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Abstract 

Recently, there has been interest in automatically generated word classes for improving sta-

tistical machine translation (SMT) quality: e.g, (Wuebker et al, 2013). We create new mod-

els by replacing words with word classes in features applied during decoding; we call these 

“coarse models”. We find that coarse versions of the bilingual language models (biLMs) of 

(Niehues et al, 2011) yield larger BLEU gains than the original biLMs. BiLMs provide 

phrase-based systems with rich contextual information from the source sentence; because 

they have a large number of types, they suffer from data sparsity. Niehues et al (2011) miti-

gated this problem by replacing source or target words with parts of speech (POSs). We 

vary their approach in two ways: by clustering words on the source or target side over a 

range of granularities (word clustering), and by clustering the bilingual units that make up 

biLMs (bitoken clustering). We find that loglinear combinations of the resulting coarse 

biLMs with each other and with coarse LMs (LMs based on word classes) yield even higher 

scores than single coarse models. When we add an appealing “generic” coarse configuration 

chosen on English > French devtest data to four language pairs (keeping the structure fixed, 

but providing language-pair-specific models for each pair), BLEU gains on blind test data 

against strong baselines averaged over 5 runs are +0.80 for English > French, +0.35 for 

French > English, +1.0 for Arabic > English, and +0.6 for Chinese > English.  

1. Introduction 

This work aims to provide rich contextual information to phrase-based SMT, in order to miti-

gate data sparsity. We cluster the basic units of the bilingual language model (biLM) of 

Niehues et al (2011) and of standard language models (LMs). A “generic”, symmetric config-

uration chosen on English > French devtest yields BLEU gains over strong baselines on blind 

test data of +0.80 for English > French (henceforth “Eng>Fre”), +0.35 for French > English 

(“Fre>Eng”), +1.0 for Arabic > English (“Ara>Eng”), and +0.6 for Chinese > English 

(“Chi>Eng”). If we apply the configuration with the highest devtest score on a given language 

pair to blind data, the gains are +0.85 for Eng>Fre, +0.46 for Fre>Eng, and +1.2 for Ara>Eng, 

but still +0.6 for Chi>Eng.  

1.1. Coarse bilingual language models (biLMs) for source context 

Though coarse biLMs are the focus of this paper, we explored other coarse models: models 

where words are replaced by word classes. E.g., we obtained good gains in earlier experi-

ments with coarse LMs.  Since others have explored that terrain before us (see 1.2), this paper 

focuses on the “bilingual language model” (biLM) of Niehues et al (2011). In phrase-based 
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SMT, information from source words outside the current phrase pair is incorporated only indi-

rectly, via target words that are translations of these source words, if the relevant  target words 

are close enough to the current target word to affect LM scores. BiLMs address this by align-

ing each target word in the training data with source words to create “bitokens”. An N-gram 

bitoken LM is then trained. A coarse biLM is one whose words and/or bitokens have been 

clustered into classes. Our best results were obtained by combining coarse biLMs with coarse 

LMs. We tune our system with batch lattice MIRA (Cherry and Foster, 2012), which supports 

loglinear combinations that have many features.  

Figure 1 shows word-based and coarse biLMs for Eng>Fre. A target word and its 

aligned source words define a bitoken. Unaligned target words (e.g., French word “d’ ” in the 

example) are aligned with NULL. Unaligned source words (e.g., “very”) are dropped. A 

source word aligned with more than one target word (e.g., “we”, aligned with two instances of 

“nous”) is duplicated: each target word aligned with it receives a copy of that source word.  

 

 
Figure 1. Creating bitokens & bitoken classes for a bilingual language model (biLM) 

 

BiLMs can easily be incorporated into a phrase-based architecture. The decoder still 

uses phrase pairs from a phrase table to create hypotheses. However, a new LM with a wide 

context span of source information can now score hypotheses, along with the standard LM 

(Niehues et al found it was best to retain the latter).  Unfortunately, the bitoken vocabulary of 

a biLM will be much bigger than the target-language vocabulary, because a target word is 

often split into different bitokens. E.g., the word “être” might be split into three bitokens: 

“être_be”, “être_being”, and “être_to-be”. One solution to the sparsity problem is to lump 

bitokens into new classes. E.g., one could replace each English or French word above with its 

part of speech (POS). In (Niehues et al, 2011), this “split and lump” process was applied to 
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both sides of a biLM for Ara>Eng SMT. When the biLM was added as a new loglinear fea-

ture to a system with a word-based biLM, it yielded a modest gain of about +0.2 BLEU. In 

our work, we try other versions of “split and lump”.  Instead of using taggers to define POSs, 

we use a program called mkcls (see 1.2) to create clusters. Unlike Niehues et al (2011), we 

vary the granularity of word clustering, and sometimes cluster the bitokens themselves, call-

ing the resulting models “coarse biLMs”. 

Figure 1 also shows three ways of building coarse biLMs: 1. clustering source and/or 

target words, then creating bitokens. 2. clustering the word-based bitokens themselves, with 

mkcls using bitoken perplexity as its criterion (in Fig. 1, “bitoken clustering 1”). 3. clustering 

bitokens whose source and/or target words have been “preclustered” (“bitoken clustering 2”). 

Here, E1, E2, etc., and F1, F2, etc., are word classes generated by mkcls operating on source 

(English) and target (French) text respectively; B1, B2, etc. denote bitoken classes.  

 

 
Figure 2. Two-pass construction of bitokens for a coarse biLM  

 

Figure 2 illustrates the three types of coarse biLM, each shown by a dotted-line oval. 

A key aspect of a biLM is its bitoken vocabulary size. E.g., for the Eng>Fre experiments on 

which Figure 2 is based, the original word biLM had a vocabulary of 7.6 million bitokens. 

Coarse biLMs result from two passes of bitoken vocabulary compression, both optional: a 

first pass of clustering of source and/or target words, and a second pass of bitoken clustering. 

Skipping both passes yields the word-based biLM. The X coordinates in Figure 2 give the 

biLM vocabulary size after the first pass, and the Y coordinates give its size after the second 

pass (as a percentage of its original size). The original biLM (“word biLM”) is in the upper 

right-hand corner: both passes are null operations, so the coordinates are (100%,100%).  

Al-Onaizan & Simard (Eds.) Proceedings of AMTA 2014, vol. 1:  MT Researchers      Vancouver, BC       © The Authors 30



We denote word clustering by (n1, n2), where n1 and n2 are number of source and tar-

get word classes respectively. |S| and |T| are the original sizes of the source and target vocabu-

laries. The top oval in Figure 2 contains coarse biLMs obtained by pass 1 (word clustering) 

but not pass 2 (bitoken clustering). E.g., “(400, 200)” is the coarse biLM obtained by using 

400 and 200 word classes for English and French respectively; “(1600, |T|)” is the coarse 

biLM obtained with 1600 English classes and no clustering for French. The oval on the far 

right contains biLMs created when only pass 2 is applied. E.g., “50 bi” is the coarse biLM 

obtained by clustering the 7.6M word-based bitokens down to only 50. The third oval con-

tains coarse biLMs produced by applying pass 1, then pass 2. E.g., “400 bi(400,200)” is the 

coarse biLM obtained by creating bitokens with 400 and 200 source and target word classes 

respectively, then clustering these bitokens into 400 classes. A defect of the figure is that its 

axes don’t represent the difference between word clustering on the source vs. target sides. 

However, the figure conveys our greatest problem: the vast number of possible coarse biLMs 

There is a big space in the middle of the figure that wasn’t explored in our experi-

ments: there are no final biLMs that have between 0.01% and 10% of the original number of 

word biLMs, because mkcls becomes very slow as the number of word classes grows: creat-

ing coarse biLMs like “(10,000, 10,000)” or “10,000 bi(400,400)” is infeasible.  

1.2. Related work 

This section will discuss work on coarse models, source-side contextual information for 

SMT, and lexical clustering techniques (including mkcls, used for our experiments). 

Uszkoreit and Brant (2008) explored coarse LMs for SMT. Wuebker et al (2013) de-

scribe coarse LMs, translation models (TMs), and reordering models (RMs). Best perfor-

mance was obtained with a system containing both word-based and coarse models. Prior to 

our current work, we experimented with discriminative hierarchical RMs (DHRMs) (Cherry, 

2013). These combine the hierarchical RM (HRM) of (Galley and Manning, 2008) with 

sparse features conditioned on word classes for phrases involved in reordering; word classes 

are obtained from mkcls. Like Cherry (2013), we found that DHRM outperformed the HRM 

version for Ara>Eng and Chi>Eng. However, experiments with English-French Hansard data 

showed only small gains for DHRM over HRM. Thus, while all the Ara>Eng and Chi>Eng 

experiments reported in this paper employ DHRM - a coarse reordering model - none of the 

Eng<>Fre experiments do. In prior experiments, we also studied coarse phrase translation 

models, but unlike Wuebker et al (2013), we found they did not yield significant improve-

ments to our system, except when there is little training data. Many experiments in this paper 

involve coarse language models. These are particularly effective for morphologically rich 

languages (e.g., Ammar et al, 2013; Bisazza and Monz, 2014). In unpublished earlier experi-

ments, we found that coarse LM combinations can yield better results than using just one.  

Besides biLMs (Niehues et al, 2011), there are other ways of incorporating additional 

source-language information in SMT. These include spectral clustering for HMM-based SMT 

(Zhao, Xing and Waibel, 2005), stochastic finite state transducers based on bilingual ngrams 

(Casacuberta and Vidal, 2004; Mariño et al, 2006; Crego and Yvon, 2010; Zhang et al, 2013), 

the lexicalized approach of (Hasan et al, 2008), factored Markov backoff models (Feng et al, 

2014) and the “operation sequence model” (OSD) of (Durrani et al, 2011 and 2014). (Durrani 

et al 2014) appeared after our current paper was submitted. Our work and theirs shares an 

underlying motivation in which mkcls is applied to make earlier models more powerful, 

though the OSD models and ours are very different. We chose to implement biLMs primarily 

because this is easy to do in a phrase-based system.  

Automatic word clustering was described in (Jelinek, 1991; Brown et al, 1992). In 

“Brown” or “IBM” clustering, each word in vocabulary V initially defines a single class. 
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These classes are clustered bottom-up into a binary tree of classes, with classes iteratively 

merging to minimize text perplexity under a class-based bigram LM, until the desired number 

of classes C is attained. Martin, Liermann, and Ney (1998) describe “exchange” clustering. 

Each word in V is initially assigned to a single class in some fashion. Then, each word in turn 

is reassigned to a class so as to minimize perplexity; movement of words between classes 

continues until a stopping criterion is met. When these authors compared various word clus-

tering methods, the perplexity results were almost identical. The lowest bigram perplexity is 

usually obtained when each of the most frequent words is in a different class; different word 

clustering methods typically all ended up with arrangements similar to this. These authors 

obtained their best perplexity and speech recognition results when the clustering criterion was 

based on trigrams as well as bigrams, but this makes clustering expensive. Och (1999) focuses 

on bilingual word clustering and discusses ideas similar to bitoken clustering, though not in 

the context of phrase-based SMT. Uszkoreit and Brant (2008) describe a highly efficient dis-

tributed version of exchange clustering. Faruqui and Dyer (2013) propose a bilingual word 

clustering method whose objective function combines same-language and cross-language 

mutual information. Applied to named entity recognition (NER), this yields significant im-

provements. Turian, Ratinov and Bengio (2010) apply Brown clustering to NER and chunk-

ing. Finally, Blunsom and Cohn (2011) improve Brown clustering by using a Bayesian prior 

to smooth estimates, by incorporating trigrams, and by exploiting morphological information.  

For word clustering, we chose a widely used program, mkcls: Blunsom and Cohn 

(2011) note its strong performance. We could have used POSs, but they have definitions that 

vary across languages; mkcls can be applied in a uniform way (though with the disadvantage 

that it gives each word a fixed class, instead of several possible classes as with POSs). Niesler 

et al (1998) found that automatically derived word classes outperform POSs. Until recently, 

the only document describing mkcls was in German (Och, 1995): accurate English infor-

mation was unavailable. It is often suggested that mkcls implements (Och, 1999), but this is 

only partly true. Fortunately, Dr. Chris Dyer now provides an accurate description on his 

blog: http://statmt.blogspot.ca/2014/07/understanding-mkcls.html. Basically, mkcls executes 

an ensemble of optimizers and merges their results; the criterion for all steps is minimal bi-

gram perplexity. Dr. Dyer estimates that the perplexity of an LM built from the resulting word 

classes is typically 20-40% lower than for bottom-up Brown clustering on its own. 

2. Experiments 

2.1. Experimental approach  

Using four diverse large-scale machine translation tasks (Eng>Fre, Fre>Eng, Ara>Eng, 

Chi>Eng), we studied the impact of coarse BiLMs in isolation and in combination with coarse 

LMs. Our challenge was to explore the most interesting possibilities without doing innumera-

ble experiments. Ammar et al (2013) note that coarse models are particularly effective when 

the target language has complex morphology. We thus decided to use Eng>Fre experiments 

on devtest data to carry out initial explorations: this language pair would be a sensitive one. 

Our metric was average BLEU over Devtest1 and Devtest2 for a Hansard system (see Table 

1). There is insufficient space to report all these Eng>Fre devtest experiments. The first round 

of experiments made us decide to explore coarse LMs and coarse biLMs, but not coarse TMs 

(these only gave appreciable gains for small amounts of training data); we would employ Wit-

ten-Bell smoothing for the coarse models (coarse models generate counts of counts that the 

SRILM implementation of Kneser-Ney can’t cope with, and Witten-Bell slightly outper-

formed Good-Turing for coarse models); we would use 8-gram coarse models (results dif-

fered only slightly along the range from 6-grams to 8-grams, but were marginally better for 8-
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grams). We then began a second round of Eng>Fre experiments with the same devtest (see 

2.4 and Table 4); the results informed all subsequent experiments.  

2.2. Experimental data 

For English-French experiments in both directions, we used the high-quality Hansard corpus 

of Canadian parliamentary proceedings from 2001-2009 (Foster et al, 2010). We reserved the 

most recent five documents (from December 2009) for development and testing material, and 

extracted the dev and test corpora shown in Table 1. Some of the documents were much larg-

er than typical devtest sizes, so we sampled subsets of them for the dev and test sets.  

 

Corpus # sentence pairs # words (English) # words (French) 

Train  2.9M 60.5M 68.6M 

Tune 2,002 40K 45K 

Devtest1  2,148 43K 48K 

Devtest2 2,166 45K 50K 

Test1 (blind test) 1,975 39K 44K 

Test2 (blind test)  2,340 49K 55K 

Table 1. Corpus sizes for English<>French Hansard data 
 

For Ara>Eng and Chi>Eng, we used large-scale training conditions defined in the DARPA 

BOLT project; Tables 2 and 3 give statistics. For Arabic, “all” includes 15 genres and 

MSA/Egyptian/Levantine/untagged dialects; “small” is “all” minus UN data; “webforum” is 

the webforum subset of “small”. Tune, Test, and SysCombTune are webforum genre, and a 

similar dialect mix. For Chinese all training sets are mixed genre; “good” is “all” minus UN, 

HK, and ISI data; Tune, SysCombTune, and Test are forum genre. NIST Open MT 2012 test 

data was the held-out data: for Arabic it is a mix of weblog/newsgroup genres; for Chinese it 

contains these two genres plus unknown genre. In Tables 2 and 3, the number of English 

words for Tune, Devtest1, Devtest2, and Test is averaged over four references.  

 

Corpus # sentence pairs # words (Arabic) # words (English) 

Train1: “all”  8.5M  261.7M 207.5M 

Train2: “small” 2.1M 42.4M 37.2M 

Train3: “webforum” 92K 1.6M 1.8M 

Tune 4,147   66K 72K  

Devtest1: “Test”  2,453  37K 40K  

Devtest2: “SysCombTune” 2,175  35K 38K  

Test (blind): MT12 Arabic test 5,812 229K 209K 

Table 2. Corpus sizes for tokenized Arabic-English data 

 

Corpus # sentence pairs # words (Chinese) # words (English) 

Train1: “all” 12M  234M 254M 

Train2: “good” 1.5M 32M 38M 

Tune 2,748  62K 77K  

Devtest1: “Test” 1,224   29K 36K  

Devtest2: “SysCombTune” 1,429   31K 38K  

Test (blind): MT12 Chinese test  8,714 224K 261K 

Table 3. Corpus sizes for tokenized Chinese-English data 
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2.3. Experimental systems 

Eng<>Fre Hansard experiments were performed with Portage, the National Research Council 

of Canada’s phrase-based system (this is the system described in Foster et al, 2013). The cor-

pus was word-aligned with HMM and IBM2 models; the phrase table was the union of phrase 

pairs from these alignments, with a length limit of 7. We applied Kneser-Ney smoothing to 

find bidirectional conditional phrase pair estimates, and obtained bidirectional Zens-Ney lexi-

cal estimates (Chen et al, 2011). Hierarchical lexical reordering (Galley and Manning, 2008) 

was used. Additional features included standard distortion and word penalties (2 features) and 

a 4-gram LM trained on the target side of the parallel data: 13 features in total. The decoder 

used cube pruning and a distortion limit of 7.  

Our Chinese and Arabic baselines are strong phrase-based systems, similar to our en-

tries in evaluations like NIST. The hierarchical lexical reordering model (HRM) of (Galley 

and Manning, 2008) along with the sparse reordering features of (Cherry, 2013) was used. 

Phrase extraction pools counts over symmetrized word alignments from IBM2, HMM, IBM4, 

Fastalign (Dyer et al, 2013), and forced leave-one-out phrase alignment; the HRM pools 

counts in the same way. Phrase tables were Kneser-Ney smoothed as for the Eng<>Fre exper-

iments, and combined with mixture adaptation (Foster, 2007); indicator features tracked 

which extraction techniques produced each phrase. The Chinese system incorporated addi-

tional adaptation features (Foster et al, 2013). For both Arabic and Chinese, four LMs per 

system were trained: one LM on the English Gigaword corpus (5-gram with Good-Turing 

smoothing), one LM on monolingual webforum data and two LMs trained on selected materi-

al from the parallel corpora (4-gram with Kneser-Ney smoothing); in the case of Chinese, the 

latter two LMs were mixture-adapted.. Both systems used the sparse features of (Hopkins and 

May, 2011; Cherry, 2013). The decoder used cube pruning and a distortion limit of 8.  

Tuning for all systems was performed with batch lattice MIRA (Cherry and Foster, 

2012). The metric is the original IBM BLEU, with case-insensitive matching of n-grams up to 

n = 4. For all systems, we performed five random replications of parameter tuning (Clark et 

al, 2011).  

For Eng<> Fre, coarse models were trained on all of “Train”. For Ara>Eng, word clas-

ses and two static coarse LMs were trained on “all” and “webforum” (no linear mixing), but 

biLMs were trained on “small”. For Chi>Eng, word classes and a large static mix coarse LM 

were trained on “all”, but a smaller dynamic mix coarse LM and all the biLMs were trained 

on “good”. Bitokens for all language pairs were derived from word-aligned sentence pairs by 

two word alignment techniques. Two copies of each pair were made; one was aligned using 

HMMs, the other using IBM2. Since the Arabic and Chinese phrase tables were created not 

only with these alignment techniques, but with others, the decoder for these languages may 

use bitokens not found in the biLMs (“out-of-biLM-vocabulary” bitokens).  

2.4. English > French experiments  

First, we explored single Eng>Fre coarse models on devtest data. For models involving word 

classes, we looked at 50, 100, 200, 400, 800, and 1600 classes. The number of bitoken types 

was huge (7.6M), so we were only able to obtain up to 800 bitoken classes (generating 1600 

classes would have taken too long).  There is insufficient space to show all results: Table 4 

shows how many variants of each coarse model type we tried, along with the lowest-scoring 

and highest-scoring variant of each type (using average score on Devtest1 and Devtest2). The 

table uses the notation for biLMs given towards the end of section 1.1. The range of scores 

from lowest to highest is shown with the standard deviation (SD) over five tuning runs (more 

precisely, we show whichever is greater, the SD of the lowest or of the highest score).  
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System type 

(#variants tried) 

Lowest  

scorer 

Highest scorer Range of scores  Range of 

gains 

Cluster src biLM   (6) (800, |T|)  (400, |T|) 40.20-40.31 ±0.06  +0.08-0.19 

Cluster tgt biLM   (6) (|S|, 50)  (|S|, 100)  40.33-40.41 ±0.04 +0.21-0.29 

Cluster src & tgt  

biLM                   (22) 

(1600, 1600) (400, 200) 

 

40.32-40.66 ±0.05  +0.20-0.54 

Cluster  

bitoken biLM        (5) 

50 bi 800 bi 40.30-40.71 ±0.02  +0.18-0.59 

Clstr src/tgt →  

clstr bitok. biLM (11)                

400 bi(50,50) 400 bi(400,400) 40.51-40.76 ±0.01  +0.39-0.64 

Word-based biLM 

 = (|S|, |T)              (1) 

N/A N/A 

 

40.34 ±0.05  +0.22 

Baseline for  

biLMs                   (1) 

N/A  N/A 40.12 ±0.02 (0.0) 

Coarse LM           (7) 50 tgt  

classes 

800 tgt  

classes 

40.31-40.53 ±0.02  +0.30-0.52 

(Baseline for coarse 

LMs)                     (1) 

N/A N/A 40.02 ±0.03 (0.0) 

Table 4. Preliminary experiments - Eng>Fre average(Devtest1,Devtest2) BLEU for single 

coarse models  
 

We did not try all 36 combinations of source and target word clusters, but explored 

along the “diagonal” where the number of classes is the same for both sides: i.e., we tried (50, 

50),  … , (1600, 1600). Then we tried coarse biLMs in the neighbourhood of the best diagonal 

ones, eventually trying 22 different biLMs clustered on both sides. For bitoken clustering, we 

also carried out this kind of greedy search. Word preclustering shortens the time required for 

bitoken clustering. E.g., on our machines, training the highest-scoring biLM, 400 bi(400,400), 

took 19 hours for (400,400) preclustering and then 112 hours for bitoken clustering: 131 hours 

total. Training “400 bi” with no preclustering took 277 hours. The shorter time with precluste-

ring is because mkcls takes time proportional to the number of types: 7.6M bitokens without 

preclustering but only 3.2M with (400, 400) preclustering. Table 4 shows that preclustering 

followed by bitoken clustering also yielded the best results: the worst-scoring biLM of this 

type performed about +0.4 better than the baseline, and the best-performing one gained more 

than +0.6.The last two rows of the table pertain to coarse LMs. The Table 4 experiments were 

performed two months earlier than the rest, with a slightly different version of the system,  

one with a standard rather than hierarchical lexicalized reordering model (HRM) (tables 5 & 6 

below show results with HRMs, and tables 7 & 8 with discriminative HRMs (DHRMs)).  

Next, we explored loglinear combinations of the highest-scoring coarse models on the 

same devtest, again doing a kind of greedy search (and using HRMs). Because of the poor 

results for clustering on only source or target words (not both) in Table 4, we did not try these 

biLMs in combinations. Almost all the combinations we tried scored significantly higher than 

the coarse models of which they were composed, as shown in Table 5 (in descending order of 

devtest score). A pattern emerged: many of the highest-scoring combinations had one coarse 

biLM with clustered bitokens (sometimes preclustered, sometimes not), one coarse biLM with 

clustered source and target words, and two or three coarse LMs of very different granularity. 

Presumably, these information sources complement each other. We chose one of the configu-

rations that scored highest on Eng>Fre devtest to be tried on all four language pairs – in each 

case, keeping the structure but using language-pair-specific models. This “generic” configura-

tion often scores lower for other language pairs on blind test data than combinations that have 
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been chosen via experiments on devtest data for a given pair, but is a reasonable choice for 

system builders who don’t wish to spend a lot of time on preliminary experiments.  

In addition to “generic” (underlined) and the two other best combinations, Table 5 

shows individual models inside coarse model combinations (in italics), the word-based biLM, 

and the baseline (the notation here was defined in section 1.1 above). Average scores and 

standard deviations from five runs are shown. For individual biLMs, “|B|” is the number of 

bitoken types. E.g., clustering English and French words to 400 and 200 classes respectively 

shrinks the number of different bitokens from 7.6 million to 2.9 million. Results on blind test 

data (Test1 and Test2) are lower than on devtest but in roughly the same order; coarse model 

combinations score higher than their components on both devtest and test data. The “generic” 

configuration we chose was the one with symmetric biLMs (no difference between number of 

source and target word classes in its biLMs) that scores highest on devtest. It has a biLM clus-

tered to 400 classes for each language, a biLM obtained from the former by clustering it to 

400 bitokens, and two coarse LMs of very different granularities (100 and 1600 classes).  

 

Table 5. Eng>Fre BLEU for coarse model combinations (single components in italics) 

2.5. Experiments with other language pairs 

Experiments with the other language pairs were carried out as with Eng>Fre: greedy search 

over single coarse models followed by greedy search over model combinations, using scores 

on devtest for each pair to make decisions. Results on devtest and blind test data are shown in 

Tables 6 – 8 for the two combinations scoring highest on devtest for each pair. For each pair, 

we also tested the “generic” configuration (underlined) chosen on the basis of Eng>Fre 

devtest results. All results shown are averaged over 5 tuning runs.  

 

 

 

System  avg(Devtest1,   

       Devtest2) 

Gain on 

devtest  

avg(Test1, 

       Test2) 

Gain on 

test 

400bi(400,400)&(400,200)& 

100tgt&1600tgt 

41.25±0.03  +1.13 42.64±0.02  +0.85 

400bi(400,400)&(400,400)& 

100tgt&1600tgt = “Generic” 

41.19±0.01 

 

+1.07 42.59±0.03  +0.80 

200bi&(400,200)& 

100tgt&1600tgt 

41.19±0.02 

 

+1.07 42.60±0.04  +0.81 

Single biLM: 

400bi400src400tgt, |B|=400 

40.76±0.01   +0.64 42.22±0.02   +0.43 

Single biLM:  

200 bi, |B|=200 

40.69±0.03  

 

+0.57 42.08±0.03  +0.28 

Single biLM:  

(400,200), |B|=2.9M 

40.66±0.02  

 

+0.54 42.17±0.01  +0.37 

Single biLM: 

(400,400), |B|=3.2M 

40.51±0.04  +0.39 42.15±0.03  +0.36 

Single biLM:  

word-based, |B|=7.6M 

40.34±0.05   +0.22 41.96±0.01  +0.17 

Single coarse LM: 1600tgt 40.67±0.03   +0.55 42.36±0.03  +0.56 

Single coarse LM: 100tgt 40.61±0.03    +0.49 42.11±0.02  +0.32 

Baseline  40.12±0.02 (0.0) 41.79±0.02  (0.0) 
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System  avg(Devtest1, 

       Devtest2) 

Gain on 

devtest 

avg(Test1, 

       Test2) 

Gain on 

test 

400bi&(1600,1600)& 

100tgt&800tgt&1600tgt  

40.80±0.03  +0.79 42.49±0.04  +0.46 

400bi&(1600,1600)& 

100tgt&1600tgt 

40.79±0.03  +0.78 42.47±0.05  +0.45 

400bi(400,400)&(400,400)& 

100tgt&1600tgt = “Generic” 

40.67±0.03  +0.66 42.37±0.03  +0.35 

 

Single biLM:  

400bi, |B|=400  

40.41±0.02  +0.39  42.32±0.05  +0.29 

Single biLM:  

(1600,1600), |B|=6.2M   

40.37±0.02  +0.36 42.09±0.02   +0.06 

Single biLM: 

400bi(400,400), |B|=400 

40.35±0.04  +0.34 42.32±0.02  +0.29 

Single biLM:  

(400,400), |B|=4.2M 

40.21±0.02 

 

+0.19 42.05±0.02  +0.02 

Single biLM: word-based, 

|B|=8.6M 

40.25±0.03  +0.23 42.13±0.02  +0.10 

Single coarse LM: 100tgt 40.36±0.04 +0.35 42.14±0.02 +0.12 

Single coarse LM: 800tgt 40.33±0.02  +0.32 42.19±0.04  +0.16 

Single coarse LM: 1600tgt 40.30±0.01  +0.28 42.09±0.02  +0.07 
Baseline 40.01±0.02 (0.0) 42.02±0.03  (0.0) 

Table 6. Fre>Eng BLEU for coarse model combinations (single components in italics) 

3. Discussion and Future Work 

BiLMs provide phrase-based SMT systems with richer source-side context during decoding. 

In experiments with highly competitive baselines, pure word-based 8-gram biLMs yield only 

modest gains in the range +0.1–0.2 BLEU for four language pairs. This is probably due to 

training data sparsity caused by the large number of bitoken types. Indeed, when we replace 

word-based 8-gram biLMs with coarse 8-gram biLMs, we get much greater gains from the 

latter. Our results also show that coarse biLMs and coarse LMs of different granularities con-

tain partially complementary information: for each of the language pairs, loglinear combina-

tions of coarse models score higher than single coarse models on blind test data.  

We defined a “generic” coarse configuration by looking at Eng>Fre devtest results: 

400bi(400,400)&(400,400)&100tgt&1600tgt (a loglinear combination of two types of coarse 

biLM and two coarse LMs of very different granularities). For this configuration, BLEU gains 

over language-specific baselines on blind data were +0.80 for Eng>Fre, +0.35 for Fre>Eng, 

+1.0 for Ara>Eng, and +0.6 for Chi>Eng. If we apply the configuration with the highest dev-

test score on a given language pair to blind data, the gains are +0.85 for Eng>Fre, +0.46 for 

Fre>Eng, +1.2 for Ara>Eng, and still +0.6 for Chi>Eng. The consensus in the literature is that 

coarse models help most when the target language has complex morphology, so we expected 

the largest gains to be for Eng>Fre: we were surprised by the large gains for Ara>Eng. It 

looks as though source context information is especially valuable for Ara>Eng.  

The Eng>Fre baseline system’s LM took only 0.1G of storage, but adding the “gene-

ric” coarse LM-biLM configuration brought this to 2.4G. Adding “generic” took Fre>Eng LM 

size from 0.1G to 2.0G. Because they have four LMs, baselines for the other two language 
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pairs have much higher total LM sizes than the Eng<>Fre baselines: adding “generic” took 

total LM size from 15.0G to 18.4G for Ara>Eng, and from 7.6G to 11.0G for Chi>Eng. We 

didn’t measure time or virtual memory (VM) during decoding impacts precisely: very 

roughly, adding “generic”  increased decoding time about 30% for all four systems, and in-

creased VM size about 60% for the Eng<>Fre systems and about 20% for the other two. 

 

System  avg(Devtest1, 

       Devtest2) 

Gain on 

devtest 

Test Gain on 

test 

400bi&(1600,1600)& 

100tgt&1600tgt  

40.56±0.09  

 

+0.76 46.03±0.07  

 

+1.20 

400bi(800,800)& 

100tgt&1600tgt 

40.51±0.12 +0.72 45.74±0.13  

 

+0.91 

400bi(400,400)&(400,400)& 

100tgt&1600tgt  = “Generic” 

40.43 ±0.08 

 

+0.63 45.80±0.14 

 

+0.97 

Single biLM:  

400bi, |B|=400 

40.38±0.13   

 

+0.59 45.43±0.07 +0.60 

Single biLM:  

400bi(800,800), |B|=400 

40.23±0.04  +0.44 45.35±0.08  

 

+0.52 

Single biLM:  

400bi(400,400), |B|=400 

40.18±0.09 +0.38 44.94±0.18  +0.11 

Single biLM:  

(400,400), |B|=1.2M 

40.15±0.08   

 

+0.36 45.02±0.07  +0.19 

Single biLM:  

(1600,1600), |B|=2.1M 

40.03±0.04 +0.23 45.10±0.12 +0.27 

Single biLM:  

word-based, |B|=4.0M 

40.06±0.06   

 

+0.26 44.96±0.09  +0.13 

Single coarse LM: 1600tgt 40.14±0.06 +0.34 45.12±0.09 +0.29 

Single coarse LM: 100tgt 40.03±0.04 +0.23 45.10±0.05  +0.27 

Baseline 39.80±0.05 (0.0) 44.83±0.08  (0.0) 

Table 7. Ara>Eng BLEU for coarse model combinations (single components in italics) 

 

There are several directions for future work: 

 The method for hard-clustering words/bitokens could be improved – e.g.., 

as in Blunsom and Cohn (2011). As a reviewer helpfully pointed out, coarse 

models of the same type but different granularities could be trained more effi-

ciently with true IBM clustering (Brown et al, 1992) to create a hierarchy for 

words or bitokens that would yield many different granularities after a single 

run, rather than by running mkcls several times (once per granularity). 

 Coarse models could be used for domain adaptation - e.g., via mixture models 

that combine in-domain and out-of-domain or general-domain data (Koehn 

and Schroeder, 2007; Foster and Kuhn, 2007; Sennrich, 2012). In-domain sta-

tistics will be better-estimated in a coarse mixture than in a word-based one.   

 “Mirror-image” word-based or coarse target-to-source biLMs could be used 

to rescore N-best lists or lattices. If there has been word reordering, these 

would apply context information not seen during decoding. E.g., let source “A 

B C D E F G H” generate hypothesis “a b f h g c d e”, and “A” be aligned 

with “a”, “B” with “b”, etc. With trigram word-based biLMs, the trigrams in-

volving  “f” seen during decoding are “a_A b_B f_F”, “b_B f_F h_H”, and 

“f_F h_H g_G”. During mirror-image rescoring, the biLM trigrams involving 
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“f” that are consulted are “D_d E_e F_f”, “E_e F_f G_g”, and “F_f G_g H_h” 

– a different set of trigrams, potentially containing additional information. 

 In this work, the most time-consuming task was finding the best combination 

of coarse models for a given language pair/corpus. We hope to devise a com-

putationally cheap way of finding the best combination on devtest data. An 

approach based on minimizing the perplexity of held-out data might work, if 

the correlation between this and SMT quality turns out to be sufficiently high. 

An interesting direction for future work is comparison between coarse models and  

neural net (NN) approaches. In principle, everything learned by coarse LMs or coarse biLMs 

could be learned by a neural net (NN) trained on the same data. Will NNs make coarse mod-

els obsolete? Only thorough experimentation will show which of NNs or coarse model com-

binations really yield better translations – perhaps they complement each other. Currently, an 

advantage of coarse models over NNs is quicker training times; one could further shrink train-

ing time for coarse models by incrementally adaptating word clusterings trained on generic 

data to new domains. However, incremental adaptation is also a possible strategy for NNs. 

Analysis of these tradeoffs between coarse models and NNs – in terms of model quality, 

speed of training, ease of incremental adaptation, etc. – is our top priority for future work.  

 

System  avg(Devtest1, 

        Devtest2) 

Gain on 

devtest 

Test Gain on 

test 

400bi(1600,1600tgt)&(800,800)& 

100tgt&400tgt 

30.38±0.08 

 

+0.82 32.46±0.04  

 

+0.61 

400bi(1600,1600)&(800,800)& 

100tgt&1600tgt 

30.36±0.08 

 

+0.80 32.44±0.05  

 

+0.59 

400bi(400,400)&(400,400)& 

100tgt&1600tgt = “Generic” 

30.16±0.11 

  

+0.60 32.41±0.05  

 

+0.56 

Single biLM:  

400bi(1600,1600), |B|=400 

30.02±0.08   +0.47 32.25±0.06 +0.40 

Single biLM: (800,800), |B|=3.4M 29.90±0.10 +0.34  32.09±0.03  +0.24 

Single biLM: (400,400), |B|=2.8M 29.76±0.08 +0.21 32.16±0.02  +0.30 

Single biLM:  

400bi(400,400), |B|=400 

29.94±0.07 +0.38  32.13±0.07  +0.28 

Single biLM:  

word-based, |B|= 6.9M 

29.74±0.09 +0.19  32.03±0.08  +0.18 

Single coarse LM: 100tgt 29.82±0.02 +0.26  32.14±0.06  +0.29 

Single coarse LM: 400tgt 29.83±0.09 +0.28  32.17±0.08 +0.31 

Single coarse LM: 1600tgt 29.82±0.06 +0.26  32.11±0.05  +0.26 

Baseline 29.56±0.05 (0.0) 31.85±0.08 (0.0) 

Table 8. Chi>Eng BLEU for coarse model combinations (single components in italic)  
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