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Abstract

Text generation often requires high-precision
output that obeys task-specific rules. This
fine-grained control is difficult to enforce with
off-the-shelf deep learning models. In this
work, we consider augmenting neural gen-
eration models with discrete control states
learned through a structured latent-variable ap-
proach. Under this formulation, task-specific
knowledge can be encoded through a range
of rich, posterior constraints that are effec-
tively trained into the model. This approach
allows users to ground internal model deci-
sions based on prior knowledge, without sacri-
ficing the representational power of neural gen-
erative models. Experiments consider applica-
tions of this approach for text generation. We
find that this method improves over standard
benchmarks, while also providing fine-grained
control.

1 Introduction

A core challenge in using deep learning for NLP
is developing methods that allow for controlled
output while maintaining the broad coverage of
data-driven methods. While this issue is less prob-
lematic in classification tasks, it has hampered the
deployment of systems for conditional natural lan-
guage generation (NLG), where users often need to
control output through task-specific knowledge or
plans. While there have been significant improve-
ments in generation quality from automatic systems
(Mei et al., 2016; Dusek and Jurcicek, 2016; Le-
bret et al., 2016b), these methods are still far from
being able to produce controlled output (Wiseman
et al., 2017). Recent state-of-the-art system have
even begun to utilize manual control through rule-
based planning modules (Moryossef et al., 2019;
Puduppully et al., 2019).

Consider the case of encoder-decoder models
for generation, built with RNNs or transformers.

These models generate fluent output and provide
flexible representations of their conditioning. Un-
fortunately, auto-regressive decoders are also glob-
ally dependent, which makes it challenging to in-
corporate domain constraints.

Research into controllable deep models aims to
circumvent the all-or-nothing dependency trade-
off of encoder-decoder systems and expose ex-
plicit higher-level decisions. One line of research
has looked at global control states that represent
sentence-level properties for the full decoder. For
example, Hu et al. (2017) uses generative adversar-
ial networks where the attributes of the text (e.g.,
sentiment, tense) are exposed. Another line of re-
search exposes fine-level properties, such as phrase
type, but requires factoring the decoder to expose
local decisions, e.g. Wiseman et al. (2018).

This work proposes a method for augmenting
any neural decoder architecture to incorporate fine-
grained control states. The approach first modi-
fies training to incorporate structured latent control
variables. Then, training constraints are added to
anchor the state values to problem-specific knowl-
edge. At test time, the control states can be ignored
or utilized as grounding for test-time constraints.
Technically, the approach builds on recent advances
in structured amortized variational inference to en-
force additional constraints on the learned distri-
bution. These constraints are enforced through
efficient structured posterior calculations and do
not hamper modeling power.

We demonstrate that the method can improve
accuracy and control, while utilizing a range of
different posterior constraints. In particular on two
large-scale data-to-text generation datasets, E2E
(Novikova et al., 2017) and WikiBio (Lebret et al.,
2016a), our method increases the performance of
benchmark systems while also producing outputs
that respect the grounded control states. Our code is
available at https://github.com/XiangLi1999/

https://github.com/XiangLi1999/PosteriorControl-NLG
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PosteriorControl-NLG.

2 Control States for Blackbox
Generation

Consider a conditional generation setting where
the input consists of an arbitrary context x and
the output y1:T is a sequence of target tokens. We
are interested in modeling latent fine-grained, dis-
crete control states z = z1:T each with a label
in C. We assume that these states are weakly-
supervised at training through problem-specific
constraints. The goal is to induce a model of
p(y | x) =

∑
z p(y, z | x). Concretely, our ex-

periments will focus on a data-to-text generation
problem where x corresponds to a table of data, and
y1:T is a textual description. We hope to induce
control states z that indicate which table fields are
being described, and our weak supervision corre-
sponds to indicators of known alignments.

We assume the generative model is a blackbox
auto-regressive decoder that produces both y and z.
Define this general model as:

pθ(y, z | x) =
∏T
t=1 pθ(yt | x, y<t, z≤t) ·

pθ(zt | x, y<t, z<t)

For a neural decoder, where ht(y1:t−1, z1:t−1) is
the hidden state at time-step t, we might generate
the latent class zt ∈ C and next token yt as,

pθ(zt | z<t, y<t) = softmax(W0ht + b0)

pθ(yt | z≤t, y<t) = softmax(W1[ht, gθ(zt)] + b1)

Here gθ is a parameterized embedding function
and W, b are model parameters from θ. The
log-likelihood of the model is given by L(θ) =
log pθ(y | x).

The key latent term of interest is the posterior
distribution pθ(z | x, y), i.e. the probability of
over state sequences for a known output. The de-
coder parameterization makes this distribution in-
tractable to compute in general. We instead use
variational inference to define a parameterized vari-
ational posterior distribution, qφ(z | x, y), from a
preselected family of possible distributions Q.1 To
fit the model parameters θ, we utilize the evidence
lower bound (for any variational parameters φ),

L(θ) ≥ ELBO(θ, φ)

= Ez∼qφ(z|x,y)[log pθ(y, z | x)] + H[qφ(z | x, y)]
1Since our family is over a combinatorial set of z1:T , this

corresponds to a structured variational inference setting.

Several recent works have shown methods for
effectively fitting neural models with structured
variational inference (Johnson et al., 2016; Krish-
nan et al., 2017; Kim et al., 2019). We therefore
use these techniques as a backbone for enforcing
problem-specific control. See §4 for a full descrip-
tion of the variational family used.

3 Posterior Regularization of Control
States

Posterior regularization (PR) is an approach for
enforcing soft constraints on the posterior distribu-
tion of generative models (Ganchev et al., 2010).
Our goal is to utilize these soft constraints to en-
force problem specific weak supervision. Tradition-
ally PR uses linear constraints which in the special
case of expectation maximization for exponential
families leads to convenient closed-form training
updates. As this method does not apply to neu-
ral generative models, we resort to gradient-based
methods. In this section, we develop a form of pos-
terior regularization that accommodates the neural
variational setting.

Starting with the log-likelihood objective, L(θ),
PR aims to add distributional constraints on the
posterior. These soft constraints are expressed as
a distributional penalty, Rp(x, y) ≥ 0. For exam-
ple, if we have partial information that a specific
control state takes on label c we can add a con-
straint Rp(x, y) = 1− p(zt = c | x, y). We might
also consider other distributional properties, for in-
stance penalizing the entropy of a specific posterior
marginal, Rp(x, y) = Hz′(zt = z′ | x, y). See §5
for more constraint examples.

PR uses these soft constraints to regularize the
model. Ideally we would penalize the posterior
directly, but as noted above, computing this term
in a blackbox model is intractable. We therefore
follow Ganchev et al. (2010) and use a relaxed
version with a surrogate posterior qφ(z | x, y),

LPR(θ) = L(θ)− (1)

min
φ

[KL[qφ || pθ(z | x, y)] + λRqφ(x, y)]

We can write this in terms of a variational lower-
bound on the relaxed PR objective.

LPR(θ) ≥ PRLBO(θ, φ) = L(θ)− (2)

[KL[qφ || pθ(z | x, y)] + λRqφ(x, y)]

This allows us to relate the q in the PRLBO to
the variational posterior in the ELBO simply by

https://github.com/XiangLi1999/PosteriorControl-NLG
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Clowns is a restaurantBritish
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Figure 1: Model training. Assumes we are given conditioning x (not shown) and output sentence y. (Middle)
An inference network φ is used to parameterize a structured segmental conditional random field qφ(z | x, y) over
control states z. (Right) Sample from qφ (colored circles) is used to provide control state labels for a blackbox
generation model pθ(y, z | x) . (Left) To ground the control states to represent problem-specific meaning, pos-
terior regularization is used to enforce distributional constraints through penalties Rq(x, y). The whole system is
optimized end-to-end to learn latent properties of the final output tokens.

expanding the KL and rearranging terms,

PRLBO(θ, φ) = ELBO(θ, φ)− λRqφ(x, y)

To train, we jointly maximize over both terms in
the PRLBO: the model parameters θ and the vari-
ational parameters φ (which tightens the bounds).
Following standard practice, we use an amortized
inference network, i.e. a variational autoencoder
(Kingma and Welling, 2014; Mnih and Gregor,
2014; Rezende et al., 2014), to define φ.

4 Structured Variational Family for
Segmental Generation

We now discuss how to efficiently compute the
PRLBO under a structured variational family.

PRLBO = Ez∼qφ [log pθ]︸ ︷︷ ︸
(1)

+H[qφ]︸ ︷︷ ︸
(2)

−λRqφ(x, y)︸ ︷︷ ︸
(3)

We need a qφ(z | x, y) for which we can efficiently
(1) take samples, (2) compute entropy, and (3)
compute the distributional penalties. This moti-
vates the use of a factored conditional random field
(CRF), defined by a potential function φ(x, y, z).
At training time, x, y are observed and z is the la-
tent variable that denotes the control states. We
then specify a variational posterior distribution:
qφ(z | x, y) = φ(x,y,z)∑

z′ φ(x,y,z
′) .

In this work, we focus on the semi-Markov CRF
(Gales and Young, 1993; Sarawagi and Cohen,
2005), a common CRF family used in generation
(Wiseman et al., 2018). It divides tokens into seg-
mental spans, which are useful for generating en-
tity mentions and commonly used phrases. This
model divides the potential function into three parts:
the emission potential for a span of tokens given

Algorithm 1: Generic Semi-Markov Algorithm.

Given φ and generic semiring (⊕,⊗,0,1)
Set βT (c) = 1 ∀c ∈ C
for i = T − 1, . . . , 0 do

for c ∈ C do

β′i(c) =

min(L,T−i)⊕
d=1

βi+d(c)⊗φ(l)(d)⊗

φ(e)(x, yi,i+d, c)

for c ∈ C do

βi(c) =
⊕
c′∈C

β′i(c
′)⊗ φ(t)(c, c′)

return Z =
⊕
c∈C

β′0(c)⊗ φ(t)(0, c)

a state, denoted as φ(e); the transition potential
between states, φ(t); and the length potential of
span length given a state, φ(l). Suppose our control
states define a span from i (inclusive) to j (exclu-
sive) labeled by c, we denote it as zi:j = c. The
potential function of a labeled sequence is defined:

φ(x, y, z) =
∏
i<j<k

φ(t)(zi:j ,zj:k) · φ(l)(j − i) ·

φ(e)(x, yi:j , zi:j) (3)

For computational efficiency, we restrict all seg-
ment length to be ≤ L.2

With this model, we can use the forward-
backward algorithm for all required inferences:
exact sampling, computing partition function, en-
tropy, and posterior marginals qφ(zi:j = c | x, y),
useful for term (3). In Algorithm 1, we give a

2 The time complexity to compute the posterior moments
of the full semi-Markov CRF is O(|C|2nL).
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One-to-One One-to-Many
Name Penalty Name Penalty

Inclusion For (i, j, f) ∈ A(x, y), Sparsity For f ∈ F ,
Rq = 1− q(zi:j = σ(f) | x, y) Rq = H[σ(c | f)]

Exclusion For f ∈ x and (i, j, f) 6∈ A(x, y), Fit For (i, j, f) ∈ A(x, y)
Rq = q(zi:j = σ(f) | x, y) Rq = H[σ(c | f), q(zi:j | x, y)]

Coverage For f ∈ F , Diversity Let pagg(ẑ) ∝
∑T
t=1 q(zt = ẑ | x, y)

Rq = |
∑
i<j

q(zi:j = σ(f) | x, y)−1(f ∈ x)| Rq = H[Unif(ẑ)]−H[pagg(ẑ)]

Table 1: Posterior penalties utilized in the One-to-One and One-to-Many setting. These constraints softly enforce
an alignment between control states and text spans by penalizing posterior violations. The objective sums over the
three Rq in both cases.

generic semi-Markov algorithm (Sarawagi and Co-
hen, 2005). We store two tables β and β

′
, both of

size T × |C|. βt(c) denotes the event that there is a
transition at time t from state c. β′t(c) denotes the
event that there is a emission starting from time t
at state c. Then we have the recursion for β′t(c) by
“summing” over different span length, and we have
the recursion for βt(c) that sums over all different
state transitions.

The algorithm is generic in the sense that differ-
ent (⊗,⊕) operators allow us to compute different
needed terms. For example, computing the par-
tition function Z =

∑
z′ φ(x, y, z

′) requires the
(+,×) semiring (Goodman, 1999; Li and Eisner,
2009), other distributional terms can be computed
by using the same algorithm with alternative semir-
ings and backpropagation 3.

5 Posterior Constraints from Data
Alignment

To make the PR model concrete, we consider the
problem of incorporating weak supervision from
heuristic alignment in a data-to-text generation task.
Assume that we are tasked with describing a table
x consisting of global field names F each with a
text value v, e.g. xf = v. Not all global fields may
be used in a given x, we use f ∈ x to indicate an

3We need four terms: (a) log-partition term
log

∑
z′ φ(x, y, z

′) requires the log semiring
(logsumexp,+). The posterior marginals q(z | x, y)
requires backpropagating from the log-partition term;
(b) max score maxz φ(x, y, z): (max,+) max semir-
ing and argmax argmaxz φ(x, y, z) by (subgradient)
backpropagation, (c) entropy through an expectation
semiring 〈p1, r1〉 ⊗ 〈p2, r2〉 = 〈p1p2, p1r2 + p2r1〉, and
〈p1, r1〉 ⊕ 〈p2, r2〉 = 〈p1 + p2, r1 + r2〉, with 1 = 〈1, 0〉.
To initialize, all the emission, transition and length scores
takes the form 〈φ,− log φ〉. The algorithm returns 〈Z,R〉,
and the true entropy is R

Z
+ logZ. (d) exact sampling through

one backward pass and one forward filtering backward
sampling, where forward uses the log-partition semiring and
backpropagation is by categorical sampling.

x name[Clowns] eatType[coffee shop],
rating[1 out of 5], near[Clare Hall]

f ∈ x
name, eatType, rating, near

y
Clowns1 is2 a3 coffee4 shop5 near6
Clare7 Hall8 with9 a10 111 out12 of13
514 rating15

A(x, y)
(1, 2, name), (4, 6, eatType), (7, 9, near),
(11, 15, rating)

Table 2: Example of data alignment notation. Here x is
a table of data, and f are its fields. For a given output
y we enforce a soft alignment A.

active field.
We would like control states to indicate when

each field is used in generation. Our alignment
heuristic is that often these fields will be expressed
using the identical text as in the table. While this
heuristic obviously does not account for all cases,
it is very common in natural language generation
tasks as evidence by the wide use of copy attention
based approaches (Gu et al., 2016; Gulcehre et al.,
2016). To utilize these alignments, we use the
notation (i, j, f) ∈ A(x, y) to indicate that a span
i : j in the training text y overlaps directly with
a field f ∈ x. Table 2 gives an example of the
notation.

One-to-One Constraints We first consider one-
to-one constraints where we assume that we have
a static, mapping from fields to states σ : F 7→ C.
Given this mapping, we need to add penalties to
encourage the semi-Markov model to overlap with
the given weak supervision.

To enforce soft alignments, we define three pos-
terior constraint types and their computation as
shown in Table 1 (Left). The three constraints are
i) Inclusion: if a span in y aligns with a field value
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f , then label that span σ(f) the state allocated to
that field; ii) Exclusion: A span should only have a
state σ(f), if it aligns with the field value of type
f ; iii) Coverage. The usage count of state σ(f)
should be 1 if f in x.

One-to-Many Constraints We also consider the
case when it is infeasible to specify a hard mapping
σ between the fields and the states. For example,
F could be unbounded or large, whereas we hope
to keep the cardinality of states small for computa-
tional efficiency.

We propose a method of inducing a dynamic
soft mapping σ(c | f) as we train the model, and
impose constraints on the mapping from table field
to the state names. First, we would like the distri-
bution of state given table field to be consistent, so
one table field is mapped to roughly 1 state. Sec-
ond, we want to make use of the state space as
much as possible by requiring a diverse usage of
states.

In order to enforce these properties we introduce
the dynamic mapping as a second amortized vari-
ational distribution σ(c | f ;M) = softmax(Mf)
which gives the probability that a table field f takes
on state c. As shown in Table 1 (Right), we define
three constraints that regularize the local q with re-
spect to the global σ: i) Sparsity: Each vocabulary
entry in σ should have low entropy; ii) Fit: The
global σ should represent the class name distribu-
tion posterior of each table field by minimizing the
cross entropy between types σ(c | f) and tokens
q(zi:j | x, y) for all (i, j, f) ∈ A(x, y); iii) Diver-
sity: the aggregate class label distribution over all
the token in a sentence should have high entropy.

6 Related Work

In addition to previously mentioned work, other
researchers have noted the lack of control of deep
neural networks and proposed methods at sentence-
level, word-level, and phrase-level. For example
Peng et al. (2018) and Luo et al. (2019) control
the sentiment in longer-form story generation. Oth-
ers aim for sentence-level properties such as sen-
timent, style, tense, and specificity in generative
neural models (Hu et al., 2017; Oraby et al., 2018;
Zhang et al., 2018; Shen et al., 2017). Closest to
this work is that of Wiseman et al. (2018) who
control phrase-level content by using a neuralized
hidden semi-Markov model for generation itself.
Our work differs in that it makes no independence
assumption on the decoder model, uses a faster

training algorithm, and proposes a specific method
for adding constraints. Finally, there is a line of
work that manipulates the syntactic structure of
generated texts, by using some labeled syntactic
attribute (e.g., parses) or an exemplar (Deriu and
Cieliebak, 2018; Colin and Gardent, 2018; Iyyer
et al., 2018; Chen et al., 2019). While our work
uses control states, there is no inherent assumption
of compositional syntax or grammar.

Posterior regularization (PR) is mostly used in
standard EM settings to impose constraints on the
posterior distribution that would otherwise be in-
tractable (or computationally hard) in the prior.
Ganchev et al. (2010) applies posterior regular-
ization to word alignment, dependency parsing,
and part-of-speech tagging. Combining powerful
deep neural networks with structured knowledge
has been a popular area of study: Xu et al. (2019)
applies PR to multi-object generation to limit ob-
ject overlap; Bilen et al. (2014) focuses on object
detection, and uses PR features to exploit mutual
exclusion. In natural language processing; Hu et al.
(2016a,b) propose an iterative distillation proce-
dure that transfers logic rules into the weights of
neural networks, as a regularization to improve
accuracy and interpretability.

Finally, the core of this work is the use of amor-
tized inference/variation autoencoder to approxi-
mate variational posterior (Kingma and Welling,
2014; Mnih and Gregor, 2014; Rezende et al.,
2014). We rely heavily on a structure distribution,
either linear chain or semi-Markov, which was in-
troduced as a structured VAEs (Johnson et al., 2016;
Krishnan et al., 2017; Ammar et al., 2014). Our
setting and optimization are based on Kim et al.
(2019), who introduce a latent tree variable in a
variational autoencoding model with a CRF as the
inference network, and on Yin et al. (2018) who
use an encoder-decoder model as the inference net-
work.

7 Experimental Setup

Data and Metrics We consider two standard
neural generation benchmarks: E2E (Novikova
et al., 2017) and WikiBio (Lebret et al., 2016a)
datasets, with examples shown in Figure 1. The
E2E dataset contains approximately 50K examples
with 8 distinct fields and 945 distinct word types; it
contains multiple test references for one source ta-
ble. We evaluate in terms of BLEU (Papineni et al.,
2002), NIST (Belz and Reiter, 2006), ROUGE-L
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Table (x): name[Clowns] eatType[coffee shop]
food[Chinese] customer-rating[1 out of 5]
area[riverside] near[Clare Hall]

Ref.1: Clowns is a coffee shop in the riverside area
near Clare Hall that has a rating 1 out of 5 .
They serve Chinese food .
Ref.2: The Chinese coffee shop by the riverside near
Clare Hall that only has a customer rating of
1 out of 5 is called Clowns .
Ref.3: There is a Chinese coffee shop near Clare Hall
in the riverside area called Clowns its not got
a good rating though .

Ref.1: Frederick Parker-

Rhodes (21 March 1914

– 21 November 1987)

was an English linguist,

plant pathologist, com-

puter scientist, mathemati-

cian, mystic, and mycolo-

gist.

Figure 2: Generation benchmarks. Model is given a table x consisting of semantic fields and is tasked with
generating a description y1:T of this data. Two example datasets are shown. Left: E2E, Right: WikiBio.

(Lin, 2004), CIDEr (Vedantam et al., 2015) and
METEOR (Lavie and Agarwal, 2007), using the
official scoring scripts4. The WikiBio dataset con-
tains approximately 700K examples, 6K distinct
table field types, and 400K word types approxi-
mately; it contains one reference for one source
table. We follow the metrics from (Lebret et al.,
2016a) and evaluate the BLEU, NIST, and ROUGE-
4 scores.

Architecture and Hyperparameters For all
tasks, we use an encoder-decoder LSTM for the
generative model. We follow recent state-of-the-art
works in parametrizing our encoder, and we use
copy attention and dual attention (Gu et al., 2016;
Gulcehre et al., 2016; Liu et al., 2018): full model
architectures are given in the supplement.

The inference network scores are computed us-
ing a BiLSTM. We compute the emission scores
φ(e) using span embeddings (Wang and Chang,
2016; Kitaev and Klein, 2018; Stern et al., 2017);
transition scores φ(t) by dot product between em-
bedding vectors for the class labels; lengths φ(l) is
kept uniform, as in Wiseman et al. (2018). Addi-
tional details are in the supplement.

At training time, we use a rate for alleviat-
ing posterior collapse in the ELBO: warm-up the
ELBO objective by linearly annealing the coeffi-
cient on the term

∑T
t=1 log pθ(zt | z<t, y<t) and

H[qφ(z | x, y)] from 0 to 1, as implemented in Kim
et al. (2019). We use the REINFORCE algorithm
to do Monte Carlo estimation of the stochastic gra-
dient. We choose the control variate to be the mean
of the samples (Mnih and Rezende, 2016).

At decoding time, we only use the generative
model. We use beam search with length normaliza-

4Official E2E evaluation scripts available at https://
github.com/tuetschek/e2e-metrics

tion to jointly generate both the control states and
the sentences. To obtain controlled generation, we
observe the control states, and apply constrained
beam search to p(y | x, z).

Baselines For generation on E2E, we compare
externally against 4 systems: E2E-BENCHMARK

(Dušek and Jurčı́ček, 2016) is an encoder-decoder
network followed by a reranker used as the shared
task benchmark; NTEMP, a controllable neural-
ized hidden semi-Markov model; NTEMP+AR,
the product of experts of both a NTemp model and
an autoregressive LSTM network (Wiseman et al.,
2018); SHEN19 (Shen et al., 2019) is an pragmati-
cally informed model, which is the current state-of-
the-art system on E2E dataset.

We also compare internally with ablations of our
system: ENCDEC is a conditional model p(y | x)
trained without control states. PC0 is posterior con-
trol model with no constraints. It uses structured
encoder with the PR coefficient set to 0. PC∞ is
our model with hard constraints, which assumes
fully-observed control states. These control states
are obtained by mapping tokens with lexical over-
lap to their designated state; otherwise we map to a
generic state. We train a seq2seq model p(y, z | x)
with full supervision of both control states and tar-
get text. Our main model is PCλ, which applies
PR with coefficient given by hyperparameter λ.

For WikiBio, we compare externally against 5
systems: NTEMP and NTEMP+AR as above; LE-
BRET16 (Lebret et al., 2016a), which uses copy
attention and an NNLM; LIU18 (ENCDEC), which
is our base encoder-decoder LSTM model, and
LIU18 (Field Gating) which uses a field gating ta-
ble encoder and a decoder with dual attention (Liu
et al., 2018). For internal comparison on WikiBio,
we compare between the one-to-one and one-to-

https://github.com/tuetschek/e2e-metrics
https://github.com/tuetschek/e2e-metrics
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E2E
BLEU NIST ROUGE CIDEr MET

validation

E2E-BENCH* 69.25 8.48 72.6 2.40 47.0
ENCDEC* 70.81 8.37 74.1 2.48 48.0
NTEMP 64.53 7.66 68.6 1.82 42.5
NTEMP+AR 67.70 7.98 69.5 2.29 43.1
PC0 69.10 8.32 72.6 2.35 47.3
PC∞ 69.36 8.36 71.3 2.29 46.4
PCλ 72.93 8.63 75.5 2.54 48.4

test

E2E-BENCH* 65.93 8.59 68.5 2.23 44.8
SHEN19* 68.60 8.73 70.8 2.37 45.3
ENCDEC* 66.34 8.55 68.0 2.18 44.3
NTEMP 55.17 7.14 65.7 1.70 41.9
NTEMP+AR 59.80 7.56 65.0 1.95 38.8
PCλ 67.12 8.52 68.7 2.24 45.4

WikiBio
BLEU NIST R-4

test

LEBRET16* 34.7 7.98 25.8
LIU18(ENCDEC)* 43.7 - 40.3
LIU18(FieldGating)* 44.9 - 41.2
NTEMP 34.2 7.94 35.9
NTEMP+AR 34.8 7.59 38.6
PCλone-to-one 44.7 9.92 43.3
PCλone-to-many 44.2 9.59 41.5

Table 3: Automatic metrics for text generation. ∗ marks systems without learned control states. (Left) E2E.
Comparison of systems from Dušek and Jurčı́ček (2016); Wiseman et al. (2018); Shen et al. (2019), our model and
ablations. (Right) WikiBio. Comparison of Wiseman et al. (2018); Liu et al. (2018); Lebret et al. (2016a) and our
full model.

many constraints in §5. PCλ
one-to-one applies the

One-to-One posterior constraints (left of Table 1).
PCλ

one-to-many applies the One-to-Many posterior
constraints (right of Table 1).

8 Experiments

Table 3 shows the main results for the E2E and Wik-
iBio, comparing to both standard neural models and
controllable systems. On E2E (left), our posterior
control model outperforms the neural benchmark
system on all validation metrics and most of the
test metrics. It also achieves results comparable or
better than a specialized encoder-decoder system.
It has significantly better performance than the con-
trollable NTemp and NTemp+AR in all metrics on
both validation and test. This demonstrates that the
PC model provides interpretable and controllable
states without sacrificing any representation power
or generation performance.

For internal comparison, having soft constraints
on the posterior outperforms the system PC∞

(forced hard constraints) and PC0 (no constraints).
Anecdotally, we find that if two fields have the
same value, then the hard coding system is often
forced into the wrong decision. Similarly remov-
ing posterior regularization altogether leads to a
slightly weaker performance than our controlled
model.

On the larger WikiBio dataset (right) our model
also significantly outperforms both the controllable
NTemp and NTemp+AR baselines in all three met-

rics. It gives improvements over Liu et al. (2018)’s
strong encoder-decoder style model. The promis-
ing result from WikiBio dataset suggests that the
method scales to larger datasets and the PR style
works well in handling large field spaces. In addi-
tion, we find that dynamic constraints are feasible
compared with static constraints (we believe this
is because the modeling burden on PCλone-to-many is
heavier since it also needs to figure out the clus-
tering). Overall, the dynamic framework opens up
the possibility of generalizing to work well with a
wider set of constraints.

9 Analysis

Qualitative Analysis Table 4 shows how control
states (shown by different colors) are used in gen-
erated sentences. We use examples generated by
the PCλ system on the WikiBio dataset. We ob-
tain outputs by beam search over control states
and words. The first block contains examples with
relatively complete coverage by the semantically
grounded control states, including name, birth date,
death date, occupation and nationality. We note
that when a control state is selected, the textual
span covered by the control state tend to respect
truthfulness by copying from the table. The second
block shows a longer example that uses less of the
source, but still remain truthful with respect to the
table.

Table 5 (left) qualitatively demonstrates the
multi-modality of output of the system on E2E
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PCλ

billy ruge -lrb- c. 1885 – 1955 -rrb- was an american film
actor .

debra dene barnes is an associate professor of piano studies
at miss america 1968 .

shaalin zoya -lrb- born 22 february 1997 -rrb- is an indian
actress .

carlos albert andrs -lrb- born february 24 , 1978 in madrid
, spain -rrb- is a spanish sculptor .

Table (x): name[james horton]; birthdate[1850]; death-
date[none]; birthplace[boston, massachusetts]; alle-
giance[united states of America]; branch[united states
navy]; rank[captain of the top]; awards[medal of honor]

REF: james horton -lrb- born 1850 -rrb- was a sailor serv-
ing in the united states navy who received the medal of
honor for bravery .

PCλ: james horton -lrb- born 1850 , date of death
unknown -rrb- was a united states navy sailor and a
recipient of the united states military ’s highest decoration
, the medal of honor .

Table 4: Qualitative examples on WikiBio dataset.
(Top) Generated sentences control states highlighted.
(Bottom) Full example of content selection with data
table and reference. (Best viewed in color.)

dataset. We particularly note how the final system
is trained to associate control states with field types.
Here we fix the prior on z to 8 different sequences
of class labels shown in different colors, and do
constrained beam search on the generative model
by holding z fixed, and decoding from the model
pθ(y | x, z).
Controllability Next we consider a quantitive
experiment on model control. Assuming we have a
mapping from control states to fields, ideally, at test
time z should use the right states from the source
x.5 Let S = {(i, j, f) : zi,j = c, f ∈ x, σ(f) =
c} be the field states used by z. Define the field
word overlap between x and y as,

#match =
∑

(i,j,f)∈S

unigram-overlap(yi:j , xf )

We can compute precision, recall, and coverage
under this metric,

#match∑
(i,j,f)∈S(j − i)

,
#match∑
f∈x |xf |

,
|S|

|c : c ∈ x| .

Under these metrics we see the following control
metrics on the E2E dataset,

5On E2E dataset, we remove the binary table field, “family
friendly” which is never expressed by lexical match.

P R C
PC∞ 0.996 0.895 0.833
PCλ 1.0 0.969 1.0

The PC model with soft posterior constraints per-
forms better than having hard constraints on all
three metrics. Having P = 1 means that the con-
trol states are a strong signal to copy from the table,
and C = 1 means that control states learn to cover
all table fields. On WikiBio, the model has a preci-
sion of 0.83 on the, meaning that on average, when
we generate a good control state, 83% of the gen-
erated tokens will match the table content. Since
only a fraction of the source table in WikiBio is
used, recall and coverage are less applicable.

Distributional Metrics Table 5 (right) shows
distributional metrics related to the optimization
of the generative model and the inference network.
The reconstruction perplexity, Rec. is much lower
than the full perplexity, PPL and the KL divergence
between the variational posterior and the condi-
tional prior is highly non-zero. These observations
indicate that latent variables are being used in a
non-trivial way by the generative model. It also
suggests the variational model is not experiencing
posterior collapse.

Limitations Given the promise of PR as a tech-
nique for inducing control states, it is worth noting
some of the current limitations to our specific ap-
plication of the method. Currently, we use sim-
ple rules which do not generalize well to para-
phrase. Our weak supervision relies on direct over-
lap to align states and fails on aligning phrases like
less then 10 dollars that are expressed
as cheap. Additionally, while at test time, our
method is comparable to a standard decoder model,
it does require slightly longer to train due to both
the dynamic program and the requirement to com-
pute multiple samples.

10 Conclusion

This work introduces a method for controlling the
output of a blackbox neural decoder model to fol-
low weak supervision. The methodology utilizes
posterior regularization within a structured varia-
tional framework. We show that this approach can
induce a fully autoregressive neural model that is as
expressive as standard neural decoders but also uti-
lizes meaningful discrete control states. We show
this decoder is effective for text generation while
inducing meaningful discrete representations.
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Table (x): name[Clowns] eatType[coffee shop] food[English]
customerrating[5 out of 5] area[riverside] near[Clare Hall]

(1) Clowns is a 5 star coffee shop located near Clare Hall .
(2) Clowns is a coffee shop that serves English food and is near
Clare Hall . It is in riverside and has a 5 out of 5 customer rating .
(3) Near Clare Hall in Riverside is coffee shop , Clowns . It serves
English food , and has received a customer rating of 5 out of 5 .
(4) Near the riverside , Clare Hall is a coffee shop called Clowns that
serves English food and has a customer rating of 5 - stars .
(5) Near Clare Hall , Clowns coffee shop has a five star rating and
English food .
(6) Clare Hall is a 5 star coffee shop near to Clowns that serves
British food .
(7) Clowns coffee shop is near Clare Hall in Riverside . It serves
English food and has an excellent customer rating .
(8) 5 star rated restaurant , Clowns coffee shop is located near Clare
Hall .

Models Rec. ↓ PPL ↓ KL

E2E

PC0 1.81 3.74 19.8
PCλ 2.35 3.70 12.8

WikiBio

PC0 2.57 3.82 10.69
PCλone-to-one 2.45 4.07 10.19
PCλone-to-many 2.59 4.58 13.07

Table 5: (Left) Example of controlled generation pθ(y | x, z) on the source entity “Clowns” from E2E dataset. The
color represents the class label of the token z. (Right) Metrics related to the generative model/inference network
measured on both E2E and WikiBio. Rec. is reconstruction perplexity based on Eq(z|x,y)[log pθ(y |, x, z)]. PPL is
the perplexity per token estimated by importance sampling.

Induction of grounded control states opens up
many possible future directions for this work.
These states can be used to provide integration
with external rule-based systems such as hard con-
straints at inference time. They also can be used to
provide tools for human-assisted generation. An-
other direction is to improve the sources of weak
supervision and such as interactive new constraints
provided by users. One could also explore alter-
native posterior constraints based on pre-trained
models for summarization or paraphrase tasks to
induce semantically grounded latent variables. Fi-
nally, it would be interesting to explore alternative
training methods for these models, such as reduc-
ing reliance on hard sampling through better relax-
ations of structured models.
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Appendix

The generative model is an LSTM with two layers
with hidden dimension equals 500, input dimension
equals 400, and dropout of 0.2. The inference net-
work uses a one-layer Bi-LSTM with hidden size
of 500 and input size of 400 to encode the sentence.
We use large max segment length, L = 8 (seg-
mental for data-to-text) and L = 1 (linear chain
for POS induction) and 0.2 dropout in the infer-
ence network. The Bi-LSTM used for encoding the
source table is has hidden dimension of 300. Both
the generative model and the inference network
share word embeddings.

The batch size is 10 for WikiBio and 20 for PTB
and E2E. The generative model and the inference
network are optimized by Adam (Kingma and Ba,
2014) gradient clipping at 1, with learning rate of
0.002 and 0.001 respectively. Parameters are all
initialized from a standard Gaussian distribution.
The learning rate decays by a factor of two for any
epoch without improvement of loss function on
validation set, and this decay condition is not trig-
gered until the eighth epoch for sufficient training.
Training is done for max of 30 epochs and allows
for early stopping.

For data-to-text problem, we need to encode
the data table. We encode the E2E source ta-
ble by directly concatenating word embeddings
and field embeddings and indices for each token,
for example, if the word w is the ith token from
left and jth token from right under field type f ,
then we represent the token using a concatenation
[emb(w) · emb(f) · emb(i) · emb(j)]. We encode
the WikiBio table by passing a bidirectional-LSTM
through the tokens in the table, where each to-
ken has similar embedding by concatenation as
above. The encoding of the table is denoted as
c. We use copy attention (Gu et al., 2016; Gul-
cehre et al., 2016) in the generative model, and the
attention vector α at a time step is parametrized
by the class label z at that time step. Recall
the contextual representation is

∑
i αi · ci, where

αi = softmax(score(ht, ci)) and score(ht, ci) =
(Wz(ht)+ bz) · (W2(ci)+ b2), the parametrization
from z happens during the feedforward network
indexed by z. For the WikiBio data, we use a dual
attention mechanism described in (Liu et al., 2018),
where the first attention is the same as above and
the second attention uses a different encoder con-
text c′i, the c′i only looks at the concatenation of
field type and field index, but not the field value

itself, i.e. [emb(f) ·emb(i) ·emb(j)]. Then the two
attention forms two different sets of αi and they
are multiplied together and renormalized to form
an attention.


