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Abstract

Standard SMT decoders operate by translating disjoint spans
of input words, thus discarding information in form of over-
lapping phrases that is present at phrase extraction time. The
use of overlapping phrases in translation may enhance flu-
ency in positions that would otherwise be phrase bound-
aries, they may provide additional statistical support for long
and rare phrases, and they may generate new phrases that
have never been seen in the training data. We show how to
extract overlapping phrases offline for hierarchical phrase-
based SMT, and how to extract features and tune weights for
the new phrases. We find gains of 0.3 − 0.6 BLEU points
over discriminatively trained hierarchical phrase-based SMT
systems on two datasets for German-to-English translation.

1. Introduction
Decoding in SMT amounts to searching for the most prob-
able (Viterbi) derivation of a target string given the source
string. Standard SMT decoders perform at the same time a
search for the optimal segmentation of the source sentence
into disjoint spans of words, which are translated by rules
encoding bi-phrases. This means that irrespective of whether
phrases are contiguous [1], non-contiguous [2, 3], or hierar-
chical [4], the application of phrase rules at decoding time
disallows overlapping words. However, the use of overlap-
ping phrases might have several advantages: First, they may
enhance fluency in positions that would otherwise be phrase
boundaries. Second, overlapping phrases may provide addi-
tional statistical support for long and rare phrases extracted
from the training data. Finally, and most importantly, over-
lapping phrases may constitute new phrases that have never
been seen in the training data but may be applicable to the
test data.

The few approaches that did attempt to integrate overlap-
ping phrases into SMT decoding in the past [5, 6, 7] were
handicapped mostly by the additional decoding complex-
ity. The need to counterbalance exponential growth of the
search space with very restrictive reordering constraints pre-
vented these approaches to be competitive with state-of-the-
art phrase-based SMT. The exception is Tribble et al. [8] who
reported significant gains for using overlapping phrases over

their own baseline. The key idea in this approach is to cir-
cumvent decoder integration and instead to generate overlap-
ping phrases offline, by merging existing contiguous phrases
into longer bi-phrases that have overlapping words in both
source and target.

In this work, we will revive this approach, and extend
it to hierarchical phrases. We show how to merge and fil-
ter overlapping phrases created from hierarchical and non-
hierarchical phrases, and how to extract and tune features for
the new phrases. An experimental comparison with a state-
of-the-art hierarchical phrase-based decoder [9] shows gains
of 0.3 − 0.6 BLEU points on two datasets for German-to-
English translation.

2. Related Work

The potential of overlapping phrases to improve fluency and
to smooth prediction of long and rare phrases has been dis-
covered independently in a few instances in prior work. The
crux of most of these approaches is an efficient integration of
overlapping phrases into decoding. For example, the expo-
nential number of translation hypotheses arising from over-
lapping phrases has been managed in beam search decoding
frameworks by reordering constraints that allow only adja-
cent non-overlapping phrases to be swapped [5, 7]. This re-
ordering constraint seems to be too restrictive since it impacts
translation quality in comparison to state-of-the-art phrase-
based SMT.

Alternatively, sampling-based approaches [6] or graph-
search techniques [10, 11, 12] have been used for decod-
ing with overlapping phrases. These approaches suffer from
search errors due to necessary abstractions in sampling or
due to necessary approximations in adaptation of graph
search algorithms to SMT decoding.

The work related closest to our approach is that of Tribble
et al. [8, 13]. Their key idea is to circumvent decoder integra-
tion and instead to generate overlapping phrases in an offline
manner. In contrast to our work, their approach is restricted
to merging contiguous phrases. Furthermore, they extract
a single feature (based on phrase-internal word alignments)
for new phrases and do not learn discriminative weights. A
similar idea has also been presented for Example-Based MT
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[14, 15] where the focus is on combining given overlapping
phrases by a new search algorithm.

An alternative to enriching the repository of phrases with
overlapping phrase rules is the design of context-sensitive
features for discriminative training. Target context is clearly
exploited by large language models. Word-sense disam-
biguation inspired features [16] allow to exploit source con-
text, and recent approaches successfully merged source and
target context into a powerful decoding feature [17]. How-
ever, these approaches are orthogonal to our work.

3. Generating Overlapping Phrases with and
without Variables

Hierarchical phrases can be formalized as rules of a syn-
chronous CFG [4]. We denote terminals consisting of con-
tiguous phrases by T, and the single non-terminal variable by
NT. The key idea is to merge base rules into new rules by
pivoting on overlapping words. We apply this idea to base
rules consisting of terminals only (T rules) and to base rules
including non-terminals (NT rules).

As a first step, we apply the technique of [18] to extract
rules for German-to-English translation from the News Com-
mentary and TED data (see Section 5.1). Tables 1 and 2 show
the token counts of rule shapes for the extracted grammars.

We see that base rules consisting of terminals only (rule
shape T-T) are quite frequent in the extracted grammars for
both datasets. To these rules, the ideas of [8], namely merg-
ing all base rules that have overlapping words on both source
and target can be applied directly. For base rules including
non-terminals (rule shape including NT), merging of rules
can be done at word overlaps in terminals at the head of one
rule with terminals at the tail of another rule.

Because of the huge number of potential new rules, we
apply several filtering steps to the merging process. For T
rules, we firstly restrict our attention to base rules with more
than one terminal on source and target side. Secondly, we
apply count cutoffs of less than 5, 8, and 11 occurrences of
base rules in the training set. Lastly, given the test set, we
only store merged rules whose source sides are in principle
applicable to the test set. For rules including NTs, we restrict
our attention to base rules with exactly one NT on source
and target. Furthermore, we consider only base rules that are
seen at least 17, 20, or 23 times in the training set. Lastly,
a pre-filtering based on applicability of merged rules to test
set sources is done. Tables 3 and 4 show the counts of base
rules and merged rules before and after filtering on the News
Commentary and TED datasets.

Overall, these filtering steps resulted in a considerable
number of new rules, i.e., rules that are unseen in the train-
ing set. Table 5 shows the percentages of overlapping phrase
rules that are applicable to the test data, but are unseen in
the training data, together with their actual use in the 1-best
translation of the test data. We find that new rules are com-
posed at a considerably higher percentage from base T rules
than from base NT rules, resulting in a similar usage pattern

News Commentary testset TED testset

new used new used

T 5 65.3 25.3 63.5 54.5
T 8 54.8 18.7 49.6 43.3
T 11 47.1 10.6 40.1 36.7

NT 17 21.7 2.5 37.8 10.8
NT 20 17.7 4.5 35.2 8.6
NT 23 15.3 5.5 32.7 6.9

T + NT 24.7 16.4 38.03 23.0

Table 5: Percentages of overlapping phrase rules composed
from base rules and unseen in training (“new”), out of rules
of the same form applicable to the test set, together with their
usage in translating the test set (“used”), out of rules of the
same form used to translate the test set.

(1) X → 〈 es stellt sich heraus ||| it turns out 〉

(2) X → 〈 stellt sich heraus , dass ||| turns out that 〉

(3) X → 〈 es stellt sich heraus , dass ||| it turns out that 〉

Figure 1: T rule (3) merged from rules (1) and (2).

of more T rules than NT rules used in 1-best translations of
both test sets. As expected, these percentages are decreasing
the more restrictive the count cutoffs are set. A combination
of T and NT rules shows a pattern of composition and usage
in between T rules and NT rules.

Across all extracted rules, the average number of words
in merged rules is as little as 0.1 tokens higher than in base
rules for News Commentary, and increases on average up to
more than 1 token for the TED data set. For the majority of
cases, the overlap is 1 token in source and target. In 1− 2%
of the cases, the overlap is 2 tokens, and only 0.1% of the
new phrases overlap in 3 or 4 tokens.

An example for a merger of two T rules (1) and (2) into a
new rule (3), with an overlap of 3 source tokens and 2 target
tokens, is given in Fig. 1. A merger of two rules including
NTs is given in Fig. 2. Here, the overlap in target and source
is 2 tokens.

4. Feature Extraction and Tuning
[8] use IBM model 1 word-level alignments of the merged
phrases to directly assign probabilities to the new phrases. In
this work, we use the SMT decoder cdec [9] that combines
features into a log-linear model and offers several learners
for discriminative tuning of weights.

We compare four feature configurations. First, we use
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Count Shape

359,406 T NT T - T NT T
270,813 NT T NT T - NT T NT T
267,528 T NT T NT - T NT T NT
155,250 T NT T NT T - T NT T NT T
129,400 T - T
109,447 T NT - T NT
104,924 NT T - NT T
99,615 NT T NT - NT T NT
58,824 T NT T NT - T NT NT
50,253 NT T NT T - NT NT T
35,015 T NT T NT T - T NT NT T
28,496 NT T NT T - T NT NT T
24,523 T NT T - T NT
23,821 T NT T NT - T NT NT T
22,705 NT T - T NT
20,658 NT T NT - T NT NT
20,639 NT T NT T - NT T NT
20,498 NT T NT - NT NT T
20,455 T NT - NT T

Count Shape

20,003 NT T - T NT T
17,480 NT T NT - T NT T NT
17,276 T NT T - NT T
16,967 NT T NT T - T NT T NT T
16,559 T NT T NT - NT T NT
16,465 T NT T NT - T NT T NT T
15,965 NT T NT - NT T NT T
15,366 T NT - T NT T
11,736 T NT T NT T - T NT T NT
11,378 T NT T NT T - NT T NT T
10,625 NT T NT T - T NT T NT
8,691 T NT T NT - NT T NT T
2,693 NT T NT T - T NT NT
1,948 NT T NT - T NT NT T
1,525 T NT T NT - NT NT T
848 NT T NT - T NT T NT T
576 T NT T NT T - NT T NT
459 T NT T NT T - T NT NT
303 T NT T NT T - NT NT T

Table 1: Rule shapes in the grammar extracted from News Commentary.

(1) X → 〈 ist wirklich X1 , aber ||| is really X1 , but 〉

(2) X → 〈 , aber man X1||| , but you X1〉

(3) X → 〈 ist wirklich X1 , aber man X2|||
is really X1 , but you X2〉

Figure 2: NT rule (3) merged from rules (1) and (2).

cdec’s implementation of lexical phrase probabilities for
source words f and target words e:

MaxLexFgivenE = −
∑

i

log10 pmax(fi|e) (1)

and

MaxLexEgivenF = −
∑

i

log10 pmax(ei|f). (2)

Second, we add a new feature that indicates whether a
rule is created by merging as follows:

NewRule =

{
1 if the rule is new,
0 otherwise.

(3)

Third, we calculate the following standard statistics
among new rules that were merged from base rules extracted
for the test set:

EgivenFCoherent = − log10(count EF/count F ) (4)

SampleCountF = log10(1 + count F ) (5)

CountEF = log10(1 + count EF ) (6)

IsSingletonF =

{
1 if count F = 1,
0 otherwise.

(7)

IsSingletonFE =

{
1 if count EF = 1,
0 otherwise.

(8)

Last, we take inspiration from [19]’s adaptive features
that combine counts from a lookup in post-editing data with
counts from the suffix array sample extracted for the test set.
In our case, this corresponds to combining count statistics for
new rules only (denoted by subscript L) with count statistics
for base rules extracted for the test set (denoted by subscript
S):

EgivenFCoherent = − log10((count EFS+count EFL)/

(count FS + count FL)) (9)

SampleCountF = log10(1+count FS+count FL) (10)
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Count Shape

373,500 T NT T - T NT T
284,364 T NT T NT - T NT T NT
277,682 NT T NT T - NT T NT T
204,562 T NT T NT T - T NT T NT T
97,485 T - T
92,133 T NT - T NT
86,469 NT T - NT T
85,518 NT T NT - NT T NT
47,617 T NT T NT - T NT NT
43,403 T NT T NT T - T NT NT T
38,121 NT T NT T - NT NT T
29,213 NT T NT T - T NT NT T
25,302 T NT T NT - T NT NT T
20,839 T NT T - T NT
20,173 NT T NT T - T NT T NT T
17,559 NT T NT T - NT T NT
17,328 NT T - T NT T
16,404 NT T NT - T NT T NT
16,087 T NT T NT - T NT T NT T

Count Shape

14,166 T NT T NT T - T NT T NT
14,039 NT T NT - NT T NT T
13,836 T NT T - NT T
13,476 T NT - T NT T
13,078 NT T NT - NT NT T
12,907 T NT T NT - NT T NT
12,893 NT T - T NT
12,658 T NT - NT T
12,376 NT T NT - T NT NT
10,454 T NT T NT T - NT T NT T
7,159 NT T NT T - T NT T NT
5,170 T NT T NT - NT T NT T
1,566 NT T NT - T NT NT T
1,368 NT T NT T - T NT NT
836 T NT T NT - NT NT T
813 NT T NT - T NT T NT T
496 T NT T NT T - NT T NT
343 T NT T NT T - T NT NT
234 T NT T NT T - NT NT T

Table 2: Rule shapes in the grammar extracted from TED talks.

CountEF = log10(1 + count EFS + count EFL) (11)

MaxLexFgivenE = pmax(f̃ |ẽ) = −
∑

i

log10 pmax(fi|e)

(12)

MaxLexEgivenF = pmax(ẽ|f̃) = −
∑

i

log10 pmax(ei|f)

(13)

IsSingletonF =

{
1 if count FS + count FL = 1,
0 otherwise.

(14)

IsSingletonFE =

{
1 if count EFS + count EFL = 1,
0 otherwise.

(15)

NewRule =

{
1 if the rule is new,
0 otherwise.

(16)

Discriminative tuning is performed on the respective tun-
ing sets of the News Commentary and TED data. We use the
pairwise ranking learner of [20] for this purpose. In addition
to the standard handful of dense feature, sparse features for
rule shapes, rule identifiers, and bigrams in rule source and
target are extracted from grammar rules.

NC train train-lm tune test

Sentences 136,227 180,657 1,057 1,064
Words de 3,005,252 26,205 23,593
Words en 2,909,346 3,797,500 25,660 22,518

TED train train-lm tune test

Sentences 139,563 158,641 1,172 746
Words de 2,195,030 21,270 11,831
Words en 2,332,370 2,715,777 21,679 12,734

Table 6: News Commentary and TED de-en parallel data.

5. Translation Experiments
5.1. Systems and Data

The data used in our experiments are the German-English
parallel data provided in the News Commentary and TED re-
leases of WMT 20071 and IWSLT 20132, respectively. Table
6 gives the basic data statistics for News Commentary (NC)
and TED data.

The bilingual SMT system used in our experiments is the
state-of-the-art SCFG decoder cdec [9]3. We built gram-
mars using its implementation of the suffix array extraction
method described in [18]. Word alignments are built from
all parallel data using fast align [21]. SCFG models use the
same settings as described in [4]. For language modeling,
we built a modified Kneser-Ney smoothed 5-gram language

1http://statmt.org/wmt07/shared-task.html
2http://www.iwslt2013.org/
3http://www.cdec-decoder.org
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News Commentary Base rules Merged rules Unique Applicable in test Unique

all 129,400
> 1 token 72,322
T 5 6,823 364,642 352,171 6,311 5,739
T 8 4,434 171,715 167,125 3,414 3,165
T 11 3,286 100,513 98,268 2,203 2,054

TED Base rules Merged rules Unique Applicable in test Unique

all 97,485
> 1 token 62,671
T 5 6,073 370,611 363,789 8,823 7,637
T 8 4,088 181,227 178,010 4,828 4,235
T 11 3,115 105,657 103,906 3,203 2,855

Table 3: Counts of base rules and merged rules with terminals only before and after filtering.

News Commentary Base rules Merged rules Unique Applicable in test Unique

all 694,105
NT 17 14,107 563,980 556,476 18,588 14,919
NT 20 11,592 324,790 319,919 13,794 11,039
NT 23 9,774 198,447 194,880 10,915 8,690

TED Base rules Merged rules Unique Applicable in test Unique

all 643,132
NT 17 14,684 1,980,618 1,940,402 34,696 28,293
NT 20 12,256 1,345,298 1,316,680 26,856 21,750
NT 23 10,334 908,066 887,474 21,118 16,938

Table 4: Counts of base rules and merged rules with nonterminals before and after filtering.

model [22, 23].
All data were normalized, tokenized and lowercased;

German compounds were split. For tokenization, lowercas-
ing and other preprocessing steps we used the scripts dis-
tributed with the Moses SMT toolkit [24]. For compound
splitting in German texts a standard empirical approach of
[25] was employed.

5.2. Experimental Results

Table 7 shows BLEU [26] results for MERT [27] optimiza-
tion of dense feature weights, and for pairwise ranking [20]
optimization of sparse feature weights. MERT runs were re-
peated three times to account for optimizer instability [28].
The pairwise ranking technique was stable in this respect.
Statistical significance is measured using Approximate Ran-
domization [29, 30] where result differences with a p-value
smaller than 0.05 are considered significant.

In order to investigate a possible correspondence of the
patterns of composition and usage shown in Table 5, we eval-
uate overlapping phrases merged from base T rules and base
NT rules separately. Table 8 shows BLEU results for dif-
ferent frequency cutoffs for base rules (see Section 3) and
different feature sets (see Section 4) on the News Commen-

News Commentary TED

MERT 24.95 25.94
PairRank 25.69† 25.90

Table 7: Baseline results for News Commentary and TED
talks German-to-English translation. Statistically significant
differences to MERT are denoted with †.

tary data for German-to-English translation. All results are
nominal improvements over the PairRank baseline in Table
7, with several statistically significant result differences. Best
results, namely an improvement of 1.3 BLEU points over
the MERT baseline, and a gain of 0.6 BLEU points over the
pairwise-ranking baseline are obtained for merging overlap-
ping rules from base T rules, using all adaptive features. Best
results for merging rules from NT rules are slightly lower.

Table 9 evaluates the same configurations of base rule
cutoffs and features on the TED talk data. Here the best result
is a nominal improvement of 0.3 BLEU points over the base-
line, obtained by merging rules from base T rules. Again,
this result is slightly better than merging rules from base NT
rules. However, in case of the TED data, no result difference
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Cutoff Features (1)-(2) (1)-(3) (1)-(8) (9)-(16)

T 5 25.83 25.82 25.83 25.86
T 8 25.99 25.99 26.02 26.24†

T 11 25.93 26.08† 26.12† 25.75
NT 17 25.76 26.13† 26.01 25.84
NT 20 26.14† 25.70 25.89 25.97
NT 23 25.76 25.90 26.22† 25.82

Table 8: Results for News Commentary, German-English
translation. Best results for a certain feature set in italics,
best result overall in bold. Significant differences compared
to the PairRank baseline of Table 7 are denoted with †.

Cutoff Features (1)-(2) (1)-(3) (1)-(8) (9)-(16)

T 5 25.89 25.94 25.93 26.00
T 8 25.96 25.95 26.23 26.01
T 11 25.84 26.13 25.79 25.98
NT 17 25.71 25.93 26.04 25.82
NT 20 25.50 26.03 26.02 26.10
NT 23 25.57 26.04 26.01 25.78

Table 9: Results for TED, German-English translation. Best
results for a certain feature set in italics, best result overall
in bold. Significant differences compared to the PairRank
baseline of Table 7 are denoted with †.

is statistically significant compared to the PairRank baseline.
Table 10 shows an evaluation for a combination of over-

lapping phrase rules merged from base T rules and base NT
rules. Combining the best configurations for generating over-
lapping phrases from T-only and NT base rules yields results
that are about 0.1 BLEU point lower than the best results in
Tables 8 and 9. Result differences are statistically significant
for News Commentary, but not for TED experiments.

Overall, we find a correspondence of BLEU improve-
ments shown in Tables 8, 9, 10 with the pattern of composi-
tion and usage shown in Table 5, with higher gains and higher
usage for T rules compared to NT rules.

6. Conclusion
We presented an application of the idea of offline merging of
bi-phrases into longer phrases with overlapping words to the
framework of hierarchical phrase-based translation. The ad-
vantages of overlapping phrases in translation are enhanced
fluency in positions that would otherwise be phrase bound-
aries. Furthermore, a large number of new phrases can be
generated that have never been seen in the training data but
are applicable to the test data. Our approach maintains all
the benefits of using overlapping phrases at translation time,
without the pain of having to modify the decoder to deal with
overlapping phrases.

Our experimental results on two datasets for German-to-

News Commentary TED

T + NT 26.15† 26.10

Table 10: Best results for combination of NT and T over-
lapping phrases on TED and News Commentary, German-
English translation. Significant differences compared to the
PairRank baseline of Table 7 are denoted with †.

English translation show gains of 0.3−0.6 BLEU points over
a baseline system that implements discriminatively trained
hierarchical phrase-based SMT. We conjecture that improved
quality at translation time might be worth the overhead of
building overlapping rules at phrase extraction time.
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