
0.83% lower unrelated rate. The improvement on
F1 score is 1.24%.

We use tolerate rate (TolR) to limit the num-
ber of dialog turns. If the symptom predictor is
completely random and the TolR equals to the
number of symptoms, the hit rate Rh will be
100%. However, querying all symptoms costs too
much time for the patient. Since the average num-
ber of symptoms per user goal is 3.26, the av-
erage unrelate rate Ru of such a system will be
(66−3.26)/66 = 95.06% and the F1 score will be
as low as 9.45%.

To understand the effect of the tolerate rate, we
visualized the relation between Rh, Ru, and TolR
in Figure 3. The plot indicates that increasing TolR

0 5 10 15 20 25
Dialog Tolerate Rate

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

MLP Hit
GMemNN Hit
MLP UnRel
GMemNN UnRel

Figure 3: The effect of tolerate rate on hit rate and un-
relate rate for the MLP and the GMemNN models.

from 1 to 10 can significantly improve the hit rates.
However, the improvement vanishes after the 15th
query because having too many queried symptoms
makes the dialog states noisy. When the TolR is
less than 10, the performance gap between The
MLP and GMemNN model is not as large as the
cases where TolR is larger than 10. There are two
reasons for this phenomenon. I. some symptoms
are queried by human doctors very frequently and
they are equally easy for both models to predict;
II. The GMemNN has better ability to model and
process noisy inputs.

6 Conclusion

In this work, we propose a new task: detecting
implicit symptoms of patient with an automatic
dialog system. We construct the system with a dia-
log action prediction module and a symptom query
module. We first implement and evaluate a baseline
system based on multi-layer perceptrons (MLPs).
To improve the performance of the system, we
annotate a medical-domain knowledge graph and
propose the graph memory network (GMemNN)
model. We systematically evaluate and compare
both models with unit tasks and conversations. We
also studied how the number of dialog turns ef-
fects the performance of the systems. Experiments
showed that both models can detect more than 60%
implicit symptoms using limited turns of dialogs,
which significantly outperformed the state-of-the-
art automatic diagnosis system. In future work, we
will expand the knowledge graph and aim to assist
human doctors by making the clinical interview
process more efficient.

144

References
Antoine Bordes, Y-Lan Boureau, and Jason Weston.

2016. Learning end-to-end goal-oriented dialog.
arXiv preprint arXiv:1605.07683.

Prithvijit Chattopadhyay, Deshraj Yadav, Viraj Prabhu,
Arjun Chandrasekaran, Abhishek Das, Stefan Lee,
Dhruv Batra, and Devi Parikh. 2017. Evaluating vi-
sual conversational agents via cooperative human-ai
games. In Fifth AAAI Conference on Human Com-
putation and Crowdsourcing.

Harm De Vries, Florian Strub, Sarath Chandar, Olivier
Pietquin, Hugo Larochelle, and Aaron Courville.
2017. Guesswhat?! visual object discovery through
multi-modal dialogue. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recog-
nition, pages 5503–5512.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Jesse Dodge, Andreea Gane, Xiang Zhang, Antoine
Bordes, Sumit Chopra, Alexander Miller, Arthur
Szlam, and Jason Weston. 2015. Evaluating pre-
requisite qualities for learning end-to-end dialog sys-
tems. arXiv preprint arXiv:1511.06931.

Maryam Fazel-Zarandi, Shang-Wen Li, Jin Cao, Jared
Casale, Peter Henderson, David Whitney, and Al-
borz Geramifard. 2017. Learning robust dialog poli-
cies in noisy environments.

Alex Graves, Greg Wayne, and Ivo Danihelka.
2014. Neural turing machines. arXiv preprint
arXiv:1410.5401.

Alex Graves, Greg Wayne, Malcolm Reynolds,
Tim Harley, Ivo Danihelka, Agnieszka Grabska-
Barwińska, Sergio Gómez Colmenarejo, Edward
Grefenstette, Tiago Ramalho, John Agapiou, et al.
2016. Hybrid computing using a neural net-
work with dynamic external memory. Nature,
538(7626):471.

Thomas N Kipf and Max Welling. 2016. Semi-
supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907.

Hongyin Luo, Shang-Wen Li, and James Glass. 2020.
Prototypical q networks for automatic conversa-
tional diagnosis and few-shot new disease adaption.
arXiv preprint arXiv:2005.11153.

Hongyin Luo, Mitra Mohtarami, James Glass, Karthik
Krishnamurthy, and Brigitte Richardson. 2019. In-
tegrating video retrieval and moment detection in a
unified corpus for video question answering. Proc.
Interspeech 2019, pages 599–603.

Alexander Miller, Adam Fisch, Jesse Dodge, Amir-
Hossein Karimi, Antoine Bordes, and Jason Weston.
2016. Key-value memory networks for directly read-
ing documents. arXiv preprint arXiv:1606.03126.

Volodymyr Mnih, Koray Kavukcuoglu, David Sil-
ver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. 2013. Playing atari
with deep reinforcement learning. arXiv preprint
arXiv:1312.5602.

Mitra Mohtarami, Ramy Baly, James Glass, Preslav
Nakov, Lluı́s Màrquez, and Alessandro Mos-
chitti. 2018. Automatic stance detection using
end-to-end memory networks. arXiv preprint
arXiv:1804.07581.

Kishore A Papineni, Salim Roukos, and Robert T Ward.
2001. Natural language task-oriented dialog man-
ager and method. US Patent 6,246,981.

Trang Pham, Truyen Tran, and Svetha Venkatesh. 2018.
Graph memory networks for molecular activity pre-
diction. In 2018 24th International Conference on
Pattern Recognition (ICPR), pages 639–644. IEEE.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus
Hagenbuchner, and Gabriele Monfardini. 2008. The
graph neural network model. IEEE Transactions on
Neural Networks, 20(1):61–80.

Stephanie Seneff and Joseph Polifroni. 2000. Dialogue
management in the mercury flight reservation sys-
tem. In Proceedings of the 2000 ANLP/NAACL
Workshop on Conversational systems-Volume 3,
pages 11–16. Association for Computational Lin-
guistics.

Junyuan Shang, Cao Xiao, Tengfei Ma, Hongyan Li,
and Jimeng Sun. 2019. Gamenet: Graph augmented
memory networks for recommending medication
combination. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 33, pages
1126–1133.

Sainbayar Sukhbaatar, Jason Weston, Rob Fergus, et al.
2015. End-to-end memory networks. In Advances
in neural information processing systems, pages
2440–2448.

Petar Veličković, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Lio, and Yoshua Bengio.
2017. Graph attention networks. arXiv preprint
arXiv:1710.10903.

Zhongyu Wei, Qianlong Liu, Baolin Peng, Huaixiao
Tou, Ting Chen, Xuanjing Huang, Kam-Fai Wong,
and Xiangying Dai. 2018. Task-oriented dialogue
system for automatic diagnosis. In Proceedings of
the 56th Annual Meeting of the Association for Com-
putational Linguistics (Volume 2: Short Papers),
pages 201–207.

Tsung-Hsien Wen, David Vandyke, Nikola Mrksic,
Milica Gasic, Lina M Rojas-Barahona, Pei-Hao Su,
Stefan Ultes, and Steve Young. 2016. A network-
based end-to-end trainable task-oriented dialogue
system. arXiv preprint arXiv:1604.04562.

http://arxiv.org/abs/1712.04034
http://arxiv.org/abs/1712.04034

145

Lin Xu, Qixian Zhou, Ke Gong, Xiaodan Liang,
Jianheng Tang, and Liang Lin. 2019. End-
to-end knowledge-routed relational dialogue sys-
tem for automatic diagnosis. arXiv preprint
arXiv:1901.10623.

