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Abstract
Explicit mechanisms for copying have im-
proved the performance of neural models
for sequence-to-sequence tasks in the low-
resource setting. However, they rely on an
overlap between source and target vocabular-
ies. Here, we propose a model that does not: a
pointer-generator transformer for disjoint vo-
cabularies. We apply our model to a low-
resource version of the grapheme-to-phoneme
conversion (G2P) task, and show that it outper-
forms a standard transformer by an average of
5.1 WER over 15 languages. While our model
does not beat the the best performing baseline,
we demonstrate that it provides complemen-
tary information to it: an oracle that combines
the best outputs of the two models improves
over the strongest baseline by 7.7 WER on av-
erage in the low-resource setting. In the high-
resource setting, our model performs compara-
bly to a standard transformer.

1 Introduction

Deep learning models define the state of the art on
the majority of sequence-to-sequence tasks in natu-
ral language processing (NLP). Even when training
data is limited, neural networks outperform many
alternative approaches, e.g., on machine translation
(Sennrich and Zhang, 2019) or on morphological
generation tasks (Cotterell et al., 2018). For the sec-
ond group, the use of mechanisms for copying has
drastically improved performance when training
sets are small (Cotterell et al., 2018).

Our work builds on the insight that the ability to
copy elements from the input over to the output –
as done by a pointer network (Vinyals et al., 2015)
or a pointer-generator network (See et al., 2017) –
can increase model performance on sequence-to-
sequence tasks in the low-resource setting, as it
simplifies the learning problem. However, existing
neural models require that inputs and outputs con-
sist of elements from overlapping sets. Here, we

Figure 1: Architecture of our pointer-generator trans-
former for disjoint vocabularies.

propose a pointer-generator transformer model
for disjoint source and target vocabularies. Our
model, shown in Figure 1, is a hybrid of an LSTM
pointer-generator model (See et al., 2017) and a
transformer model (Vaswani et al., 2017). Addi-
tionally, we integrate a mapping function, which
defines a correspondence between elements in the
source and target vocabularies.

We apply our model to the task of grapheme-
to-phoneme conversion: mapping the spelling of
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a word to a representation of its pronunciation
(Bisani and Ney, 2008). This task is a great testing
ground for our approach: input and output vocabu-
laries are disjoint for many languages (cf. Table 1),
and, as a character-level task with short sequences,
it enables us to use small models, which allows
for quick experimentation. G2P is also a task of
high practical relevance: it is required for text-to-
speech synthesis. Models that perform well in the
low-resource setting will enable us to develop such
language technologies for a wider set of languages.

We experiment with our model on varying train-
ing set sizes. In the low-resource setting, averaged
over 15 languages, our architecture improves per-
formance by 5.1 WER over a standard transformer.
Further, it outperforms both the transformer and
a copy baseline for up to 1000 training examples.
While it underperforms our best performing base-
line, we show that it provides valuable complemen-
tary information to it. In the high-resource setting,
it performs comparably to a vanilla transformer.

2 Related Work

Sequence-to-sequence models. Popular neural
architectures for sequence-to-sequence tasks in-
clude those based on LSTMs or GRUs in com-
bination with attention (Bahdanau et al., 2015),
transformer models, which use attention instead
of recurrence (Vaswani et al., 2017), or pointer-
generator models based on LSTMs (See et al.,
2017). Sequence-to-sequence models have been
applied to a large set of NLP tasks, including trans-
lation (Bahdanau et al., 2015; Vaswani et al., 2017),
summarization (Raffel et al., 2019), morphological
generation (Kann and Schütze, 2016), or historical
text normalization (Flachs et al., 2019). To the best
of our knowledge, pointer-generators have so far
only been applied to tasks with overlappings source
and target vocabularies (See et al., 2017; Sharma
et al., 2018; Deaton et al., 2019). Here, we pro-
pose a pointer-generator transformer for tasks with
disjoint vocabularies.

G2P. Early algorithms for G2P relied on
handwritten parser-based rules in the format of
Chomsky-Halle rewrite – or LTS – rules (Chom-
sky and Halle, 1968). Subsequently, other tech-
niques have been developed, including rule-based
systems (Black et al., 1998), maximum entropy
models (Chen, 2003), LSTMs (Rao et al., 2015),
or approaches based on semi-automatic alignment
tables (Pagel et al., 1998). Our approach is sim-

Low-Resource High-Resource

Σsrc Σtrg ∩ Σsrc Σtrg ∩

arm 38 38 0 38 58 0
bul 29 40 0 30 67 0
fre 28 33 18 37 40 21
geo 31 32 0 33 35 0
gre 32 31 1 38 44 1
hin 49 48 0 60 88 0
hun 32 53 20 34 70 21
ice 31 53 19 36 77 23
kor 165 51 0 834 61 0
lit 31 64 18 32 110 20
ady 30 62 0 32 105 0
dut 27 40 18 35 50 21
jpn 65 47 0 78 79 0
rum 26 39 18 52 71 22
vie 75 47 15 93 49 18

avg. 45.93 45.2 8.47 97.47 66.93 9.8

Table 1: Number of tokens in the source and target vo-
cabularies, and the number of shared tokens.

ilar to the idea of alignment tables, since we in-
tegrate a mapping function between vocabularies
into a pointer-generator transformer. Today, neural
sequence-to-sequence models are the standard ap-
proaches for G2P (Yao and Zweig, 2015; Sun et al.,
2019; Gorman et al., 2020).

Makarov and Clematide (2020) proposed a
model for G2P that, similar to our approach, makes
use of explicit substitutions. Their BiLSTM-based
neural transducer learns edit actions to transform
an input sequence into a target sequence and is
trained with imitation learning. Since this model
is highly suitable for the low-resource setting, we
compare our approach to it in our experiments.

3 Pointer-Generator Transformers for
Disjoint Vocabularies

Hyperparameter Value

Batch Size 128
Embedding Dimension 256
Hidden Dimension 1024
Dropout 0.3
Number of Encoder Layers 4
Number of Decoder Layers 4
Number of Attention Heads 4
Learning Rate 1e-3
β1 0.9
β2 0.998
Label Smoothing Coefficient 0.1
Max Norm (Gradient clipping) 1

Table 2: The hyperparameters used in our experiments.
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Low-resource High-resource

PG-T T LSTM IM Sub O* PG-T T LSTM IM Sub O*

arm 62.2 70.5 72.2 51.6 57.3 38.2 15.6 14.5 14.7 14.9 57.3 10.7
bul 84.7 87.1 78.0 73.6 90.0 63.6 33.1 31.9 31.1 29.8 86.9 18.7
fre 87.1 88.7 93.1 68.9 95.3 61.3 7.3 8.0 6.2 7.6 95.3 4.7
geo 65.6 77.8 60.2 62.0 50.7 45.1 25.6 27.8 26.4 26.9 44.7 19.3
gre 77.6 81.1 84.2 44.0 74.2 39.6 17.1 18.0 18.9 18.2 71.1 11.1
hin 70.7 82.6 80.4 78.0 72.7 60.2 8.0 8.2 6.7 6.9 69.8 3.8
hun 74.0 83.2 83.1 41.1 56.2 36.9 6.7 5.7 5.3 4.4 54.9 3.1
ice 87.1 90.9 94.2 60.0 85.3 56.0 11.1 10.6 10.0 11.6 85.3 8.2
kor 99.6 98.9 100.0 75.8 100.0 75.6 35.1 33.5 46.9 28.7 100.0 20.2
lit 87.1 89.6 97.1 58.7 97.6 52.9 22.2 21.0 19.1 18.2 96.9 16.2

ady 87.1 90.8 89.3 64.0 90.9 58.9 27.1 27.6 28.0 30.4 91.3 22.5
dut 90.9 93.0 93.3 61.1 96.2 58.5 18.7 18.2 16.4 19.8 97.1 12.5
jap 77.8 85.7 97.3 76.2 99.8 64.0 7.3 7.4 7.6 7.1 99.6 5.3
rum 64.0 73.5 59.3 33.1 48.9 29.1 13.6 12.1 10.7 13.8 51.3 10.9
vie 90.0 88.3 99.6 82.7 100.0 75.8 4.4 3.6 4.7 1.1 100.0 1.1

Avg. 80.4 85.5 85.4 62.1 81.0 54.4 16.9 16.5 16.9 16.0 80.1 11.2

Table 3: Test set results for WER; all models are described in the text. The best performance (excluding the oracle)
is shown in bold.

3.1 Model Architecture

Our model, cf. Figure 1, is a hybrid of a transformer
(Vaswani et al., 2017) and a pointer-generator net-
work (See et al., 2017) with a separate mapping
function between vocabularies. Like the trans-
former, it is an auto-regressive encoder-decoder
architecture with stacked self-attention and fully
connected encoder and decoder layers. The de-
coder, in addition, employs multi-head attention
over the encoder outputs. We further add a compo-
nent which outputs the probability of generating a
token, as opposed to copying an element from the
source. Following See et al. (2017), the generation
probability pgen ∈ [0, 1] at time step t is computed
as:

pgen = σ(wT
c ct + wT

s st + wT
x xt + bptr) (1)

ct represents the context vector at step t, which
is the sum of the embedded encoder hidden states
h, weighted by the multi-head attention weights a:
ct =

∑
i a

t
ihi. st and xt are the hidden respresen-

tation in the last decoder layer and, respectively, the
decoder input. wT

h∗ , wT
s , wT

x are learned weights
and bptr is a learned bias vector.

We also account for the fact that our architecture
should handle disjoint source and target vocabu-
laries, denoted as as Σsrc and Σtrg. To enable the
use of a pointer mechanism across vocabularies,
we define a mapping function m from the source
vocabulary to the target vocabulary:

m : Σsrc → Σtrg (2)

Our model then computes the probability of an
output character k ∈ Σtrg for an input sequence
g ∈ Σ∗

src at each time step t as:

P (k) = pgenPΣtrg(k) + (1− pgen)
∑

i:k=m(gi)

ati (3)

PΣtrg(k) represents the probability of k to be gen-
erated by the decoder in the standard way, given
the input sequence and previously generated tokens.
It is weighted by the generation probability pgen.
The second term represents the attention over the
encoder outputs, which is multiplied by 1− pgen,
the copy probability. The target indices receiving
probability are found with the mapping m.

3.2 Source-to-Target Vocabulary Mapping

We obtain the mapping function m as follows.
Alignment. We first compute an alignment be-

tween source and target tokens in the training files
for all languages and settings with the GIZA++
aligner (Och and Ney, 2003), employing the de-
fault parameters. The alignment is computed by a
hidden Markov model.

Mapping. We then construct a mapping be-
tween characters in the source and target vocabu-
laries by assigning the target token with the highest
type-level alignment probability to each source to-
ken. The mapping function m can map multiple
source tokens to the same target token. We cre-
ate separate mapping functions for all languages
and settings in our experiments as they change for
different training sets.
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Low-resource High-resource

PG-T T LSTM IM Sub PG-T T LSTM IM Sub

arm 19.0 23.6 21.3 14.4 12.3 3.9 3.5 3.5 3.3 12.1
bul 30.9 33.6 23.1 19.2 25.6 7.1 6.5 5.9 5.7 25.7
fre 40.2 44.1 41.9 22.0 53.7 1.9 2.0 1.3 1.8 52.8
geo 18.9 24.0 13.3 11.8 8.7 4.8 5.2 5.1 4.6 8.2
gre 26.7 29.2 24.0 10.3 18.5 2.8 2.9 3.3 3.2 18.0
hin 26.9 35.7 31.6 29.2 23.4 2.0 2.0 1.5 1.4 22.1
hun 24.6 33.1 27.4 10.0 17.8 1.4 1.3 1.2 1.2 17.5
ice 43.0 44.7 42.7 17.9 30.4 2.8 2.4 2.4 2.5 29.6
kor 65.1 69.0 78.3 23.8 52.7 10.4 9.9 16.8 4.7 50.4
lit 39.5 43.2 53.1 8.8 37.4 4.2 3.9 3.6 2.9 36.9

ady 37.3 42.1 33.1 18.2 46.9 6.8 6.6 6.5 7.2 44.8
dut 42.6 44.5 40.8 15.1 37.0 3.6 3.6 2.9 3.7 37.0
jap 34.1 41.4 54.6 26.1 48.4 1.9 2.2 1.8 1.7 50.6
rum 21.4 26.0 14.1 8.5 11.4 3.1 2.7 2.5 3.7 10.7
vie 44.5 45.1 65.1 27.2 65.4 1.5 1.6 1.5 0.3 58.8

Avg. 34.3 38.6 37.6 17.5 32.6 3.9 3.8 4.0 3.2 31.7

Table 4: Test set results for PER; all models are described in the text. The best performance is shown in bold.

Our system is built on the transformer imple-
mentation by Wu et al. (2020), and our final code
is available on github.1

4 Experiments

4.1 Data, Metrics, and Baselines

Data. We use the G2P data from Gorman et al.
(2020), which covers a set of 15 typologically di-
verse languages. We construct our low-resource
experiments by taking the first 100 instances from
each training set. For the high-resource experi-
ments, we leverage all available data. Development
and test sets are the same in both settings. Table 1
shows the number of characters in Σsrc and Σtrg

according to the training set, as well as the num-
ber of characters shared between both. We can see
that, for many languages, the overlap is 0, i.e., the
vocabularies are disjoint sets.

Metrics. We use word error rate (WER), i.e.,
the percentage of words that are correct, as our
main metric. We also measure the phoneme error
rate (PER), i.e., the percentage of correctly gener-
ated phonemes. We use the SIGMORPHON 2020
Task 1 (Gorman et al., 2020) evaluation script2 to
calculate these.

Baselines. We compare our model (PG-T)
to four baselines: T is a vanilla transformer with
hyperparameters identical to those in PG-T for
the high-resource setting (following Gorman et al.
(2020); listed in Table 2). For the low-resource set-

1https://github.com/nala-cub/g2p-PG-T
2https://github.com/sigmorphon/2020/

blob/master/task1/evaluation/evaluate.py

ting, all hyperparameters remain the same, except
the batch size which is set to 32. Thus, T corre-
sponds to our model, but without the pointing mech-
anism. IM is the neural transducer trained with im-
itation learning detailed in Section 2 (Makarov and
Clematide, 2020). LSTM is the LSTM encoder-
decoder baseline of SIGMORPHON 2020 Task 1
(Gorman et al., 2020). The output of Sub is the
sequence of target tokens corresponding to each
source token, according to m. Finally, O* is not
a baseline but an oracle model that combines the
best outputs of PG-T and IM.

4.2 Results

Low-resource G2P. Table 3 shows the WER of
our model and all baselines on the test set. In the
low-resource setting, PG-T outperforms all base-
lines except for IM, with an average increase of
0.6 over Sub, the second best baseline after IM. It
further improves over T by 5.1 WER, which shows
the effectiveness of our pointer extension. While
the average improvement over Sub is modest, PG-T
shows large performance gains over Sub for indi-
vidual languages such as Japanese. Similarly, for
Hindi, our model outperforms IM by 7.3 WER.

High-resource G2P. In the high-resource set-
ting, PG-T obtains an average performance of 16.9
WER. T and IM slightly outperform PG-T: T by
0.4 WER and IM by 0.9 WER. PG-T and LSTM
reach the same average WER. Sub improves mini-
mally as compared to the low-resource setting and
is vastly outperformed by all other approaches. We
show PER results for the low-resource and the high-

https://github.com/nala-cub/g2p-PG-T
https://github.com/sigmorphon/2020/blob/master/task1/evaluation/evaluate.py
https://github.com/sigmorphon/2020/blob/master/task1/evaluation/evaluate.py
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resource setting in Table 4. All development set
results for both WER and PER can be found in the
appendix.

Figure 2: Performance for increasing amounts of train-
ing data on the development set.

Figure 3: Performance for increasing amounts of train-
ing data on the test set.

Learning curve. We also look at the learning
curves for increasing dataset sizes (Figures 2, 3)
and compare our model to the two baselines T and
Sub, whose main ideas PG-T combines. Compared
to T, PG-T shows the biggest improvements for
100 training examples. The performance differ-
ence between the two gets smaller as the size of
the dataset increases. However, for 1000 training
examples, PG-T still performs slightly better than
T. With regards to Sub, our model outperforms it
slightly for 100 examples, but this gap widens very
quickly, due to Sub’s inability to learn much from
the training data. Overall, we show that, over a
varied amount of data in the low-resource setting,
our model outperforms both baselines and, thus,
that our combination of the two is effective.

While our model does not perform as well as
IM, our strongest baseline, we demonstrate that it
provides valuable complementary information. In
both the low-resource and the high-resource setting
and across all languages, an oracle combination
of PG-T with IM yields better results than either

CCO UCO-PG-T UCO-IM CMO

arm 115 69 78 127
bul 40 23 146 52
fre 36 42 122 43
geo 91 59 124 118
gre 64 28 158 77
hin 48 79 54 53
hun 122 22 175 131
ice 47 17 132 56
kor 2 2 104 3
lit 33 15 168 39
ady 37 18 128 45
dut 26 10 158 30
jpn 40 51 61 43
rum 150 16 144 165
vie 21 34 77 22

Avg. 58.13 32.33 121.93 66.9

Table 5: Output comparison of PG-T and IM for the
development set in the low-resource setting.

CCO UCO-PG-T UCO-IM CMO

arm 354 21 19 397
bul 257 43 34 294
fre 385 16 19 401
geo 299 38 35 365
gre 349 19 34 385
hin 403 14 15 418
hun 425 5 11 431
ice 384 13 20 403
kor 288 28 69 339
lit 326 14 38 364
ady 313 28 26 376
dut 346 28 27 378
jpn 410 7 8 430
rum 380 11 14 419
vie 422 5 19 425

Avg. 356.1 19.3 25.87 388.33

Table 6: Output comparison of PG-T and IM for the
development set in the high-resource setting.

model on its own. We will discuss this in the next
section.

5 Analysis

5.1 Oracle

O* in Table 3 is a hypothetical oracle that would
be the result of combining the best outputs of PG-T
and IM. The results in Table 3 show that the oracle
performs far better than IM, by 7.7 WER and 4.8
WER in the low-resource and the high-resource
setting, respectively. This indicates that there are
differences in the behaviour of the two models, and
that they provide complementary information. We
will discuss the differences in the models’ predic-
tions next.
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5.2 Output Comparisons

In this subsection, we go over the output compar-
isons in Tables 5 and 6. In those tables, we compare
the phoneme outputs generated by PG-T and IM.
In particular, we look at the number of (1) cor-
rect outputs both models have in common (CCO),
(2) correct outputs that are unique to each model
(UCO-PG-T and UCO-IM), and (3) outputs both
models have in common (CMO), independent of if
they are correct or incorrect.

Tables 5 and 6 compare the outputs of PG-T and
IM in the low-resource and the high-resource set-
ting, respectively. The average CCO count is 58.13
in the low-resource setting and 356.1 in the high-
resource setting (out of a total of 450 data points),
showing that part of what is learned is shared be-
tween both models. However, in the high-resource
setting, the average UCO counts are 19.3 for UCO-
PG-T and 25.87 for UCO-IM, respectively. This
indicates that, while their performances are simi-
lar, the models are learning some complementary
information. This is reflected in the low-resource
setting as well: even though IM performs better on
average, PG-T still learns relevant complementary
information, with an average of 32.33 UCO-PG-T.
We find the same for the individual languages in
our experiments.

5.3 Error Analysis

As a case study, we further perform an analysis
of the errors on the Hindi development set in the
high-resource setting.3 For this particular combina-
tion of language and dataset size, LSTM performs
best with 4.7 WER, followed by IM with 7.1 WER,
PG-T with 7.3 WER, and T with 8.6 WER. Sub per-
forms badly with 68.2 WER. Almost all errors gen-
erated by the high-performing models (IM, LSTM,
PG-T and T) center around the halant4 morpheme
in the Hindi script, which indicates the lack of an
inherent vowel following a consonant. Its phoneme
complement is the schwa5, which indicates an un-
stressed vowel. LSTM and T behave identically on
most examples, while PG-T often behaves in the
opposite way, i.e., in cases where LSTM generates
a schwa, PG-T does not, and vice versa. PG-T and
IM, however, have an even split among examples
where either model makes a schwa-based error.

3WER and PER of all models on the development sets for
all languages are shown in Table 7 in the appendix.

4https://en.wiktionary.org/wiki/halant
5https://en.wiktionary.org/wiki/schwa

6 Conclusion

We introduced a pointer-generator transformer for
sequence-to-sequence tasks with disjoint vocab-
ularies, and evaluated it on G2P in 15 different
languages. While our model did not perform as
well as our strongest baseline, we showed that our
model learns complementary information to the lat-
ter, thus succeeding on examples the baseline fails
on. We further demonstrated that combining the
best outputs of our pointer-generator transformer
and the baseline results in a lower WER on low-
resource G2P than each individual model. We leave
the development of a system that can combine the
two G2P systems for future work.
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Appendix B: Development Set Results

Low-resource High-resource

PG-T T LSTM IM Sub O* PG-T T LSTM IM Sub O*

arm 59.1 70.7 74.0 57.1 56.2 41.8 16.5 16.0 14.9 17.1 56.7 3.8
bul 86.0 88.4 84.7 58.7 92.7 53.6 33.3 32.3 28.4 35.3 90.4 25.8
fre 82.7 86.6 92.7 64.9 97.6 55.6 10.9 10.2 7.1 10.2 97.3 6.7
geo 66.7 76.4 63.6 52.2 56.4 39.1 25.1 26.1 21.1 25.8 51.1 17.3
gre 79.6 82.4 82.7 50.7 75.3 44.5 18.2 18.1 13.6 14.9 74.7 10.7
hin 71.8 78.7 79.8 77.3 72.2 59.8 7.3 8.6 4.7 7.1 68.2 4.0
hun 68.0 81.2 80.9 34.0 75.1 29.1 4.4 4.4 3.3 3.1 74.7 2.0
ice 85.8 89.1 93.3 60.2 93.1 56.5 11.8 11.8 9.3 10.2 93.1 7.3
kor 99.1 99.4 100.0 76.4 100.0 76.0 29.8 26.5 41.1 20.7 100.0 14.5
lit 89.3 90.2 97.8 55.3 98.0 52.0 24.4 22.7 16.9 19.1 98.0 16.0

ady 87.8 88.0 88.7 63.3 91.3 59.3 24.2 24.6 22.7 24.7 90.4 18.5
dut 92.0 92.4 94.4 59.1 96.4 56.9 16.9 16.6 12.2 17.1 99.1 10.9
jap 79.8 85.0 94.7 77.6 99.3 66.2 7.3 7.0 6.7 7.1 100.0 5.6
rum 63.1 70.1 61.3 34.7 52.9 31.1 13.1 12.6 9.3 12.4 54.9 10.0
vie 87.8 88.1 98.4 78.2 100.0 70.7 5.1 4.5 4.2 2.0 100.0 0.9

Avg. 79.9 84.5 85.8 60.0 83.8 52.8 16.6 16.1 14.4 15.1 83.2 10.3

Table 7: Development set results for WER; all models are described in the text. The best performance (excluding
the oracle) is shown in bold.

Low-resource High-resource

PG-T T LSTM IM Sub PG-T T LSTM IM Sub

arm 18.4 23.5 22.5 14.2 12.6 3.4 3.4 2.9 3.4 12.6
bul 31.4 35.4 26.4 15.9 25.4 7.6 7.2 6.2 7.3 25.1
fre 40.9 44.8 44.6 21.6 58.2 2.8 2.6 1.8 2.9 57.5
geo 19.8 23.8 14.7 11.6 10.1 4.9 5.2 4.5 4.6 9.8
gre 27.5 29.3 24.6 11.1 20.4 3.6 3.4 2.7 2.7 20.6
hin 28.6 35.6 32.8 29.0 23.3 2.1 2.3 1.4 1.6 22.0
hun 23.3 32.5 26.8 8.4 22.7 0.9 1.0 0.6 0.7 22.4
ice 44.1 44.8 42.6 17.6 33.5 3.1 2.8 2.0 2.4 31.1
kor 68.0 72.2 78.5 24.3 53.1 7.6 7.6 16.6 3.7 51.2
lit 40.7 42.4 56.0 8.7 46.6 4.6 4.4 3.4 3.1 45.7

ady 37.9 41.9 32.6 19.9 48.0 6.0 6.4 5.7 5.9 45.0
dut 42.3 45.4 41.7 14.7 39.7 3.4 3.5 2.1 3.4 43.0
jap 34.0 40.0 55.0 28.8 48.4 2.5 2.4 2.1 1.9 49.8
rum 21.1 25.4 15.0 9.2 12.4 3.3 3.3 2.3 3.1 11.9
vie 46.5 44.4 63.8 26.7 66.9 1.5 1.6 1.3 0.4 63.7

Avg. 35.0 38.8 38.5 17.5 34.8 3.8 3.8 3.7 3.1 34.1

Table 8: Development set results for PER; all models are described in the text. The best performance is shown in
bold.


