
Is there a place for logic in

recognizing textual entailment?

Johan Bos1

From a purely theoretical point of view, it makes sense to approach
recognizing textual entailment (RTE) with the help of logic. After all,
entailment matters are all about logic. In practice, only few RTE sys-
tems follow the bumpy road from words to logic. This is probably be-
cause it requires a combination of robust, deep semantic analysis and
logical inference—and why develop something with this complexity
if you perhaps can get away with something simpler? In this article,
with the help of an RTE system based on Combinatory Categorial
Grammar, Discourse Representation Theory, and first-order theorem
proving, we make an empirical assessment of the logic-based approach.
High precision paired with low recall is a key characteristic of this sys-
tem. The bottleneck in achieving high recall is the lack of a systematic
way to produce relevant background knowledge. There is a place for
logic in RTE, but it is (still) overshadowed by the knowledge acquisi-
tion problem.

1 Introduction

Recognizing textual entailment—predicting whether one text entails
another—is a task that embraces everything that needs to be accom-
plished in natural language understanding. In the past, textual entail-
ment was limited to the domain of formal semanticists, who used it as
an illustrational device to show that certain natural language inferences
hold or not (Gamut 1991; Chierchia and McConnell-Ginet 1991; Kamp
and Reyle 1993; Heim and Kratzer 1998). By now, however, recognizing
textual entailment (RTE, henceforth) is viewed by many as a key task
in the area of natural language processing (Dagan et al. 2006).
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In the early developments of approaches to RTE it soon became clear
that RTE is an extremely di�cult task: simple baseline systems based
on textual surface features are hard to outperform by more sophisti-
cated systems. Not only does one need a robust component that gives
an accurate analysis of text, the use of external resources to inform the
inference process are also essential to achieve a good performance on
the standard RTE data sets.

Various approaches to RTE have been proposed, ranging from “shal-
low” methods working directly on the surface features of texts, to
“deep” methods using sophisticated linguistic analyses. The formalism
proposed in this article belongs in the latter category, and works by de-
termining textual inferences on the basis of deductive logical inference.
The idea is simple and rooted in the formal approaches to natural lan-
guage semantics mentioned before: we translate the texts into logical
formulas, and then use (classical) logical inference to find out whether
one text entails the other or the other way around, whether they are
consistent or contradictory, and so on.

Even though this idea itself sounds simple, its execution is not. In
this article we describe a framework for textual inference based on
first-order logic and formal theory. It comprises a system for RTE,
Nutcracker, developed by myself over the years since the start of the
RTE challenge (Bos and Markert 2005).2 The input of this system is
a text, and an hypothesis (another text). The output of the system is
an entailment prediction for the hypothesis given the text. The system
makes use of external theorem provers to calculate its predictions.

Performance on RTE data sets is measured in terms of recall (the
number of correctly predicted entailments divided by the total number
of text–hypothesis pairs given to a system) and precision (the number
of correctly predicted entailments divided by the number of predictions
made by the system). RTE systems based on logical inference tend to be
low in recall and high in precision. This means that, currently, such sys-
tems ideally can play an important role in ensemble-based architectures
of RTE systems, because they could complement simpler surface-based
systems performing with higher recall and low precision.

The logical inference approach for RTE has been criticized by other
RTE practitioners with respect to its low recall. However, in doing so,
not always the correct explanation is given. MacCartney et al. (2006),
for instance, write “few problem sentences can be accurately trans-
lated to logical form” when discussing Bos and Markert (2005), and al-

2The Nutcracker system has been briefly described by others (Balduccini et al.
2008), but never been the focus of publication itself. The source code of the system
can be downloaded via the website of the C&C tools (Curran et al. 2007).
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though one could debate the notion of accurate translation, it is doubt-
ful whether this is the main reason for the lack of recall in RTE systems
using deductive inference. In fact, one of the aims of this article is to
show that logical inference is a promising approach to RTE, despite its
limitations.

The rest of this article is organized as follows. First we explain what
we mean by semantic interpretation in the context of RTE, and what
formalism is useful for doing so, both from a theoretical and practi-
cal perspective. Then we make the link to (modal) first-order logic, in
preparation for the inference tasks required for RTE. We then show
which inference tasks are useful for the RTE task, and point out that
supplementary background knowledge is required to increase recall. Fi-
nally we present the details of the Nutcracker system, a complete imple-
mentation of an RTE system based on logical reasoning, and will return
to address the issue why RTE systems based on logical inference show
low recall, and what can be done about it.

2 Semantic Interpretation

The challenge of translating ambiguous text into unambiguous logical
formulas is usually performed by a detailed syntactic analysis (with the
help of a parser) followed by a semantic analysis that produces a logical
form based on the output of the syntactic parser. For the purposes
of RTE based on logical inference, the linguistic analysis needs to be
reasonably sophisticated and at the same time o↵er high coverage. Its
analysis needs to be sophisticated because a shallow analysis would not
support the required logical inferences and hence sacrifice precision in
performance. It needs to be robust and o↵er wide coverage to achieve
a high recall in performance. As a practical rule of thumb, the loss in
coverage should outweigh the gain in performance using deep linguistic
analysis.

Due to the development of tree-banks in the past decades, many
high-performing statistical parsers are available that o↵er broad cover-
age syntactic analysis for open-domain texts. The parser employed in
our RTE system, the C&C parser (Clark and Curran 2004), combines
speed and robustness with detailed syntactic analyses in the form of
derivations of categorial grammar (Steedman 2001). Categorial gram-
mar o↵ers a neat way to construct formal meaning representations with
the help of the �-calculus (Bos 2008). Each basic syntactic category is
associated with a basic semantic type, and using the recursive defi-
nition of categories and types, this also fixes the semantic types of
complex syntactic categories. This results in a strongly lexically-driven
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approach, where only the semantic representations have to be provided
for the lexical categories. Function application will take care of the
rest and produce meaning representations for phrases beyond the to-
ken level, and eventually a complete meaning representation for the
entire sentence will be produced.

Next we arrive at the choice of meaning representation language.
This language needs to be capable of supporting logical inference, as
well as being able to adequately describe natural language meaning.
There is an uneasy and unsolved tension between expressiveness on
the one hand and e�ciency on the other. The formalisms proposed by
linguists and philosophers are usually not computationally attractive—
most of them are based on higher-order formalisms and exceed the ex-
pressive power of first-order logic, and theorem proving for first-order
logic is already undecidable (more precisely, first-order logic is known
to be semi-decidable). Nevertheless, there are powerful theorem provers
for first-order logic available developed by the automated deduction re-
search community. Hence, given the state-of-the-art in automated rea-
soning, the choice of first-order logic as representation language seems
a good compromise between the ability to perform logical inferences
and the expressive power for representing meaning.3

The standard first-order formula syntax is not a convenient format
for meaning analysis. Instead we use a variant of Discourse Representa-
tion Theory’s DRSs, Discourse Representation Structures, graphically
visualized as boxes (Kamp and Reyle 1993). DRT o↵ers a representa-
tional way to deal with many linguistic phenomena in a principled way,
including quantifiers, pronouns, negation, presupposition and events.
Diverging from standard DRT, we adopt a neo-Davidsonian way for de-
scribing events, because this results in a lower number of background
knowledge rules (meaning postulates) required to draw correct infer-
ences.

Another issue worth emphasizing is that we work with fully specified
logical forms, despite many e↵orts in the past twenty years to produce
underspecified semantic interpretations, in particular with respect to
scope of quantifiers and other scope-bearing operators. Semantic under-
specification is not a feasible option, because it is unclear how theorem
provers would work with underspecified representations — they expect
ordinary first-order formulas as input. Even when scope is resolved with
a “naive” algorithm following mostly the surface order of scope-bearing

3Note that, in our framework, �-calculus, a higher-order logic, only plays a role
in meaning composition, and is not used for the inference tasks required for tex-
tual entailment prediction. This is basically the same strategy as put forward by
Blackburn and Bos (2005).
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operators, no harm seems to be done to the performance of RTE tasks.
In fact, we have never encountered an example in the existing RTE
data sets where correct scope resolution mattered for making a correct
textual entailment prediction.

In sum: categorial grammar gives us a systematic and robust way to
produce semantic representations from text; fully resolved first-order
representations are a good practical choice for the basis of logical in-
ference. In the next section we present how we produce such logical
forms.

3 Semantic Representations and First-Order Logic

The RTE data sets consists of pairs of texts, and once we have es-
tablished a method to produce semantic representations (DRSs in our
case) for such pairs, we arrive at the problem of translating such DRSs
into formulas of first-order logic (FOL). The result from this transla-
tion, FOL formulas, are given to a theorem prover to perform various
inference tasks. One of them, the most important one, is to find out
whether the text (T) entails the hypothesis (H). If the theorem prover
then succeeds in finding a proof, we predict an entailment for this RTE
pair. In this section we will discuss this translation, motivate the choice
of theorem provers, and present basic results.

The standard translation from DRS to FOL (Muskens 1996, Kamp
and Reyle 1993) is not suitable to RTE because it does not take modal-
ities and embedded propositions into account. We will explain why this
is a problem with the help of some examples. In Ex. 1, H is not en-
tailed, because if John thinks that Mary smokes, it does not follow
from this information that Mary does in fact smoke. Put di↵erently, H
contains new information, namely the fact that Mary smokes, which is
information that cannot be deduced from T.

Example 1: H is informative wrt T

T: John thinks that Mary smokes.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

H: Mary smokes.

A more general observation for attitude verbs like think and believe
is: if X thinks/believes that P, then it doesn’t mean that P. In con-
trast, factive verbs like regret and know result in an entailment of their
propositional complement (Ex. 2).

These are hand-crafted examples to illustrate the point, but note
that real-world examples of modal contexts are abundant. Ex. 3 below
shows an example from the RTE data set in which the modal construc-
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Example 2: H is entailed from T

T: John knows that Mary smokes.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

H: Mary smokes.

tion in T blocks the inference hypothesized in H. Ex. 4 below shows a
T–H pair with a subordinated clause introduced by when.

Example 3: H is informative wrt T

T: Leakey believed Kenya’s wildlife, which underpins a tourist
industry worth Dollars 450m a year, could be managed in a
profitable and sustainable manner.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

H: Kenya’s wildlife is managed in a profitable manner.

Example 4: H is entailed from T

T: When an earthquake rumbled o↵ the coast of Hokkaido in
Japan in July of 1993, the resulting tsunami hit just three
to five minutes later, killing 202 people who were trying to
flee for higher ground.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

H: An earthquake occurred on the coast of Hokkaido, Japan.

In order to predict correct entailments for modal contexts, one needs
lexical information about which verbs and adverbs entail their comple-
ments and which do not. In addition, one needs an adequate semantic
interpretation of modal contexts – an issue to which we turn now.

In the standard translation, it is impossible to connect the embed-
ded proposition to a belief report or other propositional attitude or
modal operator, because first-order terms cannot be formulas. The
modal translation, that we adopt, is based on a technique called reifi-
cation, as proposed for DRSs in Bos (2004). It translates a basic DRS
condition with n terms into a first-order formula with n+1 arguments,
where the added term is a first-order variable ranging over (a particu-
lar kind of) entities. One could imagine these entities as ranging over
“possible worlds” or simply “propositions”. This extension in notation
makes it possible to connect embedded propositions to attitudinal verbs
or modal operators. We will not give the full translation from DRSs to
modal FOL here (the interested reader is referred to Bos (2004)), but
instead give an example translation of the DRS and first-order logic
formulas for Ex. 1 to illustrate the approach.
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x y e p
john(x)
mary(y)
think(e)
agent(e,x)
theme(e,p)

p:
e

smoke(e)
agent(e,y)

9w9x9y9e9p(john(w,x) ^
mary(w,y) ^
think(w,e) ^
agent(w,e,x) ^
theme(w,e,p) ^
smoke(p,e) ^
agent(p,e,y))

The modal first-order translation above does not admit that Mary
smokes, because the event where Mary smokes is established in connec-
tion with possible world p, which is not necessary the same as w, the
actual world. But for certain verbs or other syntactic constructions we
will add background knowledge axioms that force to make the actual
world identical with a subordinated situation. We show how to do so
in Section 5, but first we discuss how first-order theorem proving is
integrated in our RTE framework.

4 Theorem Proving

In this section we show how to use o↵-the-shelf theorem provers for the
task of recognizing textual entailment. Apart from checking whether
there is an entailment between T and H, they can also be used for check-
ing whether T or H contains contradictions or tautologies, or whether T
and H together are contradictory or not. Such tests are also important
in RTE, and we will discuss them first. We refer to them as consistency
checking.

Consistency checking is important, because without doing so we
might predict false entailments. In logic, anything follows from a con-
tradiction. Hence, if T is inconsistent, H would automatically follow.
It is questionable whether this is a desired outcome in the context of
RTE. Consider the following example:

Example 5: Word Sense Ambiguity

T: A fan is a useful instrument.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

H: The workers used a fan to prevent overheating.

In Ex. 5, the text T contains the ambiguous noun fan. Word sense
disambiguation is a hard task and an RTE system might make the
mistake of assigning the sense of sports fan or admirer to the noun
fan, instead of the device sense. Together with the knowledge that peo-
ple (sports fans, admirers) are disjoint from artifacts (instruments, de-
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vices), this would lead to an inconsistent T. As a result, the RTE system
would predict an entailment for Ex. 5.

Clearly, it would help an RTE system if such situations could be
detected automatically. For instance, detection of a contradiction in T
could give the RTE system reason to revise its background knowledge,
even though as far as we know such systems have not been realized
yet. Similarly, a clever RTE system would detect that the semantically
ill-formed T in Ex. 6 is inconsistent, because an event cannot happen
in the past as well as in the future. Examples of this kind do not occur
in the current RTE data sets, but in real-world applications noisy data
could yield such ill-formed texts.

Example 6: Inconsistent T

T: David Beckham had a tendon rupture tomorrow.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

H: David Beckham was fortunate.

For similar, logical reasons, we need to verify whether H is consistent
or not. Because if H turns out to be inconsistent, checking whether T
entails H boils down to verifying whether T is inconsistent, which is not
the original goal of the inference task. Furthermore, we want to check
whether T and H taken together are inconsistent. If this is so, we want
to predict a non-entailment (for a two-way classification of entailment
prediction), or report a contradiction between T and H (in the case of
a three-way classification of entailment prediction).

In sum, we need to check whether T is consistent, H is consistent,
and T^H is consistent. We do this by translating them to modal first-
order logic, and trying to prove their negation. At the same time we
attempt to find a counter-model by using a finite model builder. If a
counter-model is found, the theorem prover can be halted, which is
a way to save valuable resources (time and memory). In addition, we
try to find a proof for T ! H (or the logically equivalent ¬(T ^ ¬H).
Table 1 summarizes the situation.4

5 Adding Background Knowledge

For a good performance on RTE examples not only translations of T
and H in (modal) first-order logic are required—what is crucial for an
increase in recall is a set of background knowledge axioms. Such axioms

4One could also extend the inference tasks by explicitly verifying whether T and
H are tautologies or not. If T is logically valid (i.e. a tautology), then it would not
make sense to test whether T entails H. Similarly, if H is a validity, T would always
entail it.
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TABLE 1: Inference Tasks for RTE and corresponding predictions based
on proofs or countermodels.

Input Output

¬ T proof model model model model
¬ H – proof model model model

¬(T ^ H) – – proof model model
¬(T ^ ¬H) – – – proof model

Prediction unknown unknown contradiction entailment informative

need to be stated in modal first-order logic too, and can be added to
the inference requests, simply as additional background theory. In the
inference examples above, this can be achieved by replacing T by (BK
^ T). This is one of the attractive sides of a logic-based approach:
background knowledge can be supplied in a modular way.

Axioms are generally of the form 8w8x(�(w,x) !  (w,x)), where
� and  denote first-order formulas. Here we discuss three types of
background knowledge axioms:

1. Axioms automatically derived from synonym and hyponym rela-
tions between WordNet synsets;

2. Manually encoded axioms for propositional embeddings;

3. Complex axioms automatically derived from positive RTE pairs.

The number of general background knowledge axioms can be very
large. But given a textual entailment problem, we do not want to give
irrelevant background knowledge to the theorem prover and waste its
resources. It remains an interesting research challenge to select appro-
priate axioms—axioms that are likely to increase the chance of finding
a proof.

A simple way to solve this problem is to associate triggers with
axioms (Blackburn and Bos 2005). The non-logical symbols in meaning
representations are useful triggers for many types of axioms, as long
as axioms themselves are not able to initiate the triggering of new
axioms, thereby risking a chain reaction resulting in the selection of
the entire knowledge base. Following this approach, each type of axiom
is illustrated by a T–H pair that triggers it.

Axioms derived from WordNet

Let us start with axioms derived from the WordNet relations. Consider
Ex. 7. In WordNet (Fellbaum 1998), the first sense of the noun role is
a hyponym of the second sense of duty, which in turn is a hyponym
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of the first sense of activity. Similarly, murder is a hyponym of kill
in WordNet, enabling a proof for Ex. 8. We note in passing that this
example also demonstrates the benefits from a deep linguistic analysis
that assigns syntactically equivalent meaning representations to active
and passive forms, as our system does.

Example 7: T entails H, hyponymy

T: The World Bank has also been criticized for its role in
financing projects.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

H: The World Bank is criticized for its activities.

Example 8: T entails H, active-passive alternation

T: Lennon was murdered by Mark David Chapman outside the
Dakota on Dec. 8, 1980.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

H: Mark David Chapman killed Lennon.

Example 9: T entails H, synonymy

T: The two presidents, Bush and Chirac, were honored with a
21-gun salute.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

H: The two presidents, Bush and Chirac, were honoured with a
21-gun salute.

The WordNet hyponym relation is translated into first-order logic
as an implication. As we use the modal translation, we need to include
possible worlds in the generated background knowledge. As a conse-
quence, we end up with the following set of axioms for the examples
above:

8w(possible-world(w)! 8x(n1role(w,x)!n2duty(w,x)))
8w(possible-world(w)! 8x(n2duty(w,x)!n1work(w,x)))
8w(possible-world(w)! 8x(n1work(w,x)!n1activity(w,x)))
8w(possible-world(w)! 8x(v1murder(w,x)!v1kill(w,x)))

It is easy to see that such axioms can be systematically generated
from WordNet.5 Apart from hyponyms, we can also explore synonyms

5Note that the non-logical symbols are composed using part-of-speech infor-
mation (noun, verb, modifier) and a sense number, to avoid unwanted clashes of
symbols derived from the same words with di↵erent meanings. That is, we want
to have di↵erent non-logical symbols for the noun fly, the verb fly, and the adjec-
tive fly, because they mean di↵erent things. Similarly, we would like to distinguish
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stored in WordNet. In WordNet, synset members are considered to
correspond to equivalent concepts. A case in point is Ex. 9, where we
can observe that honor and honour are members of the same synset in
WordNet. Members of the same synset are translated into axioms with
a bi-implication. Returning to Ex. 9, we trigger the following axiom:

8w(possible-world(w)! 8x(v1honor(w,x)$v1honour(w,x)))

There is more information in WordNet that could form the basis for
background knowledge axioms. The antonymy relation found between
adjectives is a good candidate. But other lexical resources could supply
useful information too. The NomLex database (Meyers et al. 1998)
provides information about normalizations, thereby making it possible
to compute background knowledge axioms that relate concepts and
events.

Axioms for embedded contexts

The axioms for embedded contexts all follow the same pattern. They
are manually picked for sentential complement verbs like know, regret,
say, report, tell, reveal, as well as for sentential adverbs such as because,
although and when, that presuppose their subordinated sentential ar-
gument. They are manually selected because existing lexical resources
such as WordNet do not contain this information. Ex. 10 illustrates the
idea behind this type of axioms:

Example 10: T entails H, sentential complement

T: Authorities say Monica Meadows, who has appeared in
catalogs and magazines, is in stable condition.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

H: Monica Meadows is in stable condition.

The required background knowledge is that the information of the
theme of a saying event also holds in the world in which this event was
expressed. The relevant axiom is the following.

8w(possible-world(w) ! 8x8y(v1say(w,x)^ r1theme(w,x,y) $ w = y))

This axiom template is accurate for factive verbs, but in general not
for reporting verbs.6 All what is said is not necessarily true, and we
would like to exclude, for instance, liars. In Ex. 10, it is the source of

between the di↵erent senses of words. For example, n2duty is the symbol for the
second noun sense of the word duty.

6There is also a connection with presupposition projection here (Beaver 1997).
Factive verbs such as regret presuppose their propositional complement. If presup-
position projection is implemented by the semantic formalism, then these axioms
would not be needed.
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the information, the authorities, that cause the textual entailment of
H with respect to T. In fact, in most newspaper examples reporting
verbs entail the content of their propositional complement. In general
however, one wants to strengthen the axioms of reporting verbs, by
including a constraint on the reliability of the agent of the reporting
event.

Automatically learned axioms

The third type of axiom can be automatically learned from positive T–
H pairs of the available RTE data sets (Ihsani 2012). The idea here is to
identify a pattern between two entities that appear both in T and H. If
the same pattern is observed in di↵erent T–H pairs, then this indicates
that it might be a valid and useful background knowledge axiom. In
Ex. 11, the complex relations between Tilda Swinton and White Witch
in T and H suggest the axiom that “X playing a role as Y implies that
X plays the part of Y”.

Example 11: T entails H, complex axiom

T: Tilda Swinton has a prominent role as the White Witch in
The Chronicles of Narnia: The Lion, The Witch and The
Wardrobe, coming out in December.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

H: Tilda Swinton plays the part of the White Witch.

Ihsani (2012) presents a method to automatically generate such ax-
ioms from positive T–H pairs, and tested on negative T–H pairs (in-
clusion of a learned axiom should not result in a proof). The axiom
automatically generated for the above example is:

8w(possible-world(w) !
8x8y8z(9e(have(w,e) ^ agent(w,e,x) ^ theme(w,e,y)^

role(w,y) ^ as(w,y,z)) !
9e(play(w,e) ^ agent(w,e,x) ^ theme(w,e,y) ^ part(w,y) ^ of(w,y,z))))

Lin and Pantel (2001) present an unsupervised algorithm, DIRT, for
discovering inference rules, such as X is the author of Y ⇡ X writes Y,
by applying the distributional hypothesis to syntactic dependency anal-
ysis. The method of Ihsani (2012) could be viewed as a variation of this,
but di↵ers in the level of supervision during learning (DIRT is unsuper-
vised). The level of linguistic analysis is also di↵erent, as DIRT produces
(non-directional) surface string paraphrases, and Ihsani’s method yields
(directional) first-order axioms. In general, Ihsani’s method produces



Is there a place for logic in recognizing textual entailment? / 39

axioms with high precision and low recall, while DIRT tends to yield
opposite results (Szpektor et al. 2007).

6 Implementation and Evaluation

The framework presented before has been implemented in a complete
RTE system known as Nutcracker. The system (including source code)
is distributed as part of the C&C tools (Clark and Curran 2004). A
description of the most important components of this complex system
follows below.

The Nutcracker system has a traditional pipeline architecture of
components, starting with a tokenizer, POS tagger, lemmatizer (Min-
nen et al. 2001) and named entity recognizer. This is followed by syntac-
tic and semantic parsing. The meaning representations are produced by
the semantic interpreter Boxer (Bos 2008), which works on the output
of the C&C parser, based on Combinatory Categorial Grammar. Boxer
performs pronoun resolution, presupposition projection, thematic role
labeling and assigns scope to quantifiers, negation and modal operators.

The coverage of the pipeline—meaning the percentage of examples
for which a semantic representation could be produced—on RTE ex-
amples is high, reaching nearly 98% on the examples of the RTE data
sets. Remember that the parser’s statistical model is not specifically
trained on examples of these data sets. The NLP pipeline formed by
the C&C tools and Boxer is therefore suitable for a task such as RTE,
contrary to what MacCartney et al. (2006) suggest. Note however, that
high coverage does not always mean high correctness, but at present
no corpora with gold-standard annotated semantic representations are
available to measure accuracy.

The end of the pipeline is formed by a theorem provers and model
builders. Any theorem prover for first-order logic could be used, in
theory. In practice, there is quite a lot of choice, thanks to the active
area of automated deduction that o↵ers various e�cient state-of-the-
art provers for research purposes. The Nutcracker systems allows us
to plug in several di↵erent provers, among them Vampire (Riazanov
and Voronkov 2002), Otter (McCune and Padmanabhan 1996), and
Bliksem (De Nivelle 1998). Vampire is currently the highest-ranked
prover in CASC, the annual competition for inference engines (Sutcli↵e
and Suttner 1997), and it also gives the best results on RTE examples.

In addition to a theorem prover, a model builder is needed to
find counter-models. Again, various model builders can be used with
Nutcracker, including Mace (McCune 1998) and Paradox (Claessen
and Sörensson 2003). Following Blackburn and Bos (2005), for each in-
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ference problem the theorem prover and model builder work in parallel,
where the model builder gets the negated input of the theorem prover.
If a proof is found for problem ¬�, the model builder is halted because
it would never be able to find a model for �—if a model is found for �,
the theorem prover is halted because it would never be able to find a
proof for ¬�.

The model builder searches for models up to a specified domain size
n, and terminates if it cannot construct a model for sizes 1 � n. In
theory, because first-order logic is semi-decidable, the combination of
theorem proving and finite model building always terminates with one
of three results: (i) proof found, (ii) no proof but finite counter-model
found of size n, or (iii) no proof and no model for size n (for instance
for inputs that have non-finite counter-models). Case (i) succeeds if we
give enough resources (time and space) to the theorem prover, but in
practice we use a time-out. For case (ii) by specifying the maximum
domain size as high as possible while maintaining reasonable response
times. Case (iii) is one that we wish to avoid in practice.

The performance of Nutcracker, without supplying background
knowledge axioms, on the RTE data sets shows that only few proofs
are found (61 for all the 3,200 examples RTE-2 and RTE-3 data sets)
but with high precision (54 correct, yielding 88.5%). This shows that,
without appealing to further background knowledge, a high-precision
performance paired with a low recall is achieved. This is not a big sur-
prise. Many of the examples from the RTE data sets require additional
information to draw the wanted inferences. Ihsani (2012) shows that
some of these background knowledge axioms can be retrieved using
supervised learning. Axioms based on synonym and hyponym relations
extracted from WordNet give only a small increase of recall (12 ex-
tra proofs found, of which 11 correct). WordNet relations combined
with modality axioms gives a further increase in recall (21 extra proofs
found, of which 18 correct). Adding automatically generated axioms
based on positive T–H pairs yields 52 extra proofs, of which 46 correct
(Ihsani 2012). These numbers indicate that recall can be increased
without a loss of precision, when appropriate background knowledge
can be selected.

7 Related Work

Compared to other RTE approaches, closely related to the “logical
approach” are systems based on Natural Logic. The Natural Logic ap-
proach is an interesting alternative to logical inference because it is
more flexible (resulting in more robust systems) yet based on local log-
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ical inferences. The best known example (and implementation) in this
tradition is NatLog (MacCartney 2009), which we will compare to our
Nutcracker system.

Given an RTE pair T–H, NatLog works by a sequence of components,
to wit (1) parsing T and H; (2) aligning T and H with a sequence of
local edit operations turning T into H; (3) predicting entailment re-
lations for each of these local edit operations; (4) joining the local
entailment relations to produce an entailment prediction for the entire
T–H pair. The NatLog system uses lexical resources (including Word-
Net and NomBank) and also information on string similarity to predict
local entailments, with the help of a statistical classifier.

The Natural Logic approach is interesting because it does not use
the full power of FOL (in fact, as MacCartney (2009) shows, it is in-
complete), yet it makes use of (local) logical inference and performs
well on tasks such as RTE, with a lower precision than Nutcracker, but
with a much higher recall (MacCartney 2009). A disadvantage of the
approach is that the alignment procedure excludes texts consisting out
of more than one sentence.

Like the background knowledge axioms for the Nutcracker system,
the NatLog system has to get the local entailment predictions from
external resources, and for an informative comparison it would be in-
teresting to see how well NatLog would perform without appealing to
lexical resources and similarity measurements. Equally interesting, it
would be an informative exercise to translate the local inference rules
obtained by the NatLog system, transform them into first-order axioms,
and feed them into the Nutcracker system, and measure performance
di↵erences.

8 Conclusion

The logical approach to RTE is costly—one needs to perform all steps
of linguistic analysis ranging including detailed syntactic and semantic
analysis. Current semantic parsers reach high coverage and are able to
produce reasonably adequate semantic representations for RTE. This
is at least what the available data sets for RTE suggest. Translating
T–H pairs into first-order formulas result in input that state-of-the-art
theorem provers can easily digest most of the time, reaching high pre-
cision. Nonetheless, without additional background knowledge, recall is
low. Such background knowledge can be provided as additional first-
order axioms, but they are hard to generate in a domain-independent
manner. Experiments shows however that such additional background
knowledge raises recall without a (big) loss in precision. The bottle-
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neck of logical inference in RTE is not the inability to translate text
to logical formulas as; it is not the performance of theorem provers;
but it is the lack of a systematic way to produce relevant background
knowledge.
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