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Abstract

Translators who work by post-editing ma-
chine translation output often find them-
selves repeatedly correcting the same er-
rors. We propose a method for Post-edit
Propagation (PEPr), which learns post-
editor corrections and applies them on-the-
fly to further MT output. Our proposal is
based on a phrase-based SMT system, used
in an automatic post-editing (APE) setting
with online learning. Simulated experi-
ments on a variety of data sets show that
for documents with high levels of internal
repetition, the proposed mechanism could
substantially reduce the post-editing effort.

1 Introduction

While post-editing of machine translation is an in-
creasingly widespread practice, very few techno-
logical solutions exist that are aimed specifically at
facilitating the work of the post-editor. This paper
addresses this gap, by proposing a mechanism that
automatically propagates post-editor corrections to
further machine-translated sentences within a doc-
ument. We call this process Post-edit Propagation,
or PEPr for short.

One recurrent complain from post-editors is that
they often have to fix the same error repeatedly.
Repeated errors can happen for a number of rea-
sons: if the MT system’s training data was too
small or heterogeneous, or if it was from a dif-
ferent domain as the document under considera-
tion, then it is not uncommon for a given word or
phrase to be systematically mistranslated. Carpuat
& Simard (2012) have shown that SMT systems
tend to be highly consistent, meaning that multiple
occurrences of any given source-language word or
phrase will tend to be translated by the same target-
language phrase. If that translation happens not to

be appropriate in the current context, i.e. if the
system is consistently wrong, then the post-editor
will need to fix that translation several times. As
pointed out by Lagoudaki (2008), post-editing sys-
tems should have the ability to “learn from the de-
cisions/choices made by users (e.g. which poten-
tial translations are preferred, which were rejected
and why), so that errors in future translation as-
semblies are reduced.”

Developers of commercial translation memory
(TM) systems have already taken note of this re-
quirement. The idea behind TM technology is that
translators should not have to translate the same
material more than once. To achieve this, all trans-
lations are archived, new texts are systematically
compared to the contents of the archive, and when
segments are found that have been translated pre-
viously, their translation is retrieved and proposed
to the translator for reuse.

Of course, this idea is based on the assump-
tion that text segments do indeed repeat. There
are some specialized domains for which this of-
ten appears to be true, e.g. contractual docu-
ments, user manuals, etc. But in general, the de-
gree of repetitivity of text varies greatly over the
myriad of possible text domains. However, it is
sometimes remarked that if a segment is to repeat
at all, this has the greatest chance of happening
within the same document where the segment ini-
tially appeared (Church and Gale, 1995). This phe-
nomenon, which we call document-internal repeti-
tion, is the motivation for developping TM systems
with real-time update capabilities (an example of
such a system is Fusion One1). Within such sys-
tems, each text segment is archived as soon as it is
processed by the translator, so that if it reappears
within the same document, its most recent transla-
tion is immediately available for re-use. Viewed as

1http://www.jivefusiontech.com
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an active process, this is something we might call
translation propagation.

A similar idea can be applied in the context of
MT post-editing: here, translation proposals are
produced by an MT system for every input text
segment, and these proposals are processed one by
one (either accepted, corrected or re-written) by a
(human) post-editor. If the MT system under con-
sideration has learning abilities (such as SMT sys-
tems), then the analog of TM’s real-time archiv-
ing of processed translations is something that is
sometimes refered to as “incremental training” or
“online learning”: the MT system integrates the
post-edited translation, as they are produced, in the
hope of improving the future performance of the
system.

Whether this sort of mechanism makes it pos-
sible to effectively propagate post-edits depends
on a number of factors. First, let us clarify what
we understand by PEPr: given this ability, an MT
system would take user corrections into consider-
ation when translating new material: given some
text segment s, which the MT originally translated
as t, and which the post-editor corrected as r, the
system would learn to translate s as r in later trans-
lations, when appropriate. We add “when appro-
priate”, because it might not be adequate to trans-
late s as r in all contexts: some corrections might
be specific to the way in which s is used within a
given document, or even be specific to the more lo-
cal context: for example, it may not be relevant to
propagate corrections pertaining to agreement or
other similar grammatical phenomena.

Rather than modify the behavior of the MT sys-
tem directly, it is simpler and might be just as ef-
fective to learn how to reproduce the corrections.
Thus, it would truly be the post-edits that are prop-
agated, not the post-edited translations. Under
this model, the PEPr mechanism learns by look-
ing at post-editor corrections (how t is transformed
into r), and selectively re-applies these corrections
to further system translation proposals within the
same document. Note that this is done without any
knowledge of the source-language s of which t is
the proposed translation. It also makes it possi-
ble to view the MT system that produced t as a
black box: in effect, it could be an online MT ser-
vice, or any other kind of system on whose behav-
ior the user has no or little control; it doesn’t even
have to be machine translation system: it could be

a TM system, a combined MT/TM system, etc.
Because only local post-edits are considered (i.e.
those performed within the current document or
user-session), such a system manipulates very lit-
tle data, making the whole process lightweight. Fi-
nally, this strategy allows simpler control over the
relative weight of prior (background) and newly
acquired (local) knowledge.

We argue that the PEPr task can be effectively
carried out by a phrase-based statistical MT sys-
tem. The system is then effectively an automatic
post-editing (APE) system with online learning ca-
pabilities. We detail how this idea can be realized
(Section 2), then validate our design with experi-
ments that simulate PE sessions (Section 3). Re-
lated work is reviewed in Section 4.

2 PEPr using Phrase-based SMT

An APE system is one that performs transforma-
tions on MT output. If this APE system is based
on a SMT system, as proposed in Simard et al.
(2007), then it can be seen as a system that at-
tempts to translate target-language (TL) MT out-
put into proper (human quality) TL text. Typically,
it will be trained on a corpus of post-edited MT:
pairs of machine-translated sentences along with
their post-edited counterparts.

To perform post-edit propagation, we propose
to use an SMT system in an APE setting: the
system will be trained incrementally, using pairs
of machine-translated and post-edited segments as
they are produced. The whole process is assumed
to take place within the context of a single docu-
ment D. The general set-up is illustrated in Figure
1:

• The source text is a document D, consisting
of a sequence of source-language sentences
S = s1...sn;

• A machine-translation system M provides
target language versions tk of each source
sentence sk;

• Each MT output tk is automatically post-
edited by a sentence-specific APE systemAk,
producing a second target-language version
pk;

• Working from source sentences s1...sn and
the automatically post-edited target-language
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Figure 1: Incremental learning set-up for PEPr. Dotted lines indicate the sources of information used to
build system Ak that propagate post-edits to translation tk.

sentences p1...pn, a human post-editorH pro-
duces final (reference) target-language ver-
sions r1...rn.

Each APE system Ak is implemented as a phrase-
based SMT system, created specifically to post-
edit sentence tk. While in practice this process can
be viewed (and implemented in large part) as in-
cremental training, it is formally simpler to view
each system as a new one. Each system Ak relies
on a phrase table and language model built from
the previously post-edited segments: t1...tk−1 and
r1...rk−1.

Because everything takes place within the con-
text of document D, we further make the assump-
tion that system A1 is actually an “empty” system,
i.e. one that copies its input onto its output. It can
therefore be assumed that p1 = t1. Alternatively,
A1 could be “primed” using data from similar, pre-
viously post-edited documents; we do not make
this assumption here. Also, to simplify matters, we
assume that each sentence inD is reviewed exactly
once by the post-editor: no sentence is left un-
reviewed, and no sentence is reviewed more than
once. The indices k = 1...n represent the order
in which the post-editor H reviews the sentences
of D; this is not necessarily the order in which the
sentences appear in D.

Phrase Table and Translation Model In an
SMT framework, the post-editing “rules” that im-
plement PEPr are embodied within phrase pairs
in the system’s phrase table. The phrase ta-
ble for system Ak contains all phrases extracted
from the pairs of previously post-edited segments:
〈t1, r1〉...〈tk−1, rk−1〉. These phrase pairs im-
plicitly contain all previously observed post-edits

(within the limits of phrase-based SMT’s ability to
capture these edits).

Because learned post-edits should only be ap-
plied when appropriate, we must take care that the
APE system always has the option of not edit-
ing its input. We call this the do-nothing op-
tion. The standard mechanism for handling out-of-
vocabulary words, which passes through unknown
words, cannot be relied upon for the do-nothing
option, because it is inhibited as soon as a word ap-
pears in the phrase table: if on its first occurrence
a word w is post-edited to v, then that correction
will automatically be applied the second time w is
encountered. Instead, we explicitly include in the
phrase table unedited versions of all input phrases.
This can be achieved by adding the pair 〈tk, tk〉 to
Ak’s training set; this way, the phrase table con-
tains phrase pairs that explicitly sanction leaving a
word or phrase unedited in the APE output.

While phrase pair extraction is performed using
standard methods (Koehn et al., 2007), a word-
level alignment between machine translations ti
and reference translations ri is required, which, in
standard SMT (or APE) approaches, is computed
using IBM-style translation models. In a PEPr sce-
nario, there is typically too little data to train such
a model: in many cases, the training corpus will
be ridiculously small. But since the “source” and
“target” are the same language, a straightforward
alternative is to obtain the alignment from the min-
imal sequence of edits e = e1...em corresponding
to the word-level Levenshtein distance between
ti and ri. To achieve more precise alignments,
we rely on Damerau-Levenshtein distance which,
in addition to insertions, deletions and substitu-
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tions, also considers local inversions (“x y”→ “y
x”); furthermore, all edits have a unit cost, except
substitutions, whose cost is the length-normalized
character-level edit distance between the substi-
tuted words. The alignment is produced by draw-
ing links between words of ti and ri that are sub-
stituted, swapped or copied (not edited); inserted
and deleted words are left unaligned.

Language Models Analog to the phrase table,
the APE system’s language model (LM) compo-
nent is trained using previously post-edited target-
language sentences r1...rk−1. To enable the do-
nothing option, it is necessary to also include the
unedited versions of the TL sentences t1...tk−1

into the language model’s training set. Rather than
combine all of this information into a single train-
ing set, we build two distinct language models:
a reference LM is trained on the manually post-
edited (reference) translations r1...rk−1; a separate
MT LM is trained on all unedited MT sentences
of the document, t1...tn. At decoding time, the
parameters of the two models are combined lin-
early, following the method proposed in Foster el
al. (2007).

The training sets for LM’s are typically very
small; this results in weak models, which may lead
to APE systems that apply post-edits with little re-
gard for the fluency of the result. One workaround
to this problem is to replace or complement the
MT LM with a model trained on larger amounts of
data. In-domain or related target language material
can be used if available; otherwise, even out-of-
domain data can be useful. In our experiments we
used a generic LM, trained on a very large corpus
harvested from the Web (see Section 3.2).

Reordering Model In phrase-based SMT, the
reordering (or distortion) model controls the rel-
ative order of SL and TL words. Local word
reorderings are typically captured within phrase
pairs in the phrase table, and need not be handled
by these models. Phrase-level reordering is already
a complicated matter, and it is doubtful that we can
reliably model it in this extreme sparse-data en-
vironment. We also conjecture that phrase-level
reorderings are a rare event in post-editing, and
therefore completely inhibit them for PEPr.

Parameter Optimization Parameters of the
APE systems’ log-linear model are optimized us-

ing batch-MIRA (Cherry and Foster, 2012). This
procedure normally assumes a development set,
which is repeatedly translated with a single transla-
tion system. In a PEPr setting, the system dynam-
ically changes after each post-edited sentence. We
nevertheless make the assumption that it is possi-
ble to find a set of parameters that is globally op-
timal under these varying conditions. We modify
the decoding step in the optimization loop so that
each development set sentence is translated by a
different system, as described above.

In our current setting, the parameters controlling
the LM mixture are optimized manually on the de-
velopment set. This approach and possible alter-
natives are discussed in Section 3.4.

3 Experiments

We evaluate the potential of the proposed PEPr
approach by simulation: given a set of test doc-
uments for which we have both a source language
version S and a reference translation R, we pro-
duce a machine translation T ; for each sentence,
we then create an APE system as described in Sec-
tion 2, and use it to produce automatically post-
edited versions P . We take reference translations
of R as post-edited versions of P , and use them
both to feed the PEPr process and to evaluate the
performance of the system.

3.1 MT and APE Systems

For the purpose of generating machine translations
T , we used a “generic” MT system, i.e. a system
not intended for a particular text domain or genre.
We used Portage, a typical phrase-based SMT sys-
tem which has achieved competitive results in re-
cent WMT (Larkin et al., 2010) and NIST eval-
uations, and trained it using a very large corpus
of English-French Canadian government data har-
vested from the Web (domain gc.ca), contain-
ing over 500M words in each language. We used
the following feature functions in the log-linear
model: 5-gram language model with Kneser-Ney
smoothing (1 feature); relative-frequency and lex-
ical translation model probabilities in both direc-
tions (4 features); lexicalized distortion (6 fea-
tures); and word count (1 feature). The param-
eters of the log-linear model were tuned by op-
timizing BLEU on the development set using the
batch variant of MIRA (Cherry and Foster, 2012).
Phrase extraction was done by aligning the cor-
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pus at the word level using both HMM and IBM2
models, using the union of phrases extracted from
these separate alignments for the phrase table, with
a maximum phrase length of 7 tokens. Phrase pairs
were filtered so that the top 30 translations for each
source phrase were retained.

We also used the Portage system for the APE
system implementing PEPr. The components of
the APE system were set up as described in Sec-
tion 2, and the log-linear model combines the fol-
lowing feature functions: linear mixture language
model (1 feature); relative-frequency translation
model probabilities in both directions (2 features);
and word count (1 feature). Phrases were lim-
ited to 7 tokens. The Reference LM and MT LM
used in the LM mixture are trigram models with
Witten-Bell smoothing; the generic LM’s are those
used by the MT system above. All components are
trained on true case data: the intention is to capture
case-related corrections.

3.2 Data

Our experimental data consists of documents ex-
tracted from the ECB and EMEA corpora of the
OPUS corpus (Tiedemann, 2009), and a collection
of scientific abstracts from Canadian publications;
we focused on French and English versions of
these datasets, and performed experiments in both
translation directions. The choice of the test data
was motivated by the need for real document-like
discourse units, but also by the technical and spe-
cialized nature of the texts, which makes them par-
ticularily difficult for a generic MT system. Fur-
thermore, some of these texts (ECB and EMEA in
particular) feature high levels of document-internal
and domain-specific repetition, as suggested by
their high token/type ratios (see Table 1).

We have limited document size to 100 sen-
tences, so as to avoid larger documents biasing the
results; longer documents were truncated2. The
collection of scientific abstracts is also highly tech-
nical, but most documents are very short, even
though we excluded abstracts shorter than 5 sen-
tences. Therefore, each document contains little
internal repetition. To better understand the ef-
fect of document length, we examined the effect

2Intuitively, 100 sentences approximately corresponds to the
daily production of a professional translator. For longer doc-
uments, we expect our systems to behave more like standard,
batch-trained APE systems.

Science
ECB EMEA Abstracts Digests

Development Sets
documents 6 7 75 23
sentences 600 538 578 551
tokens (EN) 17 142 8448 14 580 13 930
token/type 3.54 3.65 1.75 2.04
Test Sets
documents 13 11 312 77
sentences 1313 795 2426 2453
tokens (EN) 44 312 13 387 65 973 19 631
token/type 3.87 2.67 1.78 2.14

Table 1: Experimental Data

of PEPr on this corpus under two different condi-
tions: with abstracts considered as individual doc-
uments, and grouping multiple abstracts from the
same journal and year into a single “digest”.

The development sets used to optimize the pa-
rameters of the APE systems were intentionally
made relatively small, on the order of 10-15K
words. Intuitively, this is intended to correspond
to about a week’s worth of human post-editing. In
a real-life setting, this data could be collected dur-
ing a “warm-up” period. Alternatively, the system
could be initially deployed with random parame-
ters, and its parameters periodically re-optimized.

3.3 Results
We tested our approach on all datasets, under two
different conditions: first by mixing the reference
LM of the PEPr system with an MT LM (trained on
the MT output, as described in Section 2); second
by mixing the reference LM with a background
model, trained on large amounts of “general lan-
guage” data (generic LM). In our experiments, this
happens to be the same LM that is used by the first
stage MT system. The weight of the reference LM
was manually set to 0.9 in the linear mixture with
the MT LM and to 0.5 when combining with the
generic LM. We further discuss the effect of vary-
ing this parameter in Section 3.4.

Table 2 presents the results of these experi-
ments. The impact of PEPr is measured in terms of
WER and BLEU gain (for convenience, we report
WER scores as 100-WER, so that larger values de-
note better translations, and negative “gains” can
be interpreted as “losses”) 3. For each corpus and
language, we first report the scores obtained by the
3TER would arguably have been a better metric to evaluate the
potential of our approach in a post-editing setting; in practice,
however, WER is known to behave very similarly to TER (Cer
et al., 2010).
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Corpus System 100-WER BLEU
ECB
en→fr MT 32.24 25.87

+PEPr-MTLM +5.71 +6.16
+PEPr-GLM +6.53 +7.08

fr→en MT 32.65 22.56
+PEPr-MTLM +3.45 +7.42
+PEPr-GLM +5.38 +9.27

EMEA
en→fr MT 32.75 25.05

+PEPr-MTLM +3.83 +5.37
+PEPr-GLM +4.76 +6.56

fr→en MT 30.05 25.13
+PEPr-MTLM +3.27 +5.35
+PEPr-GLM +4.56 +7.44

Science Abstracts
en→fr MT 37.00 24.00

+PEPr-MTLM -0.94 +0.73
+PEPr-GLM -0.10 -0.16

fr→en MT 39.64 24.82
+PEPr-MTLM +0.84 +0.74
+PEPr-GLM -0.50 -0.04

Science Digests
en→fr MT 36.96 23.93

+PEPr-MTLM +0.37 +0.37
+PEPr-GLM -1.88 +0.09

fr→en MT 39.68 24.81
+PEPr-MTLM +0.56 +0.57
+PEPr-GLM -0.64 -0.16

Table 2: Experimental results

raw machine translation, prior to performing PEPr
(MT), then the effect of PEPr mixing the reference
LM with the MT LM (+PEPr-MTLM), and last
the effect of PEPr mixing the reference LM with
the generic LM (+PEPr-GLM).

For the ECB and EMEA corpora, PEPr has a
clear positive impact: WER is reduced by 3.27
to 6.53, while BLEU increases by 5.35 to 9.27.
Mixing the reference LM with a generic back-
ground LM (+PEPr-GLM) appears to work bet-
ter than with a locally-trained MT LM (+PEPr-
MTLM). This is not entirely surprising: While the
MT LM knows little more than how to do noth-
ing, the generic LM is a rich source of additional
knowledge that the APE system can exploit to pro-
duce more fluent translations.

The Science corpora illustrate situations where
PEPr is unlikely to bring significant improvements
to the initial MT. In fact, in many of these con-
ditions, PEPr slightly degrades translation quality,
as measured with WER and BLEU. In practice,
the Science abstracts are simply too short to con-
tain document-internal repetition that PEPr can ex-
ploit advantageously (average length of documents
is 7.7 sentences). When combined into yearly di-

100-WER BLEU
Corpus Actual Oracle Actual Oracle
ECB
en→fr 38.83 39.76 33.00 33.80
fr→en 38.07 39.53 31.97 33.04
EMEA
en→fr 37.68 38.45 31.67 32.77
fr→en 44.64 45.75 32.56 33.86
Science Abstracts
en→fr 36.77 37.09 23.26 23.38
fr→en 38.83 39.72 24.14 24.40
Science Digests
en→fr 34.99 36.89 23.96 24.14
fr→en 39.01 40.02 24.57 24.92

Table 3: Oracle scores for PEPr-GLM

gests, the documents become substantially larger
(31.9 sentences per document), but they are too
heterogeneous to contain any exploitable repeated
corrections.

Since PEPr relies only on information in the
MT output and revisions, an interesting question is
whether it could be improved by using the source
text as well, as proposed e.g. in Béchara et al.
(2011). To get an approximate bound on the gains
that might be obtained this way, we generated
1000-best lists of PEPr output and computed ora-
cle scores using the references. As shown in Table
3, the gains are quite modest, in the order of 1-2
WER. In all cases PEPr achieves over 85% of this
estimated upper bound, which would be difficult to
match in practice.4

3.4 Mixture LM Parameter Optimization

It is instructive to examine the behavior of the PEPr
layer as we vary the relative weight of the refer-
ence LM in the LM mixture. This is shown for
the ECB fr→en development set in Figure 2. The
black “◦” curve denotes the amount of edits per-
formed by PEPr, measured in terms of WER (on
a scale of 0 - 100). The plot on the left-hand side
(“PEPr + MTLM”) illustrates the situation for mix-
tures with the MT LM, which is intended to imple-
ment the do-nothing option. When all the weight
is assigned to the MT LM, the PEPr layer performs
virtually no changes to its MT input; conversely,
assigning all the weight to the reference LM re-
sults in more than 20% of the words being edited.

4This is not strictly speaking an upper bound for adapting the
base MT system, since it might be able to draw on other re-
sources to infer domain-specific translations. However, such
techniques would be considerably more complex than what
we propose here.
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Between these two extremes, the amount of PEPr
edits grows monotonically. WER and BLEU gains
(red “2” and blue “4” curves, respectively) ap-
pear to follow the same kind of progression. This
suggests that, while assigning more weight to the
MT LM does make the system less aggressive, it
does not make it more discriminant: PEPr cor-
rections are inhibited regardless of their potential
value for the post-editor.

This contrasts with the plot on the right-hand
side (“PEPr + GLM”), which corresponds to mix-
tures with a rich background LM. Here again, the
amount of PEPr corrections increases dramatically
as more weight is assigned to the reference LM.
Here, however, WER and BLEU gains follow a
different pattern, displaying optimal values some-
where between the two extreme settings. (Inter-
estingly, in this case, the outcome will be sub-
stantially different whether we optimize relative to
WER or BLEU; this behavior is not generalized,
however.) The generic LM provides additional in-
formation, which the PEPr system can exploit to
make better decisions. This suggests that, when
such a background LM is available, it makes sense
to automatically optimize its relative weight on de-
velopment data.

However, the effect of the mixture parameter on
the global behavior of PEPr is striking, and it could
also be interesting to leave its setting to the user, as
a way of controlling how aggressive or conserva-
tive the system is.

4 Related Work

Automatic post-editing using SMT was proposed
in Simard et al. (2007). The idea of dynamically
updating an APE system after each sentence re-
vised by a translator was the subject of an early
proposal by Knight and Chander (1994). As far
as we are aware, it has not been investigated ex-
perimentally in previous work, although as noted
above certain commercial TM systems allow dy-
namic updates.

Similar ideas have been explored for SMT, be-
ginning with Nepveu et al. (2004), who used a
cache-based approach to incorporate recent word-
for-word translations and ngrams into an early in-
teractive SMT system. Hardt and Elming (2010)
applied a similar strategy to a modern phrase-
based SMT system, using heuristic IBM4-based
word alignment techniques to augment a local

phrase table with material from successive post-
edited sentences. Two related themes in SMT re-
search are incremental training (Levenberg et al.,
2010) and context-based adaptation without user
feedback (Tiedemann, 2010; Gong et al., 2011).
These techniques have not yet been applied to au-
tomatic post-editing, outside the work of Hardt and
Elming (2010).

5 Conclusion

We have proposed a method to perform automatic
post-edit propagation (PEPr), using a phrase-based
SMT system in an APE setting, with incremen-
tal training. Experiments simulating post-editing
sessions suggest that our method is particularly ef-
fective when translating technical documents with
high levels of internal repetition. Because the
method is designed to work with extremely small
amounts of training data, we believe that it can be
implemented into an efficient, lightweight process.

There are potentially many ways in which our
method could be improved. Using Levenshtein-
Damerau distance to capture post-edits into a
phrase table appears to be effective, but there are
likely many situations where this approach runs
into trouble, especially for heavily post-edited sen-
tences. Alternative or complementary alignment
techniques should be investigated, e.g. using IBM-
style translation models trained on existing post-
edited data. Phrase table filtering techniques could
also be considered, to discard dubious phrase pairs.

In Section 3.4, we proposed to leave the set-
ting of the LM mixture parameters to the user, as
a way of controlling the aggressivity of the PEPr
layer. We believe this sort of control is valuable,
but it may be equally or even more effectively
achieved by modifying the translation model prob-
abilities. The LM mixture parameter could then be
optimized on development data, so as to minimize
post-editing effort.

Finally, all experiments were performed by sim-
ulation, using data that was not produced by post-
editing. Independently-produced translations are
possibly more distant from MT outputs than real
post-edits; however, it is not clear how this affects
our evaluation of the approach. In the end, to prop-
erly evaluate the value of our proposal will require
implemententing a prototype version and submit-
ting it to a real user evaluation.
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Figure 2: Amount of PEPr edits on the ECB fr→en Development Set (measured as WER between raw
MT and PEPr output – in black “◦”), WER gain (red “2”) and BLEU gain (blue “4”) as a function of
the relative weight of the reference LM in LM mixtures with MT LM (left) and generic LM (right).
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Béchara, H., Y. Ma, and J. van Genabith. 2011. Statis-
tical Post-editing for a Statistical MT System. In MT
Summit XIII, pages 308–315.

Carpuat, M. and M. Simard. 2012. The trouble with
SMT consistency. In WMT, pages 442–449.

Cer, D., C. D. Manning, and D. Jurafsky. 2010. The
Best Lexical Metric for Phrase-Based Statistical MT
System Optimization. In HLT-NAACL, pages 555–
563.

Cherry, C. and G. Foster. 2012. Batch tuning strate-
gies for statistical machine translation. In NAACL,
volume 12, pages 34–35.

Church, K.W. and W.A. Gale. 1995. Poisson mixtures.
Natural Language Engineering, 1(2):163–190.

Foster, G. and R. Kuhn. 2007. Mixture-Model Adapta-
tion for SMT. In WMT.

Gong, Z., M. Zhang, and G. Zhou. 2011. Cache-
based document-level statistical machine translation.
In EMNLP.

Hardt, D. and J. Elming. 2010. Incremental Re-
training for Post-Editing SMT. In AMTA.

Knight, K. and I. Chander. 1994. Automated postedit-
ing of documents. In National Conference on Arti-
ficial Intelligence, pages 779–779. JOHN WILEY &
SONS LTD.

Koehn, P., H. Hoang, A. Birch, C. Callison-Burch,
M. Federico, N. Bertoldi, B. Cowan, W. Shen,
C. Moran, R. Zens, et al. 2007. Moses: Open Source
Toolkit for Statistical Machine Translation. In ACL,
pages 177–180.

Lagoudaki, E. 2008. The value of machine translation
for the professional translator. In AMTA, pages 262–
269.

Larkin, S., B. Chen, G. Foster, U. Germann, E. Joa-
nis, H. Johnson, and R. Kuhn. 2010. Lessons from
NRC’s Portage system at WMT 2010. In the Joint
Fifth Workshop on Statistical Machine Translation
and MetricsMATR, pages 127–132.

Levenberg, A., C. Callison-Burch, and M. Osborne.
2010. Stream-based Translation Models for Statis-
tical Machine Translation. In NAACL.

Nepveu, L., G. Lapalme, P. Langlais, and G. Foster.
2004. Adaptive Language and Translation Models
for Interactive Machine Translation. In EMNLP.

Simard, M., C. Goutte, and P. Isabelle. 2007. Statis-
tical Phrase-based Post-editing. In Proceedings of
NAACL HLT, pages 508–515.

Tiedemann, J. 2009. News from OPUS-A collection
of multilingual parallel corpora with tools and inter-
faces. In Recent Advances in Natural Language Pro-
cessing, volume 5, pages 237–248.

Tiedemann, J. 2010. Context adaptation in statistical
machine translation using models with exponentially
decaying cache. In DANLP.

198


