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Abstract

Discriminative training for MT usually in-
volves numerous features and requires large-
scale training set to reach reliable parameter
estimation. Other than using the expensive
human-labeled parallel corpora for training,
semi-supervised methods have been proposed
to generate huge amount of “hallucinated”
data which relieves the data sparsity problem.
However the large training set contains both
good samples which are suitable for training
and bad ones harmful to the training. How
to select training samples from vast amount
of data can greatly affect the training perfor-
mance. In this paper we propose a method
for selecting samples that are most suitable for
discriminative training according to a criterion
measuring the dataset quality. Our experimen-
tal results show that by adding samples to the
training set selectively, we are able to exceed
the performance of system trained with the
same amount of samples selected randomly.

1 Introduction

Discriminative training methods have been success-
fully applied to MT tasks(Och, 2003; Shen, 2004;
Liang, 2006; Li, 2008). Compared with generative
training methods, discriminative training can easily
incorporate task-specific knowledge represented by
features, and it aims to directly minimize the specific
task error instead of maximizing the likelihood. To
take the advantage of discriminative training meth-
ods, people developed rich feature sets which usu-
ally include thousands or even millions of features.
In order to reach reliable parameter estimations for

so many features, discriminative training for MT
must be scaled to large amount of training data. (Li,
2008) proposed a scheme for large-scale discrimi-
native training by using the parallel corpus directly,
however such human-labeled parallel corpora are
usually very expensive to acquire, hence later on (Li,
2010; Li, 2011) proposed semi-supervised methods
to “hallucinate” training data for discrminative train-
ing. Those semi-supervised methods can in prin-
ciple generate almost umlimited “parallel” training
data from a target-side monolingual corpus, thus be-
come a strong component in large-scale MT dis-
criminative training.

These huge training data sets contain both good
samples which are suitable for discriminative train-
ing and noisy samples which can potentially un-
dermine the training performance. Although large-
scale training entails high-volume data, many sam-
ples are valueless for training and blindly increas-
ing the size of the dataset does not necessarily lead
to better performance. So how should we use these
datasets wisely? Which samples should be priori-
tized in training? Solving this problem is especially
meaningful when we use semi-supervised methods,
which can generate almost unlimited training sam-
ples but we probably do not want to use all of them.
In this paper we address this problem by selecting
samples according to a criterion measuring the train-
ing data quality, instead of randomly adding samples
to the training data pool.

The rest of the paper is organized as the following:
Section 2 overviews work related to ours presented
in this paper; Section 3 introduces semi-supervised
discriminative training methods, as we experi-



mented both semi-supervised and supervised large-
scale training; Section 4 describes our proposed
sample selection method and Section 5 presents our
experimental results.

2 Related Work

The work presented in this paper is similar to ac-
tive learning (Settles, 2008; Guo, 2008; Hoi, 2006;
Hoi, 2008; Monteleoni, 2007). Since human-labeled
data is usually expensive to acquire, active learning
aims to select unlabeled data that is most informa-
tive for manual labeling while still reaching or ex-
ceeding performance given by much more randomly
selected and labeled data. Active learning has been
applied to NLP problems such as information ex-
traction (Thompson, 1999), parsing (Tang, 2002), as
well as machine translation (Haffari, 2009a; Haffari,
2009b; Ananthakrishnan, 2010).

Haffari (2009a) for the first time proposed an ac-
tive learning framework for SMT. The method pro-
posed by them is to build a bilingual training cor-
pus incrementally by labeling only those samples
selected according to the most informative phrases
and n-grams, confidence of translations etc. Haffari
(2009b) discussed the active learning task of adding
new language to an existing multilingual parallel
text and improving the MT system quality. Anan-
thakrishnan (2010) introduced a way of selecting
monolingual data for labeling by training a classifier
that predicts if a sentence will be incorrectly trans-
lated.

Our work differs from the existing active learn-
ing techiniques applied to MT in that we do not
aim at selecting monolingual data to reduce the hu-
man labeling effort, but given a large-scale training
data(either supervised or semi-supervised), select-
ing samples that are most conducive to discrimina-
tive training.

3 Semi-supervised Discriminative Training

Discriminative training aims to directly resolve the
ambiguities between confusable outputs in applica-
tions like ASR and MT(Roark, 2004; Roark, 2007;
Shen, 2004; Li, 2008). Given a set of training
samples(xi, yi) ∈ X × Y, i = 1 . . . n where X is
the input set and Y is the output set(for example in
MT, X is a set of source language sentences and Y a

set of translations in the target language), then under
the log-linear model framework, the output of the
model is

ŷ(x) = argmax
y∈GEN(x)

exp{Φ(x, y)Θ}
Z(x,Θ)

(1)

in which GEN(x) is a function enumerating the
candidates for an input x(in other words the con-
fusion set of the true output y. In MT, this can be
the n-best translation list for a given source sen-
tence), Φ(x, y) is the feature vector associated with
the input-output pair (x, y), and Z(x,Θ) is a nor-
malization term. The goal of discriminative training
is to find a parameter vector Θ that minimizes the
number of times ŷ(xi) 6= yi, or at least assigning
more probability mass to the correct outputs.

In practice, as mentioned in Section 1, it is usu-
ally expensive to acquire large number of labeled
training samples (xi, yi), i = 1 . . . n. This has led
to the recent development of semi-supervised train-
ing methods that hallucinate “labeled” training set
by using samples yi from the target side only. We
briefly discribe these methods as the following.

The first method, proposed in Li (2011), is a
“round-trip”-based method. Given a monolingual
corpus on the target language side, plus an existing
reverse translation system (from the target to source
language) trained from a parallel dataset with lim-
ited size, we translate the monolingual corpus into
the source language, and treat the automatic transla-
tions as approximations to the missing inputs to the
bilingual corpus. We can then use these hallucinated
input-output pairs for discriminative training.

The second method, proposed in (Bannard,
2005; Madnani, 2007; Li, 2010), is a “confusion-
grammar”-based method. The idea is to derive a
synchronous monolingual grammar rule set from a
synchronous bilingual grammar rule set. For exam-
ple, if we have two synchronous bilingual grammar
rules

X →< f, e1 > X →< f, e2 >

where X is the non-terminal, f and e1, e2 are the
source and target side strings respectively, then we
can derive the following target side monolingual
grammar rules by using f as a pivot:

X →< e1, e1 > X →< e1, e2 >

X →< e2, e1 > X →< e2, e2 >



Once we derive the set of monolingual grammar
rules, a target-to-target translation system can be
built to translate the monolingual corpus thus gen-
erating the confusion sets of the true outputs. Of
course, to derive the monolingual rules, we need an
existing parallel corpus to extract the set of bilingual
rules.

It can be seen that both semi-supervised training
methods require only the target side samples y ∈ Y ,
and a set of confusions CON(y) can be generated to
mimic the true confusions GEN(x). We then make
use of the CON(y) together with the true outputs y
for discriminative raining.

In our work presented in this paper, we use the n-
best lists translated from the hallucinated inputs by
the baseline system as the confusion set CON(y),
and we use the perceptron algorithm (Collins, 2002)
for n-best list re-ranking, similar to the framework
proposed in (Li, 2008).

4 Selective Sampling for Training

As mentioned in section 1, facing vast amounts of
data we want to prioritize good samples and discard
those which are harmful to discriminative training.
In this section, we propose a criterion for selecting
samples which makes the training more effective.

Discriminative training essentially aims to reward
features indicating good translations and penalize
those indicating bad ones. A good training set there-
fore should meet the following conditions:

1. High corpus-level oracle score: the best can-
didates (with respect to a metric) should be good
enough, otherwise the feature weights would be up-
dated only towards inferior translations far from the
golden standards (references), making the weights
powerless in predicting real fluent translations.

2. Large contrast between oracle and non-oracle
candidate scores: if there is only a narrow gap be-
tween oracle and non-oracle translation quality, then
it would be hard to identify features indicating real
good translations and those indicating bad ones, and
the discriminating ability of weights trained in this
environment would be weakened.

3. Good and bad candidates should be easily sep-
arated by the learning machine: each candidate is
represented mathematically by its feature vector. If
we treat good and bad candidates as two classes, it

is desirable that the two classes in the feature space
be as distant as possible, so that the data is more
separable and feature weights in a log-linear model
(representing a hyperplane in the feature space) can
be found more easily by linear learning algorithms
which is most widely used in discriminative train-
ing.

In other words, condition 1 and 2 indicate that the
training results should be enough meaningful, con-
dition 3 indicates how easy it is for the learning ma-
chine to reach the goal. Considering the three con-
ditions given above, we propose a quality measure-
ment of a training set D as the following:

Q(D) =
(N − 1)M(R1)

2∑
i 6=1

M(Ri)
J(D) (2)

Here N is the size of the n-best list, Ri is the set
of all candidates with rank i (according to the task
metric, e.g. BLEU) in the n-best lists, so that R1 is
the set of oracle-best hypotheses, M(Ri) gives the
corpus-level score1 of Ri.

J(D) is a class separability measure defined as 2.

J(D) =
tr{Sb}
tr{Sw}

(3)

in which Sb and Sw are the between-class and
within-class scatter matrices (Duda, 2000) corre-
sponding to the training set D. For all the n-best
lists in D, we treat the top p%-ranking (according to
the metric score) candidates as class 1, and the rest
as class 2. Sb and Sw are defined as

Sb =
2∑

i=1

(mi −m)(mi −m)T

Sw =

2∑
i=1

1

|Ci|
∑
x∈Ci

(x−mi)(x−mi)
T

(4)

1The criterion given by (2) assumes to use a metric associat-
ing higher score with better translation quality (like BLEU). For
metrics like TER (Snover, 2006) which assign lower score to
good translations simply replace the factor (N−1)M(R1)

2∑
i 6=1

M(Ri)
with

∑
i 6=1

M(Ri)

(N−1)M(R1)2
.

2There are other forms of definition such as J(D) =
tr{S−1

w Sb} and J(D) = |S−1
w Sb|. However these forms en-

tails computing the inverse of matrix which is computationally
expensive and numerically unstable when the number of fea-
tures is large and features are sparse, therefore we use the form
given by (3).



in which mi is the mean feature vector of class i, m
is the mean feature vector of all candidates, Ci is the
set of candidates belonging to the ith class.

We see in Q(D) that factors M(R1),

∑
i6=1

M(Ri)

N−1
and J(D) correspond respectively to condition 1, 2,
3 mentioned above. Now we would like to select
subsets from the large hallucinated training set so
that Q(D) is as large as possible.

If we hallucinate a raw training set G (namely
the large monolingual corpus from which we select
good samples to build up the final training set) with
M sentences(that is |G| = M and G has 2M sub-
sets), of course we can select a subset D ∈ 2G hav-
ing the highest Q(D) score in brute-force manner by
computing the score for each subset of G. But this is
obviously not manageable when M is large, there-
fore we hope to compute Q(D) on-the-fly as a new
training sample comes and decide if we want to add
this sample to the final training set or not.

Suppose we use a metric like BLEU or TER
which can be computed by accumulating the suffi-
cient statistics(Omar, 2009)(for example, for BLEU
we only need to accumulate the n-gram matches,
the source and reference sentence length), then
M(Ri), i ∈ 1...N can be easily updated as a new
sample comes and the factor (N−1)M(R1)2∑

i 6=1
M(Ri)

in Q(D)

can also be computed.

The factor J(D), on the other hand, can be up-
dated online as follows. First of all, tr{Sb} =
2∑

i=1
〈mi−m,mi−m〉. When a new training sample

comes, denote Cnew
i , i = 1, 2 to be the set of can-

didates belonging to the ith class in the n-best list,
and the updated mean feature vector of class i can
be written as

m′
i =

1

|Ci|+ |Cnew
i |

∑
x∈Ci∪Cnew

i

x

=

∑
x∈Ci

x+
∑

x∈Cnew
i

x

|Ci|
|Ci|

|Ci|+ |Cnew
i |

(5)

=

mi +

∑
x∈Cnew

i

x

|Ci|

 |Ci|
|Ci|+ |Cnew

i |

Similarly,

m′ =

m+

∑
x∈Dnew

x

|D|

 |D|
|D|+ |Dnew|

(6)

in which Dnew =
⋃

i=1,2
Cnew
i , and we have

tr{S′
b} =

2∑
i=1

〈m′
i −m′,m′

i −m′〉. (7)

Therefore we only need to save m and mi after pro-
cessing each new sample and tr{S′

b} can be updated
on-the-fly.

For tr{Sw}:

Sw =

2∑
i=1

1

|Ci|
∑
x∈Ci

(x−mi)(x−mi)
T

tr{Sw} =

2∑
i=1

1

|Ci|
∑
x∈Ci

〈x−mi,x−mi〉 (8)

and when a new training sample arrives,

tr{S′
w}

=

2∑
i=1

1

|Ci|+ |Cnew
i |

∑
x∈Ci∪Cnew

i

〈x−m′
i,x−m′

i〉

=

2∑
i=1

1

|C′
i|

∑
x∈Ci

〈x−m′
i,x−m′

i〉

+
∑

x∈Cnew
i

〈x−m′
i,x−m′

i〉

 (9)

Since m′
i has been computed as shown above, the

term
∑

x∈Cnew
i

〈x − m′
i,x − m′

i〉 can be easily com-

puted, and we denote Ai =
∑

x∈Cnew
i

〈x−m′
i,x−m′

i〉.

On the other hand, the term
∑
x∈Ci

〈x − m′
i,x − m′

i〉

can be computed incrementally as the following. Let

∆i = mi−m′
i =

(
1− |Ci|

|C′
i|

)
mi−

∑
x∈Cnew

i

x

|C′
i|

(10)



so that∑
x∈Ci

〈x−m′
i,x−m′

i〉

=
∑
x∈Ci

〈x−mi +∆i,x−mi +∆i〉

=
∑
x∈Ci

(〈x−mi,x−mi〉+ 〈∆i,∆i〉

+2〈∆i,x−mi〉) (11)

Denote Bi = 〈∆i,∆i〉, which is easy to compute,
and let Si =

∑
x∈Ci

〈x−mi,x−mi〉, then

tr{S′
w} =

2∑
i=1

1

|C′
i|
S′
i

=
2∑

i=1

1

|C′
i|

∑
x∈Ci

〈x−mi,x−mi〉+

2
∑
x∈Ci

〈∆i,x−mi〉+Ai + |Ci|Bi


=

2∑
i=1

1

|C′
i|

∑
x∈Ci

〈x−mi,x−mi〉+

2〈∆i,
∑
x∈Ci

(x−mi)〉+Ai + |Ci|Bi


=

2∑
i=1

1

|C′
i|

∑
x∈Ci

〈x−mi,x−mi〉+

2〈∆i,
∑
x∈Ci

x− |Ci|mi)〉+Ai + |Ci|Bi


=

2∑
i=1

1

|C′
i|

Si + 2〈∆i,
∑
x∈Ci

x− |Ci|mi)〉+

Ai + |Ci|Bi)

=

2∑
i=1

1

|C′
i|
(Si +Ai + |Ci|Bi) (12)

It can be seen that the term Si is computed incre-
mentally as S′

i = Si + Ai + |Ci|Bi, hence tr{S′
w}

can be easily computed. Together with tr{S′
b}, we

get J(D′).

Now that Q(D) can be updated online, it is natu-
ral to consider adding samples greedily to the train-
ing set by selecting the sample which gives the high-
est Q(D′) score from the remaining sample pool in
G. However this is computationally intractable as
we need to go through all the remaining samples ev-
erytime after updating D, which requires up to M !
operations. To make the process more practical, we
first extract K samples uniformly from the remain-
ing sample pool, compute Q(D′) for each of the
samples and pick up the one that gives the highest
score and return rest to the remaining sample pool.
In other words, we limit our search space to K sam-
ples.

5 Experimental Results

In this section we report our experimental results
on the NIST Urdu-English and Chinese-English MT
tasks. We used the open source translation soft-
ware Joshua (Li, 2009) which implemented the Hi-
ero translation model (Chiang, 2007), and used
BLEU as the evaluation metric. We experimented on
both the human-labeled parallel corpus(supervised
data) and the “hallucinated” parallel corpus(semi-
supervised data) created by the “round-trip” method
introduced in section 3.

5.1 Datasets

For Urdu-English translation task, the bilingual par-
allel corpus we used was distributed as part of the
2008 NIST Open Machine Translation Evaluation
Workshop, and the corpus contains 88.1K sentences.
For test and baseline system tuning set, we split the
NIST MT-08 test set into two portions. The test set
contains 883 sentences, and the tuning set contains
981 sentences. A 5-gram LM is trained from the En-
glish side of the parallel text only with Kneser-Ney
smoothing.

For Chinese-English translation task, the bilin-
gual parallel corpus contains about 1M sentences
sub-sampled from the corpora distributed by LDC
for the NIST MT evaluation using the sampling
module in Joshua. A 5-gram LM is trained on the
English side of the bilingual text and the English
Gigaword corpus (LDC2007T07) with Kneser-Ney
smoothing.. We used MT03 set (919 sentences) for
baseline system tuning, MT04 (1788 sentences) and



MT05 (1082 sentences) for testing.

5.2 Feature selection
We used two types of features as proposed by (Li,
2011):

1. Regular Hiero features: including a 5-gram LM
feature, three baseline translation model fea-
tures and a word penalty feature. The baseline
system makes use of the regular features only.

2. Target-rule bigram discriminative features: for
each bilingual grammar rule, extract the bi-
gram POS over the target-side symbols. For
example, if the target-side rule is “X1 on X2”
where X1 and X2 are non-terminals, then the
feature extracted is “X1 PREP”, “PREP X2”,
since PREP is the dominant POS of the non-
terminal “on”. We extracted about 800 and
1000 most frequent discriminative features for
Urdu-English and Chinese-English tasks re-
spectively.

5.3 Training procedure
We followed the training procedure outlined below:

1. Build the forward and reverse baseline systems
with the translation model trained from the par-
allel corpus, and the regular features weights
are tuned on the tuning set. Our baseline test
set scores are given by the forward baseline
system built in this step, and the reverse sys-
tem is used to hallucinate the missing inputs
for semi-supervised discriminative training, ac-
cording to the “round-trip” method. For super-
vised method, the reverse system is not used.

Instead of using MERT (Och, 2003) to tune the
baseline system feature weights, we made use
of “pairwise ranking optimization” (PRO) pro-
posed by Hopkins (2011) for parameter tuning,
as this method is shown to reach comparable
performance as MERT but with much less vari-
ance and more reliable.

2. For semi-supervised method, randomly choose
M sentences from only the English side of the
parallel corpus as the monolingual data3. Use

3Of course we could have used the entire English side as
the monolingual data, but with limited computing resource we
sampled a subset of it just for experimental purpose.

the “round-trip” method to generate the n-best
lists as the confusion set of the English sen-
tences. For supervised method, select M sen-
tences from the source side and generate the n-
best lists directly. Now we have the raw train-
ing set G4. In our experiments we set M =
10000.

3. Using method introduced in section 4 to se-
lect L samples from G as the actual discrim-
inative training set. In our experiments we
tried L = 1000, 2000, . . . , 10000, and we set
p = 15, K = 200.

4. Train the discriminative feature weights using
the average perceptron algorithm.

5. Similar to the methodology used in (Li, 2010),
fix the discriminative feature weights and treat
the discriminative feature score as one addi-
tional feature. Together with the five base-
line features, tune the six feature weights using
PRO. This gives us the final MT system.

5.4 Results
Our main results are presented in Figure 1. We com-
pare the performance on the test sets given by the
baseline system without discriminative training, sys-
tem with discriminative training by random and se-
lective sampling. The semi-supervised training re-
sults are shown in the left column of Figure 1, and
supervised training results are shown in the right col-
umn. It can be observed that:

1. With the same amount of training data, selec-
tive sampling outperforms random sampling in most
cases. Given the same raw training set containing
10K samples, the best scores selective sampling can
reach are all higher than random sampling. In the
Urdu-English case, with random sampling the dis-
criminative training was not very efficient and actu-
ally some results were even worse than the baseline
system. However selective sampling improved the
system performance and raised most scores above
baseline.

4Notice that the translation model is also trained from the
parallel corpus. To avoid overfitting on the training data we
used the complementary set of G to build the translation model
for the forward translation system to decode the hallucinated
inputs (so it is different from the baseline forward system in
step 1), as was done by Li (2008).
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Figure 1: Comparison between BLEU scores on the test set given by the baseline system, system trained with random
and selective sampling. Left column: semi-supervised discriminative LM training; Right column: supervised discrim-
inative LM training. From top to bottom: Urdu-English test set, Chinese-English test set(MT04), Chinese-English test
set(MT05).



2. Compared with random sampling, system per-
formance is improved more significantly when less
training samples are selected, since the sampling
strategy will first add good samples to training and
delay the entrance of bad samples.

3. The curves of random and selective sampling
always merge at the end since at that point the train-
ing sets in both cases are the identical.

An interesting observation is that the performance
given by semi-supervised training is comparable
with supervised training. That is to say, although
the surface form of the sentences generated in semi-
supervised cases may not be as fluent as human-
labeled sentences, the mathematical representation
of the sentences are valuable for training.

Figure 2 shows the BLEU gain of the 1-best trans-
lations in hallucinated training set after perceptron
re-ranking(namely the difference between the 1-best
BLEU after and before re-ranking). It can be seen
that selective sampling increased the BLEU gain
on the training set significantly, since we selected
samples having large distances between positive and
negative classes so that classification is made eas-
ier for perceptron. We observed similar trend in su-
pervised cases, but omitted the plots due to limited
space.

Figure 3 compares the Q(D) score as the train-
ing set size increases between random and selec-
tive sampling in semi-supervised training. While
the scores of random sampling remain on a low
level(usually to the order of 10−4 which cannot
be plotted precisely in the figure) for all sizes of
training sets, scores of selective sampling are much
higher(the average scores of random and selective
sampling are 1.5×10−4 and 0.039 for Urdu-English,
1.4× 10−4 and 0.035 for Chinese-English). The se-
lective sampling procedure first adds samples with
higher Q(D) scores to the training set, and the score
decreases monotonically as the training set size in-
creases. Although we limited our search space to
only K = 200 samples, the sampling procedure
is still effective in preventing the Q(D) score from
dropping too fast. Again the plot for supervised case
with similar trend is omitted here.
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Figure 2: Comparison between BLEU score gains of
the 1-best translations from the randomly and selectively
sampled training sets.

6 Conclusions

In this paper we addressed the problem of how to
make use of the training samples wisely in large-
scale MT discriminative training. We presented a
method of adding samples to the training set se-
lectively to best fit the discriminative training sce-
nario. The method defines a criterion that measures
the suitability of a dataset for training, which can be
computed incrementally for efficient sample selec-
tion. Experimental results showed consistently that
via selective sampling, we are able to exceed the per-
formance given by the system trained with the same
amount of data sampled randomly, and the best score
obtained is beyond the reach of random sampling.
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