
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 1–7
Seattle, USA, July5 - 10, 2020. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17

1

A Transformer-based joint-encoding for Emotion Recognition and
Sentiment Analysis
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Abstract

Understanding expressed sentiment and emo-
tions are two crucial factors in human mul-
timodal language. This paper describes a
Transformer-based joint-encoding (TBJE) for
the task of Emotion Recognition and Senti-
ment Analysis. In addition to use the Trans-
former architecture, our approach relies on a
modular co-attention and a glimpse layer to
jointly encode one or more modalities. The
proposed solution has also been submitted
to the ACL20: Second Grand-Challenge on
Multimodal Language to be evaluated on the
CMU-MOSEI dataset. The code to replicate
the presented experiments is open-source 1.

1 Introduction

Predicting affective states from multimedia is a
challenging task. Emotion recognition task has
existed working on different types of signals,
typically audio, video and text. Deep Learning
techniques allow the development of novel
paradigms to use these different signals in one
model to leverage joint information extraction
from different sources. This paper aims to bring a
solution based on ideas taken from Machine Trans-
lation (Transformers, Vaswani et al. (2017)) and
Visual Question Answering (Modular co-attention,
Yu et al. (2019)). Our contribution is not only
very computationally efficient, it is also a viable
solution for Sentiment Analysis and Emotion
Recognition. Our results can compare with, and
sometimes surpass, the current state-of-the-art for
both tasks on the CMU-MOSEI dataset (Zadeh
et al., 2018b).

This paper is structured as follows: first, in sec-
tion 2, we quickly go over the related work that
have been evaluated on the MOSEI dataset, we

1https://github.com/jbdel/MOSEI_UMONS

then proceed to describe our model in Section 3,
we then explain how we extract our modality fea-
tures from raw videos in Section 4 and finally, we
present the dataset used for our experiments and
their respective results in section 5 and 6.

2 Related work

Over the years, many creative solutions have been
proposed by the research community in the field of
Sentiment Analysis and Emotion Recognition. In
this section, we proceed to describe different mod-
els that have been evaluated on the CMU-MOSEI
dataset. To the best of our knowledge, none of
these ideas uses a Tansformer-based solution.

The Memory Fusion Network (MFN, Zadeh
et al. (2018a)) synchronizes multimodal sequences
using a multi-view gated memory that stores
intraview and cross-view interactions through
time.

Graph-MFN (Zadeh et al., 2018b) consists of a
Dynamic Fusion Graph (DFG) built upon MFN.
DFG is a fusion technique that tackles the nature
of cross-modal dynamics in multimodal language.
The fusion is a network that learns to models the
n-modal interactions and can dynamically alter its
structure to choose the proper fusion graph based
on the importance of each n-modal dynamics
during inference.

Sahay et al. (2018) use Tensor Fusion Network
(TFN), i.e. an outer product of the modalities.
This operation can be performed either on a whole
sequence or frame by frame. The first one lead
to an exponential increase of the feature space
when modalities are added that is computationally
ex-pensive. The second approach was thus
preferred. They showed an improvement over an

https://github.com/jbdel/MOSEI_UMONS
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early fusion baseline.

Recently, Shenoy and Sardana (2020) pro-
pose a solution based on a context-aware RNN,
Multilogue-Net, for Multi-modal Emotion Detec-
tion and Sentiment Analysis in conversation.

3 Model

This section aims to describe the two model
variants evaluated in our experiment: a monomodal
variant and a multimodal variant. The monomodal
variant is used to classify emotions and sentiments
based solely on L (Linguistic), on V (Visual) or on
A (Acoustic). The multimodal version is used for
any combination of modalities.

Our model is based on the Transformer model
(Vaswani et al., 2017), a new encoding architecture
that fully eschews recurrence for sequence
encoding and instead relies entirely on an attention
mechanism and Feed-Forward Neural Networks
(FFN) to draw global dependencies between
input and output. The Transformer allows for
significantly more parallelization compared to the
Recurrent Neural Network (RNN) that generates
a sequence of hidden states ht, as a function of
the previous hidden state ht−1 and the input for
position t.

3.1 Monomodal Transformer Encoding

The monomodal encoder is composed of a stack of
B identical blocks but with their own set of training
parameters. Each block has two sub-layers. There
is a residual connection around each of the two sub-
layers, followed by layer normalization (Ba et al.,
2016). The output of each sub-layer can be written
like this:

LayerNorm(x+ Sublayer(x)) (1)

where Sublayer(x) is the function implemented by
the sub-layer itself. In traditional Transformers,
the two sub-layers are respectively a multi-head
self-attention mechanism and a simple Multi-Layer
Perceptron (MLP).

The attention mechanism consists of a Key K
and Query Q that interacts together to output a
attention map applied to Context C:

Attention(Q,K,C) = softmax(
QK>√

k
)C (2)

In the case of self-attention, K, Q and C are the
same input. If this input is of size N × k, the op-
eration QK> results in a squared attention matrix
containing the affinity between each row N . Ex-
pression

√
k is a scaling factor. The multi-head

attention (MHA) is the idea of stacking several self-
attention attending the information from different
representation sub-spaces at different positions:

MHA(Q,K,C) = Concat(head1, ..., headh)Wo

where headi = Attention(QWQ
i ,KWK

i , CWC
i )
(3)

A subspace is defined as slice of the feature di-
mension k. In the case of four heads, a slice would
be of size k

4 . The idea is to produce different sets of
attention weights for different feature sub-spaces.
After encoding through the blocks, output x̃ can be
used by a projection layer for classification. In Fig-
ure 1, x can be any modality feature as described
in Section 4.
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Figure 1: Monomodal Transformer encoder.

3.2 Multimodal Transformer Encoding

The idea of a multimodal transformer consists
in adding a dedicated transformer (section 3.1)
for each modality we work with. While our
contribution follows this procedure, we also
propose three ideas to enhance it: a joint-encoding,
a modular co-attention (Yu et al., 2019) and a
glimpse layer at the end of each block.

The modular co-attention consists of modulating
the self-attention of a modality, let’s call it y, by a
primary modality x. To do so, we switch the key
K and context C of the self-attention from y to
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x. The operation QK> results in an attention map
that acts like an affinity matrix between the rows of
modality matrix x and y. This computed alignment
is applied over the context C (now x) and finally
we add the residual connection y. The following
equation describes the new attention sub-layer:

y = LayerNorm(y + MHA(y, x, x)) (4)

In this scenario, for the operation QK> to work
as well as the residual connection (the addition),
the feature sizes of x and y must be equal. This can
be adjusted with the different transformation matri-
ces of the MHA module. Because the encoding is
joint, each modality is encoded at the same time
(i.e. we don’t unroll the encoding blocks for one
modality before moving on to another modality).
This way, the MHA attention of modality y for
block b is done by the representation of x at block b.

Finally, we add a last layer at the end of each
modality block, called the glimpse layer, where the
modality is projected in a new space of representa-
tion. A glimpse layer consists of stacking G soft
attention layers and stacking their outputs. Each
soft attention is seen as a glimpse. Formally, we
define the soft attention (SoA) i with input matrix
M ∈ RN×k by a MLP and a weighted sum:

ai = softmax(vai
>(WmM))

SoAi(M) = mi =

N∑
j=0

aijMj

(5)

where Wm if a transformation matrix of size 2k×k,
vai is of size 1×2k and mi a vector of size k. Then
we can define the glimpse mechanism for matrix M
of glimpse size Gm as the stacking of all glimpses:

GM = Stacking(m1, . . . ,mGm)

Note that before the parameter Wm, whose role
is to embed the matrix M in a higher dimension,
is shared between all glimpses (this operation is
therefore only computed once) while the set of
vectors {vai } computing the attention weights from
this bigger space is dedicated for each glimpse.
In our contribution, we always chose Gm = N
so the sizes allow us to perform a final residual
connections M = LayerNorm(M + GM ).
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Figure 2: Multimodal Transformer Encoder for two
modalities with joint-encoding.

The Figure 2 depicts the encoding for two
features where modality x is modulating the
modality y. This encoding can be ported to
any number of modalities by duplicating the
architecture. In our case, it is always the linguistic
modality that modulates the others.

3.3 Classification layer

After all the Transformer blocks were computed, a
modality goes into a final glimpse layer of size 1.
The result is therefore only one vector. The vectors
of each modality are summed element-wise, let’s
call the results of this sum s, and are then projected
over possible answers according to the following
equation:

y ∼ p = Wa(LayerNorm(s)) (6)

If there is only one modality, the sum operation
is omitted.

4 Feature extractions

This section aims to explain how we pre-compute
the features for each modality. These features are
the inputs of the Transformer blocks. Note that the
features extraction is done independently for each
example of the dataset.

4.1 Linguistic

Each utterance is tokenized and lowercase. We also
remove special characters and punctuation. We
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build our vocabulary against the train-set and end
up with a glossary of 14.176 unique words. We
embed each word in a vector of 300 dimensions
using GloVe (Pennington et al., 2014). If a word
from the validation or test-set is not in present our
vocabulary, we replace it with the unknown token
”unk”.

4.2 Acoustic

The acoustic part of the signal of the video contains
a lot of speech. Speech is used in conversations
to communicate information with words but also
contains a lot of information that are non linguistic
such as nonverbal expressions (laughs, breaths,
sighs) and prosody features (intonation, speaking
rate). These are important data in an emotion
recognition task.

Acoustic features widely use in the speech
processing field such as F0, formants, MFCCs,
spectral slopes consist of handcrafted sets of
high-level features that are useful when an
interpretation is needed, but generally discard a lot
of information. Instead, we decide to use low-level
features for speech recognition and synthesis, the
mel-spectrograms. Since the breakthrough of
deep learning systems, the mel-spectrograms have
become a suitable choice.

The spectrum of a signal is obtained with
Fourier analysis that decompose a signal in a sum
of sinusoids. The amplitudes of the sinusoids
constitute the amplitude spectrum. A spectrogram
is the concatenation over time of spectra of
windows of the signal. Mel-spectrogram is
a compressed version of spectrograms, using
the fact the human ear is more sensitive to
low frequencies than high frequencies. This
representation thus attributes more resolution
for low frequencies than high frequencies using
mel filter banks. A mel-spectrogram is typically
used as an intermediate step for text-to-speech
synthesis (Tachibana et al., 2018) in state-of-the-art
systems as audio representation, so we believe it is
a good compromise between dimensionality and
representation capacity.

Our mel-spectrograms were extracted with the
same procedure as in (Tachibana et al., 2018) with
librosa (McFee et al., 2015) library with 80 filter
banks (the embedding size is therefore 80). A tem-

poral reduction by selecting one frame every 16
frames was the applied.

4.3 Visual

Inspired by the success of convolutional neural
networks (CNNs) in different tasks, we chose to
extract visual features with a pre-trained CNN.
Current models for video classification use CNNs
with 3D convolutional kernels to process the
temporal information of the video together with
spatial information (Tran et al., 2015). The 3D
CNNs learn spatio-temporal features but are
much more expensive than 2D CNNs and prone
to overfitting. To reduce complexity, Tran et al.
(2018) explicitly factorizes 3D convolution into
two separate and successive operations, a 2D
spatial convolution and a 1D temporal convolution.
We chose this model, named R(2+1)D-152, to
extract video features for the emotion recognition
task. The model is pretrained on Sports-1M and
Kinetics.

The model takes as input a clip of 32 RGB
frames of the video. Each frame is scaled to the
size of 128 x 171 and then cropped a window
of size 112 x 112. The features are extracted by
taking the output of the spatiotemporal pooling.
The feature vector for the entire video is obtained
by sliding a window of 32 RGB frames with a
stride of 8 frames.

We chose not to crop out the face region of the
video and keep the entire image as input to the
network. Indeed, the video is already centered on
the person and we expect that the movement of the
body such as the hands can be a good indicator
for the emotion recognition and sentiment analysis
tasks.

5 Dataset

We test our joint-encoding solution on a novel
dataset for multimodal sentiment and emotion
recognition called CMU-Multimodal Opinion
Sentiment and Emotion Intensity (CMU-MOSEI,
Zadeh et al. (2018b)). It consists of 23,453
annotated sentences from 1000 distinct speakers.
Each sentence is annotated for sentiment on a
[-3,3] scale from highly negative (-3) to highly
positive (+3) and for emotion by 6 classes :
happiness, sadness, anger, fear, disgust, surprise.
In the scope of our experiment, the emotions are
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Test set Sentiment Emotions
2-class 7-class Happy Sad Angry Fear Disgust Surprise

A A A F1 A F1 A F1 A F1 A F1 A F1
L+ A + V 81.5 44.4 65.0 64.0 72.0 67.9 81.6 74.7 89.1 84.0 85.9 83.6 90.5 86.1
L + A 82.4 45.5 66.0 65.5 73.9 67.9 81.9 76.0 89.2 87.2 86.5 84.5 90.6 86.1
L 81.9 44.2 64.5 63.4 72.9 65.8 81.4 75.3 89.1 84.0 86.6 84.5 90.5 81.4
Mu-Net 82.1 - - 68.4 - 74.5 - 80.9 - 87.0 - 87.3 - 80.9
G-MFN 76.9 45.0 - 66.3 - 66.9 - 72.8 - 89.9 - 76.6 - 85.5

Table 1: Results on the test-set. Note that the F1-scores for emotions are weighted to be consistent with the previous
state-of-the-art. Also, we do not compare accuracies for emotions, as previous works use a weighted variant while
we use standard accuracy. G-MFN is the Graph-MFN model and Mu-Net is the Multilogue-Net model.

either present or not present (binary classification),
but two emotions can be present at the same time,
making it a multi-label problem.

Figure 3: MOSEI statistics, taken from the author’s pa-
per.

The Figure 3 shows the distribution of sentiment
and emotions in CMU-MOSEI dataset. The dis-
tribution shows a natural skew towards more fre-
quently used emotions. The most common cate-
gory is happiness with more than 12,000 positive
sample points. The least prevalent emotion is fear
with almost 1900 positive sample. It also shows a
slight shift in favor of positive sentiment.

6 Experiments

In this section, we report the results of our model
variants described in Section 3. We first explain
our experimental setting.

6.1 Experimental settings

We train our models using the Adam optimizer
(Kingma and Ba, 2014) with a learning rate of
1e− 4 and a mini-batch size of 32. If the accuracy
score on the validation set does not increase for
a given epoch, we apply a learning-rate decay
of factor 0.2. We decay our learning rate up to
2 times. Afterwards, we use an early-stop of 3
epochs. Results presented in this paper are from

the averaged predictions of 5 models.

Unless stated otherwise, we use 6 Transformer
blocks of hidden-size 512, regardless of the
modality encoded. The self-attention has 4
multi-heads and the MLP has one hidden layer of
1024. We apply dropout of 0.1 on the output of
each block (equation 4) and of 0.5 on the input of
the classification layer (s in equation 6).

Figure 4: Temporal dimension (i.e. rows in our feature
matrices) for the acoustic and visual modality.

For the acoustic and visual features, we truncate
the features for spatial dimensions above 40. We
also use that number for the number of glimpses.
This choice is made base on Figure 4

6.2 Results

The Table 1 show the scores of our different
modality combinations. We do not compare
accuracies for emotions with previous works as
they used a weighted accuracy variant while we
use standard accuracy.

We notice that our L+A (linguistic + acoustic) is
the best model. Unfortunately, adding the visual
input did not increase the results, showing that
it is still the most difficult modality to integrate
into a multimodal pipeline. For the sentiment
task, the improvement is more tangible for the
7-class, showing that our L+A model learns better
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representations for more complex classification
problems compared to our monomodal model L
using only the linguistic input. We also surpass
the previous state-of-the-art for this task. For the
emotions, we can see that Multilogue-Net gives
better prediction for some classes, such as happy,
sad, angry and disgust. We postulate that this is
because Multilogue is a context-aware method
while our model does not take into account the
previous or next sentence to predict the current
utterance. This might affect our accuracy and
f1-score on the emotion task.

The following Table 2 depicts the results of our
solution sent to the Second Grand-Challenge on
Multimodal Language. It has been evaluated on
the private test-fold released for the challenge and
can serve as a baseline for future research. Note
that in this table, the F1-scores are unweighted, as
should be future results for a fair comparison and
interpretation of the results.

Sentiment 7-class
L + A (A) 40.20

Emotion Happy Sad Angry
L + A (A) 67.07 82.66 81.65
L + A (F1) 78.08 31.42 28.38

Emotion Fear Disgust Surprise
L + A (A) 88.19 79.14 90.45
L + A (F1) 26.66 25.49 15.82

Table 2: Results on the private test-fold for 7-class sen-
timent problem and for each emotion. Accuracy is de-
noted by A. In this table, the F1-scores are unweighted,
unlike Table 1.

7 Discussions

We presented a computationally efficient and
robust model for Sentiment Analysis and Emotion
Recognition evaluated on CMU-MOSEI. Though
we showed strong results on accuracy, we can see
that there is still a lot of room for improvement on
the F1-scores, especially for the emotion classes
that are less present in the dataset. To the best
of our knowledge, the results presented by our
transformer-based joint-encoding are the strongest
scores for the sentiment task on the dataset.

The following list identifies other features we

Figure 5: 7-class sentiment accuracy according to the
number of blocks per Transformer.

computed as input for our model that lead to weaker
performances:

• We tried the OpenFace 2.0 features (Baltru-
saitis et al., 2018). This strategy computes
facial landmark, the features are specialized
for facial behavior analysis;

• We tried a simple 2D CNN named DenseNet
(Huang et al., 2017). For each frame of the
video, a feature vector is extracted by taking
the output of the average pooling layer;

• We tried different values for the number of
mel filter bank (512 and 1024) and temporal
reduction (1, 2, 4 and 8 frames), we also tried
to use the full spectrogram;

• We tried not using the GloVe embedding.
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