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Abstract

It is commonly believed that knowledge of syn-
tactic structure should improve language mod-
eling. However, effectively and computation-
ally efficiently incorporating syntactic struc-
ture into neural language models has been a
challenging topic. In this paper, we make use
of a multi-task objective, i.e., the models si-
multaneously predict words as well as ground
truth parse trees in a form called “syntactic
distances”, where information between these
two separate objectives shares the same inter-
mediate representation. Experimental results
on the Penn Treebank and Chinese Treebank
datasets show that when ground truth parse
trees are provided as additional training sig-
nals, the model is able to achieve lower per-
plexity and induce trees with better quality.

1 Introduction

It is widely believed in linguistics, cognitive sci-
ence, and computational linguistics that the la-
tent structure underlying how words combine to
form sentences is best represented as a tree struc-
ture. The study of the computational mechanisms
and systems of constraints that characterize such
derivations or parse trees is a central question in
these fields (Pollard and Sag, 1994; Steedman and
Baldridge, 2011; Huddleston and Pullum, 2002;
Adger, 2003; Bresnan, 2001; Chomsky, 1995; Sag
et al., 2003).

Using syntactic information for the language
modeling task has been a popular research topic
since the 1990s. Early efforts included various
approaches that attempted to incorporate shallow
syntactic information such as POS tags (Heeman
and Allen, 1997; Srinivas, 1996) as well as a more
complete structures (Wright et al., 1994; Jurafsky
et al., 1995). Most of such work falls under the
topic of structured language modeling (Chelba and

∗Equal contribution.

Jelinek, 2000; Van Uytsel et al., 2001; Xu et al.,
2002). With the resurgence of neural network ap-
proaches, sequential, large-scale neural language
models have been shown to significantly outper-
form traditional language models (Merity et al.,
2017; Yang et al., 2018) without using syntactic
structural information. On another scenario, recent
analysis also reveals that state-of-the-art sequential
neural language models still fail to learn certain
long-range syntactic dependencies (Kuncoro et al.,
2018). Thus it is an interesting problem to explore
the relation between language models and syntax
and investigate whether syntax can be integrated to
enhance neural language models.

To this end, two main lines of work have been
investigated, namely transition-based and distance-
based methods, respectively. The former strand of
work has sought to jointly train a transition-based
parser (Nivre, 2008; Zhang and Nivre, 2011; An-
dor et al., 2016) with a language model using a
linearized structured sentence. For example, recur-
rent neural network grammars (RNNGs) model the
joint probability of both words and trees by training
a generative, top-down parser (Dyer et al., 2016;
Cheng et al., 2017). Subsequent work (Kim et al.,
2019b) has developed an unsupervised variant of
RNNGs based on an expectation maximization al-
gorithm, which enables the system to be used as a
language model without access to parser data.

The second strand of work designs language
models that are constrained using syntactic con-
stituents induced using the notion of syntactic dis-
tance (Shen et al., 2017, 2018). The distances are
a sequence of scalars between consecutive words,
which are higher when there is a higher level of con-
stituent boundary between the corresponding pair
of words. While aligning nicely with the sequential
nature of language models, syntactic distances can
be transformed into syntactic tree structures with
simple principles (Shen et al., 2017).
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The major difference between the above two
strands of work is that the former focuses more
on parsing performance while the latter aligns bet-
ter to language model settings. There are three
main benefits of the syntactic distance approach.
First, typical engineering tricks for language mod-
eling such as batching and regularization (Merity
et al., 2017) can be directly used. Second, unlike
transition-based methods, which requires to model
each sentence independently, distance-based mod-
els allow direct comparison with mainstream prior
work on language modeling (Gal and Ghahramani,
2016; Merity et al., 2017; Yang et al., 2018) on
the same datasets, which carry information across
sentence boundaries. Third, there is no risk of
compounding errors as compared to the transition-
based approach. However, unlike for transition-
based approaches (Kim et al., 2019b), for distance-
based approaches there have been no studies exam-
ining the relationship between induced syntactic
structure and human labeled syntactic structure, or
whether human labeled syntactic trees can be used
to improve language modeling (Dyer et al., 2016;
Kim et al., 2019b).

To this end, we investigate distance-based lan-
guage models with explicit supervision. In par-
ticular, we inject syntactic tree supervision into
distance-based neural language models by breaking
a syntactic tree into a label sequence, and extend-
ing a distance-based language model to include a
multi-task objective that also learns to predict gold-
standard labels. We choose the Ordered-Neuron
LSTM (ON-LSTM) (Shen et al., 2018) as our base-
line model, which gives the best results among
distance-based models.

For making fair comparison with the dominant
methods on language modeling, we also manually
extend the most commonly-used dataset for evaluat-
ing language models, which we name PTB-Concat
(Mikolov et al., 2010). It is a version of the Penn
Treebank (PTB) (Marcus et al., 1993) dataset with
syntactic trees removed, and with preprocessing
of numbers, punctuation and singleton words. We
add syntactic trees, thus directly compare distance-
based methods with other language models.

Experimental results show that incorporating lin-
guistically motivated structures could practically
improve language modeling performance. To the
best of our knowledge, this is the first work to suc-
cessfully incorporate gold-standard syntactic trees
into syntactic distance based language models. Ad-

ditional experiments suggest that the level of im-
provement could also be achieved in other language
models. Furthermore, analyses of the trees learned
by the multi-task models demonstrate that they are
different from both gold trees and unsupervisedly
learned trees. 1

2 Related Work

Using syntactic information for language modeling
dates back to the last century. Srinivas (1996) pro-
posed using shallow syntactic structures—so-called
“super-tags”—which successfully reduced perplex-
ity by 38% over a tri-gram based word-level lan-
guage model. More complete parser integration is
also explored under the heading of “structured lan-
guage modeling” (Chelba and Jelinek, 2000). This
research covers a wide range of different parsers, al-
beit mostly with N-gram models (Van Uytsel et al.,
2001; Xu et al., 2002). Wright et al. (1994) and Ju-
rafsky et al. (1995) extend bi-gram language mod-
els with a context-free grammar. Feed-forward
neural language models were also explored (Xu
et al., 2003). However, the performance does not
approach that of the modern neural LMs.

Dyer et al. (2016) first proposed RNNG. Sub-
sequent work extends the model with an encoder-
decoder architecture (Cheng et al., 2017), unsu-
pervised learning (Kim et al., 2019b), knowledge-
distillation (Kuncoro et al., 2019) and computa-
tional psycholinguistics (Hale et al., 2018). Shen
et al. (2017) first used syntactic distance to con-
strain language modeling. Its subsequent work
(Shen et al., 2018) transfers the distance notion
to LSTM cell. Our work extends distance-based
methods in trying to introduce supervised syntax
to these models. A very recent work makes use of
attention over spans instead of syntactic distance
to inject inductive bias to language models (Peng
et al., 2019). However, the time complexity of
injecting supervision is much higher than distance-
based approach (O(n2) VS O(n) ).

3 Model

The overall structure of our model is shown in Fig-
ure 1. In particular, the ON-LSTM is taken as the
base language model, and syntactic trees are added
by conversion to distance metrics. The supervised
distance values are taken as one additional output,
resulting in a multi-view model.

1We release the code at https://github.com/
wenyudu/SDLM.

https://github.com/wenyudu/SDLM
https://github.com/wenyudu/SDLM


6613

Linear
Layer

hwt

cumax

Lsyd

Llm

cumax

xt ht-1

Linear
Layer

hft

Figure 1: Split-head approach of constructing the two master
forget gates in the multi-task setting.

3.1 Ordered Neurons LSTM
Ordered Neurons LSTM (ON-LSTM) (Shen et al.,
2018) is built upon a vanilla LSTM model (Hochre-
iter and Schmidhuber, 1997) with two additional
gates, namely a master input gate ĩt and a mas-
ter forget gate f̃t, each being a vector of the same
shape as the LSTM forget and input gates:

ft = σ(Wf ◦ [xt, ht−1] + bf ) (1)

it = σ(Wi ◦ [xt, ht−1] + bi) (2)

ot = σ(Wo ◦ [xt, ht−1] + bo) (3)

ĉt = tanh(Wc ◦ [xt, ht−1] + bc) (4)

f̃t = cumax(Wf̃ ◦ [xt, ht−1] + bf̃ ) (5)

ĩt = 1− cumax(Wĩ ◦ [xt, ht−1] + bĩ) (6)

where cumax is defined as the cumulative
sum of softmax outputs, i.e., cumax(·) =
cumsum(softmax(·)). The cumax function pro-
vides an inductive bias to model hierarchical struc-
tures through enforcing units in the master forget
gate f̃t to increase monotonically from 0 to 1 and
those in the master input gate ĩt to decrease mono-
tonically from 1 to 0. The two gates are applied on
the original input and forget gates as follows:

ωt = f̃t ◦ ĩt (7)

f̂t = ft ◦ ωt + (f̃t − ωt) = f̃t ◦ (ft ◦ ĩt + 1− ĩt)
(8)

ît = it ◦ ωt + (̃it − ωt) = ĩt ◦ (it ◦ f̃t + 1− f̃t)
(9)

ct = f̂t ◦ ct−1 + ît ◦ ĉt (10)

ht = ot ◦ tanh(ct). (11)

ON-LSTM can learn the implicit structure of a
language in the form of a binary tree in an unsuper-
vised manner, through syntactic distances, which
are calculated as:

dt = Dm −
Dm∑
k=1

f̃t (12)

Figure 2: Binarized grammar tree and its corresponding
syntactic distances. The heights of the bars stand for the
values of the distances. To convert this tree to syntactic dis-
tances, we first assign all the words an initial value of 1, and
then the non-leaf nodes are assigned distances in the order of
d3 → d2 → d1 → d4, according to the procedures in the
second part of Model section. On the other hand, given the
distances, the tree can be recovered in a top-down process by
setting up the split boundaries in descending order of distances
(i.e., d4 → d1 → d2 → d3). Syntactically, a shorter distance
between a pair of words indicates a closer relationship be-
tween the constituents on the two sides of the distance. Note
that since only the relative order of the distances could affect
the structure of the trees, valid values of these distances are
not unique.

where Dm is the size of the hidden state. The syn-
tactic distance dt between two consecutive words
is a scalar value, which can be interpreted as re-
flecting the syntactic relatedness between the con-
stituents before and after time point t. In terms
of trees, it can be thought of as the height the
lowest tree node that encloses both words. In the
case where we consider discrete trees, the height
is given by the maximum path length from a leaf.
In the more general case, it can be thought of as
a scalar value measuring a continuous notion of
node height. Figure 2 depicts a sample sentence
with its syntactic distances and corresponding tree
structures. More generally, the binary tree struc-
ture of a sequence with N tokens can be specified
with a sequence of N − 1 syntactic distances. This
definition of distance makes the syntactic distance
an ultrametric (Holly, 2001; Wu et al., 1999), a
concept which is important in the theory of hier-
archical agglomerative clustering (Johnson, 1967)
and was first explored in a linguistic setting by
Levelt (1974).

3.2 Converting Grammar Trees to Syntactic
Distances

To integrate treebank trees into ON-LSTM, we
need to first convert syntactic trees into a repre-
sentation based on syntactic distances. Since the
original grammar trees are not necessarily binary,
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we first split non-binary nodes by adding sentinel
intermediate nodes to form a right-branched binary
tree, following the steps in Stern et al. (2017). Now
for a binary tree with N leaf nodes, we have N − 1
non-leaf nodes that correspond to the N − 1 slots
between each of the adjacent word pairs, each of
which are assigned a syntactic distance (Figure 2).
The binary tree can thus be represented as a se-
quence of distances d1, d2, . . . , dN−1.

The conversion from binary tree to syntactic dis-
tances thus translates to the assigning of a distance
value for each of the N − 1 non-leaf nodes in the
tree. This is achieved in a bottom-up process. We
first initialize a distance value of 1 at all of the leaf
nodes, and then compute the syntactic distances
of the parent nodes by recursively tracing back
their parents. More specifically, for a certain parent
node, its corresponding syntactic distance dP is
computed with respect to the syntactic distances of
its children dL and dR, i.e.,

dP = max{dL, dR}+ 1. (13)

A more detailed algorithm flowchart of tree-to-
distance conversion is given in Appendix A.1.

3.3 Auxiliary Syntactic Distance Outputs

In ON-LSTM the distances dt’s in Equation 12 are
used to infer the structure of grammar trees. Con-
sequently, a straight-forward way to incorporate
ground truth parse trees is to use the ground truth
distances dgt to guide dt, as depicted in Figure 1. In-
terestingly, directly forcing the structure inferred by
language models to be coherent to linguist-tagged
ground truth trees barely improves the language
model performance (see Section 6). Instead, we
introduce a “split-head” setting, which can practi-
cally improve LM performances by learning two
sets of closely related syntactic distances.

In particular, we use another master forget gate
f̃wt for inferring a set of distances that are trained
to align with the gold-standard syntactic distances,
while leaving the original distances dt computed
from f̃t intact. To achieve this, we introduce an
extra linear layer on top of the hidden states hft ,
and from there infer a separate set of master forget
gates. In this way, both of the master forget gates f̃t
and f̃wt share the same input hft , but optimize two
different sets of trees for the language modeling

and parsing task, respectively. i.e.,

hft =Wf̃ ◦ [xt, ht−1] + bf̃ (14)

f̃t = cumax(hft ) (15)

f̃wt = cumax(Ws(h
f
t ) + bs) (16)

The syntactic distances for the auxiliary super-
vised targets are then calculated as follows:

dwt = Dm −
Dm∑
k=1

f̃wtk (17)

where f̃wtk is the k-th element in the vector f̃wt

3.4 Grammar Trees as Auxiliary Supervised
Targets for Language Modeling

With the additional master forget gate f̃wt , the
model has two different sets of predictions. The
first set is the language model outputs of ON-
LSTM, predicting the next words. The second
set is the distances calculated in Equation 17. The
original language modeling structure of the ON-
LSTM model is left intact after the modification,
so we can continue to use the master forget gate f̃t
to update hidden states and calculate the softmax
output in ON-LSTM for the language modeling
part. We denote the negative log-likelihood loss in
the language model part as Llm. For brevity, we do
not discuss the details of the loss.

For aligning the syntactic distances, we perform
a ranking loss between the learned syntactic dis-
tance dwt and ground truth distance dg, which was
first proposed by Burges et al. (2005). The goal is
to encourage the model to produce the distances
that have the same ranking order as the ground truth
distances:

Lsyd =
∑
i,j>i

max(0, (1−sign(dgi−d
g
j )(d

w
i −dwj ))).

(18)
The joint objective function is thus to minimize

the following loss:

L = Llm + αLsyd (19)

where α is the scaling parameter.

4 Datasets

We make test datasets in English and Chinese,
respectively, both of which have parse trees and
also language modeling benchmarks. For English,
we use the Penn Treebank (PTB) dataset (Marcus
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et al., 1993). Mikolov et al. (2010) have provided a
widely accepted version of PTB for language mod-
eling. Several modifications are made to the origi-
nal treebank. For example, all punctuation symbols
are removed, all characters are lower-cased, the
vocabulary size is truncated at 10,000 and all sen-
tences are concatenated. However, this version
of PTB discards the parse tree structures, which
makes it unsuitable for comparing sequential lan-
guage models with those utilizing tree structures.
We refer to this version as PTB-Concat.

Dyer et al. (2016) proposed a different version of
PTB, which retains the parse tree structures. Sen-
tences are modeled separately, punctuation is re-
tained, and singleton words are replaced with the
Berkeley parser’s mapping rules, resulting in much
larger vocabulary size, 23,815-word types. Since
it retains the parse trees, this dataset enables direct
comparison between models that utilize parse trees
with those who do not. But unfortunately, since the
vocabulary is different from PTB-Concat, and the
sentences are processed separately, the results are
not directly comparable with those in PTB-Concat,
on which most existing work on language mod-
eling reports results. We refer to this version as
PTB-Sepsent.

As mentioned above, a salient limitation of PTB-
Sepsent is that it does not allow fair comparison
with existing LM work on PTB-Concat. To address
this issue, we propose a different variation of PTB
dataset that both uses the same vocabulary size
as PTB-Concat and at the same time retaining the
ground-truth grammar trees. We pre-process the
PTB dataset by following the same steps indicated
by Mikolov et al. (2010) to obtain a modified tree-
bank with the same vocabulary set as PTB-Concat.
Sentences are concatenated, and we make sure that
the sentences are the same to PTB-Concat, from
token to token, in the training, validation, and test
sets. This results in the same vocabulary as that of
PTB-Concat, which allows us to directly compare
models that utilize parse trees with the existing
reports of performance on PTB-Concat. We re-
fer to this version of PTB-Concat with syntax as
PTB-Concat-Syn and we will cover preprocessing
details in Appendix A.3.

For Chinese, we use the Chinese Treebank 5.1
(Xue et al., 2005), with the same settings as Kim
et al. (2019b). Sentences are modeled separately
and singleton words are replaced with a single
<UNK> token. It will be referred to as CTB-

Model Param Dev Test
Gal and Ghahramani (2016) - Variational LSTM 66M − 73.4
Kim et al. (2016) - CharCNN 19M − 78.9
Merity et al. (2016) - Pointer Sentinel-LSTM 21M 72.4 70.9
Grave et al. (2016) - LSTM − − 82.3
Zoph and Le (2016) - NAS Cell 54M − 62.4
Zilly et al. (2017) - Variational RHN 23M 67.9 65.4
Shen et al. (2017) - PRPN − − 62.0
Merity et al. (2017) - 3-layer AWD-LSTM 24M 60.0 57.3
Zolna et al. (2018) - Fraternal dropout 24M 58.9 56.8
Shen et al. (2018) - 3-layer ON-LSTM 25M 58.3 56.2
ONLSTM-SYD 25M 57.8 55.7
Yang et al. (2018) - AWD-LSTM-MoS 22M 56.5 54.4
Takase et al. (2018) - AWD-LSTM-DOC 23M 54.1 52.4

Table 1: Various language models evaluated on validation and
test sets on PTB-Concat. Our model is denoted as ONLSTM-
SYD, which incorporates tree structures during training. Yang
et al. (2018) and Takase et al. (2018) focus on improving the
softmax module of LSTM LM, which are orthogonal to ours.

Sepsent in the rest of the paper.

5 Experiments

We evaluate the influence of syntactic supervision
on distance-based langauge models, especially in
terms of its language modeling performance. We
are also going to analyze the induced syntax af-
ter introducing the structural supervision. In ad-
dition, extensive ablation tests are conducted to
understand how syntactic supervision affects the
langauge model.

5.1 Language Modeling
We first compare our models with existing sequen-
tial language models on PTB-Concat, and then we
compare our model with transition-based language
models on PTB-Sepsent and CTB-Sepsent, which
have a larger vocabulary and also use additional
grammatical structure.

Results on PTB-Concat We first validate the
benefit of introducing structural signal to neu-
ral language models by training our proposed
model on PTB-Concat-Syn with structural super-
vision, and then evaluate them on the plain vali-
dation/test set. We compare our model with the
original ON-LSTM model, as well as various other
strong LSTM language model baselines such as
AWD-LSTM (Merity et al., 2017) and a mixture
of softmax (Yang et al., 2018). We denote our
syntactic-distance-augmented ON-LSTM model as
ONLSTM-SYD.

For making fair comparison, we closely fol-
low the hyperparameters and regularization of ON-
LSTM (Shen et al., 2018). The model is a three-
layer ONLSTM-SYD language model with an em-
bedding size of 400 and hidden layer units 1150.
The dropout rates are 0.5, 0.45, 0.3, 0.45 for the
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Model PTB-
Sepsent

CTB-
Sepsent

Kim et al. (2019b) - RNNLM 93.2 201.3
Kim et al. (2019b) - RNNG 88.7 193.1
Kim et al. (2019b) - URNNG 90.6 195.7
Kim et al. (2019b) - RNNG-URNNG 85.9 181.1
Kim et al. (2019b) - PRPN (default) 126.2 290.9
Kim et al. (2019b) - PRPN (finetuned) 96.7 216.0
ONLSTM-noAWD 69.0 167.7
ONLSTM 60.0 145.7
ONLSTM-SYD-noAWD 67.6 163.1
ONLSTM-SYD 59.6 140.5

Table 2: Language modeling perplexity on PTB-Sepsent
and CTB-Sepsent. Kim et al. (2019b) report two results of
PRPN, the default one using settings in Shen et al. (2017)
and another one finetuned by themselves. Our models use the
same hyperparameter settings as in Section 5.1.

word vectors, LSTM weight metrics, outputs be-
tween LSTM layers and the output of the last layer,
respectively. The embedding dropout ratio is 0.125.
The model is trained and finetuned for 1000 epochs
in total and is switched to the fine-tuning phase at
epoch 650. The ground truth syntactic structures
are used to supervise the syntactic distances in the
third layer of ONLSTM-SYD and the loss raio α
is set to 0.75. We use this setting as the default
setting for all the experiments.

The results are shown in Table 1. After
adding structural signals into the model, our model
ONLSTM-SYD significantly outperforms the orig-
inal ON-LSTM model (p-value < 0.05), indicating
that incorporating linguist-tagged parse trees can
contribute to language modeling positively.

Results on PTB-Sepsent and CTB-Sepsent
PTB-Sepsent and CTB-Sepsent offer a compara-
ble setting with other structure-aware supervised
(Dyer et al., 2016) and unsupervised (Kim et al.,
2019b) baselines. The results are listed in Table 2.
2 ONLSTM-SYD performs better than ONLSTM,
which indicates that supervised syntactic informa-
tion can help improve language modeling.

The margin between our models and the base-
lines is rather large. We find that the set of reg-
ularization and optimization techniques proposed
by Merity et al. (2017) contribute significantly to
this margin. Because of the sequential and paral-
lel nature of our model, it can directly inherit and
benefit from this set of tricks. In contrast, it is
non-trivial to use them for RNNG and URNNG.
As a more rigorous analysis, we further conducted
a set of experiments without those tricks (i.e. non-

2We use the preprocessing script in URNNG’s repository
https://github.com/harvardnlp/urnng, which
merges all UNK types.

monotonically triggered ASGD, weight-dropped
LSTM, finetuning). The performance (denoted
as ONLSTM-SYD-noAWD) drops; however, the
model still outperforms the other baselines by a
significant margin.

5.2 Structure Analysis

In this subsection we analyze the model to see
how the additional structural supervision affects
the quality of inferred trees. Note that our goal
here is to analyze the influence of ground truth
syntactic information on the quality of the induced
trees rather than to yield a better grammar induction
performance, since our model is not strictly com-
parable to other models due to its extra structural
supervision during training.

We follow the settings of Htut et al. (2018) to
test our model on the WSJ10 and WSJ test sets,
reporting the results in Table 3. The WSJ test set
has 2416 sentences with arbitrary lengths, while
WSJ10 consists of 7422 sentences of the whole
WSJ corpora that contain no more than 10 words.
We use both biased and unbiased distance-to-tree
conversion algorithms for both ON-LSTM and our
proposed model (c.f. Appendix A.1 and A.2 for
a formal description of the biased and non-biased
conversion algorithm). Since our model has two
sets of trees learned simultaneously, we list all of
them in Table 3.

Grammar Induction We can see that the trees
learned by the joint loss show improved the F1
score and rely less on the branching bias of the
tree constructing algorithm (see Dyer et al. (2019)).
The big gap of F1 scores on WSJ between the bi-
ased and unbiased trees are altered after introduc-
ing the structural loss, and the LM unbiased trees
significantly outperforms its baseline ON-LSTM.
These indicate that the auxiliary supervised task
not only lowers the perplexity, but also improves
the qualities of the induced trees for the LM task.

Looking more into the trees, we find that com-
pared to ON-LSTM, ONLSTM-SYD improves the
label prediction accuracy for NP (noun phrases),
VP (verb phrases) and PP (prepositional phrases)
but fails to improve ADJP (adjective phrases). This
suggests that different types of human-annotated
constituents may have different influences on lan-
guage modeling, or that human-annotated trees are
themselves biased to differing degrees between dif-
ferent constituent types.

https://github.com/harvardnlp/urnng
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Training
Objective

Induction
Algorithm

Parsing F1 Depth
WSJ

Accuracy on WSJ by Tag R/L Ratio
on WSJModel WSJ10 WSJ ADJP NP VP PP

ON-LSTM LM Unbiased 63.2 39.0 4.9 37.9 42.8 49.6 54.2 1.08
ON-LSTM LM Biased 69.5 44.2 5.5 57.0 53.0 52.4 49.6 2.09
ONLSTM-SYDsyd LM+SYD Unbiased 77.6 61.3 7.3 38.2 73.2 69.6 72.9 2.81
ONLSTM-SYDsyd LM+SYD Biased 65.7 45.5 5.5 30.4 40.6 70.7 43.9 5.07
ONLSTM-SYDlm LM+SYD Unbiased 55.1 34.5 4.8 14.9 42.2 16.7 67.4 0.83
ONLSTM-SYDlm LM+SYD Biased 58.0 36.3 5.3 41.1 53.9 52.4 43.0 1.70
Binary Gold Standard Trees – – 88.1 85.6 6.4 100 100 100 100 2.92
Gold standard Trees – – 100 100 5.0 100 100 100 100 2.22
Random Trees (Htut et al., 2018) – – 32.2 18.6 5.3 17.4 22.3 – 16.0 –
Balanced Trees (Htut et al., 2018) – – 43.4 24.5 4.6 22.1 20.2 – 9.3 –
Left Branching Trees – – 19.6 9.0 12.4 – – – – –
Right Branching Trees – – 56.6 39.8 12.4 – – – – –

Table 3: Unlabeled parsing results evaluated on the WSJ10 and the full WSJ test set. Numbers in bold font indicate that they
are the best compared to those computed from the other parts of the model (i.e., within the same section in the table). The
Algorithm column represents whether bias or unbiased algorithm is performed. ONLSTM-SYDsyd and ONLSTM-SYDlm

represent two sets of trees induced from loss Lsyd and Llm respectively. The Accuracy columns represent the fraction of ground
truth constituents of a given type that correspond to constituents in the model parses. The R/L Ratio column represents the ratio
between the number of words that are left children of its parent, and those that are right children.

Branching Bias Syntactic trees of English nat-
urally have a bias towards right branching struc-
tures. As shown in the last section of Table 3, right
branching trees achieve a much higher F1 score
than random, balanced or left branching trees. As
pointed out by Dyer et al. (2019), PRPN and ON-
LSTM resort to a distance-to-tree algorithm with
right-branching biases (See Appendix A.2).

For our model, a biased distance-to-tree algo-
rithm yields worse results compared to its non-
biased counterpart; but on unsupervised models
such as ON-LSTM, biased algorithms yield better
results than non-biased versions. This observation
indicates that syntactic supervision leads to better
tree structures as compared with fully unsupervised
tree induction, which is intuitive.

Linguistic Analysis Our best parsing results are
for trees decoded from the syntactic prediction
objective using the unbiased algorithm. Interest-
ingly, these trees tend to be deeper on average
than the (binarized) gold standard trees (see Ta-
ble 3).3 This appears to be driven by a failure
of the model to identify constituents centered on
deeply-embedded head words—instead, the model
prefers right-branching structures. Some examples
of trees are displayed in Figure 3. In the top part
of the figure, we see the parse produced from the
Lsyd distances of our model, in the middle the tree
produced the Llm distances and, on the bottom, the
gold standard tree. As can be seen in the figure,
the Lsyd-based tree is largely right-branching and
misses constituents centered on several deeply em-

3Please refer to Appendix A.5 for visualizations of a more
extensive set of sentences.

bedded heads, such as the verb said. By contrast,
the Llm-based tree is considerably shallower than
the gold-standard and consists of a sequence of
smaller chunks that often mis-bracket words with
respect to the gold-standard constituent boundaries.

Figure 4 illustrates these phenomenon in fur-
ther detail. The plot at the top of the figure shows
the proportion of constituents produced from Lsyd
distances whose boundaries correspond to a gold
constituent, broken down by height of nodes in the
predicted tree. As the plot illustrates, the model
fares better on relatively small constituents lower
in trees, and makes more errors for constituents
higher in the tree, reflecting mistakes on deeply-
embedded heads. The bottom of the figure shows
the same breakdown for Llm-based induced trees.
Overall, the affect is similar, although Llm-based
trees are shallower than the Lsyd-based trees. We
believe the increased accuracy for the longest con-
stituents is driven by the fact that, since the highest
constituents cover long sentence spans and there
are few possible long spans, these constituents have
a higher baseline probability of being correct.

It appears that the Lsyd objective has learned a
strong right-branching bias, leading to very deep
trees (even with the unbiased decoder) whereas the
Llm objective appears to be using a kind of pre-
dictive chunking of the sentence into small groups
of words. It is tempting to speculate that these
chunks may correspond to linguistic units used in
prosodic planning or by the human sentence proces-
sor, while the deeper trees correspond more directly
to the compositional structure underlying sentence
meaning. We leave exploring this question to future
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the company which issued a statement on the agreement late friday said that N million of the payment was previously provided for in its financial statements and that NN will be recognized in its N third-quarter statement

the company which issued a statement on the agreement late friday said that N million of the payment was previously provided for in its financial statements and that NN will be recognized in its N third-quarter statement

The company which issued a statement on the agreement late Friday said that 1 million of the payment was previously provided for in its financial statements and that 500,000 will be recognized in its 1989 third-quarter statement

Figure 3: Trees induced from the syntactic task distances in our model (top), the language modeling task distances
(middle) as well as the gold-standard trees (bottom).

Figure 4: Accuracy breakdown w.r.t. constituent height in
unbiased trees derived from the syntactic task distances in our
model (top) and the language modeling distances (bottom).
A constituent is considered as correct if its boundaries cor-
respond to a true constituent. The constituents’ heights are
those in the predicted tree. Since constituents that represent
the whole sentence always have correct boundaries, they are
excluded from the calculation.

work.

Parsing performance Our models give worse
unlabeled parsing performance compared to
transition-based methods. In particular, Kim et al.
(2019a) report that unsupervised URNNG achieves

45.4 WSJ F1 in a similar setting, while another
URNNG that finetunes a supervised RNNG model
gives a much better F1 of 72.8, leading a 27.4 F1
improvement. In contrast, the F1 of our structure
prediction trees is 61.3 in unbiased algorithm. This
indicates that our model brings more benefits on
the LM side rather than the parsing side.

6 Ablation Study

Layer used for supervision Table 4 (Top) shows
the performances where the supervised signal is
injected into different layers. Although injecting
syntax into the last layer gives the best syntactic
distance for grammar induction, it fails to achieve
a similar improvement on perplexity. This suggests
that a better syntactic structure may not always
lead to a better language model. The observation
is consistent with prior research (Williams et al.,
2018).

Tree structure We study the influence of the dif-
ferent types of supervised trees to the model. In
addition to using the ground truth parse trees, we
also tried to train the model with random trees in-
stead, and without providing trees, in which case
it degenerates to a vanilla ON-LSTM. From Table
4 (Middle) we can find that without supervision
signals from gold standard parse trees the model
performs worse than the full model. Random trees
introduce noise to the model and downgrade both
parsing and LM performance, indicating the impor-
tance of injecting meaningful syntax.

Multitask variants We also explored injecting
the supervised syntactic information at different
levels. One straight forward baseline is to add su-
pervision signals directly on the syntactic distance
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Ablation Experiment Validation Test WSJ
Study Detail PPL PPL F1

Layer for
Supervision

1st layer 58.0 55.6 57.7
2nd layer 57.8 55.5 59.7
3rd layer 57.8 55.7 61.3

Tree
Structure

No Parse Tree 58.3 55.9 39.0
Random Tree 60.2 57.5 32.4
Gold Parse Tree 57.8 55.7 61.3

Multitask
Variants

Vanilla Multitasking 60.9 58.5 24.9
One set of trees 58.5 55.9 54.4
Two sets of trees 57.8 55.7 61.3

Table 4: Perplexity and unlabeled parsing F1 in ablation
studies. We choose unbiased algorithm and the layer with
supervision injected. For the unsupervised models, we report
the layer with best F1 score. (Top) When supervising on
different layers. (Middle) Using different tree structures for
supervision. (Bottom) Different multitasking strategies.

in ON-LSTM, using one set of trees to guide both
LM and parsing, as indicated in the Model sec-
tion (Table 4 Bottom, one set of trees). Despite
injecting stronger syntactic signals, this direct ap-
proach does not improve language model perplex-
ity. This also reflects the fact that the most suitable
syntactic structures for language modeling do not
necessarily conform to human labeled syntax. In
addition, we also use ON-LSTM hidden states for
supervised syntactic distance prediction (Table 4
Bottom, vanilla multitasking). This approach fails
to outperform its ON-LSTM baseline due to the
same reason. In summary, there are mutual benefits
between induced and supervised syntactic informa-
tion, although they do not fully overlap.

Generalization to other LMs One practical
question is whether the improvements found in our
work can be generalized to other language models.
To answer this question, we introduce the multi-
task scheme to PRPN (Shen et al., 2017), which
is another model that is also able to learn unsuper-
vised structures through language modeling. Simi-
lar to ON-LSTM, PRPN is also a syntactic distance
method. We modify the PRPN model in the same
spirit as in ON-LSTM. In addition, we change the
encoding layer and use the output as syntactic dis-
tance embeddings lsyd. Then we map lsyd to two
sets of syntactic distances dlm and dsyd for lan-
guage modeling and syntactic distance prediction,
respectively. Syntactic supervision comes to dsyd.
The model reaches a test perplexity of 60.5 in PTB-
Concat (p-value < 0.05), which also significantly
outperforms the 62.0 from the original model. We
refer readers to Appendix A.4 for the details of
PRPN and our modified PRPN-SYD.

7 Conclusion

We investigated linguistic supervision for distance-
based structure-aware language models, showing
its strengths over transition-based counterparts in
language modeling. Apart from the explicit ob-
servations in achieving strong perplexity scores,
our model reveals several interesting aspects of
the quality of the trees learned by the model. As a
byproduct of our investigation, we release a version
of PTB-Concat, which contains syntactic structures
while at the same time the same pre-processing
steps adopted by most previous work on neural
language models.
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A Appendices

A.1 Algorithms for transformation between
parse trees and syntactic distances

The following tree-to-distance algorithm provides
a set of distances given a tree. The node indicates
the root node of the given tree.

Algorithm 1 Binary Parse Tree to Distance
(∪ represents the concatenation operator of lists)

1: function TREE2DISTANCE(node)
2: if node is leaf then
3: d← 1
4: else
5: childl, childr ← children of node
6: t2dl ← Tree2Distance(childl)
7: t2dr ← Tree2Distance(childr)
8: d← max(dl, dr) + 1
9: t2d← t2dl ∪ [d] ∪ t2dr

10: end if
11: return t2d, d
12: end function

The following distance-to-tree conversion algo-
rithm provides an unbiased reconstruction of tree
given a set of distances.

Algorithm 2 Distance to Binary Parse Tree

1: function DISTANCE2TREE(d)
2: if d 6= [] then
3: i← argmaxi(d)
4: childl ← Distance2Tree(d<i)
5: childr ← Distance2Tree(d≥i)
6: node← Node(childl, childr)
7: end if
8: return node
9: end function

A.2 Distance-to-tree algorithm with
right-branching bias

Algorithm 3 Distance to Binary Parse Tree with
Right-Branching Bias

1: function DISTANCE2TREE(d)
2: if d 6= [] then
3: i← argmaxi(d)
4: childl ← Distance2Tree(d<i)
5: childr ← Distance2Tree(d>i)
6: nodebias ← Node(nodei, childr)
7: node← Node(childl, nodebias)
8: end if
9: return node

10: end function

A.3 Details of generating our
PTB-Concat-Syn version

Mikolov et al. (2010) briefly described the steps of
converting from the original Penn Treebank dataset
to his version of dataset, which later becomes the
standard in language modeling task. We denote
this version as PTB-Concat. In our paper, to get
strictly the same PTB language modeling dataset,
we follow his steps on the original Penn Treebank,
while preserving the tree structure. Specifically, we
took the following steps:

1. Convert all tokens to lowercase.
2. For tokens which are purely digits, or digits

only with “.” or “-” are converted to token “N”.
3. Replace all “$” with “N”.
4. Delete tokens “\\” and “wa” if their POS tags

are “POS” and “NNP”, respectively.
5. Delete all tokens that fall into the following

list:
[‘‘,\’\’,,,.,:,;,-,?,!,,̈,̂ ,\\,|,˜,
-lrb-,-rrb-,-lcb-,-rcb-,(,),[,],
{,},<,>,--,...,‘].

6. Delete all tokens with tag “-NONE-”.
7. Add a special token “</s>” to the end of

each sentence.
8. Truncated the vocabulary at 9, 999 accord-

ing to the frequencies and assign all the out-of-
vocabulary tokens a special token “<unk>”.

9. After the above procedures, there are still mi-
nor differences to PTB-Concat. We then go through
the whole Penn Treebank corpora to manually fix
all the unmatched tokens.

These procedures ensures we have exactly the
same training, validation and test sets as PTB-
Concat, the only difference is that our datasets has
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additional grammar trees retained from the original
PTB dataset. The resulting datasets then becomes
PTB-Concat-Syn.

A.4 PRPN and PRPN-SYD
A.4.1 Parse-Read-Predict Network (PRPN)
The idea of PRPN builds upon an assumption that
to predict a word xi, we only need information
for all precedent siblings in constituent tree. The
model constitutes three components: (i) a parsing
network that calculates the syntactic distance and
parsing gates. (ii) a reading network to model the
language, and (iii) a predict network to predict the
next word.

PRPN first uses a two-layer convolutional net-
work to calculate the syntactic distance d at
timestep t:

hi = ReLU(Wc


ei−L

ei−L+1

...
ei

+ bc) (20)

di = ReLU (Wdhi + bd) (21)

Where ei−L, ..., ei are word embeddings, L is
the lookback range.

Then the difference between distances is fed
through hardtanh to model the degree αt

j that how
much two words xt and xj are related:

αt
j =

hardtanh ((dt − dj) · τ) + 1

2
(22)

Where hardtanh(x) = max(−1,min(1, x)),
and τ is the temperature parameter.

For word xi, the first precedent word xt with a
small value αt

i represents xt and all its precedents
are not likely to be siblings of xi. The following
parsing gate gti models the probability of xt and xi
being siblings:

gti = P(lt ≤ i) =
t−1∏

j=i+1

αt
j (23)

The reading network is a variant of Long Short-
Term Memory-Network (LSTMN) (Cheng et al.,
2016) where the attention score is softly truncated
by parsing gates:

sti =
gti s̃

t
i∑

i g
t
i

(24)

The predict network utilizes the structure-aware
hidden states of reading network to predict the next
word.

A.4.2 The PRPN-SYD model
We re-designed the parsing network. We use
LSTM to encode each embedding sequence s =
(e0, e1, ..., en),. Because the task of language mod-
eling prohibits seeing future words, we use unidi-
rectional LSTM:

h0, ..., hn = LSTMw(e0, ..., en) (25)

We stack a convolutional layer on top of the
hidden states hi of the LSTM, which helps gather
local syntactic information:

g0, ..., gn = CONV(h0, ..., hn) (26)

Next, syntactical information learned both lo-
cally and globally are integrated by using another
unidirectional LSTM:

ĥ0, ..., ĥn = LSTMd(g0, ..., gn) (27)

We pass the ĥ layer through two 2-layer fully-
connected networks which output two respective
sets of distance scalars:

dlmi = FFlm(ĥi) dsydi = FFsyd(ĥi) (28)

Where dlm is the distance for language modeling
while dsyd is for syntactic distance prediction. For
two sets of distances, we use the same objective
functions as described in ONLSTM-SYD.

A.5 Trees
We visualize a set of sentences (14 sentences in
total) and their corresponding trees in parallel to
contrast the qualitative differences of the model
induces trees and gold standard trees. Sentences
are selected randomly from the dataset. In each
of the following figures, we provide three trees
for a same sentence, which corresponds to trees
induced from the syntactic task (top) and language
model task (middle) set of distances, as well as the
gold-standard trees (bottom).
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boeing is also supposed to send to america west another N twin-engine aircraft as well as a N by year ’s end

boeing is also supposed to send to america west another N twin-engine aircraft as well as a N by year ’s end

boeing is also supposed to send to america west another N twin-engine aircraft as well as a N by year ’s end

Figure 5: Sentence 1. Trees induced from the syntactic task (top) and language model task (middle) set of distances,
as well as the gold-standard trees (bottom).

that discrepancy hurts quantum badly because its own plants cover only about half of its ethylene needs

that discrepancy hurts quantum badly because its own plants cover only about half of its ethylene needs

that discrepancy hurts quantum badly because its own plants cover only about half of its ethylene needs

Figure 6: Sentence 2. Trees induced from the syntactic task (top) and language model task (middle) set of distances,
as well as the gold-standard trees (bottom).

britain ’s retail price index rose N.N % in september from august and was up N.N % for the year the central statistical office said

britain ’s retail price index rose N.N % in september from august and was up N.N % for the year the central statistical office said

britain ’s retail price index rose N.N % in september from august and was up N.N % for the year the central statistical office said

Figure 7: Sentence 3. Trees induced from the syntactic task (top) and language model task (middle) set of distances,
as well as the gold-standard trees (bottom).
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beginning in mid-N prices began accelerating as a growing u.s. economy and the weak dollar spurred demand

beginning in mid-N prices began accelerating as a growing u.s. economy and the weak dollar spurred demand

beginning in mid-N prices began accelerating as a growing u.s. economy and the weak dollar spurred demand

Figure 8: Sentence 4. Trees induced from the syntactic task (top) and language model task (middle) set of distances,
as well as the gold-standard trees (bottom).

however as expected brazil waited for the crop estimate to come out and then cut the export price of its juice concentrate to about N.N a pound from around N.N

however as expected brazil waited for the crop estimate to come out and then cut the export price of its juice concentrate to about N.N a pound from around N.N

however as expected brazil waited for the crop estimate to come out and then cut the export price of its juice concentrate to about N.N a pound from around N.N

Figure 9: Sentence 5. Trees induced from the syntactic task (top) and language model task (middle) set of distances,
as well as the gold-standard trees (bottom).

total advertising linage was modestly lower as classified-ad volume increased while there was softer demand for retail and national ad linage said john curley gannett ’s chief executive officer

total advertising linage was modestly lower as classified-ad volume increased while there was softer demand for retail and national ad linage said john curley gannett ’s chief executive officer

total advertising linage was modestly lower as classified-ad volume increased while there was softer demand for retail and national ad linage said john curley gannett ’s chief executive officer

Figure 10: Sentence 6. Trees induced from the syntactic task (top) and language model task (middle) set of
distances, as well as the gold-standard trees (bottom).
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it ’s turning out to be a real blockbuster mr. sweig said

it ’s turning out to be a real blockbuster mr. sweig said

it ’s turning out to be a real blockbuster mr. sweig said

Figure 11: Sentence 7. Trees induced from the syntactic task (top) and language model task (middle) set of
distances, as well as the gold-standard trees (bottom).

the fact that this happened two years ago and there was a recovery gives people some comfort that this wo n’t be a problem

the fact that this happened two years ago and there was a recovery gives people some comfort that this wo n’t be a problem

the fact that this happened two years ago and there was a recovery gives people some comfort that this wo n’t be a problem

Figure 12: Sentence 8. Trees induced from the syntactic task (top) and language model task (middle) set of
distances, as well as the gold-standard trees (bottom).

ncnb will also acquire N million of freedom ’s assets from the rtc which will require N million in assistance

ncnb will also acquire N million of freedom ’s assets from the rtc which will require N million in assistance

ncnb will also acquire N million of freedom ’s assets from the rtc which will require N million in assistance

Figure 13: Sentence 9. Trees induced from the syntactic task (top) and language model task (middle) set of
distances, as well as the gold-standard trees (bottom).
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when you suggest otherwise you leave the realm of reporting and enter the orbit of speculation

when you suggest otherwise you leave the realm of reporting and enter the orbit of speculation

when you suggest otherwise you leave the realm of reporting and enter the orbit of speculation

Figure 14: Sentence 10. Trees induced from the syntactic task (top) and language model task (middle) set of
distances, as well as the gold-standard trees (bottom).

but not much money was spent on the shows either a situation that encouraged cheap-to-make talk and game shows while discouraging expensive-to-produce dramas

but not much money was spent on the shows either a situation that encouraged cheap-to-make talk and game shows while discouraging expensive-to-produce dramas

but not much money was spent on the shows either a situation that encouraged cheap-to-make talk and game shows while discouraging expensive-to-produce dramas

Figure 15: Sentence 11. Trees induced from the syntactic task (top) and language model task (middle) set of
distances, as well as the gold-standard trees (bottom).

it also drops a provision that would have permitted corporations to use excess pension funds to pay health benefits for current retirees

it also drops a provision that would have permitted corporations to use excess pension funds to pay health benefits for current retirees

it also drops a provision that would have permitted corporations to use excess pension funds to pay health benefits for current retirees

Figure 16: Sentence 12. Trees induced from the syntactic task (top) and language model task (middle) set of
distances, as well as the gold-standard trees (bottom).
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and i think institutions are going to come in and buy

and i think institutions are going to come in and buy

and i think institutions are going to come in and buy

Figure 17: Sentence 13. Trees induced from the syntactic task (top) and language model task (middle) set of
distances, as well as the gold-standard trees (bottom).

there ’s nothing rational about this kind of action

there ’s nothing rational about this kind of action

there ’s nothing rational about this kind of action

Figure 18: Sentence 14. Trees induced from the syntactic task (top) and language model task (middle) set of
distances, as well as the gold-standard trees (bottom).


