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Abstract

This paper studies strategies to model word
formation in NMT using rich linguistic infor-
mation, namely a word segmentation approach
that goes beyond splitting into substrings by
considering fusional morphology. Our linguis-
tically sound segmentation is combined with
a method for target-side inflection to accom-
modate modeling word formation. The best
system variants employ source-side morpho-
logical analysis and model complex target-side
words, improving over a standard system.

1 Introduction

A major problem in word-level approaches to MT is
a lack of morphological generalization. Both inflec-
tional variants of the same lemma and derivations
of a shared word stem are treated as unrelated. For
morphologically complex languages with a large
vocabulary, this is problematic, especially in low-
resource or domain-adaption scenarios.

A simple and widely used approach to reduce
a large vocabulary in NMT is Byte Pair Encod-
ing (BPE) (Sennrich et al., 2016), which itera-
tively merges the top-frequent bigrams from ini-
tially character-level split words until a set vocab-
ulary size is reached. This strategy is effective,
but linguistically uninformed and often leads to
sub-optimal segmentation. Also, by only seg-
menting words into substrings, BPE cannot handle
non-concatenative operations, for example:

• umlautung: BaumSg→BäumePl (tree/trees),

• transitional elements that frequently occur in
German compounds: Grenz|kontroll|politik
→ Grenze, Kontrolle (border control policy)

• derivation: abundant↔ abundance

In this paper, we apply word segmentation on both
the source and target sides that goes beyond merely
splitting into exact substrings. This overcomes the

issues caused by fusional morphology by accomo-
dating modeling word formation across languages.

Productive word formation can lead to a high
number of infrequent word forms even though
the morphemes in these words are frequent. A
linguistically motivated segmentation method
to handle processes such as compounding and
derivation allows for better coverage and gen-
eralization, both on the word level and on the
morpheme level, and also enables the generation
of new words. Sound morphological processing
on the source and target side aims at learning
productive word formation processes during
translation, such as the English-German translation
pair ungovernability↔Unregierbarkeit:

un|PREF govern|V able|SUFF-ADJ ity|SUFF-NOUN ↔
un|PREF regieren|V bar|SUFF-ADJ keit|SUFF-NOUN

Morphological information should not only handle
isomorphic translation equivalents as above, but
also help to uncover relations between source and
target side for structurally different translations.

2 Related work

There is a growing interest in the integration of lin-
guistic information in NMT. For example, Eriguchi
et al. (2016) and Bastings et al. (2017) demon-
strate the positive impact of source-side syntactic
information; Nădejde et al. (2017) report improved
translation quality when using syntactic informa-
tion in form of CCG tags on source and target side.

To address data sparsity, compound modeling
has already been proved useful for phrase-based
MT, e.g., Koehn and Knight (2003) who model
source-side compounds, and Cap et al. (2014) who
generate compounds on the target side. For NMT,
Huck et al. (2017) apply compound and suffix seg-
mentation using a stemmer. Ataman et al. (2017)
reduce complex source-side vocabulary by means
of an unsupervised morphology learning algorithm.
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Morphological tag Stem with morph. analysis inflected form gloss
[NN-Neut.Acc.Pl.NA] Umwelt<NN>Kriterium Umweltkriterien ecological criteria
[APPR-Acc] für für for
[ART-Fem.Acc.Sg.St] die<Def> die the
[NN-Fem.Acc.Sg.NA] ermitteln<V>ung<NN><SUFF> Ermittlung detection
[ADJ-NoGend.Gen.Pl.St] Schutz<NN>bedürftig<Pos> schutzbedürftiger in need of protection
[NN-Fem.Gen.Pl.NA] Meer<NN>Region Meeresregionen marine regions
[APPR-Dat] in in in
[ART-Fem.Dat.Sg.St] die<Def> der the
[NN-Fem.Dat.Sg.NA] tief<Pos><ADJ>See Tiefsee open (lit: deep) sea

Table 1: Representation of the training data for basic inflection prediction. Corresponding English sentence: (the
ninth meeting should adopt) ecological criteria to determine marine regions in the open sea that need protection.

Ataman and Federico (2018) forego a traditional
morphological analysis of the source language, and
instead compose word representations from char-
acter trigrams. However, these three papers only
apply segmentation on the string level and cannot
properly handle fusional morphology.

Addressing morphology in NMT, Banerjee and
Bhattacharyya (2018) combine BPE with a mor-
phological analyzer to “guide” the segmentation of
surface forms into substrings. Their approach does
not result in morphemes, for example googling
→ googl|ing, which does not match with google,
while in our work we match such morphemes. Tam-
chyna et al. (2017) present an NMT system to gen-
erate inflected forms on the target side, with a focus
on overcoming data-sparsity caused by inflection.
Their work contains a simple experiment on com-
pound splitting with promising initial results that
encouraged us to systematically explore word for-
mation, including compounding, in NMT.

To model word formation, we investigate (i)
source-side tags for shallow syntactic information;
(ii) target-side segmentation relying on a rich mor-
phological analysis; and (iii) source-side segmen-
tation strategies also relying on a tool for morpho-
logical analysis. We show that combining these
strategies improves translation quality.

Our contribution is a segmentation strategy that
includes modeling non-concatenative processes, by
implementing an English morphological analyzer
suitable for this task, and by exploiting an existing
tool for German, in order to obtain a consistent
morphological sub-word representation.

3 Modeling target-side morphology

Our strategy to model word formation operates on
lemma level as this allows for a better generaliza-
tion than using surface forms. To model target-side
inflection, we follow the simple lemma-tag gener-
ation approach by Tamchyna et al. (2017), but we

improved the lemma representation to better sup-
port modeling word formation, and also implement
a novel source-side morphological representation.
Lemma-tag generation (existing strategy): In
a pre-processing step, all inflected forms of the
target-side training data are replaced by pairs of the
lemma and its rich morphological tag. In a post-
processing step, the system’s output is re-inflected
by generating inflected forms using the morpho-
logical tool SMOR (Schmid et al., 2004). Table 1
depicts the process of inflecting tag and lemma
pairs (columns 1, 2) into surface forms (column 3).
New selection of lemma analyses: SMOR is
a finite-state based tool covering inflection and
derivation; it outputs all possible analysis paths, i.e.
analyses at different levels of granularity. While
not much attention is paid to the lemma selection in
Tamchyna et al. (2017), a carefully selected lemma-
internal representation is crucial for modeling word
formation, as it provides the basis for segmentation
across morphemes. To obtain optimal analyses,
we follow Koehn and Knight (2003), and use the
frequencies of observed non-complex words (we
ignore bound morphemes). We select the analy-
sis with the highest geometric mean of the com-
ponents’ frequencies, which gives a preference to
words occurring more frequently in the data. The
modified selection strategy favors more complex
analyses; table 2 shows some examples.

Old atomwaffenfrei<+ADJ>
New Atom<NN>Waffe<NN>frei<+ADJ>

nuclear weapon free
Old Forschung<NN>Ergebnis<+NN>
New forschen<V>ung<NN><SUFF>Ergebnis<+NN>

research result
Old gefährlich<+ADJ>
New Gefahr<NN>lich<SUFF><+ADJ>

danger -ous

Table 2: Lemma analyses with better internal analysis.
Note that the derivational morpheme -ung makes the
verb to research into the noun research.
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word analysis
conspiracy conspire|V acy|SUFF/N/e
conspiratorial conspire|V ator|SUFF/N/e ial|SUFF/ADJ/-
conspirator conspire|V ator|SUFF/N/e
conspire conspire|V
ceremonial ceremony|N ial|SUFF/ADJ/y
ceremony ceremony|N
acquired acquire|V ed|SUFF/ADJ/e
acquirer acquire|V er|SUFF/N/e
acquire acquire|V
acquisition acquire|V ition|SUFF/N/s→re
acquisitive acquire|V itive|SUFF/ADJ/s→re
acquisitiveness acquire|V itive|SUFF/ADJ/s→re ness|SUFF/N/-

Table 3: English morphological analysis: the rightmost
string on SUFF segments denotes a string operation,
such as the removal of e in conspire + acy.

4 Simple English morphological analysis

We implemented a simple morphological analyzer
that is generally based on Koehn and Knight (2003),
in that a word is segmented into strings that are al-
ready observed in the training data. Our method
additionally relies on tag information (similar to
the compound splitter of Weller-Di Marco (2017)),
and on a hand-crafted set of prefixes and suffixes
in combination with rules such as i→ y to han-
dle non-concatenative transitions as in beautiful→
beauty|N ful|SUFF-ADJ.

The segmentation is based on statistics derived
from tagged and lemmatized data. This has several
advantages: (i) the lemma and tag information re-
stricts the possible operations (e.g., -ion as suffix
is only applicable to nouns); (ii) there is no need
to handle inflection; (iii) the tag provides a flat
morpho-syntactic structure of the segmented word.

The analysis first identifies a potential prefix by
finding a combination with a prefix in the train-
ing data, for example deactivation|N→ de|PREF
activation|N. The tag restriction at this step is im-
portant to maintain the word class of the original
word, and to avoid analyses such as decent|ADJ
→ de|PREF cent|N. The remaining part undergoes
splitting into either word+suffix (e.g., activation|N
→ activate|V ion|SUFF-N) or a combination of two
words (e.g., evildoer|N→ evil|N doer|N) until no
further segmentation can be found. In case of sev-
eral possibilities, the analysis whose components
lead to the highest geometric mean is selected.

Table 3 illustrates how the morphological seg-
mentation makes the word parts accessible such
that they match with other occurrences of the word.

The splitter in its present form is rather aggres-
sive and tends to oversplit. While it is often as-
sumed that this is not harmful in MT (e.g., Koehn

EN Morph-Markup-Split
enthusiasm <N> tic<SUFF ADJ> ally<SUFF ADV>
explode <V> ion<SUFF N>
inevitable <ADJ> ly<SUFF ADV>

EN Morph-noMarkup-Split
enthusiasm tic<SUFF ADJ> ally<SUFF ADV>
explode ion<SUFF N>
inevitable ly<SUFF ADV>

EN Morph-noMarkup-noSplit
enthusiasmtic<SUFF ADJ>ally<SUFF ADV>
explodeion<SUFF N>
inevitablely<SUFF ADV>

Table 4: Representation variants for the words enthu-
siastically, explosion and inevitably. This annotation
replaces the lemma in the lemma-tag representation.

and Knight (2003)), we have not investigated the
impact of oversplitting vs. undersplitting.

5 Data representation in NMT

The morphological analyses provide a straightfor-
ward basis for the segmentation experiments.
German: The lemma-tag approach (oldLemTag) is
contrasted to the system variant with new lemma se-
lection (newLemTag). For the segmentation experi-
ments (newLemTagSplit), we apply compound split-
ting, such as Gold<NN>Preis<NN> → Gold<NN>

Preis<NN> (gold price). Also, nominalization, e.g.,
regieren<V> ung<NN><SUFF> (govern ment), is
segmented, but different adjective suffixes (such
as -lich) are kept attached. Generally, we found
that variation of the splitting granularity of adjec-
tive suffixes does not have a large impact.
English: We first look at a representation where
lemma-tag pairs replace surface forms (LemTag).
To evaluate the effect of morphological informa-
tion, we compare the three settings in table 4 that
also rely on the lemma-tag representation: the tags
convey inflectional information, but the lemma is
replaced by its morphological analysis.

In Morph-Markup-Split, words are split follow-
ing the analysis, with tags indicating word-internal
structure. Morph-noMarkup-Split is the same, but
without word-internal tags. The annotation of pre-
fixes/suffixes (-ion<SUFF-N>) is always kept.

In addition to explicit splitting, we consider
a variant where lemmas are replaced by the un-
split morphological analysis (Morph-noMarkup-
noSplit), and all segmentation is done by BPE,
which can now access actual words (enthusiasm
instead of *enthusias) that already occur in the
training data. This representation is conceptionally
similar to the German lemma-tag representation.
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System Source (EN) Target (DE) Small Medium Large2M Large4M
1 plain plain 21.77 26.60 28.66 33.71
2 plain oldLemTag 22.25 26.96 28.87 33.97
3 plain newLemTag 22.47 27.05 28.61 33.90
4 LemTag newLemTag 23.32 27.36 28.88 34.28
5 LemTag newLemTagSplit 22.55 27.22 29.07 34.21
6 LemTag MorphMarkup-Split newLemTag 21.85 26.90 29.33 33.96
7 LemTag Morph-noMarkup-Split newLemTag 22.86 27.05 29.20 34.10
8 LemTag Morph-noMarkup-noSplit newLemTag 22.82 27.18 29.18 34.12
9 LemTag MorphMarkup-Split newLemTagSplit 22.25 27.12 29.39 34.38

10 LemTag Morph-noMarkup-Split newLemTagSplit 22.53 26.90 29.10 34.12
11 LemTag Morph-noMarkup-noSplit newLemTagSplit 23.13 27.55 29.42 34.19

Table 5: Experimental results in case-sensitive BLEU for 4 training settings.

6 Experiments

We compare four training settings: small (248,730
sentences: news-commentary), large2M (1,956,444
sentences: Europarl + news-commentary), large4M
(4,116,215 sentences: Europarl + news-comment-
ary + CommonCrawl) and medium (1M sentences)
where the medium corpus consists of the news-
commentary corpus and the first ∼750k sentences
of Europarl. We use WMT’15 as dev-set (2169 sen-
tences) and WMT’16 as test-set (2999 sentences).

The lemma-tag approach doubles the sentence
length by inserting tags. To avoid overly long sen-
tences, the training data was first filtered to sen-
tences of length 50, and after that, sentences more
than 60 words long after BPE splitting were re-
moved (e.g., sentences containing mostly foreign
language words split nearly at character level).

Data pre-processing The baseline was trained
on plain surface forms (tokenized and true-cased).

For the German lemma-tag system, we used Bit-
Par (Schmid, 2004) to obtain morphological fea-
tures in the sentence context, and SMOR (Schmid
et al., 2004) for morphological analysis. For En-
glish, we used TreeTagger (Schmid, 1994). The
English morphological analyzer for the small,
medium and large2M systems was trained on the
large2M data, the analyzer for the large4M system
was trained on the full ∼4M lines.

All systems (baseline and lemma-tag variants)
underwent BPE segmentation (“joint” BPE of
source/target side) with 30k merging operations.

encoder transformer initial-learning-rate 0.0002
decoder transformer label-smoothing 0.1
batch-type word transf.-dropout-act 0.1
batch-size 4096 transf.-dropout-attention 0.1
num-layers 6 transf.-dropout-prepost 0.1
max-seq-len max sent len checkpoint-frequency 3000

Table 6: Sockeye parameters for the Transformer model.

Training For the experiments, we used a Trans-
former NMT model (Sockeye toolkit: Hieber et al.
(2017)). Table 6 shows the training parameters.

6.1 System variants

Table 5 shows different representation variants on
the source and target side, as outlined in section 5.
Generally, the lemma-tag systems are better than a
standard NMT system; there is not much difference
between the old (Tamchyna et al., 2017) and the
new version (lines 2 and 3). Source-side lemma-tag
pairs improve the small and medium settings when
paired with non-split German data; split German
data works better for the Large2M system. Both
variants perform similarly for the Large4M system
(lines 4 and 5). English word-internal markup im-
proves the Large2M system, both with split and
unsplit German data (lines 6 and 9), and leads to
the best result when combined with split German
data in the Large4M setting (line 9). The variants
in lines 7 and 8 (split/unsplit morphological anal-
ysis) produce similar results when translating to
non-split German data. Interestingly, with explicit
splitting on the German side (lines 10 and 11), the
non-split English data performs considerably better
for the small/medium/large2M settings, leading to
the best results overall for these data settings.

There seems to be a tendency that explicit split-
ting on both sides harms the smaller settings, possi-
bly because translating at morpheme level requires
more training data. Similarly, the English word-
internal markup might introduce a complexity that
only the larger systems can handle. On the other
hand, using the non-split morphological analysis
is less intrusive, but potentially useful at the BPE
segmentation step by providing better access to
sub-words. However, the best variants use explicit
segmentation on the target side – this makes the
question “to split or not to split” difficult to answer.
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System Small Medium Large2M Large4M
1 17.17 22.12 24.32 30.85
2 18.86 22.85 25.13 31.67
3 19.16 23.13 24.46 31.52
4 19.30 22.75 24.42 31.70
5 18.45 23.05 24.68 32.56
6 18.19 22.92 24.93 32.23
7 19.43 23.06 25.22 31.74
8 18.79 22.55 24.68 32.15
9 18.79 22.67 24.68 31.95

10 18.06 22.44 24.98 32.25
11 18.75 23.09 24.46 31.99

Table 7: BLEU scores for a medical-domain test set.

Maybe always splitting at a certain level is not the
right approach, but rather a more context-sensitive
segmentation strategy would be desirable.

6.2 Application to out-of-domain data

In low-resource scenarios, such as translating data
of a particular domain, the problems caused by in-
flectional variants and forms created through deriva-
tion are typically aggravated. Applying a system
trained on general language, but with a component
to handle inflection and word formation, to an out-
of-domain test set constitutes an interesting use
case. We use a test set1 (Haddow et al., 2017) from
the medical domain (1931 sentences), containing
health information aimed at the general public and
summaries of scientific studies. Table 7 shows the
results for the different system variants. For all
data settings, the lemma-tag variants are better than
the surface form baselines. There are no clear ten-
dencies for a best-performing strategy across all
settings, but English morphological analysis seems
to contribute less, whereas English lemma-tag in-
formation (lines 4, 5) leads to overall good results.

6.3 Examples

Table 8 shows two examples to illustrate the effect
of morphological analysis. In (a), the baseline trans-
lates the noun foolishness as adjective, whereas
the morphologically enriched system chooses a
valid translation. Looking at the representation of
foolishness after BPE segmentation, the baseline’s
fool@@ is@@ hn@@ ess is not particularly mean-
ingful, whereas the representation of system 6 is
[NN] fool <N> ish<SUFF ADJ> ness<SUFF N>,
which provides a better basis for translation.

In (b), from the medical test set, the baseline
fails to translate coagulation. Below, the BPE rep-
resentations of coagulation (f=19) and coagulate

1HimL-testset-2015 from www.himl.eu/test-sets

In For all his foolishness Ed Miliband knew who his
enemies were.

S1 Trotz seines törichten Ed Miliband wusste er, wer seine
Feinde waren.
For his foolish Ed Miliband knew he, who his enemies were.

S6 Trotz all seiner Dummheit wusste Ed Miliband, wer seine
Feinde waren.

Ref Bei all seiner Verrücktheit wusste Ed Miliband, wer seine
Feinde waren.

(a)

In Current testing for TIC normally involves coagulation tests
on the patient’s blood.

S1 Aktuelle Tests für TIC beinhalten normalerweise
Coagulationstests am Blut des Patienten.

S10 Bei der aktuellen TIC-Prüfung handelt es sich in der Regel
um Gerinnungstests am Blut des Patienten.

Ref Aktuelle Erprobung von TIC beinhaltet normalerweise
Gerinnungstests der Blut des Patienten.

(b)

Table 8: Translation examples from the Large2M set-
ting (a) and the Large4M setting (b).

(f=3) in the respective systems are compared:
Surface (System 1) Tag morph. annotated (System 10)
co@@ ag@@ ulation [NN] co@@ ag@@ ulate ion<SUFF N>
co@@ ag@@ ulate [VB] co@@ ag@@ ulate

Even with BPE segmentation, the representation
in System 10 is more general than in the surface
system, and in particular allows matching with
e.g., coagulate. Similarly, Gerinnungstest (coag-
ulation test) is represented as ger@@ innen<V>
ung<NN><SUFF> Test<NN>, allowing to com-
bine statistics of the verb gerinnen and the noun
Gerinnung. Thus, better generalization, paired with
tag information, enables the morphology-informed
systems to make better use of the training data.

7 Conclusion

We showed that morphologically sound segmenta-
tion that considers non-concatenative processes in
order to obtain a consistent representation of sub-
words improves translation. The findings of our
experiments provide important insights for translat-
ing morphologically rich languages, and are partic-
ularly important for low-resource settings.
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