
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 8372–8388
July 5 - 10, 2020. c©2020 Association for Computational Linguistics

8372

Exploring Unexplored Generalization Challenges for
Cross-Database Semantic Parsing

Alane Suhr‡∗, Ming-Wei Chang†, Peter Shaw†, and Kenton Lee†

‡ Cornell University Department of Computer Science and Cornell Tech
New York, NY 10044
suhr@cs.cornell.edu

†Google Research
{mingweichang, petershaw, kentonl}@google.com

Abstract

We study the task of cross-database seman-
tic parsing (XSP), where a system that maps
natural language utterances to executable SQL
queries is evaluated on databases unseen dur-
ing training. Recently, several datasets, includ-
ing Spider, were proposed to support devel-
opment of XSP systems. We propose a chal-
lenging evaluation setup for cross-database se-
mantic parsing, focusing on variation across
database schemas and in-domain language use.
We re-purpose eight semantic parsing datasets
that have been well-studied in the setting
where in-domain training data is available, and
instead use them as additional evaluation data
for XSP systems instead. We build a system
that performs well on Spider, and find that
it struggles to generalize to our re-purposed
set. Our setup uncovers several generalization
challenges for cross-database semantic pars-
ing, demonstrating the need to use and develop
diverse training and evaluation datasets.

1 Introduction

Semantic parsing is the task of mapping natural
language utterances to formal meaning represen-
tations, and has been studied in tasks including
instruction following, evaluating sentence mean-
ing, and building interfaces to knowledge bases. In
this paper, we focus on the task of mapping from
natural language utterances to SQL queries exe-
cutable in a database. Most prior work in mapping
from natural language to SQL queries train and test
the system on a single database. We refer to this
setup as single-database semantic parsing (SSP).
Well-studied datasets used in the SSP setting in-
clude GeoQuery (Zelle and Mooney, 1996) and
ATIS (Hemphill et al., 1990; Dahl et al., 1994).

However, semantic parsing systems should be
able to generalize to new domains and databases,

∗Work done during an internship at Google.

Advising (Finegan-Dollak et al., 2018)
NL: For EECS 478, how many credits is it?
SQL: select distinct credits from

course where department =‘EECS’
and number = 478;

GeoQuery (Zelle and Mooney, 1996)
NL: How many people live in mississippi?
SQL: select population from state where

state name = ‘mississippi’;

ATIS (Hemphill et al., 1990; Dahl et al., 1994)
NL: Flights from Phoenix to Milwaukee
SQL: select distinct T1.flight id

from airport service as T2,
airport service as T3, city as
T4, city as T5, flight as T1
where T4.city code = T2.city code
and T4.city name = ‘Phoenix’
and T5.city code = T3.city code
and T5.city name = ‘Milwaukee’
and T1.from airport =
T2.airport code and T1.to airport =
T3.airport code;

Spider (Yu et al., 2018)
NL: List the emails of the professionals who live in the

state of Hawaii or the state of Wisconsin.
SQL: select email address from

professionals where state =
‘Hawaii’ or state = ‘Wisconsin’;

Figure 1: Examples of generalization challenges re-
vealed in the cross-database semantic parsing (XSP)
setting. The top three examples are from datasets origi-
nally studied in the single-database (SSP) setting. With-
out in-domain training data, generalization is more dif-
ficult, requiring identifying entities, mapping unfamil-
iar phrases and entities to the database, and using new
and complex database schemas. In contrast, existing
XSP evaluation data such as Spider simplifies some of
these challenges, for example by including utterances
that closely match their paired SQL query.

as it is often cost-prohibitive to collect a suffi-
cient number of training examples for all possible
databases. Several datasets, including Spider (Yu
et al., 2018), were proposed to evaluate this di-
mension of generalization. These datasets include

8373

examples grounded in multiple databases, distin-
guishing between training databases and evaluation
databases. We refer to this setup as cross-database
semantic parsing (XSP).

While these datasets have been valuable in un-
derstanding and addressing some of the additional
generalization challenges introduced by XSP, cur-
rent evaluation of XSP systems has been limited
to datasets designed for XSP. This limits the types
of generalization challenges studied to those intro-
duced by these datasets. Existing XSP evaluation
data such as Spider simplifies some of these chal-
lenges, for example by including utterances that
closely match their paired SQL query, as shown in
last row of Figure 1.

This setup misses an important opportunity for
studying cross-database semantic parsing: evaluat-
ing on challenging datasets designed for single-
database semantic parsing, like GeoQuery and
ATIS. While the in-domain challenges of these
datasets are relatively well-understood, general-
ization challenges introduced by studying these
datasets in an XSP context have not been addressed.

In this paper, we propose a more holistic analysis
and evaluation setup for XSP. We propose to evalu-
ate a semantic parsing system not only on evalua-
tion data designed for XSP, but also on datasets that
have only been studied in the SSP setting. Our re-
purposed evaluation set includes eight well-studied
datasets like ATIS, but in a completely new setting.
Instead of training on the original training data for
these datasets, we train a single model on training
data designed for the XSP setting, and evaluate the
trained model on each evaluation dataset. These
datasets were collected at different times, by dif-
ferent researchers, and with different motivations.
This results in a wide variety of language usage,
database structures, and SQL styles across datasets,
further stressing a system’s ability to adapt to un-
seen datasets. These variations pose many new gen-
eralization challenges for cross-database semantic
parsing models, where in-domain examples are not
available at training time. Our proposed XSP evalu-
ation setup addresses several evaluation challenges
posed by these dataset variations.

With our proposed setup, we are able to an-
alyze the potential limitations of current cross-
database semantic parsing models. We uncover
and attempt to address several new forms of gen-
eralization in cross-dataset semantic parsing. We
develop a neural semantic parsing model is com-

petitive all public systems on the Spider devel-
opment set, and evaluate its ability to general-
ize to the evaluation datasets. First, we observe
that the datasets originally designed for SSP be-
come much more difficult under the XSP setting,
with a notable drop in performance from both the
Spider development results. Second, we experi-
ment with several techniques that improve general-
ization to the eight evaluation datasets. Finally,
we provide in-depth qualitative analysis on our
results. Our results and analysis demonstrate a
need for diverse training and evaluation datasets
for XSP. Our code and experimental setup is avail-
able at https://github.com/google-research/
language/tree/master/language/xsp.

2 Background and Related Work

We focus on the task of semantic parsing for
databases. A natural language utterance u is a
sequence

〈
u1, . . . , u|u|

〉
, where each ui is a nat-

ural language token. The task is to map u to an
executable formal query y =

〈
y1, . . . , y|y|

〉
exe-

cutable in a database D, where each yi is a SQL
query token.

Single-database Semantic Parsing (SSP) In
SSP, all data is grounded in the same knowl-
edge database. The training data consists of N
pairs of utterances and SQL queries {x(l), y(l)}Nl=1

grounded in database D. The evaluation data con-
tains M unseen pairs of utterances and SQL queries
{x(l), y(l)}Ml=1, also grounded in D.

SSP has been studied using a number of datasets
including ATIS (Hemphill et al., 1990; Dahl et al.,
1994) and GeoQuery (Zelle and Mooney, 1996).
Many prior approaches in SSP assume access to
database contents at inference time. At test time,
this allows the system to resolve the columns con-
taining novel entities by performing a database
look-up; for example, by labeling entity mentions
in the input utterance with the columns in which
they appear (Dong and Lapata, 2016; Iyer et al.,
2017; Suhr et al., 2018).

Cross-database Semantic Parsing (XSP) In
the XSP setting, examples from the evaluation
databases are not seen at training time (Yu et al.,
2018, 2019b,a). Previously, the cross-domain se-
mantic parsing task focused mostly on databases
consisting of a single table (Pasupat and Liang,
2015; Iyyer et al., 2017; Zhong et al., 2017). How-
ever, the cross-database setting requires generaliz-

https://github.com/google-research/language/tree/master/language/xsp
https://github.com/google-research/language/tree/master/language/xsp

8374

ing to unseen domains and novel database schemas.
In XSP, the N training examples are
{x(l), y(l),D(l)

i }Nl=1 and the M evaluation ex-
amples are {x(l), y(l),D(l)

j }Nl=1, where each D is
a database. Importantly, the set of training and
evaluation datasets do not overlap. In addition to
the generalization challenges posed by SSP, this
setting adds several challenges, including general-
izing to new schema structures, domain-specific
phrases, and database conventions.

Unlike SSP, prior work in XSP does not assume
that the system has access to database contents
at model inference time (Yu et al., 2018). Pre-
processing steps that perform database look-ups are
unavailable at inference time. Instead, the model
only has access to the database schema for each
evaluation example. This setting requires addi-
tional generalization, where the model must be able
to map unfamiliar entities to columns in domains
unseen during training.

Other Related Work Semantic parsing has been
widely studied for tasks including sentence under-
standing (Zettlemoyer and Collins, 2005, 2007; Ba-
narescu et al., 2013), instruction following (Chen
and Mooney, 2011; Artzi and Zettlemoyer, 2013;
Long et al., 2016; Givoli and Reichart, 2019), and
knowledge base querying (Popescu et al., 2004;
Poon, 2013; Iyer et al., 2017). Related to the task
of semantic parsing is code generation (Oda et al.,
2015; Ling et al., 2016; Yin et al., 2018; Lin et al.,
2018; Iyer et al., 2018). While our experiments
are performed on English-langauge data, a limited
amount of existing work has explored semantic
parsing in languages besides English (Wong and
Mooney, 2006; Min et al., 2019).

Annotating SQL queries for new domains can be
expensive. Several prior works present approaches
to reduce this cost, for example by having crowd-
workers paraphrase generated examples (Wang
et al., 2015; Zhong et al., 2017), give feedback (Iyer
et al., 2017), interact with a system (Artzi and
Zettlemoyer, 2011; Thomason et al., 2015; Lab-
utov et al., 2018), or a combination (Herzig and
Berant, 2019).

Research in SSP and code generation has led
to innovations including constrained decoding and
grammar-based decoding (Xiao et al., 2016; Yin
and Neubig, 2017; Krishnamurthy et al., 2017; Lin
et al., 2019). SSP has also been studied along-
side additional generalization challenges, including
to new compositional structures (Finegan-Dollak

et al., 2018) and with additional context (Miller
et al., 1996; Zettlemoyer and Collins, 2009; Suhr
et al., 2018). Recent works evaluating in the XSP
setting have explored methods of jointly embed-
ding an utterance and the database schema (Shaw
et al., 2019; Bogin et al., 2019a), interactive learn-
ing (Yao et al., 2019), and using intermediate
output representations and new inference meth-
ods (Herzig and Berant, 2018; Guo et al., 2019;
Zhang et al., 2019; Bogin et al., 2019b; Lin et al.,
2019). We incorporate several such methods pro-
posed into our proposed system.

3 Evaluating on Re-purposed Data

We propose to study the task of XSP by training
on datasets designed for XSP, and evaluating on
datasets originally designed for SSP. In our full
model, we use both the Spider1 (Yu et al., 2018)
and WikiSQL (Zhong et al., 2017) datasets for train-
ing. For evaluation, in addition to the Spider devel-
opment set,2 we use eight English-language SSP
datasets curated by Finegan-Dollak et al. (2018)
covering a variety of domains, for example flights,
geography, and movies.3 For each dataset, we eval-
uate on as much data as possible, excluding test
sets. Table 1 describes our evaluation datasets.

Developing evaluation metrics for these re-
purposed evaluation sets is challenging because
of the diversity of SQL styles across different
databases. Yu et al. (2018)’s proposed evaluation
metric compares components of the predicted and
correct query, allowing for variation in the exact
form of the query, for example using different table
aliases. However, it does not capture all possible
SQL syntax, and fails to cover some of the gold
queries in our evaluation datasets. For example,
it does not handle assigning an alias to the results
of an intermediate SELECT statement. Moreover, it
does not measure equivalence of values, meaning

1In addition to introducing Spider, Yu et al. (2018) pro-
pose to use a number of SSP datasets, including GeoQuery, as
additional training examples for systems evaluated on Spider.
However, these SSP datasets were not previously used as eval-
uation data in the XSP setting. During training, we use only
the original Spider data, and discard this additional training
data used by some Spider systems.

2WikiSQL contains much more simplified language, SQL
queries, and databases than Spider. Therefore, we focus on
Spider as part of our proposed XSP evaluation setup.

3Finegan-Dollak et al. (2018) re-split these datasets to eval-
uate generalization to novel query structures. However, this
work still operates in the SSP setting, where in-domain train-
ing examples are available. Our setup uses the original splits
of the data, rather than the structure-based splits (Table 1).

8375

Original Task Dataset Splits # Examples (All/Filtered) % Col. Mentioned

SSP

ATIS (Hemphill et al., 1990; Dahl et al., 1994) dev 486/289 0.2
GeoQuery (Zelle and Mooney, 1996) train/dev 598/532 32.4
Restaurants (Tang and Mooney, 2000) splits 0–9 378/ 27 0.0
Academic (Li and Jagadish, 2014) splits 0–9 196/180 8.2
IMDB (Yaghmazadeh et al., 2017) splits 0–9 131/107 4.6
Yelp (Yaghmazadeh et al., 2017) splits 0–9 128/ 54 7.0
Scholar (Iyer et al., 2017) train/dev 599/394 1.0
Advising (Finegan-Dollak et al., 2018) train/dev 2858/309 0.5

XSP Spider (Yu et al., 2018) dev 1034/ – 72.4

Table 1: Basic statistics for our evaluation datasets. We use all ten cross-validation sets for Restaurants, Academic,
IMDB, and Yelp. Filtered refers to the focused subset of evaluation data where relative performance of systems
is more meaningful, as we removed examples that yield empty tables and those that are likely impossible to solve
due to dataset conventions. % Col. Mentioned shows the estimated proportion of examples in the evaluation set
where all columns compared against entities in the gold query are explicitly mentioned in the utterance.

predictions correct according to this metric need
not execute correctly.

We propose to use variation of execution ac-
curacy as our main metric. Execution accuracy
over an evaluation set is the proportion of predicted
queries which, when executed against the database,
result in a table equivalent to the correct query’s
result. If the correct query requires ordering on
the final table, we require the tables be exactly
the same; if it does not, we consider result tables
equivalent if they contain the same set of rows.
We supplement the results with additional base-
lines and data filtering to address the problem of
over-crediting spurious predictions. We report the
empty-table prior for each dataset, demonstrating
how well a model could perform if predicting incor-
rect queries that result in empty tables. We create a
filtered subset where relative performance of sys-
tems is more meaningful, including attempting to
remove examples that are impossible to solve with-
out in-domain training data. Our heuristics include
removing examples with correct queries that result
in empty tables, and where the correct query con-
tains a value token that is not copiable from the in-
put.4 For example, in Restaurants, the phrase good
restaurant always requires constraining the SQL
query to restaurants with a rating greater than 2.5,
even when the rating is not explicitly mentioned.

4 Generalization Challenges

Single-database semantic parsing requires recog-
nizing unseen, in-domain entities, understanding
new compositional structures, and generating exe-
cutable representations. Cross-database semantic

4Details are included in Appendix A.

parsing introduces additional challenges, which we
analyze and discuss below. We find that with ex-
isting XSP datasets, these challenges have been
relatively under-explored. In our proposed setup,
where we evaluate on datasets designed for SSP,
these challenges become more prevalent.

4.1 Language Variation Across Domains

Generalizing to a new domain requires understand-
ing domain-particular language, including entity
mentions and their types, and how to map domain-
specific phrases to SQL queries.

Identifying Entities In the XSP setting, identify-
ing spans of tokens comprising relevant entities in
the utterance is difficult, especially without access
to the database contents. For example, in some
databases, first and last names are stored in sepa-
rate columns, so the corresponding tokens should
appear in different parts of the SQL query. In
other databases, a single column is used to store
names. Even if a model is trained on databases
where names are always stored in a single column,
it still must generalize to databases where first and
last names are stored in separate columns. This
becomes more challenging with domain-specific
entities. For example, in the Advising example in
Figure 1, the span EECS 478 refers to two distinct
database entities, rather than a single entity. This
requires taking into account the database schema,
for example by considering that the course table
has distinct columns for department and number.

Mapping Entities to Columns Mapping a natu-
ral language utterance to an executable SQL query
requires correctly identifying which columns and

8376

tables each entity should be compared with. Con-
sider the following example (from GeoQuery):

NL: what states are next to the mississippi
SQL: select traverse

from river where
river name = ‘mississippi’;

To correctly identify that the entity mississippi
refers to a river name in the river table, the sys-
tem must have some domain knowledge. missis-
sippi appears twice in the database: as a state and
as a river. Even in the SSP setup, if the system has
access to database contents, this entity mention’s
type is ambiguous without reasoning about its con-
text in the utterance. In the XSP setup, this problem
becomes even more difficult. Database contents are
not available at model inference time, so an exhaus-
tive search over the database for matching columns
is not possible. Without in-domain training data,
the model must still be able to choose the most
likely column match for each mentioned entity.

However, sometimes the column name is ex-
plicitly mentioned in the utterance, making the
matching problem much easier, as demonstrated
in the Spider example of Figure 1. We measure
how prevalent the challenge of mapping from en-
tities to column names is in our XSP setup. In
each evaluation set, we estimate the proportion of
examples whose entity mentions can be resolved
using exact string matching between the utterance
and the schema.5 Yavuz et al. (2018) perform a
similar analysis manually on the WikiSQL dataset,
estimating that roughly 54.1% of examples can be
solved using exact match. The rightmost column in
Table 1 compares all eight evaluation datasets and
the Spider development set. In all eight evaluation
datasets originally developed for SSP, fewer than
half of examples explicitly mention column names
for all entities in the utterance. In contrast, all col-
umn names are explicitly mentioned in least 72.4%
of examples in the Spider development set. These
results demonstrate that addressing this challenge
is critical to XSP on completely unseen domains.

Domain-Specific Phrases Generalizing to new
domains requires mapping domain-specific phrases
to implementations in SQL. Consider the following
examples (from GeoQuery):

5More details on this analysis are available in Appendix A.

NL: what is the smallest city in arkansas
SQL: select city name from

city where population =
(select min (population)
from city where state name =
‘arkansas’) and state name =
‘arkansas’

NL: what is the smallest state that borders texas
SQL: select state name from state

where area = (select min (area)
from state where state name in
(select border from border info
where state name = ‘texas’))
and state name in (select
border from border info where
state name = ‘texas’)

When smallest describes a city, it requires sort-
ing by the city.population column, but when
used to describe a state, it requires sorting by
the state.area column, even though the state

table also has a population column. Another
phrase whose implementation may change in a new
database is how many. This phrase is often mapped
to the count operator, but is sometimes mapped
to specific database columns. For example, in Fig-
ure 1, how many credits maps to the credits table
in Advising, and how many people maps to the
population table in GeoQuery. To scope the prob-
lem, Yu et al. (2018) avoid including examples in
Spider that require commonsense reasoning, includ-
ing examples of domain-specific phrases. However,
understanding domain-specific phrases is an im-
portant capability for a domain-general semantic
parsing system.

4.2 Novel Database and Query Structures

Cross-database semantic parsing requires general-
izing to new database schemas, including larger
tables and compositions of SQL components. Four
of our evaluation datasets have at least ten tables in
the database, with the largest database being ATIS
with 32 tables.6 Figure 1 demonstrates that generat-
ing queries for large databases such as ATIS often
requires reasoning about the relationships between
many tables. In contrast, our training databases are
relatively small, with one table per example in Wik-
iSQL and an average of 5.1 per database in Spider.
The queries themselves also vary in complexity.
Finegan-Dollak et al. (2018) show that our eight
target evaluation datasets range from using 1.4 to
6.4 tables per SQL query. We estimate that in Spi-
der, an average query uses around 1.7 tables, which

6Finegan-Dollak et al. (2018) and Yu et al. (2018) provide
comprehensive statistics on the databases and gold queries in
our evaluation domains.

8377

is more than only one target dataset (GeoQuery).
Generalizing to new databases and datasets in our
setting requires generating queries that use more
tables than the training data.

4.3 Dataset Conventions

In some evaluation datasets, the system must not
only reason about the input utterance and schema,
but about dataset-specific conventions that are not
specified in the inputs. Consider the following
example (from Scholar):

NL: papers on semantic parsing
SQL: select distinct T1.paperid from

keyphrase as T2, paper as T1,
paperkeyphrase as T3, where
T2.keyphrasename = ‘semantic
parsing’ and T3.keyphraseid =
T2.keyphraseid and T1.paperid =
T3.paperid;

The annotated SQL query for this utterance returns
the paperid column from the paper table. How-
ever, the paper table also includes a column named
title. The utterance does not specify whether the
final column should be paperid or title. While
both columns may seem like reasonable options,
the dataset’s convention is that a list of papers
should be presented using the paperid column,
and a query selecting the title column will have
an incorrect execution result. Such conventions
are difficult, if not impossible, to learn without any
in-domain training data. Unfortunately, these cases
occur in nearly all target datasets. We do not focus
on addressing this type of generalization, and in-
stead report how pervasive this problem is during
error analysis. A possible direction for future work
is to assume access to a small number of in-domain
training examples and perform few-shot learning.

5 Model and Learning

Our model takes as input an utterance x and a
database schema S. Similar to Guo et al. (2019),
we serialize S into a sequence of wordpieces s =
t0+t1+ · · ·+t|S|. Each ti is a serialization of table
Ti, where ti = 〈TAB〉+T i+ ci,0+ ci,1+ . . . ci,|Ti|.
TAB is a token noting the beginning of a table
schema serialization. T i is the tokenization of table
Ti’s name. Each ci,j is a serialization of a column
Ci,j , where ci,j = CTi,j + Ci,j . CTi,j is a token
denoting the type of the column’s contents as pro-
vided by the database schema, for example numeri-
cal or text. Ci,j is the tokenization of the column’s

name. The ordering of table schemas in s and table
columns in each ti is arbitrary.7 The input to the en-
coder is the concatenation of the query wordpieces
and the serialized schema, represented as the se-
quence of tokens x = 〈CLS〉+ u+ 〈SEP〉+ s. The
inputs to the encoder are embedded and passed to a
pretrained Transformer encoder such as BERT (De-
vlin et al., 2019). The decoder is an autoregressive
Transformer decoder (Vaswani et al., 2017) that
attends over the outputs of the encoder and the
generated prefix.

We use a training set {x(l), y(l),S(l)}Nl=1 consist-
ing of pairs of natural language utterances, gold
SQL queries, and database schemas. We train the
encoder and decoder end-to-end, minimizing the
token-level cross-entropy loss of the gold query
y(l). We update the parameters of the pre-trained
encoder during training. For training data we use
training sets developed for XSP. Importantly, to
ensure we are evaluating the cross-database setting,
our training data does not include examples from
the evaluation databases. During inference, we use
beam search and execute the highest-probability,
syntactically correct prediction. We impose a max-
imum execution time of 45 seconds for predictions.
More details on the model, learning, and evaluation
setup are available in Appendix B.

5.1 Generalization Strategies

While using pre-trained language models can help
encode natural language text, we need other strate-
gies to reason jointly about the language and the
database schema in completely unseen domains.
We focus on generalizing to domain-specific lan-
guage and novel database structures.

Value Copying Similar to previous work (Jia and
Liang, 2016; Gu et al., 2016; Gulcehre et al., 2016;
See et al., 2017), we use a copy mechanism in the
decoder. At each output step, the decoder gener-
ates a distribution over possible actions, includ-
ing selecting a symbol from the output vocabulary,
and copying a token from the input x. We only
allow copying of certain token types, and mask
out invalid copying actions, including independent
wordpieces from u and TAB and column-type to-
kens. For table and column tokens, the name of

7To discourage over-fitting to an arbitrary ordering of
schema elements, we duplicate each Spider training example
seven times with randomly permuted orderings. Duplicating
seven times results in the number of Spider training examples
roughly matching the number of WikiSQL training examples
(Section 5.1).

8378

the corresponding table or column is recovered by
post-processing the predicted sequence y.

Previous approaches on Spider do not evaluate
execution accuracy over the databases. Because the
main metric does not require values in the predicted
and gold queries to be the same, many approaches
simplify the problem by using a placeholder token
for all values during training. However, correctly
generating values is critical for correctly executing
predicted queries. To the best of our knowledge,
our approach is the first to evaluate on Spider with
execution accuracy and to generate SQL queries
without placeholder values.

Multiple Data Sources We train with training
data from Spider (Yu et al., 2018) and Wik-
iSQL (Zhong et al., 2017). Spider includes ex-
amples of complex SQL queries grounded in multi-
table databases, while queries in WikiSQL are com-
positionally simple and grounded in single web ta-
bles. We use WikiSQL to improve generalization
to domain-specific data, as it covers a large variety
of domains. WikiSQL contains many more tables
than Spider, and prior work estimates that roughly
half of WikiSQL examples require using domain
knowledge to map from entity mentions to column
names (Yavuz et al., 2018).

Different Output Space Guo et al. (2019)
demonstrated improvements on Spider by deter-
ministically mapping SQL to an intermediate repre-
sentation, SemQL, and learning to predict outputs
in this space. SemQL does not require predicting
all of the tables in the FROM clause of the SQL query,
or explicitly predicting the columns on which ta-
bles are joined. Instead of reasoning about foreign
keys, the model predicts queries in the SemQL
space, which are deterministically transformed to
a final SQL query. In most cases, SemQL queries
can be mapped back to SQL using database for-
eign key relations. We implement this aspect of
SemQL as a mapping from SQL to a representation
with an under-specified FROM clause, which we call
SQLUF. Conversion from SQL to SQLUF removes
tables from the FROM clause(s) of the SQL query
implicitly referenced via a column elsewhere in
the query, and removes JOIN clauses. Conversion
from SQLUF to SQL restores these tables, and joins
between tables are inferred by greedily identifying
a path that connects all tables in the FROM clause,

given foreign key relations.8 Examples of SQLUF

are shown in Appendix C.

6 Experiments

Comparison to Existing XSP Systems Our best
model performs well on the Spider development
set. Table 3 compares our system with top sys-
tems on the Spider leaderboard9. On the devel-
opment set, our model performs competitively
with contemporaneous systems. Table 3 shows
that Spider performance correlated to the choice
of the pre-trained models. Public BERTLARGE
is better than BERTBASE. To further improve
performance, we experiment with an enhanced
pre-trained model BERTLARGE+ following the
recipe proposed by Liu et al. (2019). The
BERTLARGE+ model is trained with 8K batch
size and 100k training steps, and in contrast to
RoBERTa, is only trained on the Wiki+Books Cor-
pus used in Devlin et al. (2019). Training our model
to predict value placeholders (– Value Copying) in-
stead of copying values from the input results in a
performance drop, showing a benefit of modeling
values even when ignored by the metric.10

XSP on Unseen Datasets Table 2 shows results
on all evaluation data, including datasets originally
studied in the SSP setting. We report results on
the filtered set (Section 3) as well as the full set
of these datasets. A large portion of the examples
in datasets such as Restaurants and Advising yield
empty execution results. This shows the need to
also evaluate on the filtered set, where incorrect
spurious predictions are much less likely to result
in the same table as a gold query with an empty
table result. Second, while execution accuracy on
Spider is relatively high, performance on the other
evaluation datasets is much lower.

We find that all three techniques for addressing
generalization challenges are effective. First, in-
cluding WikiSQL in the training data results in
better performance than only using Spider training
data. We hypothesize that this is due to the addi-

8Like SemQL, this conversion is not possible if foreign
key relations between predicted tables are not provided or if
a given table is referenced more than once in a FROM clause.
This can also result in a lossy or ambiguous conversion if there
are multiple foreign key relations between a pair of tables.

9https://yale-lily.github.io/spider. In
Table 3, we include non-anonymized leaderboard submissions,
and for anonymous systems, the most recent submission for
duplicate systems.

10About 55% of examples in Spider do not require copying
values from the input utterance to the gold query.

https://yale-lily.github.io/spider

8379

Dataset Metric # Examples Our best –WikiSQL –SQLUF – Value copying Empty Prior

ATIS 289 (486) 0.8 (11.9) 0.5 (11.9) 0.8 (11.9) 0.1 (10.8) 0.0 (11.9)
GeoQuery

Execution

532 (598) 41.6 (40.0) 35.6 (35.0) 34.7 (33.4) 2.2 (5.6) 0.0 (4.0)
Restaurants 27 (378) 3.7 (45.2) 3.7 (46.3) 0.0 (46.6) 0.0 (51.1) 0.0 (51.6)
Academic 180 (196) 8.2 (12.1) 6.1 (9.4) 5.7 (9.0) 2.8 (7.7) 0.0 (4.1)
IMDB 107 (131) 24.6 (33.3) 24.3 (32.3) 23.1 (32.3) 0.0 (14.3) 0.0 (13.0)
Yelp 54 (128) 19.8 (49.2) 16.7 (47.9) 14.8 (47.9) 4.9 (53.1) 0.0 (41.4)
Scholar 394 (599) 0.5 (6.8) 0.4 (7.4) 0.5 (8.6) 0.2 (7.8) 0.0 (9.3)
Advising 309 (2858) 2.3 (35.2) 1.2 (35.7) 1.4 (37.3) 0.0 (38.0) 0.0 (38.3)

Spider Execution 1034 69.0 68.4 65.1 33.9 4.7
Exact Set Match 65.0 65.1 60.5 54.1 –

Table 2: Execution accuracy on the XSP task for the eight evaluation datasets and Spider, comparing our best
system with baselines and independent ablations. For Spider, we also report performance using Exact Set Match,
the official Spider metric. Results are averaged over three trials. The full set results are reported in parentheses.
The empty prior represents the baseline accuracy of returning empty set for all queries. The accuracies on the
re-purposed datasets are much lower than the Spider performance.

System Exact Set
Match (Dev.)

Top Leaderboard Systems (As of May 1, 2020)

RYANSQL v2 + BERT (Choi et al., 2020) 70.6
RYANSQL + BERT (Choi et al., 2020) 66.6
RATSQL v2 + BERT (Anonymous) 65.8
IRNet++ + XLNET (Anonymous) 65.5
IRNet + BERT (Guo et al., 2019) 61.9
RASQL + BERT (Anonymous) 60.8
GIRN + BERT (Anonymous) 60.2
CNSQL (Anonymous) 58.0
EditSQL + LSL + BERT (Anonymous) 57.9
GNN + Bertrand-DR (Kelkar et al., 2020) 57.9

Ours with BERTLARGE+ 65.8
Ours with BERTLARGE 63.2
Ours with BERTBASE 60.4
Ours with BERTLARGE+ - Value Copying 55.1

Table 3: Performance on the Spider development set
using Spider’s official evaluation metric (Exact Set
Match), ordered by the development set performance.
For our systems, we report the Exact Set Match of the
best of three trials. While the focus of our paper is not
on Spider performance, our system still performs well.

tional domains in WikiSQL, as well as the larger
proportion of examples that require mapping from
entities in the utterance to column names (Yavuz
et al., 2018). Using SQLUF also improves perfor-
mance, as it produces queries coherent with respect
to the schema, for example only selecting columns
from tables where the column exists. Finally, using
value placeholders significantly reduces execution
accuracy in all datasets. While masking values de-
creases Exact Set Match on Spider by 10.9%, its
effect on execution accuracy can be devastating
both for Spider and the eight evaluation datasets.
This demonstrates the need to consider execution

results when evaluating semantic parsing systems.

Error Analysis For each evaluation dataset, we
analyze twenty random predictions from the fil-
tered subset. Examples of the most common error
types are shown in Figure 2, along with the pro-
portion of analyzed predictions in the eight target
datasets that contain the error type. Appendix D
discusses the complete results of error analysis.

40% of errors are caused by comparing an en-
tity to the wrong column, for example searching
for ‘James Bond’ in the director.name column
when it actually refers to a movie.title. This usu-
ally requires using domain knowledge identify to
columns that are likely to contain the mentioned
entity (Section 4.1). 31.1% of errors are caused by
missing constraints specified in the utterance, for
example by failing to use a relevant entity in the
predicted query. 28.8% of errors are also caused by
incorrectly identifying entity spans, for example by
treating FIN 340 as a single entity rather than two
separate entities in the database (Section 4.1). An-
other common error is predicting the wrong final
column. While choosing what to return is difficult
for the model due to understanding domain-specific
phrases such as how many (20.0% of errors; Sec-
tion 4.1), sometimes the errors are due to dataset
conventions (26.9% of errors; Section 4.3). For
example, the paperid column should be selected
instead of the title column in Scholar. Such
dataset conventions could be learned through few-
shot learning, where a small number of in-domain
training examples are available.

Our system is required to generalize to larger
databases than it was trained on, including more
complex compositions of tables (Section 4.2). For

8380

40.0% → Entity-column matching (IMDBXSP)
NL: List “James Bond” directors
Pred.: select director.name

from directed by join
director on directed by.did
= director.did where
director.name = ‘James Bond’;

Gold: select T1.name from directed by
as T2, director as T1, movie
as T3 where T1.did = T2.did
and T3.mid = T2.mid and
T3.title = ‘James Bond’;

31.3% → Missing constraint (AcademicXSP)
NL: return me the year of “Making database systems

usable”
Pred: select publication.year from

publication;
Gold: select T1.year from publication

as T1 where T1.title = ‘Making
database systems usable’;

28.8% → Entity identification and copying (AdvisingXSP)
NL: What’s the number of times FIN 340 has been of-

fered?
Pred.: select count(*) from course join

course offering on course.course id
= course offering.course id where
course.name = ‘FIN 340’;

Gold: select count(distinct
T1.offering id) from course as
T2, course offering as T1 where
T2.course id = T1.course id
and T2.department = ‘FIN’ and
T2.number = 340;

26.9% → Ambiguous final column (ScholarXSP)
NL: papers from 2014
Pred.: select distinct paper.title from

paper where paper.year = 2014;
Gold: select distinct T1.paperid from

paper as T1 where T1.year = 2014;

20.0% → Wrong final column (GeoQueryXSP)
NL: how many people live in austin
Pred.: select count(*) from city where

city.state name = ‘austin’;
Gold: select T1.population from city as

T1 where T1.city name = ‘austin’;

Figure 2: The most common error types made by our
best system, including an example. The subscript indi-
cates the results are in the XSP setting. Each prediction
may be annotated with more than one error type.

example, while SQLUF can be used to represent
most gold queries in most evaluation datasets
(shown in Appendix C), in ATIS, only 17.3%
of gold queries are covered by SQLUF. Most
of the uncovered examples require mapping two
columns, to airport and from airport, in the
same table flight to the same foreign key
airport service.airport code. This composi-
tional structure is not covered by SQLUF, but is
critical to perform well on ATIS.

7 Discussion

We study the task of cross-database semantic pars-
ing (XSP), where a system that maps natural lan-
guage utterances to executable SQL queries is eval-
uated on databases unseen at training time. While
this task has been studied through datasets devel-
oped specifically for XSP, we propose a more holis-
tic evaluation for XSP, where we also evaluate
on datasets originally studied in a setting where
in-domain training data is available. We identify
several new generalization challenges that arise
when evaluating in our proposed setup, including
identifying entities, mapping entities and domain-
specific phrases to a database schema, and gener-
alizing to more complex database schemas. Us-
ing a model that performs well on evaluation data
designed for XSP, we are able to move towards
addressing some of the generalization challenges
on these additional evaluation sets without any in-
domain training data. Our results and analysis
demonstrate the need for developing more holis-
tic evaluation of cross-database semantic parsing
using a more diverse set of language and databases.

Several significant generalization challenges re-
maining, including improving commonsense and
in-domain reasoning and table schema understand-
ing capabilities. Some examples in our filtered
evaluation set still require reasoning about dataset
conventions that are difficult to acquire without in-
domain training examples. Future work could also
make the stronger assumption that a small number
of in-domain training examples are available, and
train and evaluate in a few-shot setting.

Acknowledgments

The first author is supported by the National
Science Foundation Graduate Research Fellow-
ship under Grant No. DGE-1650441. We thank
the Google Research Language and Cornell NLP
groups for their comments and feedback during the
project’s development. We also thank Jing Li for
pre-training the BERTLARGE+ model, and Philip
Massey, Zuyao Li, Angelica Chen, Karl Pichotta,
and Francesco Piccinno for their contributions to
the codebase. Finally, we thank the anonymous
reviewers for their comments and suggestions.

8381

References
Yoav Artzi and Luke Zettlemoyer. 2011. Bootstrapping

semantic parsers from conversations. In Proceed-
ings of the 2011 Conference on Empirical Methods
in Natural Language Processing, pages 421–432,
Edinburgh, Scotland, UK. Association for Compu-
tational Linguistics.

Yoav Artzi and Luke Zettlemoyer. 2013. Weakly su-
pervised learning of semantic parsers for mapping
instructions to actions. Transactions of the Associa-
tion for Computational Linguistics, 1:49–62.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract meaning representation
for sembanking. In Proceedings of the 7th Linguis-
tic Annotation Workshop and Interoperability with
Discourse, pages 178–186, Sofia, Bulgaria. Associa-
tion for Computational Linguistics.

Ben Bogin, Jonathan Berant, and Matt Gardner. 2019a.
Representing schema structure with graph neural
networks for text-to-SQL parsing. In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 4560–4565, Florence,
Italy. Association for Computational Linguistics.

Ben Bogin, Matt Gardner, and Jonathan Berant. 2019b.
Global reasoning over database structures for text-
to-SQL parsing. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 3650–3655, Hong Kong, China. As-
sociation for Computational Linguistics.

David L. Chen and Raymond J. Mooney. 2011. Learn-
ing to interpret natural language navigation instruc-
tions from observations. pages 859–865.

DongHyun Choi, Myeong Cheol Shin, EungGyun Kim,
and Dong Ryeol Shin. 2020. RYANSQL: Recur-
sively applying sketch-based slot fillings for com-
plex text-to-sql in cross-domain databases.

Deborah A. Dahl, Madeleine Bates, Michael Brown,
William Fisher, Kate Hunicke-Smith, David Pallett,
Christine Pao, Alexander Rudnicky, and Elizabeth
Shriberg. 1994. Expanding the scope of the atis
task: The atis-3 corpus. In HUMAN LANGUAGE
TECHNOLOGY: Proceedings of a Workshop held at
Plainsboro, New Jersey, March 8-11, 1994.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Li Dong and Mirella Lapata. 2016. Language to logi-
cal form with neural attention. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
33–43, Berlin, Germany. Association for Computa-
tional Linguistics.

Catherine Finegan-Dollak, Jonathan K. Kummerfeld,
Li Zhang, Karthik Ramanathan, Sesh Sadasivam,
Rui Zhang, and Dragomir Radev. 2018. Improving
text-to-SQL evaluation methodology. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 351–360, Melbourne, Australia. Asso-
ciation for Computational Linguistics.

Ofer Givoli and Roi Reichart. 2019. Zero-shot seman-
tic parsing for instructions. In Proceedings of the
57th Annual Meeting of the Association for Com-
putational Linguistics, pages 4454–4464, Florence,
Italy. Association for Computational Linguistics.

Jiatao Gu, Zhengdong Lu, Hang Li, and Victor O.K.
Li. 2016. Incorporating copying mechanism in
sequence-to-sequence learning. In Proceedings of
the 54th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 1631–1640, Berlin, Germany. Association for
Computational Linguistics.

Caglar Gulcehre, Sungjin Ahn, Ramesh Nallapati,
Bowen Zhou, and Yoshua Bengio. 2016. Pointing
the unknown words. In Proceedings of the 54th
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pages
140–149, Berlin, Germany. Association for Compu-
tational Linguistics.

Jiaqi Guo, Zecheng Zhan, Yan Gao, Yan Xiao,
Jian-Guang Lou, Ting Liu, and Dongmei Zhang.
2019. Towards complex text-to-SQL in cross-
domain database with intermediate representation.
In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages
4524–4535, Florence, Italy. Association for Compu-
tational Linguistics.

Charles T. Hemphill, John J. Godfrey, and George R.
Doddington. 1990. The ATIS spoken language sys-
tems pilot corpus. In Speech and Natural Language:
Proceedings of a Workshop Held at Hidden Valley,
Pennsylvania, June 24-27,1990.

Jonathan Herzig and Jonathan Berant. 2018. Decou-
pling structure and lexicon for zero-shot semantic
parsing. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 1619–1629, Brussels, Belgium. Association
for Computational Linguistics.

Jonathan Herzig and Jonathan Berant. 2019. Don’t
paraphrase, detect! rapid and effective data collec-
tion for semantic parsing. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International

https://www.aclweb.org/anthology/D11-1039
https://www.aclweb.org/anthology/D11-1039
https://doi.org/10.1162/tacl_a_00209
https://doi.org/10.1162/tacl_a_00209
https://doi.org/10.1162/tacl_a_00209
https://www.aclweb.org/anthology/W13-2322
https://www.aclweb.org/anthology/W13-2322
https://doi.org/10.18653/v1/P19-1448
https://doi.org/10.18653/v1/P19-1448
https://doi.org/10.18653/v1/D19-1378
https://doi.org/10.18653/v1/D19-1378
http://www.cs.utexas.edu/users/ai-lab?chen:aaai11
http://www.cs.utexas.edu/users/ai-lab?chen:aaai11
http://www.cs.utexas.edu/users/ai-lab?chen:aaai11
http://arxiv.org/abs/2004.03125
http://arxiv.org/abs/2004.03125
http://arxiv.org/abs/2004.03125
https://www.aclweb.org/anthology/H94-1010
https://www.aclweb.org/anthology/H94-1010
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/P16-1004
https://doi.org/10.18653/v1/P16-1004
https://doi.org/10.18653/v1/P18-1033
https://doi.org/10.18653/v1/P18-1033
https://doi.org/10.18653/v1/P19-1438
https://doi.org/10.18653/v1/P19-1438
https://doi.org/10.18653/v1/P16-1154
https://doi.org/10.18653/v1/P16-1154
https://doi.org/10.18653/v1/P16-1014
https://doi.org/10.18653/v1/P16-1014
https://doi.org/10.18653/v1/P19-1444
https://doi.org/10.18653/v1/P19-1444
https://www.aclweb.org/anthology/H90-1021
https://www.aclweb.org/anthology/H90-1021
https://doi.org/10.18653/v1/D18-1190
https://doi.org/10.18653/v1/D18-1190
https://doi.org/10.18653/v1/D18-1190
https://doi.org/10.18653/v1/D19-1394
https://doi.org/10.18653/v1/D19-1394
https://doi.org/10.18653/v1/D19-1394

8382

Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 3801–3811, Hong Kong,
China. Association for Computational Linguistics.

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, Jayant
Krishnamurthy, and Luke Zettlemoyer. 2017. Learn-
ing a neural semantic parser from user feedback. In
Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 963–973, Vancouver, Canada.
Association for Computational Linguistics.

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and
Luke Zettlemoyer. 2018. Mapping language to code
in programmatic context. In Proceedings of the
2018 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1643–1652, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

Mohit Iyyer, Wen-tau Yih, and Ming-Wei Chang. 2017.
Search-based neural structured learning for sequen-
tial question answering. In Proceedings of the
55th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 1821–1831, Vancouver, Canada. Association
for Computational Linguistics.

Robin Jia and Percy Liang. 2016. Data recombination
for neural semantic parsing. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
12–22, Berlin, Germany. Association for Computa-
tional Linguistics.

Amol Kelkar, Rohan Relan, Vaishali Bhardwaj,
Saurabh Vaichal, and Peter Relan. 2020. Bertrand-
DR: Improving text-to-SQL using a discriminative
re-ranker.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. In Proceedings
of the 3rd International Conference on Learning
Representations.

Jayant Krishnamurthy, Pradeep Dasigi, and Matt Gard-
ner. 2017. Neural semantic parsing with type con-
straints for semi-structured tables. In Proceedings
of the 2017 Conference on Empirical Methods in
Natural Language Processing, pages 1516–1526,
Copenhagen, Denmark. Association for Computa-
tional Linguistics.

Igor Labutov, Bishan Yang, and Tom Mitchell. 2018.
Learning to learn semantic parsers from natural lan-
guage supervision. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1676–1690, Brussels, Belgium.
Association for Computational Linguistics.

Fei Li and H. V. Jagadish. 2014. Constructing an
interactive natural language interface for relational
databases. Proceedings of the VLDB Endowment,
8(1):73–84.

Kevin Lin, Ben Bogin, Mark Neumann, Jonathan Be-
rant, and Matt Gardner. 2019. Grammar-based
neural text-to-SQL generation. arXiv preprint
arXiv:1905.13326.

Xi Victoria Lin, Chenglong Wang, Luke Zettlemoyer,
and Michael D. Ernst. 2018. NL2Bash: A corpus
and semantic parser for natural language interface
to the linux operating system. In Proceedings of
the Eleventh International Conference on Language
Resources and Evaluation (LREC 2018), Miyazaki,
Japan. European Language Resources Association
(ELRA).

Wang Ling, Phil Blunsom, Edward Grefenstette,
Karl Moritz Hermann, Tomáš Kočiský, Fumin
Wang, and Andrew Senior. 2016. Latent predictor
networks for code generation. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
599–609, Berlin, Germany. Association for Compu-
tational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Reginald Long, Panupong Pasupat, and Percy Liang.
2016. Simpler context-dependent logical forms via
model projections. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1456–
1465, Berlin, Germany. Association for Computa-
tional Linguistics.

Scott Miller, David Stallard, Robert Bobrow, and
Richard Schwartz. 1996. A fully statistical approach
to natural language interfaces. In 34th Annual Meet-
ing of the Association for Computational Linguistics,
pages 55–61, Santa Cruz, California, USA. Associa-
tion for Computational Linguistics.

Qingkai Min, Yuefeng Shi, and Yue Zhang. 2019. A
pilot study for Chinese SQL semantic parsing. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 3643–
3649, Hong Kong, China. Association for Computa-
tional Linguistics.

Yusuke Oda, Hiroyuki Fudaba, Graham Neubig,
Hideaki Hata, Sakriani Sakti, Tomoki Toda, and
Satoshi Nakamura. 2015. Learning to generate
pseudo-code from source code using statistical ma-
chine translation. In 2015 30th IEEE/ACM Interna-
tional Conference on Automated Software Engineer-
ing (ASE), pages 574–584. IEEE.

Panupong Pasupat and Percy Liang. 2015. Compo-
sitional semantic parsing on semi-structured tables.
In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the

https://doi.org/10.18653/v1/P17-1089
https://doi.org/10.18653/v1/P17-1089
https://doi.org/10.18653/v1/D18-1192
https://doi.org/10.18653/v1/D18-1192
https://doi.org/10.18653/v1/P17-1167
https://doi.org/10.18653/v1/P17-1167
https://doi.org/10.18653/v1/P16-1002
https://doi.org/10.18653/v1/P16-1002
http://arxiv.org/abs/2002.00557
http://arxiv.org/abs/2002.00557
http://arxiv.org/abs/2002.00557
https://doi.org/10.18653/v1/D17-1160
https://doi.org/10.18653/v1/D17-1160
https://doi.org/10.18653/v1/D18-1195
https://doi.org/10.18653/v1/D18-1195
http://dx.doi.org/10.14778/2735461.2735468
http://dx.doi.org/10.14778/2735461.2735468
http://dx.doi.org/10.14778/2735461.2735468
https://www.aclweb.org/anthology/L18-1491
https://www.aclweb.org/anthology/L18-1491
https://www.aclweb.org/anthology/L18-1491
https://doi.org/10.18653/v1/P16-1057
https://doi.org/10.18653/v1/P16-1057
https://doi.org/10.18653/v1/P16-1138
https://doi.org/10.18653/v1/P16-1138
https://doi.org/10.3115/981863.981871
https://doi.org/10.3115/981863.981871
https://doi.org/10.18653/v1/D19-1377
https://doi.org/10.18653/v1/D19-1377
https://doi.org/10.3115/v1/P15-1142
https://doi.org/10.3115/v1/P15-1142

8383

7th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
1470–1480, Beijing, China. Association for Compu-
tational Linguistics.

Hoifung Poon. 2013. Grounded unsupervised seman-
tic parsing. In Proceedings of the 51st Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 933–943,
Sofia, Bulgaria. Association for Computational Lin-
guistics.

Ana-Maria Popescu, Alex Armanasu, Oren Etzioni,
David Ko, and Alexander Yates. 2004. Modern natu-
ral language interfaces to databases: Composing sta-
tistical parsing with semantic tractability. In COL-
ING 2004: Proceedings of the 20th International
Conference on Computational Linguistics, pages
141–147, Geneva, Switzerland. COLING.

Abigail See, Peter J. Liu, and Christopher D. Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1073–
1083, Vancouver, Canada. Association for Computa-
tional Linguistics.

Peter Shaw, Philip Massey, Angelica Chen, Francesco
Piccinno, and Yasemin Altun. 2019. Generating log-
ical forms from graph representations of text and
entities. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 95–106, Florence, Italy. Association for Com-
putational Linguistics.

Alane Suhr, Srinivasan Iyer, and Yoav Artzi. 2018.
Learning to map context-dependent sentences to ex-
ecutable formal queries. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers),
pages 2238–2249, New Orleans, Louisiana. Associ-
ation for Computational Linguistics.

Lappoon R. Tang and Raymond J. Mooney. 2000. Au-
tomated construction of database interfaces: Inter-
grating statistical and relational learning for seman-
tic parsing. In 2000 Joint SIGDAT Conference on
Empirical Methods in Natural Language Process-
ing and Very Large Corpora, pages 133–141, Hong
Kong, China. Association for Computational Lin-
guistics.

Jesse Thomason, Shiqi Zhang, Raymond Mooney, and
Peter Stone. 2015. Learning to interpret natural lan-
guage commands through human-robot dialog. In
International Joint Conference on Artificial Intelli-
gence (IJCAI).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In I. Guyon, U. V. Luxburg, S. Bengio,

H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 30, pages 5998–6008. Curran Asso-
ciates, Inc.

Yushi Wang, Jonathan Berant, and Percy Liang. 2015.
Building a semantic parser overnight. In Proceed-
ings of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th Interna-
tional Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), pages 1332–1342,
Beijing, China. Association for Computational Lin-
guistics.

Yuk Wah Wong and Raymond Mooney. 2006. Learn-
ing for semantic parsing with statistical machine
translation. In Proceedings of the Human Language
Technology Conference of the NAACL, Main Confer-
ence, pages 439–446, New York City, USA. Associ-
ation for Computational Linguistics.

Chunyang Xiao, Marc Dymetman, and Claire Gardent.
2016. Sequence-based structured prediction for se-
mantic parsing. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1341–
1350, Berlin, Germany. Association for Computa-
tional Linguistics.

Navid Yaghmazadeh, Yuepeng Wang, Isil Dillig, , and
Thomas Dillig. 2017. SQLizer: Query synthesis
from natural language. In International Conference
on Object-Oriented Programming, Systems, Lan-
guages, and Applications, ACM, pages 63:1–63:26.

Ziyu Yao, Yu Su, Huan Sun, and Wen-tau Yih. 2019.
Model-based interactive semantic parsing: A uni-
fied framework and a text-to-SQL case study. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 5450–
5461, Hong Kong, China. Association for Computa-
tional Linguistics.

Semih Yavuz, Izzeddin Gur, Yu Su, and Xifeng Yan.
2018. What it takes to achieve 100% condition ac-
curacy on WikiSQL. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1702–1711, Brussels, Bel-
gium. Association for Computational Linguistics.

Pengcheng Yin, Bowen Deng, Edgar Chen, Bogdan
Vasilescu, and Graham Neubig. 2018. Learning to
mine aligned code and natural language pairs from
stack overflow. In 2018 IEEE/ACM 15th Interna-
tional Conference on Mining Software Repositories
(MSR), pages 476–486. IEEE.

Pengcheng Yin and Graham Neubig. 2017. A syntactic
neural model for general-purpose code generation.
In Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 440–450, Vancouver, Canada.
Association for Computational Linguistics.

https://www.aclweb.org/anthology/P13-1092
https://www.aclweb.org/anthology/P13-1092
https://www.aclweb.org/anthology/C04-1021
https://www.aclweb.org/anthology/C04-1021
https://www.aclweb.org/anthology/C04-1021
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/P19-1010
https://doi.org/10.18653/v1/P19-1010
https://doi.org/10.18653/v1/P19-1010
https://doi.org/10.18653/v1/N18-1203
https://doi.org/10.18653/v1/N18-1203
https://doi.org/10.3115/1117794.1117811
https://doi.org/10.3115/1117794.1117811
https://doi.org/10.3115/1117794.1117811
https://doi.org/10.3115/1117794.1117811
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
https://doi.org/10.3115/v1/P15-1129
https://www.aclweb.org/anthology/N06-1056
https://www.aclweb.org/anthology/N06-1056
https://www.aclweb.org/anthology/N06-1056
https://doi.org/10.18653/v1/P16-1127
https://doi.org/10.18653/v1/P16-1127
http://doi.org/10.1145/3133887
http://doi.org/10.1145/3133887
https://doi.org/10.18653/v1/D19-1547
https://doi.org/10.18653/v1/D19-1547
https://doi.org/10.18653/v1/D18-1197
https://doi.org/10.18653/v1/D18-1197
https://doi.org/10.18653/v1/P17-1041
https://doi.org/10.18653/v1/P17-1041

8384

Tao Yu, Rui Zhang, Heyang Er, Suyi Li, Eric Xue,
Bo Pang, Xi Victoria Lin, Yi Chern Tan, Tianze
Shi, Zihan Li, Youxuan Jiang, Michihiro Yasunaga,
Sungrok Shim, Tao Chen, Alexander Fabbri, Zifan
Li, Luyao Chen, Yuwen Zhang, Shreya Dixit, Vin-
cent Zhang, Caiming Xiong, Richard Socher, Walter
Lasecki, and Dragomir Radev. 2019a. CoSQL: A
conversational text-to-SQL challenge towards cross-
domain natural language interfaces to databases. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 1962–
1979, Hong Kong, China. Association for Computa-
tional Linguistics.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li,
Qingning Yao, Shanelle Roman, Zilin Zhang,
and Dragomir Radev. 2018. Spider: A large-
scale human-labeled dataset for complex and cross-
domain semantic parsing and text-to-SQL task. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages
3911–3921, Brussels, Belgium. Association for
Computational Linguistics.

Tao Yu, Rui Zhang, Michihiro Yasunaga, Yi Chern
Tan, Xi Victoria Lin, Suyi Li, Heyang Er, Irene
Li, Bo Pang, Tao Chen, Emily Ji, Shreya Dixit,
David Proctor, Sungrok Shim, Jonathan Kraft, Vin-
cent Zhang, Caiming Xiong, Richard Socher, and
Dragomir Radev. 2019b. SParC: Cross-domain se-
mantic parsing in context. In Proceedings of the
57th Annual Meeting of the Association for Com-
putational Linguistics, pages 4511–4523, Florence,
Italy. Association for Computational Linguistics.

John M. Zelle and Raymond J. Mooney. 1996. Learn-
ing to parse database queries using inductive logic
programming. In Proceedings of the Thirteenth Na-
tional Conference on Artificial Intelligence - Volume
2, pages 1050–1055.

Luke Zettlemoyer and Michael Collins. 2007. Online
learning of relaxed CCG grammars for parsing to
logical form. In Proceedings of the 2007 Joint Con-
ference on Empirical Methods in Natural Language
Processing and Computational Natural Language
Learning (EMNLP-CoNLL), pages 678–687, Prague,
Czech Republic. Association for Computational Lin-
guistics.

Luke Zettlemoyer and Michael Collins. 2009. Learn-
ing context-dependent mappings from sentences to
logical form. In Proceedings of the Joint Confer-
ence of the 47th Annual Meeting of the ACL and
the 4th International Joint Conference on Natural
Language Processing of the AFNLP, pages 976–984,
Suntec, Singapore. Association for Computational
Linguistics.

Luke S. Zettlemoyer and Michael Collins. 2005. Learn-
ing to map sentences to logical form: Structured
classification with probabilistic categorial grammars.

In Proceedings of the Twenty-First Conference on
Uncertainty in Artificial Intelligence, UAI’05, pages
658–666, Arlington, Virginia, United States. AUAI
Press.

Rui Zhang, Tao Yu, Heyang Er, Sungrok Shim,
Eric Xue, Xi Victoria Lin, Tianze Shi, Caim-
ing Xiong, Richard Socher, and Dragomir Radev.
2019. Editing-based SQL query generation for
cross-domain context-dependent questions. In Pro-
ceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the 9th In-
ternational Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 5341–5352,
Hong Kong, China. Association for Computational
Linguistics.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2SQL: Generating structured queries
from natural language using reinforcement learning.
CoRR, abs/1709.00103.

https://doi.org/10.18653/v1/D19-1204
https://doi.org/10.18653/v1/D19-1204
https://doi.org/10.18653/v1/D19-1204
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/P19-1443
https://doi.org/10.18653/v1/P19-1443
http://dl.acm.org/citation.cfm?id=1864519.1864543
http://dl.acm.org/citation.cfm?id=1864519.1864543
http://dl.acm.org/citation.cfm?id=1864519.1864543
https://www.aclweb.org/anthology/D07-1071
https://www.aclweb.org/anthology/D07-1071
https://www.aclweb.org/anthology/D07-1071
https://www.aclweb.org/anthology/P09-1110
https://www.aclweb.org/anthology/P09-1110
https://www.aclweb.org/anthology/P09-1110
http://dl.acm.org/citation.cfm?id=3020336.3020416
http://dl.acm.org/citation.cfm?id=3020336.3020416
http://dl.acm.org/citation.cfm?id=3020336.3020416
https://doi.org/10.18653/v1/D19-1537
https://doi.org/10.18653/v1/D19-1537

8385

A Data Details

Measuring Exact Column Match in Utterances
For each example, we identify columns used for
direct comparison with values in the correct SQL
query (not considering columns used to link two
tables, order or group results, or in the top-level
SELECT statement). We then heuristically identify
whether any of the used column names appear in
the utterance by canonicalizing the column name
(e.g., replacing underscores with spaces) and per-
forming a basic substring match. Because slight
variants of column names may appear in the utter-
ance, our reported results show an lower bound.

Heuristically Filtering Datasets We use several
heuristics to filter evaluation data. Although we
cannot automatically filter out all examples where
database conventions are required to select the cor-
rect final column, we found that a good heuristic is
filtering out examples that require selecting more
than one final column. For example, in Advising,
when an utterance asks for a list of classes, the la-
beled query always selects four columns from the
course table: department, name, number,
and semester. We remove all examples where
a numerical or text value is not copiable from the
input utterance, except for the numbers 0 and 1,
which are often not copied from the input (for ex-
ample, limiting table results in LIMIT 1). We
also remove all examples that result in an empty
table, and examples where the gold query returns a
count, and the resulting table is [0].

B Experimental Details

To choose model and learning hyperparameters,
we began with the hyperparameters of Shaw et al.
(2019), and performed a small number of experi-
ments to improve performance on Spider.

Model For our encoder, we use a pre-trained
BERT model (Devlin et al., 2019). All input tokens
use the same segment ID. We use absolute posi-
tional embeddings. The word embedding size for
all tokens is 128. We use wordpiece tokenization
for the input utterance. To tokenize column and
table names, we replace underscores with spaces,
and then apply wordpiece tokenization.

The outputs of the encoder are transformed using
a linear layer before being used by the decoder.
We use a two-layer Transformer decoder (Vaswani
et al., 2017) with eight attention heads. We use

a gated copying mechanism, supervising gating
decisions during training.

Learning During training, we use a maximum
input size of 512 tokens. During training and in-
ference, we use a maximum decoding length of
100. For training, we create seven examples per
original Spider training example, with randomized
permutations of table ordering, and column order-
ing within the table spans. We use a batch size
of 32 and train for 30,000 update steps. We apply
teacher-forcing during training. During training,
we apply a dropout at a rate of 0.3 on the embed-
dings of decoder tokens and within the decoder
Transformer. We use Adam optimizer (Kingma
and Ba, 2014). We increase learning rate linearly
from 0 to 0.00008 until 5,625 steps, then decrease
it linearly to 0.0 by the end of training. The en-
coder begins as a pre-trained BERT model, whose
parameters we freeze for the first 2,100 updates.

Inference For each evaluation example, we per-
form beam search against our trained model with
a beam size of 100. Among the 10 most probable
predictions from the beam search, we choose the
highest-probability prediction that is a syntactically
valid SQL query. To check syntactic validity, we
test each prediction’s execution against an emptied
copy of the database (emptied to ensure we are
not using database contents) and pass over queries
which are inexecutable. We test the top 10 items
in the beam to limit evaluation time, and find that
in nearly all cases, if a syntactically correct pre-
diction exists in the beam, it appears as one of the
top 10 items. To correctly resolve predicted SQLUF

queries, we use gold-standard foreign keys for all
target databases.

Some queries are highly inefficient, and can take
minutes to execute due to the sizes of the databases.
To reduce the execution time of gold queries, we
add database indices where possible. Even with
these indices, some predicted queries still take a
long time to execute. To make evaluation tractable,
we use a timeout of 45 seconds per predicted query.
If the query has not executed after 45 seconds, we
return the empty table. Figure 3 shows the influ-
ence of the timeout threshold on the model per-
formance for our best model on each evaluation
dataset. By 45 seconds, the vast majority of pre-
dictions can execute, and execution accuracy has
stabilized.

8386

0 15 30 45 60

0

25

50

75

100

(a) Exec. Acc. (Full)

ATIS GeoQuery Restaurants Academic IMDB Yelp Scholar Advising
Spider

0 15 30 45 60

0

25

50

75

100

(b) Prop. Exec. (Full)

0 15 30 45 60

0

25

50

75

100

(c) Exec. Acc. (Filtered)

0 15 30 45 60

0

25

50

75

100

(d) Prop. Exec. (Filtered)

Figure 3: Influence of the timeout threshold on model performance for each dataset evaluation dataset. The x-axis
shows the maximum execution time (in seconds) we allow before terminating query execution. In our experiments,
we use a timeout of 45 seconds. We show how the execution accuracy is influenced by the cutoff time for the full
(a) and filtered (c) evaluation sets. We also show the proportion of queries which finished execution for the full
(b) and filtered (d) evaluation sets. Results are generated using the model which achieved the highest execution
accuracy on the Spider development set. By 45 seconds, the majority of queries return an execution result, and
execution accuracy has stabilized.

Dataset % of Gold Queries Covered by SQLUF

ATIS 17.3
GeoQuery 97.5

Restaurants 100.0
Academic 85.7

IMDB 94.7
Yelp 81.3

Scholar 92.2
Advising 87.4

Spider 97.4

Table 4: Estimates of coverage of SQLUF across each
evaluation dataset.

C SQLUF Examples

Examples of our intermediate representation
SQLUF are shown in Figure 4. Table 4 shows an
estimate of the proportion of all gold queries that
can be generated by our system.

D Supplementary Error Analysis

Table 5 shows the rate of occurrence of eight types
of errors in each evaluation dataset, out of twenty
random incorrect predictions. Below, we give more
detailed descriptions of these error types, as well

as examples from our model predictions.

Entity Understanding We consider two types
of errors: entity identification errors, and column
matching errors. Entity identification errors include
copying the wrong span of tokens that comprise
an entity into the output. Column matching errors
include comparing an entity to the wrong database
column type. Examples for these errors are in-
cluded in Figure 2.

Final Column We consider two types of final
column errors: incorrect predictions, and ambigu-
ous predictions. In incorrect predictions, the final
column type is obviously incorrect with respect to
the utterance. In ambiguous predictions, the final
column is a reasonable prediction with respect to
the utterance, but due to the dataset conventions, is
incorrect. Examples for these errors are included
in Figure 2.

Database Understanding We consider two
types of database understanding errors: syntacti-
cally incorrect predictions, and predictions which
do not compose the tables correctly. Although the
second category execute successfully, their result-

8387

SQL: SELECT people.name FROM people JOIN films ON people.id = film.person id
WHERE films.id = 5

SQLUF: SELECT people.name UF WHERE films.id = 5

SQL: SELECT people.name FROM people JOIN films ON people.id = film.person id
SQLUF: SELECT people.name UF films

SQL: SELECT cities.state, count(*) FROM cities GROUP BY cities.state
SQLUF: SELECT cities.state, count(*) UF GROUP BY cities.state

SQL: SELECT count(*) FROM cities
SQLUF: SELECT count(*) UF cities

SQL: SELECT student id FROM student course registrations UNION SELECT
student id FROM student course attendance

SQLUF: SELECT student course registrations.student id UF UNION SELECT
student course attendance.student id UF

SQL: SELECT table 1.id, table 3.id FROM table 1 JOIN table 2 ON
table 1.table 2 id = table 2.id JOIN table 3 ON table 2.table 3 id

SQLUF: SELECT table 1.id, table 3.id UF table 2

Figure 4: Examples of SQLUF, which uses under-specified FROM clauses. Tables are omitted from the FROM clause
unless a column belonging to the given table is not mentioned elsewhere in the query. Under certain assumptions,
reconstruction of the original SQL is possible given schema information.

ing tables are incorrect due to how the database is
structured. For example, in Restaurants, although
the restaurant table has a city name col-
umn, the correct way to construct a query corre-
sponding to an utterance like how many places for
french food are there in palo alto? is to traverse the
location table instead.

Query Implementation We consider two types
of errors related to incorrectly implementing the
utterance’s intent in SQL: missing and incorrect
constraints. Missing constraints involve ignoring
a constraint mentioned in the utterance, such as
the paper title constraint in the Academic exam-
ple in Figure 2. Incorrect constraints are incorrect
for reasons besides those described above, such
as entity-column matching. For example (from
GeoQuery):

NL: what is the smallest state in the usa
Pred.: select state.state name from

state where state.country name =
‘usa’ order by state.population
limit 1;

Gold: select T1.state name from state
as T1 where T1.area = (select
min(T2.area) from state as T2);

Our model’s prediction incorrectly orders by popu-
lation rather than the state’s area.

E Additional Results on Spider

Table 6 shows the performance on the Spider (Yu
et al., 2018) development set for our single best
model split by hardness level. Table 7 shows the F1

over query components of our best model on the
Spider development set.

8388

Error Type Spider Restaurants IMDB ATIS Academic Scholar Yelp GeoQuery Advising

Entity understanding
Identification 4 9 3 2 5 9 5 5 8
Column match 6 9 6 20 4 5 8 4 8

Final column
Incorrect 5 0 3 3 8 4 1 5 8
Ambiguous 0 0 0 16 3 9 11 0 4

Database understanding
Syntax error 0 2 15 0 0 1 1 0 1
Table composition 6 6 0 1 2 0 1 2 1

Query implementation
Missing constraint 2 6 2 9 10 4 4 3 12
Incorrect constraint 2 0 0 0 0 0 0 6 0

Table 5: For each evaluation dataset, we analyzed twenty random incorrect predictions of our best model. We
categorized each into one or more error categories, including errors of understanding entities mentioned in the
utterance, generating the correct top-level column selection, understanding the database structure, and correctly
implementing the constraints of the utterance in SQL. We report the number of predictions, out of the twenty
analyzed per dataset, which had each error type.

System Easy Medium Hard Extra Hard

Ours with BERTLARGE+ 83.2 71.1 57.5 34.7

Table 6: Spider’s official evaluation metric results for our best model split by hardness level on the Spider develop-
ment set.

Component F1

SELECT 89.2
SELECT (no AGG) 90.4
WHERE 71.7
WHERE (no OP) 76.3
GROUP (no HAVING) 82.0
GROUP 79.4
ORDER 82.9
AND/OR 98.1
IEUN 46.5
KEYWORDS 89.5

Table 7: Per-component F1 of our best model on the
Spider development set.

