Recent Developments

Joss Moorkens & Yota Georgakopoulou

MT Summit XVI

Table of contents

- The TraMOOC Project
- NMT systems for TraMOOC
- Comparative Evaluation of Neural MT and Phrase-Based SMT
- Crowdsourced evaluations (explicit & implicit)
- Task-based evaluations

Joss Moorkens, Sheila Castilho, Federico Gaspari, Andy Way (DCU/ADAPT) – Ireland Yota Georgakopoulou, Maria Gialama (Deluxe Media) – Greece/United Kingdom Rico Sennrich, Antonio Valerio Miceli Barone (University of Edinburgh) - United Kingdom Valia Kordoni, Markus Egg, Maja Popović (Humboldt University of Berlin) - Germany Vilelmini Sosoni (Ionian University, Corfu) - Greece Iris Hendrickx (Radboud University Nijmegen) – The Netherlands Menno van Zaanen (Tilburg University) – The Netherlands

9月2017年

Our Project

- Reliable Machine Translation (MT) for Massive Open Online Courses (MOOCs)
- The main expected outcome is a highquality semi-automated machine translation service for educational text data on a MOOC platform
- Open educational platform for MT and a replicable process for creating such a service

9月2017年

Joss Moorkens & Yota Georgakopoulou

Our Project

- Create domain-specific SMT NMT engines – 3 iterations
- Crowdsourced evaluation of MT quality
- Explicit and implicit evaluation stages
- Task-based evaluations
- Free and premium platform due 2018

9月2017年

What? Where? How?

- Make existing monolingual educational material available to speakers of other languages
 - o multi-genre and heterogeneous textual course material
 - Subtitles video lectures
 - assignments
 - tutorial text
 - social web text posted on MOOC blogs and fora (questions/answers/comments)
- Reusing existing linguistic infrastructure and MT resources extending existing models
- Test on a MOOC platform and on the VideoLectures.Net digital video lecture library

9月2017年

Joss Moorkens & Yota Georgakopoulou

The Target Audience

- Users who want access to open online education that is not constrained by language barriers.
- MOOC providers, who wish to offer high-quality, integrated multilingual educational services.
- Machine Translation developers, who need a platform for promoting, testing and comparing their solutions.
- Language Technology Engineers, who want access to accurate and wide-coverage linguistic infrastructure, even for less widely spoken languages.

Joss Moorkens & Yota Georgakopoulou

9月2017年

Proceedings of MT Summit XVI, Vol.2: Users and Translators Track

The Consortium

- 10 partners from 6 European countries
 - Humboldt University (Coordinator)
 - Dublin City University
 - University of Edinburgh
 - Ionian University
 - Radboud University
 - Tilburg University
 - Deluxe Media Europe LTD
 - Knowledge 4 All Foundation LTD
 - EASN Technology Innovation Services
 - o (Iversity) HPI

9月2017年

Joss Moorkens & Yota Georgakopoulou

Which MT paradigm?

- Project had originally planned to compare Syntax-Based and Phrase-Based SMT
- Comparative Evaluation of Neural MT (Nematus) and Phrase-Based SMT (Moses)
- English to German, Greek, Portuguese, and Russian
- MT engines trained on open and educational data

Joss Moorkens & Yota Georgakopoulou

9月2017年

NMT at WMT 2017

		Chinese→	English
#	Ave %	Ave z	System
1	73.2	0.209	SogouKnowing-nmt
	73.8	0.208	uedin-nmt
	72.3	0.184	xmunmt
4	69.9	0.113	online-B
	70.4	0.109	online-A
	69.8	0.079	NRC
7	67.9	0.023	jhu-nmt
	66.9	-0.016	afrl-mitll-opennmt
	67.1	-0.026	CASICT-cons
	65.4	-0.058	ROCMT
11	64.3	-0.107	Oregon-State-Uni-S
12	61.7	-0.209	PROMT-SMT
	61.2	-0.265	NMT-Ave-Multi-Cs
	60.0	-0.276	UU-HNMT
	59.6	-0.279	online-F
	59.3	-0.305	online-G
		English→	Chinese
#	Ave %	Ave z	system
1	73.2	0.208	SogouKnowing-nmt
	72.5	0.178	uedin-nmt
	72.0	0.165	xmunmt
4	69.8	0.065	online-B

#	Ave %	Ave z	system
1	78.2	0.213	online-B
	76.6	0.169	online-A
	76.6	0.165	KIT
	76.6	0.162	uedin-nmt
	75.8	0.131	RWTH-nmt-ensemb
	74.5	0.098	SYSTRAN
7	72.9	0.029	LIUM-NMT
8	70.2	-0.058	TALP-UPC
	69.8	-0.072	online-G
	68.6	-0.103	C-3MA
11	64.1	-0.260	online-F
	1	English \rightarrow	German
#	Ave %	English \rightarrow Ave z	German system
#			system
_	Ave %	Ave z	system
1	Ave %	Ave z 0.257	system LMU-nmt-reranked
1	Ave % 72.9 70.2	Ave z 0.257 0.158	system LMU-nmt-reranked online-B
1	Ave % 72.9 70.2 69.8	Ave z 0.257 0.158 0.139	system LMU-nmt-reranked online-B uedin-nmt
1	72.9 70.2 69.8 68.9	Ave z 0.257 0.158 0.139 0.092	system LMU-nmt-reranked online-B uedin-nmt SYSTRAN
1	72.9 70.2 69.8 68.9 66.9	Ave z 0.257 0.158 0.139 0.092 0.035	system LMU-nmt-reranked online-B uedin-nmt SYSTRAN LMU-nmt-single
1	72.9 70.2 69.8 68.9 66.9 66.7	Ave z 0.257 0.158 0.139 0.092 0.035 0.022	system LMU-nmt-reranked online-B uedin-nmt SYSTRAN LMU-nmt-single KIT

9月2017年

Joss Moorkens

NMT in TraMOOC

- Main strength of NMT is grammatical improvements, but possible degradation in lexical transfer (Neubig, Morishita, Nakamura 2015)
- Output conditioned on full source text and target history
- Some problems:
 - Networks have fixed vocabulary → poor translation of rare/unknown words
 - o Models are trained on parallel data; how do we use monolingual data?
 - Recent solutions:
 - Subword models allow translation of rare/unknown words (Sennrich, Birch, Haddow 2016a)
 - Train on back-translated monolingual data (Sennrich, Birch, Haddow 2016b)

9月2017年

NMT vs. PB-SMT

- 4 datasets (250 segments) from EN MOOC data translated into German, Greek, Portuguese, and Russian using TraMOOC engine prototype 2
- PB-SMT/NMT mixed, random task order
- 2-4 professional translators in Deluxe Media
- Detailed results presented by Sheila Castilho in Research Track and in proceedings of MT Summit XVI

9月2017年

Joss Moorkens & Yota Georgakopoulou

Machine Translation Systems

- PBSMT
 - Moses, MGIZA is used to train word alignments, and KenLM is used for language model training and scoring (Huck and Birch 2015)
- NMT Tools Used:
 - Nematus: https://github.com/rsennrich/nematus
 - Amun: https://github.com/amunmt/amunmt (for deploying the models)
- Domain adaptation:
 - Models initially trained on all available data, then continually trained on in-domain data, which effectively adapts the system to the domain NMT

9月2017年

NMT/SMT Fluency

• For all 4 language pairs:

FLUENCY
1. No fluency
2. Little fluency
3. Near native
4. Native

	EN-D	E	EN-E	L	EN-P	Т	EN-R	IJ
% scores assigned 3-4 fluency value (SMT, NMT)	54.2	67.6	65	75	73.8	79.5	60.2	75.1
% scores assigned 1-2 fluency value (SMT, NMT)	45.8	32.4	35	25	26.2	20.5	39.8	24.9

9月2017年

Joss Moorkens & Yota Georgakopoulou

NMT/SMT Adequacy

For all 4 language pairs:

ADEQUACY
1. None of it
2. Little of it
3. Most of it
4. All of it

	EN-D	E	EN-E	L	EN-P	Т	EN-RI	J
% scores assigned 3-4 adequacy value (SMT, NMT)	73.5	66.4	89	89	94.7	97.1	72.8	77.5
% scores assigned 1-2 adequacy value (SMT, NMT)	26.5	33.6	11	11	5.3	2.9	27.2	22.5

9月2017年

NMT/SMT PE Temporal Effort

Words per second (all PEs)	SMT	NMT
German	0.21	0.22
Greek	0.22	0.24
Portuguese	0.29	0.30
Russian	0.14	0.14

Previous work by Moorkens & O'Brien (2015) found an average speed of 0.39 WPS for EN-DE professional PE.

SMT, NMT	Ger	man	Gre	eek	Portug	uese	Russ	sian
POST-EDITED SENTENCES (CHANGED)	940	813	928	863	874	844	930	848
UNCHANGED SMT, NMT	60	187	72	137	126	156	70	152

9月2017年

Joss Moorkens & Yota Georgakopoulou

NMT/SMT Summary

- In this study, using these language pairs, in this domain...
- · Fluency is improved, word order errors are fewer using NMT
- Fewer segments require editing using NMT
- NMT produces fewer morphological errors
- No clear improvement for omission or mistranslation using NMT
- NMT for production: no great improvement in post-editing throughput
 - "Errors are more difficult to spot"
- Based on the pace of improvement of NMT however, TraMOOC moved to NMT exclusively

9月2017年

Underway: Crowdsourced explicit evaluations

Using the Crowdflower platform for all 11 language pairs:

- Clear instructions available during the entire translation procedure.
- Test Questions to validate the accuracy of the participants' input.
- Post-editing question should be displayed first, hiding the rest of the questions to avoid influencing the contributors' judgment.
- Fluency for ST and TT, adequacy and error mark-up for TT
- Multiple error mark-up supported.

For QA and language coverage, 5-10% expert evaluation by DME

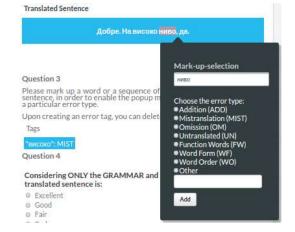
9月2017年

Joss Moorkens & Yota Georgakopoulou

Crowdsourced explicit evaluations: post-editing

- Post-editing (expert and crowd): "Make changes in the translation if there are errors in grammar, meaning or spelling"
 - Basic rules regarding spelling apply. If there are any typos or slight grammatical/syntactic mistakes in the original, please fix them in the translation
 - Do not implement corrections for stylistic reasons only
 - No need to restructure sentences only to improve the natural flow of the text

9月2017年



Crowdsourced explicit evaluations: error annotation

 Change the mark-up error type list (for expert group) so as to map onto DQF-MQM typology: Addition, Mistranslation, Omission, Untranslated, Function Words, Word Form, and

Word Order

9月2017年

Joss Moorkens & Yota Georgakopoulou

Crowdsourcing – Issues & solutions

- 1. Unforeseen delays:
 - Crowdsourcing contracts
 - Change of MOOC partner
- 2. Crowd behaviour issues

Crowd behaviour issue	Solution(s)
Malicious behaviour	Constant monitoring, manual and automated
Use of Google Translate	Source language text is an image. Manual check with Google Translate feature in Chrome.
BR performing EU-PT tasks	Target specific countries
No change, yet low score on quality	Popup alerts
Poor coverage/ low contributor flow	Increase HIT payment; expand geographical reach & channel; decrease contributor level; decrease text question difficulty

9月2017年

Crowdsourcing – Issues & solutions

Malicious behaviour	Solutions
Blank translations	Change tactics for test questions, binary evaluation answers, distributed randomly
Random symbols	Increase the minimum time per page
Repetitive answers	Increase contributors' level
Other language characters	Constant manual and script-based (automated) monitoring: Python scripts for blanks, Latin characters in non-Latin languages, etc.
Multiple malicious accounts	Customised alerts scripts (blanks, length, time per page, etc.); flag malicious contributors; ban specific channels

9月2017年

Joss Moorkens & Yota Georgakopoulou

Underway: Crowdsourced implicit evaluations

<u>Implicit evaluation</u>: Annotation of entities, topics and terms in the source and target texts

 Generate a thesaurus of tag-sets that allows for the implicit evaluation of MT output through the comparison of the source

and target tag-sets

Activities:

- 1. Entity annotation via Wikification
- 2. Topic & sentiment annotation

9月2017年

To come: Task-based evaluations

- openHPI European MOOC platform plus TraMOOC API
 - Launched by the Hasso Plattner Institute (HPI) for Digital Engineering in Potsdam, Germany
- Users will be able to switch between the original course language and automatically translated content
- Users will be able to request translation for specific forum contributions
- Feedback via surveys on the translation content and the integration of the translation tools into the openHPI platform

9月2017年

Joss Moorkens & Yota Georgakopoulou

ありがとうございました

ありがとう

9月2017年

