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Abstract
The task of Bilingual Dictionary Induction (BDI) consists of generating translations for source language words which is important in
the framework of machine translation (MT). The aim of the BUCC 2020 shared task is to perform BDI on various language pairs using
comparable corpora. In this paper, we present our approach to the task of English-German and English-Russian language pairs. Our
system relies on Bilingual Word Embeddings (BWEs) which are often used for BDI when only a small seed lexicon is available making
them particularly effective in a low-resource setting. On the other hand, they perform well on high frequency words only. In order to
improve the performance on rare words as well, we combine BWE based word similarity with word surface similarity methods, such
as orthography and transliteration information. In addition to the often used top-n translation method, we experiment with a margin
based approach aiming for dynamic number of translations for each source word. We participate in both the open and closed tracks of
the shared task and we show improved results of our method compared to simple vector similarity based approaches. Our system was
ranked in the top-3 teams and achieved the best results for English-Russian.
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1. Introduction
Bilingual Dictionary Induction is the task of inducing

word translations from monolingual corpora in different
languages. It has been studied extensively as it is one of
the main tasks used for evaluating the quality of BWE mod-
els (Mikolov et al., 2013b; Vulic and Korhonen, 2016). It
is also important for downstream tasks such as translating
out-of-vocabulary words in MT (Huck et al., 2019).
Although there is a large amount of work for BDI, there
is no standard way to measure the performance of the sys-
tems, the published results are not comparable and the pros
and cons of the various approaches are not clear. The aim
of the BUCC 2020 – Bilingual Dictionary Induction from
Comparable Corpora – shared task (Rapp et al., 2020) is to
solve this problem and compare various systems on a stan-
dard test set. It involves multiple language pairs including
Chinese, English, French, German, Russian and Spanish
and supports comparable monolingual corpora, and train-
ing and testing dictionaries for high, middle and low fre-
quency words. In this paper, we present our approach to
the shared task and show results on English-German and
English-Russian.
BWEs are popular for solving BDI by calculating cosine
similarity of word pairs and taking the n most similar can-
didates as translations for a given source word. They were
shown to be very effective for the task using a small seed
lexicon only (e.g., (Mikolov et al., 2013b)) as opposed to
MT based approaches where parallel data is necessary. In
addition, Conneau et al. (2018) and Artetxe et al. (2018)
were able to learn BWEs without any seed dictionaries us-
ing a self-learning method that starts from an initial weak
solution and improves the mapping iteratively. Due to this,
BDI is one of the building blocks of unsupervised MT and
are particularly relevant in low-resource settings (Artetxe et
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al., 2019; Lample et al., 2018).
Although BWE based methods work well for translating
high frequency words, it was shown that they tend to have
low performance when translating low-frequency words
or named entities due to poor vector representation of
such words (Braune et al., 2018; Riley and Gildea, 2018;
Czarnowska et al., 2019). By using character n-gram rep-
resentations and Levenshtein similarity of words, Braune et
al. (2018) showed improved results on rare and domain spe-
cific words. Similarly, Riley andGildea (2018) improves the
translation of such words by integrating orthographic infor-
mation into the vector representation of words and in the
mapping procedure of BWEs. On the other hand, these tech-
niques are only applicable in the case of language pairs hav-
ing the same scripts. Recently, Riley and Gildea (2020) pro-
posed an unsupervised system based on expectation maxi-
mization and character-level RNN models to learn translit-
eration based similarity, i.e., edit distance similarity across
different character sets. To train their system they took
5, 000word pairs having the highest cosine similarity based
on BWEs. However, this method could be noisy, since non-
transliteration pairs could be generated as well.
In this paper, we present our approach to BDI focusing on
the problems of low frequency words translation. We follow
the approach of Braune et al. (2018) and improve low fre-
quency translation by combining a BWE based model with
other information coming from word surface similarity: or-
thography and transliteration. The orthographic model is
used in the case of word pairs with shared alphabet and uses
the Levenshtein similarity. The transliterationmodel is used
for pairs with different scripts where an orthographic com-
parison would not be possible and it is obtained from our
novel fully unsupervised transliteration model. In contrast
to (Riley and Gildea, 2020), we propose a cleaning method
for filtering non-transliteration pairs from the used dictio-
nary before training themodel to ensure a less noisy training
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signal.
We test our system on the English-German pairs (En-De,
De-En) and English-Russian pairs (En-Ru, Ru-En) provided
in the BUCC 2020 Shared Task (Rapp et al., 2020). We
participate in both the open and closed tracks of the shared
tasks, using embeddings extracted either from Wikipedia
(Conneau et al., 2018) or WaCKy (Baroni et al., 2009) re-
spectively. In addition to using a static number of most sim-
ilar words as translation, we experimented with methods re-
turning a dynamic number of translations given each source
word.
In the rest of the paper, we first describe the approach and
howwe obtain the twoword surface similarity scores. Then,
we present the experiments on the BUCC 2020 dataset and
discuss the results.

2. BUCC 2020 Shared Task
The BUCC 2020 Shared Task (Rapp et al., 2020) focuses on
multilingual lexical knowledge extraction from comparable
rather than from parallel corpora. It gives the opportunity to
experiment with the BLI task providing corpora and bilin-
gual datasets for different language pairs. It also provides
training data and a common evaluation framework.
The shared task is divided into open and closed tracks. In
the open track participants are allowed to use their own cor-
pora and training data, whereas in the closed track they
can use only the data provided by the organizers. This
data includes monolingual corpora for each language which
should be used for the mining of translations. Furthermore,
the shared task provides training data that consists of tab-
separated bilingual word pairs divided into high, medium
and low frequency groups, i.e., words ranking in 5000
most frequent words, in the range of 5001 − 20000 and
20001−50000 respectively. The test sets are also split in the
three groups, with 2000 words each. Both train and test are
a subset of the MUSE dictionaries (Conneau et al., 2018)
which were created using a Facebook internal translation
tool. In addition they take the polysemy of words into ac-
count, meaning that some words have multiple translations.
Due to this, the performance of the systems is determined by
computing precision, recall and F1 score1 instead of acc@n
used in other works (Vulic and Korhonen, 2016). For fur-
ther information about the official data and setup we refer to
the shared task description paper (Rapp et al., 2020).

3. Approach
To solve the BDI taskwe rely on both BWE andword surface
based similarity. As in many related works, we calculate the
vector similarity of words in order to find target language
words having similar meaning compared to a given input
word. However, BWEs tend to perform poorly when trans-
lating named entities and low-frequency words (Braune et
al., 2018; Riley and Gildea, 2018). To alleviate the prob-
lem, we follow the approach of (Braune et al., 2018) and
combine word similarity information from multiple BWE
models and we look for similarly written source and tar-
get language words. The latter can be solved by looking
for orthographically similar words in the case of English

1F1 is the official score for system ranking.

and German. On the other hand, for English and Russian
the approach is not applicable due to the different character
sets of the two languages, thus we employ an unsupervised
transliteration model.

3.1. Bilingual Word Embeddings
To build BWEs we follow the mapping approach of
(Mikolov et al., 2013b), i.e., we build monolingual word
embeddings (MWEs) which we then align to a share space
using a seed dictionary. We create 4 types of MWE
models for each language, since it was shown that com-
bining them is beneficial for BDI (Braune et al., 2018):
{word2vec, fasttext} × {cbow, skipgram} (Mikolov et
al., 2013a; Bojanowski et al., 2017). We perform the map-
ping using VecMap (Artetxe et al., 2018) which learns an or-
thogonal projection of the source MWE to the target space.
Although the approach supports unsupervised mapping, we
use it in a supervised setup. As the seed lexicon, we use part
of the provided high frequency dictionary. Although the
dictionary contains multiple translations for some source
words, we only use the first translation of each word in order
to reduce noise. Finally, we generate a similarity dictionary
based on each BWE type containing translation candidates,
i.e., the 100 most similar target language words, for each
source language word along with their similarity scores. We
calculate the cosine similarity based Cross-Domain Simi-
larity Local Scaling (CSLS) metric as the similarity score
(Conneau et al., 2018) which adjusts the similarity values of
a word based on the density of the area where it lies, i.e., it
increases similarity values for a word lying in a sparse area
and decreases values for a word in a dense area. In the sim-
ple case, word translation could be done by using the most
similar target candidate for a given source word based on
one of the dictionaries. On the other hand, our aim is to ex-
ploit the advantages of all BWE types which we achieve by
ensembling the generated similarity dictionaries.
Ensembling In order to merge various similarity dictio-
naries we follow a similar approach as (Braune et al., 2018).
For this, we create a final similarity dictionary containing
the 100 most similar target words for each source word
along with their ensembled similarity scores which is given
by:

Sime(S, T ) = QM
i=1γiSimi(S, T ) (1)

where S and T are the source and target words, Simi(·, ·)
and γi is the similarity of two words based on the ith BWE
type and its weight. As the Q function, we experimented
with summing the weighted values or taking their maximum
value. The former aims to emphasise candidates that are
ranked high by multiple models while the latter takes the
candidates in which a given model is confident. For sim-
plicity we only calculate the score for target words that are
in any of the dictionaries for a given source word instead of
the full target language vocabulary. If a candidate word T
is not in dictionary i we set Simi(S, T ) to 0. γi are tuned
on the development set.
The above equation only requires dictionaries containing
word pairs and their similarities allowing us to employ in-
formation from other sources as well, such as orthography
and transliteration which we discuss in the following.
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3.2. Orthographic Similarity
The translation of many words, such as named entities, nu-
merical values, nationalities and loan words, are written
similarly as the source word, thus we rely on orthographic
similarity to improve the translation of such words. For En-
glish and German we follow the approach of (Braune et al.,
2018) and use Levenshtein similarity, more precisely one
minus the normalized Levenshtein distance, as the ortho-
graphic similarity of a given word pair. We generate simi-
larity dictionaries as before but containing orthographically
similar words, which we use as an additional element during
ensembling. The generation of such a dictionary is compu-
tationally heavy, since each source word has to be compared
to each word in the target language vocabulary leading to a
large number of word pairs. Sincemost of the word pairs are
not orthographically similar we follow the approach of Ri-
ley and Gildea (2018) to reduce the number of word pairs to
compare. For this the Symmetric Delete algorithm is used,
which takes as arguments a list of source words, target vo-
cabulary and a constant k, and identifies all source-target
word pairs that are identical after k insertions or deletions.
We then calculate the Levenshtein similarity only for such
word pairs.

3.3. Transliteration score
When dealing with word pairs from different scripts (i.e.
En-Ru), we need a different measure of similarity because
the alphabets are not shared. If we consider rare words, we
know that many of them are transliterated (e.g., translated
preserving the sound). Adam/Адам and Laura/Лаура are
example of English-Russian transliteration pairs. Therefore,
we propose a new method to capture similarities between
words from different scripts through transliteration scores.
In particular, we aim to improve the BWEs for rare and
less frequent words incorporating the word scores coming
from our transliteration model. The method is unsupervised
given that we do not have transliteration pairs for training in
the shared task setup –we have translation pairs, but they are
not annotated as transliteration vs non-transliteration. The
model is used in an unsupervised way to clean the train-
ing set and to get the final predictions. Our method consists
of training a sequence-to-sequence model (Sutskever et al.,
2014) on a "cleaned" set to get the transliteration scores.
The model and the cleaning process are explained in the
following.

3.3.1. Transliteration model
Once we cleaned the whole dataset as explained in the sec-
tion below, we use it as the training set for our seq2seq
model. The model works at the character-level and is made
of an encoder and a decoder part with attention. They both
contain multi-layered Gated Recurrent Units (Cho et al.,
2014) but the encoder uses bidirectional GRUs that is able
to encode both past and future context. The decoder exploits
the "Global Attention" mechanism with the "dot" method of
(Luong et al., 2015) to diminish the information loss of long
sequences. The model has one encoder and one decoder
layer with hidden size of 128. We use a dropout regulariza-
tion probability of 0.1 and a learning rate of 0.01 with the
SGD optimization algorithm.

Once the model is trained, we use it to calculate the negative
log likelihood probability (pNLL) of each word in the target
language vocabulary with respect to each test word because
we saw that it was working better than the generation of
transliteration words. In this way, we generated the simi-
larity dictionary and we selected the 100 top scored words.
Given a word pair [S, T ] with t1, .., tN ∈ T , we define the
score as:

pNLL =
(
∑N

i=1 nll(ti)) + nll(EOS)

N + 1
(2)

where nll(ti) is the Negative Log Likelihood probability
of the ith character in T , and EOS is the "End Of String"
token.

3.3.2. Cleaning process
The cleaning process aims to reduce the number of non-
transliteration pairs in the initial dataset in an unsuper-
vised way to better train the final transliteration model.
The dataset is considered "cleaner" if it contains less non-
transliteration pairs than the initial one and still enough
transliteration pairs to allow the training of the model.
First, we randomly select 10 pairs that have a length differ-
ence greater than one as the "comparison set" and we fixed
it for all the cleaning process. This length difference helps
to find pairs that in most cases are not transliteration.
We then carry out an iterative process. We split the
dataset in training and test sets (80%-20%) and we train the
character-level Encoder-Decoder model, explained in sec-
tion 3.3.1 above, on the training set. The number of steps
was chosen based on previous experiments. Then, we eval-
uate the test set on the model and we obtain a score for each
test pair (source, target). A score measures the negative
log likelihood probability of predicting the target given the
input. Higher scores mean higher probability for the input
and target to be transliterations of each other. Then, we cal-
culate the scores for the comparison set in the same way and
we remove all the test pairs that are below the average score
of the comparison set. Finally, we shuffle the training set
with the remaining test pairs and we divide again in train-
ing and test. We repeat this process training a new model
every time and cleaning the test set for a fixed number of
iterations found experimentally,
The dataset has been divided into low, medium and high-
frequency pairs. We exploited this fact with the assumption
that the low-frequency set should contain rare words and
more nouns, so consequently more transliteration pairs than
the high-frequency set. Therefore, we first clean the low
set with the iterative process. Then, we mix the cleaned
low set with the uncleaned medium set and run the process
on it. Finally, we mix the result of this process with the
high-frequency set and run the last iterative method to get
the cleaned dataset that we used in the final transliteration
model. Note that we only rely on the training portion of the
released high, medium and low dictionaries (see Section 4).

3.4. Dynamic Translation
BDI is often performed by returning the top-1 or top-5
most probable translations of a source word (Mikolov et al.,
2013b). Since the dictionaries of the shared task contain
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a dynamic number of translations, the participants had to
decide the number of words to return. During our experi-
ments we found that using top-1 translation for the low and
middle and top-2 for high frequency sets gives consistent
results thus we used this solution as our official submission.
However, we experimented with dynamic methods as well.
Based on the manual investigation of the ensembled word
pair similarity scores, we found that having a global thresh-
old valuewould not be sufficient for selectingmultiple trans-
lations for a given source word, since the similarity values
of the top-1 translations have a large deviation across source
words. This is also known as the hubness problem (Dinu and
Baroni, 2014), i.e., the vector representation of some words
tend to lie in high density regions, thus have high similarity
to a large number of words, while others lie in low density
regions having low scores. Instead of using a global thresh-
old value, we followed the margin based approach proposed
by (Artetxe and Schwenk, 2019) for parallel sentence min-
ing which in a sense calculates a local threshold value for
each source word. We adapt this method for BDI and cal-
culate a score of each candidate word T for a given source
word S by:

score(S, T ) = margin(Sime(S, T ), avg(S)) (3)

where avg(S) is the average similarity scores of S and
the 100 most similar candidates based on the ensemble
scores Sime(·, ·). We experimented with two variants of
themargin function:

marginDistance(x, y) = x− y (4)

marginRatio(x, y) =
x

y
(5)

The aim of both methods is to normalize the similarities
based on the averaged similarity values so that a global
threshold value can be used to select translations. The for-
mer method calculates the distance between the similarity
value of the target candidate and the averaged similarity
while the latter calculates their ratio. Finally, we consider
each target candidate of a given source word as translation
if its score is higher than the threshold value. We tune one
threshold value for each language pair and word frequency
category using the development sets. In addition, since each
source word should have at least one translation, we always
consider the top-1most similar candidate to be a translation.

4. Experimental Setup
We submitted BDI outputs for both the closed and open
tracks which differ only in the used BWEs. For the closed
track we only relied on the released monolingual corpora
and training dictionaries. For the MWEs we used the
WaCKy corpora (Baroni et al., 2009) and built word2vec
cbow and skipgram models (Mikolov et al., 2013a), and
fasttext cbow models (Bojanowski et al., 2017), while we
used the released fasttext skipgram models from the shared
task website. We used the same parameters used by the or-
ganizers for both methods: minimum word count 30; vector
dimension 300; context window size 7; number of negatives

sampled 10 and in addition, number of epochs 10 for fast-
text. To align MWEs of the same type, we used VecMap
(Artetxe et al., 2018) in a supervised setup. As the training
signal we used the official shared task dictionaries which
are a subset of the MUSE dictionaries released in (Con-
neau et al., 2018). We split them into train, development
and test sets (70%/15%/15%)2 which we used for training
BWEs and the transliteration model, tuning parameters and
reporting final results respectively. Since we tuned various
parameters, such as ensembling weights or threshold val-
ues for margin based translation, for each language pair and
frequency category, we do not report each value here but
discuss them in the following section. For the generation of
BWE based similarity dictionaries we only considered the
most frequent 200K words when calculating CSLS similar-
ities as in (Conneau et al., 2018). We experimented with
larger vocabulary sizes but achieved lower scores. In con-
trast, for the orthography and transliteration based dictio-
naries we considered all words in the monolingual corpora
which have at least frequency 53.
For the open track we followed the same approach as
above but instead of using WaCKy based MWEs we used
pre-trained Wikipedia based monolingual fasttext skipgram
models similarly as in (Conneau et al., 2018). Although we
use only one type of BWE model (instead of four) in addi-
tion to the orthography or transliteration based similarities
we achieved higher performance especially for the middle
and low frequency sets.

5. Results
As the official evaluation metric of the shared task we
present F1 scores of our approach. We compare multiple
systems to show the effects of various modules of our ap-
proach on our test splits in Table 1. We compare systems us-
ing only one similarity dictionary using either fasttext (FTT)
cbow or surface similarity and our complete system ensem-
bling five similarity dictionaries using tuned weights (two
for the open track). We also show results of our open track
submission (Wiki). All systems return top-n translations ex-
cept ensemble + margin. We used n = 1 for the low and
middle frequency sets and also for Ru-En high, while for the
rest n = 2 gave the best results. When using margin based
translation, we show the best performing method based on
the development set which we discuss in more details below.
In general, it can be seen that in our closed track submis-
sion the best results were achieved by ensembling various
information from different sources. The BWE based model
achieved fairly good results for the high and middle fre-
quency sets but often lower results than the surface simi-
larity based model for low frequency words. On the con-
trary, the surface based systems performed well as the fre-
quency of words decreases, having low scores for the high
set. Based on investigation of the test splits, not surpris-
ingly the results correlate with the number of words that
are written similarly on both the source and target language
sides showing the importance of this module during BDI.

2We kept all translations of a given source word in the same
set.

3Additionally, we filtered words that contained at least 2 con-
secutive punctuation marks or numbers.
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High
En-De De-En En-Ru Ru-En

FTT cbow 38.17 46.37 33.52 46.78
Surface 4.31 3.41 7.38 14.64

Ensemble 40.59 49.56 38.33 54.12
Ensemble + Margin 39.76 49.90 36.23 54.71

Wiki 41.40 48.61 39.43 54.90

Middle
En-De De-En En-Ru Ru-En

FTT cbow 30.62 36.00 20.14 39.82
Surface 7.76 10.11 13.47 16.93

Ensemble 47.76 51.71 33.24 49.64
Ensemble + Margin 47.76 51.89 36.17 49.72

Wiki 49.18 53.66 43.55 56.53

Low
En-De De-En En-Ru Ru-En

FTT cbow 24.19 33.05 15.03 21.53
Surface 24.62 20.12 20.62 30.25

Ensemble 63.82 69.41 30.11 42.99
Ensemble + Margin 63.82 69.41 30.50 43.17

Wiki 65.14 73.10 51.72 57.01

Table 1: F1 scores for English-German and English-
Russian language pairs in both directions and the three fre-
quency categories on our test split. The first two models use
either a dictionary based on embeddings or surface similar-
ity while the rest combines all of the available (two for Wiki
and five for the rest). Ensemble +Margin shows results with
dynamic number of translations per source words using the
best margin based method and top-n (n ∈ {1, 2}) is applied
for the rest. Wiki shows our open track submission.

By looking at the ensembling scores, the BWE and surface
scores seem additive showing that the two methods extend
each other, i.e., the source word could be translated with
either of the models.

Model weights As mentioned, we tuned our system pa-
rameters on the development set. Without presenting the
large number of parameters, we detail our conclusions.
Comparing the usefulness of the BWE types we found sim-
ilarly to (Braune et al., 2018) that fasttext models are more
important by handling morphological variation of words
better due to relying on character n-grams which is espe-
cially important for Russian. On the other hand, word2vec
models also got significant weights showing their additional
positive effect on the results. Comparing skipgram and
cbow models we found that the weights of fasttext cbow
and fasttext skipgram are similar (the former has a bit higher
weight) while word2vec cbow got close to zero weight, only
the word2vec skipgram model is effective. The weights of
the surface based similarity dictionaries were lowest for the
high frequency sets and higher for the other two, but counter
intuitively it was the highest for the middle set 3 out of 4
times. The reason for this is that many words in the low sets
are not included in the most frequent 200K words that we
used in the BWEs but in the surface dictionaries only, thus
independent of the weights the translation is based on the

latter. On the other hand, many source words have similarly
written pairs on the target side even though they have proper
translations, e.g., source: ambulance; transliteration: ам-
буланс; translation: скорая, thus having high weight led to
incorrect translations. As mentioned in Section 3 we exper-
imented with summing the scores in the dictionaries during
ensembling or taking their maximum. The former consis-
tently performed better for En-De and De-En while the lat-
ter performed better for En-Ru and Ru-En. The reason lies
in the different surface models: orthographic similarity for
German and transliteration for Russian.

Dynamic translation The ensemble+margin system
shows our results with the system predicting a dynamic
number of words as translation based on the margin
method. We tuned the threshold value for both marginDis-
tance andmarginRatio and show the best performing setup.
We achieved some improvements in most of the cases
compared to ensemble with top-n, except for En-De high
and En-Ru high. On the other hand, we achieved significant
improvements for En-Ru middle and Ru-En low. However,
we found that this method is not robust in various scenarios
since the best parameters (margin method variation and
threshold value) were different across our test sets and
we found no pattern in them, e.g., high threshold for low
frequency sets and low value for higher frequencies. On
the other hand, top-1 and top-2 translations performed
more consistently. We expect the margin based method to
perform better than top-n for mixed frequency test set.

Open Track In our open track submission we ensem-
bled Wikipedia based fasttext skipgram based BWEs with
surface information. Although our system relied only on
the two similarity models we achieved significant improve-
ments compared to our closed track systems, especially for
En-Ru and Ru-En. The reason for this lies in the num-
ber of OOVs in the BWE vocabularies. As mentioned we
used the 200K most frequent word for both WaCKy and
Wikipedia based BWEs but for the former more source test
words are OOVs. We investigated the gold translations as
well and found a similar trend, i.e., there are more cases for
the closed trackmodels where the source word’s embedding
is known but not that of its gold translation. Our conjecture
is that the machine translation system used for the creation
of the MUSE dictionaries relies more on Wikipedia texts,
thus these models perform better on these test sets.

Manual analysis In table 2 we show interesting samples
taken from test set results that we created out of the training
data provided. The last two columns show the top predic-
tions according to BWE based scores, and orthographic
or transliteration scores. The Surface column is chosen as
the final prediction when no translation is provided for the
source word meaning that the source is not present in the
BWEs. This helps to solve OOV word issues. We can see
that the surface prediction is also useful for source words
that are not proper names like in the [polarität, polarity]
example. The last two rows show negative results where the
ensembling led to incorrect predictions. The [бартольд,
barthold] sample shows an incorrect weighting of the final
prediction which for example could have been solved with
a local weighting that could adjust the importance of the
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Source Gold Ensemble FTT cbow Surface
фейерверки fireworks fireworks fireworks feierwerk
левандовский levandovski levandovski / levandovski

workouts тренировки тренировки тренировки воркуты
hippocrates гиппократ гиппократ гиппократ покравительство
massimiliano массимилиано массимилиано / массимилиано
bolschoi bolshoi bolshoi / bolshoi
nikotin nicotine nicotine alcohol nicotine
polarität polarity polarity polarities polarity
бартольд barthold ismaili ismaili barthold
inedible ungenießbar incredible ungenießbar incredible

Table 2: Samples from our test set. The Ensemble column contains the output of our complete system, FTT cbow contains
the output based on FTT only, and Surface column contains the output based on the orthographic or transliteration similarity
scores. In bold there are the correct predictions in the last two columns. The slash "/" symbol indicates that the source word
is not in the embedding vocabulary. The last two samples are cases where the ensemble model selected the final prediction
wrongly.

High
En-De De-En En-Ru Ru-En

Closed 41.7 46.8 39.4 54.2
Open 42.0 46.6 38.2 56.2

Middle
En-De De-En En-Ru Ru-En

Closed 45.6 53.8 34.4 51.5
Open 47.9 57.9 40.4 56.9

Low
En-De De-En En-Ru Ru-En

Closed 66.0 69.2 29.9 41.4
Open 67.1 72.9 49.2 58.4

Table 3: Official BUCC 2020 results of our closed and open
track submissions.

BWEs and transliteration based on the candidate scores.
The last sample is incorrect probably because of the strong
similarity between the source word and the orthography
top prediction. We also have noise issues in this case (i.e.,
"incredible" is not a German word) that could be solved
with a language detection based filtering.

Official results We show the performance of our submis-
sions in the official shared task evaluation in table 3. Over-
all, our system was ranked in the top 3 teams and it achieved
top 1 results on the English and Russian language pairs. As
mentioned above our closed track submission involved the
ensembling of BWE and word surface similarity scores and
taking either top-1 or top-2 translations based on the fre-
quency set. The open track submission differs only in the
used word embeddings, e.i., we used pre-trained wikipedia
fasttext skipgram embeddings only. Our official results are
similar to the results on our test splits in table 1 which indi-
cates the robustness of our approach.

6. Conclusion
Bilingual dictionary induction is an important task for many
cross-lingual applications. In this paper we presented our

approach to the BUCC 2020 which is the first shared task on
BDI aiming to compare various systems in a unified frame-
work on multiple language pairs. We followed a BWE based
approach focusing of low frequency words by improving
their translations using surface similarity measures.
For our English-German system we used orthographic sim-
ilarity. Since for the English-Russian language pair orthog-
raphy is not applicable due to different scripts, we intro-
duced a novel character RNN based transliteration model.
We trained this system on the shared task training dictionary
which we cleaned by filtering non-transliteration pairs. In
our results we showed improvements compared to a simple
BWE based baseline for high, medium and low frequency
test sets. We showed that by using multiple BWE types bet-
ter performance can be reached on the high set. Further-
more, the medium and low sets surface similarity gave sig-
nificant performance improvements. In addition to translat-
ing words to their top-1 or top-2most similar candidates, we
experimented with a margin based dynamic method which
showed further improvements. On the other hand, since we
found that it is not robust across the various setups, we used
top-n translations in our official submission. Based on the
analysis of our results, future improvement directions are
better combinations of various similarity dictionaries, such
as source word based local weighting, getting rid of the seed
dictionary in the overall method, and amore robust dynamic
prediction approach.
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