
Tractable Lexical-Functional Grammar

Jürgen Wedekind
University of Copenhagen
Department of Nordic Studies
and Linguistics
jwedekind@hum.ku.dk

Ronald M. Kaplan
Stanford University
Linguistics Department
rmkaplan@stanford.edu

The formalism for Lexical-Functional Grammar (LFG) was introduced in the 1980s as one of
the first constraint-based grammatical formalisms for natural language. It has led to substantial
contributions to the linguistic literature and to the construction of large-scale descriptions of
particular languages. Investigations of its mathematical properties have shown that, without
further restrictions, the recognition, emptiness, and generation problems are undecidable, and
that they are intractable in the worst case even with commonly applied restrictions. However,
grammars of real languages appear not to invoke the full expressive power of the formalism,
as indicated by the fact that algorithms and implementations for recognition and generation
have been developed that run—even for broad-coverage grammars—in typically polynomial
time. This article formalizes some restrictions on the notation and its interpretation that are
compatible with conventions and principles that have been implicit or informally stated in
linguistic theory. We show that LFG grammars that respect these restrictions, while still suitable
for the description of natural languages, are equivalent to linear context-free rewriting systems
and allow for tractable computation.

1. Introduction

Grammar formalisms are attractive for modeling and processing natural language if
they are expressive enough to describe the structure of natural languages and if they
are computationally tractable. While the first requirement is certainly satisfied by the
majority of unification-based grammar formalisms, the second is certainly not. Compu-
tational performance is minimally identified with the complexity of the universal recog-
nition/parsing problem—that is, the problem of determining for any given grammar G
and terminal string s whether G assigns a feature structure to s. Because a problem
is computationally tractable if it has a polynomial-time solution, formalisms are thus
considered tractable if their recognition/parsing problem can be solved in polynomial
time.

Submission received: 21 December 2018; revised version received: 3 November 2019; accepted for publication:
27 June 2020.

https://doi.org/10.1162/COLI a 00384

© 2020 Association for Computational Linguistics
Published under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
(CC BY-NC-ND 4.0) license

mailto:jwedekind@hum.ku.dk
mailto:rmkaplan@stanford.edu
https://doi.org/10.1162/COLI_a_00384

Computational Linguistics Volume 46, Number 3

For almost all unrestricted unification-based grammar formalisms, the recognition
problem has been known to be undecidable since the earliest days of unification gram-
mar (see, e.g., Kaplan and Bresnan 1982; Johnson 1988; Blackburn and Spaan 1993).
To sidestep this undecidability issue in the design of Lexical-Functional Grammar
(LFG), Kaplan and Bresnan (1982) introduced a constraint, later called the Off-line
Parsability Constraint, that guarantees decidability of the recognition problem. The Off-
line Parsability Constraint proscribes empty productions and nonbranching dominance
chains and thus bounds the number and size of the c-structures of a string by a function
of the length of that string. This works for recognition/parsing because the size of the
set of constraints on each f(eature)-structure (the f-description) of a string is always
bounded by the size of its c-structures. The parsing problem is decidable with off-
line parsability, but that constraint is not sufficient to ensure tractability: The parsing
problem for off-line parsable LFG grammars is known to be NP-complete (Berwick
1982).

The universal generation problem is another problem of practical importance. This
is the problem of determining for an arbitrary grammar G and an arbitrary f-structure
F whether G derives any terminal string with F. This has been shown to be undecidable
even for grammars that are off-line parsable (Wedekind 2014).1 Note further that the
emptiness problem (the problem of determining for an arbitrary grammar G whether
L(G) = ∅) is also undecidable for off-line parsable grammars.2 This problem is of formal
interest but perhaps has less practical significance.

A number of variants of the Off-line Parsability Constraint have been proposed
since Kaplan and Bresnan’s (1982) original formulation (see, e.g., Jaeger et al. [2005] for a
survey). However, none of them is particularly effective in improving the computational
properties of LFG and other unification-based formalisms. We therefore here ignore
Off-line Parsability constraints, even though some of them may help in increasing
efficiency and may also be required for linguistic interpretation: They are not sufficient
for attaining recognition tractability and decidability of the generation and emptiness
problems and they are not necessary given the solution that this article identifies.

A separate line of research has examined whether there are restrictions on the form
of LFG rule annotations that might reduce the complexity class of the formalism to a sys-
tem with tractable recognition and generation algorithms. In particular, Seki et al. (1993)
consider LFG grammars where each right-hand side category is annotated with exactly
one function-assigning schema of the form (↑ F) = ↓ and finitely many atomic-valued
annotations of the form (↑ A) = v. They show that the class of languages generated by
these LFG grammars is equal to that generated by tree-to-string finite-state translation
systems. Because the recognition problem for tree-to-string finite-state translation sys-
tems is still NP-complete, Seki et al. (1993) considered in addition the condition that the
number of nodes that relate to the same f-structure element is finitely bounded. This
restriction limits the number of dependent c-structure paths and finally ensures that
the resulting “finite-copying” LFG grammars are mildly context-sensitive and hence
tractable. Vijay-Shanker et al. (1987) and Weir (1988) identified several representatives
of this class, among them linear context-free rewriting systems (LCFRSs). These have
subsequently been shown to be equivalent to multiple context-free grammars (Seki et al.

1 LFG’s generation problem is only undecidable for cyclic f-structures. If only acyclic f-structures are
considered the problem is decidable even for grammars that are not off-line parsable (Wedekind and
Kaplan 2012).

2 Wedekind (1999) provides a proof for off-line parsable grammars; see Roach (1983) and Nishino (1991)
for earlier undecidability proofs of this problem.

516

Wedekind and Kaplan Tractable Lexical-Functional Grammar

1991) and simple range concatenation grammars (Boullier 2000) (see also Kallmeyer
[2010b] for a useful survey of mildly context-sensitive grammar formalisms).

These tractability-motivated restrictions on the formalism are quite severe and seem
to exclude the possibility of expressing some of the key principles and devices of LFG
theory. For example, among the common annotations that these restrictions disallow
are the trivial ↑ = ↓ equations that mark the heads of constituents, multi-attribute value
specifications, such as (↑ SUBJ NUM) = SG, that encode agreement requirements, and
reentrancy equations, such as (↑ XCOMP SUBJ) = (↑ SUBJ), that represent functional
control. However, these restrictions provide a useful starting point for identifying other
formal properties that guarantee tractability but still allow linguistic generalizations to
be stated perspicuously. Natural language grammars exploit more of the LFG formalism
than the Seki et al. analysis would allow, but they do not make arbitrary use of its
expressive power.

The computational advantage of these previous approaches depended on severely
limiting the form of functional annotations and how they are distributed across the
rules of a grammar. Here, we relax the restrictions on notation to allow a broader
range of annotations as are more typically used in linguistic descriptions. We show
that tractability and decidability can still be established with this linguistically more
suitable notation if the propagation of atomic-value information across a derivation is
regulated in other ways. We characterize a subclass of LFG grammars with properties
that guarantee limitations on the flow of information and yet also seem compatible with
the way that the LFG formalism is deployed in linguistic practice. In this article we
focus on the descriptive devices as originally proposed by Kaplan and Bresnan (1982)
and still in common use, leaving to later work the more sophisticated extensions to
the formalism (e.g., functional uncertainty) that were later introduced and are now in
common use. The Kaplan-Bresnan formalism is still the core of the theory and resolving
its computational issues is a prerequisite for the future analysis of any additional
mechanisms.

The organization of this article is as follows. In the next section we define a prim-
itive subclass of LFG grammars, the basic LFGs, and characterize their derivations
and languages. Basic LFGs are stripped down versions of grammars in the Kaplan and
Bresnan (1982) formalism that retain the essential equational mechanism of this and
other unification-based formalisms. They provide a simplified setting for establishing
the properties crucial for controlling the flow of atomic-value information; the addi-
tional Kaplan-Bresnan formal devices are simple augmentations of this basic machinery.
In Section 3 we introduce a subclass of basic LFG grammars that allow for trivial anno-
tations and reentrancies of a particularly limited form. These are required for linguistic
description but have unacceptable formal and computational properties. We therefore
review the notational and derivational restrictions of the finite-copying subclass (Seki
et al. 1993), which is known to be LCFRS equivalent and computationally tractable, and
we argue in Section 4 that a Seki et al.-style boundedness condition must be paired with
a nonconstructivity condition on the reentrancies to achieve LCFRS equivalence and
thus to preserve the key advantages of Seki et al.’s strictly less expressive formalism.
We claim that these restrictions are compatible with linguistic description and show
their decidability. We then provide in Section 5 a constructive proof of the equivalence
between grammars in this linguistically relevant subclass and LCFRSs, and we demon-
strate that the LCFRS equivalence extends to LFG grammars that make use of the richer
set of descriptive devices originally proposed by Kaplan and Bresnan (1982). Section 6
highlights the beneficial effects on computational performance of a broader set of LFG

517

Computational Linguistics Volume 46, Number 3

principles and explores possible implementation difficulties and alternative parsing
strategies. The last section summarizes our results and provides a brief discussion of
open issues.

2. Preliminaries

We start with a formal characterization of LFG grammars with only equational state-
ments and without any parsability constraints. These are called basic LFGs. We de-
fine the notation for this broad class of grammars and specify how that notation is
interpreted in derivations that establish the correspondence between strings, functional
descriptions, and functional structures. Let Σ∗ denote the set of all finite strings over
some finite set of symbols Σ and Σ+ = Σ∗\{ε}, with ε denoting the empty string. Then
a basic LFG grammar G is defined as follows:

Definition 1
A basic LFG grammar G over a finite set of attributes A and values V is a 4-tuple
(N, T, S, R) where N is a finite set of nonterminal categories, T is a finite set of terminal
symbols, S ∈ N is the root category, and R is a finite set of rules that includes annotated
productions of the form

A→ Y1 .. Ym A → ε
D1 Dm D1

with A ∈ N, Yj ∈ (N ∪ T) (j = 1, .., m), and m ≥ 1. Each annotated description Dj is a
(possibly empty) finite set of equalities between expressions of the form (↑ σ), (↓ σ) or
v where v is a value of V and σ is a possibly empty sequence of attributes of A. When σ
is empty, (↑ σ), (↓ σ) are equivalent to ↑ and ↓, respectively.

A basic LFG assigns to each sentence in its language at least one constituent struc-
ture (c-structure) and at least one f-structure. The f-structure is the minimal solution
for a set of instantiated annotations (f-description) that is obtained by instantiating
the annotations of rules that license the local mother–daughter configurations of the
c-structure. For each such rule, all occurrences of the ↑ symbol (called a metavariable)
in the annotations of the daughters are replaced by the mother node, and for each of
the daughter categories, all occurrences of the ↓ metavariable in its annotations are
replaced by the corresponding daughter node. This instantiation procedure uses the
nodes themselves instead of the related f-structure variables of Kaplan and Bresnan
(1982) or the more explicit φ projection of the LFG correspondence architecture (Kaplan
1995). (Node instantiation is mathematically equivalent to the other representations but
is better suited to present purposes.) The f-structure is the unique minimal solution
(minimal model) of the f-description.

To be more explicit, instantiated descriptions are obtained from the rules by sub-
stituting for the ↑ and ↓ metavariables elements drawn from a collection of elements.
C-structure nodes are included in the collection, but later on we also make use of
other elements. We define a function Inst that assigns to each m-ary rule r, element b,
and sequence of elements β of length m the instantiated description that is obtained
from the annotations of r by substituting b for ↑ and βj for ↓ in the annotations of all
j = 1, .., m daughters. In the definition below we use the (more compact) linear rule
notation A→ (X1, D1)..(Xm, Dm) that we prefer in more formal specifications. (Using
this notation, epsilon rules are defined as unary rules (m = 1) with X1 = ε.) Moreover,

518

Wedekind and Kaplan Tractable Lexical-Functional Grammar

for a set of formulas D we let D[c1/b1, .., cn/bn] denote the set of formulas obtained from
D by simultaneously replacing all occurrences of ci by the corresponding element bi,
for i = 1, .., n.

Definition 2
Let r be an m-ary LFG rule A→ (X1, D1)..(Xm, Dm) and (b,β) be a pair of an element and
a sequence of elements of length m. Then the instantiated description that results from
r and (b,β) is given by

Inst(r, (b,β)) =
m⋃

j=1

Dj[↑/b, ↓/βj].

Before we present the usual definition of LFG derivations, we first define deriva-
tions of strings and their instantiated functional descriptions without requiring the
f-descriptions to be clash-free (consistent), that is, without requiring that there be an
associated f-structure. These unevaluated derivations are useful for our purposes be-
cause we can exploit certain properties of the f-descriptions even for grammar classes
whose recognition, emptiness, and generation problems are known to be undecidable.
In the definitions, we do not require the label of the root node to be S nor the yield to be
a terminal string. This generality is needed for conducting inductive proofs both top–
down and bottom–up. We further assume that root is the root node of any c-structure c,
and that dts is a function that assigns to each nonterminal node n of c the sequence of its
immediate daughters.

Definition 3
A pair (c,ρ) consisting of a labeled tree c and a mapping ρ from the nonterminal nodes
of c into R is a(n unevaluated) derivation of string s ∈ (N ∪ T)∗ from B with functional
description FD in G iff

(i) the label of root is B,

(ii) the yield is s,

(iii) for each nonterminal node n with label A and dts(n) = n1..nm with labels X1, .., Xm,
respectively, ρn = A→ (X1, D1)..(Xm, Dm),

(iv) FD =
⋃

n∈Dom(ρ)
Inst(ρn, (n, dts(n))).

Definition 4
A functional description FD is clash-free iff

(i) FD 6` a = v, where v ∈ V and a is any other constant (atomic feature value or
node) occurring in FD,

(ii) FD 6` t = (v σ), where v ∈ V, σ ∈ A+, and t is an arbitrary term.

These conditions are syntactic versions of the constant/constant and constant/complex
clash conditions that together capture LFG’s functional uniqueness condition (the
denotations of an atomic feature value and any other distinct atomic feature value
or node constant have to be distinct (i); atomic feature values have no attributes (ii)).

519

Computational Linguistics Volume 46, Number 3

There are well-known algorithms for deciding whether a given description is clash-free
(e.g., Nelson and Oppen 1980).

LFG derivations are then defined as follows.

Definition 5
A pair (c,ρ) consisting of a labeled tree c and a mapping ρ from the nonterminal nodes
of c into R is a derivation of string s ∈ (N ∪ T)∗ from B with functional description
FD and f-structure F in G iff

(i) (c,ρ) is a derivation of s from B with f-description FD in G,

(ii) FD is clash-free,

(iii) F is isomorphic to M|A∪V , the restriction to A ∪ V of a minimal model M of FD.

The effect of condition (iii) is to abstract away from the nodes and their interpreta-
tion, and the universe of the given minimal model that have no linguistic significance.
In contrast to the unevaluated derivations of Definition 3, we refer to derivations as
defined in Definition 5 sometimes as valid derivations, although it will always be clear
from the context which of the two notions is meant.

Finally, we define LFG’s derivability relation ∆ and the language of an LFG gram-
mar as follows.

Definition 6
A terminal string s is derivable with f-structure F in G (∆G(s, F)) iff there is a derivation
of s from S with F (and some f-description FD) in G. The language of G is the set

L(G) = {s ∈ T∗ | ∃F(∆G(s, F))}.

As an example consider the LFG grammar G with the productions given in (1).

(1) a. S → NP VP
(↑ S) = ↓ ↑ = ↓

b. VP → NP VP V
(↑ O) = ↓ (↑ X) = ↓ ↑ = ↓

c. VP → NP VP
(↑ O) = ↓ (↑ X) = ↓

d. VP → NP
(↑ O) = ↓

(↑ X X) = #
e. V → V′ V

↑ = ↓ (↑ X) = ↓
f. V → V′′ V

↑ = ↓ (↑ X) = ↓

g. NP → n
(↑ P) = N
(↑ A) = C

h. V′ → v
(↑ P) = V

(↑ X S) = (↑ O)
(↑ S A) = C

i. V′′ → v
(↑ P) = V

(↑ X S) = (↑ O)
j. V → v

(↑ P) = V
(↑ X) = #

This grammar derives the language {nn vn | n > 2}. It mimics the LFG grammar for
Dutch cross-serial dependencies presented in Bresnan et al. (1982) in that it produces
for a string nn vn an f-structure that is structurally equivalent to the f-structure assigned
to a Dutch c-structure with preterminal string NPn Vn. The attributes S, P, O, and X
correspond to SUBJ, PRED, OBJ, and VCOMP, respectively, of the original grammar, and

520

Wedekind and Kaplan Tractable Lexical-Functional Grammar

Figure 1
The c- and f-structure assigned to the terminal string nnnvvv by the LFG grammar with the rules
in (1).

A is a generic subject–verb agreement feature. However, in contrast to Bresnan et al.’s
grammar, we use a more fine-grained category system and a boundary marker # to
ensure that the different v’s are derived at the right positions and that the number
of n’s and v’s properly match. This is just because the basic formalism does not in-
clude constraints and devices for enforcing the valency requirements of the individual
predicates, the Completeness and Coherence Conditions, that usually account for that.
Finally, for simplicity, we do not maintain the strict distinction between phrasal and
lexical categories.

The terminal string nnnvvv, for example, is well-formed (nnnvvv ∈ L(G)), because
it is derivable with the c- and f-structure depicted in Figure 1. The nonterminal nodes
of the c-structure tree are explicitly specified since they are used for the instantiation of
the rule annotations. The rule mapping ρ that justifies the c-structure is given in (2).

(2) ρroot = (1a), ρn1
= ρn3

= ρn6
= (1g), ρn2

= (1b), ρn4
= (1d), ρn5

= (1e), ρn7
= (1h),

ρn8
= (1f), ρn9

= (1i), ρn10
= (1j)

The f-structure of Figure 1 is associated with the given c-structure because it is obtained
from the minimal model (3b) of the f-description (3a) by restricting the interpretation
function to the attributes and atomic feature values in A ∪ V, thus disregarding the
nodes and their interpretation.

521

Computational Linguistics Volume 46, Number 3

3. Linguistically Motivated Annotations and Finite-Copying LFGs

In this section we consider a proper subclass of basic LFGs that provides the primitive
notation needed for linguistic analysis and we demonstrate that even for these notation-
ally more restricted grammars the core computational problems are undecidable. We
then introduce Seki et al.’s finite-copying grammars. These grammars are considerably
more restricted in notation and their derivations are crucially required to satisfy a strong
bounding condition. As indicated, finite-copying grammars admit of decidable and
tractable solutions to key computational problems, but their limited expressivity makes
them unsuited for theoretically motivated descriptions of natural languages.

3.1 Linguistically Motivated Annotations

The LFG grammars that we will consider in the following are characterized by short
reentrancies with no more than two attributes. This respects the theoretical Principle of
Functional Locality, the stipulation that designators in lexical and grammatical annota-
tions can specify no more than two grammatical functions (Kaplan and Bresnan 1982,
page 278).

Definition 7
An annotated reentrancy is an equation (or a symmetric variant) of one of the following
forms:

(↑ F G) = (↑ H)
(↑ F) = (↑ H)
(↓ G) = (↑ H)
(↓ F) = (↓ H)
(↓ G) = ↑
↑ = (↑ H)
(↓ G) = ↓

An instantiated reentrancy is the result of substituting nodes for the metavariables in
an annotated reentrancy.

Long reentrancies (with a two-attribute designator) may appear on terminal
and nonterminal categories and are typically used for functional control (e.g.,
(↑ XCOMP SUBJ) = (↑ SUBJ)).3 All other reentrancies contain at most one attribute on
each side. Reentrancies of the form (↑ F) = (↑ H) might be used for clause-internal
topicalization (e.g., (↑ TOPIC) = (↑ OBJ)) and those of the form (↓ G) = (↑ H) for subject
control of open adjuncts (XADJUNCTS) ((↓ SUBJ) = (↑ SUBJ)). The remaining reentran-
cies just cover other possibilities for equating the ↑/↓metavariables with a one-attribute
designator. The last two introduce immediate cycles and are not commonly attested in
natural language grammars, but they introduce no additional expressive power or for-
mal complexity since their effect can be achieved by combinations of other reentrancies

3 Long reentrancies can also be used for agreement of atomic values (e.g., (↑ SUBJ NUM) = (↑ NUM)).
However, because there is a finite bound on the number of agreement features, agreement can always be
equivalently encoded through collections of atomic-valued annotations and thus requires no special
consideration.

522

Wedekind and Kaplan Tractable Lexical-Functional Grammar

on the list. We also admit atomic-valued annotations of the form (↑ σ) = v or (↓ σ) = v,
with |σ| > 0, and we allow each nonterminal to be annotated either by ↑ = ↓ or exactly
one function-assigning annotation of the form (↑ F) = ↓ or none of them. The precise
definition of the class of LFG grammars with linguistically motivated rule annotations
is given below.

Definition 8
A basic LFG G = (N, T, S, R) is suitably annotated if every annotated right-hand side
rule category (X, D) satisfies the following conditions:

(a) if X ∈ N, then D may contain at most one annotation of the form (↑ F) = ↓ or
↑ = ↓, any number of annotated reentrancies, and any number of atomic-value
annotations of the form (↑ σ) = v or (↓ σ) = v, with |σ| > 0,

(b) if X ∈ T or X = ε, then D may include annotated reentrancies not containing ↓ and
atomic-value annotations of the form (↑ σ) = v, with |σ| > 0.

3.2 Undecidable Problems for Suitably Annotated LFGs

As previously noted, the emptiness, parsing, and generation problems are undecidable
for unrestricted basic LFG grammars. Without further limitations these problems are
also undecidable for suitably annotated LFGs. Wedekind (1999) and Wedekind (2014)
provided simple proofs of these results for a slightly less restricted formalism using a
reduction from the emptiness problem for the intersection of context-free languages.
We adapt this proof strategy to the suitable notation in order to highlight the sources
of computational complexity that reentrancies introduce and that must be controlled to
ensure LCFRS equivalence.

Following Wedekind (1999) we demonstrate the undecidability of the emptiness
problem by constructing for each context-free grammar G = (N, T, S, R) in Chomsky
normal form a suitably annotated LFG grammar String(G) such that L(String(G)) = L(G)
and the f-structure for each derivable string s contains a simple encoding of s and a
representation of a derivation in G that leads to that terminal string. For each terminal
rule A→ a in R the rule set of the string grammar contains a rule of the form (4a), and
for each nonterminal rule A→ C D it contains a rule of the form (4b).

(4) a. A → a
(↑ B F) = a

(↑ B T) = (↑ E)

b. A → C D
(↓ B) = (↑ B) (↓ E) = (↑ E)
(↓ E) = (↑ M) (↓ B) = (↑ M)

The attributes B, E, M, F, and T are mnemonic for “begin”, “end”, “middle”, “first”,
and “tail”, respectively. Derivations are threaded through the B(egin), M(iddle), and
E(nd) attributes and the F(irst) and T(ail) attributes encode linked-list representations
of terminal strings. As illustrated by the c-structure/f-structure pair in Figure 2, an
atomic F value corresponds to a terminal at a given string position and the T value
sequence represents the suffix of the string from that position. The yield of each context-
free constituent is encoded by the B(egin) and E(nd) attributes of the corresponding
f-structure, and the path between the root B and E values represents the entire string.
The M(iddle) attribute in (4b) is an auxiliary used to link the daughter yields of binary
constituents.

Let G1 = (N1, T1, S1, R1) and G2 = (N2, T2, S2, R2) be two arbitrary context-free
grammars in Chomsky normal form with N1 ∩N2 = ∅. Construct an LFG grammar

523

Computational Linguistics Volume 46, Number 3

Figure 2
A sample c- and f-structure derived with string grammar rules of the form (4).

G = (N, T, S, R) with N = N1 ∪N2 ∪ {S}, S 6∈ N1 ∪N2, and T = T1 ∪ T2. R consists of the
rules of String(G1) and String(G2) and the following start rule:

(5) S → S1 S2
(↓ B) = (↑ B) (↓ B) = (↑ B)

(↓ E F) = # (↓ E F) = #

Then for any valid derivation of a terminal string s in G, s has the form s1s2, with s1
derived from S1 and s2 derived from S2, and s1 = s2, because both string encodings are
unified by the S rule and the instantiations of (↑ E F) = # ensure that one string is not a
proper prefix of the other. Thus L(G) = ∅ iff L(G1) ∩ L(G2) = ∅.

The undecidability of the parsing/recognition problem follows from a simple mod-
ification to the string-grammar specification and, again, the emptiness problem for
context-free intersection. If we construct for each terminal rule A→ a two rules of the
form

(6) A → Aa

(↑ B F) = a
(↑ B T) = (↑ E)

Aa → ε

where Aa is a new nonterminal, for each terminal a, then ε ∈ L(G) if and only if
L(G1) ∩ L(G2) 6= ∅.4

String grammars defined with rules (4–6) contain short reentrancies on the nonter-
minals and long reentrancies on the terminals or preterminals but no annotated function
assignments or trivial annotations. This demonstrates that complexity can arise from
just the interaction of structure sharing constraints on f-structure features without the
support of node equalities.

An alternative formulation of String(G) shows, on the other hand, that combining
just one kind of reentrancy, the short ones, with function assignments can lead to the
same undecidability results. Long reentrancies only appear in rules of the form (4a).

4 Empty nodes are disallowed in some modern versions of LFG, particularly when long-distance
dependencies are characterized by functional uncertainty rather than traces (Kaplan and Zaenen 1989;
Dalrymple et al. 2015). Unless the theory retains some variant of the original Off-line Parsability
Constraint, the undecidability of the recognition problem can be demonstrated even in the absence of
empty nodes.

524

Wedekind and Kaplan Tractable Lexical-Functional Grammar

Figure 3
A sample c- and f-structure obtained from a string grammar that encodes the derived strings in
the f-structure as descending chains of attributes.

They can be eliminated in favor of function assignments by using for each terminal rule
A→ a two rules of the form (7a,b) (emptiness problem) or (7a,c) (recognition problem)

(7) a. A → Aa

(↑ B) = ↓
(↑ B F) = a

(↓ T) = (↑ E)

b. Aa → a c. Aa → ε

where Aa is a new nonterminal, for each terminal a.
The terminal strings can also be encoded as descending chains of attributes rather

than as first-rest sequences of atomic values.5 A sample c- and f-structure are shown
in Figure 3. Because such string grammars do not contain atomic-valued annotations,
they provide a powerful proof-theoretic tool for establishing that certain more specific
questions about the interaction of function assignments and reentrancies remain unde-
cidable even in the absence of the filtering effect of atomic-valued annotations.

We obtain such string grammars by combining nonterminal rules of the form (4b)
with terminal rules of the form (8).

(8) A → a
(↑ B a) = (↑ E)

If the revised string grammars are combined with the start rule (9), then any
problem whose solution can be made dependent on the derivability of node equalities
can be shown to be undecidable for suitably annotated LFGs without atomic-valued
annotations.

(9) S → S1 S2 X Y
(↓ B) = (↑ B) (↓ B) = (↑ B) (↑ E1) = ↓ (↑ E2) = ↓
(↓ E) = (↑ E1) (↓ E) = (↑ E2)

By construction, the function assignments on X and Y will result in a node equality only
if the instantiations of the two (↓ E) designators have the same value. This happens only
if S1 and S2 derive the same string s (s ∈ L(G1) ∩ L(G2)). Thus, if we add epsilon rules
for X and Y then this construction shows that it is in general undecidable whether there
are derivations with co-referring nodes in such grammars.

5 Such an encoding has been used in the undecidability proof of the generation problem (from cyclic
f-structures) in Wedekind (2014). This proof depends on annotations that lie outside of the suitable
notation, but the argument can easily be reformulated for suitably annotated LFGs.

525

Computational Linguistics Volume 46, Number 3

If we construct for each terminal rule A→ a string grammar rules with only short
reentrancies as in (10),

(10) A → Aa

(↑ B) = ↓
(↓ a) = (↑ E)

Aa → a

then the more elaborated X and Y expansions in (11) can be used to show that, even
in absence of clashes, it is undecidable whether there are derivations in which all
long reentrancies are equivalent to a combination of function assignments and short
reentrancies.

(11) X → Z
(↑ F G) = (↑ H)

Y → Z
(↑ F) = ↓

The undecidability of these different configurations of annotations is an important
diagnostic in our attempt at arriving at LCFRS equivalence: The emptiness and recog-
nition problems are decidable for LCFRS, so further restrictions must be applied to any
configuration where these problems are undecidable. For our further considerations it
is therefore important to note that the use of short reentrancies must be restricted if they
are combined with function assignments, and that the use of long reentrancies must be
severely restricted.6 This is because it is even undecidable whether they reduce to short
ones.

3.3 Finite-Copying LFGs

The finite-copying grammars of Seki et al. form a subclass of the suitably annotated
LFGs that are known to have a tractable recognition and a decidable emptiness problem.
These results are obtained by limiting the notation for rule annotations to include only
direct function assignments of the form (↑ F) = ↓ and atomic-value annotations of the
form (↑ A) = v. In addition the derivations of a finite-copying grammar must respect a
global boundedness restriction. Finite-copying LFGs are effectively defined as follows.

Definition 9
A suitably annotated LFG G = (N, T, S, R) is a finite-copying LFG iff

(i) every rule A→ (X1, D1)..(Xm, Dm) in R satisfies the following conditions:

(a) if Xj∈N, then Dj may contain at most one annotation of the form (↑ F) = ↓
and any number of annotations of the form (↑ A) = v,

(b) if Xj∈T, then Dj may only contain annotations of the form (↑ A) = v,

6 Feinstein and Wintner (2008) show that unification grammars are equivalent to linear indexed grammars
(LIGs) if, for each rule, the mother feature structure is required to share at most one structure with the
daughter feature structures. As indicated by the proper inclusion of LIGs in LCFRSs, the use of
reentrancies is overly restricted in this formalism.

526

Wedekind and Kaplan Tractable Lexical-Functional Grammar

(ii) for every valid derivation (c,ρ) of a terminal string from S with f-description FD,
the number of nodes of c that relate to the same f-structure element is not greater
than k, that is, |{n′ | FD ` n = n′}| ≤ k, for any node n of c.

In this definition, condition (i) defines the format of the rule annotations, indicating
that finite-copying LFGs are a quite restricted subclass of suitably annotated LFGs.
Specifically, they do not allow trivial annotations or annotations that give rise to f-
structure reentrancies, the annotations that are required for linguistic description.

Given these notational restrictions, structure sharing can only be achieved through
instantiated function-assigning annotations. This specific type of structure sharing is
occasionally referred to as “zipper” unification. That is, if two distinct nodes n and n′

co-refer (have the same f-structure) in a valid derivation (FD ` n = n′), then there must
always be a node n̂ dominating these nodes and the sequences of function-assigning
annotations obtained from the annotations on the paths from n̂ to n and n′, respectively,
must be identical, that is, form a “zipper”. As a consequence, co-referring nodes must
have the same c-structure depth.

The bounding condition (ii) limits the number of non-local dependencies or co-
referring nodes that can arise through structure sharing and thus excludes c-structure
recursions that give rise to zippers of size greater than any constant k. Indeed, Seki et al.
have shown that the recognition problem is NP-complete for nondeterministic copying
LFGs, which are similar to finite-copying LFGs except that they are not required to
satisfy the bounding condition. Thus the bounding condition is crucial for tractable per-
formance even with the severe notational restrictions of the finite-copying formalism.
Consider for example the (suitably annotated) LFG grammar with the rules in (12).

(12) S → S S
(↑ C) = ↓ (↑ C) = ↓

S → a
(↑ C) = #

The unbounded recursion of this grammar derives the language {a2n | n ≥ 0} with
zippers that also grow exponentially. This language is not of constant growth and hence
is not in the class of mildly context-sensitive languages (Joshi 1985). Seki et al. observe,
however, that it is decidable whether a grammar notationally restricted according to
condition (i) also satisfies the bounding condition (ii) and therefore has tractable com-
putational properties.

4. k-Bounded LFG Grammars

In this section, we define a set of restrictions on LFG grammars with linguistically
motivated annotations that are compatible with linguistic description and together
ensure LCFRS equivalence. These restrictions thus preserve the key advantages of Seki
et al.’s minimally expressive formalism.

Because finite boundedness is a necessary condition for LCFRS equivalence, clearly
there must be a finite bound on the number of nodes in a functional domain.7 These
nodes are annotated with ↑ = ↓ annotations and typically carry information about
heads, coheads, and the local morphosyntactic features of a functional unit. The ↑ = ↓
annotations map all the nodes in a functional domain to the same f-structure, and thus

7 The collection of trivial-annotated nodes that map to the same f-structure has been called a functional
domain in linguistic theory (Bresnan 2001).

527

Computational Linguistics Volume 46, Number 3

allow information to propagate up, down, and across the chain of nodes that relate to a
single head.

Definition 10
An LFG grammar G has (height-)bounded functional domains if for any sequence
of rules A1 → φ1(A2, D2)ψ1 A2 → φ2(A3, D3)ψ2 .. An → φn(A1, D1)ψn of length n ≥ 1,
with Ai 6= Aj, for 1 ≤ i < j ≤ n, ↑ = ↓ ∈ Di does not hold for all i = 1, .., n.

In the following, we refer to LFG grammars with linguistically suitable annotations and
height-bounded functional domains as suitable LFGs.

Definition 11
A basic LFG G is called suitable if G is suitably annotated and G’s functional domains
are height-bounded.8

Whether a basic LFG G is suitable is easily decidable by inspecting G’s rules and rule
sequences of length less than or equal to |N|.

Because of the height bound, there is a simple transformation of a grammar G into
a strongly equivalent LFG grammar G\↑=↓ that no longer contains ↑ = ↓ annotations.
The transformation is accomplished by recursively replacing a category annotated with
↑ = ↓ in the right side of one rule by the right sides of all the rules expanding that
category, and making the appropriate replacements of ↑ for ↓ to preserve the f-structure
mappings. The detailed construction and the equivalence proof are provided in
Appendix A.

Lemma 1
For any suitable LFG G we can construct a suitable LFG without ↑ = ↓ annotations, denoted
by G\↑=↓, such that ∆G = ∆G\↑=↓ .

For the suitable LFG grammar in (1), for example, we then obtain a ↑ = ↓-free grammar
whose useful rules (that is, the ones whose left-hand category is reachable from the start
symbol) are given in (13).9

(13) a. S → NP NP VP v V
(↑ S) = ↓ (↑ O) = ↓ (↑ X) = ↓ (↑ P) = V (↑ X) = ↓

(↑ X S) = (↑ O)
(↑ S A) = C

b. VP → NP VP
(↑ O) = ↓ (↑ X) = ↓

c. VP → NP
(↑ O) = ↓

(↑ X X) = #

8 Instead of an explicit boundary condition as in Definition 10, the bound can also be specified as an
extragrammatical parameter. We return to that option in Section 6.

9 Even though our example grammar (with only four lexical rules) yields a ↑ = ↓-free grammar with very
few rules, the elimination of the trivial annotations can—without further restriction—easily result in a
grammar that is substantially larger than the original. We return to this issue in Section 6.

528

Wedekind and Kaplan Tractable Lexical-Functional Grammar

d. V → v V
(↑ P) = V (↑ X) = ↓

(↑ X S) = (↑ O)
e. NP → n

(↑ P) = N
(↑ A) = C

f. V → v
(↑ P) = V
(↑ X) = #

It is straightforward to see that for suitable LFGs any bound k, k ≥ 1, on derivations
of the sort that Seki et al. used in the definition of finite-copying grammars must also
be undecidable. Note first that the emptiness problem is already undecidable for 1-
bounded suitable LFGs as the grammars with rules of the form (4, 5) are trivial-free and
1-bounded. With two suitable LFGs Gub and Gb that are known to be unbounded and
k-bounded, respectively, we can easily reduce the emptiness problem to the k- or finite-
boundedness problem. Given an arbitrary 1-bounded suitable LFG G, we construct a
suitable grammar G′ with a rule set consisting of the rules of Gub and Gb, and the two
start rules S′ → S Sub and S′ → Sb (with N, Nub, Nb and {S′} pairwise disjoint). Then by
construction, G′ is k-bounded iff L(G) = ∅.

We therefore rely on the observation that every LFG grammar G can be decomposed
into two subgrammars, a reentrancy-free kernel and an atom-free kernel, both with a
decidable emptiness problem. The reentrancy-free kernel of G is formed by removing
all reentrancies from its rules, leaving just function assignments and atomic-value anno-
tations. The atom-free kernel is formed by removing all atomic-value annotations from
its rules, so that only function assignments and reentrancies remain. The decomposition
then allows us to define some necessary and sufficient restrictions on the LFG grammars
G by carefully regulating the interplay of the functional descriptions of these two
grammars. Formally, we state all further restrictions on the reentrancy-free and atom-
free kernels and their interaction in terms of the descriptions FD\R and FD\A obtained
from FD by removing all instantiated reentrancies and all instantiated atomic-valued
annotations, respectively.

Because k-boundedness is a necessary condition for LCFRS equivalence we first
require the reentrancy-free kernel of G\↑=↓ to be k-bounded. We show in Section 4.1 that
k-boundedness is decidable for the reentrancy-free kernel of any suitable LFG.

Definition 12
A suitable LFG G has a k-bounded reentrancy-free kernel iff for every derivation
(c,ρ) of a terminal string from S with f-description FD and clash-free FD\R in G\↑=↓,
|{n′ | FD\R ` n = n′}| ≤ k, for any node n of c.

We now identify a minimally intrusive restriction that ensures that G\↑=↓ conserves
the φ projection of its reentrancy-free kernel, so that in particular G\↑=↓ is k-bounded
if its reentrancy-free kernel is k-bounded. This restriction relates to another notion in
the LFG literature, the concept of “nonconstructivity” that has been discussed in the
context of functional uncertainty and off-path constraints (Zaenen and Kaplan 1995,
Section 3; Dalrymple et al. 1995a, page 133; Crouch et al. 2008, chapter on grammatical
notations). We provide a technical formulation of this notion and propose it as a general
condition on the operation of reentrancy annotations, a condition that is necessary to

529

Computational Linguistics Volume 46, Number 3

ensure LCFRS equivalence. Nonconstructive reentrancies are defined in terms of the
interplay between the reentrancy-free and the atom-free kernel in the following way:

Definition 13
A suitable LFG with k-bounded reentrancy-free kernel has nonconstructive reentran-
cies iff for every derivation (c,ρ) of a terminal string from S with f-description FD and
clash-free FD\R in G\↑=↓

if FD\A ` n = n′, with n distinct from n′, then FD\R ` n = n′.

This restriction ensures that reentrancies in G\↑=↓ cannot interact with the function-
assigning annotations of the reentrancy-free kernel to produce node equalities beyond
those that follow just from that kernel’s more limited set of annotations. We show
in Section 4.2 that nonconstructivity is decidable for suitable LFGs with k-bounded
reentrancy-free kernel and only short reentrancies. Moreover, suitable LFGs with
k-bounded reentrancy-free kernel and nonconstructive short reentrancies are equivalent
to LCFRSs (see Section 5.2) and thus have a decidable emptiness problem. This, how-
ever, does not generalize to suitable grammars with k-bounded reentrancy-free kernel
and long reentrancies. To see this, consider the grammars that we used in Section 3.2 to
show that it is in general undecidable whether there are derivations with co-referring
nodes. These grammars are trivial-free grammars with 1-bounded reentrancy-free ker-
nel, but without atomic-valued annotations. Thus FD = FD\A, for any derivation. More-
over, because of the 1-boundedness of the reentrancy-free kernel, FD\R ` n = n′ does not
hold for any pair of distinct nodes n and n′ in any derivation. Thus the nonconstructivity
condition of Definition 13 is undecidable because FD\A ` n = n′ is undecidable.10

We observe, however, that long reentrancies of the form (↑ F G) = (↑ H), which
are typically used to specify the structure sharing relationships in grammatical control
constructions (e.g., (↑ XCOMP SUBJ) = (↑ OBJ)), can always be shortened in derivations
that meet the requirements of the Coherence Condition.11 This is, specifically, because
the controllee (SUBJ) of an instantiated control equation (n XCOMP SUBJ) = (n OBJ) is a
governable function in an open (XCOMP) complement and therefore must be licensed
by the complement’s semantic form. These licensing semantic forms are always intro-
duced by simple PRED equations associated with individual lexical entries, for example
(↑ PRED) = 'WALK〈SUBJ〉'. Thus, (↑ PRED) = 'WALK〈SUBJ〉' must instantiate to the equa-
tion (n′ PRED) = 'WALK〈SUBJ〉' at some node n′, and the functional description must
also entail an equation (n XCOMP) = n′ that links the complement to the higher clause.
This (derived) function assignment justifies the reduction of the long reentrancy to the
equivalent shorter one (n′ SUBJ) = (n OBJ).

Certainly, we cannot anticipate this effect of the coherence condition just by remov-
ing from consideration all derivations in which long reentrancies cannot be reduced to
shorter ones: Such an additional filter on valid derivations would preserve the unde-
cidability of the emptiness problem. And this would, as demonstrated in Section 3.2,
even apply to the weaker filter where the shortening equations are required to follow
from the atom-free subset of FD. Hence those grammars cannot be equivalent to LCFRSs

10 Note that based on the short-reentrancy grammars of the reduction to the emptiness problem a similar
argument can be used to show that, even for grammars with only short reentrancies, the
nonconstructivity of reentrancies would be undecidable if in the definition all node equalities n = n′
following from FD (and not FD\A) were required to follow from FD\R.

11 We provide a technical interpretation of Coherence (and Completeness) in Section 5.4.

530

Wedekind and Kaplan Tractable Lexical-Functional Grammar

(because LCFRSs have a decidable emptiness problem). Therefore, we require the der-
ivations to meet the stronger stipulation that the shortening equations (n XCOMP) = n′

follow from the f-description of the reentrancy-free kernel, which excludes the use of
other reentrancies in those supporting inferences. This is made explicit in the following
extension to the notion of derivation.

Definition 14
A pair (c,ρ) consisting of a labeled tree c and a mapping ρ from the nonterminal nodes
of c into R is a derivation of string s ∈ (N ∪ T)∗ from B with functional description FD
in G iff c and ρ satisfy the conditions (i–iv) of Definition 3 and

(v) if (n F G) = (n H) ∈ FD, then FD\R ` (n F) = n′ for some node n′.

Certainly, this stronger condition excludes some analyses that otherwise appear to
lie within scope of the normal derivational machinery of the LFG formalism. In all
likelihood the derivations that this restriction eliminates would also fail to meet the
coherence condition and thus no linguistically significant derivations will be lost.

LFG grammars that meet all the restrictions we have set out are called k-bounded
LFGs.

Definition 15
A basic LFG G is k-bounded iff

(i) G is suitably annotated,

(ii) G has height-bounded functional domains,

(iii) G’s reentrancy-free kernel is k-bounded,

(iv) G has nonconstructive reentrancies.

For k-bounded LFGs the recognition and emptiness problems are decidable be-
cause, as we show in Section 5.2, k-bounded LFGs are weakly equivalent to k-LCFRSs.
Moreover, because of the nonconstructivity of the reentrancies and condition (v) of
Definition 14, G\↑=↓ cannot produce node equalities beyond those of its reentrancy-free
kernel.

Corollary 1
Let G be a k-bounded LFG grammar. Then for every derivation (c,ρ) of a terminal string from S
with clash-free f-description FD in G\↑=↓

if FD ` n = n′, with n distinct from n′, then FD\R ` n = n′.

Hence, the k-boundedness of G’s reentrancy-free kernel also extends to G\↑=↓, al-
though, because of the filtering effect of the atomic-valued annotations, the bound of
G\↑=↓ can be smaller than k.12

12 For k-bounded LFGs the universal generation problem is decidable as well. This follows directly from the
decidability result in Wedekind and Kaplan (2012). That article describes an algorithm that produces for

531

Computational Linguistics Volume 46, Number 3

Corollary 2
Let G be a k-bounded LFG grammar. Then for every derivation (c,ρ) of a terminal string from S
with clash-free f-description FD in G\↑=↓, |{n′ | FD ` n = n′}| ≤ k, for any node n of c.

4.1 The k-Boundedness of the Reentrancy-Free Kernel

As for Seki et al.’s finite-copying grammars, structure sharing in reentrancy-free kernels
of suitable LFGs can only be achieved through instantiated function-assigning annota-
tions. Co-referring nodes therefore belong to identical (zipper) paths and lie at the same
depth below a common ancestor node.

We exploit a shrinking argument to show that the k-boundedness of G’s reentrancy-
free kernel can be determined by inspecting a sufficiently large but finite number of
“small” derivations in G\↑=↓. Shrinking of a derivation is accomplished by removing
certain parts of that derivation, yielding a smaller derivation. To identify the conditions
that allow shrinking of G\↑=↓’s derivations, let (c,ρ) be a derivation of a terminal string
from S with f-description FD and clash-free FD\R in G\↑=↓. Consider the sets of nodes
that co-refer in FD\R, that is, the sets [n] = {n′ | FD\R ` n = n′}where n is a nonterminal
node. Set [n] = {n} if n does not occur in FD.

As an illustration, consider in Figure 4 the annotated c-structure of the terminal
string nnnvvv in the ↑ = ↓-free grammar with the rules in (13). This more conventional
way of depicting c-structures and their licensing rule mappings (Kaplan and Bresnan
1982) makes it easy to read the f-description from the licensed c-structure. The descrip-
tion FD\R obtained from the f-description FD of this derivation is given in (14).

(14)

(root S) = n1, (n1 P) = N,
(n1 A) = C,

(root O) = n2,(n2 P) = N,
(n2 A) = C,

(root X) = n3, (n3 X X) = #,
(n3 O) = n5, (n5 P) = N,

(n5 A) = C,
(root X) = n4, (n4 P) = V,

(n4 X) = n6, (n6 P) = V,
(n6 X) = #,

(root P) = V,
(root S A) = C

The equivalence classes that result from FD\R are {root}, {n1}, {n2}, {n3, n4}, {n5}, and {n6}.

Next, we exhibit the atomic-valued information that is inherited to the nodes in [n]
from the nodes in higher-level equivalence classes. For this purpose, we replace each
occurrence of a node n of c in FD by [n] and denote this description by eFD. From the
description in (14) we thus obtain the description eFD\R in (15).

an arbitrary LFG grammar G and an arbitrary acyclic input f-structure F a context-free grammar GF that
describes exactly the set of strings that the given LFG grammar associates with that f-structure. For
k-bounded LFGs all node equalities follow from the instantiated function-assigning annotations of an
f-description. Thus, even if the input f-structure contains cycles, the context-free grammar can be
constructed on the basis of the terms that are defined in the canonical expansion of the f-structure but do
not encompass a cycle. This is again a finite set. Then for any G and arbitrary F, G derives a terminal
string with F iff L(GF) 6= ∅ (which is decidable for context-free grammars).

532

Wedekind and Kaplan Tractable Lexical-Functional Grammar

Figure 4
The annotated c-structure of the terminal string nnnvvv in the ↑ = ↓-free grammar comprising
the rules in (13).

(15)

({root} S) = {n1}, ({n1} P) = N,
({n1} A) = C,

({root} O) = {n2}, ({n2} P) = N,
({n2} A) = C,

({root} X) = {n3, n4},({n3, n4} X X) = #,
({n3, n4} O) = {n5},({n5} P) = N,

({n5} A) = C,
({n3, n4} P) = V,
({n3, n4} X) = {n6}, ({n6} P) = V,

({n6} X) = #,
({root} P) = V,
({root} S A) = C

Here and in our further considerations we use the following closure construction to

derive the inherited atomic-valued equations.

Definition 16
Let FD be a description obtained from linguistically suitable annotations by instan-
tiating the metavariables with specific elements, such as classes, as denoted by a
and b. Then the closure FD of FD is defined as being the smallest set that includes
FD and is closed under the rule: if (a F σ) = v ∈ FD and (a F) = (b σ′) ∈ FD, then
(b σ′ σ) = v ∈ FD.

For the description provided by the reentrancy-free kernel it is always the case that σ′

is empty. If eFD\R contains an atom-value equation ([n] F σ) = v and a function assign-
ment ([n] F) = [n′], the closure of eFD\R will contain the shortened value assignment
([n] σ) = v. In our simple example we can apply ({root} S) = {n1} to ({root} S A) = C
and ({n3, n4} X) = {n6} to ({n3, n4} X X) = #, but in these cases the resulting equations
({n1} A) = C, ({n6} X) = # are already contained in eFD\R.

Shrinking depends on comparing the atomic-valued information that the closure
associates with the node equivalence classes to find matching classes at different levels
of a derivation. To that end, we abstract away from particular class instantiations by
defining, for any description FD, a function hFD that assigns to an instantiating element
a characterization of all and only the atomic-valued equations that a description asso-
ciates with that element. This function is defined in (16).

533

Computational Linguistics Volume 46, Number 3

(16) hFD(a) = {(∗ σ) = v | (a σ) = v ∈ FD}

Note that by construction of eFD\R the length of σ is bounded by the maximum length
of the attribute sequences occurring in the atomic-valued annotations of G. This length
is in the following denoted by `. The values of heFD\R

are members of the set E of all
possible clash-free atomic-valued specifications.

Definition 17
The (atomic-valued) description space is the set

E = {E | E ⊆ {(∗ σ) = v | σ ∈ A+, |σ| ≤ `, and v ∈ V} and E is clash-free}.

For our example we then obtain the following heFD\R
assignment. Here and in the

following, we omit the reference to the description if it is clear from the context. (The
shrinking arguments, in particular, are all based on descriptions of the reentrancy-free
kernel and thus depend on FD\R.)

(17) h({root}) =

{
(∗ P) = V,
(∗ S A) = C

}
h({n1}) = h({n2}) = h({n5}) =

{
(∗ P) = N,
(∗ A) = C

}
h({n3, n4}) =

{
(∗ X X) = #,
(∗ P) = V

}
h({n6}) =

{
(∗ P) = V,
(∗ X) = #

}

We can shrink a derivation if there are node classes [nl] and [ň] where at least one
node in [nl] dominates a node in [ň], h assigns to [nl] and [ň] the same sets of atomic-
valued schemata, and there is a mapping g from [nl] to [ň] such that ni and g(ni) are
licensed by the same rule (ρni = ρg(ni)), for each ni in [nl].

Shrinking is accomplished by replacing the subderivations under nodes in the
equivalence class [nl] by the subderivations under nodes determined by the g mapping.
Specifically, we define the replacement Replg

(c,ρ)([n
l]) as the derivation produced from

(c,ρ) by removing the subtree and rule mapping under each node ni in [nl] and then
inserting under ni a copy of the subtree and rule mapping under g(ni). The shrinking
process is illustrated in Figure 5 and formally defined as follows.

Definition 18
Let (c,ρ) be a derivation in a suitable LFG grammar G\↑=↓. For any pair of classes [nl]
and [ň] satisfying the conditions

(i) at least one node in [nl] dominates a node in [ň],

(ii) h([nl]) = h([ň]),

(iii) there is a function g from [nl] to [ň] such that ρni = ρg(ni) for each ni in [nl],

we define the shrink operation sh by

sh(c,ρ)([nl], [ň]) = Replg
(c,ρ)([n

l]).

534

Wedekind and Kaplan Tractable Lexical-Functional Grammar

Figure 5
Illustration of the shrinking process. In the derivation tree on the left-hand side, the node set
{n1, n2} corresponds to the class [nl] and the set comprising the three lower nodes corresponds to
[ň]. The dotted lines indicate dominance and the solid arrows the g mapping. If h([nl]) = h([ň]),
then shrinking is performed by lifting (distinct copies of) the subderivations dominated by g(n1)
and g(n2) to n1 and n2, respectively. The result is shown on the right-hand side.

The shrink operation sh1−1
(c,ρ)([n

l], [ň]) is defined as sh(c,ρ)([nl], [ň]) except that g is a one-
to-one correspondence.

Because sh(c,ρ)([nl], [ň]) is obviously a derivation in G\↑=↓, it remains to be shown
that the f-description that G’s reentrancy-free kernel provides for this derivation is
clash-free. Let FDt be the f-description of the (partial) derivation obtained from (c,ρ)
by removing the subtree and rule mapping under each node ni in [nl], and FDb

be the union of the f-descriptions obtained from the copies of the subderivations
rooted at g(ni). Then, by construction, sh(c,ρ)([nl], [ň]) gets assigned the f-description
FD′ = FDt ∪ FDb. Certainly, FDt

\R and FDb
\R ∪ {ni = nk | ni, nk ∈ [nl]} are both clash-

free. Because node equalities can only be established through function assignments,
FDt

\R ` n = n′ if FD\R ` n = n′, for all n, n′ occurring in FDt. Thus {n′ | FDt
\R ` nl = n′}

is equal to [nl], and, for the h mapping h′ of sh(c,ρ)([nl], [ň]), h′([nl]) = h([nl]) by condi-
tion (iii). Hence FD′\R must be clash-free because of condition (ii).

Lemma 2
Let (c,ρ) be a derivation in a suitable LFG grammar G\↑=↓ with clash-free FD\R and [nl] and [ň]
be a pair of classes satisfying (i–iii) of Definition 18. If FD′ is the f-description of sh(c,ρ)([nl], [ň])
(respectively sh1−1

(c,ρ)([n
l], [ň])), then FD′\R is clash-free.

For the following notice that sh1−1 preserves the multiplicities of the licensing rules
and clash-freeness whereas sh only preserves clash-freeness, but both operations ab-
stract from the left-to-right c-structure order. To see this, note first that we can assign to
each [n] of a derivation a multiset (P, m) whose support P consists of the rules licensing
the nodes in [n] (P = {ρn̄ | n̄ ∈ [n]}) and whose multiplicity function m specifies for each
rule r in P the number of nodes in [n] that are licensed by r (m(r) = |{n̄ ∈ [n] | ρn̄ = r}|
for all r ∈ P). Let f m be the function that assigns to each [n] both the multiset assigned
to [n] and its h value, that is, f m([n]) = ((P, m), h([n])). Because there is a one-to-one
correspondence g between [nl] and [ň] with ρni = ρg(ni) for each ni in [nl], if and only
if the multisets assigned to [nl] and [ň] are identical, we can apply sh1−1 to a derivation
if there are nodes nl and ň on a path with f m([nl]) = f m([ň]).

535

Computational Linguistics Volume 46, Number 3

Figure 6
A sample derivation violating the k-boundedness condition for k = 2 is shown on the left-hand
side. The set comprising the three lower nodes corresponds to [n′], the violating instance that is
highest in c. Suppose that there are two equivalence classes containing nodes of the path from
root to the mother of n′ that satisfy the conditions for applying sh1−1

(c,ρ): the set [nl] = {n1, n2} and
the image [ň] of {n1, n2} under g (indicated by the solid arrows). Then the smaller derivation
sh1−1

(c,ρ)([n
l], [ň]), depicted on the right-hand side, still violates the k-boundedness condition.

With respect to sh, observe first that by definition, sh(c,ρ) can be applied to a pair
([nl], [ň]), if the two classes agree in their h values (h([nl]) = h([ň])) and there is a
mapping g from [nl] to [ň] such that ρni = ρg(ni), for each ni in [nl]. Because there is
such a g mapping from [nl] to [ň] if and only if each rule that licenses a node in [nl] also
licenses a node in [ň] ({ρni | ni ∈ [nl]} ⊆ {ρň′ | ň′ ∈ [ň]}), we can shrink if h([nl]) = h([ň])
and the support of the multiset assigned to [nl] is included in the support of the multiset
assigned to [ň].

Now we demonstrate that it can be decided whether the reentrancy-free kernel of
a suitable LFG G is k-bounded by inspecting derivations in G\↑=↓ whose (c-structure)
depth does not exceed some fixed upper bound.

Lemma 3
For any suitable LFG G and any constant k, it is decidable whether G’s reentrancy-free kernel is
k-bounded.13

Proof
Suppose there is a derivation (c,ρ) of a terminal string in G\↑=↓ that violates the k-
boundedness condition. Let n′ be one of the topmost nodes of c with |[n′]| > k and con-
sider the equivalence classes that contain the nodes of the path from root to the mother
of n′. Observe first that for any of these equivalence classes [nl] and [ň] that satisfy
the conditions for applying sh1−1

(c,ρ), sh1−1
(c,ρ)([n

l], [ň]) must still violate the k-boundedness

condition because sh1−1 preserves the multiplicities of the licensing rules and therefore
all nodes in [n′] are still dominated by nodes in [ň]. This situation is illustrated in
Figure 6.
To determine the upper bound on the path length from root to n′, recall that we can
shrink the derivation if there are nodes nl and ň on the path from root to the mother of
n′ with f m([nl]) = f m([ň]). Because the set of all multisets over R with cardinality less
than or equal to k, in the following denoted by M≤k(R), is finite and the number of h

13 We show in Appendix B that for any suitable LFG it is also decidable whether or not there is a finite
bound on its reentrancy-free kernel.

536

Wedekind and Kaplan Tractable Lexical-Functional Grammar

values is bounded by |E |, a path from root to n′ longer than |M≤k(R)× E |must contain
equivalence classes that satisfy the conditions for shrinking. Thus, if the grammar
violates the k-boundedness condition then there must be a derivation with a class [n′],
with |[n′]| > k, and the depth of n′ is less than or equal to |M≤k(R)× E | (recall here that
the depth of root is 0).
Now we determine an upper bound on the path length through the remaining equiv-
alence classes of the derivation. If we can apply sh(c,ρ) to a pair ([nl], [ň]) of these
classes (with a node in [nl] properly dominating a node in [ň]), then, obviously, the
violating class [n′] remains in sh(c,ρ)([nl], [ň]). Recall that we can apply sh(c,ρ) to ([nl], [ň])
if h([nl]) = h([ň]) and if the support of the rule multiset assigned to [nl] is included in
the support of the one assigned to [ň]. Because the supports are nonempty subsets of R,
shrinking with sh(c,ρ) is thus possible if the path length between two nodes is greater or
equal to |Pow+(R)× E |, where Pow+(R) denotes the set of all nonempty subsets of R.
Thus if G\↑=↓ violates the k-boundedness condition then there must be a derivation (c,ρ)
with a c-structure depth less than or equal to |M≤k(R)× E |+ |Pow+(R)× E |+ 1 that
violates k-boundedness. Hence, for any suitable LFG G it can be determined whether
G’s reentrancy-free kernel is k-bounded. �

4.2 Nonconstructive Reentrancies

In this section, we show that the nonconstructivity condition of Definition 13 is de-
cidable for suitable LFGs with k-bounded reentrancy-free kernel. For the proof we
use a shrinking argument similar to that used for proving the decidability of the k-
boundedness of the reentrancy-free kernel. The shrinking argument crucially depends
on the fact that all long reentrancies can be shortened in a valid derivation, because, for
descriptions including only instantiated short reentrancies and function assignments,
nonconstructivity violations can be established through substitution proofs of a certain
structure.

To see this, suppose that the descriptions are closed under symmetry and recall that
the rule of substituting equals for equals has the form

e t = t′
e′

where e is an equation containing subterm t and e′ is obtained from e by replacing one
occurrence of t in e by t′. Then we know that any proof of an equation tm+1 = t0 can be
converted into a left-branching substitution proof of the form (18) where tm+1 = tm+1
is either in FD (or follows from FD by partial reflexivity14) and where tm+1 is rewritten
to t0 by a sequence of substitutions all justified by equations ei ∈ FD, i = 1, .., m + 1 (see
Statman [1977] for details on the proof conversions).

(18) tm+1 = tm+1 em+1
tm+1 = tm em

tm+1 = tm−1. . .
tm+1 = t2 e2

tm+1 = t1 e1
tm+1 = t0

14 It may be the case that such a left-branching proof must start with a reflexive equation tm+1 = tm+1 that
is not in FD but can be inferred by partial reflexivity from an equation (tm+1 σ) = t′′ in FD. Partial

537

Computational Linguistics Volume 46, Number 3

The decidability of the nonconstructivity condition then results from the fact that
there are always canonical proofs of the form (19) of equalities that violate this condition
if the descriptions contain only function assignments and short reentrancies.

(19) a = a a = (am Fm)
a = (am Fm) (am Fm) = (am−1 Fm−1)

a = (am−1 Fm−1). . .
a = (a2 F2) (a2 F2) = (a1 F1)

a = (a1 F1) (a1 F1) = a′

a = a′

Notice for the following that we can always shorten a proof of the form (18) (or (19)) if
the right-hand terms of two derived equations are identical.

Lemma 4
Let FD be a description obtained from short reentrancies and function-assigning annotations by
instantiating the metavariables with classes (or other elements) denoted by a, a1, a2, .., b, b1, ...
If the equality of two distinct classes follows from FD, then there is at least one pair of distinct
classes a and a′ whose equality is established by a proof of the form (19).

Proof
Suppose that FD ` b = b′, for two distinct elements b and b′. Then there is a substitution
proof of the form

b = b (= tm+1) em+1
b = tm em

b = tm−1. . .
b = t2 e2

b = t1 e1
b = b′ (= t0)

where b is rewritten to b′. (This proof structure coincides with the one given in (18).) By
assumption, the premises ei are either class-valued (of the form (b F) = c) or complex-
valued ((b F) = (c G)). Without loss of generality, we can assume that the right-hand
terms are pairwise distinct (tj 6= ti, for m + 1 ≥ j > i ≥ 0). (If tj = ti, j > i, we obtain a
shorter proof of b = b′ by deleting the inference of b = ti+1 from b = tj.) Suppose that
the proof is not already (up to biunique renaming) of the form (19). Then there are two
cases to consider.
(a) There are one or more terms ti, 1 ≤ i ≤ m, whose attribute sequences are longer than
one. Let tk = (bk Fk σ), σ 6= ε be one of the longest terms (i.e., there is no other term
that is longer than tk). Then step k must lie between a previous step l that lengthens
the attribute sequence and a following step j that shrinks it, with el+1 = bl+1 = (bl Fl),
tl = (bl Fl σ), tj = (bj Fj σ) and ej = (bj Fj) = bj−1. Obviously, bl+1 and bj−1 must be distinct
because otherwise tl+1 and tj−1 would not be distinct, contradicting our assumption. But
then there is a proof

reflexivity is the restriction of reflexivity to well-defined (object denoting) terms. It is a sound inference
rule for the theory of partial functions for which full reflexivity does not hold.

538

Wedekind and Kaplan Tractable Lexical-Functional Grammar

bl+1 = bl+1 bl+1 = (bl Fl) (= el+1)
bl+1 = (bl Fl). . .

bl+1 = (bj Fj) (bj Fj) = bj−1 (= ej)

bl+1 = bj−1

that has up to biunique renaming the form (19).
(b) All terms ti are one-attribute terms or node classes. Because the proof is not of the
form (19) there must be one or more tj, m > j > 1, that are node classes. Let tl be the first
inferred term that is a node class and suppose that tl is bl. Then, by our assumption,
b and bl are distinct. Hence the inference of b = b l (= t l) from b = b must have (up to
biunique renaming) the form (19). �

For the decidability proof we use the description sFD, which is similar to eFD
except that the long reentrancies are shortened. Let †FD be the f-description obtained
from FD by shortening all long reentrancies. Obviously, this f-description is logically
equivalent to FD. Then sFD is the description that we obtain from †FD by replacing
(similar to eFD) each occurrence of a node n of c in †FD by [n]. This substitution is safe
because for any proof of an equality t = t′, involving at most n and n′, in †FD there is
a corresponding proof of (t = t′)[n/[n], n′/[n′]] in sFD, and vice versa.15 The following
lemma that establishes the decidability of the k-boundedness entails the decidability of
the nonconstructivity.

Lemma 5
For any basic LFG grammar it is decidable whether it is k-bounded.

Proof
Let G be an arbitrary basic LFG grammar. We know already that it is decidable whether
G is suitable and G’s reentrancy-free kernel is k-bounded. Thus assume that G satisfies
these conditions. We show that it can be decided whether G\↑=↓ satisfies the noncon-
structivity condition of Definition 13 by inspecting derivations of (c-structure) depth
less than or equal to 3|M≤k(R)× E |+ 1.
Suppose that G\↑=↓ does not satisfy the condition of Definition 13. Then there is a
derivation (c,ρ) of a terminal string s from S with f-description FD and clash-free FD\R

in G\↑=↓, and [n] = [n′], with [n] distinct from [n′], can be derived from sFD\A by a
proof of the form (19). Now assume that the depth of the derivation exceeds this upper
bound and we could not shrink (c,ρ) without invalidating the provability of [n] = [n′].
Then there must be at least four (distinct) nonterminal nodes n̄i1 , .., n̄i4 on a path of

15 We demonstrate this for a proof of an equation of the form (n σ) = (n′ σ′). For equations of the form
(n σ) = v′, v = (n′ σ′), and v = v′ the proof is similar. Obviously, for any proof of (n σ) = (n′ σ′) in †FD
we obtain a proof of ([n] σ) = ([n′] σ′) in sFD just by replacing the equivalence classes for the nodes.

Now consider a proof of ([n] σ) = ([n′] σ′) of the form (18) in sFD. Choose a canonical representative
from each class and substitute the classes by their representatives. For each premise (n̄ χ) = (n̄′ χ′) (with
([n̄] χ) = ([n̄′] χ′) in sFD) that is not in †FD, there must be an equation (ň χ) = (ň′ χ′) in †FD with ň ∈ [n̄]
and ň′ ∈ [n̄′]. Since ň = n̄ and ň′ = n̄′ follow from FD\R, we obtain a proof in †FD by replacing each such
premise (n̄ χ) = (n̄′ χ′) by a proof of (n̄ χ) = (n̄′ χ′) from (ň χ) = (ň′ χ′) where ň is rewritten to n̄ and ň′ to
n̄′ by a sequence of substitutions all justified by equations in FD\R.

Note that this result holds also for †FD\A and sFD\A, because the function-assigning annotations that
generate the equivalence classes are also included in the atom-free kernel.

539

Computational Linguistics Volume 46, Number 3

Figure 7
Feature propagation through reentrancies. The derived equations are shown in red. Here,
(a4 H) = a3 derives (a3 I F A) = v from (a4 H I F A) = v, (a3 I) = a3 shrinks (a3 I F A) = v to
(a3 F A) = v, and the reentrancies (a3 F) = (a1 G) and (a1 G) = (a2 J) produce (a2 J A) = v from
(a3 F A) = v.

length greater than 3|M≤k(R)× E |, with n̄ij dominating n̄ij+1 and f m([n̄ij]) = f m([n̄ij+1])
(j = 1, .., 3), and for any pair [n̄ij], [n̄ij+1], the shrink operation sh1−1

(c,ρ) would break up
the proof of [n] = [n′] by eliminating necessary right-hand side premises. Now recall
that two distinct nodes can be related in a single equation only if the nodes stand in a
mother–daughter relationship and that, by definition of sh1−1

(c,ρ), the nodes of [n̄i1], .., [n̄i4]
are licensed by the same rules and can therefore provide the same premises. Thus, the
right-hand side premises must originate from equivalence classes from a subpath n̄..n̄′

of the path from n̄i1 to n̄i4 with n̄ properly dominating n̄i2 and n̄i3 properly dominating
n̄′. (If they would originate only from equivalence classes from the path from n̄i2 to
n̄i3 , then we could apply sh1−1

(c,ρ) to [n̄i1], [n̄i2] and [n̄i3], [n̄i4] and [n] = [n′] would still be
provable.) From the properties recalled above, it also follows that we would obtain a
shorter canonical proof of [n] = [n′] if no class-valued premise of the proof (the first
and last premise in (19)) is eliminated. Because there are three distinct pairs but only
two class-valued premises, for at least one pair the provability of [n] = [n′] must be
preserved under sh1−1

(c,ρ), in contradiction to our assumption.16 �

If we apply the closure to sFD, instead of eFD\R, then atomic-valued information
is not only inherited downward (as in the case of eFD\R), but reentrancies can cause
it to propagate upward, shrink, or distribute across equivalence classes. An illustra-
tion of the propagation process is given in Figure 7. However, the term length of the
atomic-valued equations in sFD can again not exceed `, because all long reentrancies
have been shortened (|σ′| ≤ 1). The following lemma shows that clash-freeness of any
f-description FD can be determined just by considering for each node class all atomic-
and class-valued equations of sFD that pertain to that class.

16 If G does not contain reentrancies of the form (↑ F G) = (↑ H), (↑ F) = (↑ H), and (↓ G) = (↑ H), then, for
the proof in (19), m = 1 and a = a′ follows from a = (a1 F1) and (a1 F1) = a′. Thus the node class equality
must arise from an undesirable interaction between instantiations of cyclic or function-assigning
annotations or annotations of the form (↓ G) = ↑. For such grammars G, the condition of Definition 13
can be decided by inspecting derivations of depth less than or equal to 2|M≤k(R)× E |+ 1.

540

Wedekind and Kaplan Tractable Lexical-Functional Grammar

Lemma 6
Let FD be a description obtained from short reentrancies and function-assigning and atomic-
valued annotations by instantiating the metavariables with classes denoted by a, a1, a2, .., b,
b1, ... If FD ` a = b does not hold for two distinct classes a and b, then FD is clash-free iff FD
does not contain equations of the form (a σ) = v and either (a σ) = v′ (v 6= v′), or (a σ) = b,
or (a σσ′) = v′ with σ and σ′ both not equal to ε, for any class a occurring in FD.

Proof
Let FD be a description satisfying the conditions of the lemma. If FD is clash-free then
FD clearly satisfies the claim of the lemma. Now suppose a clash would follow from FD.
We know that there is a proof of the form (18), repeated here for clarity of exposition,

tm+1 = tm+1 em+1

tm+1 = tm em
tm+1 = tm−1. . .

tm+1 = t2 e2

tm+1 = t1 e1

tm+1 = t0

where (a) tm+1 and t0 are either two distinct atomic values v and v′, or (b) one is a class
b and the other is an atomic value v, or (c) t0 is a term of the form (v σ), σ 6= ε, and tm+1
is a term or subterm occurring in FD. From arguments used in the proof of Lemma 4,
we can assume that

(i) the right-hand side terms are pairwise distinct,

(ii) none of the terms ti, i = 1, .., m, is a class or atomic value and the premises ej,
j = 2, .., m, are included in FD\A, because, under assumption (i), we would
otherwise obtain a shorter proof of a clash or a violation of the condition of the
lemma (thus the term length decreases or increases by at most one attribute at
each rewriting step from tm to t1),

(iii) the length of the terms tm, .., t1 does not increase and then decrease.

Given these properties, the proof of the lemma can be completed as follows.
In case (a), tm+1 and em+1 must have the form v′ and v′ = (am σm), and t1 and e1 the form
(a1 σ1) and (a1 σ1) = v. Let tj be one of the shortest terms (this exists because of (iii)) and
suppose it has the form (a σ). Then (a σ) = v and (a σ) = v′ must be in FD because
of (ii) and (iii).
Case (b) is similar to case (a). However, because tm (or t1) is a one-attribute term and
thus one of the shortest terms, we can here simply assume j = m (or j = 1).
In case (c), t0 has the form (v σ), with σ 6= ε. Thus t1 and e1 must have the form (a1 ζσ)
and (a1 ζ) = v. Let tj be one of the shortest terms that contains σ, i.e., tj = (a σ′ σ). With-
out loss of generality, we can assume σ′ 6= ε, because otherwise ej, .., e2 must rewrite a
to (a1 ζ) and there must be a shorter proof of a = v. Hence, by (ii), the terms tj+1, .., tm+1
cannot be shorter than tj. Because tj contains at least two attributes, tm+1 must be a
(sub)term occurring in an atomic-valued equation v′ = (tm+1 ξ). Thus, (a σ′ σξ) = v′

and (a σ′) = v must be in FD because of (ii) and (iii). �

541

Computational Linguistics Volume 46, Number 3

The weak equivalence of k-bounded LFGs and k-LCFRSs (that we prove in
Section 5.2) crucially depends on the ability to decide clash-freeness of every derivable
f-description FD in a k-bounded LFG G\↑=↓ through local clash tests on the closure of sFD
as stated in Lemma 6. This is what enables us to simulate all the conditions for correct
LFG derivation with a finite set of LCFRS predicate symbols and a finite set of LCFRS
productions, and thus to rely on the finite control of the rule-by-rule predicate matching
process of LCFRS derivation to produce the strings in L(G).

5. k-Bounded LFGs and k-LCFRSs

In this section we recall the formal definition of linear context-free rewriting systems.
Then we establish the (weak) equivalence of k-bounded LFGs and k-LCFRSs by proving
that for each k-bounded LFG there is a weakly equivalent k-LCFRS. The proof is con-
structive in that it provides a procedure for constructing for any k-bounded LFG G a
weakly equivalent k-LCFRS G′. The other direction of the equivalence follows trivially
from Seki et al.’s (1993) result for finite-copying LFGs (which are properly included
in the class of k-bounded LFG grammars). Thereafter, we refine the LCFRS grammar-
construction algorithm so that the f-structure that is assigned to a derived string s in
a k-bounded LFG G can be read out (in linear time) from the derivation of s in the
corresponding k-LCFRS G′. Finally, we demonstrate that LCFRS equivalence extends to
k-bounded LFG grammars that make use of the additional descriptive devices proposed
by Kaplan and Bresnan (1982) and still in common use.

For the constructions in this section, we assume that the k-bounded LFG grammars
have only unannotated terminals and epsilons. This is without loss of generality, be-
cause k-bounded LFGs can easily be transformed into equivalent k-bounded grammars
in this more restricted format. The transformation is done by replacing each annotated
terminal symbol (a, D) in the right-hand side of a rule by (Aa, D) and adding a rule
Aa → a, where Aa is a new unique nonterminal, for each terminal a. Annotated epsilons
are eliminated by replacing each rule of the form A→ (ε, D) by two rules of the form
A→ (Aε, D), Aε → ε, where Aε is a new dummy preterminal. Obviously, the resulting
grammar derives the same string/f-structure mapping as the original.

For the ↑ = ↓-free 2-bounded LFG grammar with the rules given in (13) we then
obtain a grammar with the rules in (20).

(20) a. S → NP NP VP Av V
(↑ S) = ↓ (↑ O) = ↓ (↑ X) = ↓ (↑ P) = V (↑ X) = ↓

(↑ X S) = (↑ O)
(↑ S A) = C

b. VP → NP VP
(↑ O) = ↓ (↑ X) = ↓

c. VP → NP
(↑ O) = ↓

(↑ X X) = #

d. V → Av V
(↑ P) = V (↑ X) = ↓

(↑ X S) = (↑ O)

e. NP → An

(↑ P) = N
(↑ A) = C

f. V → Av

(↑ P) = V
(↑ X) = #

g. Av → v

h. An → n

542

Wedekind and Kaplan Tractable Lexical-Functional Grammar

5.1 Linear Context-Free Rewriting Systems (LCFRSs)

We now introduce linear context-free rewriting systems and their languages (see
Kallmeyer [2013] for a survey on LCFRSs). For the definition we assume that V is a
set of variables.

Definition 19
A (k-)LCFRS G is a 4-tuple (N, T, S, R) where N is a finite set of nonterminal categories
(also called predicate symbols), each with a fixed arity a(A) (1 ≤ a(A) ≤ k), T is a finite
set of terminal symbols (T ∩ V = ∅), S ∈ N is the start symbol with a(S) = 1, and R is a
finite set of rules of the form

A(α1, ..,αa(A))→ A1(Y1
1, .., Y1

a(A1))..A
m(Ym

1 , .., Ym
a(Am))

with m ≥ 0, A and Aj in N, Y j
i ∈ V , for 1 ≤ j ≤ m and 1 ≤ i ≤ a(Aj), and αl ∈ (T ∪ V)∗,

for 1 ≤ l ≤ a(A). Moreover, every variable occurring in a rule r ∈ R occurs exactly once
in the left-hand side and exactly once in the right-hand side of r.

An instantiation of an LCFRS rule r is obtained by replacing all variables in r with
terminal strings. This is formally defined as follows.

Definition 20
Let r = A(α1, ..,αa(A))→ A1(Y1

1, .., Y1
a(A1))..A

m(Ym
1 , .., Ym

a(Am)). Then r′ is an instantiation

of r if there is an η = {(Yj
i, sj

i) | s
j
i ∈ T∗ and 1 ≤ j ≤ m and 1 ≤ i ≤ a(Aj)} and r′ = r[η].

In the following we abbreviate A(α1, ..,αa(A)) (αl ∈ (T ∪ V)∗) by A(~α) if there is no
need to refer to the particular arguments. The language of an LCFRS G is defined in
terms of the set of instantiated nonterminals that G derives.

Definition 21
Let G be an LCFRS. Then the set of instantiated nonterminals derivable by G is the
smallest set LN(G) satisfying the following conditions:

(i) if A(~α)→ ε ∈ R, then A(~α) ∈ LN(G),

(ii) if A1(~α1), .., Am(~αm) are in LN(G) and A(~α)→ A1(~α1)..Am(~αm) is an instantiation
of a rule in R, then A(~α) ∈ LN(G).

The language of G is the set

L(G) = {s | S(s) ∈ LN(G)}.

Note that the language defined in this way does not depend on the order of predicates
in the right sides of rules. Predicate order is merely a notational convenience.

As an illustration, consider the 3-LCFRS G = ({S, A}, {a, b}, S, R), with R as given
in (21), which derives the double copy language {www | w ∈ {a, b}+}.

(21) r1 = S(XYZ)→ A(X, Y, Z)
r2 = A(aX, aY, aZ)→ A(X, Y, Z) r3 = A(bX, bY, bZ)→ A(X, Y, Z)
r4 = A(a, a, a)→ ε r5 = A(b, b, b)→ ε

543

Computational Linguistics Volume 46, Number 3

This LCFRS derives, for example, the string abbabbabb because the instantiated non-
terminal S(abbabbabb) is derivable as shown in (22).

(22) LN(G)

A(b, b, b) A(b, b, b)→ ε ∈ R
A(bb, bb, bb) A(bb, bb, bb)→ A(b, b, b) instantiation of r3

A(abb, abb, abb) A(abb, abb, abb)→ A(bb, bb, bb) instantiation of r2

S(abbabbabb) S(abbabbabb)→ A(abb, abb, abb) instantiation of r1

Derivability in LCFRSs can also be trivially restated in terms of labeled trees and
licensing rule mappings, as an analogy to derivations in basic LFGs.

Definition 22
A pair (c,ρ) consisting of a labeled tree c and a mapping ρ from the nodes of c into R is
a derivation of a tuple of strings (s1, .., s j), si ∈ T∗, 1 ≤ i ≤ j, from B in LCFRS G iff

(i) for each terminal node n with label A(~α), ρn = A(~α)→ ε,

(ii) for each nonterminal node n with label A(~α) and dts(n) = n1..nm with labels
A1(~α1), .., Am(~αm), A(~α)→ A1(~α1)..Am(~αm) is an instantiation of ρn,

(iii) the label of root is B(s1, .., s j).

A terminal string s is derivable in LCFRS G iff there is a derivation of (s) from S.
Because a terminal string s is derivable in G iff S(s) ∈ LN(G) the language of G is equal to
{s ∈ T∗ | s is derivable in G}.

The simple derivation tree for the string abbabbabb in the LCFRS comprising the rules
in (21) is depicted in (23a) and its licensing rule mapping is given in (23b).

(23) a. S(abbabbabb)root

A(abb, abb, abb)n1

A(bb, bb, bb)n2

A(b, b, b)n3

b. ρroot = r1, ρn1
= r2, ρn2

= r3, ρn3
= r5

5.2 Weak Equivalence of k-Bounded LFGs and k-LCFRSs

For a given k-bounded LFG G we construct a k-LCFRS G′ and then show that
L(G) = L(G′). The rules of G′ are based on the rules and categories of G\↑=↓ and are
constructed so as to simulate the derivations of that grammar. We have established that
node equivalence classes [n] in G\↑=↓ arise only through zipper unifications and that
equivalent nodes are therefore at the same level of the c-structure. We also know
that the daughters of equivalent nodes are themselves equivalent if and only if the
rules that expand their mothers have the same function assignment annotations, and
that those rules must contain function assignments that can be used to shorten any long
reentrancies. Our construction makes use of these properties.

544

Wedekind and Kaplan Tractable Lexical-Functional Grammar

We first illustrate the LCFRS rule construction for LFG rules with nonterminal or
preterminal daughters.17 Suppose that an equivalence class [n] (of not more than k
nodes) arises in the course of a G\↑=↓ derivation. Because the nodes in [n] are at the
same level, they can be ordered according to the linear precedence relation ≺ on their
terminal yields. We can thus assign to [n] a sequence of nonterminals Γ that label
its ordered nodes (|Γ| = |[n]|), and use that label sequence in building the left-hand
predicates of candidate LCFRS rules that might simulate how daughters of nodes with
those labels are derived. We hypothesize rule sequences % that could have been used
to expand the nonterminals of Γ in a valid G\↑=↓ derivation (i.e., a sequence % of the
form %1 = Γ1 → ψ1, .., %|Γ| = Γ|Γ| → ψ|Γ|). To take an example from the 2-bounded LFG
grammar in (20), one such rule sequence for the sequence Γ = VP V is given in (24).

(24) %1 = VP → NP VP
(↑ O) = ↓ (↑ X) = ↓

%2 = V → Av V
(↑ P) = V (↑ X) = ↓

(↑ X S) = (↑ O)

We test such a candidate rule sequence to determine whether its rule annotations give
rise to locally clash-free descriptions and whether they include the function assignments
needed to shorten all long reentrancies. Rule sequences that do not meet these condi-
tions cannot participate in a valid G\↑=↓ derivation and can safely be removed from
consideration.

The test is conducted on the description FD%. This description is constructed by
instantiating ↑ in the annotations of %l by a constant bl and ↓ in the daughter annotations
of %l by constants of a sequence βl whose length coincides with that of the right-hand
side of %l. The b’s and the constants in the concatenation β = β1..β|Γ| must be pairwise
distinct so that we make the same discriminations as the nodes of a valid derivation
from these mothers. Because the mother nodes are all equivalent by hypothesis we
include in FD% equations b1 = bi, for all i = 2, .., |Γ|. For this example we can instan-
tiate the mothers with b1 and b2 and the daughter sequences with β1 = β1

1β
1
2 = YZ

and β2 = β2
1β

2
2 = QR. For the rule sequence in (24) and these mother and daughter

constants, FD% is the description in (25).

(25)
{

b1 = b2, (b1 O) = Y, (b1 X) = Z, (b2 P) = V, (b2 X S) = (b2 O), (b2 X) = R
}

This description is clash-free and the long reentrancy (b2 X S) = (b2 O) can be shortened
either through (b2 X) = R, or (b1 X) = Z and b1 = b2. This rule sequence thus remains
as a candidate for further consideration. The constants used for daughter instantiation
will also serve as the variables in constructed LCFRS rules (and henceforth we refer to
them interchangeably also as variables).

The right-side predicates account for the possibility that FD% entails the equality
of instantiating variables for separate nonterminal daughters of the rules in %, that is,
FD% ` βi = βj. The equality of variables Z and R, for example, follows from the instan-
tiated assignments (b1 X) = Z and (b2 X) = R, and the equality b1 = b2. The equalities
between daughter variables give rise to equivalence classes [βi] corresponding to the
node equivalence classes of a simulated derivation. We also include classes [βi] = {βi}
for variables that do not appear in FD% because ↓ does not appear in the annotations
of corresponding nonterminal daughter nodes. We impose an order on the variables
within each equivalence class according to their order inβ (which reflects the c-structure

17 Because of the elimination of annotated terminals the LFG rules are partitioned into unannotated
terminal rules and nonterminal rules with nonterminal or preterminal daughters.

545

Computational Linguistics Volume 46, Number 3

precedence relation ≺ of corresponding daughters). That is, we define a precedence
order between the variables of β by βi ≺ βj if i < j.

In our construction, the variables range over the yields of the right-side nontermi-
nals in simulated derivations of G\↑=↓. The left- and right-side LCFRS predicates are set
up so that a derivable string instantiation of the ith argument of a predicate is the yield
of the ith nonterminal of its predicate symbol in a G\↑=↓ derivation.

We first construct one right-side predicate for each of the [βi] equivalence classes.
The predicate symbol of the predicate is the concatenation of nonterminal categories
corresponding to the ordered variables in [βi] and its arguments are just the ordered
variables of the class. This depends on the fact that there is a one-to-one alignment
of the variable sequence β and the sequence of categories projected from the con-
catenated daughters of the % rules. The category projection Cat is defined for every
annotated category (X, D) by Cat(X, D) = X and then extended in the natural way
to strings of annotated categories. The alignment can be represented as a function
θ that assigns to the ith element of β the ith element of φ = Cat(ψ1..ψ|Γ|), that is,
θ(βi) = φi for i = 1, .., |β|. Applied to the concatenation of the right-hand sides of the
rules %1 and %2 the Cat projection yields NPVPAvV, and, for β = YZQR, θ is given
by θ(Y) = NP, θ(Z) = VP, θ(Q) = Av, and θ(R) = V. For the equivalence classes of our
example, {β1} = {Y}, {β2,β4} = {Z, R} (with Z ≺ R), and {β3} = {Q}, we then obtain
the predicates θ(Y)(Y) = NP(Y), θ(Z)θ(R)(Z, R) = VP V(Z, R), and θ(Q)(Q) = Av(Q).

In LCFRS rules, the arguments of the left-side predicates describe how their yields
are assembled from the yields instantiating the variables of the right-side predicates.
We thus construct the lth argument of the left-side predicate Γ by substituting for each
daughter in the Cat projection of the right-hand side of rule %l the variable that occurs in
the corresponding position in βl. This ensures that the LCFRS rule assembles for each
Γl the terminal string instantiation of the lth argument in accordance with Cat(ψl). For
our example we thus obtain the left-side predicate VP V(YZ, QR).

Because the right-side predicates of LCFRS rules must be arranged in a sequence,
we extend the relation ≺ on variables to equivalence classes by ordering classes ac-
cording to their least elements. Using the extended ≺ to arrange the corresponding
predicates, we obtain the rule (26).

(26) VP V(YZ, QR)→ NP(Y) VP V(Z, R) Av(Q)

We have already determined that FD% is locally clash-free. But we have not yet
ensured that clashes do not arise from atomic values that other steps of a simulated
derivation might associate with an equivalence class of nodes or with their daughter
classes. To control for these (and other) potential clashes of the simulated derivations,
we refine the left-side predicate symbol Γ and the right-side predicate symbols Γj with
sets of atomic-valued equations E, Ej of E that could arise in any valid LFG derivation
as hsFD values for the corresponding equivalence classes. One such refinement of the
skeletal rule (26) is shown in (27).

(27) VP V{(∗ P) = V}(YZ, QR)→ NP{(∗ P) = N, (∗ A) = C}(Y) VP V{(∗ P) = V}(Z, R) Av
∅(Q)

Because these refinements must give rise to clash-free descriptions we require them
to be mutually compatible and consistent with the annotations of the hypothesized
% rule sequences. This constraint is implemented by checking for clash-freeness the f-
description FD′ created by combining sFD% with the descriptions formed by appropri-
ately instantiating the selected refinements. Specifically, we substitute [b1] for ∗ in the

546

Wedekind and Kaplan Tractable Lexical-Functional Grammar

refinement of the left-side predicate, and we replace ∗ in the refinement of each right-
side predicate by the predicate’s associated equivalence class of variables.

The atomic-valued information that the E refinements associate with the rule equiv-
alence classes is also required to be invariant under closure of FD′, that is, the refine-
ment of each equivalence class is assumed to record exactly the information that FD′
associates with that class. Under this requirement, the clash-freeness of the FD′ of each
rule and Lemma 6 ensure that the finite control of the rule-by-rule predicate matching
process of LCFRS derivations will simulate LFG derivations of G that have clash-free
f-descriptions.

Finally, for the rules that expand preterminal categories into unannotated terminals
Aa → a and epsilons Aε → ε, we add trivial LCFRS rules of the form Aa

∅(a)→ ε and
Aε∅(ε)→ ε, and we include a particular set of start rules. The start rules expand the root
predicate S′(X) of the new grammar to unary predicates SE(X) consisting of the original
start symbol and one clash-free set of atomic-valued equations E in E .

More precisely, the construction is as follows.

Definition 23
For any k-bounded LFG G with G\↑=↓ = (N, T, S, R) we construct a k-LCFRS
G′ = (N′, T, S′, R′) in the following way. The collection of nonterminals is

N′ = {S′} ∪ {ΓE | Γ ∈ N+, |Γ| ≤ k, and E ∈ E}

where a(S′) = 1 and a(ΓE) = |Γ|. R′ includes start rules S′(X)→ SE(X) for any E ∈ E , a
rule Aa

∅(a)→ ε for any terminal rule Aa → a, and a rule Aε∅(ε)→ ε for any epsilon rule
Aε → ε. The other rules of R′ are created as follows. Let % be a sequence of nonterminal
rules %1 = Γ1 → ψ1, .., %|Γ| = Γ|Γ| → ψ|Γ| with |Γ| ≤ k. Now let b1, .., b|Γ| be constants
and βl be sequences of constants with |βl| = |ψl|, for l = 1, .., |Γ|, such that the b’s and
the constants in the concatenation β = β1..β|Γ| are pairwise distinct. Set

FD% =

|Γ|⋃
l=1

Inst(%l, (bl,βl)) ∪ {b1 = bi | i = 2, .., |Γ|}.

If FD% is clash-free and the long reentrancies in FD% can be shortened through the
function assignments and b1 equations, we consider the classes [b1] = {b1, .., b|Γ|} and
[βi] = {βj | FD% ` βi = βj} together with singleton classes [βi] = {βi} for any constant
βi that does not occur in FD%. Let≺ be a precedence order on the constants of β defined
by βi ≺ βj if i < j and set [βi] ≺ [βj] if there is an element in [βi] that precedes all
elements of [βj] in β. Now let b = [b1] and b1, .., bm be the classes [βi] ordered according
to ≺. For every collection of elements E, E1, .., Em of E large enough so that the
description

FD′ = sFD% ∪ E[∗/b] ∪
m⋃

j=1

Ej[∗/bj]

is clash-free and hFD′ (b) = E and hFD′ (bj) = Ej, for j = 1, .., m, R′ contains a rule of the
form

ΓE(β1, ..,β|Γ|)→ Γ1
E1

(Y1
1, .., Y1

|Γ1|)..Γ
m
Em

(Ym
1 , .., Ym

|Γm|)

where Y j
i is the ith greatest element of bj and Γ

j
i = θ(Yj

i).

547

Computational Linguistics Volume 46, Number 3

This construction produces for the 2-bounded LFG grammar with the rules in (20)
an LCFRS that includes the rules in (28). These rules generate the same language as
the original LFG. The construction creates many other categories and rules that are
not shown here because they are either useless or redundant. Useless rules cannot
participate in the simulation of any LFG derivation while redundant ones simulate only
the same derivations as other rules and categories in the grammar.

(28) S′(X)→ SE(X)

SE(XYZQR)→ NPE1
(X) NPE1

(Y) VP VE2
(Z, R) Av

∅(Q)

SE(XYZQR)→ NPE1
(X) NPE1

(Y) VP VE3
(Z, R) Av

∅(Q)

VP VE2
(YZ, QR)→ NPE1

(Y) VP VE2
(Z, R) Av

∅(Q)

VP VE2
(YZ, QR)→ NPE1

(Y) VP VE3
(Z, R) Av

∅(Q)

VP VE3
(Y, QR)→ NPE1

(Y) Av
∅(Q) VE4

(R)

NPE1
(X)→ An

∅(X)

VE4
(X)→ Av

∅(X)

An
∅(n)→ ε

Av
∅(v)→ ε

with E = {(∗ P) = V, (∗ S A) = C}, E1 = {(∗ P) = N, (∗ A) = C}, E2 = {(∗ P) = V},
E3 = {(∗ P) = V, (∗ X X) = #}, and E4 = {(∗ P) = V, (∗ X) = #}.

Weak equivalence then follows by bottom–up induction on the depth of the
derivations.

Lemma 7
For any k-bounded LFG G there exists a k-LCFRS G′ with L(G) = L(G′).

Proof
Let G′ be the k-LCFRS constructed for a k-bounded LFG G as in Definition 23.
We first show L(G) ⊆ L(G′). Let (c,ρ) be a derivation of a terminal string s from S
with f-description FD and f-structure F in G\↑=↓. Consider the equivalence classes [n]
for the nonterminal nodes n of c. Obviously, |[n]| ≤ k for each n. Assign to each [n]
a predicate ΓE(Y1, .., Y|Γ|), with a(Γ) = |[n]|, |Γ| = |[n]|, and E = hsFD([n]), where Yl is
the lth greatest element of [n] and Γl its label. The assignment of predicates to node
classes, as well as the inductive step, are illustrated in Figure 8. We show bottom–
up for each [n] that ΓE(s1, .., s|Γ|) ∈ LN(G′) where sl is the yield of Yl. Because G\↑=↓

has no annotated terminals and the annotations of the preterminals do not contain ↓,
[n] must be a singleton set and hsFD([n]) = ∅, for any preterminal node n. Then ρY1

must be of the form Aa → a or Aε → ε, and Aa
∅(a)→ ε or Aε∅(ε)→ ε must be in R′

by construction of G′. Hence Aa
∅(a) or Aε∅(ε) is in LN(G′). Now suppose that [n] does

not contain only preterminal nodes. Let [n1], .., [nm] be the equivalence classes of the
nonterminal daughters of the nodes in [n] ordered according to their least elements and
Γ1

E1
(Y1

1, .., Y1
|Γ1|), .., Γ

m
Em

(Ym
1 , .., Ym

|Γm|) be the corresponding predicates. Obviously, the rule

r = ΓE(dts(Y1), .., dts(Y|Γ|))→ Γ1
E1

(Y1
1, .., Y1

|Γ1|)..Γ
m
Em

(Ym
1 , .., Ym

|Γm|) must be in R′ if we con-
struct LCFRS rules for the sequence %1 = ρY1 , .., %|Γ| = ρY|Γ| according to Definition 23
with βl = dts(Yl) and E, E1, .., Em as specified above. We know by inductive hypothesis

548

Wedekind and Kaplan Tractable Lexical-Functional Grammar

Figure 8
Illustration of the assignment of predicates to node equivalence classes and of the inductive step
in the L(G) ⊆ L(G′) argument for an LFG derivation with the rule sequence % in (24). The assign-
ment is indicated by the dashed arrows and the E components are E = hsFD({n1, n2}), E1 = hsFD({n1

1}),
and E2 = hsFD({n1

2, n2
2}). The LCFRS rule VP VE(n1

1 n1
2, n2

1n2
2)→ NPE1

(n1
1) VP VE2

(n1
2, n2

2) Av
∅(n2

1) is
constructed for % with β1 = n1

1n1
2 and β2 = n2

1n2
2 (and E, E1, .., Em as defined above). The derived

terminal strings are u1
1, u1

2, v, and u2
2 and the instantiation of the variables by terminal strings is

indicated by solid straight arrows.

that Γ
j
Ej

(sj
1, .., sj

|Γj|) ∈ LN(G′) where sj
i is the yield of Yj

i. Define a substitution η by

η(Yj
i) = sj

i and let ΓE(dts(Y1), .., dts(Y|Γ|))[η] = ΓE(s1, .., s|Γ|). Then ΓE(s1, .., s|Γ|) ∈ LN(G′)
and the claim that sl is the yield of Yl holds by construction of r (see the illustration
on the right-hand side of Figure 8). Hence, SE(s) is in LN(G′) and S′(s) in LN(G′) by
S′(X)→ SE(X).
We then establish L(G′) ⊆ L(G). Let (c′,ρ′) be a derivation of (s) from S′ in G′.
We show bottom–up for each node n′ (except root) of c′ with label ΓE(s1, .., s|Γ|)
that there are derivations of sl from Γl with root node nl and f-description
FDl in G\↑=↓ (as defined in Definition 3) such that all long reentrancies in

FD =
|Γ|⋃
l=1

FDl ∪ {n1 = ni | i = 2, .., |Γ|} can be shortened using the n1 equations and func-

tion assignments. Along the induction, we define descriptions EsFD (sFD enlarged by
the instantiated E components of the derivation in G′) such that (a) sFD ⊆ EsFD, (b)
h
E
sFD([n1]) = E, and (c) EsFD is clash-free. The clash-freeness of FD (and FDl) then follows

from (a) and (c). If n′ is a terminal node then its label has the form Aa
∅(a) or Aε∅(ε),

and ρn′ is Aa
∅(a)→ ε or Aε∅(ε)→ ε. Hence Aa → a or Aε → ε is in R by construction

of G′ and there must trivially be a derivation of the required form. Moreover, with
E
sFD = ∅ also the other claims hold trivially because FD and E are empty. Now suppose
that n′ is a nonterminal node with label ΓE(s1, .., s|Γ|) and daughters n′1, .., n′m with
labels Γ1

E1
(s1

1, .., s1
|Γ1|), .., Γ

m
Em

(sm
1 , .., sm

|Γm|), ΓE(s1, .., s|Γ|)→ Γ1
E1

(s1
1, .., s1

|Γ1|)..Γ
m
Em

(sm
1 , .., sm

|Γm|)

is an instantiation of ρ′n′ = ΓE(β1, ..,β|Γ|)→ Γ1
E1

(Y1
1, .., Y1

|Γ1|)..Γ
m
Em

(Ym
1 , .., Ym

|Γm|), and the
claims hold for the daughter predicates by inductive hypothesis. The inductive step is il-
lustrated in Figure 9. Without loss of generality we can assume that Y j

i is the root node of
the derivation of s j

i for each j = 1, .., m and i = 1, .., |Γj| (rename the nodes if necessary).
Now let nl be new (root) nodes and assume nl = bl (l = 1, .., |Γ|). We obtain derivations

549

Computational Linguistics Volume 46, Number 3

of sl from Γl with root nl and f-description FDl, l = 1, .., |Γ|, by licensing nl through
Γl → ψl and by expanding the ith occurrence in Cat(ψl) using the derivation with rootβl

i
(i = 1, .., |ψl|). Then each FDl is the union of Inst(Γl → ψl, (b l,β l)) and the f-descriptions
of the derivations with root β l

i , and FD must be FD% ∪
⋃

j = 1, .., m
i = 1, .., |Γj|

FD j
i . It follows directly

from the construction of ρ′n′ and the inductive hypothesis that all long reentrancies in
FD can be shortened. From the construction of G′ and the derivations, it is easy to see

that sFD = sFD% ∪
m⋃

j=1

sFDj. Now let EsFD = sFD% ∪ E[∗/[n1]] ∪
m⋃

j=1
E
sFDj. Then, obviously,

sFD ⊆ EsFD. To show (b) and (c), recall that two nodes can be related in a single instan-
tiated annotation only if the nodes stand in a mother–daughter relationship or if they
are identical. Thus, sFD% and each EsFDj can share only the class [Y j

1] and only equations
of the form ([Y j

1] F σ) = v can factor into the closure of sFD% ∪ E[∗/[n1]] and E
sFDj. Set

FD′ = sFD% ∪ E[∗/[n1]] ∪
m⋃

j=1
Ej[∗/[Yj

1]] as in the definition of G′. Since h
E
sFD j ([Y

j
1]) = Ej by

inductive hypothesis and hFD′ ([Y
j
1]) = Ej, j = 1, .., m, and hFD′ ([n1]) = E by construction

of ρ′n′ , we obtain (b) h
E
sFD([n1]) = E; moreover, for each j = 1, .., m, the restriction of h

E
sFD

to the classes in EsFDj is equal to h
E
sFDj . Hence, the h values are preserved and the clash-

freeness of EsFD follows by Lemma 6 from the clash-freeness of FD′ and the EsFDj, which
concludes the induction step. Thus G\↑=↓ derives s from S if G′ derives (s) from SE for
some E ∈ E , and hence s ∈ L(G\↑=↓) if s ∈ L(G′). �

Lemma 8 follows trivially from the corresponding result for finite-copying LFGs
(Seki et al. 1993).

Lemma 8
For any k-LCFRS G there exists a k-bounded LFG G′ with L(G) = L(G′).

Hence we have Theorem 1.

Theorem 1
k-Bounded LFGs are weakly equivalent to k-LCFRSs.

Because the recognition and emptiness problems are decidable for LCFRSs, the
same must hold for k-bounded LFGs.

Corollary 3
For k-bounded LFGs the recognition and emptiness problems are decidable.

5.3 The Construction of Strongly Equivalent LCFRSs

It is straightforward to augment the right-side predicate symbols of weakly equivalent
LCFRSs with an additional component that records the annotations of the nonterminal
daughters from which they originate. We can thus acquire access to the f-structure
if we arbitrarily hypothesize at each left-side predicate symbol a subset of the set of
G\↑=↓ annotations. The predicates in N′ other than the start predicate S′ will have the

550

Wedekind and Kaplan Tractable Lexical-Functional Grammar

Figure 9
Illustration of the inductive step in the proof of L(G′) ⊆ L(G) for an LCFRS derivation with a rule
obtained from the sequence % in (24). The immediate dominance properties and the daughter
annotations of the original LFG rules are indicated in gray.

form ΓE:D where D is a set of admissible (non-trivial) annotations. To illustrate the
rule construction, consider as an example for a predicate symbol ΓE:D the refinement
VP V{(∗ P) = V}:{(↑ X) = ↓} of the predicate symbol VP V{(∗ P) = V} that we used in our pre-
vious illustration of the grammar construction. Here, the D component records that the
co-referring categories VP and V are (both) annotated by (↑ X) = ↓ in G\↑=↓. Again for
the sequence of rules in (24) we proceed along the lines of Definition 23. The annotation
component of the right-hand side predicates then just collects the annotations of the
right-hand side daughter categories from which they are created. For our example rules
we thus obtain, for example, the LCFRS rule in (29).

(29) VP V{(∗ P) = V}:{(↑ X) = ↓}(YZ, QR)→
NP{(∗ P) = N,

(∗ A) = C

}:{(↑ O) = ↓}(Y) VP V{(∗ P) = V}:{(↑ X) = ↓}(Z, R) Av
∅:
{

(↑ P) = V,
(↑ X S) = (↑ O)

}
(Q)

This component is empty for the right-hand side of the start rules S′(X)→ SE:∅(X)
(because the root category of an LFG derivation is not annotated).

The additional properties of strongly equivalent LCFRSs that enable f-structure
recovery are made more precise in the following definition. In the definition we use the
annotation projection An to access the annotations of the LFG rules. The An projection
is defined for every annotated category (X, D) by An(X, D) = D.

Definition 24
Let G be a k-bounded LFG. For G\↑=↓ = (N, T, S, R) we construct a k-LCFRS
G′ = (N′, T, S′, R′) as follows. The set of nonterminals N′ includes S′ and all symbols of
the form ΓE:D, where Γ ∈ N+, |Γ| ≤ k, E ∈ E , and D is a subset of the set of G\↑=↓ annota-
tions. The arity of the nonterminals is defined as in Definition 23. The rule set R′ includes
start rules S′(X)→ SE:∅(X) for every E ∈ E , and rules Aa

∅:D(a)→ ε/Aε∅:D(ε)→ ε, for
any terminal rule Aa → a/epsilon rule Aε → ε and any subset D of G\↑=↓ annotations.
For any sequence % of nonterminal rules %1 = Γ1 → ψ1, .., %|Γ| = Γ|Γ| → ψ|Γ| satisfying
the conditions of Definition 23 and any subset of G\↑=↓ annotations D, we construct rules
of the form

551

Computational Linguistics Volume 46, Number 3

ΓE:D(β1, ..,β|Γ|)→ Γ1
E1

:D1(Y1
1, .., Y1

|Γ1|)..Γ
m
Em

:Dm(Ym
1 , .., Ym

|Γm|)

with Y j
i , E, and Ej as defined there, and Dj =

⋃
{An(ψk) | βk ∈ bj}withψ=ψ1..ψ|Γ|.

For the rules in (20) this construction produces the rules in (30). All other candidate
rules are again either useless or redundant.

(30) a. S′(X)→ SE:∅(X)

b. SE:∅(XYZQR)→
NPE1

:{(↑ S) = ↓}(X) NPE1
:{(↑ O) = ↓}(Y) VP VE2

:{(↑ X) = ↓}(Z, R) Av
∅:
{ (↑ P) = V,

(↑ X S) = (↑ O),
(↑ S A) = C

}
(Q)

c. SE:∅(XYZQR)→
NPE1

:{(↑ S) = ↓}(X) NPE1
:{(↑ O) = ↓}(Y) VP VE3

:{(↑ X) = ↓}(Z, R) Av
∅:
{ (↑ P) = V,

(↑ X S) = (↑ O),
(↑ S A) = C

}
(Q)

d. VP VE2
:{(↑ X) = ↓}(YZ, QR)→

NPE1
:{(↑ O) = ↓}(Y) VP VE2

:{(↑ X) = ↓}(Z, R) Av
∅:
{

(↑ P) = V,
(↑ X S) = (↑ O)

}
(Q)

e. VP VE2
:{(↑ X) = ↓}(YZ, QR)→

NPE1
:{(↑ O) = ↓}(Y) VP VE3

:{(↑ X) = ↓}(Z, R) Av
∅:
{

(↑ P) = V,
(↑ X S) = (↑ O)

}
(Q)

f. VP VE3
:{(↑ X) = ↓}(Y, QR)→

NPE1
:
{

(↑ O) = ↓,
(↑ X X) = #

}
(Y) Av

∅:
{

(↑ P) = V,
(↑ X S) = (↑ O)

}
(Q) VE4

:{(↑ X) = ↓}(R)

g. NPE1
:{(↑ S) = ↓}(X)→ An

∅:
{

(↑ P) = N,
(↑ A) = C

}
(X)

h. NPE1
:{(↑ O) = ↓}(X)→ An

∅:
{

(↑ P) = N,
(↑ A) = C

}
(X)

i. NPE1
:
{

(↑ O) = ↓,
(↑ X X) = #

}
(X)→ An

∅:
{

(↑ P) = N,
(↑ A) = C

}
(X)

j. VE4
:{(↑ X) = ↓}(X)→ Av

∅:
{

(↑ P) = V,
(↑ X) = #

}
(X)

k. An
∅:
{

(↑ P) = N,
(↑ A) = C

}
(n)→ ε

l. Av
∅:
{ (↑ P) = V,

(↑ X S) = (↑ O),
(↑ S A) = C

}
(v)→ ε

m. Av
∅:
{

(↑ P) = V,
(↑ X S) = (↑ O)

}
(v)→ ε

n. Av
∅:
{

(↑ P) = V,
(↑ X) = #

}
(v)→ ε

with E = {(∗ P) = V, (∗ S A) = C}, E1 = {(∗ P) = N, (∗ A) = C}, E2 = {(∗ P) = V},
E3 = {(∗ P) = V, (∗ X X) = #}, and E4 = {(∗ P) = V, (∗ X) = #}.

With these elaborated rules an f-structure can be recovered from an LCFRS deriva-
tion that has been formulated in terms of derivation trees as per Definition 22. The
nodes of a derivation tree can then be used to instantiate the ↑ and ↓ metavariables
in the annotations in exactly the same way as in derivations with LFG grammars.
The following extension of this definition then provides the required access to the
f-structure. The instantiation function Inst is defined for the refined LCFRS rules as
specified in Definition 2.

Definition 25
Let G be a k-bounded LFG and G′ be the k-LCFRS obtained from G as described in
Definition 24. A pair (c,ρ) consisting of a labeled tree c and a mapping ρ from the nodes

552

Wedekind and Kaplan Tractable Lexical-Functional Grammar

Figure 10
The derivation tree of nnnvvv in the LCFRS with the rules in (30).

of c into R′ is a derivation of a tuple of terminal strings (s1, .., sj) from B with functional
description FD and f-structure F in G′ iff

(i) (c,ρ) is a derivation of (s1, .., sj) from B,

(ii) FD =
⋃
{Inst(ρn, (n, dts(n))) | n ∈ Dom(ρ) and n is a nonterminal node},

(iii) F = M|A∪V, where M is a minimal model of FD.

A terminal string s is derivable with f-structure F in G′ (∆G′ (s, F)) iff there is a derivation
of (s) from S′ with F (and some f-description FD) in G′.

As an illustration, consider the derivation of nnnvvv in the LCFRS comprising the
rules in (30). The derivation tree of this derivation is depicted in Figure 10 and its
licensing rule mapping is given in (31).

(31) ρroot = (30a), ρn1
= (30c), ρn2

= (30g), ρn3
= (30h), ρn4

= (30f), ρn5
= (30l), ρn6

= (30k),
ρn7

= (30k), ρn8
= (30i), ρn9

= (30m), ρn10
= (30j), ρn11

= (30k), ρn12
= (30n)

From the f-description depicted in (32), it is easy to see that this grammar associates
with nnnvvv the same f-structure as the 2-bounded LFG grammar in (1) from which it
was created.

(32)

(n1 S) = n2, (n2 P) = N,
(n2 A) = C,

(n1 O) = n3, (n3 P) = N,
(n3 A) = C,

(n1 X) = n4, (n4 X X) = #,
(n4 O) = n8, (n8 P) = N,

(n8 A) = C,
(n4 X) = n10, (n10 P) = V,

(n10 X) = #,
(n4 P) = V,
(n4 X S) = (n4 O),

(n1 P) = V,
(n1 S A) = C,
(n1 X S) = (n1 O)

553

Computational Linguistics Volume 46, Number 3

Along the lines of the argument used in the proof of Lemma 7 it is straightforward
to see that G and G′ derive the same string/f-structure mapping.

Theorem 2
Let G be a k-bounded LFG and G′ be the k-LCFRS constructed for G as in Definition 24. Then
∆G = ∆G′ .

Because the f-description of every derivation in G′ is clash-free, the f-structure can
be read out from any particular derivation in linear time.

5.4 Other Descriptive Devices

The LFG formalism as originally proposed by Kaplan and Bresnan (1982) includes for-
mal devices beyond the primitive attribute and value mechanisms of the basic subclass,
and LFG theory contemplates configurations of annotated rules that do not obviously
meet the restrictions we depend on. In this section we show how those devices and
configurations can be accommodated in the k-bounded framework, either by conversion
to equivalent rules and annotations of the more restricted form or by extensions to the
k-LCFRS translation procedure.

C-Structure Regular Predicates and Boolean Combinations of Elementary Anno-
tations. The full LFG notation allows functional requirements to be stated as arbitrary
Boolean combinations of basic annotations. It also allows the right-hand sides of c-
structure rules to denote arbitrary regular languages over annotated categories. Rules
with the richer notation, including Kleene-star iterations, can be linearized into collec-
tions of productions all of which are in conventional context-free format and have no
internal disjunctions and which together define the same string/f-structure mapping as
a grammar encoded in the original, linguistically more expressive, notation (Wedekind
and Kaplan 2012). Although sufficient in principle to establish the LCFRS equivalences,
such a conversion may not be possible in practice (see the discussion in the next section).

Kleene-star iterations are conventionally translated into equivalent right-linear ex-
pansions that make use of trivial annotations. For example, the iteration of the anno-
tated category (A, D) in (33a) is replaced by a new optional trivially-annotated category
AD, and the rule (33b) is introduced to properly expand that category. (In (33b) we
use the traditional parenthetic notation for optionality, to collapse into a single rule the
expansion with or without the recursive category.)

(33) a. X → φ A∗ ψ
D

b. AD → A (AD)
D ↑ = ↓

Obviously, grammars with such recursions would violate condition (ii) of Definition 10,
because this by itself expresses no bounds on the trivially annotated dominance chains.
There must be additional properties of the grammar that prevent the annotations in D
from creating unbounded zippers. We discuss this problem in the next section.

Adjuncts. In LFG the f-structures of modifiers that serve as adjuncts of a predicate
are represented as elements of the set-valued attribute ADJUNCTS. Formally, this is
accomplished by annotations of the form ↓ ∈ (↑ ADJUNCTS) stating that the value of the
ADJUNCTS attribute is a set that includes as one of its elements the f-structure associated
with the annotated constituent.18 Set elements behave formally like daughters without

18 The following argument applies equally to open adjuncts (XADJUNCTS).

554

Wedekind and Kaplan Tractable Lexical-Functional Grammar

function assignments. They therefore can be handled by our original construction with-
out further modification. However, because LFG allows the rules to contain Kleene-
starred adjunct phrases as in (34), the number of adjuncts is potentially unbounded.

(34) XP∗
↓ ∈ (↑ ADJUNCTS)

The modifier Kleene-star iteration can be translated to an equivalent right-linear
expansion as above. The trivial-annotations in this particular right-linear expansion do
not have to be eliminated in order to locally disclose structure sharing through zipper
unification: Derivations of set-valued adjuncts cannot create or add to zippers. We
substitute for the recursive trivial a variant ↑ .= ↓ that is opaque to the trivial-elimination
procedure and thus not removed from the grammar. It is carried along by the LCFRS
translation algorithm (using an extended sFD closure supporting equations of the form
a .

= b)19 and interpreted as a node identity only during f-structure construction.
Positive and Negative Constraints. LFG annotations are divided into two classes:

defining and constraining annotations. The instantiated constraining annotations are
evaluated once all instantiated defining annotations have been processed and a minimal
model (of the defining statements) has been constructed. The constraining devices
introduced by Kaplan and Bresnan (1982) are constraining equations and inequali-
ties, and existential and negative existential constraints. If a constraining statement is
contained in an f-description FD, it is evaluated against a minimal model M of the
defining statements of FD in the following way: M |= t =c t′ iff M |= t = t′ (constraining
equation), M |= t iff ∃t′(M |= t = t′) (existential constraint), M |= ¬γ iff M 6|= γ (negation
of a constraining or defining statement).

It is fairly straightforward to extend the LCFRS construction in Definition 23 to LFG
grammars with negative constraints. If we assume the negative constraints, just as the
atom-valued defining statements, to be propagated across the E components, then we
can properly account for them by requiring the negative constraints of FD′ to be satisfied
in a minimal model M of the defining statements of FD′. The extension to grammars that
make use of positive constraints is for several reasons far more challenging.

The construction of Definition 23 creates LCFRS rules that simulate the deriva-
tions of a corresponding LFG grammar. Consistency of atomic-value information that
might be inherited from other rules of an LFG derivation is enforced by matching
the predicates of individual LCFRS rules, given that the predicates are refined by E
components that hypothesize a collection of potentially inherited values. The E values
include those that are necessary to guarantee that derivations contain no clashing
atomic values, but as specified they may also include information that is not defined
elsewhere in the simulated derivation. Positive constraints thus cannot be tested against
these overly large E components. An alternative refinement strategy is exploited to
ensure that constraints can be checked against properly limited subsets of informa-
tion.

Now, the LCFRS predicate symbols are augmented with Ě components that record
the `-bounded atomic-value information and reentrancies (compactly represented by
(∗ σ) = v/(∗ σ′)) gathered bottom–up in the simulated derivations. The predicate
symbols in LCFRS rules will thus be refined by Ě components drawn from the set

E ′ = {E | E ⊆ {(∗ σ) = v/(∗ σ′) | σ,σ′ ∈ A+ ∧ |σ|, |σ′| ≤ ` ∧ v ∈ V} ∧ E is clash-free}.

19 If (a σ) = v ∈ FD and a .
= b ∈ FD, then (b σ) = v ∈ FD.

555

Computational Linguistics Volume 46, Number 3

We build on the specification of Definition 23 substituting Ě refinements for the
atom-value components of the LCFRS rules constructed there. For the terminal expan-
sions Aa → a and Aε → ε, the LCFRS rules have the form Aa

∅(a)→ ε and Aε∅(ε)→ ε,
as in the original procedure.

For an LFG rule sequence % = Γ1 → ψ1..Γ|Γ| → ψ|Γ| whose instantiated class de-
scription is sFD%, the LCFRS rules will be of the form

ΓĚ(β1, ..,β|Γ|)→ Γ1
Ě1

(Y1
1, .., Y1

|Γ1|)..Γ
m
Ěm

(Ym
1 , .., Ym

|Γm|)

where the Ě1, .., Ěm components are drawn from E ′ such that

(i) FD′ = sFD% ∪
m⋃

j=1
Ěj[∗/bj] is clash-free,

(ii) Ě = {(∗ σ) = v/(∗ σ′) | FD′ ` (b σ) = v/(b σ′) and |σ|, |σ′| ≤ `}.

Additionally, the start symbol S′ is expanded by rules of the form S′(X)→ SĚ(X) where
Ě is drawn arbitrarily from E ′. This construction ensures that the Ě’s of an LCFRS
derivation only contain equations whose node-class instantiations follow from the de-
scription sFD of a simulated LFG derivation, a necessary requirement to capture positive
constraints.

Given that the positive constraints are `-bounded, the description FD′ now provides
all the information necessary to determine whether or not a positive constraint in
sFD% is satisfied below the %-expanded nodes of an equivalence class of the simulated
derivations.20 Thus, only positive constraints that are not satisfied in the minimal model
of the defining statements of FD′ and are hence supposed to be satisfied higher up in
the simulated derivations require some special attention.

We augment the LCFRS predicate symbols with an additional component Č that
records the constraining equations (∗ σ) =c v and existential constraints (∗ σ) (|σ| ≤ `),
in the following abbreviated by (∗ σ)[=c v], that are supposed to be satisfied higher up
in the simulated derivations. For the terminal expansions and the start rules these com-
ponents are empty. Thus, these LCFRS rules have the form Aa

∅:∅(a)→ ε, Aε∅:∅(ε)→ ε,
and S′(X)→ SĚ:∅(X).

For an LFG rule sequence % = Γ1 → ψ1..Γ|Γ| → ψ|Γ| with instantiated class descrip-
tion sFD%, the LCFRS rules will be of the form

ΓĚ:Č(β1, ..,β|Γ|)→ Γ1
Ě1:Č1

(Y1
1, .., Y1

|Γ1|)..Γ
m
Ěm:Čm

(Ym
1 , .., Ym

|Γm|)

where the additional Č component is the smallest set satisfying the following
conditions:

(i) if (b σ)[=c v] is in sFD% but not satisfied in a minimal model of the defining
statements of FD′, then (∗ σ)[=c v] is included in Č,

20 Note that the Ě components also include reflexive equations of the form (∗ σ) = (∗ σ) whose class
instantiations follow from the sFD of the simulated derivations. This allows it to also account for
existential constraints whose satisfying feature paths do not arise from atomic-valued equations.

556

Wedekind and Kaplan Tractable Lexical-Functional Grammar

(ii) if (bj σ
′)[=c v] is in sFD% or (∗ σ′)[=c v] in Čj and (bj σ

′)[=c v] is not satisfied in a
minimal model of the defining statements of FD′, then Č includes (∗ σ)[=c v] with
FD′ ` (b σ)[=c v] ≡ (bj σ

′)[=c v] and |σ| ≤ `.

In this extended LCFRS construction, the unsatisfied constraints in sFD% and the
daughter Čj are propagated to the mother Č. Because the Č components of the start rules
are empty, all constraints in the lower Č components and instantiated class descriptions
sFD% must be satisfied in the simulated derivations.

Completeness and Coherence. The Completeness and Coherence Conditions are
the formal devices in LFG that enforce the subcategorization requirements of indi-
vidual predicates. The governable grammatical functions that can and must appear
in an f-structure are specified in its local semantic form, the single quoted values of
its PRED atttribute. We can take these requirements into account by interpreting the
subcategorization frame as a collection of existential constraints. For completeness, we
introduce a positive existential constraint (↑ G) for each function G that a semantic form
governs. For coherence, we pair with every assignment of a governable function G a
positive existential constraint that tests whether (↑ PRED) designates a semantic form
that subcategorizes for G. The result of these augmentations is a grammar that properly
enforces all subcategorization requirements.

Indexing of Semantic Forms. Semantic forms are also indexed or instantiated in
the sense that a new and distinct value is created to represent each semantic form as
it enters into a derivation (Kaplan and Bresnan 1982). This would result in a clash if
a description contains two instantiations ([n] σ) = s where s is a semantic form and
not a simple atomic value. We elaborate the conditions of the LCFRS construction to
ensure that this property of semantic forms is respected in all simulated derivations.
Specifically, we exclude an LCFRS rule if the combination of sFD% and Ěj hypotheses
that make up its justifying description would include two or more instances of the same
semantic form.

6. Practical Considerations

We have shown that for every k-bounded LFG G there is a weakly equivalent k-LCFRS
G′ and that the f-structures assigned by G can be recovered easily from the derivations
of a refinement of G′. We also know that the universal recognition problem for any
k-LCFRS G′ can be solved in time O(|G′| · nk·(r+1)) (Seki et al. 1991). The recognition
problem is tractable in the mathematical sense—polynomial in the length of the input
sentence—but the polynomial term may be dwarfed by the grammar constants. In this
formula, |G′| is the number of rules in G′, n is the length of the input string, r is the
rank (the maximum number of nonterminals (predicates) on the right-hand side of G′

rules), and the given k is the fan-out (the maximum arity). Thus the practical benefit
of recognizing a k-bounded LFG language with an equivalent LCFRS depends on the
fan-out and rank but also on the size of the LCFRS.

We can establish bounds on the parameters of the general complexity formula (|G′|,
k, r) as a function of the characteristic properties of natural language grammars.21 We

21 Without appealing to further linguistic restrictions, G′ can be exponentially larger than G (as indicated by
the fact that the universal recognition problem for k-bounded LFGs, with attributes drawn from an
unbounded set, is NP-complete). Thus, even though k-bounded LFGs are weakly equivalent to k-LCFRSs
and k-LCFRSs can be recognized in polynomial time, LCFRS recognition algorithms may, without further
restrictions, fail to be practical for equivalent k-bounded LFGs. (This situation is similar to that in

557

Computational Linguistics Volume 46, Number 3

first consider linguistically motivated grammars in the basic formalism we have defined
here and thereafter grammars used in the more flexible format that is typically used in
linguistic practice.

The translation of a given k-bounded LFG grammar G to an equivalent LCFRS G′ is
carried out in two phases, and each has an effect on the size of G′. In the first phase the
trivial ↑ = ↓ annotations are eliminated and in the second phase a collection of LCFRS
rules is created for each sequence of up to k rules of G\↑=↓.

The first phase, the elimination of trivial annotations from a basic k-bounded G,
can by itself result in a grammar G\↑=↓ that is much larger than G. The growth in the
number and length of the rules depends on the bound h on the height of functional
domains in G and the number of alternative rules, the degree of ambiguity, that expand
the categories that are trivially-annotated in G. From Definition 10 we know that the
size of the nonterminal category set |N| must be an upper bound for h, but that may
substantially overestimate what is needed for LCFRS translation of natural language
grammars. In linguistically motivated grammars the distribution of trivial-annotations
is regulated by the principles of X-bar theory and its structure–function mapping prin-
ciples (Bresnan 2001, Chapter 6; Dalrymple 2001, Chapter 4). In this (ε-free) framework
the components of an f-structure unit are introduced recursively by trivially-annotated
categories, and the height of a functional domain is effectively bounded by the number
of coheads that can associate to a single predicate, the number of discontinuous c-
structure phrases that can realize a particular function, and the number of different
grammatical functions that an individual predicate can govern. With g denoting the
maximum number of governable grammatical functions that can occur together and
c denoting the maximum number of cooccurring coheads plus 1 (accounting for the
lexical head), the maximum height is given by kg + c. Then, because any daughter
sequences must be promoted for any trivially annotated category in the worst case,
the size of G\↑=↓ cannot exceed |G|kg+c+1. (Increasing the exponent by one accounts
for the trivial-free rules obtained from sequences shorter than kg + c.)

The g, c, and k parameters are typically rather small. For instance, the lexicons
of the broad-coverage, commercial-grade Pargram grammars for English and German
(approximately 25,000 words each) have no word that subcategorizes for more than four
grammatical functions and very few words allow even that many (in English, only the
word bet).22 Thus, for these grammars g is 4.

The |G| parameter in the G\↑=↓ size formula anticipates that every rule of the LFG
grammar participates in the trivial elimination process, but this likely overstates what
is necessary to ensure that all zippers can be properly identified. We noted in relation

Generalized Phrase-Structure Grammar (GPSG) where a corresponding (seeming) recognition paradox is
also due to the effect of grammar size on recognition performance (see Ristad 1987, for details): Any
particular GPSG grammar can be converted into an equivalent context-free grammar, but recognition
with the equivalent grammar may be impractical because of its size.) And even with fixed bounds on the
height of a functional domain, the rank and the maximum number of trivially-annotated categories in a
rule, the number of attributes and values, and the length of the atomic-valued annotations, the k-LCFRS
G′ in principle can be astronomically larger than the k-bounded LFG G.

22 Kaplan and Wedekind (2019) observe that the schematic prescriptions of X-bar theory allow for arbitrary
repetitions of discontinuous branches with complement and cohead nodes that map to the same
f-structure and thus give rise to functional domains that appear to exceed any finite height bound and
equivalence classes that are not k-bounded. Linguists may not be aware that their succinct X-bar
grammars admit strings with unbounded derivations that are not accepted in the language, and that this
descriptive inadequacy may be accompanied with undesirable computational properties as we have
outlined in this article. Kaplan and Wedekind distill the formal issue down to a simple empirical question
about the magnitude of these two extragrammatical parameters, the cohead repetition limit and the
degree of discontinuity. This question has not yet been the focus of specific linguistic investigations.

558

Wedekind and Kaplan Tractable Lexical-Functional Grammar

to the recursive expansion of adjuncts (Section 5.4) that trivials that cannot affect the
equivalence classes of a derivation do not interfere with the LCFRS construction, and
therefore do not have to be removed. The recursive adjunct categories are a special case
of a more general class of categories that are inert with respect to zipper interactions.
A category is inert in this sense if the zippers within its expansions in all possible
derivations do not unify with the zippers outside. It is safe to protect from elimination
all trivial annotations attached to inert categories simply by replacing them with ↑ .= ↓.
Kaplan and Wedekind (2019) observe that internal adjuncts of discontinuous NPs are
another instance of inertness. Thus even certain function-assigned categories can be
inert and their function assignment (↑ F) = ↓ can therefore be replaced with a variant
annotation of the form (↑ F) .= ↓ that explicitly indicates that this function assignment
does not conceal zipper interactions. The effect of converting = to .

= on inert categories
is to break the chain of daughter-sequence promotions and to reduce, perhaps substan-
tially, the number of rules of G that actually contribute to the size of G\↑=↓.

The second phase of the LCFRS construction is the refinement of LCFRS predicates
by the elements of E that represent the possible combinations of atomic values. Here
we see that the potential growth is limited by the properties of linguistically motivated
feature systems. The attribute sequences σ in atomic-value annotations can be character-
ized more precisely as consisting of a sequence γ of zero or more grammatical function
attributes followed either by the PRED attribute or a sequence µ of one or more attributes
drawn from a set of morphosyntactic features. The morphosyntactic attributes do not
appear in reentrancies and so remain stable as reentrancies introduce variation in their
γ prefixes. Morphosyntactic attributes may therefore be ignored when determining the
length limit of attribute chains in E components. The parameter ` is thus the length
of the longest γ subsequence, and according to the Functional Locality Principle its
maximum value is 2. The γ attributes can be distinguished from the µ attributes as
those that appear only in reentrancies. But in theory and practice, the attributes in µ and
the atomic values are statically typed in feature declarations (King et al. 2005) so that
the set of values is partitioned across the direct morphosyntactic features (e.g., NUM),
and the direct features are partitioned across the grouping features (e.g., AGREEMENT).
Typically, the grouping features are merely for conceptual convenience, in which case
they do not by themselves give rise to an increase of the description space. It may also
be the case that different combinations of morphosyntactic features may be associated
with different grammatical functions: The feature NUM may be associated with SUBJ and
OBJ but not XCOMP while XCOMP but not the nominal functions may take PASSIVE. Thus
for linguistic grammars the atom-valued information space E is much more sparse than
it might be for an unregulated feature system, and the ` expansion factor has a tight
universal bound.

However, even for linguistically motivated feature systems, the second phase might
still result in a huge number of E refinements. This can arise, for example, if lexical
items are assigned alternative combinations of agreement features and if reentrancies
have the effect of manipulating their γ prefixes so that they propagate unpredictably
across the equivalence classes in derivations. But different kinds of reentrancies prop-
agate information in different ways and impose different requirements on the E rule
refinements that correctly simulate their operation. Reentrancies of the form (↓ G) = ↑
are the bottom–up counterpart of top–down function assignments. When they appear
in the annotations of a candidate rule sequence, an agreement feature matching G in a
daughter E component must be reflected (with G removed) in the mother component.
These lifting reentrancies require information to propagate bottom–up, but the degree
of expansion is strictly limited by the ` bound, just as for function assignments.

559

Computational Linguistics Volume 46, Number 3

Reentrancies in a second subclass introduce more feature variability and hence
larger E refinements. Reentrancies of the form (↑ G) = (↑ H), for example, result in
the replacement of the initial G by H in otherwise required elements of the mother
E component. The effect is still limited by the local annotations because it depends on
what other agreement features and function assignments are separately required by the
candidate rule sequence. It is also limited by the fact that the E components are restricted
to the morphosyntactic feature that can associate with both G and H functions.

The most harmful reentrancies, in terms of grammar expansion, are those of the form
(↓ G) = (↑ H) that specify, for example, the relationship of an XADJUNCT SUBJ to a matrix
function or when a long functional control equation (e.g., (↑ XCOMP SUBJ) = (↑ OBJ))
is reduced to a short reentrancy (↓ SUBJ) = (↑ OBJ). These propagate information
through candidate rule sequences without regard to other local properties and thus
must give rise to E components that are locally unconstrained. Of course, as just noted,
only morphosyntactic features common to both G and H must be considered, and this
removes many features from consideration in linguistic grammars where control typi-
cally ranges over nominal functions with common feature sets. This is not an accidental
property of control equations in linguistically motivated grammars; it was claimed as
a universal principle of language in the earliest formulations of LFG theory (Bresnan
1982). The Lexical Rule of Functional Control stipulates that lexical control equations
can only be of the form (↑ XCOMP SUBJ) = (↑ GF), where GF is one of SUBJ, OBJ, or OBJ2,
and the Constructional Rule of Functional Control provides for phrasal annotations
that pair the function assignment (↑ XADJUNCT) = ↓ with the short control reentrancy
(↓ SUBJ) = (↑ GF). These principles may gain their explanatory and descriptive power
because natural languages are organized to minimize the computational impact of these
most promiscuous reentrancies.

We then obtain a bound on the size of G′ for a linguistically motivated G as follows.
Because the rank of the LCFRS G′ is bounded by g + c and the LCFRS predicates for
the grammatical functions can at most be k-ary and the predicates for the coheads are
unary, the size bound on G\↑=↓ already accounts for rule sequences of length up to
k and therefore the number of E-unrefined skeleton LCFRS rules can also not exceed
|G|kg+c+1. With a denoting the maximum number of attested agreement/PRED feature
combinations, the size of G′ is bounded by ag+c+1|G|kg+c+1.

The broad-coverage grammars written by practicing linguists and grammar en-
gineers diverge from our basic formalism in two ways: They come equipped with
separate and quite extensive lexicons and they use single rules with regular right sides
to succinctly represent the many alternative daughter sequences of particular categories.
Obviously, LCFRS equivalents can be constructed for grammars in this format by ap-
plying a preprocessing step that converts them to the terminals and rules of the basic
formalism, but this initial expansion step may result in starting grammars for LCFRS
analysis that are already of impractical size.

It is not difficult to preserve the modularity of a separate lexicon and to insulate
the LCFRS construction from the sheer number of lexical entries. An entry associates a
word to a set of senses, each of which is a prelexical category/annotation pair. The naive
approach would create a new terminal and prelexical rule for each such word-sense
combination, but this does not take advantage of the fact that sense specifications are
shared by large subsets of the vocabulary. Almost all intransitive verbs, for example, are
marked with the same category and with annotations that differ only in the particular
relation (WALK vs. DIE) embedded in their PRED semantic forms. A simple technique
is to remove the specific relations from semantic forms, group the senses into classes
according to the categories and relation-abstracted annotations, let those abstracted

560

Wedekind and Kaplan Tractable Lexical-Functional Grammar

senses enter as terminals into the LCFRS construction, and keep for later use a separate
lexical table that maintains the association between semantic relations and abstracted
senses. LCFRS size is then a function of the relatively small number of abstract-sense
classes, not the overall size of the vocabulary.

It remains to address the second growth factor in the LCFRS construction for broad-
coverage LFG grammars, the conversion from the regular right side format of typical
LFG rules (as compiled into finite-state machines) and the linearized representation
of the basic rule format that we have exploited in our theoretical approach to LCFRS
construction. As an example, the finite-state encoding of the English progressive VP
rule before trivial elimination has 15 states and 31 transitions, defining 324 linear paths
with an average length of 11. Trivial elimination can be carried out on the finite-state
representation, and this produces a larger but still quite manageable finite-state machine
with 52 states and 96 transitions. But the number of paths encoded in that machine
is substantially greater, 110,000, and that would be the size of the equivalent set of
linearized, basic rules that would enter into the equivalence-class construction. Thus,
linearization of regular expression right sides is theoretically possible, as described
in Section 5.4, but the resulting expansion in the number of basic rules, essentially
a conversion to disjunctive normal form, may then become the major challenge to
practicality.

A potential solution is to perform some or all of the equivalence class calculations
directly on the transitions of the finite-state machine before enumerating all of its paths.
It is easy to extract all the transition labels (categories and annotations) that assign a
particular grammatical function and to test them for mutual satisfiability. Finite-state
operations can be applied to prune the machine of paths that contain inconsistent
combinations, and the remaining transitions can be reorganized to bring together the
labels of consistent combinations. This changes the sequential order of the categories,
but in exactly the way this is done in the LCFRS rule construction. The difference is
that a single adjustment might produce a class representation that is common to a
large number of basic rules. The machine that emerges from this process would be a
compact representation, in finite-state form, of all and only the LCFRS rules that meet
the conditions of Definition 23; no unsatisfactory paths would remain in the machine.

In the worst case, where equivalent categories are randomly distributed throughout
the machine, the machine will incrementally grow to approximate a disjunctive set
of independent rule sequences. But experience with XLE and the Pargram grammars
suggests that equivalent categories for natural language grammars are distributed more
systematically. The algorithms in XLE that are key to its high-speed performance are
optimized for the situation where categorial annotations are relatively independent of
the annotations on distant categories, that annotations interact in a mostly context-free-
like way (Maxwell and Kaplan 1996). The incremental enumeration of equivalence
classes in a finite-state setting should also benefit implicitly from this property. XLE
operates directly on the finite-state machine representation of the grammar, interpreting
on the fly the alternative transitions leaving a state. If an LCFRS parsing algorithm can
be augmented to also operate in this way, it may never be necessary to read out the full
set of paths.

Because of the complexity of the regular expressions and the massive use of dis-
junctions, |G′| can still be impractically large. Thus, for realistic grammars it may be
worth applying an alternative strategy to parsing that avoids constructing the LCFRS
for all rules and features of G and instead builds an LCFRS at parse-time only for a
given input. This strategy relies on the fact that for many grammar formalisms, such as
context-free grammars, the result of the intersection of a language L(G) with a singleton

561

Computational Linguistics Volume 46, Number 3

string-set {s} is describable as a specialization Gs of G that assigns to s effectively the
same parses as G would assign (Bar-Hillel et al. 1961; Lang 1994). The parsing problem
is divided into four steps. In the first step, the LFG G is specialized to an LFG whose
context-free backbone language consists only of the given input string s (if s belongs
to the backbone language of G), as Lang and others have pointed out. This can be
done in cubic time by any number of context-free parsing algorithms, modified simply
to record the annotations associated with the nonterminal categories. The size of the
resulting grammar Gs is proportional to |s|3, and Gs is ks-bounded if G is k-bounded, for
ks ≤ k. The other parameters affecting LCFRS size and parsing complexity, gs, cs, and
as), are also typically much smaller than those for G (for example, gs is less than 4 for
English sentences that do not contain bet). In the second step, Gs is translated into the
equivalent but correspondingly small LCFRS G′s just as described earlier. In the third
step (recognition) an LCFRS recognition algorithm determines whether there is at least
one parse that satisfies the restrictions defined by the original annotations. The effect
is that s ∈ L(G) iff s ∈ L(G′s). In the last step (enumeration) f-structures from alternative
parses can be produced one by one. This strategy has the practical advantage that the
LCFRS translation does not involve rules or features (including predicates and their
subcategorization frames) that are not relevant to the given input. Notice that the rules
for the specialized grammar are no longer in regular-expression/finite-state machine
format, and sophisticated algorithms that operate on finite-state machine encodings of
LCFRS rules will provide little computational benefit.

As mentioned, parsing and generation systems—for example, the XLE system—
have been developed that are practical for broad-coverage grammars and naturally
occurring sentences (Crouch et al. 2008). XLE is based on the lazy contexted constraint
satisfaction method developed by Maxwell and Kaplan (1991, 1996) that is optimized
for context-free structures in which disjunctions arising from words and phrases that
are distant from each other in the string do not interact. This is because XLE multiplies
disjunctions at context-free constituents only if needed. Moreover, XLE does not require
the regular right sides to be linearized. These features of the XLE parsing algorithm,
which have been proven extremely effective, suggest a third, presumably more efficient
parsing strategy.

If the core XLE strategy is modified so that it takes account of the zippers (of the
reentrancy-free kernel) before the contexted constraint satisfaction algorithm is applied
for testing clash-freeness, the algorithm would also take advantage of the multiple
context-freeness (of natural languages). Then, for k-bounded LFGs the modified algo-
rithm would also perform well for discontinuous constructions, and only the relatively
rare multiply embedded control constructions could force the algorithm to expand
into DNF the specifications of the broader scopes associated with the controller and
controllees.

7. Concluding Remarks

The k-bounded LFG grammars form a decidable proper subclass of the LFG formalism,
restricted both in notation and in the properties of their derivations. We have suggested
that the notation for annotating individual c-structure categories is still linguistically
suitable in that it allows for function assignments, trivial annotations to identify heads
and coheads, long (but respecting Functional Locality) reentrancies for control, height-
bounded functional domains, and value specifications for feature instantiation and
agreement. Further, the derivational conditions of Definitions 13 and 14 provide a
technical characterization of the informal linguistic notion that reentrancies in general

562

Wedekind and Kaplan Tractable Lexical-Functional Grammar

are not constructive. Whereas off-line parsability ensures only that the parsing problem
is decidable, the restrictions developed in this article are sufficient for the decidabil-
ity of the emptiness and generation problems as well. We demonstrated that these
requirements make possible the translation into equivalent LCFRSs, and we explored
the effectiveness of some alternative strategies for LFG parsing.

We have focused in this article on the formal devices proposed by Kaplan and
Bresnan (1982) and still in common use. Modern LFG, however, includes a number
of more sophisticated mechanisms that were later on woven into the theory. Among
these are devices for the f-structure characterization of long distance dependencies and
coordination: functional uncertainty (Kaplan and Zaenen 1989; Kaplan and Maxwell
1988a), set distribution for coordination, and the interaction of uncertainty and set
distribution (Kaplan and Maxwell 1988b); and devices whose evaluation depends on
properties of the c-structure to f-structure correspondence, namely, functional categories
and extended heads (Zaenen and Kaplan 1995; Kaplan and Maxwell 1996) and func-
tional precedence (Bresnan 1995; Zaenen and Kaplan 1995).

We know that some of these devices are needed for the analysis of phenomena that
can only be modeled by tractable extensions of LCFRS but not LCFRS per se (Becker
et al. 1992; Boullier 1999; Kallmeyer 2010a). Boullier (1999) has demonstrated that
range concatenation grammars (RCGs) can handle long-distance scrambling (in
German) and Kallmeyer (2010a) that gapping in coordinated structures can be mod-
eled by literal movement grammars of constant non-linearity. We thus conjecture
that the LFG devices used for describing these phenomena can—at least to the extent
needed in order to provide linguistically motivated analyses—be captured in these
extensions of LCFRS. Some evidence for this conjecture is provided by Rambow
(1997), who sketches how to model functional uncertainty in unordered vector
grammars with dominance links, a TAG related (tractable) framework. Peled and
Wintner (2015) describe a unification-based formalisms that is equivalent to RCG.
Although this formalism differs considerably from the more elaborate versions of the
LFG formalism that include a number of separate but interacting mechanisms, their
restrictions might still help in modeling these LFG mechanisms in tractable extensions
of LCFRS.

The LFG formalism has proven to be rich enough in its descriptive power to
enable concise characterizations of complex syntactic dependencies in languages of
many different types. The formalism is also rich enough so that many computational
problems are undecidable and others are intractable. The question we have addressed
here is whether there are limitations in the notations or its interpretation that eliminate
the computational excesses of the formalism while preserving its descriptive utility,
and perhaps even provide a deeper computational explanation for some principles of
linguistic organization. Taking the LCFRS formalism and the class of multiple context-
free languages as the touchstone of our investigation has enabled us to specify a small
number of conditions that are sufficient for tractability and may still be linguistically
suitable. One consequence is that the methods and formal results pertaining to multiple
context-free languages may lead directly to a better understanding of other aspects of
LFG and perhaps other unification-based formalisms. This may also lead to incremental
improvements in existing LFG systems, such as XLE. At a higher level, the interplay be-
tween the descriptive succinctness of the LFG formalism and its mildly context-sensitive
equivalents may help to define a tighter formal envelope around the class of natural
languages.

563

Computational Linguistics Volume 46, Number 3

Appendix A. The Elimination of Trivial Annotations

Given the height bound of Definition 10, we can remove all trivial annotations. For
the elimination we assume that any occurrence of ↓ in the annotated reentrancies
and atomic-valued annotations of a nonterminal carrying ↑ = ↓ is replaced by ↑. This
replacement is legitimate because it is equivalence-preserving and the resulting annota-
tions are admissible.

Lemma 1
For any suitable LFG G we can construct a suitable LFG without ↑ = ↓ annotations, denoted
by G\↑=↓, such that ∆G = ∆G\↑=↓ .

Proof
Let G = (N, T, S, R) be a suitable LFG grammar. Without loss of generality assume that
the reentrancies and atomic-valued annotations of nonterminals annotated with ↑ = ↓
do not contain ↓. Now let R be the smallest set that includes R and that is closed under
the following rule: if A→ φ(B, D)ψ ∈ R, with ↑ = ↓ ∈ D, and B→ (X1, D1)ω ∈ R, then
A→ φ(X1, D1 ∪ (D\{↑ = ↓}))ωψ ∈ R. Define R′ as the subset of R that only includes
rules A→ φ where for any (B, D) in φ with B ∈ N, ↑ = ↓ 6∈ D. By the condition of Defi-
nition 10, R′ and R are finite. Set G\↑=↓ = (N, T, S, R′). Obviously, G\↑=↓ is suitable. Then
∆G ⊆ ∆G\↑=↓ by a simple bottom–up induction on the derivations in G and ∆G\↑=↓ ⊆ ∆G
because for any rule r = A→ (X1, D1)..(Xm, Dm) in R′ there is by construction of R′ a
corresponding derivation of X1..Xm from A in G that yields the same f-description as r
if every instantiated trivial annotation n = nj is removed and the instantiating daughter
node nj is eliminated by substitution [nj/n]. �

Appendix B. Suitable LFGs with (Finitely) Bounded Reentrancy-Free Kernel

A suitable LFG G has a bounded reentrancy-free kernel if there is a k such that for
every derivation (c,ρ) of a terminal string from S with f-description FD and clash-free
FD\R in G\↑=↓, |{n′ | FD\R ` n = n′}| ≤ k, for any node n of c. The decidability proof for
this boundedness problem is (similar to that of the k-boundedness problem presented
in Section 4.1) based on an enumeration of all derivations of G\↑=↓ up to a certain depth.
Here, however, we attempt to find a derivation that can be “pumped”, that is, one that
can be used to show that the equivalence classes are not finitely bounded, and not just
a derivation with an equivalence class greater than some given k. Before we present the
proof we introduce the pumping operation.

Let (c,ρ) be a derivation and [n̂] and [nl] be two node classes where at least one
node in [n̂] dominates a node in [nl]. Suppose that h assigns to [n̂] and [nl] the same set
of atomic-valued schemata and there is a mapping ḡ from [nl] to [n̂] such that for all
ni in [nl], ḡ(ni) and ni are licensed by the same rule. Now let δ be a function that maps
the nodes in [nl] to their dominating nodes in [n̂]. Then we can pump the derivation if
there is a nonempty subset V of [nl], the image of V under ḡ (ḡ(V)) is smaller than V,
and the nodes in V are dominated by the nodes in the image of V under ḡ (ḡ(V) = δ(V)).
This situation is illustrated in the left-hand derivation tree of Figure 11. For defining the
pumped derivation, we make use of the Repl operator specified in Section 4.1. Figure 11
illustrates on the right the result of the pumping process for the derivation tree on the
left. The pumping operation (pu) is formally defined as follows.

564

Wedekind and Kaplan Tractable Lexical-Functional Grammar

Figure 11
Illustration of the pumping process. In the derivation tree on the left-hand side, the node set
{n1, n2, n3} corresponds to the class [nl] and the set comprising the three upper nodes
corresponds to [n̂]. The dotted lines indicate dominance and the solid arrows the ḡ mapping.
Suppose that h([nl]) = h([n̂]) and ρḡ(ni) = ρni , for ni ∈ [nl]. Obviously, for V = [nl], |ḡ(V)| < |V|
and ḡ(V) = δ(V). Then pumping is performed by expanding n1, n2, and n3 with distinct copies of
the subderivations dominated by ḡ(n1), ḡ(n2), and ḡ(n3), respectively. The result is shown on the
right-hand side (with the ḡ mapping still indicated).

Definition 26
Let (c,ρ) be a derivation in a suitable LFG grammar G\↑=↓. For any pair of classes [n̂]
and [nl] satisfying the conditions

(i) h([n̂]) = h([nl]),

(ii) there is a function ḡ from [nl] to [n̂] such that

(a) ρg(ni) = ρni , for each ni ∈ [nl], and

(b) there is a nonempty subset V of [nl] such that |ḡ(V)| < |V| and ḡ(V) = δ(V),23

we define the pump operation pu by

pu(c,ρ)([n̂], [nl]) = Replḡ
(c,ρ)([n

l]).

For any given derivation (c,ρ) with two equivalence classes [nl] and [n̂] satisfying
the conditions of Definition 26, pu(c,ρ)([n̂], [nl]) is also a derivation of G\↑=↓ that by con-
struction still gives rise to the equivalence classes [nl] and [n̂]. Now let ḡ be the mapping
from [nl] to [n̂] as defined for the original derivation (shown in the right derivation
of Figure 11). Because the original derivation satisfied ρḡ(ni) = ρni , for each ni ∈ [nl],
and we expanded every ni by the subderivation rooted at ḡ(ni), the new derivation
must also satisfy ρḡ(ni) = ρni . Hence also h([nl]) = h([n̂]) and, as a consequence, the f-
description that G’s reentrancy-free kernel provides for this derivation is clash-free.
(Note that this would not be guaranteed if ḡ were not total.) Thus, the classes [nl] and

23 Note that the specification of V implies that at least one ḡ value branches into two or more nodes of V.

565

Computational Linguistics Volume 46, Number 3

[n̂] of pu(c,ρ)([n̂], [nl]) satisfy the conditions of Definition 26 and the pumping operation
can be applied again.

Because the renamed ni from V of the pushed down copies of the ḡ value derivations
must be equivalent (n2

n1 , n3
n1 , n1

n2 , and n1
n3 in the example of Figure 11) and ḡ is required

to satisfy |ḡ(V)| < |V|, the number of these equivalent copies must be greater than |V|.
Thus, by further pumping, the number of equivalent nodes that trace back to V through
renaming must stepwise grow. Under these conditions the reentrancy-free kernel of G
is not finitely bounded.

The decidability for finite boundedness results from a pumping lemma whose proof
is reminiscent of the proof of the pumping lemma for context-free languages in that it
relies on the branching of c-structure nodes in derivations that are sufficiently deep. We
ensure with provisions specific to our setting that c-structure branching also gives rise
to growth in the size of equivalence classes, as in Definition 26. The pumping lemma
states that a derivation can be pumped if there is a node equivalence class whose size
exceeds some fixed finite bound (the pumping size for the reentrancy-free kernel of
G\↑=↓). This bound depends on the maximum number of equivalent daughters that
any rule of G\↑=↓ can derive. We will refer to this maximum as the maximum functional
branching factor b of G\↑=↓. Formally, b is defined as follows. We first define for each
rule r = A→ ψ in G\↑=↓ its maximum functional branching factor, denoted by br. Let a
be a constant and β be a sequence of pairwise distinct constants of length |ψ|, each of
them distinct from a, then

br = max{|[βi]| | i = 1, .., |ψ| and [βi] = {βj | Inst(r, (a,β))\R ` βi = βj}}.

Then the maximum functional branching factor of the grammar is the (non-zero) max-
imum of the branching factors br of all rules r of G\↑=↓: b = max({br | r ∈ R} ∪ {1}). In
the proof of the following pumping lemma, the image of a subset of nonterminal nodes
n of c under ρ is denoted by ρ(n).

Lemma 9
The reentrancy-free kernel of a suitable LFG G is unbounded if and only if there is a derivation
(c,ρ) with clash-free FD\R in G\↑=↓ and |[n]| > bd, with d =

(∑
P∈Pow+(R)

|Pow+(P)|
)
· |E |, for at

least one node n of c.

Proof
Let (c,ρ) be a derivation in G\↑=↓ with clash-free FD\R and suppose that |[n]| > bd for
some node n of c. Let root = n̄0..n̄s = n be the path to n with n̄i immediately dominating
n̄i+1. For each i = 0, .., s− 1, let n̄i be the nodes of [n̄i] that dominate the nodes in [n̄s].
For s, set n̄s = [n̄s]. Now let f be a function that assigns to each [n̄j], j = 0, .., s, the triple
(ρ([n̄j]),ρ(n̄j), h([n̄j])) consisting of the rules that license the nodes in [n̄j], the subset
of those rules that license the nodes of [n̄j] that dominate the nodes in [n̄s], and the de-
scription assigned to [n̄j]. Since |[n̄s]| > bd, there must be nodes n̄i1 , .., n̄iq = n̄s on the path
n̄0..n̄s with q > d and |n̄ij | < |n̄ij+1 |, for j = 1, .., q− 1. Because, for each f ([n̄ij]) = (P, Q, E),
j = 1, .., q, P is a nonempty subset of R, Q is a nonempty subset of P, and E is an element
of E the number of distinct f values is bounded by d. Thus, if q > d, there must be two
classes [n̄ik], [n̄il] that (with V = n̄il) satisfy the conditions of Definition 26 �

566

Wedekind and Kaplan Tractable Lexical-Functional Grammar

Given the proofs of the pumping lemma and the decidability of the k-boundedness
(Lemma 3), it is now easy to see that finite boundedness can be determined by inspect-
ing all derivations of (c-structure) depth less than or equal to 2d + |Pow+(R)× E |. We
show here by contradiction that it can be decided whether there is a derivation in G\↑=↓

that satisfies the conditions of Definition 26 by inspecting G\↑=↓’s derivations only up
to depth 2d− 1. The rest of the proof (that justifies |Pow+(R)× E |+ 1) is similar to the
proof of Lemma 3. Thus suppose there were a derivation (c,ρ) in G\↑=↓ with clash-free
FD\R with a path root = n̄0..n̄s with s ≥ 2d and the pair [n̄l], [n̄s], l < s, but no higher pair
would satisfy the conditions of Definition 26. Because s ≥ 2d, there must be a pair of
classes [n̄i], [n̄j], i < j < s such that f ([n̄i]) = f ([n̄j]) and either l ≤ i or l ≥ j. If this pair
does not allow pumping then |n̄i| = |n̄j| and there must be a g from [n̄i] to [n̄j] that
includes (ḡ|n̄j)−1 and allows it to shrink the derivation. Shrinking then lifts the pair of
classes satisfying the conditions of Definition 26, which leads to a contradiction with
our assumption.

If the reentrancy-free kernel of G\↑=↓ is finitely bounded then the k bound is the
maximum size of the equivalence classes of all these derivations.

Lemma 10
For any suitable LFG G it is decidable whether there is a k such that for every deriva-
tion (c,ρ) of a terminal string from S with f-description FD and clash-free FD\R in G\↑=↓,
|{n′ | FD\R ` n = n′}| ≤ k, for any node n of c.

Acknowledgments
The authors would like to thank the three
anonymous reviewers for their helpful
suggestions and comments on earlier drafts
of this article.

References
Bar-Hillel, Yehoshua, Micha Perlis, and

Eliahu Shamir. 1961. On formal properties
of simple phrase structure grammars.
Zeitschrift für Phonetik, Sprachwissenschaft
und Kommunikationsforschung, 14, 143–172.

Becker, Tilman, Owen Rambow, Michael Niv.
1992. The derivational power of formal
systems, or scrambling is beyond LCFRS.
Technical report IRCS 92-38, Institute for
Research in Cognitive Science, University
of Pennsylvania, Philadelphia, PA.

Berwick, Robert C. 1982. Computational
complexity and LexicaI-Functional
Grammar. American Journal of
Computational Linguistics, 8(3–4):97–109.

Blackburn, Patrick and Edith Spaan. 1993.
Decidability and undecidability in
stand-alone feature logics. In Proceedings of
the 6th Conference of the European Chapter of
the Association for Computational Linguistics,
pages 30–36, Utrecht.

Boullier, Pierre. 1999. Chinese numbers, mix,
scrambling, and range concatenation
grammars. Proceedings of the 9th Conference

of the European Chapter of the Association for
Computational Linguistics, pages 53–60,
Bergen.

Boullier, Pierre. 2000. Range concatenation
grammars. In Proceedings of the 6th
International Workshop on Parsing
Technologies, pages 53–64, Trento.

Bresnan, Joan. 1982. Control and
complementation. In J. Bresnan, editor,
The Mental Representation of Grammatical
Relations. MIT Press, Cambridge, MA,
pages 282–390.

Bresnan, Joan. 1995. Linear order, syntactic
rank, and empty categories: On weak
crossover. In M. Dalrymple, R. M. Kaplan,
J. T. Maxwell III, and A. Zaenen, editors,
Formal Issues in Lexical-Functional Grammar.
CSLI Publications, Stanford, CA,
pages 241–274.

Bresnan, Joan. 2001. Lexical-Functional Syntax.
Blackwell Publishers, Oxford.

Bresnan, Joan, Ronald M. Kaplan, Stanley
Peters, and Annie Zaenen. 1982.
Cross-serial dependencies in Dutch.
Linguistic Inquiry, 13(4):613–635.

Crouch, Richard, Mary Dalrymple, Ronald
M. Kaplan, Tracy Holloway King, John T.
Maxwell III, and Paula Newman. 2008.
XLE documentation. Technical report, Palo
Alto Research Center, Palo Alto, CA.
Available at http://www2.parc.com/isl/
groups/nltt/xle/doc/xle_toc.html.

567

http://www2.parc.com/isl/groups/nltt/xle/doc/xle_toc.html
http://www2.parc.com/isl/groups/nltt/xle/doc/xle_toc.html

Computational Linguistics Volume 46, Number 3

Dalrymple, Mary. 2001. Lexical Functional
Grammar. Academic Press, New York, NY.

Dalrymple, Mary, Ronald M. Kaplan, John T.
Maxwell III, and Annie Zaenen, editors.
1995a. Formal Issues in Lexical-Functional
Grammar. CSLI Publications,
Stanford, CA.

Dalrymple, Mary, Ronald M. Kaplan, John T.
Maxwell III, and Annie Zaenen. 1995b.
Non-local dependencies. In M. Dalrymple,
R. M. Kaplan, J. T. Maxwell III, and A.
Zaenen, editors, Formal Issues in
Lexical-Functional Grammar. CSLI
Publications, Stanford, CA, pages 131–135.

Dalrymple, Mary, Ronald M. Kaplan, and
Tracy Holloway King. 2015. Economy of
expression as a principle of syntax. Journal
of Language Modelling, 3(2):377–412.

Feinstein, Daniel and Shuly Wintner. 2008.
Highly constrained unification grammars.
Journal of Logic, Language, and Information,
17(3):345–381.

Jaeger, Efrat, Nissim Francez, and Shuly
Wintner. 2005. Unification grammars and
off-line parsability. Journal of Logic,
Language, and Information, 14(2):199–234.

Johnson, Mark. 1988. Attribute–Value Logic
and the Theory of Grammar. CSLI
Publications, Stanford, CA.

Joshi, Aravind K. 1985. Tree Adjoining
Grammars: How much context-sensitivity
is required to provide reasonable
structural descriptions? In D. R. Dowty, L.
Karttunen, and A. M. Zwicky, editors,
Natural Language Parsing: Theoretical,
Computational, and Psychological
Perspectives. Cambridge University Press,
New York, NY, pages 206–250.

Kallmeyer, Laura. 2010a. On mildly
context-sensitive non-linear rewriting.
Research on Language and Computation,
8(4):341–363.

Kallmeyer, Laura. 2010b. Parsing Beyond
Context-Free Grammars. Springer, Berlin,
Heidelberg.

Kallmeyer, Laura. 2013. Linear context-free
rewriting systems. Language and Linguistics
Compass, 7(1):22–38.

Kaplan, Ronald M. 1995. The formal
architecture of Lexical-Functional
Grammar. In M. Dalrymple, R. M. Kaplan,
J. T. Maxwell III, and A. Zaenen, editors,
Formal Issues in Lexical-Functional Grammar.
Stanford, CA, pages 7–27.

Kaplan, Ronald M., and J. Bresnan. 1982.
Lexical-Functional Grammar: A formal
system for grammatical representation. In
J. Bresnan, editor, The Mental Representation

of Grammatical Relations. MIT Press,
Cambridge, MA, pages 173–281.

Kaplan, Ronald M. and John T. Maxwell III.
1988a. An algorithm for functional
uncertainty. In Proceedings of the 12th
International Conference on Computational
Linguistics, pages 297–302, Budapest.

Kaplan, Ronald M. and John T. Maxwell III.
1988b. Constituent coordination in
Lexical-Functional Grammar. In
Proceedings of the 12th International
Conference on Computational Linguistics,
pages 303–305, Budapest.

Kaplan, Ronald M. and John T. Maxwell III.
1996. LFG grammar writer’s workbench.
Technical report, Xerox Palo Alto Research
Center, Palo Alto, CA. Available at
ftp://ftp.parc.xerox.com/pub/lfg/
lfgmanual.ps.

Kaplan, Ronald M. and Jürgen Wedekind.
2019. Tractability and discontinuity. In
Proceedings of the International
Lexical-Functional Grammar Conference 2019,
pages 130–148, CSLI Publications,
Stanford, CA.

Kaplan, Ronald M. and Annie Zaenen. 1989.
Long-distance dependencies, constituent
structure, and functional uncertainty. In
M. Baltin and A. Kroch, editors, Alternative
Conceptions of Phrase Structure. Chicago
University Press, Chicago, IL, pages 17–42.

King, Tracy Holloway, Martin Forst, Jonas
Kuhn, and Miriam Butt. 2005. The feature
space in parallel grammar writing.
Research on Language and Computation,
3(2–3):139–163.

Lang, Bernard. 1994. Recognition can be
harder than parsing. Computational
Intelligence, 10(4):486–494.

Maxwell III, John T. and Ronald M. Kaplan.
1991. A method for disjunctive constraint
satisfaction. In M. Tomita, editor, Current
Issues in Parsing Technology. Kluwer,
Dordrecht, pages 173–190.

Maxwell III, John T. and Ronald M. Kaplan.
1996. Unification-based parsers that
automatically take advantage of
context-freeness. In Proceedings of the
International Lexical-Functional Grammar
Conference 1996, CSLI Publications,
Stanford, CA.

Nelson, Greg and Derek C. Oppen. 1980. Fast
decision procedures based on congruence
closure. Journal of the ACM, 27(2):356–364.

Nishino, Tetsuro. 1991. Mathematical
analysis of Lexical-Functional Grammars.
Language Research, 27(1):119–141.

568

ftp://ftp.parc.xerox.com/pub/lfg/lfgmanual.ps
ftp://ftp.parc.xerox.com/pub/lfg/lfgmanual.ps

Wedekind and Kaplan Tractable Lexical-Functional Grammar

Peled, Hadas and Shuly Wintner. 2015.
Polynomially parsable unification
grammars. Journal of Logic and Computation,
25(5):1167–1202.

Rambow, Owen. 1997. A polynomial model
for unrestricted functional uncertainty.
In Proceedings of the 5th Meeting on
Mathematics of Language, pages 138–145,
Schloß Dagstuhl.

Ristad, Eric S. 1987. GPSG-recognition is
NP-hard. Linguistic Inquiry, 18(3):530–536.

Roach, Kelly. 1983. LFG languages over a
one-letter alphabet. Manuscript, Xerox
PARC, Palo Alto, CA.

Seki, Hiroyuki, Takashi Matsumura,
Mamoru Fujii, and Tadao Kasami. 1991.
On multiple context-free grammars.
Theoretical Computer Science, 88(2):191–229.

Seki, Hiroyuki, Ryuichi Nakanishi, Yuichi
Kaji, Sachiko Ando, and Tadao Kasami.
1993. Parallel multiple context-free
grammars, finite-state translation systems,
and polynomial-time recognizable
subclasses of Lexical-Functional
Grammars. In Proceedings of the 31st Annual
Meeting of the Association for Computational
Linguistics, pages 130–139, Columbus, OH.

Statman, Richard. 1977. Herbrand’s theorem
and Gentzen’s notion of a direct proof.
In Jon Barwise, editor, Handbook of
Mathematical Logic. North-Holland,
Amsterdam, pages 897–912.

Vijay-Shanker, K., David J. Weir, and
Aravind K. Joshi. 1987. Characterizing
structural descriptions produced by
various grammatical formalisms. In
Proceedings of the 25th Annual Meeting of the
Association for Computational Linguistics,
pages 104–111, Stanford, CA.

Wedekind, Jürgen. 1999. Semantic-driven
generation with LFG- and PATR-style
grammars. Computational Linguistics,
25(2):277–281.

Wedekind, Jürgen. 2014. On the universal
generation problem for unification
grammars. Computational Linguistics,
40(3):533–538.

Wedekind, Jürgen and Ronald M. Kaplan.
2012. LFG generation by grammar
specialization. Computational Linguistics,
38(4):867–915.

Weir, David J. 1988. Characterizing mildly
context-sensitive grammar formalisms.
Ph.D. thesis, University of Pennsylvania,
Philadelphia, PA.

Zaenen, Annie and Ronald M. Kaplan. 1995.
Formal devices for linguistic
generalizations: West Germanic word
order in LFG. In M. Dalrymple, R. M.
Kaplan, J. T. Maxwell III, and A. Zaenen,
editors, Formal Issues in Lexical-Functional
Grammar. CSLI Publications, Stanford, CA,
pages 215–239.

569

570

	Introduction
	Preliminaries
	Linguistically Motivated Annotations and Finite-Copying LFGs
	Linguistically Motivated Annotations
	Undecidable Problems for Suitably Annotated LFGs
	Finite-Copying LFGs

	k-Bounded LFG Grammars
	The k-Boundedness of the Reentrancy-Free Kernel
	Nonconstructive Reentrancies

	k-Bounded LFGs and k-LCFRSs
	Linear Context-Free Rewriting Systems (LCFRSs)
	Weak Equivalence of k-Bounded LFGs and k-LCFRSs
	The Construction of Strongly Equivalent LCFRSs
	Other Descriptive Devices

	Practical Considerations
	Concluding Remarks

