
Proceedings of the LREC 2020 – 4th Workshop on Computational Approaches to Code Switching, pages 57–64
Language Resources and Evaluation Conference (LREC 2020), Marseille, 11–16 May 2020

European Language Resources Association (ELRA), licensed under CC-BY-NC

57

Code-Mixed Parse Trees and How to Find Them

Anirudh Srinivasan1 , Sandipan Dandapat2, Monojit Choudhury1
1Microsoft Research, India 2Microsoft R&D, India
{t-ansrin, sadandap, monojitc}@microsoft.com

Abstract
In this paper, we explore the methods of obtaining parse trees of code-mixed sentences and analyse the obtained trees. Existing work has
shown that linguistic theories can be used to generate code-mixed sentences from a set of parallel sentences. We build upon this work,
using one of these theories, the Equivalence-Constraint theory to obtain the parse trees of synthetically generated code-mixed sentences
and evaluate them with a neural constituency parser. We highlight the lack of a dataset non-synthetic code-mixed constituency parse trees
and how it makes our evaluation difficult. To complete our evaluation, we convert a code-mixed dependency parse tree set into “pseudo
constituency trees” and find that a parser trained on synthetically generated trees is able to decently parse these as well.

Keywords:Parse Trees, Constituency Parsing, Code-mixing

1. Introduction
Code-mixing is a phenomenon observed in multilingual so-
cieties all throughout the world. Although it started off as
mainly a spoken phenomenon, the need for computational
methods for processing code-mixed text is ever growing as
people are now code-mixing on social media and other on-
line platforms more and more (Rijhwani et al., 2017).
Most work focusing on computational methods for code-
mixing have been on tasks like LID (Solorio et al., 2014; Se-
quiera et al., 2015), NER (Aguilar et al., 2018) and POS tag-
ging (Vyas et al., 2014). Although there are some works on
code-mixed dependency parsing (Partanen et al., 2018; Bhat
et al., 2018), there is no work that has focused on obtaining
parse trees and the task of constituency parsing.
Having parse trees and a constituency parser for any language
is extremely useful. It can be used for understanding the syn-
tax of a sentence and checking whether a sentence is gram-
matically valid or not. Parse trees can also be used to build a
probabilistic context free grammar (PCFG) that would help
us understand the usage of different grammatical elements.
The work in this paper makes 3 contributions to the area of
code-mixed parsing. Firstly, we propose a technique that
modifies existing linguistic theory based code-mixed sen-
tence generation processes to obtain parse trees of the sen-
tences. The trees produced are also annotated in a manner
that captures the parallels between the mixed languages that
are used during the generation process. Secondly, we use
these synthetic trees to train a neural constituency parser and
evaluate the parser on synthetic and non-synthetic trees. This
evaluation was not straightforward as there doesn’t exist a set
of non-synthetic code-mixed constituency trees. To address
this issue, as the third contribution of the paper, we convert
code-mixed dependency trees into what we call as “pseudo
constituency trees” and show that the parser is able to parse
these as well.
The rest of the paper is organized as follows. Section 2 talks
about linguistic theories for code-mixing and how they can be
used to obtain code-mixed parse trees. Section 3 talks about
neural constituency parsers and the parsing technique chosen
for our testing. Section 4 describes the evaluation method
for the parser and results on synthetic data. Section 5 talks

Author can be contacted at anirudhsriniv@gmail.com

about further evaluating the parser using non-synthetic data
and Section 6 concludes our discussion.

2. Obtaining Code-Mixed Parse Trees
2.1. Background
Researchers in linguistics have proposed multiple theories
that aim to model code-mixing from a linguistics perspec-
tive. (Poplack, 1980; Sankoff, 1998; Joshi, 1982; Milroy,
1995; Di Sciullo et al., 1986; Belazi et al., 1994). On the
whole, these theories draw parallels between the parse trees
of a pair of parallel sentences in 2 languages and model code-
mixing as the substitution of a subtree in one language with its
equivalent in the other language, assuming that a set of con-
ditions are satisfied. One of these theories is the Equivalence
Constraint (EC) theory (Poplack, 1980; Sankoff, 1998). The
work of Bhat et al. (2016) and Pratapa et al. (2018) make
use of the EC theory to generate synthetic code-mixed sen-
tences given a pair of parallel sentences. They show that us-
ing these generated sentences in language modeling showed
an improvement in perplexity on a test set of non-synthetic
sentences.

2.2. Generating Synthetic Code-Mixed Sentences
The method for generating code-mixed sentences in Bhat et
al. (2016) first obtains equivalent parse trees of the parallel
sentences in their respective languages. The method is briefly
described here. The paper can be referred to for a detailed
explanation. Assuming that L1 and L2 are the 2 languages,

1. Obtain a sentence inL1, its equivalent inL2 and a word
level alignment between the two sentences

2. Obtain the parse tree of either of the sentences. If L1,
is English, this can be done using a tool like the Stanford
Parser (Klein and Manning, 2003)

3. Once the L1 tree is obtained, use the word level align-
ments to project the L2 words onto the L1 tree in a
bottom-up manner. In this manner, the L2 tree is ob-
tained

Figure 1a and 1b show monolingual trees for L1 and L2.
Having these equivalent trees, EC theory allows the substitu-
tion of any number of words in the L1 tree with their equiv-
alents in L2 tree as long as set of constraints are satisfied.



58

ROOT

S

VP

VP

NP

NN

today

NP

NN

paper

DT

a

VB

present

MD

will

NP

PRP

we

(a) English tree

ROOT

S

VP

MD

करेंगे

VP

VB

पेश

NP

NN

पेपर

DT

एक

NP

NN

आज

NP

PRP

हम

(b) Hindi tree
ROOT

S

VP

VP

NP

NN

today

NP

NN

paper

DT

एक

VB

present

MD

will

NP

PRP

we

(c) Valid code-mixed tree

ROOT

S

VP

VP*

NP*

NN

आज

NP

NN

पेपर

DT

a

VB

present

MD

will

NP

PRP

हम

(d) Invalid code-mixed tree

ROOT

S

VP

VP

NP

NN

today

NP

NN

पेपर

DT

एक

VB

present

MD

will

NP

PRP

हम

(e) Valid code-mixed tree

Figure 1: Monolingual and intermediate code-mixed trees. L1 is English and L2 is Hindi. Figure 1d is an invalid tree. The
production being applied at the V P marked with * is the English production, which means that only the English productions
can be applied for the terms on its RHS. However, the NP node on its RHS (marked with *) is deriving a Hindi word, which
it is not allowed to, resulting in the tree being invalid. Had the English word been there (today, instead of आज), it would have
been a valid sentence. Figures 1c and 1e are valid trees.

These constraints are detailed in the aforementioned paper.
We will elaborate on one of these constraints in the next sec-
tion. Since we are working at the parse tree level, we directly
obtain the parse tree of the generated sentence every time we
make substitutions. Figures 1c, 1d and 1e depict intermedi-
ate code-mixed trees obtained by making substitutions. The
tree in Figure 1d is invalid and we explain why at the end of
the next section.

2.3. EC Theory: Word Order
We focus on one of the EC theory constraints, as this will
help us in better annotating the parse trees we obtain. For
every production u0 → u1u2...un in the L1 tree, there must
exist an equivalent production v0 → v1v2...vn in the L2 tree
such that

• u0 and v0 are the same non-terminal

• There exists a unique one-one mapping from the
non-terminals in u1, u2, ...un to the non-terminals in
v1, v2, ...vn

This simplifies down to 2 conditions: the LHS of the both
the productions are the same and the RHS of both the pro-

ductions have the same set of terms, possibly in a different
order.

Given these definitions, we describe one of the constraints
that are verified on the intermediate code-mixed tree (ob-
tained after substitution of words from one language to the
other). Starting in a bottom up manner, each non-terminal is
assigned 2 language tags, one based on the word order of the
production it’s derived from and one based on the word or-
der of the production being applied at it. If these tags match,
this check continues up the tree. If the tags don’t match at
any point, the sentence is considered to be invalid.

This simplifies down to each production in the tree having a
word order in its RHS that is either the L1 order or the L2
order, and that order determining which production (L1 or
L2) can be applied for each term on the RHS. If the word or-
der is same for both L1 and L2, either language’s production
can be applied for the terms on the RHS. Figure 1d shows an
invalid code-mixed tree. TheNP marked with * is assigned
the tag of h from below as it is deriving a Hindi word and the
tag e from above as the English word order is being applied at
its parent node V P (marked with *), leading to a mismatch
and making the sentence invalid.



59

ROOT

S

VP_e

VP

NP_e

N_e

today

NP

NN_h

पेपर

DT_h

एक

VB_e

present

MD_e

will

NP_h

PRP_h

हम

Figure 2: The final annotated code-mixed parse tree for tree
in Figure 1e.

2.4. Annotating CM Parse Trees
We obtain the code-mixed trees directly each time we make
substitutions in the monolingual trees. However, these simple
trees do not capture the information provided by EC theory
used in generating the tree. To address this, we annotate each
non-terminal in the tree with a tag. This tag is determined by
the language whose production (word order) was applied at
that non-terminal. For leaf nodes, this would be the language
of the word that takes it’s place. For intermediate nodes, we
added ‘_e’ or ‘_h’ depending on whether the L1 or L2 pro-
duction was applied. This will ensure that the parser trained
on these trees will learn the differences in word order for the
productions in different languages. In cases where the word
order is same for both languages, we do not add a tag. This
is so that a parser will learn that the word order for that pro-
duction would be same in both languages. Figure 2 shows the
final tree generated by the process for the tree in Figure 1e.

3. Constituency Parsing
3.1. Background
Constituency parsing is the task of generating a valid parse
tree given a sentence as input. One of the simplest methods
for this task is the CKY algorithm (Younger, 1967). This al-
gorithm takes in a set of CFG productions and builds up a
tree for a sentence using a dynamic programming algorithm.
There are variations of this algorithm that work with a Prob-
abilistic CFG as well (Booth and Thompson, 1973).
Most of the early neural network parsers were simple
encoder-decoder approaches where the sentence would be
taken in by the encoder and the decoder would have to out-
put the tree with no extra information being provided about
a tree structure (Vinyals et al., 2015). These later evolved
into methods where the decoder was constrained to output
tokens that conformed to a valid tree structure (Ballesteros et
al., 2015; Dyer et al., 2016). One negative aspect of these
early neural methods is that they required extensive feature
engineering to perform well (Thang et al., 2015).

3.2. Span Based Constituency Parsing
Span based parsing methods use a function to assign scores to
spans in the sentence and use the CKY algorithm to build up

Dataset Size Height RHS Length
En-Hi Train 421710 7.05 (1.96) 2.22 (2.34)
En-Hi Synth. Test 2740 7.10 (2.02) 2.21 (2.28)
En-Hi Real. Test 1381 5.40 (1.06) 3.38 (1.60)
En-Es Train 421710 8.16 (2.31) 1.75 (1.16)
En-Es Synth. Test 2542 8.13 (2.24) 1.73 (1.12)

Table 1: Statistics about Train and Test Datasets. Mean and
Standard deviation (in brackets) reported for tree height and
length of right hand size of productions.

the tree given these scores. Finkel et al. (2008) use Condi-
tional Random Fields (CRFs) for the scoring purpose. More
recently, there has been a line of work where neural networks
have been used to score the spans, starting off with Dur-
rett and Klein (2015) where a fixed-window based method
is used. Stern et al. (2017) build upon this work by us-
ing RNNs instead of a fixed-window for the scoring and Ki-
taev and Klein (2018) use a transformer instead of the RNN.
These methods achieve performance that is superior to the
early neural network parsers without the complex feature en-
gineering associated with most of them.

3.3. Choice of Parser
We chose the span-based parser of Kitaev and Klein (2018)1
for evaluating our trees. We chose this method as it requires
only a set of trees as input for training and no information
about the grammar of the language(s). This method achieves
near state of the art performance on the Penn Treebank WSJ
set.
This model runs the embedding of each token in the sen-
tence through a transformer layer to produce contextual em-
beddings for each token, which are used to compute embed-
dings for each span in the sentence. This is then run through
a scoring layer to produce scores for each span. These scores
are used in a modified CKY-style parser to build up the most
probable tree. For computing initial embedding of each to-
ken, we experiment with word embeddings over the com-
bined vocabulary space of both languages and with multilin-
gual BERT2 (Devlin et al., 2019) (mBERT), which produces
subword level embeddings. Lastly, the parsing model also
learns to predict POS tags of tokens (using it while parsing),
so we also report the POS tagging accuracy.

4. Evaluation
We created train, dev and test sets of synthetic trees from in-
dependent sets of parallel sentences, so there is no overlap in
the trees between the 3 sets. Table 1 contains some statistics
about the datasets. For both language pairs, we obtained par-
allel corpora by taking English sentences and running them
through Bing Translator to obtain the parallel sentences. This
allows us to perform this technique for languages that do not
have large parallel corpora available for them. Since we are
using an MT system, we end up with parallel sentences that
are less likely to be semantic equivalents of each other and

1https://github.com/nikitakit/
self-attentive-parser

2https://github.com/google-research/bert/
blob/master/multilingual.md

https://github.com/nikitakit/self-attentive-parser
https://github.com/nikitakit/self-attentive-parser
https://github.com/google-research/bert/blob/master/multilingual.md
https://github.com/google-research/bert/blob/master/multilingual.md


60

Hindi-English Spanish-English
Model Synth. Test Synth. Test

F1 POS F1 POS
Word 38.22 96.07 33.20 90.23
mBERT 40.70 99.18 40.32 96.41

Table 2: Parsing F1 scores and POS tagging accuracies on
Hindi-English and Spanish-English.

more likely to have one-one mapping between the words of
both languages.
For Hindi-English, we used the sentences from the IITB Hi-
En corpus (Kunchukuttan et al., 2018) which consists of sen-
tences from multiple domains. For Spanish-English, we used
the sentences from the corpus by Rijhwani et al. (2017) that
mainly consists of sentences from social media (Twitter). We
report parsing F1 scores for both these languages along with
POS tagging accuracies. We call these test sets as “Synth.
Test” as they contain synthetically generated trees. We re-
port these results in Table 2.

4.1. Results
For Hindi-English we find that on our synthetic test set, we
are able to get a F1 score of 38.22 using word embeddings.
Using mBERT, we are able to get an increase of 2 points in
the score. Both models are able to achieve high accuracies on
POS tagging. For Spanish-English, similar to Hindi-English,
using mBERT causes a boost in the F1 measure for parsing.
For reference, we report results for English from (Kitaev and
Klein, 2018) (which happens to be near state of the art), in
which they obtain an F1 score of 92.67 using this same pars-
ing technique.

4.2. Monolingual - Code-Mixed Performance
Gap Analysis

Given that there is a big gap in the performance of our code-
mixed parser and a state of the art (SOTA) parser on English,
we perform a series of experiments with the aim of finding
out the following: How much does each of the steps of our
generation method contribute to the drop in the parser’s per-
formance? The processing done by our method can be di-
vided into 3 stages:

1. Parsing the English sentence using the Stanford parser

2. Using alignments to project the English tree to obtain
the L2 tree and an equivalent English tree

3. Substituting between the two trees to obtain a code-
mixed tree

We already have the parsing results for trees produced after
Step 3. We obtain trees produced after Step 1 and 2, train
the parser on these trees and report the results on a test set.
These trees are monolingual as code-mixing is done only in
Step 3. We report results on the English trees that were used
for Spanish-English code-mixing. These results are in Table
3.
We observe that there is a 20% drop in F1 comparing Step
1 to the SOTA English performance. This drop is due to

Parsing English Sentence
Model F1
Word 67.98
mBERT 69.31

Obtaining equivalent English
and L2 trees using alignements
Model F1
Word 47.55
mBERT 50.93

Code-Mixing
Model F1
Word 33.20
mBERT 40.32

Table 3: Parsing F1 scores and POS tagging accuracies after
every step of our method. The first 2 tables are on mono-
lingual (English) trees, while the third one is on code-mixed
(Spanish-English) trees.

the errors introduced by using the Stanford parser to parse
the English sentences. When we move from Step 1 to Step
2, we observe another 20% drop. This is the result of our
method of projecting the English tree using alignments to
obtain the L2 tree. The drop from Step 2 to Step 3 is around
10%. This is the actual complexity introduced to the parser
by code-mixing, a much smaller difference than the 50% es-
timate from before.
We can draw the following conclusions from this analysis.
The complexity introduced by code-mixing brings in only a
10% drop in performance of the parser. The major reasons
for the drop are the steps that obtain the parse trees for En-
glish and L2. Improvements to this technique can help in
obtaining much better code-mixed parse trees.

5. Further Evaluation

5.1. Better Evaluation Methods: Using
Non-Synthetic Trees

Evaluating the parser on synthetically generated trees alone
is not sufficient. To get a thorough estimate of the useful-
ness of our synthetically generated trees, we have to take a
parser trained on these trees and evaluate it on non-synthetic
(real) trees. To accomplish, one would need a dataset of con-
stituency parse trees of code-mixed sentences and to the best
of our knowledge, such a dataset does not exist.
To address this and perform a more complete evaluation of
our trees, we use of the work by Bhat et al. (2018) to come
up with an evaluation technique. Their work proposes a
Hindi-English code-mixed dependency parsing dataset. De-
pendency parse trees have a structure that is very different
to constituency parse trees (see Figure 3). We convert these
dependency trees to pseudo constituency trees and evaluate
the parser with them.



61

YouTube में speed वाला thing is useful
PROPN ADP NOUN ADP NOUN AUX ADJ

root
nmod

case
nmod

case
nsubj

cop

(a) A dependency parse tree

D

D

ADJ

useful

AUX

is

D

NOUN

thing

D

ADP

वाला

NOUN

speed

ADP

में

PROPN

YouTube

(b) The converted constituency parse tree

Figure 3: A dependency parse tree and the constituency tree obtained by the conversion technique used.

5.2. Converting Dependency Trees to
Constituency Trees

Although there has been a lot of recent work on convert-
ing dependency trees to constituency trees (Xia et al., 2008;
Wang and Zong, 2010; Lee and Wang, 2016), most of these
works require having the golden constituency tree for a de-
pendency tree and train a machine learning based algorithm
on such a golden tree set to learn the conversion. Since these
resources are something not available for our case, we fo-
cus on the works of Collins et al. (1999) and Xia and Palmer
(2001). These works propose an algorithm that will convert a
dependency tree to a constituency tree in a deterministic fash-
ion, outputting the structure alone of the constituency tree.
This algorithm does not assign labels to intermediate nodes
in the tree, a step that the aforementioned machine learning
based algorithms try to achieve using labelled data.

5.3. Evaluation Methodology
We make use of Algorithm 2 from Xia and Palmer (2001)
to convert the dependency trees in the train set of Bhat et al.
(2018) (1381 tweets) to constituency trees. One aspect to
note is that while this dataset is from Twitter, our synthetic
trees are from a multiple-domain dataset. We assign the non-
terminals without labels (all non-terminal except leaf level
ones) the label ‘D’ and refer to the produced trees as pseudo
constituency trees. Figure 3 shows a dependency parse tree
and the pseudo constituency tree obtained by converting it.
We use this as a test set on our trained parsers along with a
metric we call “Unlabelled F1”. This metric is needed as we
don’t have the labels for intermediate non-terminals, resulting
in skewed scores being produced if we used the F1 score as
per its original definition.
As per its original definition, the F1 score for parsing is cal-
culated using precision and recall computed over successes
and failures in the following manner: success is when a par-
ticular span in the sentence contains the same parent in the
gold and the generated trees with the parent labels being the
same, failure being otherwise. For our Unlabelled F1 mea-
sure, we relax the criterion of checking if the parent’s labels
match. We report this F1 score and POS accuracies in Table
4 under the Real Test column. We also calculate the Unla-

Model Real Test Synth. Test
F1* POS F1* POS

Word 30.32 40.25 46.93 96.07
mBERT 30.60 41.31 49.98 99.18

Table 4: *Unlabelled F1 and POS accuracies on the Hindi-
English set of converted dependency trees.

belled F1 score for our Synth. Test set and report it and the
POS accuracies(same value as in 2) for reference. Since we
do not have English-Spanish dependency trees, we do not re-
port any results on a Real Test set for that language pair.

5.4. Results & Error Analysis
We observe that the neural parser is able to perform decently
on the Real Test set. There is a performance gap between the
performance on this and on the synthetic test set. We also
note that there is a huge gap in the POS tagging accuracy be-
tween the 2 sets. The domain mismatch between Real. Test
and Synth. Test could contribute to the performance differ-
ence. We elaborate below on another possible reason.
Observing the distributions of tree height and production
RHS length in Table 1, we observe a difference between the
Train/Synth Test and Real Test sets. Given that these values
(height, production RHS length) are integers and not contin-
uous values, a difference of even 1 for their mean values is
significant. We theorize that this is the side-effect of the algo-
rithm used to convert dependency trees to constituency trees.
In their work, Xia and Palmer (2001) refer to Algorithm 2,
the algorithm that we’ve used, as the “Flattest Possible” al-
gorithm, producing trees that are flatter (less in height) and
wider (longer RHS of productions). This is clearly visible in
our case, as the mean height is lesser and mean RHS length
is more when comparing Real Test to both Train and Synth
Test. Given this difference in the distribution between the
train and test, the parser is not able to perform as well.

5.4.1. Error Analysis
We performed an analysis of where the parser makes errors
and have listed some observations below. Appendix A con-



62

tains the gold tree from Real Test and the parser’s predictions
with more detailed explanations on how the parser is failing.

1. POS tag errors cause the parser to not capture smaller
subtrees well

2. Longer sentences result in the parser not being able to
capture any tree structure at all (i.e the root node derives
most of the leaf nodes directly)

6. Conclusion
We present a technique to generate code-mixed parse trees
given a pair of parallel sentences. We train a neural parser on
these trees and report parsing F1 scores on a test set of gen-
erated trees. We also look into obtaining an evaluation set of
non-synthetic trees and highlight the lack of such a resource
in the community. Using an existing dependency parse re-
source, we evaluate our parser and observe that it is able to
parse non-synthetic sentences as well, albeit not as well as it
is able to perform on a set of synthetic sentences. The lack
of code-mixed constituency parse set is something we’ve had
to work around and the computational linguistics community
would really benefit if such a resource exists.
A neural parser capable of performing on code-mixed sen-
tences is a useful tool to have. Such a parser could be used to
analyze code-mixed corpora and obtain statistics much more
useful than values like Code-Mixing Index (CMI), Switching
Point Fraction(SPF) etc.., statistics like what grammatical el-
ements are likely to be switched more frequently and what
are likely to be not. This information could further be used
to sample from a set of large generated sentences to obtain
more realistic sentences.

7. Bibliographical References
Aguilar, G., AlGhamdi, F., Soto, V., Diab, M., Hirschberg,
J., and Solorio, T. (2018). Named entity recognition
on code-switched data: Overview of the CALCS 2018
shared task. In Proceedings of the Third Workshop on
Computational Approaches to Linguistic Code-Switching,
pages 138–147, Melbourne, Australia, July. Association
for Computational Linguistics.

Ballesteros, M., Dyer, C., and Smith, N. A. (2015). Im-
proved transition-based parsing by modeling characters in-
stead of words with lstms.

Belazi, H. M., Rubin, E. J., and Toribio, A. J. (1994).
Code switching and x-bar theory: The functional head
constraint. Linguistic inquiry, pages 221–237.

Bhat, G., Choudhury, M., and Bali, K. (2016). Grammat-
ical constraints on intra-sentential code-switching: From
theories to working models.

Bhat, I., Bhat, R. A., Shrivastava, M., and Sharma, D.
(2018). Universal dependency parsing for hindi-english
code-switching. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies, Vol-
ume 1 (Long Papers), volume 1, pages 987–998.

Booth, T. L. and Thompson, R. A. (1973). Applying prob-
ability measures to abstract languages. IEEE transactions
on Computers, 100(5):442–450.

Collins, M., Hajic, J., Ramshaw, L., and Tillmann, C.
(1999). A statistical parser for Czech. In Proceedings of
the 37th Annual Meeting of the Association for Compu-
tational Linguistics, pages 505–512, College Park, Mary-
land, USA, June. Association for Computational Linguis-
tics.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K.
(2019). BERT: Pre-training of deep bidirectional trans-
formers for language understanding. In Proceedings of the
2019 Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota, June. Association
for Computational Linguistics.

Di Sciullo, A.-M., Muysken, P., and Singh, R. (1986). Gov-
ernment and code-mixing. Journal of linguistics, 22(1):1–
24.

Durrett, G. and Klein, D. (2015). Neural CRF parsing. In
Proceedings of the 53rd Annual Meeting of the Associa-
tion for Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing (Volume
1: Long Papers), pages 302–312, Beijing, China, July. As-
sociation for Computational Linguistics.

Dyer, C., Kuncoro, A., Ballesteros, M., and Smith, N. A.
(2016). Recurrent neural network grammars. In Proceed-
ings of the 2016 Conference of the North American Chapter
of the Association for Computational Linguistics: Human
Language Technologies, pages 199–209, San Diego, Cali-
fornia, June. Association for Computational Linguistics.

Finkel, J. R., Kleeman, A., and Manning, C. D. (2008). Ef-
ficient, feature-based, conditional random field parsing. In
Proceedings of ACL-08: HLT, pages 959–967, Columbus,
Ohio, June. Association for Computational Linguistics.

Joshi, A. K. (1982). Processing of sentences with intra-
sentential code-switching. In Coling 1982: Proceedings of
the Ninth International Conference on Computational Lin-
guistics.

Kitaev, N. and Klein, D. (2018). Constituency parsing with a
self-attentive encoder. In Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 2676–2686, Melbourne,
Australia, July. Association for Computational Linguistics.

Klein, D. and Manning, C. D. (2003). Accurate unlexical-
ized parsing. In Proceedings of the 41st Annual Meeting of
the Association for Computational Linguistics, pages 423–
430, Sapporo, Japan, July. Association for Computational
Linguistics.

Kunchukuttan, A., Mehta, P., and Bhattacharyya, P. (2018).
The IIT Bombay English-Hindi parallel corpus. In Pro-
ceedings of the Eleventh International Conference on Lan-
guage Resources and Evaluation (LREC 2018), Miyazaki,
Japan, May. European Language Resources Association
(ELRA).

Lee, Y.-S. and Wang, Z. (2016). Language independent de-
pendency to constituent tree conversion. In Proceedings of
COLING 2016, the 26th International Conference on Com-
putational Linguistics: Technical Papers, pages 421–428,
Osaka, Japan, December. The COLING 2016 Organizing
Committee.



63

Milroy, J. (1995). One speaker, two languages: Cross-
disciplinary perspectives on code-switching. Cambridge
University Press.

Partanen, N., Lim, K., Rießler, M., and Poibeau, T. (2018).
Dependency parsing of code-switching data with cross-
lingual feature representations. In Proceedings of the
Fourth International Workshop on Computational Linguis-
tics of Uralic Languages, pages 1–17, Helsinki, Finland,
January. Association for Computational Linguistics.

Poplack, S. (1980). Sometimes i’ll start a sentence in span-
ish y termino en espanol: toward a typology of code-
switching1. Linguistics, 18(7-8):581–618.

Pratapa, A., Bhat, G., Choudhury, M., Sitaram, S., Danda-
pat, S., and Bali, K. (2018). Language modeling for code-
mixing: The role of linguistic theory based synthetic data.
In Proceedings of the 56th Annual Meeting of the Associ-
ation for Computational Linguistics (Volume 1: Long Pa-
pers), pages 1543–1553, Melbourne, Australia, July. As-
sociation for Computational Linguistics.

Rijhwani, S., Sequiera, R., Choudhury, M., Bali, K., and
Maddila, C. S. (2017). Estimating code-switching on
twitter with a novel generalized word-level language detec-
tion technique. In Proceedings of the 55th Annual Meeting
of the Association for Computational Linguistics (Volume
1: Long Papers), pages 1971–1982, Vancouver, Canada,
July. Association for Computational Linguistics.

Sankoff, D. (1998). The production of code-mixed dis-
course. In Proceedings of the 17th international conference
on Computational linguistics-Volume 1, pages 8–21. Asso-
ciation for Computational Linguistics.

Sequiera, R., Choudhury, M., Gupta, P., Rosso, P., Kumar,
S., Banerjee, S., Naskar, S. K., Bandyopadhyay, S., Chit-
taranjan, G., Das, A., et al. (2015). Overview of fire-2015
shared task on mixed script information retrieval.

Solorio, T., Blair, E., Maharjan, S., Bethard, S., Diab, M.,
Ghoneim, M., Hawwari, A., AlGhamdi, F., Hirschberg,
J., Chang, A., and Fung, P. (2014). Overview for the first
shared task on language identification in code-switched
data. In Proceedings of the First Workshop on Computa-
tional Approaches to Code Switching, pages 62–72, Doha,
Qatar, October. Association for Computational Linguis-
tics.

Stern, M., Andreas, J., and Klein, D. (2017). A minimal
span-based neural constituency parser. In Proceedings of
the 55th Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pages 818–
827, Vancouver, Canada, July. Association for Computa-
tional Linguistics.

Thang, L. Q., Noji, H., andMiyao, Y. (2015). Optimal shift-
reduce constituent parsing with structured perceptron. In
Proceedings of the 53rd Annual Meeting of the Associa-
tion for Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing (Volume
1: Long Papers), pages 1534–1544, Beijing, China, July.
Association for Computational Linguistics.

Vinyals, O., Kaiser, Ł., Koo, T., Petrov, S., Sutskever, I., and
Hinton, G. (2015). Grammar as a foreign language. In
Advances in neural information processing systems, pages
2773–2781.

Vyas, Y., Gella, S., Sharma, J., Bali, K., and Choudhury,
M. (2014). POS tagging of English-Hindi code-mixed
social media content. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language Processing
(EMNLP), pages 974–979, Doha, Qatar, October. Associ-
ation for Computational Linguistics.

Wang, Z. and Zong, C. (2010). Phrase structure parsing
with dependency structure. In Coling 2010: Posters, pages
1292–1300, Beijing, China, August. Coling 2010 Orga-
nizing Committee.

Xia, F. and Palmer, M. (2001). Converting dependency
structures to phrase structures. In Proceedings of the First
International Conference on Human Language Technology
Research.

Xia, F., Rambow, O., Bhatt, R., Palmer, M., and
Misra Sharma, D. (2008). Towards a multi-
representational treebank. LOT Occasional Series,
12:159–170.

Younger, D. H. (1967). Recognition and parsing of context-
free languages in time n3. Information and control,
10(2):189–208.



64

A. Error Analysis on Trees
Depicted below are 3 trees from Real Test and the parser’s prediction for these trees. Gold trees are on the left and the parser’s
predictions are on the right. Errors made by the parser and possible reasons for the same have been mentioned along with the
trees. The parsing F1 score for each tree is also reported, and the trees are ordered in descending order of this score.

D

VERB

देखा

PART

नहीं

NOUN

match

NOUN

आज

D

NOUN

thing

ADJ

Good

(a) Gold Tree

D

VERB

देखा

ADV

नहीं

NOUN

match

NOUN

आज

D

NOUN

thing

ADJ

Good

(b) Predicted Tree

Figure 4: F1: 100.0: The parser predicts one of the POS tags incorrectly, but otherwise predicts the tree structure correctly.

D

PUNCT

.

D

ADP

की

NOUN

team

DET

इस

AUX

होगी

NOUN

funeral

D

ADP

पे

NOUN

seaview

NOUN

कल

(a) Gold Tree

D

PUNCT

.

D

ADP

की

D

NOUN

team

DET

इस

MD+VB

होगी

NOUN

funeral

PRT

पे

NOUN

seaview

NOUN

कल

(b) Predicted Tree

Figure 5: F1: 66.67: The parser predicts the POS tag for पे incorrectly, leading to the subtree (D→ NOUN ADP) not being
captured properly.

D

PRON

you

VERB

refreshes

D

NOUN

प्याली

D

ADP

की

NOUN

चाय

ADJ

गरम

NUM

एक

(a) Gold Tree

D

D

PRON

you

NOUN

refreshes

NOUN

प्याली

ADP

की

NOUN

चाय

ADJ

गरम

DET

एक

(b) Predicted Tree

Figure 6: F1: 40.0: There are a few POS tag errors in this case. As sentences get longer, the parser struggles to capture the
tree structure of the original sentence and outputs a tree where the root node derives (almost) all the leaf nodes directly.


	Introduction
	Obtaining Code-Mixed Parse Trees
	Background
	Generating Synthetic Code-Mixed Sentences
	EC Theory: Word Order
	Annotating CM Parse Trees

	Constituency Parsing
	Background
	Span Based Constituency Parsing
	Choice of Parser

	Evaluation
	Results
	Monolingual - Code-Mixed Performance Gap Analysis

	Further Evaluation
	Better Evaluation Methods: Using Non-Synthetic Trees
	Converting Dependency Trees to Constituency Trees
	Evaluation Methodology
	Results & Error Analysis
	Error Analysis


	Conclusion
	Bibliographical References
	Error Analysis on Trees

