
Modelling Verbal Morphology in Nen
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Abstract
Nen verbal morphology is remarkably com-
plex; a transitive verb can take up to 1, 740
unique forms. The combined effect of having
a large combinatoric space and a low-resource
setting amplifies the need for NLP tools. Nen
morphology utilises distributed exponence – a
non-trivial means of mapping form to mean-
ing. In this paper, we attempt to model Nen
verbal morphology using state-of-the-art ma-
chine learning models for morphological rein-
flection. We explore and categorise the types
of errors these systems generate. Our results
show sensitivity to training data composition;
different distributions of verb type yield differ-
ent accuracies (patterning with E-complexity).
We also demonstrate the types of patterns that
can be inferred from the training data through
the case study of syncretism.

1 Introduction

A long-standing research direction in NLP targets
the development of robust language technology
applicable across the wide variety of the world’s
languages. Unfortunately, the vast majority of ma-
chine learning models are being developed for a
small fraction of nearly 7,000 languages in the
world, such as English, German, French, or Chi-
nese. With introduction of highly multilingual
corpora such as UniversalDependencies (Nivre
et al., 2016) and UniMorph (Sylak-Glassman et al.,
2015; Kirov et al., 2018) the situation started to
change. For instance, SIGMORPHON organized a
number of shared tasks on morphological reinflec-
tion starting from 10 languages in 2016 (Cotterell
et al., 2016) and up to 90 languages in 2020 (Vylo-
mova et al., 2020). In 2020, languages were sam-
pled from various typologically diverse families:
Indo-European, Oto-Manguean, Tungusic, Turkic,
Niger-Congo, Bantu, and others. Still, just one lan-
guage, namely, Murrinh-patha, an Australian Abo-
riginal language (Mansfield, 2019), represented the

whole linguistic variety of the Oceania region. In
this paper, we aim at filling the gap by exploring
Nen, a Papuan language spoken by approximately
400 people in Papua New Guinea. Nen is known for
its rich verbal morphology, with a transitive verb in-
flecting for up to 1, 740 feature combinations. Dis-
tributed exponence, the phenomenon which gives
rise to this large paradigm size, provides insight
into modelling complex mappings between surface
forms and feature bundles.

We conduct a series of experiments on morpho-
logical reinflection task recently introduced under
the umbrella of SIGMORPHON (Cotterell et al.,
2016, 2018). We train several state-of-the-art ma-
chine learning models for verbal inflection in Nen
and provide an extensive error analysis. We inves-
tigate the relationship between the distribution of
verb type (inflection classes) in the data and per-
formance. Finally, we show that the system learns
properties of the data that are not explicitly given,
but may be inferred.

The rest of the paper is organized as follows: In
Section 2, we give a brief overview of related work.
Section 3 provides an overview of Nen verbal mor-
phology, Section 4, details our methodology, and
Section 5 presents our results. Finally, Section 6
concludes the paper.

2 Related Work

Muradoglu et al. (2020) is the only reported work
on the computational modelling of the Nen lan-
guage. Similar to this study, the main focus is on
modelling Nen verbal morphology, but using finite-
state architecture instead. The accuracy achieved
by the FST system is 80.3% obtained across the
corpus, with approximately 10% of the accuracy
attributable to the modelling of prefixing verbs (the
regularity of copula verbs boosts the accuracy from
70.5%). The accuracies reported are not directly



comparable with those presented here due to the
different data splits, and increased amount of data.

In our error analysis, we follow the error tax-
onomy proposed by Gorman et al. (2019) upon a
detailed analysis of typical errors produced by mor-
phologically reinflection systems. A similar study
was conducted for Tibetan (Di et al., 2019).

3 The Nen Language

Nen is a Papuan language of the Morehead-Maro
(or Yam) family, located in the southern part of
New Guinea (Evans, 2017). It is spoken in the vil-
lage of Bimadbn in the Western Province of Papua
New Guinea, by approximately 400 people, for
which it is a primary language (Evans, 2015, 2020).
Most inhabitants are multilingual, typically speak-
ing several of the neighbouring languages.

The subject of this paper – verbs – are the
most complicated word-class in Nen (Evans, 2015,
2019b). They are demarcated into three separate
categories: prefixing, middle, and ambifixing verbs.
The latter two are mostly regular in terms of mor-
phophonological rules. In the remainder of this
section, we elaborate on these characteristics, to
give the reader enough background to follow the
discussion in subsequent sections.

3.1 Verbal morphology

We begin our description from the maximal case
– transitive ambifixing verbs. Examples of this
verb type include yis ‘to plant’ and waprs ‘to do’
These verbs allow for full prefixing and suffixing
possibilities. Evans (2016) provides the canoni-
cal paradigms for the undergoer prefixes, themat-
ics and desinences. Suffix combinations are con-
structed by concatenating the corresponding the-
matic and the desinence. Between the undergoer
prefix and verb stem is a directional prefix slot,
available for all verb types. This slot is occupied
by {-n-}1 to convey a ‘towards’, {-ng-} for ‘away’
or left empty to convey a directionally neutral se-
mantic.

Middle verbs such as owabs ‘to speak’ or anḡs
‘to return’, are also ambifixing, but the prefixal slot
is restricted to {n-} (α–series), {k-} (β–series), {g-
} (γ–series). These prefixes are person and number
invariant, and mark the verb as being a dynamic
monovalent verb. The prefix set is divided through
the use of arbitrarily labels: α, β, and γ. These

1We follow linguistic convention with ‘{}’ denoting mor-
phemes, and examples are italicised.

dummy indices do not carry specific semantic val-
ues until they are unified with other TAM (Tense,
Aspect, and Mood) markings on the verb (Evans,
2015).

Prefixing verbs have separate closed paradigms,
tailored to the subtype. Prefixing verbs are mostly
distinguished through semantics; positional verbs
such as kmangr ‘to be lying down’, the verb ‘to
own/have’ awans, the verb ‘to walk’ tan and the
copula verb m with its directional variants (be
hither (i.e. come) or be thither (go)).

Inflectional prefixes for these verbs, mostly re-
semble the process with ambifixing verbs, yet the
suffixes are limited. Of the 50 or so prefixing verbs,
the vast majority are positional (Evans, 2020). An
additional distinguishing feature of prefixing verbs,
is the lack of infinitives. Both ambifixing and mid-
dle verbs form infinitives through suffixing -s to
the verb stem. For the purposes of this study, we
have listed the prefixing verb lemmas as the verb
stem.

Methodologically, it is more convenient to seg-
ment a word as a classical bijective mapping be-
tween form to meaning. However, the Nen verbal
system distributes information in a more compli-
cated way. The prefixes (undergoer and future im-
perative) and suffixes (thematic and desinence) are
not independent values. Nen verbal morphology is
characterised by distributed exponence (DE); “mor-
phosyntactic feature values can only be determined
after unification of multiple structural positions”
(Carroll, 2016).

There are two consequences for morphological
parsing:

a) Provisional unspecified values occur regularly,
whether

(i) These involve partial specification that
will be filled in later in the word-parse,
such as the left-edge prefix {yaw-} (1st
person non-singular undergoer), which
will only be made more precise in its
number value (dual, or plural) when
the thematic is encountered after the
verb stem: thus yaw-aka-t-an ‘I see
them2 (more them two)’, where the ‘non-
dual’ marker {-ta-} eliminates the dual
(them two) but yaw-akae-w-n ‘I see them

2Can also mean ‘I see you (more than two)’, resolved
by combining with an appropriate free pronoun, bm ‘you
(absolutive)’, but for present purposes we ignore this further
complication.



(two)’, where the ‘dual thematic’{-w-}
eliminates the plural (them more than
two) reading.

(ii) These involve semantically-unspecified
prefix series which only acquire mean-
ing when they are combined with suf-
fixes at the other end of the word: thus
{yaw-}, in the above example, belongs
to the α-series which, if it combines with
the ‘basic imperfective’, will be given
a (broadly) non-past reading, but when
it combines with the ‘past perfective’ it
will be given a past reading and when it
combines with a ‘projected imperative’ it
will be given a future meaning; a β-series
form like {taw-}, by contrast, will have
a ‘yesterday past’ interpretation when
combining with the ‘basic imperfective’
suffixes but when combining with im-
peratives it will have a ‘now/immediate
command’ meaning

b) More problematically, prefixes that normally
have one reading (such as the yaw-example
just discussed, which normally marks sec-
ond/third person non-singular objects) some-
times have to be given a different meaning
(e.g. large plural intransitive subjects) if fur-
ther parsing to the right encounters a ‘middle’
rather than a ‘transitive dynamic’ stem (Evans
2017, 2019).

In principle that this means left-to-right
morphological parsing is sometimes non-
monotonic (particularly in the case of (b)),
so that semantic values, as parsing proceeds,
need to be sometimes held as provisionally
unspecified, sometimes as partially specified,
and sometimes as specified but subject to later
override.

3.2 Distributed Exponence
One of the primary motivations for choosing Nen
as a case study is the phenomenon that gives rise
to this combinatorial power: distributed exponence.
Essentially distributed exponence is a morpholog-
ical phenomenon that gives rise to some types of
non-monotonicity.

In linguistics, the notion of extended exponence
was first introduced by Mathews (1974) and is now
commonly referred to as multiple exponence (ME).
Matthews defined ME as a category that would
have exponents in two or more distinct positions.

Distributed exponence is a kind of ME, which in-
volves the use of more then one morphological
segment to convey meaning. It requires all rele-
vant morphs to yield a precise interpretation of the
feature value in question (Carroll, 2016; Harris,
2017).

(1) n-ng-owan-t-e
M:α-VEN-set.off-ND:IPF.NP-
IPF.NP.2|3SGA

‘You/(s)he are/is setting off.’3

In the example above, no one marker marks
the singular person. The information of the
agent being singular is distributed across the
thematic (dual/non-dual) and the desinence (sin-
gle/dual/plural). If a non-dual thematic is present
than the desinence cannot have dual features; the
only options are singular or plural. Another mor-
pheme present in this example is the prefix -ng-
which marks the verb with the directional thither.
The prefix n- marks this verb as a middle verb; it
reduces the valency of the verb and yields informa-
tion about the membership of the class α. Together
with the prefix, thematic and desinence, the TAM
feature can be obtained.

4 Methodology

4.1 Morphological reinflection task

Morphological inflection is a task of predicting
a target word form from a corresponding word
lemma and a set of morphosyntactic features (spec-
ifying the target slot, e.g. its part of speech (POS),
tense, number, gender). For instance, a system is
provided with a lemma “to sing” and a set of tags
“Verb; Past” and needs to generate “sang”. Mor-
phological reinflection is a variation of the task
when a lemma form is replaced with some other
form and (optionally) its tags. The task has been
traditionally solved with finite-state transducers,
either hand-engineered (Koskenniemi, 1983; Ka-
plan and Kay, 1994) or trainable models that rely
on both expert knowledge and data (Mohri, 1997;
Eisner, 2002). In 2016 SIGMORPHON started a
series of shared tasks on morphological reinflection,
and neural models demonstrated superior perfor-
mance when compared to finite-state or rule-based
approaches, especially in high-resource languages
(Cotterell et al., 2016; Vylomova et al., 2020).

3Example adapted from (Evans, 2020)



4.2 Data
The data used in this study comes from a Nen verb
corpus (approximately 6, 000 verb samples repre-
senting 2, 231 unique inflected forms) created by
Muradoğlu (2017). This dataset is a distilled sub-
set from the approximately 8-hour natural speech
corpus for the Nen language. As such it entails a
frequency sorted list of all the verb forms occur-
ring.

The training data is a set of triples comprising a
lemma, morphosyntactic features, and an inflected
form (i.e. we will only focus on morphological
inflection).

Sampling Following the methodology in Cot-
terell et al. (2018) we split the data into training,
development, and test sets. Training splits were
created by sampling without replacement for three
set sizes: all (ALL), medium (MR), and low (LR).

In virtue of coming from a natural corpus, the list
of verb forms we use is Zipfian. This study does not
distinguish between the feature bundles and only
considered surface (inflected) forms. To facilitate
the nature of our study, we uniformly distribute
frequency across each syncretic cell.

For the ALL training set we start by sampling
the first 1, 931 forms, in accordance with the Zip-
fian ranking across the corpus. In other words, we
sample the 1, 931 most frequent verb forms. We
randomly shuffle the remaining 300 forms into a
200 form test, and 100 form development (dev)
sets. The test and dev sets remain the same through
this experiment. Zipfian sampling is considered
more realistic in this case, as it mimics the stimulus
a language learner encounters. The dev and test
set are randomly shuffled since supervised meth-
ods usually generalise from frequently encountered
words.

For the LR and MR settings we take the first
100 and 1, 000 forms from the ALL training set,
respectively. In addition, we create a high-resource
(HR) set by supplementing the ALL set with syn-
thetic forms, the final set contains 10, 000 forms.
In order to generate synthetic samples, we use data
hallucination technique proposed in Anastasopou-
los and Neubig (2019). Note that the low-resource
(LR) training set is a subset of the medium-resource
(MR), which is supersetted by the ALL (and by ex-
tension the high-resource (HR) data set).

Finally, we contrast Zipfian sampling, when
forms are sampled based on their frequency, to
random sampling. Both sets (LR and MR) for the

random sampling are created in a similar manner to
Zipfian sampling, except frequency is not consid-
ered. Note that due to initial data size constraints,
the ALL (and, therefore, HR) data sets for both the
Zipfian and random sampling are the same. 4

4.3 Experiments

In the current study we conducted three experi-
ments to address our research questions.

4.3.1 Experiment 1: Testing across various
data sizes and sampling methods

Research Question: How does training size and
sampling method affect the models’ performance,
and what kind of errors are likely across these con-
ditions?

We evaluate modelling accuracies across four
different training sizes, which is further contrasted
across sampling type. Our experimental setup mir-
rors those of the SIGMORPHON reinflection tasks
(Cotterell et al., 2016, 2017, 2018; Vylomova et al.,
2020): given an input lemma and a set of feature
tags, models generate inflected forms. The final
accuracy is computed as the percentage of matches
between the gold and predicted forms.

4.3.2 Experiment 2: Testing compositionality
of training data

Research Question: Does the composition of the
training data affect the resultant accuracies, and,
if so, how?

We test the effects of the verb type composi-
tion (i.e. how much of each verb type there is) in
the training set. This study consists of seven (aris-
ing from all combinations of the three verb types)
training data sets obtained through the sampling
methods outlined above. We compare training sets
of ambifixing verbs only, prefixing verbs only, mid-
dle verbs only, a two-way combination of each verb
class: ambifixing and prefixing verbs, ambifixing
and middle verbs, and prefixing and middle verbs
and, finally an equal distribution of all three verb
types, as listed in Table 4. Each set contains 386
forms (instances), stipulated by the amount of pre-
fixing verbs available. The test and development
set are 100 forms each, and is made up of 34 ambi-
fixing, 33 middle and 33 prefixing verbs 5

4Since the test and dev set are the same for both sampling
methods, and are generated from the remaining 300 tokens
(i.e. the least frequent items), it renders the random sampling
of the ALL (and thus HR) the same.

5Uniform distribution is unlikely in natural language, in
fact, Muradoğlu (2017) shows that the distribution is skewed



4.3.3 Experiment 3: Testing syncretism

Research Question: Do the models infer properties
of the language which are not annotated in the
data?

In Nen, the second and third person feature bun-
dles often correspond to the same surface form
across the available TAM categories (i.e. are syn-
cretic). We test the likelihood of both models pre-
dicting the unseen second person singular for the
past perfective TAM category as syncretic with the
seen third-person singular variant. This is the one
instance across the Nen verbal paradigm where this
syncretism does not hold. In essence, we examine
linguistic patterns that may be inferred from an
annotated dataset.

The main focus here, is to categorise the type of
prediction rather than the overall accuracy, as such
training and development sets are identical to those
generated for the ALL setting in the first experiment.
The test set is comprised of 100 inflections of the
past perfective second singular tags, most of these
have been gathered from the Nen dictionary (Evans,
2019a).

4.4 Models

For our experiments, we will utilise two mod-
els that have shown superior performance in
SIGMORPHON–CoNLL 2017 Shared Task on
morphological reinflection in low- and medium-
resource settings (Cotterell et al., 2017). Both of
them are essentially neural sequence-to-sequence
models implemented in Dynet (Neubig et al., 2017).
In addition, we also compare the results with a sim-
ple non-neural baseline used in 2017–2018 tasks on
morphological reinflection (Cotterell et al., 2017,
2018).

Hard Monotonic Attention (Aharoni and Gold-
berg, 2017) An external aligner (Sudoh et al.,
2013) first produces transformation operations be-
tween an input (lemma) and a target (inflected
form) character sequences. The alignment oper-
ations (steps) are then fed into a neural encoder–
decoder model. The network, therefore, is trained
to mimic the transformation steps, and at infer-
ence time it predicts the actions based on the input
(lemma) sequence. Unlike soft attention models,
this model attends to a single input state at each step
and either writes a symbol to the output sequence

to favour a higher number of ambifixing verbs in terms of the
number of inflected forms.

or advances its pointer to the next state. Hard atten-
tion models demonstrate superior performance in
languages that employ suffixing morphology with
stem changes.

Neural Transition-based (Makarov and
Clematide, 2018) The model is essentially
derived from Aharoni and Goldberg (2017) by
enriching it with explicit insertion, deletion
or, alternatively, copy mechanisms. The copy
mechanism led to significant accuracy gains in low-
resource settings. Following Rastogi et al. (2016),
the model can be seen as a neural parameterization
of a weighted finite-state machine.

Non-neural Baseline (Cotterell et al., 2017,
2018) The non-neural system first aligns lemma
and inflected form strings using Levenstein dis-
tance (Levenstein, 1966) and then extracts prefix-
and suffix-based transformation rules.

4.5 Settings

The hyperparameters of the models are set to the
values reported in the corresponding papers as per
Table 1.

Hyperparameters A&G M&C
Input dim 100 100
Hidden dim 100 100
Epochs 100 50
Layer 2 1

Table 1: Hyperparameters for both A&G (2017) and
M&C (2018) models.

5 Results

Table 2 shows the accuracies achieved for each sys-
tem for each training set size and sampling type
from Experiment 1. For all setups the M&C model
performed best with random sampling (where ap-
plicable). As expected the high-resource setting
performs best overall. The random sampling yields
slightly higher accuracies than the Zipfian coun-
terpart, this is likely due to the fact that prefixing
verbs, particularly the copula and its 40 distinct
forms occupy a majority of the top 100 positions
in the Zipfian distribution. Thus when random
sampling is utilized the training set includes more
examples of ambifixing verbs.



A&G 2017 M&C 2018 Non-Neural baseline (NNB)
Random Zipf Random Zipf Random Zipf

HR 0.610 0.650 0.015
ALL 0.390 0.510 0.010
MR 0.295 0.285 0.445 0.420 0.000 0.000
LR 0.020 0.005 0.080 0.030 0.010 0.010

Table 2: Data set, model and sampling accuracies. ALL is a total of 1,931 verbs, HR is 10,000, MR is 1,000 and
LR is 100 samples for the training set.

ALL HR MR LR
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Allomorphy 56 55 190 54 46 144 61 77 188 17 162 190
Free Variation 30 24 0 14 15 11 13 24 0 0 2 0

Target 8 8 8 8 8 8 8 8 8 8 8 8
Stem 28 11 0 2 1 5 61 7* 2 174† 22 0
Total 122 98 198 78 70 168 143 116 198 199 194 198

Table 3: Absolute number of errors on the test set (200 instances) made by each system trained in ALL, HR, MR
and LR setting.*contains 5 looping errors,† 17 looping errors.

5.1 Error Analysis

We analysed the errors produced in prediction fol-
lowing the taxonomy laid out by Gorman et al.
(2019); Di et al. (2019).

We have taken a hierarchical approach to our
error classification; whereby if more than one error
is present, the category higher up is reported. For
example, if a predicted form exhibits both target
and allomorphy errors (error types are described
in the following subsections), then only the tar-
get error is reported. The motivation for this lies
in the nature of the error; free variation is techni-
cally not even an error. By contrast, misapplication
of a morphophonological rule does indeed yield
an incorrect form. Additionally, we have marked
Target errors higher up as the system cannot be
expected to correctly predict a form if the gold
standard is incorrect. The hierarchy is as follows:
Target>Stem>Allomorphy>Free Variation. 3 Ta-
ble 3 summarises the types of errors across the
different training sizes for each model. Overall, for
both systems allomorphy errors remain relatively
unimproved between the ALL and HR setting, but
show a leap of reduction from the LR to MR con-
ditions. Free variation errors are more prevalent in
the ALL setting. This is probably a consequence
of seeing more of the golden data and thus observ-
ing more of the systematic variations. This also
explains why these errors reduce in number for

the HR setting. The target errors are consistent
across each experiment, as these are systematic is-
sues with the gold data. Interestingly, stem errors
reduce in the HR setting. This is despite the use of
hallucinated data.

5.1.1 Allomorphy
This category consists of errors which are charac-
terised by a misapplication of morphophonological
rules, or feature category mappings. Frequent er-
rors include the absence of vowel harmony or place
assimilation rules, and incorrect mapping of feature
bundles to surface forms. Most errors are of this
category.

Vowel harmony. The Nen language exhibits
vowel harmony. Consider the form ynḡite gener-
ated by one of the models, in a canonical sense the
inflection is correct, but the presence of the high
front vowel i requires the general e to harmonize to
become ynḡiti.

Morphophonological Rules. When combining
r final stems with t phonemes (which occurs in
inflections via the non-dual thematics or certain
desinences with ∅ thematics), the resultant sound
is n (Evans, 2016). The M&C systems predicts
that the stem tar inflected for the non-prehodiernal,
first person actor and third person undergoer as
ytaretan. Presumably, the break down is y-tar-e-ta-
n. Interestingly, it inserts an e between the r and t,
rather than concatenates the stem with the {-ta-n}



suffix. The correct form is ytanan.
Misapplication of category. These errors are

rather straightforward: they are a misapplication
of inflection rule and result in an incorrect cell of
a paradigm. For example, ynrenzan is generated
instead of ynrenzng. Technically, the form gen-
erated is correct, but it should correspond to the
past perfective, first-person singular acting on dual
actor suffix. Instead, it is mapped to the imperfec-
tive non-prehodiernal, third singular acting on dual
actor suffix.

Future Imperatives. In all settings, across all
systems tested, the future imperative was incor-
rectly predicted. Much like the β and γ counter-
parts, the system generated this TAM category by
simply choosing an α prefix and suffixing {-ta}.
Both A&G and M&C systems produce yngita in-
stead of yngangwita. This formulation is correct
for the β and γ series producing the imperfective
imperative and mediated imperative, respectively.
However, the future imperative has a special prefix
which prefixes after the undergoer and directional
prefix. It signifies the future imperative TAM cat-
egory and marks the agent as either singular or
non-singular.

Prefixing Verbs. Given the sparsity of examples
for prefixing verbs and in particular their subtypes,
a common occurrence across the data sizes is for
the prefixing verb predictions to be inflected with
the wrong features. For example, when the verb m
‘to be’ is inflected for the andative, 3PL+ undergoer
and imperfective non-prehodiernal TAM the cor-
rect inflected form would be yenewelmän, instead
the system gives ynm which it correctly identifies
as a related form, but it does not have the correct
inflectional features.

5.1.2 Free variation
Free variation errors occur when more than one
acceptable inflected form exists; this is particularly
true of the data set used in this study. The corpus
used here has been distilled from a natural speech
corpus, that has been transcribed. In addition to
spelling variation - that arose as the orthographic
decisions changed with ongoing documentation,
the corpus also exhibits inter-speaker variation. An
example includes: yérniwi as the predicted form
and yrniwi as the gold standard. In Nen orthogra-
phy, epenthetic vowels are not written in as their
locations can be predicted (Evans and Miller, 2016).
Older transcriptions wrote these vowels in with the
é.

5.1.3 Target
These errors are characterised by incorrect feature
tags in the gold standard data. One such example
is as follows: the model predicts the form to be
nnganztat and the gold standard is given as ynganz-
tat, the feature tag, however, includes [M]6 and
not [3SGU]. In such cases, based on the feature
bundle, the system generated form is correct. This
particular mismatch of middle and transitive verbs
is the main source of this kind of error; it arises
from the fact that a single verb may have a middle
and transitive verb variant. This distinction can be
difficult to decipher, and on some occasions, it can
even be a result of speaker error.

5.1.4 Stem
This category denotes either a generated stem or
a re-mapping of a seen but irrelevant stem, to the
inflected form. These errors have linguistically
viable morphemes attached, but we have not evalu-
ated the accuracies of the mapping between feature
and form for the morphemes.

Remapping
One such example is A&G model generating

ygmtandn for the stem sns. It appears that the gms
stem has been (incorrectly) inflected and mapped
to the feature bundle of the sns stem. The correct
inflection is ysnendn.

Generated Stem
The less frequent of the two are stems that have

been randomly generated. For example with the
stem given as renzas, the system generates: ym-
ryawem in place of yrenzawem.

We have also encountered several loop-
ing errors such as: ynawemaylmyylmyylmyylmy-
ylmyylmyymayamawemyymamyamawemyymamya-
mawemyymamyamawemyymamyamawemyymamyam-
awemyylmyamyamawemyymamyamawemyymamya-
mawemyylmyylmyy where the correct form is
ysnewem.

5.2 Composition study

In Experiment 2, we tested the effects of training
set composition; in other words, the informative
nature of each verb type.

As mentioned above, the ambifixing verb class
has the largest combinatorial space, reducing in
size as we consider middle and prefixing verbs, re-
spectively. Another way to consider this would be

6[M] marks the verb as middle and is present when one of
the three middle prefixes is present.



A&G M&C NNB
Ambifixing only 0.111 0.170 0.010

Middle only 0.121 0.210 0.111
Prefixing only 0.212 0.250 0.010

Ambi + Pre 0.111 0.190 0.010
Ambi + Mid 0.071 0.130 0.040

Mid + Pre 0.141 0.290 0.040
Ambi + Mid + Pre 0.061 0.200 0.040

Table 4: Data sets for each composition type, model
and sampling accuracies. The training size for each is
386 forms (defined by the available prefixing verbs).

by providing comprehensive lists of the morphemes
in a given language (such as Bickel and Nichols
(2005); Shosted (2006)). Thus, the complexity of
an inflectional system is measured by enumerat-
ing the number of inflectional categories and the
range of available markers for their realisation (i.e.
E-complexity). The bigger the number, the more
complex the resulting system is.7 With this in mind,
we would expect that, given the same training size
for each verb type, the ambifixing would perform
the worst,8 then the middle followed by the prefix-
ing verbs. Our results, shown in Table 4, confirm
this hypothesis.

More revealing than the overall accuracy for
each set and model combination, is a decomposi-
tion of accuracy according to the verb class. Table 5
summarises the performance for each category ac-
cording to verb class. Unsurprisingly, when the
training set contains only one type of verb, it per-
forms best for the type of verb seen in the training
data.

From a linguist perspective, with principle parts
from the middle verbs (mainly the suffixal system,
recall that the middle verb takes a dummy prefix
to reduce valency) and prefixing verbs (prefixal
paradigm) we can construct the full paradigm avail-
able to ambifixing verbs. The results presented
here show no such compositionality; instead, we
see a simple correspondence to verb type observed.

As expected, we see the weak leaking or overlap
between ambifixing and middle verbs, with very
little transferability from prefixing to other verb
types. It highlights the importance of tag choice;

7Although more recent works have explored the issues
with E-complexity (Ackerman and Malouf, 2013), we use it
here as a guiding principle and acknowledge that further work
is required to make a more nuanced statement.

8The combinatorial space for a transitive verb is 1, 740
cells (Muradoglu et al., 2020)

middle verbs have a [M] tag for the undergoer pre-
fix, to mark the dummy prefix. If this tag were
absent, would we see more transferability between
ambifixing and middle verbs? Linguistically, no
information would be lost as the absence of this
tag still allows for the middle verbs to be clustered
together.

5.3 Syncretism test

Experiment 3, entailed testing the systems with an
unseen feature bundle and analysing the predicted
forms, to gauge whether the models learnt syncretic
behaviour.

As can be seen by the suffixal paradigm found in
Evans (2016),9 where both numbers are available,
almost all the TAM categories exhibit syncretism
across the second and third-person singular actor.
The past perfective slot is the only case with dis-
tinct forms for the second and third singular person
numbers. We are testing the prediction of an excep-
tion. The second singular is formed with {-nd-∅-}
and the third person singular with the {-nd-a} suf-
fix. We note the similarity between the second
singular and dual forms, where the second dual is
{-a-nd}. This becomes particularly pertinent when
a vowel is inserted between consonants for ease of
articulation but must also adhere to vowel harmony.
In such cases, the second dual and second singular
may appear the same.

Using the Aharoni and Goldberg (2017) archi-
tecture, the model incorrectly predicts 81 out of
the 100 test forms as the third singular perfec-
tive category with the suffix {-nd-a} instead of
{-nd–∅-}. Four forms predicted correctly (likely
due to the similarity between the surface forms
of the second person dual and singular tags) and
the remaining fifteen distributed across second per-
son dual and plural actor of the same TAM cat-
egory, second/third singular for the imperfective
non-prehodiernal TAM category, and several in-
stances of nonce inflections such as {-ngt} or {-
ngw}.

Similarly, the Makarov and Clematide (2018)
system overwhelmingly predicts the unseen sec-
ond singular form to be syncretic with the third
singular (90 out of the 100 forms are predicted as
such). Of the remaining ten instances three are
correct, four are incorrectly modelled as the imper-
fective imperative (yet given the prefixing series is
α, the future imperative prefix is absent) and one of

9Table 23.14 (pg 563) and Table 23.16 (pg 565)



Ambifixing Middle Prefixing
AG MC AG MC AG MC

Ambifixing only 11 15 2 0 0 2
Middle only 2 1 12 19 0 1

Prefixing only 0 0 0 0 21 24
Ambi + Pre 1 1 1 0 10 18

Ambi + Mid 1 4 6 8 0 1
Mid + Pre 0 3 3 10 11 16

Ambi + Mid + Pre 0 6 4 8 3 6

Table 5: Absolute number of correct predictions for each setup.

each: second/third imperfective non-prehodiernal,
second/third neutral preterite or second dual past
perfective.

From these results, it is clear that such systems
not only observe patterns that are directly stipu-
lated through annotation but also others that may
be inferred from the data. It is important to note
this behaviour, particularly in cases such as the one
presented here as the verb corpus only entails two
instances of the second singular past perfective.

6 Conclusion

Diversity representation of languages in NLP is vi-
tal to test the generalisations of models. We present
the first-ever neural network-based analysis of Nen,
the first representation of the Yam language family
and to the best of our knowledge, of a Papuan lan-
guage. Nen provides an interesting case study as
it exhibits non-monotonic morphological mapping:
distributed exponence.

We compare state-of-the-art models for morpho-
logical reinflection across various training sizes
and two sampling methods: random and Zipfian.
The results show no significant difference between
sampling methods, and minor differences may be
attributed to training set composition differences.
In the Zipfian case, the prefixing verb types are
over-represented as they are more frequent in natu-
ral speech. We provide extensive analysis of types
of errors generated by each system and show that
the most common error type is allomorphy errors;
a misapplication of morphophonological rules, or
feature category mappings. We introduce a new
subcategory of error type: free variation, which is
a consequence of the natural speech origins of the
corpus.

We further explore composition effects by gen-
erating training sets with incremental distributions
for the three verb classes noted. As expected, we

found that the models trained with one class had
higher prediction accuracy for that class. Across ho-
mogeneous compositions, the prefixing verb class
performed the best. This is likely due to a smaller
E-complexity – or more simply – a smaller com-
bination of feature tags for which the system must
learn mappings. Finally, we explore the likelihood
of learning syncretic behaviour and using this as a
predictor for an unseen feature bundle – the second
singular past perfective. Overwhelmingly, the sys-
tem incorrectly predicts syncretism with over 80%
for the A&G system and 90% for the M&C system.
These results highlight that these systems can infer
patterns from the data sets provided. Although in
our case the prediction of syncretism mirrors that
of a human learner, there may be underlying, un-
wanted properties learnt from the data given, which
calls for careful preparation of data and observation
of output.
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