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Abstract

Machine reading comprehension has made
great progress in recent years owing to large-
scale annotated datasets. In the clinical do-
main, however, creating such datasets is quite
difficult due to the domain expertise required
for annotation. Recently, Pampari et al. (2018)
tackled this issue by using expert-annotated
question templates and existing i2b2 annota-
tions to create emrQA, the first large-scale
dataset for question answering (QA) based on
clinical notes. In this paper, we provide an in-
depth analysis of this dataset and the clinical
reading comprehension (CliniRC) task. From
our qualitative analysis, we find that (i) emrQA
answers are often incomplete, and (ii) emrQA
questions are often answerable without using
domain knowledge. From our quantitative ex-
periments, surprising results include that (iii)
using a small sampled subset (5%-20%), we
can obtain roughly equal performance com-
pared to the model trained on the entire dataset,
(iv) this performance is close to human ex-
pert’s performance, and (v) BERT models do
not beat the best performing base model. Fol-
lowing our analysis of the emrQA, we fur-
ther explore two desired aspects of CliniRC
systems: the ability to utilize clinical domain
knowledge and to generalize to unseen ques-
tions and contexts. We argue that both should
be considered when creating future datasets.1

1 Introduction

Medical professionals often query over clinical
notes in Electronic Medical Records (EMRs) to
find information that can support their decision
making (Demner-Fushman et al., 2009; Rosen-
bloom et al., 2011; Wang et al., 2018). One way to
facilitate such information seeking activities is to
build a natural language question answering (QA)
system that can extract precise answers from clin-
ical notes (Cairns et al., 2011; Cao et al., 2011;
Wren, 2011; Abacha and Demner-Fushman, 2016,
2019).

1Our code is available at https://github.com/
xiangyue9607/CliniRC.

Context:	...	For	HTN	control,	pt	was	given	HCTZ
and	lopressor	which	sufficiently	controlled	his	BP.	Pt
was	sent	home	on	HCTZ	25mg	daily	and	atenolol
50mg	daily.	
...
ADDITIONAL	COMMENTS:	1.)	Take	hydrochlo-
rothiazide	25mg	daily	and	atenolol	50mg	daily	for
your	blood	pressure.	You	should	also	take	aspirin
81mg	daily.	

Question:	What	was	the	dosage	prescribed	of	
hydrochlorothiazide?
Answer:	ADDITIONAL	COMMENTS:	1.)	Take
hydrochlorothiazide	25mg	daily	and	atenolol	50mg
daily	for	your

RECORD	#992321,	Date:	2145-09-22

Question:	Why	has	the	patient	been	prescribed	hctz?
Answer:	For	HTN	control,	pt	was	given	HCTZ	
and	lopressor	which	sufficiently

Figure 1: Examples from the emrQA dataset: Part of
a clinical note as context and 2 question-answer pairs.
Due to the original emrQA generation issues, often-
times answers are incomplete or contain irrelevant parts
to the questions (the underlined parts are what we think
the most relevant to the questions).

Machine reading comprehension (RC) aims to
automatically answer questions based on a given
document or text corpus and has drawn wide atten-
tion in recent years. Many neural models (Cheng
et al., 2016; Wang et al., 2017; Wang and Jiang,
2017; Seo et al., 2017; Chen et al., 2017; Devlin
et al., 2019) have achieved very promising results
on this task, owing to large-scale QA datasets
(Hermann et al., 2015; Rajpurkar et al., 2016;
Trischler et al., 2017; Joshi et al., 2017; Yang et al.,
2018). Unfortunately, clinical reading comprehen-
sion (CliniRC) has not observed as much progress
due to the lack of such QA datasets.

In order to create QA pairs on clinical texts, an-
notators must have considerable medical expertise
and data handling must be specifically designed to
address ethical issues and privacy concerns. Due
to these requirements, using crowdsourcing like in
the open domain to create large-scale clinical QA

https://github.com/xiangyue9607/CliniRC
https://github.com/xiangyue9607/CliniRC
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datasets becomes highly impractical (Wei et al.,
2018).

Recently, Pampari et al. (2018) found a smart
way to tackle this issue and created emrQA, the first
large-scale QA dataset on clinical texts. Instead
of relying on crowdsourcing, emrQA was semi-
automatically generated based on annotated ques-
tion templates and existing annotations from the
n2c2 (previously called i2b2) challenge datasets2.
Example QA pairs from the dataset are shown in
Figure 1.

In this paper, we aim to gain a deep understand-
ing of the CliniRC task and conduct a thorough
analysis of the emrQA dataset. We first explore
the dataset directly by carrying out a meticulous
qualitative analysis on randomly-sampled QA pairs
and we find that: 1) Many answers in the emrQA
dataset are incomplete and hence are hard to read
and ineffective for training (§3.1). 2) Many ques-
tions are simple: More than 96% of the examples
contain the same key phrases in both questions and
answers. Though Pampari et al. (2018) claims that
39% of the questions may need knowledge to an-
swer, our error analysis suggests only a very small
portion of the errors (2%) made by a state-of-the-
art reader might be due to missing external domain
knowledge (§3.2).

Following our qualitative analysis of the emrQA
dataset, we conduct a comprehensive quantitative
analysis based on state-of-the-art readers and BERT
models (BERT-base (Devlin et al., 2019) as well as
its biomedical and clinical versions: BioBERT (Lee
et al., 2019) and ClinicalBERT (Alsentzer et al.,
2019)) to understand how different systems behave
on the emrQA dataset. Surprising results include:
1) Using a small sampled subset (5%-20%), we can
obtain roughly equal performance compared to the
model trained on the entire dataset, suggesting that
many examples in the dataset are redundant (§4.1).
2) The performance of the best base model is close
to the human expert’s performance3 (§4.2). 3) The
performance of BERT models is around 1%-5%
worse than the best performing base model (§4.3).

After completing our analysis of the dataset,
we explore two potential needs for systems doing
CliniRC: 1) The need to represent and use clini-
cal domain knowledge effectively (§5.1) and 2) the
need to generalize to unseen questions and contexts
(§5.2). To investigate the first one, we analyze sev-

2https://portal.dbmi.hms.harvard.edu/projects/n2c2-nlp/
3Which is obtained by comparing emrQA answers to an-

swers created by our medical experts on sampled QA pairs.

Medication Relation
# Question 222,957 904,592
# Context 261 423
# Question Template 80 139
Question: avg. tokens 8.00 7.91
Answers: avg. tokens 9.47 10.41
Context: avg. tokens 1062.66 889.23

Table 1: Statistics of two major subsets, Medication
and Relation, of the emrQA dataset.

eral types of clinical questions that require domain
knowledge and can frequently appear in the real
clinical setting. We also carry out an experiment
showing that adding knowledge explicitly yields
around 5% increase in F1 over the base model when
tested on samples that we created by altering the
original questions to involve semantic relations. To
study generalizability, we ask medical experts to
create new questions based on the unseen clinical
notes from MIMIC-III (Johnson et al., 2016), a
freely accessible critical care database. We find
that the performance of the best model trained on
emrQA drops by 40% under this new setting, show-
ing how critical it is for us to develop more robust
and generalizable models for the CliniRC task.

In summary, given our analysis of the emrQA
dataset and the task in general, we conclude that
future work still needs to create better datasets to
advance CliniRC. Such datasets should be not only
large-scale, but also less noisy, more diverse, and
allow researchers to directly evaluate a system’s
ability to encode domain knowledge and to gener-
alize to new questions and contexts.

2 Overview of the emrQA dataset

Similar to the open-domain reading comprehen-
sion task, the Clinical Reading Comprehension
(CliniRC) task is defined as follows:

Definition 2.1. Given a patient’s clinical note
(context) C = {c1, ..., cn} and a question Q =
{t1, ..., tm}, the CliniRC task aims to extract a con-
tinuous span A = {ci, ci+1, ..., ci+k}(1 ≤ i ≤
i+ k ≤ n) from the context as the answer, where
ci, tj are tokens.

The emrQA dataset (Pampari et al., 2018)
was semi-automatically generated from expert-
annotated question templates and existing i2b2 an-
notations. More specifically, clinical question tem-
plates were first created by human experts. Then,
manual annotations from the medication informa-
tion extraction, relation learning, and coreference
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Has the patient ever been on | medication | ?
Question Template

<Medication = "Flagyl", Line Index = 128>
Existing i2b2 Annotation

Has the patient ever been on Flagyl ?
Generated Question

 Flagyl. By discharge, the patient was afebrile (line 128)
Generated Answer

Figure 2: An example to illustrate how emrQA gener-
ates QA pairs.

resolution i2b2 challenges were re-framed into an-
swers for the question templates. After linking
question templates to i2b2 annotations, the gold
annotation entities were used to both replace place-
holders in the question templates and extract the
sentence around them as answers. An example of
this generation process can be seen in Figure 2.

The emrQA dataset contains 5 subsets: Medica-
tion, Relation, Heart Disease, Obesity and Smok-
ing, which were generated from 5 i2b2 challenge
datasets respectively. The answer format in each
dataset is different. For the Obesity and Smoking
datasets, answers are categorized into 7 classes
and the task is to predict the question’s class based
on the context. For the Medication, Relation, and
Heart Disease datasets, answers are usually short
snippets from the text accompanied by a longer
span around it which we refer to as an evidence.
The short snippet is a single entity or multiple en-
tities while the evidence contains the entire line
around those entities in the clinical note. For ques-
tions that cannot be answered via entities, only the
evidence is provided as an answer. Given that some
questions do not have short answers and that entire
evidence spans are usually important for supporting
clinical decision making (Demner-Fushman et al.,
2009), we treat the answer evidence 4 as our answer
just as is done in (Pampari et al., 2018).

In this work, we mainly focus on the Medica-
tion and Relation datasets because (1) they make
up 80% of the entire emrQA dataset and (2) their
format is consistent with the span extraction task,
which is more challenging and meaningful for clin-
ical decision making support. We filter the answers
whose lengths (number of tokens) are more than
20. The detailed statistics of the two datasets are
shown in Table 1.

4For simplicity, we use “answer” directly henceforth.

Metric Medication Relation
Quality Score 3.92 4.75

EM 26.0 92.0
F1 74.7 95.4

Table 2: An estimate of the quality of answers in the
Medication and Relation datasets based on the analysis
of our randomly sampled 50 questions for each dataset.
Quality scores are the average of two human annota-
tors’ (maximum: 5). EM and F1 scores are calculated
between human-labeled answers v.s. emrQA answers.

3 In-depth Qualitative Analysis

In this section, we carry out an in-depth analysis
of the emrQA dataset. We aim to examine (1) the
quality and (2) level of difficulty for the generated
QA pairs in the emrQA dataset.

3.1 How clean are the emrQA answers?

Since the emrQA dataset was created via a gener-
ation framework unlike human-labeled or crowd-
sourcing datasets, the quality of the datasets re-
mains largely unknown. In order to use this dataset
to explore the CliniRC task, it is essential to deter-
mine whether it is meaningful.

In order to do this, we randomly sample 50 QA
pairs from the Medication and the Relation datasets
respectively. Since some questions share the same
answer due to automatic generation, we make sure
all the samples have different answers.

Since the questions were generated from ex-
pert created templates, most of them are human-
readable and unambiguous. We therefore mainly
focus on evaluating answer quality. We ask two
human experts to score each answer from 1 to 5
depending on the relevance of the answer to the
question (1: irrelevant or incorrect; 2: missing
key parts; 3: contains key parts but is not human-
readable or contains many irrelevant parts; 4: con-
tains key parts and is only missing a few parts or
has a few irrelevant extra segments; 5: perfect an-
swer). We also ask human annotators to label the
gold answers and then calculate the Exact Match
(EM) and F1 score (F1) of the emrQA answers v.s.
human gold answers. The answer quality score,
EM and F1 in both datasets, are shown in Table 2.

The scores of the Medication dataset are low
since most of the answers are broken sentences
or contain unnecessary segments. For instance, in
the Figure 2 example, the correct answer should
be “Clindamycin was changed to Flagyl”, how-
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Error Type Question emrQA Answers Prediction Error Ratio
Medication Relation

Span mismatch
- include key info

Does she have a
history of known
drug allergies?

ALLERGIES:
He had no known
drug allergies

He had no known
drug allergies

78% 66%

Span mismatch
- miss key info

What is the current
dose of lasix?

MEDS: K-Dur 20 BID,
Nexium 20, lasix 160 BID

BID 4% 0%

Ambigious
questions

What is the patient’s
low history?

At the time of discharge,
her potassium had been
low despite repletion

11) Low grade,anemia 8% 4%

Incorrect
golds

What is the patient’s
incisions status?

Wash incisions with warm
water and gentle soap

Do not apply lotions,
creams, ointments or
powders to incision

2% 2%

False
negatives

Is there a mention of
fluid in the record?

There is some fluid, or
mucosal thickening in
the ethmoid and
sphenoid sinuses

The amount of fluid
layering at the apices
and the pleural spaces
appear slightly decreased

2% 18%

May need
external
knowledge

What treatment has
the patient had
for his CAD?

CAD s/p
CABG 2003 s/p

Pt’s vancomycin was
stopped after 14
days of treatment

2% 2%

Others
Is the patient’s right
hand ganglion cyst
well-controlled?

right hand ganglion
cyst removed

x 3 right hand
ganglion cyst

4% 8%

Table 3: Error analysis on 50 sampled questions from the Medication and Relation dev sets respectively. Example
question, ground truth and prediction from either Medication or Relation are given for each type of error.

ever, the emrQA answer misses important parts
“Clindamycin was changed to” and contains irrele-
vant parts “By discharge, the patient was afebrile”.
These issues are common in the Medication dataset
and make it difficult to train a good system. To un-
derstand why the generated answers contain such
noise, we explored the “i2b2 2009 Medication”
challenge dataset which was used to create these
QA pairs. We found that most documents in this
dataset contain many complete sentences split into
separate lines. Since the i2b2 annotation are token
based and the emrQA obtains full lines around the
token as evidence spans, these lines often end up
being broken sentences. We tried to relabel the
answers with existing sentence segmentation tools
and heuristic measures but found that it is very chal-
lenging to obtain concise and complete text spans
as answers.

Compared with the Medication dataset, the an-
swer quality of the Relation dataset is much better.
In most cases, the answers are complete and mean-
ingful sentences with no unnecessary parts.

3.2 How challenging are the emrQA pairs?

Another observation from the 50 samples is that
96% of the answers in the Medication dataset and
100% of the answers in the Relation dataset contain
the key phrase in the question. This is due to the
generation procedure illustrated in Figure 2. In this

example, the key phrase or entity (“Flagyl”) in
the question is also included in the answer. This
undoubtedly makes the answer easier to extract as
long as the model can recognize significant words
and do “word matching”.

To further explore how much clinical language
understanding is needed and what kind of errors
do the state-of-the-art reader make, we conduct er-
ror analysis using DocReader (Chen et al., 2017)
(also used in (Pampari et al., 2018)) on the emrQA
dataset. More specifically, we randomly sample
50 questions that are answered incorrectly by the
model (based on exact match metric) from the Med-
ication and Relation dev set respectively5. The re-
sults are shown in Table 3 (examples for each error
type are also given for better understanding).

Since emrQA answers are often incomplete in
the dataset, we deem span mismatch errors accept-
able as long as the predictions include the key part
of the ground truths. Surprisingly, span mismatch-
include key info errors, along with ambiguous ques-
tions, incorrect golds and false negatives (the pre-
diction is correct but it is not in the emrQA answers)
errors, which are caused by the dataset itself, ac-
count for 90% of total errors, suggesting that the
accuracy of these models is even higher than we
report.

5Note that these 100 samples are sampled from errors,
which are different from the previously sampled ones.
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Another interesting finding from the error analy-
sis is that to our surprise, only a very small amount
(2%) of errors may have been caused by a lack of
external domain knowledge while Pampari et al.
(2018) claim that 39% of the questions in the em-
rQA dataset need domain knowledge. This surpris-
ing result might be due to: (1) neural models being
able to encode relational or associative knowledge
from the text corpora as has also been reported in
recent studies (Petroni et al., 2019; Bouraoui et al.,
2020), and (2) questions and answers sharing key
phrases (as we mentioned earlier in §3.1) in many
samples, making it more likely that fewer ques-
tions need external knowledge to be answered than
previously reported.

4 Comprehensive Quantitative Analysis

In this section, we conduct comprehensive exper-
iments on the emrQA dataset with state-of-the-
art readers and recently dominating BERT mod-
els. Full experimental settings are described in
Appendix A.

4.1 How redundant are the emrQA pairs?

Though there are more than 1 million questions in
the emrQA dataset (as shown in Table 1), many
questions and their patterns are very similar since
they are generated from the same question tem-
plates. This observation leads to a natural question:
do we really need so many questions to train an
CliniRC system? If many questions are similar to
each other, it is very likely that using a sampled
subset can achieve roughly the same performance
that is based on the entire dataset.

To verify our hypothesis, we first split the two
datasets into train, dev, and test set with the propor-
tion of 7:1:2 w.r.t. the contexts (full statistics are
shown in Appendix Table A1). Then we randomly
sample {5%, 10%, 20%, 40%, 60%} and {1%, 3%,
5%, 10%, 15%}6 of the QA pairs in each document
(context) of the Medication and the Relation train-
ing sets respectively. We run DocReader (Chen
et al., 2017) on the sampled subsets and evaluate
them on the same dev and test set.

As shown in Figure 3, using 20% of the ques-
tions in the Medication and 5% of the questions
in the Relation dataset can achieve roughly the
same performance as using the entire training sets.

6The sampling percentage of the Relation dataset is smaller
than the Medication dataset since the former one has more QA
pairs (roughly 4 times).

5% 10% 20% 40% 60% 100%
Sample Ratio

20

30

40

50

60

70

80
Medication

EM
F1

1% 3% 5% 10% 15% 100%
Sample Ratio

82

84

86

88

90

92

94

96 Relation

EM
F1

Figure 3: Impact of training size on the performance of
DocReader (Chen et al., 2017) based on the Medication
and Relation dataset.

These verify our hypothesis, and illustrate learn-
ing a good and robust reader system based on the
emrQA dataset does not need so many question-
answer pairs. While deep models are often data-
hungry, it does not mean more data can always lead
to better performance. In addition to the training
size, diversity should also be considered as another
important criterion for data quality.

In the following experiments, we use the sam-
pled subsets (20% for Medication and 5% for Rela-
tion) considering the time and memory cost as well
as performance.

4.2 Little room for improvement
Since the answers in emrQA are often incomplete,
the performance of a model is more appropriately
reflected by its F1 score. As shown in Table 2, we
obtain F1 scores of 74% and 95% on two datasets
respectively when we test human-labeled answers
against the emrQA answers on a sampled dataset.
We can see from Table 4 that the best performing
reader, DocReader, achieves around 70% and 94%
F1 performance on the Medication and Relation
test set respectively, which are very close to the
human performance just described. Though de-
signing more complex and advanced models may
achieve better scores, such scores are obtained w.r.t.
noisy emrQA answers and may not translate mean-
ingfully to real cases.

4.3 BERT does not always win
BERT models have achieved very promising re-
sults recently in various NLP tasks including RC
(Devlin et al., 2019). We follow their experiment
setting of BERT for doing reading comprehension
on the SQuAD (Rajpurkar et al., 2016) dataset. To
our surprise, as shown in Table 4, BERT models
(BERT-base, its biomedical version BioBERT (Lee
et al., 2019), and its clinical version ClinicalBERT
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Model
Medication Relation

Dev Test Dev Test
EM F1 EM F1 EM F1 EM F1

BiDAF (Seo et al., 2017) 25.50 68.13 23.35 67.18 81.51 90.84 82.74 91.27
DocReader (Chen et al., 2017) 29.20 72.78 25.68 70.45 86.43 94.44 86.94 94.85
QANet (Yu et al., 2018) 27.67 69.40 24.74 67.34 82.41 90.61 82.68 91.56
BERT-base (Devlin et al., 2019) 26.62 68.75 24.00 67.49 80.17 90.01 83.29 92.38
BioBERT (Lee et al., 2019) 27.81 71.90 24.75 69.97 81.57 91.38 83.61 92.62
ClinicalBERT (Alsentzer et al., 2019) 27.14 71.84 24.06 69.05 83.12 91.96 85.33 93.06

Table 4: Overall performance of all models on the Medication and Relation dataset. All numbers are percentages.

(Alsentzer et al., 2019)) do not dominate as they do
in the open-domain RC tasks. The reasons may be
three-fold: 1) BERT benefits the most from large
training corpora. The training corpora of BERT-
base and BioBERT are Wikipedia + BookCorpus
(Zhu et al., 2015) and PubMed articles respectively,
both of which may have different vocabularies and
use different language expressions from clinical
texts. Though ClinicalBERT was pretrained on
MIMIC-III (Johnson et al., 2016) clinical texts, the
training size of the corpus (∼50M words) is far less
than that used in BERT (∼3300M words), which
may make the model less powerful as it is on the
open-domain tasks. 2) Longer Contexts. As can
be seen from Table 1, the number of tokens in
the contexts is commonly larger than open-domain
RC datasets like SQuAD (∼1000 v.s.∼116 avg).
We suspect that long contexts might make it more
challenging to model sequential information. For
sequences that are longer than the max length of
the BERT model, they are truncated into a set of
short sequences, which may hinder the model from
capturing long dependencies (Dai et al., 2019) and
global information in the entire document. 3) Easy
Questions. Another possible reason might be the
question patterns are too easy and a simpler reader
with far less parameters can learn the patterns and
obtain satisfying performance.

Additionally, to further evaluate the models in
the fine-grained level, inspired by (Gururangan
et al., 2018), we partition the Medication and Re-
lation test sets into Easy and Hard subsets using a
base model. The details of Easy/Hard splits can be
found in Appendix C. As can be seen from Table
A4, most of the questions in the two datasets are
easy, which indicates the emrQA dataset might not
be challenging for the current QA models. More
difficult datasets are needed to advance the Clinical
Reading Comprehension task.

5 Desiderata in Real-World CliniRC

Following our analysis of the emrQA dataset, we
further study two aspects of clinical reading com-
prehension systems that we believe are crucial for
their real-world applicability: the need to encode
clinical domain knowledge and to generalize to
unseen questions and documents.

5.1 External domain knowledge is needed

So far, we have shown that domain knowledge
may not be very useful for models answering ques-
tions in the emrQA dataset; however, we argue that
systems in real-world CliniRC need to be able to
encode and use clinical domain knowledge effec-
tively.

Clinical text often contains high variability in
many domain-specific words due to abbreviations
and synonyms. The presence of different aliases
in the question and context can make it difficult
for a model to represent semantics accurately and
choose the correct span. Besides, medical domain-
specific relations (e.g., treats, caused by) and hier-
archical relations (e.g., isa) between medical con-
cepts would be likely to appear. The process fol-
lowed to generate the current emrQA dataset leads
to these problems being largely under-represented,
even though they can be very common in real cases.
We use the following 3 examples as representatives
to illustrate the real cases we may encounter.
Synonym. For example, for the question in Fig-
ure 2, “Has this patient ever been on Flagyl?”,
it is easy for the model to answer since “Flagyl”
appears in the context. However, if we change

“Flagyl” to its synonyms “Metronidazole” (which
may not appear in training) in the question, it is
hard for the reader to extract the correct answer, as
it is not possible for model to capture the semantic
meaning of “Metronidazole” as “Flagyl”.
Clinical Relations. Another example is the ques-
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tion shown in Figure 1, “Why has the patient been
prescribed hctz?”. Currently, machines can easily
find the answer since keyword “hctz” is mentioned
in the answer. However, given a situation where
the drug “hctz” does not appear in the local context
of “HTN”, our model may have a better chance to
extract the correct answers if it stores the relation

“(hctz, treats, HTN)”.
Hierarchical Relation. For the question “Is there
a history of mental illness?”, it is more likely that
the medical report describes a specific type of psy-
chological condition rather than mention the gen-
eral phrase “mental illness” since clinical support
require specifics. To obtain the correct answer
in this case “Depression with previous suicidal
ideation.”, encoding the relation “(depression, isa,
mental illness)” would probably help the model
make a correct prediction.

These three cases help illustrate how complex
medical relations affect the real CliniRC task. With-
out leveraging external domain knowledge, it is dif-
ficult for models to capture the semantic relations
necessary to resolve such cases.

In order to verify our claim quantitatively, we
select synonym as a representative relation type
and manipulate each question by replacing its enti-
ties with plausible synonyms or abbreviations. We
then introduce external domain knowledge into cur-
rent models and compare their performance against
base models on these augmented questions.

More specifically, we first detect entities in the
questions and link them to a medical knowledge
base (KB): UMLS (Bodenreider, 2004) using a
biomedical and clinical text NLP pipeline tool,
ScispaCy (Neumann et al., 2019). Synonyms of
detected entities are then retrieved from UMLS and
used to replace the original mention. We filter the
questions that do not contain entities or that con-
tain entities with no synonyms. We focus on the
Relation dataset and only modify the questions in
the dev and test set; the questions in the training
set are not modified. Finally, we get 69,912 and
125,338 questions in the dev and test set.

We then introduce a simple Knowledge Incor-
poration Module (KIM) to evaluate the usefulness
of external domain knowledge. Formally, given
a question q : {wq

1, w
q
2, ..., w

q
l } and its context

c : {wc
1, w

c
2, ..., w

c
m}, where wq

i , w
c
j are words

(tokens), all the words can be mapped to d1 di-
mensional vectors via a word embedding matrix
Ew ∈ Rd1×|V|, where V denotes the word vocab-

EM F1

55

60

65

Dev

w/o KIM
w/ KIM

EM F1

55

60

65

Test

w/o KIM
w/ KIM

Figure 4: Performances of DocReader and DocReader
+ Knowledge Incorporation Module (KIM) on our cre-
ated questions modified from the Relation dataset.

ulary. So we have q : wq
1 , ...,w

q
l ∈ Rd1 and

c : wc
1, ...,w

c
m ∈ Rd1 .

We then detect entities {eq1, e
q
2, ..., e

q
n} in the

question and entities {ec1, ec2, ..., e
q
o} in the context

and map them to a medical knowledge base (KB),
UMLS (Bodenreider, 2004) using scispacy (Neu-
mann et al., 2019). Note that l is not equal to n and
m is not equal to o, since not every token can be
mapped to a entity in KB. For entities that contain
multiple words, we align them to the first token,
same as the alignment used in (Zhang et al., 2019).
We then map detected entities to d2 dimensional
vectors {eq1, e

q
2, ..., e

q
n} and {ec1, ec2, ..., eco} via a

entity embedding matrix Ee ∈ Rd2×|U| , which is
pretrained on the entire UMLS KB using the knowl-
edge embedding method TransE (Bordes et al.,
2013). U denotes the entity vocabulary.

We merge the word embeddings with entity em-
beddings to feed them into a Multi-layer Perceptron
(MLP):

hq
i = σ(Wcw

q
i +Wee

q
i + b)

hc
j = σ(Wcw

c
j +Wee

c
j + b)

(1)

where σ is activation function, Wc,We, b are train-
able parameters and hqi , h

c
j denote the integrated

embeddings that contain information from both the
word cj and the entity ej in the question and context
respectively. For the word that is not mapped to an
entity, ej will be set to 0. The merged embeddings
are used as the input to the base reader.

As shown in Figure 4, by adding a basic Knowl-
edge Incorporation Module to the base model, we
obtain around 5% increase of F1 score on the ma-
nipulated questions in the test set. This suggests
that for questions that involve relations between
medical concepts, external domain knowledge may
be quite important.
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Model
Existing

Questions
Paraphrased
Questions

New
Questions

Overall
emrQA
Relation

EM F1 EM F1 EM F1 EM F1 EM F1
DocReader 58.33 71.62 38.09 57.28 29.41 35.35 40.00 53.27 86.94 94.85

ClinicalBERT 58.33 73.12 38.09 62.04 23.53 48.79 38.00 60.19 85.33 93.06

Table 5: Results of models when tested on new questions and unseen clinical notes (not in emrQA, but from
MIMIC-III dataset). Performance drops around 40% compared with previously reported on the Relation test set,
highlighting generalizability as an essential future direction for CliniRC.

5.2 Generalizing to unseen questions and
documents

The aim of CliniRC is to build robust QA systems
for doctors to retrieve information buried in clinical
texts. When deploying a CliniRC system to a new
environment (e.g., a new set of clinical records, a
new hospital, etc.), it is infeasible to create new
QA pairs for training every time. Thus, an ideal
CliniRC system is able to generalize to unseen
documents and questions after being fully trained.

To test the generalizability of models trained on
emrQA (we focus on the Relation dataset here), our
medical experts created 50 new questions that were
not present in the emrQA dataset and extracted an-
swers from unseen patient notes in the MIMIC-III
(Johnson et al., 2016) dataset. This dataset con-
sists of three types of questions: 12 questions were
made from emrQA question templates but contain
entities which do not appear in the training set
(e.g., “How was the diagnosis of acute cholecysti-
tis made?” was created from the template “How
was the diagnosis of |problem| made?”). The other
38 questions have different forms from existing
question templates: 21 paraphrase existing ques-
tions from emrQA (e.g., “Was an edema found in
the physical exam?”) was paraphrased from “Does
he have any evidence of |problem| in |test|?”) and
17 are completely semantically different from the
ones in the emrQA dataset (e.g., “What chemother-
apy drugs are being administered to the patient?”).

As could be expected, we see in Table 5 that the
more the new questions deviate from the original
emrQA, the more the models struggle to answer
them. We observe a performance drop of roughly
20% compared to the Relation test set on questions
made from emrQA templates using MIMIC III clin-
ical notes which were not in the original dataset.
For question that are more significantly different,
we notice an approximate 40% and 60% loss in
F1 score when predicting paraphrased questions
and entirely new questions respectively. This steep
drop in performance for these new settings, espe-

cially for paraphrased and new questions, shows
how much work there is to be done on this front and
highlights generalizability as an important future
direction in CliniRC. We also notice that Clinical-
BERT works slightly better than the base model
DocReader. The reason might be ClinicalBERT
was pretrained on the MIMIC-III dataset, which
might help the model have a better understanding
of the context.

Summary. Based on these two aspects and our
previous thorough analysis of the emrQA dataset,
it is clear that better datasets are needed to advance
CliniRC. Such datasets should be not only large-
scale, but also less noisy, more diverse, and more-
over allow researchers to systematically evaluate a
model’s ability to encode domain knowledge and
to generalize to new questions and contexts.

6 Related Work

We present a brief overview of open-domain,
biomedical and clinical question answering tasks,
which are most related to our work:

Question Answering (QA) aims to automati-
cally answer questions asked by humans based on
external sources, such as Web (Sun et al., 2016),
knowledge base (Yih et al., 2015; Sun et al., 2015)
and free text (Chen et al., 2016). As an impor-
tant type of QA, reading comprehension intends
to answer a question after reading the passage
(Hirschman et al., 1999). Recently, the release
of large-scale RC datasets, such as CNN & Daily
Mail (Hermann et al., 2015), Stanford Question-
Answering Dataset (SQuAD) (Rajpurkar et al.,
2016, 2018) makes it possible to solve RC tasks by
building deep neural models (Hermann et al., 2015;
Wang and Jiang, 2017; Seo et al., 2017; Chen et al.,
2017).

More recently, contextualized word represen-
tations and pretrained language models, such as
ELMo (Peters et al., 2018), GPT (Radford et al.,
2018), BERT (Devlin et al., 2019), have been
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demonstrated to be very useful in various NLP
tasks including RC. By seeing diverse contexts in
large corpora, these pretrained language models
can capture the rich semantic meaning and pro-
duce more accurate and precise representations for
words given different contexts. Even a simple clas-
sifier or score function built upon these pretrained
contextualized word representations perform well
in extracting answer spans (Devlin et al., 2019).
Biomedical and Clinical QA. Due to the lack of
large-scale annotated biomedical or clinical data,
QA and RC systems in these domains are often
rule-based and heuristic feature-based (Lee et al.,
2006; Niu et al., 2006; Athenikos and Han, 2010).

In recent years, BioASQ challenges (Tsatsaronis
et al., 2012) proposed the Biomedical Semantic
QA task, where the participants need to respond to
each test question with relevant articles, snippets
and exact answers. Šuster and Daelemans (2018)
use summary points of clinical case reports to build
a large-scale cloze-style dataset (CliCR), which is
similar to the style of CNN & Daily Mail dataset.
Jin et al. (2019b) presents PubMedQA, which ex-
tracts question-style titles and their corresponding
abstracts as the questions and contexts respectively.
A few QA pairs are annotated by human experts
and most of them are annotated based a simple
heuristic rule with “yes/no/maybe”.

Due to the great power of contextualized word
representations, pretrained language models also
have been introduced to biomedical and clinical do-
main, e.g., BioELMo (Jin et al., 2019a), BioBERT
(Lee et al., 2019), and ClinicalBERT (Alsentzer
et al., 2019). They adopt similar architectures of
the original models but pretrained on the medical
and clinical corpus, such as PubMed articles and
MIMIC-III (Johnson et al., 2016) clinical notes.

7 Conclusion

We study the Clinical Reading Comprehension
(CliniRC) task with the recently created emrQA
dataset. Our qualitative and quantitative analysis
as well as exploration of the two desired aspects
of CliniRC systems show that future clinical QA
datasets should not only be large-scale but also
less noisy and more diverse. Moreover, questions
that involve complex relations and are across dif-
ferent domains should be included, and then more
advanced external knowledge incorporation meth-
ods as well as domain adaptation methods can be
carefully designed and systematically evaluated.
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Medication Relation
# Train (Q / C) 154,684 /182 621,428 / 296
# Dev (Q / C) 23,081 / 26 101,700 / 42
# Test (Q / C) 45,192 / 53 181,464 / 85
Total 222,957 / 261 904,592 / 423

Table A1: Statistics of train, dev, test set of the Medica-
tion and Relation datasets.

A Experimental Set-up

We split the two datasets Medication and Relation
based on the documents (clinical texts) into train,
dev, test with the ratio 7:1:2. The statistics are
shown in Table A1.

We adopt Exact Match (EM) and F1 score (F1)
as our evaluation metrics, same as the open-domain
RC (Rajpurkar et al., 2016). We use SQuAD v1.1
official evaluation script 1 to evaluate all the mod-
els. All the models used in the paper, BiDAF 2,
DocReader 3, QANet 4, BERT 5, BioBERT 6, Clin-
icalBERT 7 are run based on the implementations
listed here and strictly followed the instructions.

For reproducibility, we list all the key hyper-
paraters we use for each method in the Table A2.

We implement our Knowledge Incorporation
Module based on DocReader implementations. En-
tity embeddings are pretrained using TransE (Bor-
des et al., 2013) with the dimension of 100. The
hyperparameters are kept same as the DocReader.
All the models are run on NVIDIA GeForce GTX
1080 GPUs. We save the best model (with the
highest EM) on the dev set and use it for test set.

B Performance on Shorter Contexts

Using the entire clinical record as the context might
be too long for models to capture sequential infor-
mation. We also try to split the entire record into
different sections (e.g., “medical history”, “family
history”) based on some heuristic measures. Specif-
ically, in order to split the clinical notes into sec-
tions, we notice that most sections begin with easily
identifiable headers. To detect these headers we
use a combination of heuristics such as whether
the line contains colons, all uppercase formatting

1https://rajpurkar.github.io/SQuAD-explorer/
2https://github.com/allenai/bi-att-flow
3https://github.com/facebookresearch/DrQA
4https://github.com/BangLiu/QANet-PyTorch
5https://github.com/google-research/bert
6https://github.com/dmis-lab/biobert
7https://github.com/EmilyAlsentzer/clinicalBERT

Method Hyper-parameters Setting

DocReader

epoch: 30; batch-size: 16;
test-batch-size:16; droput-rate:0.4;
doc-layers: 3; question-layers: 3;
grad-clipping: 10;
tune-partial: 1000; max-len: 30;
the others are set as default

BiDAF

init lr: 0.001; batch-size:6;
num epochs: 2; cluster: True;
len-opt: True; word count th: 10;
char count th: 50; sent size th: 4000;
num sents th: 500; ques size th: 30;
word size th: 30; para size th: 4000;
the others are set as default;

QANet

batch-size: 4; lr: 0.001;
grad-clip: 5; use-ema: True;
epoch: 30; para limit: 4000;
ques limit: 30; ans limit: 30;
char limit: 40; num-head:1;
the others are set as defalut;

BERT-base
BioBERT
ClinicalBERT

train batch size: 6;
learning rate: 3e-5;
num train epochs: 3.0;
max seq length: 384;
doc stride: 128;
the others are set as default;

Table A2: Hyperparameters settings for all the methods
used in the experiments.

Dataset Model
Dev Test

EM F1 EM F1

medication
DocReader 32.19 76.21 33.45 77.08

ClinicalBERT 30.16 74.81 32.18 75.79

relation
DocReader 87.21 94.32 87.54 94.97

ClinicalBERT 85.46 93.92 85.67 93.14

Table A3: Performance of the two models on the
shorter context setting.

or phrases found in a list of clinical headers taken
from SecTag (Denny et al., 2009). We then select
the section that contains the answer as the con-
text (∼100 words avg). We select DocReader and
ClinicalBERT as representative methods and re-run
them on the modified shorter context. The results
are shown in Table A3. The performance of the
two models is improved compared with the perfor-
mance of models built on the whole record (long
context). However, ClinicalBERT still does not out-
perform DocReader in this setting, indicating that
longer context may not explain why BERT models
do not win on this dataset or that shortening context
in a such manner might break long dependencies.

This experiment setting may also inspire future
research on “Open Clinical Reading Comprehen-
sion”. Given that patients often have multiple clini-
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Distribution of
Easy/Hard Questions

Easy Hard Total
Medication 33,037 (73.1%) 12,155 (26.9%) 45,192 (100%)

Relation 165,271 (91.1%) 16,193 (8.9%) 181,464 (100%)

Results

Model Easy Hard Total
EM F1 EM F1 EM F1

Medication DocReader (Chen et al., 2017) 30.25 73.78 13.26 61.46 25.68 70.45
ClinicalBERT (Alsentzer et al., 2019) 28.25 72.02 12.64 60.98 24.06 69.05

Relation DocReader (Chen et al., 2017) 87.66 95.39 79.85 89.62 86.94 94.85
ClinicalBERT (Alsentzer et al., 2019) 86.06 93.71 78.09 86.57 85.33 93.06

Table A4: Performance of DocReader and ClinicalBERT on the easy/hard questions split.

cal records, it may not be feasible to jointly use all
of them as context for one question. Given multi-
ple records for one patient (instead of just one) and
a question, the model would first need to retrieve
the most relevant paragraphs and do reading com-
prehension on each of them or find clever ways to
merge them. Such a setting would be interesting
for future CliniRC datasets to explore.

C Easy/Hard Questions Split

We partition the questions into Easy and Hard.
Specifically, we first train a BiLSTM reader and
do the prediction on the test set. We obtain the
performance of each question template by aver-
aging the performance of all the questions made
by this template (such template and question map-
pings are included in the emrQA dataset). Ques-
tion templates that obtain higher performance than
the overall performance are labeled as ”Easy” and
”Hard” otherwise. Then we map the difficulty level
of question templates back to each question. The
reason why we focus on splitting on the question
template level is that we can avoid some random
noise (e.g., random errors produced by the model
on some questions). Also, we release the difficulty
level of each question template so that users can
easily know which questions are easy or hard and
do not need to run a base model to obtain such map-
pings again. Distributions of easy/hard questions
and results of the two selected models are shown
in Table A4.


