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Abstract
Natural language numbers are an example of
compositional structures, where larger num-
bers are composed of operations on smaller
numbers. Given that compositional reason-
ing is a key to natural language understanding,
we propose novel multilingual probing tasks
tested on DistilBERT, XLM, and BERT to in-
vestigate for evidence of compositional rea-
soning over numerical data in various natu-
ral language number systems. By using both
grammaticality judgment and value compari-
son classification tasks in English, Japanese,
Danish, and French, we find evidence that the
information encoded in these pretrained mod-
els’ embeddings is sufficient for grammatical-
ity judgments but generally not for value com-
parisons. We analyze possible reasons for this
and discuss how our tasks could be extended
in further studies.

1 Introduction

In recent years, transformer-based language mod-
els such as BERT (Devlin et al., 2018), XLM
(Lample and Conneau, 2019), and DistilBERT
(Sanh et al., 2020) have achieved unprecedented
results on a wide array of natural language un-
derstanding tasks, even when such models are
trained on other tasks (i.e. transfer learning). In
light of this success, there has been increased
interest in investigating what particular informa-
tion transformer-based language models encode in
their word embeddings during pretraining that al-
lows them to perform well in transfer learning ex-
periments. Put into the context of this paper, we
may ask: do such models gain certain linguis-
tic/compositional understanding from pretraining?
Attempts to assess such phenomena are commonly
referred to as probing experiments. In this paper,
we introduce a novel probing task using targeted
datasets and classification tasks aimed at evaluat-
ing models’ compositional reasoning capabilities

in relation to numbers1 in multiple natural lan-
guages.

We choose both grammaticality judgment and
value comparison tasks (Section 3) to assess mul-
tilingual DistilBERT, XLM, and BERT2 over var-
ious number systems. We argue that high per-
formance on these tasks indicates some ability of
reasoning over compositional structures, particu-
larly over the rules generating valid compositional
structures (task 1) and the resultant meanings of
the structures (task 2). After probing the selected
models on our tasks, we discuss explanations for
the performance of models, as well as possible fu-
ture extensions to this probing task schema. Ad-
ditionally, studies in cognitive psychology such
as Miller et al. (1995) assert that children learn-
ing more transparent number systems (i.e. those
exhibiting more regularity in their surface forms
such as Japanese) have a greater counting profi-
ciency in several tasks compared to those learning
less transparent (opaque) systems, such as English
or French. Although it is not the focus of our work,
given the multilingual setting, we will refer to the
idea of number system transparency when analyz-
ing possible explanations of results.3

2 Related Work

Our approach is informed by previous
linguistically-motivated probing studies such

1For our purposes, numbers are spelled out, i.e. written
out as words such as “ninety”.

2Models were chosen for their varied sizes (num. param-
eters) as well as our access to computing resources.

3Number system complexity could be the subject of its
own paper. However, as a small example, we can look at
“thirty” in English and “ 三三三十十十” in Japanese. In English,
there is no previous number such as “three” that appears (un-
changed) in the word “thirty”. In Japanese, however, the word
consists of the kanji for 3 (“三三三”) and the kanji for 10 (“十十十”).
If we continue comparing in this way, we would see com-
positionality more clearly and regularly in Japanese’s surface
forms, thus forming our intuitions.
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at those discussed in Belinkov and Glass (2019)
and Ettinger (2020). Though Ettinger (2020)
discusses important findings on psycholinguistic
probing experiments of BERT, we find Ettinger
et al. (2016) particularly useful for our study
due to its clear explanations of linguistic probing
experiment setup. In their study, Ettinger et al.
present methods for constructing linguistically-
targeted datasets (including example sentences,
as we use) and classification tasks for probing
word embeddings for semantic knowledge. As
one of our tasks also seeks to probe for semantic
knowledge, we were able to use this setup as
a rough guideline. In addition, the authors are
careful to create linguistic data with sufficient
diversity as not to give potentially helpful cues
to their classifier which are not related to the
knowledge they wish to probe for. We thus
carefully create our task data in a similar manner
by limiting the distribution of our data (described
more later) and forbidding duplicates.

To our knowledge, there have been few stud-
ies conducted on investigating numerical under-
standing specifically in transformer-based lan-
guage models with a multilingual approach. How-
ever, one particularly relevant study on English
comes from Wallace et al. (2019). Wallace et al.
probe the embeddings of various models (BERT,
ELMo, word2vec, etc.) using three tasks: find the
maximum of a list, decode a number word to its
numerical form, and add number words to produce
a numerical form. In their results, the authors note
that all embeddings contain some understanding,
though standard embeddings perform particularly
well and character-level models perform best. Al-
though we investigate similar phenomena as Wal-
lace et al., our methodology includes several key
differences:

• Our focus is first and foremost to present a
novel probing task schema/data and test it
on a selection of transformer-based models
- not to compare performance of differing
language model architectures on previously-
made tasks.

• We seek to draw conclusions from our task
performance about model weaknesses over
varied languages and suggest ways in which
further probing experiments in this area can
be designed in the future.

• We assert that the inclusion of other lan-

guages besides English is an important ad-
dition to probing experiments, as variation
in language structure may help point to
previously-unseen weaknesses in pretrained
models.

• We include spelled-out numbers above 100
(up to 1000), which were not used in Wal-
lace et al. We believe having a larger range of
numbers might highlight weaknesses of mod-
els in handling multiple identical tokens in
one word.

• We use only spelled-out number words, and
do not include tasks where both Arabic nu-
merals and spelled-out words might be used.
Our reasoning for this choice is our desire
to leave out the possibility of models merely
learning a mapping from number words to
numerals in order to perform well on tasks.
In this way, we hope to make our tasks/data
as restrictive as possible in order that they
require a certain compositional/linguistic un-
derstanding.

3 Methods

We propose and perform two classification tasks
in English, Danish, Japanese, and French. Task
1 is a probe for underlying syntactic information
encoded in pretrained word embeddings, while
task 2 is a probe of underlying semantic informa-
tion. We run our tasks on all three models over
two different datasets which we have generated:
one where number words are inserted into sen-
tences (e.g. “There are seven hundred books in
the library.”) and one with numbers alone (e.g.
“seven-hundred”). Our probing model features a
multilayer perceptron (a NN with a single hid-
den layer) classifier on top of the existing trans-
former language model architecture. In this man-
ner, pretrained word embeddings from the lan-
guage model (BERT, DistilBERT, XLM) are fed
as input to the MLP classifier which itself is then
trained on our tasks. A depiction of the probing
model structure is shown in Figure 1.

3.1 Task 1: Grammaticality Judgment

We specify the first task as follows:

• Let v ∈ {bare, sentence} specify the vari-
ant of our task. If v = bare, then only
training examples with numbers not inserted
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into sentences will be used for grammatical-
ity judgments. Otherwise, only training ex-
amples with number inserted into sentences
are used. A mixture of two input data types
is never used.

• Let the training set of task 1, T , be defined by
pairs t0...tn where ti = (xti , yti)

• Let xti be the input of the i’th training exam-
ple ti such that xti = s. s is a string consist-
ing of a number word such as “thirty-two” or
a sentence containing a number word such as
“He could eat thirty-two oranges” (depending
on the value of v)

• Let yti ∈ {0, 1} be the corresponding label
of input xti of training sample ti. yti = 1
if the input string s of xti is ungrammatical,
otherwise yti = 0.

We argue high accuracy on this task is evidence
of some understanding of the underlying compo-
sitional/syntactic rules for the process which gen-
erates natural language numbers.

Figure 1: Probing model; Inputs can vary from sen-
tences with numbers to standalone numbers. All
weights are fixed except the connections to the MLP
layer

As an example, “two hundred three and fifty”
is not a number in the English language, while
“five hundred” is. We also assert that the im-
portance of using spelled-out numbers comes into
play since no string of Arabic numerals is ungram-
matical except a small amount of strings such as

“0112”. Often in written text, Arabic numerals are
used in place of number words; However, given
human ability to generalize compositional rules
from other structures in order to learn new struc-
tures, even if it were the case that fewer number
words were seen in pretraining, we would hope to
see a similar compositional generalization capabil-
ity present in pretrained language models’ embed-
dings which would allow them to perform well on
this task.

3.2 Task 2: Value Comparison
We specify the second task as follows:

• Let v ∈ {bare, sentence} specify the vari-
ant of our task. If v = bare, then only train-
ing examples with numbers not inserted into
sentences will be used for value comparsion.
Otherwise, only training examples with num-
ber inserted into sentences are used. A mix-
ture of two input data types is never used.

• Let the training set of task 2, U , be defined
by pairs u0...un where ui = (xui , yui)

• Let xui be the input of the i’th training ex-
ample ui such that xui = (s0, s1). s0 and
s1 represent bare number words or number
words inserted into sentences (depending on
the value of v).

• Let yui ∈ {0, 1} be the corresponding label
of input xui of training sample ui. yui = 0
if for s0 and s1 of xui , s0 refers to a value
larger than that of s1. yui = 1 if for s0 and s1
of xui , s0 refers to a value smaller than that
of s1.

With this task, we take high accuracy as ev-
idence of some understanding of the composi-
tional semantic information carried by the number,
i.e. its magnitude. For example, given the pair
(s0 =“twelve”, s1 =“fifteen”) the correct output
should be 1, since the first number in the pair is
less than the second. This task is similar in form
to the list maximum task of Wallace et al. (2019);
However, notable differences include our usage of
number words in sentences, our inclusion of num-
ber words above 100, and languages other than
English.
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Task (v) Input Output
Task 1 (sentence) “He could eat three hundred and two oranges” 0 (s grammatical)
Task 1 (bare) “seventy-four six hundred and thirty-eight” 1 (s ungrammatical)
Task 2 (sentence) “There are seven hundred and eighty-six books in the library” 0 (s0 greater)

“There are thirty-eight books in the library”
Task 2 (bare) “five hundred” 1 (s0 less)

“six hundred”

Table 1: Sample of generated English data for our tasks

4 Data

Separate datasets for each variant of each task
were made, each with a 60-20-20 train-validation-
test split. To generate number words to cre-
ate training example inputs, the python package
num2words (Ogawa) was used for text conversion
from numerical to standard spelled-out numbers.
For task 1, it was necessary to create ungrammati-
cal numbers in each language. These ungrammat-
ical number words were created by randomly ap-
pending grammatical number words (or parts of
them) together and controlling for length. Lastly,
it was also necessary to create custom sentences
to insert our number words into. Eleven sentence
templates were used, translated into each of our
languages and verified by native speakers. A sam-
ple of our data can be seen in Table 1. Detailed
information on dataset statistics and data genera-
tion techniques can be found in appendix B.

5 Results

The following sections show probing results on
both tasks. Before probing and as a precaution,
we fine-tuned our models on both tasks. As we ex-
pected, we find that both tasks are learnable to ac-
curacies above 95%. A further discussion of fine-
tuning results is left for appendix A.

5.1 Task 1 Results

Our results on task 1 (Figure 2) show that the pre-
trained embeddings of multilingual BERT, Dis-
tilBERT and XLM seem to have sufficient infor-
mation to be able to determine grammaticality of
number words in Japanese, English, Danish, and
French at better-than-chance performance. We
thus argue that these results suggest that the pre-
trained embeddings of these models contain some
understanding of the compositional rules for gen-
erating number words in the languages we’ve se-
lected.

There are a few patterns worth noting in the
results. Firstly, accuracy on bare numbers was
always better than accuracy on numbers in sen-
tences. Though accuracy on numbers in sentences
was not extremely poor, our initial prediction was
that they would perform better as they would re-
semble the type of data which the models were
pretrained on (Wikipedia). Secondly, in terms of
overall model performance, DistilBERT performs
best (sometimes even at 100% accuracy) in the
majority of cases, followed by XLM and BERT.
A further analysis of these patterns is left for our
discussion (6).

5.2 Task 2 Results
On our second task, we find that overall, the in-
formation in the pretrained embeddings of BERT,
DistilBERT, and XLM is mostly insufficient for
comparing number magnitudes in our tested lan-
guages with high accuracy. This suggests that
these pretrained embeddings may struggle with
understanding the compositional semantics of
number words (i.e. how compositional elements
in number words form to create meaning).

As for patterns in these results, we can again see
that bare number performance is always equal to
or better than when numbers are inserted into sen-
tences. Looking at bare results, DistilBERT again
performs well, but this time XLM performs best
on Japanese and English. A further analysis of
these patterns is also left for our discussion (6).
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Figure 2: Task test accuracy on probing per language/model.

6 Discussion

6.1 Pretraining Data

Since this probing experiment is using pretrained
transformer-based language models (Wolf et al.,
2019), we can briefly discuss pretraining meth-
ods in order to ascertain potential effects on re-
sults. Each model was pretrained using masked
language modelling and all except XLM (unspec-
ified) were pretrained on multilingual Wikipedia
data. With this, one may ask whether this method
of training should be expected to encode the in-
formation we probe for. Particularly, one may
point to the usage of Arabic numerals in Wikipedia
text and less-frequent usage of spelled-out num-
bers as a cause for poor performance on task 2.
In imagining alternatives to Wikipedia, a consid-
eration of Arabic numerals must still be present,
which serves as a reminder that there is no perfect
pretraining set.

However, we do not believe this would prevent
language models from capturing the information
necessary to complete our task 2. We assert that
even if these models have seen fewer spelled-out
numbers, they could still learn compositional rules
from other linguistic structures and generalize to
our probing task. If Arabic numerals proved to
be an issue, we would expect to see our results
be worse across the board, not only on task 2.
Thus, from our results, it seems that pretraining
on Wikipedia was certainly not sufficient for en-
coding a highly accurate sense of number magni-
tude for any of the models/languages, but this was
likely not due to pretraining methods.

6.2 Worse Performance on Task 2
Why might models have more difficulty in ascer-
taining magnitude of number words? For one, we
believe this task is naturally more difficult than
the first because of the deep semantic informa-
tion necessary to succeed on it. In the first task, it
may have been possible to leverage at least some
of the surface level characteristics of grammatical
and ungrammatical words, whereas in the second
task there is no such leveraging possible. That is
to say, in the first task, a model can learn syntac-
tic information more directly from surface level
patterns. Instead, in task 2, the models need to
have encoded some semantic information about
the magnitude of number words, where the surface
forms of these words gives less indication of their
underlying meaning (except for the possibility of
longer words having larger quantities, though this
is not always the case). Given this is true, this
may point to a weakness in models to make fine-
grained semantic distinctions regarding quantities,
especially when quantities are used in sentences
and not left bare.

6.3 Language Transparency
In terms of number system transparency (as men-
tioned in our introduction), we loosely presumed
that accuracies might follow the order of Japanese
> English/Danish > French, with Japanese per-
forming best given its higher transparency and
French the worst due to its vigesimal number sys-
tem. Again, we choose not to formally define
transparency, as such a formal definition is an in-
depth topic of its own. To our slight surprise, our
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results did not match these predictions, with rank-
ings of performance by language varying by task
and task variation.

We argue there could be many reasons (such as
pretraining data) for the unexpected results pat-
tern. However, since there is more of a consis-
tent performance pattern across models than there
is across languages, we believe it is far more likely
that differences in performance are not necessarily
due to language transparency, but rather model ar-
chitecture and therefore that the structural differ-
ences between these languages is not a significant
contributing factor to performance patterns. If this
were true (which we think is probable), this is a
good sign for these models, since language struc-
ture differences are not proving to be a challenge
to performance, but rather some other factor.

6.4 Model Architecture and Performance
One clear pattern we can see is that multilingual
BERT’s embeddings consistently perform much
worse than both XLM and DistilBERT. This is es-
pecially clear in French results, where the gap be-
tween BERT and the other two models is some-
times more than 20 points. A relatively simple ex-
planation for this is the size of each model in terms
of number of parameters. Indeed, as model size
increases, performance on both tasks increases
(BERT -> DistilBERT -> XLM). Of course, cor-
relation is no evidence of causation; However, if
this were true, it is quite consistent with other
trends in recent NLP studies. In the case of this
study, we can say that bigger is (almost) always
better, with XLM mostly performing best, fol-
lowed by DistilBERt and BERT. Though, this is
somewhat undesirable on a larger scale since, ide-
ally, we would hope that it would not require such
a large model to encode the information we probe
for.

6.5 Bare Number Words Perform Better
On both tasks, our results also show that bare num-
bers performed equal to or better than numbers in
sentences. We propose that this is due to the sen-
tences creating noisiness, thus creating more diffi-
culty for a model to know exactly where it should
be looking for the necessary information to com-
plete the tasks. This is very much the case for task
2, where we believe it would be harder to know the
magnitude a sentence is referring to than merely
if the sentence is grammatical. We argue that, be-
sides adding noise, this method of probing exploits

a possible weakness in masked language model-
ing as a pretraining method. That is, given that
masked language modeling’s task it to predict ap-
propriate (grammatical) words, there may be less
emphasis on learning the underlying semantics of
those words, thus the better performance on task
1 sentences and worse performance on task 2 sen-
tences.

7 Further Work

As this work is an exploration of a new probing
method for state-of-the-art language model archi-
tecture, there are surely a number of ways to ex-
tend from it.

Though we discussed it briefly here, explor-
ing the architectural reasons for the shortcomings
of these pretrained embeddings, especially in the
case of task 2 and with sentences is an impor-
tant area for future work. Indeed, in a similar
task from Wallace et al. (2019), BERT was also
found to have poor performance. In the future,
several more specific probes could be designed to
test for understanding of magnitude in various lin-
guistic contexts to find strengths and weaknesses
of transformer-based models. A particularly inter-
esting case would be in testing magnitude com-
prehension in sentences of varying structures. Our
sentence templates used in this study are few, and
experimenting with other varieties could prove to
be insightful.

Our experiment also made use of the idea of
language transparency. We also find this to be
a topic for possible further work. Namely, is
there a method to reliably measure transparency
of languages to predict performance on numeri-
cal understanding tasks such as these? We believe
this may be possible through measuring complex-
ities of grammars which generate number words
in each language. Overall, in future extensions of
this study, there is room for more languages, sen-
tence types, task renditions, and models.

8 Conclusion

In this paper, we introduced methods for probing
the multilingual compositional reasoning capabil-
ities of transformer-based models’ pretrained em-
beddings over natural language numbers. From
our experiments, we’ve shown that these pre-
trained embeddings show some capabilities in
making grammatical judgments of number words,
though they are less capable of making value com-
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parisons. In addition, we find that results gener-
ally follow a trend based upon model size. Our
results are in accord with previous work such as
Wallace et al. (2019); However, we have also
highlighted further model weaknesses through our
probing methods. Therefore, the opportunities for
future work, especially with a multilingual focus,
are plenty.
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A Fine-Tuning

The fine-tuning results shown in (Figure 3) are
validation accuracies after one epoch of training.
When trained for 20 epochs (Figure 4), the mod-
els reach over 99% accuracy on all languages and
tasks except for Danish which reaches 95% on
sentence tasks.

Figure 3: Fine-tuned task validation accuracy per lan-
guage/model, when trained for 1 epoch.

Figure 4: Fine-tuned task validation accuracy per lan-
guage/model, when trained for 20 epochs.

B Data Generation

B.1 Dataset Parameters

The parameters below were used to generate data
for each language per each model per each task
variation:

• Data Gen. Seed: 1

• Data Gen. Number Range: [0-999]

• Train Set Size: 30,000

• Validation Set Size: 10,000

• Test Set Size: 10,000

• Shuffle = True

B.2 Task 1 Data

For both variants of task 1 (sentences/bare), gram-
matical data are generated by creating random
numbers then converting them to text through the
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num2words (Ogawa) package. For the ungram-
matical data, two grammatical numbers are ran-
domly generated, both converted to text, then ap-
pended together to create an ungrammatical num-
ber. For example the ungrammatical number
“fifty-five two hundred” is the combination of
“fifty-five” and “two hundred”. Another example
made from the same original elements could be:
“two fifty-five hundred”. Grammatical numbers
used in splits, however, were only split such that
the resulting elements were grammatical words
themselves. So, for example, an non-continuous
number word string like ”fi-tfy te nnine” would
never occur.

Since generating numbers with appendage can
naturally occur in ungrammatical number words
being longer than grammatical, we control for
length by limiting our set of ungrammatical num-
ber words to words that are at most as long as
the longest grammatical number. Lastly, we en-
sure no grammatical numbers are accidentally cre-
ated in this process by keeping a list of known
grammatical numbers in text form (generated by
num2words) that ranges from number sufficiently
higher than our generation range. For example,
if our number word generation ranges from 0-
1000, we would make this list of known grammat-
ical numbers from 1-100,000,000. These number
words are finally either left bare or inserted into
sentences to form our x inputs and are labeled 0 if
grammatical and 1 if ungrammatical.

B.3 Task 2 Data

The data for the semantic task are generated by
creating pairs of random (grammatical) number
words and labeling the pair with one of two cat-
egories: 0 if the first numbers is larger than the
second and 1 if the second is larger than the first.
Through our process of data generation, we ensure
that there are never two pairs using the same num-
ber. They are then converted to text form for input
to a model. These number words are finally either
left bare or inserted into sentences to form our x
inputs. When numbers are used in sentence tem-
plates, it is ensured that the numbers are used in
the same template. For example, given the num-
ber pair “five” and “six”, we could compare the
sentences: “There are five apples.” and “There are
six apples.”.

C Modeling

C.1 Pytorch Hugging Face Transformers
We use the configurations below of transform-
ers from Hugging Face Transformers (Wolf et al.,
2019) in Pytorch on all of our reported experimen-
tal runs. Average runtimes were all around 1 hour
or less.

• DistilBERT:

– Class: DistilBertForSequenceClassification
– Config: distilbert-base-multilingual-cased
– Tokenizer: DistilBertTokenizer
– Num. Parameters: 134 million total

• BERT

– Class: BertForSequenceClassification
– Config: base-multilingual-cased
– Tokenizer: BertTokenizer
– Num. Parameters: 110 million total

• XLM

– Class: XLMForSequenceClassification
– Config: xlm-mlm-100-1280
– Tokenizer: XLMTokenizer
– Num. Paremeters: ∼550 million total (inexact)

C.2 Hyperparameters
All experiments which produced our final results
shown in the paper were run with the following
hyperparemeters which were selected manually by
tuning for accuracy over a validation set:

• Epochs: 20 (Range: 10-20)

• Learning Rate: 0.00001 (Range: 1e-5 - 1e-4)

• Minibatch size: 32

C.3 Infrastructure
• GPU: Nvidia Tesla P100

• CUDA Version: 10.1

• Python Version: 3.7

C.4 Code Repository
Our Github repository can be found here. Code
is subject to change after publishing of this paper.
Refer to the Github README for latest informa-
tion.

https://github.com/dj1121/tlm_num_probe

