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Abstract
Recent neural network models have achieved
impressive performance on sentiment classifi-
cation in English as well as other languages.
Their success heavily depends on the availabil-
ity of a large amount of labeled data or paral-
lel corpus. In this paper, we investigate an ex-
treme scenario of cross-lingual sentiment clas-
sification, in which the low-resource language
does not have any labels or parallel corpus.
We propose an unsupervised cross-lingual sen-
timent classification model named multi-view
encoder-classifier (MVEC) that leverages an
unsupervised machine translation (UMT) sys-
tem and a language discriminator. Unlike pre-
vious language model (LM) based fine-tuning
approaches that adjust parameters solely based
on the classification error on training data, we
employ the encoder-decoder framework of a
UMT as a regularization component on the
shared network parameters. In particular, the
cross-lingual encoder of our model learns a
shared representation, which is effective for
both reconstructing input sentences of two
languages and generating more representative
views from the input for classification. Exten-
sive experiments on five language pairs verify
that our model significantly outperforms other
models for 8/11 sentiment classification tasks.

1 Introduction

Recent neural network models have achieved re-
markable performance on sentiment classification
in English and other languages (Conneau et al.,
2017; Chen et al., 2018; He et al., 2019; Chen
and Qian, 2019). However, their success heavily
depends on the availability of a large amount of
labeled data or parallel corpus. In reality, some
low-resource languages or applications have lim-
ited labeled data or even without any labels or par-
allel corpus, which may hinder us from training a
robust and accurate sentiment classifier.

To build sentiment classification models for
low-resource languages, recent researchers de-
veloped cross-lingual text classification (CLTC)
models (Xu and Yang, 2017; Eriguchi et al., 2018),
which transfers knowledge from a resource-rich
(source) language to a low-resource (target) lan-
guage. The core of those models is to learn
a shared language-invariant feature space that is
indicative of classification for both languages.
Therefore a model trained from the source lan-
guage can be applied to the target language. Based
on how the shared feature space is learned, there
are three categories, namely word-level align-
ments (Andrade et al., 2015), sentence-level align-
ments (Eriguchi et al., 2018) and document level
alignments (Zhou et al., 2016). Those models
can well capture the semantic similarity between
two languages. They, however, require parallel
resources such as a bilingual dictionary, parallel
sentences, and parallel Wikipedia articles. Such
a limitation may prevent these models from be-
ing applicable in languages without any parallel
resources.

Recently, there have been several attempts at de-
veloping “zero-resource” models (Ziser and Re-
ichart, 2018; Chen et al., 2018; Chen and Qian,
2019). Most notably, Ziser and Reichart (2018)
proposed a cross-lingual & cross-domain (CLCD)
model that builds on pivot based learning and
bilingual word embedding. Although CLCD
does not directly need labeled data or parallel
corpus, it requires bilingual word embeddings
(BWEs) (Smith et al., 2017) that requires thou-
sands of translated words as a supervised signal.
Chen et al. (2018) developed an adversarial deep
averaging network to learn latent sentence rep-
resentations for classification, but it had an im-
plicit dependency on BWEs (Zou et al., 2013)
that requires pretraining on a large bilingual par-
allel corpus. Chen and Qian (2019) extended the
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cross-lingual model in Chen et al. (2018) to mul-
tiple source languages by using the unsupervised
BWEs (Lample et al., 2018b) and adding indi-
vidual feature extractor for each source language,
which eliminated the dependency on a parallel
corpus. Nevertheless, their model is very sensitive
to the quality of BWEs and performs poorly on
distant language pairs such as English-Japanese,
as illustrated in their experimental study.

In parallel, cross-lingual language models
(LMs) trained from raw Wikipedia texts, such
as multilingual BERT1 (Devlin et al., 2019) and
XLM (Conneau and Lample, 2019), have been
prevalent in solving zero-shot classification prob-
lems (Wu and Dredze, 2019). Those models use
the BERT-style Transformer (Vaswani et al., 2017)
architecture simultaneously trained from multiple
languages to construct a sentence encoder, and
fine-tune the encoder and a classifier on labeled
training data from the source language. Then
the fine-tuned model is applied to the target lan-
guage. The whole process does not require any
labeled data or parallel corpus. However, un-
der the “zero parallel resource” setting, the en-
coder trained from self-supervised masked lan-
guage modelling within each language may not
well capture the semantic similarity among lan-
guages, which could harm the generalization per-
formance of fine-tuned models.

In this paper, we propose a sentiment classifi-
cation model called multi-view encoder-classifier
(MVEC) in an unsupervised setting, in which
we only have monolingual corpora from two lan-
guages and labels in the source language. Dif-
ferent from previous language model (LM) based
fine-tuning approaches (Devlin et al., 2019; Con-
neau and Lample, 2019) that adjust parameters
solely based on the classification error of training
data, we utilize the encoder-decoder network from
unsupervised machine translation (UMT) (Lample
et al., 2018a) to regularize and refine the shared
latent space. In particular, the transformer-based
encoder regularized by a language discriminator
learns shared but more refined language-invariant
representations, which are effective for both re-
constructing sentences from two languages by the
decoder and generating multi-view feature repre-
sentations for classification from input documents.
In our model, we construct two views from the en-

1https://github.com/google-research/
BERT/blob/master/multilingual.md

coder: (i) the encoded sentences in the source lan-
guage; (ii) the encoded translations of the source
sentences in the target language.

Our proposed MVEC is partially initialized by
pretrained LMs (Conneau and Lample, 2019) but
further fine-tuned to align sentences from two lan-
guages better, accurately predict labeled data in
the source language and encourage consensus be-
tween the predictions from the two views. The full
model is trained in an end-to-end manner to update
parameters for the encoder-decoder, the language
discriminator, and the classifier at each iteration.

Our contributions in this paper are as follows:

• We present an unsupervised sentiment classifi-
cation model without any labels or parallel re-
source requirements for the target language. By
designing a multi-view classifier and integrating
it with pretrained LMs and UMT (Lample et al.,
2018a), we build our model (MVEC) on a more
refined latent space that is robust to language
shift with better model interpretation compared
to previous zero-shot classification works (Chen
et al., 2018; Conneau and Lample, 2019).

• We extensively evaluate our model in 5 lan-
guage pairs involving 11 sentiment classifica-
tion tasks. Our full model outperforms state-of-
the-art unsupervised fine-tuning approaches and
partially supervised approaches using cross-
lingual resources in 8/11 tasks. Therefore, our
results provide a strong lower bound perfor-
mance on what future semi-supervised or super-
vised approaches are expected to produce.

2 Related Work

2.1 Cross-Lingual Text Classification (CLTC)
CLTC aims to learn a universal classifier that
can be applied to languages with limited labeled
data (Bel et al., 2003; Dong and de Melo, 2019;
Keung et al., 2019), which is naturally appli-
cable for sentiment analysis. Traditional super-
vised methods utilize cross-lingual tools such as
machine translation systems and train a classifier
on the source language (Prettenhofer and Stein,
2010). The latest models used parallel corpus
either to learn a bilingual document representa-
tion (Zhou et al., 2016) or to conduct cross-lingual
model distillation (Xu and Yang, 2017).

In the unsupervised setting, Chen et al. (2018)
learned language-invariant latent cross-lingual
representations with adversarial training. Ziser

https://github.com/google-research/BERT/blob/master/multilingual.md
https://github.com/google-research/BERT/blob/master/multilingual.md
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and Reichart (2018) used pivot based learning
and structure-aware DNN to transfer knowledge
to low-resourced languages. In both papers,
however, they have an implicit dependency on
BWEs, which requires a bilingual dictionary to
train. Chen and Qian (2019) was the first fully
unsupervised approach using the unsupervised
BWEs (Lample et al., 2018b) and multi-source
languages with adversarial training. In contrast,
our model is a multi-view classification model that
is seamlessly integrated pretrained LMs (Conneau
and Lample, 2019) and the encoder-decoder from
UMT (Lample et al., 2018a) with adversarial train-
ing. Hence we learn a more fine-tuned latent space
to better capture document-level semantics and
generate multiple views to represent the input.

2.2 Unsupervised Machine Translation
UMT does not rely on any parallel corpus to
perform translation, which lays a foundation for
our approach. At the word-level, Lample et al.
(2018b) built a bilingual dictionary between two
languages by aligning monolingual word embed-
dings in an unsupervised way. At the sentence
and document level, Lample et al. (2018a) pro-
posed a UMT model by learning an autoencoder
that can reconstruct two languages under both
within-domain and cross-domain settings. Lam-
ple et al. (2018c) extended Lample et al. (2018a)
with a phrase-based approach. Since we aim to
learn more refined language-invariant representa-
tions for classification, it is natural to employ the
encoder from a UMT system to generate multiple
views of the input and enable knowledge transfer.

2.3 Multi-View Transfer Learning
The task of multi-view transfer learning is to si-
multaneously learn multiple representations and
transfer the learned knowledge from source do-
mains to target domains, which have fewer train-
ing samples. Generally, data from different views
contains complementary information and multi-
view learning exploits the consistency from mul-
tiple views (Li et al., 2019).

Our work is particularly inspired by Fu et al.
(2015) and Zhang et al. (2019), both of which
exploit the complementarity of multiple seman-
tic representations with semantic space alignment.
The difference is that we use an encoder-decoder
framework to generate multiple views for input
from the source language and enforce a con-
sensus between their predictions. Furthermore,

we introduce a language discriminator (Lample
et al., 2018a) to encourage the encoder to generate
language-invariant representations from the input.

3 Methodology

In this section, we will introduce our model’s gen-
eral workflow, including the details of each com-
ponent and our training algorithm.

3.1 Problem Setup

Given monolingual text data {Dsrc, Dtgt} from
both the source and target language with a sub-
set of labeled samples {DL

src, y
L
src} in the source

language where yLsrc is a vector of class labels and
DL
src ⊂ Dsrc, the task aims to build a universal

classification model f(X;θ) → y parameterized
by θ that can be directly applicable to unlabeled
data in the target language, where X is an input
document from any language and y is its class la-
bel. Note that in this paper we assume two lan-
guages share the same class types.

3.2 Model Architecture

Our proposed approach multi-view encoder clas-
sifier (MVEC) is composed of three components:
an encoder-decoder, a language discriminator, and
a classifier. Motivated by the success of unsu-
pervised machine translation (UMT) in Lample
et al. (2018a) and reconstruction regularization by
an autoencoder in Sabour et al. (2017), we adopt
the encoder-decoder framework from UMT (Lam-
ple et al., 2018a) and introduce self-reconstruction
loss within one language and back-translation re-
construction loss across languages together with
the normal loss from classification. For simplic-
ity, we denote self-reconstruction loss as “within-
domain loss” and back-translation reconstruction
loss as “cross-domain loss” throughout the paper.

Although the encoder from UMT can gen-
erate a latent representation for input sen-
tences/documents, there is still a semantic gap be-
tween the source and target language. Follow-
ing Lample et al. (2018a); Chen et al. (2018), we
enrich the encoder-decoder framework with a lan-
guage discriminator that can produce fine-tuned
latent representations to align latent representa-
tions from two languages better. Such represen-
tations are necessary to train a language-invariant
classifier that is robust to the shift in languages.

In particular, as illustrated in Figure 1, the en-
coder is used to encode source and target docu-
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Figure 1: Multi-view encoder classifier (MVEC) ar-
chitecture. Blue (red) lines indicate the message flow
within the source/target language (across languages),
respectively. Green lines indicate the message flow
from the encoder to the text classifier. The encoder and
decoder share the same parameters.

ments (a sequence of sentences) into a shared la-
tent space, while the decoder is responsible for
decoding the documents from the latent space to
the source or the target language. Following Lam-
ple et al. (2018a), the encoder-decoder is shared
for both languages (domains) and trained within-
domain and cross-domain. The language discrim-
inator aims to predict the language source for each
document, and the classifier is trained to classify
each document into predefined class labels.

Under the unsupervised setting, MVEC only
observes unlabeled monolingual corpora from two
languages and some labeled documents in the
source language. The unlabeled monolingual data
is normally sampled from the application domain,
i.e., unlabeled product reviews or social media
posts, which is used in both adopting pretrained
LMs in the target domain and training UMT. As
shown in Figure 1, unlabeled source and target
data only pass through encoder-decoder and lan-
guage discriminator, while the labeled source data
pass all components in the system, including the
sentiment classifier. For evaluation purposes, we
may have labeled documents in the target lan-
guage. However, they are only used during the test
period. In the following subsections, we introduce
each component of MVEC in detail.

3.3 Encoder-Decoder

Let x(l) = (x
(l)
1 , x

(l)
2 , · · · , x

(l)
n ) denote the in-

put document of n words from a particular lan-

guage l, where l ∈ {src, tgt}. The encoder
is a neural network eθenc(x

(l)) parameterized by
θenc that produces a sequence of n hidden states
Z(l) = (z

(l)
1 , z

(l)
2 , · · · , z

(l)
n ) by using the corre-

sponding word embedding for x(l)i , where z
(l)
i is

the latent representation of x(l)i in the shared la-
tent space and θenc are parameters of the encoder
shared between two languages. The encoder could
be a BiLSTM or a transformer (Vaswani et al.,
2017). In this paper, we adopt the transformer,
which has achieved enormous success in (e.g.,)
recent text representation learning tasks (Devlin
et al., 2019; Conneau and Lample, 2019).

Given Z(l) as the input, the decoder
dθdec(Z

(l)) generates the output sequence
y(l) = (y

(l)
1 , y

(l)
2 , · · · , y(l)k ). We use the same

transformer based decoder as in Conneau and
Lample (2019), parameterized by θdec. For sim-
plicity, we will denote the encoder and decoder
by e(x(l)) and d(Z(l)) respectively instead of
eθenc(x

(l)) and dθdec(Z
(l)).

It is more likely for the encoder-decoder to
merely memorize every input word one by one if
there are no imposed constraints. To improve the
robustness of encoder-decoder, we follow Lam-
ple et al. (2018a) to adopt the Denoising Auto-
encoders (DAE) (Vincent et al., 2008), which re-
covers input from its corrupted version.

There are three ways to inject noise into the
document including shuffle, dropout, and replace-
ment by special words. In our model, we drop and
replace every word with probabilities of pd and
pb, respectively, and we slightly shuffle the input
document by implementing random permutation σ
on the input document, where pd and pb can be
viewed as hyper-parameters for controlling noise
levels. In our design, the permutation σ satisfies
the condition |σ(i) − i| ≤ k, ∀i ∈ {1, · · · , n},
where n is the length of input document and k is
another hyper-parameter.

Note that the noise model is only applied to un-
labeled data used for training the encoder-decoder
and the discriminator, while labeled data will keep
its originality for all components training. We use
G(.) to denote a stochastic noise model, which
takes input document x(l) and generates G(x(l))
as a randomly sampled noisy version of x(l).

To incorporate the encoder-decoder as regu-
larization components, we follow Lample et al.
(2018a) to consider both within-domain and cross-
domain objective functions. The first objective
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function aims to reconstruct a document from a
noisy version of itself within a language, whereas
the second (cross-domain) objective function tar-
gets to teach the model to translate an input doc-
ument across languages. Specifically, given a lan-
guage l ∈ {src, tgt}, the within-domain objective
function can be written as:

Rwd(θed, l) = Ex∼Dl,x̂∼d(e(G(x)))[∆(x, x̂)] (1)

where θed = [θenc,θdec], x̂ ∼ d(e(G(x))) is a
reconstruction of the corrupted version of x sam-
pled from the monolingual dataset Dl, and ∆ is
the sum of token-level cross-entropy loss to mea-
sure discrepancy between two sequences.

Similarly, we consider teaching the encoder-
decoder to reconstruct x in one language from a
translation of x in the other language, leading to
the following cross-domain objective function:

Rcd(θed, l1, l2) = Ex∼Dl1
,x̂∼d(e(T (x)))[∆(x, x̂)]

(2)
where (l1, l2) ∈ {(src, tgt), (tgt, src)} and T (.)
is the current UMT model applied to input docu-
ment x from language l1 to language l2.

3.4 Language Discriminator
Cross-lingual classifiers work well when their in-
put produced by the encoder is language-invariant,
as studied in Chen et al. (2018). Thus, we pre-
fer our encoder to map input documents from both
languages into a shared feature space indepen-
dent of languages. To achieve this goal, we fol-
low Chen et al. (2018); Lample et al. (2018a) and
introduce a language discriminator into our model,
which is a feed-forward neural network with two
hidden layers and one softmax layer to identify the
language source from the encoder’s output. In par-
ticular, we minimize the following cross-entropy
loss function:

LD(θD|θenc) = −E(l,x(l))[logPD(l|e(x(l))] (3)

where θD denotes parameters of the discrimina-
tor, (l, x(l)) corresponds to language and docu-
ment pairs uniformly sampled from monolingual
datasets, and PD(.) is the output from the softmax
layer. Meanwhile, the encoder is trained to “fool”
the discriminator:

Ladv(θenc|θD) = −Ex(li)∼Dli
[logPD(lj |e(x(li))]

(4)
with lj = l1 if li = l2, and vice versa.

3.5 Multi-view Classifier
Thus far, we have described how we obtain a
language-invariant latent space to encode two lan-
guages, which may not be sufficient to generalize
well across languages if we simply train a clas-
sifier on the encoder’s output for the source lan-
guage (Chen et al., 2018). One key difference be-
tween Chen et al. (2018) and our work is that we
use UMT (Lample et al., 2018a), which can gener-
ate multiple views for the input labeled documents
from the source language. We can thereby benefit
from multi-view learning’s superior generalization
capability over single-view learning (Zhao et al.,
2017).

Particularly, we consider two views of input: (i)
the encoded labeled documents from the source
language; (ii) the encoded back-translations of the
source documents from the target language. Our
learning objective is to train the classifier to match
predicted document labels with ground truth from
the source language and to encourage two predic-
tive distributions on the two views to be as similar
as possible. We consider the following objective
function:

LC(θC ,θed) = E(x,y)[∆(y, Pθc(e(x)))

+DKL(Pθc(e(x)) || Pθc(e(T (x)))]︸ ︷︷ ︸
Two views’ consensus

(5)

where (x, y) ∼ {DL
src, y

L
src}, DKL(. || .) is KL

Divergence to measure the difference between two
distributions, y is the class label of input document
x and θc are parameters of classifier. Following
previous studies in text classification (Devlin et al.,
2019), we use the first token’s representation in the
last hidden layer from the transformer encoder as
the document representation vector. The classifier
is a feed-forward neural network with two hidden
layers and a softmax layer.

The final objective function at one iteration of
our learning algorithm is to minimize the follow-
ing loss function:

Lall = LC + λwd × (Rwd src +Rwd tgt) (6)

+ λcd × (Rcd src +Rcd tgt) + λadv × Ladv

where λwd, λcd, λadv are hyper-parameters to
trade-off among within-domain loss, the cross-
domain loss and the adversarial loss, respectively.

3.6 Training Algorithm
Our model relies on an initial translation machine
T (0), which provides a translation from one lan-
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guage to another for calculating the cross-domain
loss in Eq. (2) and classifier loss in Eq. (5).

To accelerate the training, we initialize T (0)

by pretraining a transformer-based UMT (Con-
neau and Lample, 2019) for certain steps with the
same encoder-decoder architecture as our model
on monolingual Wikipedia text. After pretraining,
we use the pretrained encoder-decoder network to
initialize our model and start training the classifier
and the discriminator. Meanwhile, we refine the
encoder and the decoder on monolingual data and
labeled data from the source language.

During each training step, the optimization iter-
ates from updating θD in Eq. (3) to updating θed
and θC in Eq. (6). Note that if a batch of docu-
ments drawn from monolingual data are all unla-
beled, then we suspend updating classifier param-
eters and only update the parameters of the lan-
guage discriminator and encoder-decoder. In Al-
gorithm 1, we provide a detailed procedure.

Algorithm 1 The proposed MVEC algorithm.

1: procedure TRAINING(Dsrc, Dtgt, yLsrc)
Dsrc and Dtgt: monolingual datasets, yLsrc:
labels in the source language.

2: T (0) ← pretrain a transformer based UMT
using (Conneau and Lample, 2019);

3: for t = 0, · · · ,max epoch do
4: Using T (t) to translate each document

in a batch;
5: θD ← argmin LD in Eq. (3) while

fixing θC , θed;
6: θC , θed ← argmin Lall in Eq. (6)

while fixing θD;
7: Update T (t+1) ← {e(t), d(t)};
8: return θC , θenc
9: End procedure

4 Experiment

We conduct experiments on cross-lingual multi-
class and binary sentiment classification using five
language pairs involving 11 tasks. More specif-
ically, English is always the source language,
and the target languages are French, German,
Japanese, Chinese, and Arabic, respectively.

4.1 Datasets

Amazon Review (French, German, Japanese).
This is a multilingual sentiment classification
dataset (Duh et al., 2011) in four languages, in-

cluding English (en), French (fr), German (de),
and Japanese (ja), covering three products (book,
DVD, and music). For each product in each lan-
guage, there are 2000 documents in each of the
training and test sets. Each document contains a
title, a category label, a review, and a 5-point scale
star rating. Following Xu and Yang (2017); Chen
and Qian (2019), we convert multi-class ratings to
binary ratings by thresholding at 3-point. For each
product, since the test set in English is not used,
we combine the English training and test sets and
randomly sample 20% (800) documents as the val-
idation set to tune hyper-parameters, and use the
rest 3200 samples for training. For each target lan-
guage, we use the original 2000 test samples for
comparison with previous methods. Unlike Chen
et al. (2018); Chen and Qian (2019) that used la-
beled data in the target language for model selec-
tion, we only use the labels of reviews in the target
language for testing. There are 105k, 58k, 317k,
300k unlabeled reviews for English, French, Ger-
man and Japanese, respectively, which can be used
as monolingual data to train the encoder-decoder
of our model.

Yelp and Hotel Review (Chinese). This dataset is
from two sources: (i) 700k Yelp reviews in English
with five classes from Zhang et al. (2015), and (ii)
170k hotel reviews in Chinese segmented and an-
notated with five classes from Lin et al. (2015).
Following the same setup in Chen et al. (2018),
we split all Yelp reviews into a training set with
650k reviews and validation set with 50k reviews.
The 650k review contents are also served as the
monolingual training data for English. For Chi-
nese hotel review data, we sample 150k reviews as
the monolingual training set. The rest 20k reviews
are treated as the test set.

Social Media Posts (Arabic). The BBN Ara-
bic Sentiment dataset is from Mohammad et al.
(2016). There are 1200 documents from social
media posts annotated with three labels (negative,
neutral, positive) in the data. The original dataset
was split into half as training and the other half as
testing. Since we do not need validation data in the
target language to tune the model, we randomly
sample 1000 documents as test data. For English
resource, we still use Yelp reviews and follow the
same split as the Chinese case, but convert 5 level
reviews into 3 levels2. Also, we randomly sample

21,2 → negative, 3 → neutral, 4,5 → positive
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161k sentences from the United Nations Corpus
Arab subset (Ziemski et al., 2016) as unlabeled
monolingual data for our model training.

4.2 Experiment Setting

For French, German and Japanese, we perform bi-
nary classification. For Chinese and Arabic, we
perform multi-class classification.

Data Preprocessing. Following Lample et al.
(2018c), we extract and tokenize monolingual
data of each language using Moses (Koehn et al.,
2007). Then we use the neural machine trans-
lation for rare words with subword units, named
fastBPE (Sennrich et al., 2016) in three steps. In
detail, BPE code is collected from the pretrained
XLM-100 models (Conneau and Lample, 2019),
then applied to all tokenized data and used to ex-
tract the training vocabulary. To constrain our
model size, we only keep the top 60k most fre-
quent subword units in our training set. Finally,
we binarize monolingual data and labeled data for
model training, validation and testing.

Pretraining Details. As mentioned earlier, our
model depends on an initial translation machine
to compute reconstruction loss and classifier loss.
We leverage pretrained language models (Con-
neau and Lample, 2019) to initialize a transformer-
based UMT (Lample et al., 2018a) and train it on
Wikipedia text3. In particular, we sample 10 mil-
lion sentences from each language pairs and use
the XLM library4 to train a UMT (Lample et al.,
2018a) for 200K steps. The resulting encoder-
decoder are used to initialize our model.

Regarding word embedding initialization, we
use the embeddings obtained from the 1st layer of
pretrained language models (Conneau and Lam-
ple, 2019), which has demonstrated better cross-
lingual performance in a number of evaluation
metrics over MUSE (Lample et al., 2018b).

Training Details. In our experiment, both en-
coder and decoder are 6 layer transformers with 8-
head self-attention. We set both subword embed-
ding and hidden state dimension to 1024 and use
greedy decoding to generate a sequence of tokens.
The encoder-decoder and classifier are trained us-
ing Adam optimizer (Kingma and Ba, 2015) with
a learning rate of 10−5 and a mini-batch size of 32.
We set the hidden dimension to 128 for both clas-

3http://dumps.wikimedia.org/
4www.github.com/facebookresearch/XLM

sifier and discriminator. For parameters of denois-
ing auto-encoder, we set pd = 0.1, pb = 0.2 and
k = 3 following Lample et al. (2018a). Finally,
we perform a grid search for hyper-parameters on
{0.5,1,2,4,8} and set λwd, λcd to 1 and λadv to 4.
To prevent gradient explosion, we clip the gradient
L2 norm by 5.0. Our approach is implemented in
PaddlePaddle5 and all experiments are conducted
on an NVIDIA Tesla M40 (24GB) GPU.

Competing Methods. We have compared our
method with several recently published results.
Due to the space limit, we briefly introduce sev-
eral representative baselines: LR+MT translated
the bag of words from target language to source
language via machine translation and then built a
logistic regression model. BWE baselines rely on
Bilingual Word Embeddings (BWEs), wherein 1-
to-1 indicates that we are only transferring from
English, while 3-to-1 means the training data from
all other three languages. CLDFA (Xu and Yang,
2017) was built on model distillation on parallel
corpora with adversarial feature adaptation tech-
nique. PBLM (Ziser and Reichart, 2018) used
bilingual word embeddings and pivot-based lan-
guage modeling for cross-domain & cross-lingual
classification. MBERT (Devlin et al., 2019) and
XLM-FT (Conneau and Lample, 2019) directly
fine-tuned a single layer classifier based on pre-
trained LM multilingual BERT and XLM.

4.3 Experiment Results

In Table 1 and Table 2, we compare our method
with others based on their published results or our
reproduced results from their code. Our results are
averaged based on 5 rounds of experiment with the
standard deviation around 1%-1.5%. Following
previous baselines, we do not report them here.

Our first observation from Table 1 is that
our model and the fine-tuned multilingual LM
MBERT (Devlin et al., 2019) and XLM-FT (Con-
neau and Lample, 2019) outperform all previous
methods including the methods with cross-lingual
resources for 8/9 tasks by a large margin, which
indicates the huge benefit from pretrained LMs
in the zero-shot setting. Compared with MBERT
and XLM-FT, our model obtains better perfor-
mance when the target language is more similar
to the source language, for example, German and
French, and one task in Japanese.

5http://www.paddlepaddle.org/

http://dumps.wikimedia.org/
www.github.com/facebookresearch/XLM
http://www.paddlepaddle.org/
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German (2) French (2) Japanese (2)
Approach books DVD music avg books DVD music avg books DVD music avg

With cross-lingual resources
LR+MT 79.68 77.92 77.22 78.27 80.76 78.83 75.78 78.46 70.22 71.30 72.02 71.18
CR-RL1 79.89 77.14 77.27 78.10 78.25 74.83 78.71 77.26 71.11 73.12 74.38 72.87
Bi-PV2 79.51 78.60 82.45 80.19 84.25 79.60 80.09 81.31 71.75 75.40 75.45 74.20
CLDFA3 83.95 83.14 79.02 82.04 83.37 82.56 83.31 83.08 77.36 80.52 76.46 78.11

With implicit cross-lingual resources
UMM4 81.65 81.27 81.32 81.41 80.27 80.27 79.41 79.98 71.23 72.55 75.38 73.05
PBLM5 78.65 79.90 80.10 79.50 77.90 75.65 75.95 76.50 - - - -

Without cross-lingual resources
BWE (1-to-1) 76.00 76.30 73.50 75.27 77.80 78.60 78.10 78.17 55.93 57.55 54.35 55.94
BWE (3-to-1) 78.35 77.45 76.70 77.50 77.95 79.25 79.95 79.05 54.78 54.20 51.30 53.43
MAN-MoE6 82.40 78.80 77.15 79.45 81.10 84.25 80.90 82.08 62.78 69.10 72.60 68.16
MBERT7 84.35 82.85 83.85 83.68 84.55 85.85 83.65 84.68 73.35 74.80 76.10 74.75
XLM-FT8 86.85 84.20 85.90 85.65 88.1 86.95 86.20 87.08 80.95 79.20 78.02 79.39
MVEC (Ours) 88.41 87.32 89.97 88.61 89.08 88.28 88.50 88.62 79.15 77.15 79.70 78.67

1 Xiao and Guo (2013) 2 Pham et al. (2015) 3 Xu and Yang (2017) 4 Xu and Wan (2017)
5 Ziser and Reichart (2018) 6 Chen and Qian (2019) 7 Devlin et al. (2019) 8 Conneau and Lample (2019)
Table 1: Prediction accuracy of binary classification in the test set for three language pairs. The highest perfor-
mance is in bold, while the highest performance within the method group is underlined.

Approach Chinese (5) Arabic (3)
LR+MT 34.01 51.67
DAN 29.11 48.00
mSDA 31.44 48.33
ADAN 42.49 52.54
MBERT 38.85 50.40
XLM-FT 42.22 49.50
MVEC (Ours) 43.36 49.70

Table 2: Prediction accuracy of 5-class and 3-class
classification tasks on the test set.

In Table 2, we show the comparison be-
tween our method and a few other published re-
sults, including ADAN (Chen et al., 2018) and
mSDA (Chen et al., 2012) for Chinese and Ara-
bic languages in multi-class setting. Similarly,
our model obtains slightly better accuracy in Chi-
nese. Overall, built on top of the pretrained LMs
and UMT, our full model achieves the state-of-the-
art performance on 8/11 sentiment classification
tasks, especially when the target language is more
similar to the source language.

Moreover, we illustrate the effectiveness of
encoder-decoder based regularization in reducing
the language shift in the shared latent space. Intu-
itively, if the fine-tuned latent space is less sensi-
tive to the language shift, the performance on val-
idation sets and test sets should be highly corre-
lated during training. In Figure 2, we report the
average accuracy of both validation and test set
w.r.t. training epochs over five runs on Amazon
book review data in French.
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Figure 2: Validation and test accuracy w.r.t. training
epochs for Amazon book review in French. Left: our
method (MVEC). Right: XLM-FT.

From Figure 2, we observe that even though
our model’s best validation accuracy is lower than
XLM-FT (Conneau and Lample, 2019) in En-
glish, it has more correlated accuracy curves than
XLM-FT across English and French. For exam-
ple, the validation accuracy of XLM-FT starts de-
creasing after epoch 10, while the test accuracy
is still increasing. Such an observation shows
that the latent representation learned solely from
self-supervised objectives (e.g., masked language
modeling) may not well capture the semantic sim-
ilarity among languages. Hence the resulting clas-
sifier may work well in the source language but
may not generalize to the target language. In con-
trast, our model sacrifices some accuracy in the
source language but can select better models for
the target language in a cross-lingual setting.

4.4 Ablation Study

To understand the effect of different components
in our model on the overall performance, we con-
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German French Japanese Chinese Arabic
Full model: 88.61 88.62 78.67 43.36 49.70
w/o cross-domain loss: 83.22 82.40 72.05 35.74 42.80
w/o within-domain loss: 82.90 82.15 71.27 37.21 41.60
w/o adversarial training: 84.85 84.58 73.75 39.36 46.37
w/o two-views consensus: 86.21 86.18 75.25 40.95 46.77

Table 3: Ablation study on five language pairs.

duct an ablation study, as reported in Table 3.
Clearly, the encoder-decoder trained either by the
within-domain objective or cross-domain objec-
tive is the most critical. For Amazon data in three
languages (German, French, Japanese), the model
without cross-domain loss obtains prediction ac-
curacy of 83.22%, 82.40%, and 72.05%, which
gets decreased by 5%−7% compared with the full
model. The performance is also significantly de-
graded when the adversarial training component
is removed because the distribution of latent doc-
ument representations is not similar between two
languages. The two-views consensus component
also has a significant effect on the performance
of our model, with a performance drop up to 5
points for en-jp. Such a result verifies our claim
that cross-lingual model benefits from training on
multiple views of the input.

4.5 Case Study
To further explore the effectiveness of our ap-
proach, we visualize the encoder’s output and the
last layer before softmax for 10 randomly sampled
Amazon reviews in English and their translations
in French using Google Translation, as shown in
Appendix A.2.

As seen in the lower-left panel of Figure 3, most
red circles and black squares with the same in-
dices are very close for our method but are distant
for XLM-FT in the top-left. Such an observation
implies that our encoder combined UMT and a
language discriminator adequately maps the input
into a shared language-invariant latent space while
preserving semantic similarity. For the last layer
before softmax, even though XLM-FT also gen-
erates reasonable representations to separate posi-
tive and negative reviews, the data points are scat-
tered randomly. On the contrary, our model’s out-
put in the lower right panel of Figure 3 shows two
more obvious clusters with corresponding labels
that can be easily separated. One cluster in the left
contains all of the positive documents, while the
negative examples only appear on the right side.
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Figure 3: t-SNE visualizations of various layers of
XLM-FT and MVEC for en-fr. Red circles and black
squares indicate documents from English and their cor-
responding translations in the target language, respec-
tively. Numbers indicate the document index and have
a one-to-one mapping. +/- indicates labels and we only
annotate English documents for simplicity. Top left:
encoder output of XLM-FT. Top right: the last layer
before softmax of XLM-FT. Lower left: encoder out-
put of our method. Lower right: the last layer before
softmax of our method.

5 Conclusion

In this paper, we propose a cross-lingual multi-
view encoder-classifier (MVEC) that requires nei-
ther labeled data in the target language nor cross-
lingual resources with the source language. Built
upon pretrained language models, our method uti-
lizes the encoder-decoder component with a lan-
guage discriminator from an unsupervised ma-
chine translation system to learn a language-
invariant feature space. Our approach departs
from previous models that could only make use of
the shared language-invariant features or depend
on parallel resources. By constructing the fine-
tuned latent feature space and two views of input
from the encoder-decoder of UMT, our model sig-
nificantly outperforms previous methods for 8/11
zero-shot sentiment classification tasks.
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A Additional Details on Datasets

A.1 Summary Statistics of Labeled Datasets
For the Amazon Review dataset, we use the same
test set as Duh et al. (2011) but transform them
into binary labels for comparison with previous
works. After transformation, the test set of each
product category has equal number of positive and
negative ratings (1000 vs 1000).

For the Yelp and Hotel Review dataset, we fol-
low the same split as Chen et al. (2018) and keep
the original rating. The test set contains 10k doc-
uments in total with around 2000 documents for
each rating level.

The Arabic social media dataset contains 1000
test documents sampled from 1200 social media
posts with about 400 documents for each rating
level. Since Arabic data is not used for tuning pa-
rameters as validation set, we use more test sam-
ples than Chen et al. (2018).

A.2 Sampled Data for the Case Study
In Section 4.5, we randomly sample 10 Amazon
book reviews in English, and translate them into
French using Google Translation for case study.
The sampled reviews and their French translations
are as follows:

1. More than mitigated for this tote album that
mixes some good ideas (the parodies of works
of art) and scenes that only echo the previous
albums lazily.

Plus qu’atténué pour cet album cabas qui mêle
quelques bonnes idées (les parodies d’oeuvres
d’art) et des scènes qui ne font que faire écho
aux albums précédents paresseusement.

2. What a disappointment, so dear for that. After
the Gallic comeback, another album story to re-
lease an album. Beautiful pictures, some cool
stuff (so the picture with all the characters) ...
but

Quelle déception, si chère pour ça. Après le
retour des Gaulois, une autre histoire d’album
pour sortir un album. De belles photos, des
trucs sympas (donc la photo avec tous les per-
sonnages) ... mais

3. We obviously believe we know everything
about the unspeakable horror of concentration
camps. Well no; if it’s a man; literally leaves

no voice! Any comment seems inappropriate
and for all

Nous pensons évidemment que nous savons
tout sur l’horreur indicible des camps de con-
centration. Eh bien non, si c’est un homme ne
laisse littéralement aucune voix! Tout commen-
taire semble inapproprié et pour tous

4. “We who have survived”, said Primo Levi, “are
not good witnesses, because we belong to this
tiny minority who, by prevarication, by skill or
luck, have never touched”

“Nous qui avons survécu”, a déclaré Primo
Levi, “ne sommes pas de bons témoins, car
nous appartenons à cette minuscule minorité
qui, par tergiversation, par habileté ou par
chance, n’avons jamais touché”

5. The questions are targeted and you must have
the financial means to follow the plan. I would
not recommend this document unlike the other
book; I do not know how to lose weight, which
is useful

Les questions sont ciblées et vous devez avoir
les moyens financiers de suivre le plan. Je
ne recommanderais pas ce document contraire-
ment à l’autre livre; Je ne sais pas comment
perdre du poids, ce qui est utile

6. I read this book in Spanish, in the native lan-
guage of the writer. I find the book excellent.
Not only because of her passionate story but for
her love of books and literature

J’ai lu ce livre en espagnol, dans la langue
maternelle de l’auteur. Je trouve le livre excel-
lent. Pas seulement à cause de son histoire pas-
sionnée, mais aussi pour son amour des livres
et de la littérature

7. I have been reading Chattam for many years,
and this is the first time I have to struggle to
finish one of these novels. The bottom of the
story is not bad, but the finished product was
almost undrinkable.

Je lis Chattam depuis de nombreuses années et
c’est la première fois que je dois lutter pour ter-
miner l’un de ces romans. Le fond de l’histoire
n’est pas mauvais, mais le produit fini était
presque imbuvable.
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8. THIS BOOK IS GREAT! I had seen the movie
before I read the book and I was not disap-
pointed!

CE LIVRE EST SUPER! J’avais vu le film
avant de lire le livre et je n’ai pas été déçu!

9. I still love it so much. But I wonder if we
will not go around in circles ... We change
the scenery, we add endearing characters, but
there is already the originality of the original
creators.

Je l’aime toujours tellement. Mais je me de-
mande si nous ne tournerons pas en rond ...
On change de décor, on ajoute des personnages

attachants, mais il y a déjà l’originalité de la
création originale.

10. There are many mysteries in life, including
Grangé’s! I really do not understand the ex-
traordinary opinions about this author: it’s
wrong! And I hope it is not broadcast too much
abroad.

Il y a beaucoup de mystères dans la vie, y com-
pris ceux de Grangé! Je ne comprends vrai-
ment pas les opinions extraordinaires sur cet
auteur: c’est faux! Et j’espère que ça ne sera
pas trop diffusé à l’étranger


