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Abstract
Motivated by human attention, computational
attention mechanisms have been designed to
help neural networks adjust their focus on spe-
cific parts of the input data. While atten-
tion mechanisms are claimed to achieve in-
terpretability, little is known about the actual
relationships between machine and human at-
tention. In this work, we conduct the first
quantitative assessment of human versus com-
putational attention mechanisms for the text
classification task. To achieve this, we de-
sign and conduct a large-scale crowd-sourcing
study to collect human attention maps that en-
code the parts of a text that humans focus on
when conducting text classification. Based on
this new resource of human attention dataset
for text classification, YELP-HAT, collected
on the publicly available YELP dataset, we
perform a quantitative comparative analysis
of machine attention maps created by deep
learning models and human attention maps.
Our analysis offers insights into the relation-
ships between human versus machine attention
maps along three dimensions: overlap in word
selections, distribution over lexical categories,
and context-dependency of sentiment polarity.
Our findings open promising future research
opportunities ranging from supervised atten-
tion to the design of human-centric attention-
based explanations.

1 Introduction

Attention-based models have become the architec-
tures of choice for a vast number of NLP tasks
including, but not limited to, language modeling
(Daniluk et al., 2017), machine translation (Bah-
danau et al., 2015), document classification (Yang
et al., 2016), and question answering (Kundu and
Ng, 2018; Sukhbaatar et al., 2015). While attention
mechanisms have been said to add interpretability
since their introduction (Bahdanau et al., 2015), the
investigation of whether this claim is correct has

Figure 1: Examples of binary human attention (blue in
top two texts) and continuous machine attention (red in
bottom text).

only just recently become a topic of high-interest
(Mullenbach et al., 2018; Thorne et al., 2019; Ser-
rano and Smith, 2019). If attention mechanisms
indeed offer a more in-depth understanding of a
model’s inner-workings, application areas from
model debugging to architecture selection would
benefit greatly from profound insights into the in-
ternals of attention-based neural models.

Recently, Jain and Wallace (2019), Wiegreffe
and Pinter (2019), and Serrano and Smith (2019)
proposed three distinct approaches for evaluating
the explainability of attention. Jain and Wallace
(2019) base their work on the premise that explain-
able attention scores should be unique for a given
prediction as well as consistent with other feature-
importance measures. This prompts their conclu-
sion that attention is not explanation. Based on
similar experiments on alternative attention scores,
Serrano and Smith (2019) conclude that attention
does not necessarily correspond to the importance
of inputs. In contrast, Wiegreffe and Pinter (2019)
find that attention learns a meaningful relationship
between input tokens and model predictions, which
cannot be easily hacked adversarially.

While these works ask valuable questions, they
embrace model-driven approaches for manipulat-
ing the attention weights and thereafter evaluate the



4597

post-hoc explainability of the generated machine
attention. In other words, they overlook the human
factor in the evaluation process – which should be
integral in assessing the plausibility of the gener-
ated explanations (Riedl, 2019).

In this work, we adopt a novel approach to atten-
tion explainability from a human-centered perspec-
tive and, in particular, investigate to what degree
machine attention mimics human behavior. More
precisely, we are interested in the following re-
search question: Do neural networks with attention
mechanisms attend to the same parts of the text as
humans? To this end, we first collect a large dataset
of human-attention maps and then compare the val-
idated human attention with a variety of machine
attention mechanisms for text classification.

Figure 1 displays examples of human and
machine-generated attention for classifying a
restaurant review’s overall rating. Our goal is to
quantify the similarity between human attention
and machine-generated attention scores. Measur-
ing this similarity is non-trivial and is not appropri-
ately captured by an existing similarity metric (e.g.,
Euclidean) between two vectors for the following
reasons. A binary human attention vector does not
solely denote which tokens are given higher impor-
tance but also implies information about the under-
lying grammatical structure and linguistic construc-
tion. For example, whether or not adjectives tend
to be high-importance is encoded in the attention
weights as well. Further, it is well known that hu-
man attention is itself subjective: given the same
text and task, human annotators may not always
agree on which words are important. That is, one
single human’s attention should rarely be regarded
as the ground-truth for attention.

Given this objective, we use crowd-sourcing to
collect a large set of human attention maps. We
provide a detailed account of the iterative design
process for our data collection study in §3. We
design new metrics that quantify the similarity be-
tween machine and human attention from three per-
spectives (§4): Behavioral similarity measures the
number of common words selected by human and
machine discerning if neural networks with atten-
tion mechanisms attend to the same parts of the text
as humans. Humans associate certain lexical cate-
gories (e.g., adjectives) with a sentiment more heav-
ily. Lexical (grammatical) similarity identifies if
machine attention favors similar lexical categories
with humans. A high lexical similarity shows that

the attention mechanism learns similar language
patterns with humans. Context-dependency quani-
tifies sentiment polarity of word selections.

We then employ these metrics to compare at-
tention maps from a variety of attention-based Re-
current Neural Networks (RNN). We find that bi-
Directional RNNs with additive attention demon-
strate strong similarities to human attention for all
three metrics. In contrast, uni-directional RNNs
with attention differ from human attention signif-
icantly. Finally, as the text length increases, and
with it, the prediction task becomes more difficult,
both the accuracy of the models and similarity be-
tween human and machine decrease.

Our contributions are as follows:

• We conduct a large-scale collection of 15,000
human attention maps as a companion to
the publicly-available Yelp Review dataset.
Our collected Yelp-HAT (Human ATtention)
dataset is publicly available as a valuable re-
source to the NLP community.

• We develop rich metrics for comparing human
and machine attention maps for text. Our new
metrics cover three complementary perspec-
tives: behavioral similarity, lexical similarity,
and context-dependency.

• We conduct the first in-depth assessment com-
paring human versus machine attention maps,
with the latter generated by a variety of state-
of-the-art soft and hard attention.

• We show that when used with bidirectional
architectures, attention can be interpreted as
human-like explanations for model predic-
tions. However, as text length increases, ma-
chine attention resembles human attention
less.

2 Preliminaries on Attention Maps

In this section, we define the concepts of Human
Attention Map and Machine Attention Map.

Definition 2.1. Attention Map. An Attention
Map (AM) is a vector where each entry in sequence
is associated with a word in the corresponding po-
sition of the associated text. The value of the entry
indicates the level of attention the corresponding
word receives with respect to a classification task.

Definition 2.2. Human Attention Map. A Hu-
man Attention Map (HAM) is a binary attention
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map produced by a human, where each entry with
a set-bit indicates that the corresponding word re-
ceives high attention.

Definition 2.3. Machine Attention Map. A Ma-
chine Attention Map (MAM) is an attention map
generated by a neural network model. If computed
through soft-attention, a MAM corresponds to an
AM of continuous values, that capture a probability
distribution over the words. If computed through
hard-attention, a MAM is a binary AM.

We now introduce the application of aggregation
operators to coalesce HAMs by multiple annotators
into aggregated HAMs.

Definition 2.4. Consensus Attention Map. If
multiple HAMs exist for the same text, a Consen-
sus Attention Map (CAM) is computed through a
bitwise AND operation of the HAMs.

Definition 2.5. Super Attention Map. If multiple
HAMs exist for the same text, a Super Attention
Map (SAM) is computed by a bitwise OR operation
of the HAMs.

3 Collection and Analysis of Human
Attention Maps

3.1 HAM Collection by Crowd-sourcing
We collect human attention maps for the Yelp
dataset1 on the classification task of rating a review
as positive or negative on Amazon Mechanical
Turk. Participants are asked to complete two
tasks: 1) Identify the sentiment of the review as
positive, negative, or neither, and 2) Highlight the
words that are indicative of the chosen sentiment.
Our interface used for data collection is in Figure 2.

Preliminary investigation of the quality of hu-
man annotations. First, we conduct a series of
data collection studies on two subsets of the Yelp
dataset. Both subsets consist of 50 randomly-
selected reviews from the Restaurant category. The
first subset contains reviews with exactly 50 words,
while the second contains reviews with exactly 100
words. For each review, human annotation is col-
lected from two unique users.

We explore the quality of data we can collect on
Mechanical Turk, as it encourages users to com-
plete their tasks as quickly as possible since the
number of completed tasks determines their in-
come. This may lower the quality of collected

1https://www.yelp.com/dataset/
challenge

Figure 2: User interface we used for data collection on
Amazon Mechanical Turk.

data since users may not select all relevant words,
instead opting for the few most obvious ones, or
they may choose words randomly.

Based on our preliminary investigations, we ob-
serve that both the average time users spend on
the task (44 vs. 70 seconds) and the average num-
ber of words selected per review (9 vs. 13 words)
increase as the number of words in the review in-
creases from 50 to 100. This suggests that users do
not choose words randomly; instead, they make an
informed decision. We also visually examine the
collected human attention maps and confirm that
subjects make meaningful selections.
Pilot study assessing two design choices for data
collection. Next, we design another pilot study to
understand how humans perform the cognitive task
of classifying a text and selecting the particular
words that led to this decision. In this study, we ask
eight participants to perform the same task while
adhering to one of two strategies. The first strategy,
the read-first design, involves reading the review
first, deciding on the sentiment, then rereading the
review, this time to highlight the relevant words.
The second strategy, the free-style design, gives par-
ticipants the freedom to choose the relevant words
as they read the review to determine the sentiment.
Each participant is asked to complete two tasks to
experience both strategies. Half of the participants
first work with the read-first design followed by
the free-style design while the other half work in
the reverse order. After completing the tasks, we
ask the participants which strategy they find more
natural in a post-task questionnaire.
Findings from the pilot study. Out of eight partic-
ipants, half of them find it more useful reading the
review first then deciding on the words whereas the
other half indicated the opposite. We then evaluate

https://www.yelp.com/dataset/challenge
https://www.yelp.com/dataset/challenge
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the collected data from three perspectives to decide
which design is most suitable for our purposes.

We first examine the agreement between par-
ticipants adhering to a particular strategy. This
involves calculating the percentage of participants
that mutually select the same phrase. We find that
participant agreement is higher (73%) when the
participants are forced to read the review before
making any selections compared to using the free-
style design (69%). Next, we investigate how sim-
ilar the results are to the ground truth we defined
for each review. The read-first design achieves
better performance (3.30) compared to the free-
style design (3.10). Our final criterion involves
examining the amount of noise in the data (i.e., se-
lections which deviate from the chosen sentiment).
Only one review exhibits this situation where the
review is clearly positive; however, it also contains
a negative-opinion sentence. We observe that the
read-first design reduces this cross-sentiment noise
(1 vs. 0.5 scores).
Data collection protocol for the main study.
Based on conclusions from the pilot studies, the
read-first design is adopted to conduct the main
data collection for 5, 000 reviews on Amazon Me-
chanical Turk. For this study, three different sub-
jects annotated each review, resulting in a total of
15, 000 human attention maps. The resulting Yelp
Human Attention Dataset (YELP-HAT) is publicly
available 2 .

3.2 Analysis and Insights About HAMs

Factors that affect human accuracy. Some re-
views contain a mixture of opinions, even though
the reviewer felt strongly positive or negative about
the restaurant. For example, consider the following
review: “Nothing to write home about, the chicken
seems microwaved and the appetizers are meh. ...
If your [sic] looking for a quick oriental fix I’d say
go for it.. otherwise look elsewhere.” This review
is labeled as negative, positive, and neither. The
annotator who assigned it to the positive class se-
lected the words “go for it” while the annotator
who assigned it to the negative class selected the
words “otherwise look elsewhere”. This type of
“mixed review” is the principal reason for discrep-
ancies in classifications by the human annotators.
The nature of crowd-sourcing also causes such in-
consistencies as not all annotators provide reviews

2http://davis.wpi.edu/dsrg/PROJECTS/
YELPHAT/index.html

of equal quality.
Ambiguity in human attention. Intuitively, hu-

man attention is highly subjective. Some common
patterns across annotators lead to differences in hu-
man annotations. A common behavior is to select
keywords that indicate a sentiment. Another typical
action is to select entire sentences if the sentence
expresses an opinion.

Some reviews include subjective phrases
that people interpret differently with regard to
sentiment-polarity. For instance, “I come here of-
ten” can be construed as a favorable opinion. How-
ever, some people find it neutral. In some cases,
an overwhelmingly-positive review incorporates
a negative remark (or vice versa). In these cases,
some people select all pieces of evidence of any
sentiment, whereas others only choose words that
indicate the prevailing sentiment.

4 Attention Map Similarity Framework

We quantify the similarity between HAMs and
MAMs through our similarity framework that con-
tains three new metrics as described in this section.

4.1 Overlap in Word Selections
For two attention mechanisms to be similar, they
must put attention on the same parts of the text.
Thus, we first define a metric for quantifying the
overlap in the words selected by human annotators
and by deep learning models.

Definition 4.1. Behavioral Similarity. Given a
collection of attention maps HAMD and MAMD
for a text dataset D, behavioral similarity be-
tween human (H) and machine (M) corresponds
to the average pair-wise similarity between each
(HAMi,MAMi) vector pair ∀i ∈ D as defined be-
low:

PairwiseSimi = AUC(HAMi,MAMi)

BehavioralSim(M,H) =
1

|D|
∑
i

(PairwiseSimi)

where |D| is the number of reviews in the datasetD.
Intuitively, this corresponds to adopting the human
attention vector as binary ground truth. That is,
it measures how similar the machine-generated
continuous vector is to this ground truth. AUC is
between 0 and 1 with .5 representing no similarity,
and 1 the perfect similarity.

http://davis.wpi.edu/dsrg/PROJECTS/YELPHAT/index.html
http://davis.wpi.edu/dsrg/PROJECTS/YELPHAT/index.html
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4.2 Distribution over Lexical Categories

Previous work has found that lexical indicators of
sentiment are commonly associated with syntactic
categories such as adjective, adverb, noun, and verb
(Marimuthu and Devi, 2012). We define the follow-
ing lexical similarity metric to test if human and
machine adopt similar behaviors in terms favoring
certain lexical categories.

Definition 4.2. Lexical Similarity. Given a col-
lection of attention maps HAMD and MAMD for
a text dataset D, Lexical Similarity (LS) between
human (H) and machine (M) over D is computed:

LS(M,H) = corr(dist(wordsH), dist(wordsM ))

where wordsH is a list of all selected words in
all reviews of D by human, wordsM is a list of
all selected words in all reviews of D by machine,
dist() is a function that computes the distribution
of a word list over a tagset (e.g., nouns, verbs, etc.).
After computing two distributions, the corr() func-
tion computes the correlation between them. In
our experiments, we adopt Pearson Correlation. If
MAM is continuous, selected words by M corre-
sponds to k words with the highest attention scores,
where k is the number of words selected by human
for that text.

Using a random attention R as a baseline where
the most important k words are selected randomly,
we then compute an Adjusted Lexical Similarity
which is between 0 and 1 as follows.

AdjustedLS =
LS(M,H)− LS(R,H)

1− LS(R,H)

4.3 Context-dependency of Sentimental
Polarity

When deciding the sentiment of a review, human
subjects may consider positive-sentiment words in
a negative review and vice versa. To assess how
context-dependant human and machine attentions
are, we compute cross-sentiment selections rates.

Definition 4.3. Cross-sentiment selection rate
(CSSR). Assume we have a collection of attention
maps AMD for a datasetD, ground truth for overall
sentiment Y for each review in D ( yi ∈ {0, 1} ),
and a list of positive words P and negative words
N in the English language. CSSR denotes the ratio
of selected words from the opposite sentiment.

p words = get words(HAMD, Y = 1)

n words = get words(HAMD, Y = 0)

CSSRp =
|p words ∩N|
|p words ∩ P|

CSSRn =
|n words ∩ P|
|n words ∩N|

get words() function returns a list of attention-
receiving words where HAMij = 1, ∀i, j for the
entire set of HAMD, for positive-sentiment reviews
(Y = 1) and negative-sentiment reviews (Y = 0)
separately. A list of words with positive and neg-
ative connotations, P and N , are obtained from
Hu and Liu (2004). CSSRp (positive) and CSSRn

(negative) is then computed as the ratio of the num-
ber of cross-sentiment words over the number of
same-sentiment words. A high CSSR means many
words from the opposite sentiment are selected.
This metric provides insights about how similar
human and machine attentions are with regard to
their context-dependant behaviour.

5 Is Machine Attention Similar to
Human Attention?

5.1 Generating Machine Attention Maps

The Yelp dataset contains reviews and their rating
scores between 0 and 5 (stars). This rating score
corresponds to the ground truth for the review’s
overall sentiment. We create a binary classifica-
tion task by assigning 1 and 2-star reviews to the
negative class and 4 and 5-star reviews to the pos-
itive class. We omit 3-star reviews as they may
not exhibit a clear sentiment. For training neural
network models, we extract balanced subsets and
split them into 80% training set, 10% validation set
and 10% test sets. We then generate MAMs using
the following machine learning models.
RNN with soft attention. Recurrent Neural Net-
works (RNN) enhanced with attention mechanisms
have emerged as the state-of-the-art for NLP tasks
(Bahdanau et al., 2015; Yang et al., 2016; Daniluk
et al., 2017; Kundu and Ng, 2018). We implement
the additive attention for many-to-one classification
task as it is commonly used in the literature (Yang
et al., 2016; Bahdanau et al., 2015) and paired it
with both uni- and bi-directional RNN. In our im-
plementation, we use LSTM memory cells.
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Accuracy

Yelp-50 Yelp-100 Yelp-200

Human 0.96 0.94 0.94
RNN 0.91 ± 0.006 0.90 ± 0.013 0.88 ± 0.01
biRNN 0.93 ± 0.008 0.91 ± 0.005 0.88 ± 0.02
Rationales 0.90 ± 0.004 0.85 ± 0.035 0.77 ± 0.015

Table 1: Test accuracy from three subsets of Yelp data.

Assuming that Γ is the recurrence function of
LSTM and xi is the embedded i-th word of T
words in a review, we model our method as:

hi = Γ(xi, hi−1), i ∈ [1, T ] (1)

ui = tanh(Whi + b) (2)

αi =
exp(u>i u)∑
t exp(u>i u)

(3)

Here hi, i ∈ [1, T ] are hidden representations,
W , b, and u are trainable parameters, and αi, i ∈
[1, T ] are the attention scores for each word xi.
A context vector ci corresponds to the weighted
average of the hidden representations of words with
attention weights, denoted by:

ci =
∑
j

αjhj (4)

Through a softmax layer, context vector ci is then
used for further classifying the input sequence.
Rationale mechanism. An alternative approach,
referred to as “rationale mechanism”, can be seen
as a type of hard attention (Lei et al., 2016; Bao
et al., 2018). This model consists of two main parts
that are jointly learned: a generator and an encoder.
The generator specifies a distribution over the input
text to select candidate rationales. The encoder is
used to make predictions based on the rationales.
The two components are integrated and regularized
in the cost function with two hyper-parameters,
selection lambda, and continuity lambda, for opti-
mizing the representative selections. The selection
lambda penalizes the number of words selected,
while the continuity lambda encourages the con-
tinuity via minimizing the distances of the words
chosen.

5.2 Behavioral Similarity Analysis
We conduct a set of controlled experiments with
the length of the review changing across experi-
ments. First, we generate MAMs for three subsets
of the Yelp dataset: reviews containing 50 words

(Yelp-50), 100 words (Yelp-100) and 200 words
(Yelp-200). Neural network models with attention
mechanisms are trained on each of these subsets.
The corresponding test set accuracies for sentiment
classification of human versus machine are shown
in Table 1. Next, we acquire the HAMs collected
for each test set. Since each review is annotated by
three people, we have three sets of HAMs: HAM1,
HAM2, and HAM3. Consensus among the three,
CAM and SAM, are computed as per Defs. 2.4 and
2.5. Then we measure the Behavioral Similarity be-
tween human and machine. The amount of overlap
in the selected words are presented in Table 2.

We observe that accuracy and similarity both
decrease as the review-length increases and the
classification task becomes more difficult for both
humans and machine learning models. We identify
two reasons for this: First, when a review is long,
the prevailing opinion is usually not obvious at first
glance and may require more intensive reading and
contemplating. Second, the reviewers are more
likely to state conflicting facts and opinion in long
reviews. This, in turn, creates distracting and hard-
to-read text. Compared to unidirectional model,
bidirectional RNN with attention consistently rates
closer to human attention. This is most striking for
the Yelp-50 subset. This can be explained with the
fact that bidirectional RNNs possess information
from both directions of the text similar to humans.

For all three subsets, Yelp-50, Yelp-100, and
Yelp-200, behavioral similarity for Consensus At-
tention Map is higher than all three HAMs. This
is an important result because it indicates that the
words all annotators agreed to be important are se-
lected by machine attention too, whereas more sub-
jective selections do not always get high attention
from machine, indicated by lower SAM similarity.

Finally, we compare similarity of these three sets
of HAMs. Even though human-to-human similarity
is usually higher than human-to-machine similarity
(as expected), the numbers still far from being close
to 1. This confirms the subjectivity of human at-
tention. Also, note that human-to-human similarity
decreases as the review length increases.

We observe that the performance of the rationale-
based models degrades more sharply as the review-
length increases. As our goal is to compare hu-
man attention with machine-generated attention for
model interpretability, we optimize the model not
only for accuracy but also for the number of se-
lected rationales. We aim to generate roughly an
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Yelp-50 HAM1, k = 10 HAM2, k = 12 HAM3, k = 12 CAM, k = 5 SAM, k = 22

HAM2 0.73 - - - -
HAM3 0.74 0.75 - - -
RNN Attention 0.59± 0.021 0.59± 0.002 0.57± 0.012 0.59± 0.024 0.58± 0.021
Bi-RNN Attention 0.69± 0.004 0.70± 0.008 0.69± 0.007 0.79± 0.003 0.64± 0.008
Rationales 0.62± 0.014 0.62± 0.012 0.63± 0.015 0.68± 0.020 0.58± 0.010

Yelp-100 HAM1, k = 15 HAM2, k = 16 HAM3, k = 16 CAM, k = 6 SAM, k = 30

HAM2 0.71 - - - -
HAM3 0.73 0.74 - - -
RNN Attention 0.57 ± 0.009 0.58 ± 0.011 0.59 ± 0.012 0.57 ± 0.010 0.58 ± 0.008
Bi-RNN Attention 0.65 ± 0.011 0.65 ± 0.021 0.66 ± 0.021 0.73 ± 0.031 0.62 ± 0.012
Rationales 0.55 ± 0.015 0.55 ± 0.005 0.55 ± 0.010 0.59 ± 0.015 0.54 ± 0.005

Yelp-200 HAM1, k = 26 HAM2, k = 27 HAM3, k = 25 CAM, k = 11 SAM, k = 45

HAM2 0.70 - - - -
HAM3 0.69 0.71 - - -
RNN Attention 0.60 ± 0.011 0.60 ± 0.013 0.60 ± 0.014 0.60 ± 0.017 0.60 ± 0.011
Bi-RNN Attention 0.61 ± 0.015 0.61 ± 0.008 0.61 ± 0.018 0.63± 0.009 0.60 ± 0.008
Rationales 0.51± 0.013 0.52 ± 0.021 0.51 ± 0.018 0.52± 0.025 0.49± 0.019

Table 2: Behavioral similarity of human attention to machine on varying review length. k indicates the average
number of words selected. (0.5:no similarity, 1.0:perfect similarity)

equal number of words selected by both human an-
notators and machine-generated rationales. Hence,
we force the rationale-models to pick fewer words
by tuning the selection lambda accordingly. This
gives a comparative advantage to attention-based
models against rationale-based models, as the ra-
tionale model is a hard-attention mechanism. In
addition, rationales are better suited for sentence-
level tasks as they encourage consecutive selection
as opposed to the behavior of attention.

5.3 Lexical Similarity Analysis

Next, we analyze if humans and neural networks
pay more attention to words from particular lexical
categories using Adjusted Lexical Similarity score.

Lexical Similarity results, presented in Table 3,
are consistent with Behavioral Similarity in that
bidirectional model with attention is most similar
to human (0.91 for Yelp-50 and 0.84 for Yelp-100).
Rationales model follows bidirectional RNN, and
unidirectional RNN is the least similar model to hu-
man. Overall, lexical similarity to human decreases
for all models, as the reviews become longer.

Next, we inspect which lexical categories are
selected more heavily by human and machine. For
this, we provide relative frequency of lexical cate-
gories for human-selected words, machine-selected
words (bi-RNN), and overall relative frequency of
this tag within the dataset. Adjectives (Human:0.24

bi-RNN:0.23 Overall:0.02), comparative adjectives
(Human:0.002 bi-RNN:0.001 Overall:0.0001), and
nouns (Human:0.38 bi-RNN:0.37 Overall:0.09) are
among the lexical categories that humans and bi-
RNN models favor heavily. Similarly, personal
pronouns are rarely selected by neither humans
nor bi-RNN models (Human:0.005 bi-RNN:0.005
Overall:0.01).

5.4 Cross-sentiment Selection Rate Analysis

Finally, we compute CSSR scores, presented in
Table 4, to evaluate the context-dependency of sen-
timental polarity for human and machine attentions.
Our observations for Yelp-50 dataset are as follows.
By human annotators, almost exclusively positive
words are selected if the overall review sentiment
is positive. For negative reviews, higher number
of positive words are selected than negative words
(CSSRp = 0.06,CSSRn = 0.20). Among the neu-
ral network models, the bidirectional RNN once
more behaves most similar to human annotators
with CSSRp = 0.04 and CSSRn = 0.19. RNN
model’s approach differs from that of human’s and
bi-RNN’s. Even though the behaviour is similar
for positive polarity (CSSRp = 0.06), the opposite
is true for negative polarity. In fact, positive words
selected 2.28 times more than negative words in
negative reviews, which is counter-intuitive. For
the Rationales model, CSSRp is 0.08 and CSSRn
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is 0.44. This indicates that Rationales model is
more similar to human attention than RNN model
with attention. We observe similar trends for the
Yelp-100 and Yelp-200 datasets.

6 Related Work

A large body of work has been using attention
mechanisms to attempt to bring ’interpretability’
to model predictions (Choi et al., 2016; Sha and
Wang, 2017; Yang et al., 2016). However, they only
assess the produced attention maps qualitatively by
visualizing a few hand-selected instances. Recently,
researchers began to question the interpretability
of attention. Jain and Wallace (2019) and Serrano
and Smith (2019) argue that if alternative attention
distributions exist that produce similar results to
those obtained by the original model, then the origi-
nal model’s attention scores cannot be reliably used
to explain the model’s prediction. They empirically
show that achieving such alternative distributions is
possible. In contrast, Wiegreffe and Pinter (2019)
find that attention learns a meaningful relationship
between input tokens and model predictions which
cannot be easily hacked adversarially.

Das et al. (2016) conducted the first quantita-
tive assessment of computational attention mech-
anisms for the visual question answering (VQA)
task. Similar to our work, they collect a human
attention dataset, then measure the similarity of
human and machine attention within the context
of VQA. This VQA-HAT dataset now provides
a fertile research vehicle for researchers in com-
puter vision for studying the supervision of the
attention mechanism (Liu et al., 2017a). The devel-
opment of a similar dataset and an in-depth quanti-
tative evaluation for text to advance NLP research
is sorely lacking. In a concurrent and independent
work, DeYoung et al. (2019) collects the ERASER
dataset for human annotations of rationales. While
ERASER includes multiple datasets for a number
of NLP tasks with relatively small amounts of data
for each, we focus on text classification and collect
a large amount of data on a different corpus.

7 Discussion

Recent papers, including our work, take strides at
answering the question if attention is interpretable.
This is complicated by the fact that “interpretabil-
ity” remains a not well-defined concept.

Attention adds transparency. Lipton
(2018) defines transparency as overall human-

understanding of a model, i.e., why a model makes
its decisions. Under this definition, attention scores
can be seen as partial transparency. That is, they
provide a look into the inner workings of a model,
in that they produce an easily-understandable
weighting of hidden states (Wiegreffe and Pinter,
2019).

Attention is not faithful. Whether adversarial
attention scores exist that result in the same pre-
dictions as the original attention scores helps us
understand if attention is faithful. With their empir-
ical analyses, Serrano and Smith (2019) and Jain
and Wallace (2019) show that attention is not faith-
ful.

Rationale models for human-like explana-
tions. Riedl (2019) argues that explanations are
post-hoc descriptions of how a system came to
a given conclusion. This raises the question of
what makes a good explanation of the behavior of
a machine learning system. One line of research
offers these explanations in the form of binary ratio-
nales, namely, explanations that plausibly justify a
model’s actions (Bao et al., 2018; Lei et al., 2016).

Our approach at attention as human-like ex-
planations. In claiming attention is explanation,
it is seen to mimic humans in rationalizing past
actions. In our work, we approach interpretability
from this human-centric perspective. We develop
a systematic approach to either support or refute
the hypothesis that attention corresponds to human-
like explanations for model behavior. Based on our
comparative analyses, we provide initial answers to
this important question by finding insights into the
similarities and dissimilarities of attention-based
architectures to human attention.

Towards additional tasks beyond text classifi-
cation. Confidently concluding whether attention
mimics human requires tremendous efforts from
many researchers with human data to be collected
via a well-designed data collection methodology,
both labor-intensive and costly task. In this work,
we thus focus on one task, namely, sentiment clas-
sification, and collect HAM for this task and on a
single dataset. We invite other researchers to con-
tinue this line of research by exploring other tasks
(e.g., question answering).

Next steps in attention research. Our work
opens promising future research opportunities. One
is to supervise attention models explicitly. Atten-
tion mechanisms themselves are typically learned
in an unsupervised manner. However, initial re-
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Yelp-50 Yelp-100 Yelp-200

Lexical Sim. Adjusted LS Lexical Sim. Adjusted LS Lexical Sim. Adjusted LS

Random Attention 0.85 ± 0.006 - 0.84 ± 0.013 - 0.90 ± 0.010 -
RNN Attention 0.93 ± 0.015 0.54 0.91 ± 0.007 0.44 0.93 ± 0.005 0.37
Bi-RNN Attention 0.99 ± 0.005 0.91 0.98 ± 0.013 0.84 0.93 ± 0.003 0.36
Rationales 0.95 ± 0.012 0.66 0.93 ± 0.027 0.53 0.90 ± 0.002 0.05

Table 3: Lexical Similarity and Adjusted Lexical Similarity of human attention to machine on varying review
length. (Adjusted LS 0:no similarity, 1:perfect similarity)

CSSRp CSSRn

Human 0.06 0.20
RNN Attention 0.06 2.28
Bi-RNN Attention 0.04 0.19
Rationales 0.08 0.44

Table 4: Cross-sentiment Selection Rates for positive
and negative reviews for Yelp-50 dataset.

search offers compelling evidence for the success
of supervised attention models (Chen et al., 2017;
Liu et al., 2017b) in the computer vision area. Also,
attention has the potential to be leveraged for both
making predictions and concurrently producing
human-centric explanations similar to rationale-
based architectures.

8 Conclusion

To gain a deeper understanding of the relationships
between human and attention-based neural network
models, we conduct a large crowd-sourcing study
to collect human attention maps for text classifi-
cation. This human attention dataset represents a
valuable community resource that we then lever-
age for quantifying similarities between human and
attention-based neural network models using novel
attention-map similarity metrics. Our research not
only results in insights into significant similarities
between bidirectional RNNs and human attention,
but also opens the avenue for promising future re-
search directions.
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A Appendix

A.1 Training Rationale-based models

For the Rationale Neural Prediction Framework,
we use the Pytorch implementation3 suggested by
Lei et al. (2016). In this framework, the encoder is
built as Convolutional Neural Network (CNN) and
the generator is built as Gumbel Softmax with inde-
pendent selectors. The following hyper-parameters
of CNN are used as pointed out by (Lei et al.,
2016): 200 hidden dimensions, 0.1 dropout rate, 2
hidden layers, 128 batch size, 64 epochs, 0.0003
initial learning rate.

We conducted an extensive parameter search
to find the optimum values for the two key
hyper-parameters of the rationale model, selection-
lambda, and continuity-lambda, which regularize
the number and the continuity of words selected
during the optimization process. For the selection
lambda, we experimented with values 1, 1e-1, 1e-
2, 1e-3, 1e-4, 1e-5, 1e-6, 1e-7, 1e-8, 1e-9, and
0. For the continuity lambda, we experimented
with values 0 and two times of selection lambda.
We observe that the performance of the rationale-
based model is extremely sensitive to its hyper-
parameters.

One conflicting interest with the rationale-based
models is that the more words the model selects,
the accuracy becomes higher. As our goal is to
compare human attention with machine-generated
attention for model interpretability, we optimize the
model not only for accuracy but also for the number
of selected rationales. We aim to generate roughly
an equal number of words selected by both human
annotators and machine-generated rationales.

A.2 Training Attention-based models

We used the following hyper-parameters to RNN-
based models. 100 hidden dimensions, 100 at-
tention size, 0.2 dropout rate, 128 batch size, 64
epochs, 0.0001 initial learning rate.

A.3 Additional Analysis Results

An example visualization of the attention maps an-
notated by human annotators and machine learning
models is provided in Figure 4. The agreement be-
tween human annotators and all machine learning
models can be considered high in this example, as
there are many mutual selections.

3https://github.com/yala/text_nn

Figure 3: Human attention is highly subjective. Some
annotators tend to select only a few words, whereas oth-
ers choose entire sentences.

Another example is provided in Figure 3, demon-
strating the attention maps provided by two dif-
ferent annotators for the same review. This is an
extreme example of the subjectivity of human at-
tention. The first annotator only highlights indi-
vidual words with the strongest cues of sentiment,
whereas the second annotator sometimes selects
entire sentences when they indicate a sentiment.

Table 5 shows the distribution of selected words
over lexical categories for Human (CAM), Machine
(bi-RNN), and the entire corpus for the Yelp-50
subset. Any divergence in the Human and Ma-
chine columns from the Corpus column indicates
a tendency of selection for a lexical category. For
example, adjectives are selected very heavily by
both Human and Machine, even though they only
make 0.02 of all words in the dataset.

https://github.com/yala/text_nn
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Lexical Category Human Machine(bi-RNN) Corpus

Coordinating conjunction 0.0000 0.0098 0.0147
Cardinal number 0.0098 0.0077 0.0043
Determiner 0.0112 0.0168 0.0312
Existentialthere 0.0000 0.0000 0.0000
Foreign word 0.0000 0.0000 0.0000
Preposition or subordinating conjunction 0.0266 0.0084 0.0298
Adjective 0.2374 0.2269 0.0201
Adjective, comparative 0.0021 0.0014 0.0002
Adjective, superlative 0.0252 0.0287 0.0016
List item marker 0.0000 0.0000 0.0000
Modal 0.0035 0.0000 0.0030
Noun, singular or mass 0.3838 0.3711 0.0950
Noun, plural 0.0000 0.0000 0.0000
Proper noun, singular 0.0000 0.0000 0.0000
Proper noun, plural 0.0413 0.0665 0.0154
Predeterminer 0.0000 0.0000 0.0000
Possessive ending 0.0000 0.0000 0.0000
Personal pronoun 0.0056 0.0049 0.0141
Possessive pronoun 0.0035 0.0028 0.0067
Adverb 0.1296 0.0931 0.0277
Adverb, comparative 0.0070 0.0000 0.0014
Adverb, superlative 0.0000 0.0000 0.0000
Particle 0.0000 0.0000 0.0000
Symbol 0.0000 0.0000 0.0000
to 0.0035 0.0007 0.0077
Interjection 0.0000 0.0000 0.0000
Verb, base form 0.0196 0.0028 0.0098
Verb, past tense 0.0070 0.0609 0.0148
Verb, gerund or present participle 0.0357 0.0462 0.0053
Verb, past participle 0.0455 0.0455 0.0083
Verb, non-3rd person singular present 0.0000 0.0028 0.0023
Verb, 3rd person singular present 0.0007 0.0021 0.0065
Wh-determiner 0.0000 0.0000 0.0005
Wh-pronoun 0.0007 0.0000 0.0005
Possessive wh-pronoun 0.0000 0.0000 0.0000
Wh-adverb 0.0007 0.0007 0.0012

Table 5: Distribution over lexical categories for human-selected words, machine-selected words, and the entire
corpus.
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Figure 4: Visualizations of attention maps by human annotators and machine learning models. From top to bottom:
first human annotator, second human annotator, RNN, bi-RNN, Rationales.


