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Abstract
This paper gives a description of the University of Edin-

burgh’s (UEDIN) systems for IWSLT 2013. We participated
in all the MT tracks and the German-to-English and English-
to-French SLT tracks. Our SLT submissions experimented
with including ASR uncertainty into the decoding process via
confusion networks, and looked at different ways of punctu-
ating ASR output. Our MT submissions are mainly based on
a system used in the recent evaluation campaign at the Work-
shop on Statistical Machine Translation [1]. We additionally
explored the use of generalized representations (Brown clus-
ters, POS and morphological tags) translating out of English
into European languages.

1. Spoken Language Translation
We submit two systems to the Spoken Language Translation
track: English-French and German-English. These systems
were built to take maximum advantage of Edinburgh’s En-
glish [2] and German [3] 2013 IWSLT speech recognition
systems.

We explored different strategies for minimizing the mis-
match between unpunctuated ASR output and SMT models,
which are typically trained on punctuated text. We wanted
to examine whether it was better to infer punctuation in the
target during the translation process, or whether it was better
to resolve ambiguity in the source first, by punctuating ASR
output before translation. Previous work [4] has shown that
it is helpful to punctuate ASR before translating, especially
when using a strong punctuation model.

We also investigate how best to use the uncertainty in
the ASR output. Confusion networks have been used suc-
cessfully in speech translation [5]. They were proposed as a
way to simplify ASR word graphs [6] as each path from the
start node to the end node goes through all the other nodes.
We compared using confusion networks from our speech sys-
tems to 1-best input into the machine translation models.

1.1. ASR systems

The english ASR system combines tandem and hybrid deep
neural network based acoustic models, and applied adapta-
tion to each speaker in the test set. N-best lists produced

with an n-gram language model are rescored with a recurrent
neural network language model to produce the final results.
For more details see [2].

The German ASR lattices were generated using the
KALDI speech recognition toolkit [7]. A hybrid deep neu-
ral network architecture was trained, in which a DNN with
six hidden layers, containing 2048 nodes each, takes 39-
dimensional speaker-adapted LDA-MLLT feature vectors
as input to generate posterior probabilities over the 3000
context-dependent states of a HMM. Language modelling
was done with a 4-gram LM which was trained on approxi-
mately 30 million words, selected from a text corpus of 994
million words, according to maximal cross-entropy with the
TED domain. The lexicon was restricted to 300,000 words,
striking a balance between adequate word coverage and low
perplexity on the TED domain. The lattices were first gen-
erated with a heavily pruned version of this LM, and then
rescored with the full model. For details, see [3].

1.2. Experimental design

We trained a phrase-based model using Moses [8] on the par-
allel corpora described in Table 1. These are large paral-
lel corpora, with only TED talks [9] consisting of in-domain
data. Europarl v7 [10], News Commentary corpus and Multi
United Nations corpus [11], Gigaword corpus (French Giga-
word Second Edition, English Gigaword Fifth Edition) and
Common Crawl [12] consist of parallel data which contain
some noise, and a large number of examples which are likely
irrelevant for the target TED domain. We therefore used a do-
main filtering technique [13] which was applied successfully
in last year’s Edinburgh submission [14]. This uses bilin-
gual cross-entropy difference to select sentence pairs that are
similar to the in-domain data and dissimilar to the out-of-
domain data. For French-English we retained 10% of the
out-of-domain data, and for German-English, which has less
out-of-domain data, we retain 20%.

To optimize the translation model we used a modified
version of the MIRA implementation in Moses as described
in [15]. The language model used is a 5-gram language
model, trained with SRILM [16], and applies Kesner-Ney
smoothing. The final model is a linear interpolation of lan-
guage models trained separately on the corpora listed in the



Parallel Corpora en-fr de-en
TED(In Domain) 2.7/2.4 2.6/2.7
Europarl v7 52.8/58.2 48.7/42.5
News Commentary v7 3.4/3.9 4.0/3.9
Common Crawl 78.1/86.4 49.5/53.1
Multi UN 318.4/366.8 4.4/4.6
109 562.1/667.3 -
Monolingual Corpora fr en
TED(In Domain) 3.1 2.8
Europarl v7 61.5 60.5
News Commentary v7 4.0 3.9
Common Crawl 91.4 59.8
Multi UN 426.8 -
109 811.4 -

Table 1: Word counts (in millions) for corpora used to train
translation and language models.

tst2010
In+100%Out 30.8
In+10%Out 31.6 (+0.8)
In+10%Out, Strip Punc 28.4 (-3.2)

Table 2: Cased BLEU results for English-French baseline
models when tuned and tested on gold transcriptions.

bottom half of Table 1. The interpolation is done to optimize
entropy on the development set. For the German-English
systems we applied compound splitting [17] and syntactic
pre-ordering [18] on the German source side.

1.3. Baseline

In these experiments we establish what is the best baseline
model to use for further spoken language translation experi-
ments. Here we tune and test on transcribed TED talks. For
both French-English and German-English the tuning set is
their respective IWSLT dev2010 set, and the test set is their
respective IWSLT tst2010 set.

Table 2 presents the results of the English-French base-
line experiments. We can see that filtering the out-of-domain
data not only reduced model size, but it increases perfor-
mance by 0.8 BLEU points. We then wanted to test what
effect the lack of punctuation has on performance, without
the confounding factor of possible speech recognition errors.
So we tested our filtered model with a test set for which
punctuation on the source had been removed. In this pa-
per, whenever punctuation is stripped we exclude full stops
in acronyms such as “U.K.” and quotes such as “we’ll”, as
these occur in ASR output. We can see that performance is
severely degraded by 3.2 BLEU points. This shows that punc-
tuation alone accounts for a large part of the challenge in the
speech translation task.

Table 3 shows the results of the German-English base-

tst2010
In+100%Out 21.4
In+20%Out 27.8 (+6.4)
In+20%Out, No preord 24.3 (-3.5)
In+20%Out, No preord, Strip Punc 23.6 (-0.7)

Table 3: Cased BLEU results for German-English baseline
models when tuned and tested on gold transcriptions.

line experiments. We can see that filtering the out-of-domain
data had a big increase on performance, 6.4 BLEU points.
This means that out-of-domain data is either of poor quality
or is badly mismatched with the test domain. For experi-
ments with confusion networks, we would be unable to split
and preorder the input. We therefore experimented with re-
moving this preprocessing step. We can see that it has a big
negative effect on the translation quality, losing 3.5 BLEU
points. Although syntactic preordering of German input is
very helpful for transcriptions, it is logical to suppose that
applying it to ASR output with many errors would be less
successful. We then experimented further, removing punc-
tuation to reproduce the format of ASR input, and we lost a
further 0.7 BLEU points.

1.4. Dealing with Uncertainty

In this section we explore the different ways that MT systems
are able to use the uncertainty inherent in the ASR output, es-
pecially looking at punctuation insertion and confusion net-
works. We apply two models (with and without punctuation
on the input) from the baseline experiments, the final two
models in Table 2 and Table 3. The input to these experi-
ments is the 1-best ASR output and confusion network ASR
output from the Edinburgh ASR system submissions. For
French-English the tuning set is dev2010 and the test set is
tst2010. For German-English the tuning set is dev2012 and
there is no test set, so results are reported for development
data which is far from ideal.

The Kaldi and the HTK lattices were converted into stan-
dard lattice format and then into confusion networks or word
meshes using the SRILM nbest-lattice tool. In speech recog-
nition systems, high accuracy recognition is achieved by a
multi-pass process which often use lattices as an intermedi-
ate representation. These lattices routinely contain redundant
information which was generated due to small differences
in timing. There could be, for instance, 10 different arcs
emitting the same word with slightly different start times.
This greatly increases the size and difficulty in translating
the ASR output. We therefore apply a reduction step to the
lattices [19], which reduced their average size by a factor of
five. We set the number of iterations for reduction to 3. We
also calculate the posterior probability of the arcs, pruning
arcs with a variety of different thresholds, from 0.01 times
the most likely candidate to 0.0001 times the most likely can-
didate. Finally we remove arcs which emit null.



BLEU

Absolute 1-best 22.9
Absolute 1-best Punctuated 24.1 (+1.2)
Lattice 1-best 17.9 (-5.0)
CN prune p.t. 100 19.5 (+1.6)
CN prune p.t. 20 19.5 (+1.6)
CN prune p.t. 10 19.2 (+1.3)
CN prune p.t. 1 14.6 (-3.3)
CN prune p.t. 100 lattice 0.0001 19.3 (+1.4)
CN prune p.t. 100 lattice 0.001 19.3 (+1.4)
CN prune p.t. 100 lattice 0.01 19.4 (+1.5)

Table 4: Cased BLEU scores and decoding times in minutes
for en-fr models when tuned and tested on ASR output.

We apply standard tokenization strategies to all lan-
guages. For confusion networks we need to split the arcs
which carry a word which needs splitting. For instance an
arc with the word “Europe’s” becomse two arcs: “Europe”
and “’s”. We apply truecasing to all training and test data, in-
cluding confusion networks. Truecasing models are trained
on the tokenized parallel corpora. The most common case
for a word is then applied to all text.

The punctuation SMT model is trained on monolingual
data where the source side has had all punctuation stripped.
This model is run in a monotone decoding mode so as to
introduce as few changes as possible, limiting it as much as
possible to just inserting punctuation.

The results for the extensive en-fr experiments are pre-
sented in Table 4. We first experimented with taking the ab-
solute ASR 1-best output and using this for tuning and test-
ing. We can see that it has a BLEU score of 22.9. We use this
as the baseline result for comparison for the next results. We
then compared this with our punctuated model. This model
first passes the absolute 1-best through our SMT punctuation
model. We can see that this improves results considerably,
adding 1.2 points to the BLEU score. The absolute 1-best is
the result of minimum Bayes risk decoding and system com-
bination, where the lattices from the tandem and hybrid deep
neural network based acoustic models are combined using
ROVER. For our lattice and confusion network experiments
however, we use the lattice output from the hybrid system.
We lose some performance because not only do we miss out
on the benefits of system combination, but we also do not
benefit from a 4-gram language model and a final recurrent
neural network language model rescoring step. In the En-
glish ASR paper [2], the absolute 1-best has a WER of 17.0,
and the hybrid system has a WER of 18.6. We therefore in-
clude as our next system, the 1-best that we extract from the
hybrid model’s lattices using SRILM lattice-tool. The hybrid
lattice 1-best has a BLEU score of 17.94, which is a drop of
BLEU score of 5 points from the absolute 1-best. This is a
surprisingly large negative impact considering that the WER
of the hybrid system was only 1.6 points higher. Clearly the

BLEU

Absolute 1-best 17.0
Absolute 1-best Punctuated 16.1 (-0.9)
CN prune p.t. 100 11.1 (-5.9)

Table 5: Cased BLEU scores and decoding times for de-en
models when tuned and tested on ASR output.

en-fr de-en
Edinburgh ASR system 22.45 14.92
IWSLT ASR system 23.00 (+0.55) 14.99 (+0.07)

Table 6: Official test 2013 cased BLEU results for 1-best SLT
input. The Edinburgh ASR system input was our primary
system.

quality of the ASR system is of crucial importance to the fi-
nal translation. We use the BLEU score of the hybrid lattice
1-best to compare the performance of the confusion network
input. We discovered that decoding with confusion networks
and unfiltered phrase-tables was not feasible. It was using
enormous amounts of memory and time to cache and then
decode all the possible translations. 1-best translations do
not suffer nearly as much from this as having only one path
through a sentence, drastically reduces the total number of
possible input phrases. We discovered that we could speed up
decoding enormously if we filtered the phrase table for only
the top 100 translations for each input phrase. Most longer
phrases have a reasonable number of translations, but some
common phrases have enormous numbers of possible trans-
lations which are very poor. For instance, the source phrase
”a” in the en-fr system, has 402 thousand translations. We
therefore pruned the phrase table to eliminate the vast ma-
jority of these unhelpful translations, leaving us with only
the top n most likely translations. We can see that translat-
ing with pruned phrase tables improves upon translating with
just the lattice 1-best by 1.6 BLEU points. We can also see
that changing the pruning limit does not affect the score very
much, until a drastic limit of 1 is reached, where performance
drops by 3.3 BLEU points. We further experimented by using
the posterior probabilities on the lattice to prune the number
of alternative arcs. We found that posterior pruning had a
slightly negative effect, reducing the performance from con-
fusion network input where we only pruned phrase tables, of
between 0.2 and 0.3 BLEU points.

The results of our de-en experiments are presented in Ta-
ble 5. Here we see that the punctuated input does slightly
worse, but because these are development data results, we
do not rely upon them. We also see that confusion network
results are much worse than the absolute 1-best.



1.5. Official Results

The results in Table 6 show the official results on our primary
and contrastive submissions. The primary submissions used
the absolute 1-best, unpunctuated ASR output of the Edin-
burgh system submissions. The contrastive submissions used
the official IWSLT ASR output as input to the SMT decoder.
The contrastive submissions did slightly better.

2. Machine Translation Systems
Our machine translation systems are based on our setup [1]
that has been proven successful at the recent evaluation cam-
paign at the Workshop on Statistical Machine Translation
[20].

2.1. Baseline

The system uses the baseline Moses [8] phrase-based model
[21] (as given in the example files for the experimental man-
agement system), with the following additions:

• limitation of phrase length to 5
• sparse domain indicator, lexical, phrase length, and

count bin features [22]
• factored models for German–English and English–

German
• source-side German compound splitting [23]
• cube pruning with pop limit 1000 for tuning, 5000 for

testing [24]
• operation sequence model (OSM) with 4 additional

supportive features: 2 gap based penalties, 1 distance
based feature and 1 deletion penalty [25]

• batch k-best MIRA tuning [26]
• interpolated 5-gram KenLM language models [27]
• minimum Bayes risk decoding [28]
• no-reordering-over-punctuation heuristic [29]

In the IWSLT systems, we also used:

• compact phrase tables [30]
• filter out phrase translations with conditional probabil-

ity of less than 0.0001
• hierarchical lexicalized reordering (mslr) [31]
• MADA tokenizer for source-side Arabic [32]
• Stanford Chinese segmenter [33]

We also tried hierarchical phrase-based models for Chi-
nese, but did not achieve better results.

In addition to the data provided directly from the IWSLT
organizers, we also included whenever applicable:

• Common Crawl parallel corpus, as provided by WMT
2013 [34]

• Europarl version 7 parallel corpus1 [35]
• news commentary parallel corpus, as provided by

WMT 2013
1http://www.statmt.org/europarl/

Language Into English From English
Arabic 24.8 7.6
Chinese 11.8 9.8
Dutch 32.8 26.5
Farsi 14.5 8.0
French 33.3 33.2
German 30.5 22.9
Italian 29.7 23.7
Polish 17.7 9.7
Portuguese 36.0 30.8
Romanian 31.7 21.1
Russian 19.1 13.1
Slovenian 24.7 18.0
Spanish 39.5 33.9
Turkish 13.5 7.2

Table 7: Baseline system performance for machine transla-
tion systems (Section 2.1): Cased BLEU scores on test2010
using NIST’s mteval-v13a. Test on tune for Slovenian.
Moses multi-bleu.perl for Chinese target.

• news language model data provided by WMT 2013
• LDC Gigaword for French, Spanish, and English as

output language

We built systems for all language pairs of the IWSLT evalu-
ation campaign. The quality scores (BLEU) of the resulting
systems as measured on the development test set is given in
Table 7.

2.2. Brown Cluster Language Models

As suggested by [36], we explored the use of Brown clus-
ters [37]. We computed the clusters with GIZA++’s mkcls
[38] on the target side of the parallel training corpus. Brown
clusters are word classes that are optimized to reduce n-gram
perplexity.

By generating the Brown cluster identifier for each output
word, we are able to add an n-gram model over these identi-
fiers as an additional scoring function. The inclusion of such
an additional factor is trivial given the factored model imple-
mentation [39] of Moses. The n-gram model is trained on the
target side of the TED corpus made available by the IWSLT
organizers.

The motivation for using Brown clusters stems from the
success of using n-gram models over part-of-speech and
morphological tags and the lack of the required taggers and
analyzers for many language pairs. Brown clustering induces
word classes that are similar to part-of-speech tags (for in-
stance, placing adjectives with the same inflection into one
class), with some additional semantic grouping (for instance,
grouping all color adjectives).

Results are shown in Table 8. While the Brown clus-
ter sequence models do not help for some of the language
pairs for which we have plentiful training data (French, Span-



Language B0 50 200 600 1000

Dutch 26.5 26.7 26.2 26.3 26.5
+0.2 –0.4 –0.2 ±0.0

French 33.2 33.3 33.4 33.1 33.1
+0.1 +0.2 –0.1 –0.1

Polish 9.7 9.9 10.1 10.1 10.4
+0.2 +0.4 +0.4 +0.7

Portuguese 30.8 31.6 32.2 32.4 32.4
+0.8 +1.4 +1.6 +1.6

Russian 13.1 13.3 13.5 13.5 14.0
+0.2 +0.4 +0.4 +0.9

Slovenian 18.0 18.7 18.6 17.7 18.0
+0.7 +0.6 –0.3 ±0.0

Spanish 34.1 34.3 34.6 34.5 34.0
+0.2 +0.5 +0.4 –0.1

Turkish 7.2 7.4 7.5 7.5 7.5
+0.2 +0.3 +0.3 +0.3

Table 8: Target sequence model (“language model”) over
Brown clusters: BLEU scores for different number of classes
(50, 200, etc.) and improvement over the baseline (B0).
Translation from English only.

ish, Dutch), we see good gains for others, especially for Por-
tuguese and the morphologically rich Russian. For the first
mentioned set of language models, we are also able to use
part-of-speech tag sequence models (See Baseline systems
in Table 10), but also without significant gains. Improve-
ments are generally fairly robust independent of the number
of clusters used.

2.3. Operation Sequence Models over Generalized Rep-
resentations

The integration of the OSM model into phrase-based de-
coding [40, 41] addresses the problem of phrasal indepen-
dence assumption since the model considers context beyond
phrasal boundaries. However, due to data sparsity the model
often falls back to very small context sizes. We investigated
the use of generalized representations (pos, morphological
analysis and word clusters) in the OSM model. The expecta-
tion is that given the sparse training data for many of the lan-
guage pairs, defining this model over the more general word
classes would lead to a model that is able to consider wider
context and learn richer lexical and reordering patterns.

2.3.1. Brown Clusters

Using Brown clusters on the source side, enables us to use the
cluster identifiers also for the operation sequence model. We
added an operation sequence model over source and target
clusters to each of the configurations of language and num-
ber of clusters reported in Table 8. We show improvements
over each of these settings in Table 9. We generally see im-
provements, although there is no clear pattern with regard to
number of clusters. The biggest gains are for the use of 1000
clusters for French and Spanish — the languages where the

Language B0 50 200 600 1000

Dutch 26.5 26.9 26.5 26.6 26.5
+0.2 +0.3 +0.3 ±0.0

French 33.2 33.8 33.7 33.6 33.8
+0.5 +0.3 +0.5 +0.7

Polish 9.7 10.1 10.2 10.2 10.1
+0.2 +0.1 +0.1 –0.3

Portuguese 30.8 31.8 32.4 32.3 31.9
–.02 +0.2 –0.1 –0.5

Russian 13.1 13.6 13.7 13.8 13.6
+0.3 +0.2 +0.3 –0.4

Slovenian 18.0 18.6 18.9 18.2 18.0
–0.1 +0.3 +0.5 ±0.0

Spanish 34.1 34.7 34.6 34.6 34.6
+0.4 ±0.0 –0.1 +0.6

Turkish 7.2 7.3 7.3 7.5 7.5
–0.2 –0.2 ±0.0 ±0.0

Table 9: Operation sequence model over Brown clusters:
BLEU scores for different number of classes and improve-
ment over the baseline of just using the Brown cluster se-
quence model (“language model”), as reported in Table 8.

sequence model alone did not give much improvement.
We also tried using OSM models over different numbers

of clusters simultaneously for English-to-{French, Spanish
and Dutch} pairs. Small gain was observed in the case of
English-to-Spanish as the best system improved from 34.7 to
35.0. No further gains were observed in the case of other two
pairs. For each system, our official submission is the system
with the best performance on the development test set.

2.3.2. POS and Morph Tags

We also tried using the OSM models over POS tags for
English-to-{German, French, Spanish and Dutch} pairs. For
German-English pairs we additionally used morphological
tags on the German-side. We used LoPar [42] to obtain mor-
phological analysis and POS annotation of German and MX-
POST [43], a maximum entropy model for English POS tags.
For other languages we used TreeTagger [44].

Model English-German German-English
Baseline 22.9 30.5
+OSM(pos,pos) 23.2 +0.3 31.0 +0.5
+OSM(pos,morph) 23.9 +1.0 31.2 +0.7
+OSMall 24.2 +1.3 31.1 +0.6

English-French English-Spanish
Baseline 33.1 33.9
+OSM(pos,pos) 33.0 -0.1 34.4 +0.5

English-Dutch
Baseline 26.6
+OSM(pos,pos) 26.6 ±0.0

Table 10: Evaluating POS- and Morph-based OSM Models

The baseline systems shown in Table 10 used POS tags
as an additional factor on source and target side and POS



target sequence model as an additional language model fea-
ture. English-to-German baseline used morphological target
sequence model instead of POS sequence model. German-to-
English baseline used morphological tags as additional factor
on the source-side and POS tags on target-side.

Table 10 shows the effect of adding OSM models over
POS and morph tags on top of the factor-augmented base-
line systems. Adding an OSM model over [pos,morph]
(source:pos,target:morph) combination gave best results for
English-to-German. Similarly adding an OSM model over
[morph,pos] (source:morph, target:pos) gave best results for
German-to-English. Adding both the models simultane-
ously (+OSMall) gave further improvements for English-
to-German but none for German-to-English pair.

Augmenting baseline systems with POS factors did not
yield any improvement for English-to-{French, Spanish and
Dutch} pairs. Adding POS-based OSM model did not help
either, except for English-to-Spanish pair. Using cluster-ids
instead of POS tags was found to be more useful for these
pairs.

In a post-evaluation analysis we confirmed whether using
generalized OSM models actually consider a wider contex-
tual window than its lexically driven variant. We found that
the probability of an operation is conditioned on less than a
trigram in the OSM model over surface forms. In compar-
ison OSM models over POS, morph or cluster-ids consider
a window of roughly 4 previous operations thus considering
more contextual information.

3. Summary
We have described our SLT and MT submissions to IWSLT-
13 evaluation campaign. For SLT we experimented with dif-
ferent punctuation strategies and with using confusion net-
work input. Punctuating the input as a separate preprocess-
ing step is helpful, and improves en-fr results by 1.2 BLEU
points. Working with confusion networks requires pruning
of the phrase table so that the search space does not ex-
plode with very unlikely translations. We found that switch-
ing from the absolute 1-best ASR output to the hybrid lat-
tice output from the ASR system had a very negative impact
on translation (-5 BLEU points), which was surprising as the
WER of the hybrid lattice system was not much worse. This
suggests that WER is crucial for spoken language translation
quality. Translating confusion networks however, improved
translation quality by 1.2 BLEU points. Our MT submissions
are based on the phrase-based pipeline as used in the re-
cent WMT campaign. We additionally explored using Brown
clusters, and linguistic annotations in factored-based phrase-
translation model and the operation sequence model. Adding
OSM model over POS and Morph tags gave improvements of
+1.3 in English-to-German and +0.7 in German-to-English
pairs. We showed the efficacy of using Brown clusters as
additional factor in Phrase-based and OSM models. Our in-
tegration consistently improved the baseline system giving
significant improvements in most cases. We obtained an av-

erage BLEU point improvements of up to +0.7 ranging from
+0.3 to +1.6 translating from English to 8 European language
pairs that contained a mixture of data sparse and morphologi-
cally rich languages. We also showed that using Brown clus-
ters outperform POS tag in some language pairs. Table 11
show BLEU scores for our official submissions.
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Into English From English
Language test11 test12 test13 test11 test12 test13
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Farsi 19.2 15.9 15.1 12.3 10.2 9.5
French – – – 40.6 41.2 38.5
German – – 25.5 27.1 22.5 24.0
Italian 30.2 29.6 34.9 24.4 25.3 29.2
Polish 21.7 18.5 20.9 13.1 10.5 11.5
Portuguese 39.0 40.6 37.3 33.6 34.9 33.2
Romanian 36.1 31.8 29.8 23.2 19.2 17.6
Russian 22.1 20.7 22.7 15.9 13.5 16.1
Slovenian – 21.2 24.1 – 12.4 13.7
Spanish 37.1 30.8 39.1 33.2 26.8 34.7
Turkish 15.0 15.0 14.9 7.4 7.4 6.8

Table 11: Official Submissions (MT-Track) – Cased BLEU scores on test [2011-2013], using NIST’s mteval-v13a
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