SKEP: Sentiment Knowledge Enhanced Pre-training for Sentiment Analysis
Hao Tian, Can Gao, Xinyan Xiao, Hao Liu, Bolei He, Hua Wu, Haifeng Wang, Feng Wu
Abstract
Recently, sentiment analysis has seen remarkable advance with the help of pre-training approaches. However, sentiment knowledge, such as sentiment words and aspect-sentiment pairs, is ignored in the process of pre-training, despite the fact that they are widely used in traditional sentiment analysis approaches. In this paper, we introduce Sentiment Knowledge Enhanced Pre-training (SKEP) in order to learn a unified sentiment representation for multiple sentiment analysis tasks. With the help of automatically-mined knowledge, SKEP conducts sentiment masking and constructs three sentiment knowledge prediction objectives, so as to embed sentiment information at the word, polarity and aspect level into pre-trained sentiment representation. In particular, the prediction of aspect-sentiment pairs is converted into multi-label classification, aiming to capture the dependency between words in a pair. Experiments on three kinds of sentiment tasks show that SKEP significantly outperforms strong pre-training baseline, and achieves new state-of-the-art results on most of the test datasets. We release our code at https://github.com/baidu/Senta.- Anthology ID:
- 2020.acl-main.374
- Volume:
- Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics
- Month:
- July
- Year:
- 2020
- Address:
- Online
- Venue:
- ACL
- SIG:
- Publisher:
- Association for Computational Linguistics
- Note:
- Pages:
- 4067–4076
- Language:
- URL:
- https://aclanthology.org/2020.acl-main.374
- DOI:
- 10.18653/v1/2020.acl-main.374
- Cite (ACL):
- Hao Tian, Can Gao, Xinyan Xiao, Hao Liu, Bolei He, Hua Wu, Haifeng Wang, and Feng Wu. 2020. SKEP: Sentiment Knowledge Enhanced Pre-training for Sentiment Analysis. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 4067–4076, Online. Association for Computational Linguistics.
- Cite (Informal):
- SKEP: Sentiment Knowledge Enhanced Pre-training for Sentiment Analysis (Tian et al., ACL 2020)
- PDF:
- https://preview.aclanthology.org/ingestion-script-update/2020.acl-main.374.pdf
- Code
- baidu/Senta + additional community code
- Data
- GLUE, MPQA Opinion Corpus, SST