
Dynamic Masking for Improved Stability in Online
Spoken Language Translation

Yuekun Yao ykyao.cs@gmail.com
Barry Haddow bhaddow@staffmail.ed.ac.uk
School of Informatics, University of Edinburgh, 10 Crichton Street, Edinburgh, Scotland

Abstract
For spoken language translation (SLT) in live scenarios such as conferences, lectures and meet-
ings, it is desirable to show the translation to the user as quickly as possible, avoiding an an-
noying lag between speaker and translated captions. In other words, we would like low-latency,
online SLT. If we assume a pipeline of automatic speech recognition (ASR) and machine trans-
lation (MT) then a simple but effective approach to online SLT is to pair an online ASR system,
with a retranslation strategy, where the MT system retranslates every update received from
ASR. However this can result in annoying “flicker” as the MT system updates its translation.
A possible solution is to add a fixed delay, or “mask” to the the output of the MT system, but
a fixed global mask re-introduces undesirable latency to the output. We introduce a method
for dynamically determining the mask length, which provides a better latency–flicker trade-off
curve than a fixed mask, without affecting translation quality.

1 Introduction

A common approach to Spoken Language Translation (SLT) is to use a cascade (or pipeline)
consisting of automatic speech recognition (ASR) and machine translation (MT). In a live trans-
lation setting, such as a lecture or conference, we would like the transcriptions or translations to
appear as quickly as possible, so that they do not “lag” noticeably behind the speaker. In other
words, we wish to minimise the latency of the system. Many popular ASR toolkits can operate
in an online mode, where the transcription is produced incrementally, instead of waiting for the
speaker to finish their utterance. However online MT is less well supported, and is complicated
by the reordering which is often necessary in translation, and by the use of encoder-decoder
models which assume sight of the whole source sentence.

Some systems for online SLT rely on the streaming approach to translation, perhaps in-
spired by human interpreters. In this approach, the MT system is modified to translate incre-
mentally, and on each update from ASR it will decide whether to update its translation, or
wait for further ASR output (Cho and Esipova, 2016; Ma et al., 2019; Zheng et al., 2019a,b;
Arivazhagan et al., 2019).

The difficulty with the streaming approach is that the system has to choose between com-
mitting to a particular choice of translation output, or waiting for further updates from ASR,
and does not have the option to revise an incorrect choice. Furthermore, all the streaming
approaches referenced above require specialised training of the MT system, and modified infer-
ence algorithms.

To address the issues above, we construct our online SLT system using the retransla-
tion approach (Niehues et al., 2018; Arivazhagan et al., 2020a), which is less studied but

Proceedings of the 14th Conference of the Association for Machine Translation in the Americas
October 6 - 9, 2020, Volume 1: MT Research Track

Page 123

more straightforward. It can be implemented using any standard MT toolkit (such as Marian
(Junczys-Dowmunt et al., 2018) which is highly optimised for speed) and using the latest ad-
vances in text-to-text translation. The idea of retranslation is that we produce a new translation
of the current sentence every time a partial sentence is received from the ASR system. Thus,
the translation of each sentence prefix is independent and can be directly handled by a stan-
dard MT system. Arivazhagan et al. (2020b) directly compared the retranslation and streaming
approaches and found the former to have a better latency–quality trade-off curve.

When using a completely unadapted MT system with the retranslation approach, however,
there are at least two problems we need to consider:

1. MT training data generally consists of full sentences, and systems may perform poorly on
partial sentences

2. When MT systems are asked to translate progressively longer segments of the conversa-
tion, they may introduce radical changes in the translation as the prefixes are extended. If
these updates are displayed to the user, they will introduce an annoying “flicker” in the
output, making it hard to read.

We illustrate these points using the small example in Figure 1. When the MT system
receives the first prefix (“Several”) it attempts to make a longer translation, due to its bias
towards producing sentences. When the prefix is extended (to “Several years ago”), the MT
system completely revises its original translation hypothesis. This is caused by the differing
word order between German and English.

Several −→ Mehrere Male
Several times

Several years ago −→ Vor einigen Jahre
Several years ago

Figure 1: Sample translation with standard en→de MT system. We show the translation output,
and its back-translation into English.

The first problem above could be addressed by simply adding sentence prefixes to the
training data of the MT system. In our experiments we found that using prefixes in training
could improve translation of partial sentences, but required careful mixing of data, and even
then performance of the model trained on truncated sentences was often worse on full sentences.

A way to address both problems above is with an appropriate retranslation strategy. In
other words, when the MT system receives a new prefix, it should decide whether to transmit
its translation in full, partially, or wait for further input, and the system can take into account
translations it previously produced. A good retranslation strategy will address the second prob-
lem above (too much flickering as translations are revised) and in so doing so address the first
(over-eagerness to produce full sentences).

In this paper, we focus on the retranslation methods introduced by Arivazhagan et al.
(2020a) – mask-k and biased beam search. The former is a delayed output strategy which
does not affect overall quality, reduces flicker, but can significantly increase the latency of the
translation system. The latter alters the beam search to take into account the translation of the
previous prefix, and is used to reduce flicker without influencing latency much, but can also
damage translation quality.

Our contribution in this paper is to show that by using a straightforward method to predict
how much to mask (i.e. the value of k in the mask-k strategy) we obtain a more optimal trade-
off of flicker and latency than is possible with a fixed mask. We show that for many prefixes

Proceedings of the 14th Conference of the Association for Machine Translation in the Americas
October 6 - 9, 2020, Volume 1: MT Research Track

Page 124

the mask can be safely reduced. We achieve this by having the system make probes of possible
extensions to the source prefix, and observing how stable the translation of these probes is –
instability in the translation requires a larger mask. Our method requires no modifications to
the underlying MT system, and has no effect on translation quality.

2 Related Work

Early work on incremental MT used prosody (Bangalore et al., 2012) or lexical cues (Rangara-
jan Sridhar et al., 2013) to make the translate-or-wait decision. The first work on incremental
neural MT used confidence to decide whether to wait or translate (Cho and Esipova, 2016),
whilst in (Gu et al., 2017) they learn the translation schedule with reinforcement learning. In
Ma et al. (2019), they address simultaneous translation using a transformer (Vaswani et al.,
2017) model with a modified attention mechanism, which is trained on prefixes. They intro-
duce the idea of wait-k, where the translation does not consider the final k words of the input.
This work was extended by Zheng et al. (2019b,a), where a “delay” token is added to the target
vocabulary so the model can learn when to wait, through being trained by imitation learning.
The MILk attention (Arivazhagan et al., 2019) also provides a way of learning the translation
schedule along with the MT model, and is able to directly optimise the latency metric.

In contrast with these recent approaches, retranslation strategies (Niehues et al., 2018) al-
low the use of a standard MT toolkit, with little modification, and so are able to leverage all
the performance and quality optimisations in that toolkit. Arivazhagan et al. (2020a) pioneered
the retranslation system by combining a strong MT system with two simple yet effective strate-
gies: biased beam search and mask-k. Their experiments show that the system can achieve
low flicker and latency without losing much performance. In an even more recent paper, Ari-
vazhagan et al. (2020b) further combine their retranslation system with prefix training and make
comparison with current best streaming models (e.g. MILk and wait-k models), showing that
such a retranslation system is a strong option for online SLT.

3 Retranslation Strategies

Before introducing our approach, we describe the two retranslation strategies introduced in
Arivazhagan et al. (2020a): mask-k and biased beam search.

The idea of mask-k is simply that the MT system does not transmit the last k tokens of its
output – in other words it masks them. Once the system receives a full sentence, it transmits the
translation in full, without masking. The value of k is set globally and can be tuned to reduce
the amount of flicker, at the cost of increasing latency. Arivazhagan et al. (2020a) showed good
results for a mask of 10, but of course for short sentences a system with such a large mask would
not produce any output until the end of the sentence.

In biased beam search, a small modification is made to the translation algorithm, changing
the search objective. The technique aims to reduce flicker by ensuring that the translation pro-
duced by the MT system stays closer to the translation of the previous (shorter) prefix. Suppose
that S is a source prefix, S′ is the extension of that source prefix provided by the ASR, and T
is the translation of S produced by the system (after masking). Then to create the translation
T ′ of S′, biased beam search substitutes the model probability p(t′i|t′<i, S′) with the following
expression:

pB(t′i|t′<i, S′) = (1− β) · p(t′i|t′<i, S′) + β · δ(t′i, ti)

where t′i is the ith token of the translation hypothesis T ′, and β is a weighting which we set to
0 when t<i 6= t′<i. In other words, we interpolate the translation model with a function that
keeps it close to the previous translation, but stop applying the biasing once the new translation
diverges from the previous one.

Proceedings of the 14th Conference of the Association for Machine Translation in the Americas
October 6 - 9, 2020, Volume 1: MT Research Track

Page 125

As we noted earlier, biased beam search can degrade the quality of the translation, and we
show experiments to illustrate this in Section 6.1. We also note that biased beam search assumes
that the ASR simply extends its output each time it updates, when in fact ASR systems may
rewrite their output. Furthermore, biased beam search requires modification of the underlying
inference algorithm (which in the case of Marian is written in highly optimised, hand-crafted
GPU code), removing one of the advantages of the retranslation approach (that it can be easily
applied to standard MT systems).

4 Dynamic Masking

In this section we introduce our improvement to the mask-k approach, which uses a variable
mask, that is set at runtime. The problem with using a fixed mask, is that there are many
time-steps where the system is unlikely to introduce radical changes to the translation as more
source is revealed, and on these occasions we would like to use a small mask to reduce latency.
However the one-size-fits-all mask-k strategy does not allow this variability.

The main idea of dynamic masking is to predict what the next source word will be, and
check what effect this would have on the translation. If this changes the translation, then we
mask, if not we output the full translation.

S = a bASR

S′ = a b c

T = p q r

T ′ = p q s t

T ∗ = p qextend

translate

translate

LCP

Figure 2: The source prediction process. The string a b is provided by the ASR system. The MT
system then produces translations of the string and its extension, compares them, and outputs
the longest common prefix (LCP)

More formally, we suppose that we have a source prefix S = s1 . . . sp, a source-to-target
translation system, and a function predk, which can predict the next k tokens following S. We
translate S using the translation system to give a translation hypothesis T = t1 . . . tq . We then
use predk to predict the tokens following sp in the source sentence to give an extended source
prefix S′ = s1 . . . spsp+1 . . . sp+k, and translate this to give another translation hypothesis T ′.
Comparing T and T ′, we select the longest common prefix T ∗, and output this as the translation,
thus masking the final |T | − |T ∗| tokens of the translation. If S is a complete sentence, then we
do not mask any of the output, as in the mask-k strategy. The overall procedure is illustrated in
Figure 2.

In fact, after initial experiments, we found it was more effective to refine our strategy,
and not mask at all if the translation after dynamic mask is a prefix of the previous transla-
tion. In this case we directly output the last translation. In other words, we do not mask if
is prefix(T ∗i , T

∗
i−1) but instead output T ∗i−1 again, where T ∗i denotes the masked translation

for the ith ASR input. We also notice that this refinement does not give any benefit to the mask-
k strategy in our experiments. The reason that this refinement is effective is that the translation
of the extended prefix can sometimes exhibit instabilities early in the sentence (which then dis-
appear in a subsequent prefix). Applying a large mask in response to such instabilities increases
latency, so we effectively “freeze” the output of the translation system until the instability is
resolved. An example to illustrate this refinement can be found in Figure 10.

Proceedings of the 14th Conference of the Association for Machine Translation in the Americas
October 6 - 9, 2020, Volume 1: MT Research Track

Page 126

To predict the source extensions (i.e. to define the predk function above), we first tried
using a language model trained on the source text. This worked well, but we decided to add two
simple strategies in order to see how important it was to have good prediction. The extension
strategies we include are:

lm-sample We sample the next token from a language model (LSTM) trained on the source-
side of the parallel training data. We can choose n possible extensions by choosing n
distinct samples.

lm-greedy This also uses an LM, but chooses the most probable token at each step.

unknown We extend the source sentence using the UNK token from the vocabulary.

random We extend by sampling randomly from the vocabulary, under a uniform distribution.
As with lm-sample, we can generalise this strategy by choosing n different samples.

5 Evaluation of Retranslation Strategies

Different approaches have been proposed to evaluate online SLT, so we explain and justify our
approach here. We follow previous work on retranslation (Niehues et al., 2018; Arivazhagan
et al., 2020a,b) and consider that the performance of online SLT should be assessed according to
three different aspects – quality, latency and flicker. All of these aspects are important to users
of online SLT, but improving on one can have an adverse effect on other aspects. For example
outputting translations as early as possible will reduce latency, but if these early outputs are
incorrect then either they can be corrected (increasing flicker) or retained as part of the later
translation (reducing quality). In this section we will define precisely how we measure these
system aspects. We assume that selecting the optimal trade-off between quality, latency and
flicker is a question for the system deployer, that can only be settled by user testing.

Latency The latency of the MT system should provide a measure of the time between the MT
system receiving input from the ASR, and it producing output that can be potentially be sent
to the user. A standard (text-to-text) MT system would have to wait until it has received a full
sentence before it produces any output, which exhibits high latency.

We follow Ma et al. (2019) by using a latency metric called average lag (AL), which
measures the degree to which the output lags behind the input. This is done by averaging
the difference between the number of words the system has output, and the number of words
expected, given the length of the source prefix received, and the ratio between source and target
length. Formally, AL for source and target sentences S and T is defined as:

AL(S, T) =
1

τ

τ∑
t=1

g(t)− (t− 1)|S|
|T |

where τ is the number of target words generated by the time the whole source sentence is
received, g(t) is the number of source words processed when the target hypothesis first reaches
a length of t tokens. In our implementation, we calculate the AL at token (not subword) level
with the standard tokenizer in sacreBLEU (Post, 2018), meaning that for Chinese output we
calculate AL on characters.

This metric differs from the one used in Arivazhagan et al. (2020a)1, where latency is
defined as the mean time between a source word being received and the translation of that
source word being finalised. We argue against this definition, because it conflates latency and

1In the presentation of this paper at ICASSP, the authors used a latency metric similar to the one used here, and
different to the one they used in the paper

Proceedings of the 14th Conference of the Association for Machine Translation in the Americas
October 6 - 9, 2020, Volume 1: MT Research Track

Page 127

flicker, since outputting a translation and then updating is penalised for both aspects. The update
is penalised for flicker since the translation is updated (see below) and it is penalised for latency,
since the timestamp of the initial output is ignored in the latency calculation.

Flicker The idea of flicker is to obtain a measure of the potentially distracting changes that
are made to the MT output, as its ASR-supplied source sentence is extended. We assume that
straightforward extensions of the MT output are fine, but changes which require re-writing of
part of the MT output should result in a higher (i.e. worse) flicker score. Following Arivazha-
gan et al. (2020a), we measure flicker using the normalised erasure (NE), which is defined as
the minimum number of tokens that must be erased from each translation hypothesis when
outputting the subsequent hypothesis, normalised across the sentence. As with AL, we also
calculate the NE at token level for German, and at character level for Chinese.

Quality As in previous work Arivazhagan et al. (2020a), quality is assessed by comparing the
full sentence output of the system against a reference, using a sentence similarity measure such
as BLEU. We do not evaluate quality on prefixes, mainly because of the need for a heuristic to
determine partial references. Further, quality evaluation on prefixes will conflate with evaluation
of latency and flicker and thus we simply assume that if the partial sentences are of poor quality,
that this will be reflected in the other two metrics (flicker and latency). Note that our proposed
dynamic mask strategy is only concerned with improving the flicker–latency trade-off curve and
has no effect on full-sentence quality, so MT quality measurement is not the focus of this paper.
Where we do require a measure of quality (in the assessment of biased beam search, which does
change the full-sentence translation) we use BLEU as implemented by sacreBLEU (Post, 2018).

6 Experiments

6.1 Biased Beam Search and Mask-k
We first assess the effectiveness of biased beam search and mask-k (with a fixed k), providing a
more complete experimental picture than in Arivazhagan et al. (2020a), and demonstrating the
adverse effect of biased beam search on quality. For these experiments we use data released for
the IWSLT MT task (Cettolo et al., 2017), in both English→German and English→Chinese.
We consider a simulated ASR system, which supplies the gold transcripts to the MT system one
token at a time2.

For training we use the TED talk data, with dev2010 as heldout and tst2010 as test set. The
raw data set sizes are 206112 sentences (en-de) and 231266 sentences (en-zh). We preprocess
using the Moses (Koehn et al., 2007) tokenizer and truecaser (for English and German) and
jieba3 for Chinese. We apply BPE (Sennrich et al., 2016) jointly with 90k merge operations. For
our MT system, we use the transformer-base architecture (Vaswani et al., 2017) as implemented
by Nematus (Sennrich et al., 2017). We use 256 sentence mini-batches, and a 4000 iteration
warm-up in training.

As we mentioned in the introduction, we did experiment with prefix training (using both
alignment-based and length-based truncation) and found that this improved the translation of
prefixes, but generally degraded translation for full sentences. Since prefix translation can also
be improved using the masking and biasing techniques, and the former does not degrade full
sentence translation, we only include experimental results when training on full sentences.

2A real online ASR system typically increments its hypothesis by adding a variable number of tokens in each
increment, and may revise its hypothesis. Also, ASR does not normally supply sentence boundaries, or punctuation,
and these must be added by an intermediate component. Sentence boundaries may change as the ASR hypothesis
changes. In this work we make simplifying assumptions about the nature of the ASR, in order to focus on retranslation
strategies, leaving the question of dealing with real online ASR to future work.

3https://github.com/fxsjy/jieba

Proceedings of the 14th Conference of the Association for Machine Translation in the Americas
October 6 - 9, 2020, Volume 1: MT Research Track

Page 128

In Figure 3 we show the effect of varying β and k on our three evaluation measures, for
English→German.

(a) Masking versus flicker (measued by erasure) (b) Masking versus quality (measured by BLEU).

(c) Masking versus latency (measured by average lagging).

Figure 3: Effect of varying mask-k, at different values of the biased beam search interpolation
parameter, on the three measures proposed in Section 5.

Looking at Figure 3(a) we notice that biased beam search has a strong impact in reducing
flicker (erasure) at all values of β. However the problem with this approach is clear in Figure
3(b), where we can see the reduction in BLEU caused by this biasing. This can be offset by
increasing masking, also noted by Arivazhagan et al. (2020a), but as we show in Figure 3(c)
this comes at the cost of an increase in latency.

Our experiments with en→zh show a roughly similar pattern, as shown in Figure 4. We
find that lower levels of masking are required to reduce the detrimental effect on BLEU of the
biasing, but latency increases more rapidly with masking.

6.2 Dynamic Masking
We now turn our attention to the dynamic masking technique introduced in Section 4. We use
the same data sets and MT systems as in the previous section. To train the LM, we use the
source side of the parallel training data, and train an LSTM-based LM.

To assess the performance of dynamic masking, we measure latency and flicker as we vary
the length of the source extension (k) and the number of source extensions (n). We consider the
4 different extension strategies described at the end of Section 4. We do not show translation

Proceedings of the 14th Conference of the Association for Machine Translation in the Americas
October 6 - 9, 2020, Volume 1: MT Research Track

Page 129

(a) Masking versus flicker (measured by erasure) (b) Masking versus quality (measured by BLEU).

(c) Masking versus latency (measured by average lagging).

Figure 4: Effect of varying mask-k, at different values of the biased beam search interpolation
parameter, on English-to-Chinese corpus

quality since the translation of the complete sentence is unaffected by the dynamic masking
strategy. The results for both en→de and en→zh are shown in Figure 5, where we compare to
the strategy of using a fixed mask-k. The oracle data point is where we use the full-sentence
translations to set the mask so as to completely avoid flicker.

We observe from Figure 5 that our dynamic mask mechanism improves over the fixed mask
in all cases, Pareto-dominating it on latency and flicker. Varying the source prediction strategy
and parameters appears to preserve the same inverse relation between latency and flicker, al-
though offering a different trade-off. Using several random source predictions (the green curve
in both plots) offers the lowest flicker, at the expense of high latency, whilst the shorter LM-
based predictions show the lowest latency, but higher flicker. We hypothesise that this happens
because extending the source randomly along several directions, then comparing the translations
is most likely to expose any instabilities in the translation and so lead to a more conservative
masking strategy (i.e. longer masks). In contrast, using a single LM-based predictions gives
more plausible extensions to the source, making the MT system more likely to agree on its
translations of the prefix and its extension, and so less likely to mask. Using several LM-based
samples (the black curve) adds diversity and gives similar results to random (except that random
is quicker to execute). The pattern across the two language pairs is similar, although we observe
a more dispersed picture for the en→zh results.

Proceedings of the 14th Conference of the Association for Machine Translation in the Americas
October 6 - 9, 2020, Volume 1: MT Research Track

Page 130

(a) Dynamic Masking for en→de MT system trained
on full sentences (measured by AL and NE)

(b) Dynamic Masking for en→zh MT system trained
on full sentences (measured by AL and NE)

Figure 5: Effect of dynamic mask with different source prediction strategies. The strategies are
explained in Section 3, and the oracle means that we use the full-sentence translation to set the
mask.

We note that, whilst Figure 5 shows that our dynamic mask approach Pareto-dominates the
mask-k, it does not tell the full story since it averages both the AL and NE across the whole
corpus. To give more detail on the distribution of predicted masks, we show histograms of all
masks on all prefixes for two of the source prediction strategies in Figure 6. We select the source
extension strategies at opposite ends of the curve, i.e. the highest AL / lowest NE strategy and
the lowest AL / highest NE strategy, and show results from en→de. We can see from the graphs
in Figure 6 that the distribution across masks is highly skewed, with majority of prefixes having
low masks, below the mean. This is in contrast with the mask-k strategy where the mask has
a fixed value, except at the end of a sentence where there is no mask. Our strategy is able to
predict, with a reasonable degree of success, when it is safe to reduce the mask.

In order to provide further experimental verification of our retranslation model, we apply
the strategy to a larger-scale English→Chinese system. Specifically, we use a model that was
trained on the entire parallel training data for the WMT20 en-zh task4, in addition to the TED
corpus used above. For the larger model we prepared as before, except with 30k BPE merges
separately on each language, and then we train a transformer-regular using Marian. By using
this, we show that our strategy is able to be easily slotted in a different model from a differ-
ent translation toolkit. The results are shown in Figure 7. We can verify that the pattern is
unchanged in this setting.

We illustrate the improved stability preovided by our masking strategy, by drawing three
examples from the English→German system’s translation of our test set, in Figures 8–10. In
each example we show the source prefix (as provided by the ASR), its translation, its extension
(in these examples, provided by the lm-greedy strategy with n = 1, k = 1), the translation of
its extension, and the output after applying the dynamic mask.

In the first example (Figure 8) the MT system produces quite unstable translations of short
prefixes, but the dynamic masking algorithm detects this instability and applies short masks to
cover it up. Since the translation of the prefix and the translation of its extension differ, a short
mask is applied and the resulting translation avoids erasure.

In the second example in Figure 9, there is genuine uncertainty in the translation because

4www.statmt.org/wmt20/translation-task.html

Proceedings of the 14th Conference of the Association for Machine Translation in the Americas
October 6 - 9, 2020, Volume 1: MT Research Track

Page 131

0 10 20 30
Mask length

0

2500

5000

7500

10000

12500

(a) Masks for lm-greedy strategy, n = 1, k = 1.

0 10 20 30
Mask length

0

2000

4000

6000

(b) Masks for random strategy, n = 3, k = 5.

Figure 6: Histograms of mask lengths over all prefixes for en− de test set. The strategy on the
left has low latency but higher erasure (AL=1.54, NE=3.83) whereas the one on the right has
low erasure but higher latency (AL=11.2, NE=0.22). In both cases we see that the vast majority
of prefixes have low masks; in other words the skewed distribution means most are below the
mean.

Figure 7: Effect of dynamic mask with different strategies, applied to a larger-scale en→zh
system.

Proceedings of the 14th Conference of the Association for Machine Translation in the Americas
October 6 - 9, 2020, Volume 1: MT Research Track

Page 132

Source Translation Output
prefix Here Hier sehen sie es

extension Here’s Hier ist es Hier
prefix Here are Hier sind sie

extension Here are some Hier sind einige davon Hier sind
prefix Here are two Hier sind zwei davon

extension Here are two things Hier sind zwei Dinge Hier sind zwei
prefix Here are two patients Hier sind zwei Patienten

extension Here are two patients. Hier sind zwei Patienten. Hier sind zwei Patienten

Figure 8: In this example, the dynamic mask covers up the fact that the MT system is unstable
on short prefixes. Using the translation of the LM’s predicted extension of the source, the system
can see that the translation is uncertain, and so applies a mask.

Source Translation Output
prefix But you know Aber Sie wissen es

extension But you know, Aber wissen Sie, sie wissen schon Aber
prefix But you know what? Aber wissen Sie was? Aber wissen Sie was?

Figure 9: Here the dynamic masking is able to address the initial uncertainty between a question
and statement, which can have different word orders in German. The translation of the initial
prefix and its extension produce different word orders, so the system conservatively outputs
“Aber”, until it receivers further input.

Source Translation Output
prefix to paraphrase : it’s not the

strongest of
Um zu Paraphrasen: Es ist
nicht die Stärke der Dinge

extension to paraphrase : it’s not the
strongest of the

Um zu paraphrasen: Es ist
nicht die Stärke der Dinge

Um zu paraphrasen: Es ist
nicht die Stärke der Dinge

prefix to paraphrase : it’s not the
strongest of the

Um zu Paraphrasen: Es ist
nicht die Stärke der Dinge

extension to paraphrase : it’s not the
strongest of the world

Zum paraphrasen: Es ist nicht
die stärksten der Welt

Um zu paraphrasen: Es ist
nicht die Stärke der Dinge

Figure 10: In this example we illustrate the refinement to the dynamic masking method, that is
used typically when there are small uncertainties early in the sentence. For the second prefix,
its translation and the translation of its extension differ at the beginning (“um zu” vs “zum”).
Applying the LCP rule would result in a large mask, but instead we output the translation of the
previous prefix

the fragment “But you know” can be translated both as subject-verb and verb-subject in German,
depending on whether its continuation is a statement or a question. The extension predicted by
the LM is just a comma, but it is enough to reveal the uncertainty in the translation and mean
that the algorithm applies a mask.

The last example (Figure 10) shows the effect of our refinement to the dynamic masking
method, in reducing spurious masking. For the second prefix, the translations of the prefix and
its extension differ at the start, between “Um zu” and “Zum”. Instead of masking to the LCP
(which would mask the whole sentence in this case) the dynamic mask algorithm just sticks
with the output from the previous prefix.

Proceedings of the 14th Conference of the Association for Machine Translation in the Americas
October 6 - 9, 2020, Volume 1: MT Research Track

Page 133

7 Conclusion

We propose a dynamic mask strategy to improve the stability for the retranslation method in
online SLT. We have shown that combining biased beam search with mask-k works well in
retranslation systems, but biased beam search requires a modified inference algorithm and hurts
the quality and additional mask-k used to reduce this effect gives a high latency. Instead, the
dynamic mask strategy maintains the translation quality but gives a much better latency–flicker
trade-off curve than mask-k. Our experiments also show that the effect of this strategy depends
on both the length and number of predicted extensions, but the quality of predicted extensions
is less important.

For future research, we would like to combine biased beam search with dynamic mask to
see if it can give a better trade-off between quality and latency than (Arivazhagan et al., 2020a)
when the flicker is small enough. We would also like to experiment our dynamic masking
strategy on prefixes provided by a real ASR system.

Acknowledgements

This work has received funding from the European Union’s Horizon 2020 Research
and Innovation Programme under Grant Agreement No 825460 (Elitr).

References

Arivazhagan, N., Cherry, C., I, T., Macherey, W., Baljekar, P., and Foster, G. (2020a). Re-
Translation Strategies For Long Form, Simultaneous, Spoken Language Translation. In
ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP).

Arivazhagan, N., Cherry, C., Macherey, W., Chiu, C.-C., Yavuz, S., Pang, R., Li, W., and Raffel,
C. (2019). Monotonic Infinite Lookback Attention for Simultaneous Machine Translation.
In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics,
pages 1313–1323, Florence, Italy. Association for Computational Linguistics.

Arivazhagan, N., Cherry, C., Macherey, W., and Foster, G. (2020b). Re-translation versus
Streaming for Simultaneous Translation. arXiv e-prints, page arXiv:2004.03643.

Bangalore, S., Rangarajan Sridhar, V. K., Kolan, P., Golipour, L., and Jimenez, A. (2012).
Real-time incremental speech-to-speech translation of dialogs. In Proceedings of the 2012
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pages 437–445, Montréal, Canada. Association for Compu-
tational Linguistics.

Cettolo, M., Federico, M., Bentivogli, L., Niehues, J., Stüker, S., Sudoh, K., Yoshino, K., and
Federmann, C. (2017). Overview of the IWSLT 2017 Evaluation Campaign. In Proceedings
of IWSLT.

Cho, K. and Esipova, M. (2016). Can neural machine translation do simultaneous translation?
CoRR, abs/1606.02012.

Gu, J., Neubig, G., Cho, K., and Li, V. O. (2017). Learning to translate in real-time with
neural machine translation. In Proceedings of the 15th Conference of the European Chapter
of the Association for Computational Linguistics: Volume 1, Long Papers, pages 1053–1062,
Valencia, Spain. Association for Computational Linguistics.

Proceedings of the 14th Conference of the Association for Machine Translation in the Americas
October 6 - 9, 2020, Volume 1: MT Research Track

Page 134

Junczys-Dowmunt, M., Grundkiewicz, R., Dwojak, T., Hoang, H., Heafield, K., Neckermann,
T., Seide, F., Germann, U., Fikri Aji, A., Bogoychev, N., Martins, A. F. T., and Birch, A.
(2018). Marian: Fast neural machine translation in C++. In Proceedings of ACL 2018, Sys-
tem Demonstrations, pages 116–121, Melbourne, Australia. Association for Computational
Linguistics.

Koehn, P., Hoang, H., Birch, A., Callison-Burch, C., Federico, M., Bertoldi, N., Cowan, B.,
Shen, W., Moran, C., Zens, R., Dyer, C., Bojar, O., Constantin, A., and Herbst, E. (2007).
Moses: Open source toolkit for statistical machine translation. In Proceedings of the 45th An-
nual Meeting of the Association for Computational Linguistics Companion Volume Proceed-
ings of the Demo and Poster Sessions, pages 177–180, Prague, Czech Republic. Association
for Computational Linguistics.

Ma, M., Huang, L., Xiong, H., Zheng, R., Liu, K., Zheng, B., Zhang, C., He, Z., Liu, H., Li, X.,
Wu, H., and Wang, H. (2019). STACL: Simultaneous translation with implicit anticipation
and controllable latency using prefix-to-prefix framework. In Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics, pages 3025–3036, Florence, Italy.
Association for Computational Linguistics.

Niehues, J., Pham, N.-Q., Ha, T.-L., Sperber, M., and Waibel, A. (2018). Low-latency neural
speech translation. In Proceedings of Interspeech.

Post, M. (2018). A call for clarity in reporting BLEU scores. In Proceedings of the Third
Conference on Machine Translation: Research Papers, pages 186–191, Brussels, Belgium.
Association for Computational Linguistics.

Rangarajan Sridhar, V. K., Chen, J., Bangalore, S., Ljolje, A., and Chengalvarayan, R. (2013).
Segmentation strategies for streaming speech translation. In Proceedings of the 2013 Con-
ference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pages 230–238, Atlanta, Georgia. Association for Compu-
tational Linguistics.

Sennrich, R., Firat, O., Cho, K., Birch, A., Haddow, B., Hitschler, J., Junczys-Dowmunt, M.,
Läubli, S., Miceli Barone, A. V., Mokry, J., and Nădejde, M. (2017). Nematus: a toolkit
for neural machine translation. In Proceedings of the Software Demonstrations of the 15th
Conference of the European Chapter of the Association for Computational Linguistics, pages
65–68, Valencia, Spain. Association for Computational Linguistics.

Sennrich, R., Haddow, B., and Birch, A. (2016). Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pages 1715–1725, Berlin, Germany. Association
for Computational Linguistics.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and
Polosukhin, I. (2017). Attention is all you need. In Advances in neural information process-
ing systems, pages 5998–6008.

Zheng, B., Zheng, R., Ma, M., and Huang, L. (2019a). Simpler and faster learning of adaptive
policies for simultaneous translation. In Proceedings of the 2019 Conference on Empiri-
cal Methods in Natural Language Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP), pages 1349–1354, Hong Kong, China.
Association for Computational Linguistics.

Proceedings of the 14th Conference of the Association for Machine Translation in the Americas
October 6 - 9, 2020, Volume 1: MT Research Track

Page 135

Zheng, B., Zheng, R., Ma, M., and Huang, L. (2019b). Simultaneous translation with flexible
policy via restricted imitation learning. In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages 5816–5822, Florence, Italy. Association
for Computational Linguistics.

Proceedings of the 14th Conference of the Association for Machine Translation in the Americas
October 6 - 9, 2020, Volume 1: MT Research Track

Page 136

