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Abstract

This paper presents the submissions of the PRHLT group for
the evaluation campaign of the International Workshop on
Spoken Language Translation. We focus on the development
of reliable translation systems between syntactically differ-
ent languages (DIALOG task) and on the efficient training of
SMT models in resource-rich scenarios (TALK task).

1. Introduction
For this year’s evaluation campaign of the International
Workshop on Spoken Language Translation (IWSLT), the
Pattern Recognition and Human Language Technologies
(PRHLT) research group of the Universidad Politécnica de
Valencia submitted runs for the Chinese–English spoken di-
alogs (DIALOG) task and English–French public speeches
(TALK) task. In this paper, we report the configuration of
such systems, together with preliminary experiments per-
formed to establish the final setups.

Concerning the Chinese–English DIALOG task, we fo-
cus on the combination of different SMT systems with the
purpose of combining the high coverage provided by phrase-
based systems and the flexibility provided by syntax-based
systems. We choose the median string algorithm to combine
the different SMT systems into a single consensus transla-
tion [1, 2]. Our submission to the DIALOG task is the result
of combining syntax-based and phrase-based models. Addi-
tionally, for the ASR output condition, an extra phrase-based
model trained on ASR output lattices was added.

Regarding the English–French TALK task, our objective
is to make good use of all the bilingual data provided without
making use of too large amounts of computational resources,
which may be unnecessary. A phrase-based model is trained
using the TED corpus and some data from the additional
training corpora. This additional data is selected to max-
imize translation quality and coverage of the phrase-based
model. Additionally, Bayesian adaptation of model param-
eters is performed in order to provide stability to the results
obtained. Such stability problems are often present whenever
the size of the development data set is not large enough.

The statistical machine translation (SMT) problem can
be stated as follows: given a sentence f from a certain source
language, an equivalent sentence e in a given target language
that maximizes the posterior probability is to be found. Ac-
cording to the Bayes decision rule, such statement can be
specified as follows:

ê = argmax
e

Pr(e|f) . (1)

A direct modeling of the posterior probability Pr(f |e)
has been widely adopted, and, to this purpose, different au-
thors [3, 4] proposed the use of log-linear models, where

p(e|f) =
exp

∑K
k=1 λkhk(f , e)

∑
e′ exp

∑K
k=1 λkhk(f , e′)

, (2)

and the decision rule is given by:

ê = argmax
e

K∑

k=1

λkhk(f , e) , (3)

where hk(f , e) is a score function representing a feature for
the translation of f into e, K is the number of features and
Λ = [λ1, . . . , λK ]T are the weights for the log-linear combi-
nation.

The rest of the paper is organized as follows. Section 2
describes our approach for the Chinese–English DIALOG
task. Section 3 presents our submission to the English–
French TALK task. In Section 4, the systems employed in the
evaluation campaign are sketched and results are presented
and discussed. A summary and a list of related issues we
will investigate in the next future end the paper.

2. Stochastic inversion transduction
grammars for syntactically different languages
As in 2009, the central focus of the DIALOG task is the
translation of task-oriented human dialogs in travel situa-
tions, between Chinese and English. The DIALOG task is
carried out using the Spoken Language Databases (SLDB)
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corpus, a collection of human-mediated cross-lingual dialogs
in travel situations. In addition, parts of the BTEC corpus are
also provided to the participants of the DIALOG Task.

In this section we describe the ITI-UPV machine transla-
tion system used in the DIALOG Task of the IWSLT 2010.
Syntax-based SMT has been successfully used for translat-
ing syntactically different language pairs such as English-
Chinese [5]. For that reason, we used a syntax based de-
coder in this task. However, we did not want to loose the
high coverage of the phrase-based systems so we combined
the outputs of the syntax-based decoder with the outputs of a
state of the art phrase-based system. Our submission is then,
the result of combining the outputs of a syntax-based SMT
system and a phrase-based SMT system. Additionally, for
the ASR output condition, we add a third phrase-based SMT
system trained on the ASR output lattices. The system com-
bination approach is based on median string techniques [1].

2.1. ITG-based decoding in SMT

Inversion Transduction Grammars (ITGs) [6] are a restricted
set of Synchronous grammars. Standard ITGs use only word-
to-word transduction, however, in order to use the advan-
tages of phrasal translation the original formalism has been
extended to allow direct phrasal transductions.

An ITG with phrasal productions is a tuple
(N,Σ,∆, S,R) where N is the set of non-terminals,
S ∈ N is the root non-terminal, Σ is the source language
alphabet, ∆ is the target language alphabet, and R is a set
of rules. Rules can be divided in two sets: syntactic rules
and lexical rules. Syntactic Rules have the form: A→ [BC]
or A → 〈BC〉, where A, B and C are non-terminals and
the brackets enclosing the right part of the rule (direct
rules) mean that the two non-terminals are expanded in the
same order in the input and output languages, whereas the
rules with pointed bracketing (inverse rules) expand the left
symbol into the right symbols in the straight order in the
input language and in reverse order in the output language.
Lexical Rules have the form A → x/y where x ∈ Σ∗ and
y ∈ ∆∗. Σ∗ and ∆∗ are the free monoids1. It must be noted
that x or y can be the empty string, denoted by ε, which is
not allowed in both sides of the same production.

Stochastic ITGs are the probabilistic extension of ITGs,
in which each rule has a probability attached. A derivation is
a sequence of rules that, from the initial non-terminal, expand
to one string of source language terminals and one of target
language terminals. The probability of a derivation is the
product of the probabilities of each of its rules.

The SITG formalism can be used as a translation model:
given one source language sentence f the system must find
a target language sentence ê that maximizes the probability
of a complete derivation that yields the bilingual sentence
(f , ê). We can obtain also the resulting derivation D̂. That is

1The set of all finite-length strings on Σ and ∆ respectively.

(ê, D̂) = argmax
(f ,D)

Pr(S ⇒D (f , e)) . (4)

In order to increase the performance of the decoder we
added several additional models commonly used in SMT (n-
gram language model, lexical models...) and we combine
them using a log-linear combination of probability models.

During the decoding process, the source language sen-
tence is split in phrases that are translated using the lexi-
cal rules of the SITG and then merged in a straight or in-
verted order using the syntactic rules. The search algorithm
used in the decoder is similar to the CYK parsing algorithm
for context-free grammars [7] but storing in each cell of the
chart, not only the non-terminals, but also the partial trans-
lation hypotheses. The use of n-gram language models has
been demonstrated to be very useful for phrase-based sys-
tems. However, in contrast to the other models, the n-gram
language model probability of a derivation cannot be com-
puted as a product of the language model probabilities of
the rules used in the derivation (it depends on the context).
The most likely translation of a sentence may use partial
hypotheses that were not the most likely in their respective
cells of the CYK chart. Hence, when including the n-gram
language model, the optimality of the CYK algorithm is no
longer guaranteed and its use is not enough to get the most
likely translation. In order to partially alleviate this problem,
we need to use a translation hypotheses stack in each cell of
the CYK-like chart instead of a single hypothesis. The hy-
potheses of two stacks can be combined directly or inversely,
and the n-gram language model score of the new resulting
hypotheses must be recomputed.

The system implements two different kinds of pruning:

1. Histogram Pruning: In each agenda only the n most
likely hypotheses are stored.

2. Beam Pruning: We only store a hypothesis in an
agenda if its probability is greater than γ ·Pr(ĥ) where
ĥ is the hypothesis with the highest probability and γ
is a real number between 0 and 1.

Both pruning strategies are parameterizable, so it can be cho-
sen between a slow but precise search or a fast and more in-
accurate one.

In order to obtain an ITG with linguistic information
from the bilingual corpus provided, we used the method ex-
plained in [8].

2.2. Lattices for ASR error recovery

A lattice L is a compact representation of the (pruned) search
space of the speech recognizer. A lattice stores multiple hy-
potheses of the ASR system and provides a convenient rep-
resentation for tight ASR and SMT coupling. Although there
are several studies dealing with algorithms for translating
ASR lattices [9, 10], their practical use is limited because
of the computational resources they need.
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Conversely, Confusion Networks (CNs) are even a more
compact representation of the hypothesis space for which ef-
ficient SMT decoding algorithms exist [11]. CNs attempt to
minimize the expected number of word errors, computed as
the number of substitutions, deletions and insertions needed
to transform the hypothesis into the reference. They can be
obtained from lattices by aligning words from the different
lattice hypotheses into a flat sequential lattice. The arcs of
the CNs between the node i and the node i+1 represent com-
peting words at position i with the word posterior probabil-
ity Pr(f |i,L). In the decoding process, these word posterior
probabilities are combined with the translation probabilities
in such a way that translation performance is optimized.

2.3. Median string computation for system combination

The different SMT models trained are combined into a con-
sensus translation that takes advantage of the strengths of the
individual systems and smooths their limitations. The con-
sensus translation is computed as the median string over the
translations of the individual systems [1, 2].

Given a set E = {e1 . . . en . . . eN} of translations from
N MT systems, let ∆ be the vocabulary in the target lan-
guage (E ⊆ ∆∗). The median string of set E is given by:

M(E) = argmin
e′∈∆∗

N∑

n=1

D(e′, en) , (5)

where D(·, ·) is a string distance function. We choose to use
the normalized edit distance [12] in our submission. The nor-
malized edit distance had been successfully applied in the
computation of median strings in different classification and
system combination tasks [13, 1, 2].

Computing the median string is a NP-hard problem [14],
therefore, only approximations to the median string can be
computed in reasonable time. In our submission, the me-
dian string is computed by means of the approximate median
string algorithm [13]. The approximate median string algo-
rithm starts with an initial string that is iteratively improved
by successive refinements. This refinement process is based
on the greedy application of edit operations2 over this initial
string looking for a reduction of the accumulated distance to
the translations in the set.

The initial string of the algorithm can be a random string,
one of the translations in the set or even an empty sting.
Starting with a better initial string results in fewer iterations
for the algorithm to converge, but the different initializations
do not affect the performance of the median string com-
puted [13]. We took, from the given translations, the one
with the lowest accumulate distance as the initial string of
the algorithm. Then, the procedure described in Algorithm 1
is repeated until there is no improvement.

2Insertion, deletion and substitution of single words.

For each position i in the string e:

1. Build alternatives:

Substitution: Make x = e. For each word w ∈ ∆:
• Make x′ the result string of replacing xi by w.
• If the accumulated distance of x′ to E is lower than

the accumulated distance of x, then make x = x′.

Deletion: Make y the result string of deleting ei from e.

Insertion: Make z = e. For each word w ∈ ∆:
• Make z′ the result string of inserting w at place i on z.
• If the accumulated distance of z′ to E is lower than the

accumulated distance of z, then make z = z′.

2. Choose an alternative:
• From the set {e,x,y, z} take the string e′ with less

accumulated distance to E. Make e = e′.

Algorithm 1: Iterative process to obtain the approximate
median string. Different edit operations are applied over each
position of the string e. The edited string with the lower ac-
cumulated distance to the set E is returned. The process is
repeated until there is no improvement.

3. Sentence selection in resource-rich
scenarios

In this section, we describe the ITI-UPV machine translation
system that has been designed for the IWSLT’10 TALK task.
A state-of-the-art phrase-based SMT approach has been fol-
lowed in order to translate English text subtitles into French.
Specifically, our translation engine is the Moses system [15].

Within this task, the TED corpus is the in-domain data
and is composed of a collection of English-French subtitles.
However, the additional corpora are composed of sentences.
In order to take advantage of the available extra training data,
a homogeneous translation framework has then to be defined.
We decided that our system would be based on sentences
(rather than on subtitles) and so TED data were processed in
that sense. Subtitle recovery is then needed as a post-process
to SMT. All the steps are detailed in the next subsection.

3.1. Subtitle segmentation recovery

The TED corpus is a corpus segmented at subtitle level, not
sentence level. Several subtitles can form a meaningful sen-
tence. When dividing a sentence into several subtitles, we
can loose some valuable context information. This has mo-
tivated a strategy to concatenate several bilingual subtitles
into a sentence and finally, after the translation, to recover
the original subtitle segmentation.

However, we do not want to allow reorderings between
different subtitles within a single sentence. For that reason,
we use the Moses XML tag <wall />. Our strategy for this
translation task consists of the application of a sequential
process that is composed of the following steps:

1. Sentence composition. Subtitles are concatenated to
compose meaningful sentences so that context be-
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tween consecutive subtitles is not lost. To that end,
several linguistic rules have been adopted, which es-
tablish how subtitles may be grouped into sentences.
Several subtitles are concatenated into a sentence un-
til one of them ends with an “end of line” punctuation
mark. The “end of line” punctuation marks taken into
account are “.”, “?” and “!”. In addition, in order to
consider a subtitle as the end of a sentence, the punc-
tuation mark of the end must be present in both lan-
guages (English and French).

2. Segmentation and Translation. Although subtitles
were merged in order to build independent sentences,
the information about their subtitle composition is kept
by means of a<wall />XML tag. This label is used to
mark the union point between subtitles in a sentence.
Moses is able to process that input in such a way that
subtitles are translated as a block.

3. Subtitle recovery. If Moses is appropriately employed,
it reports the segmentation or alignment at phrase level
that relates both the source sentence and its transla-
tion. Since the <wall /> tag forbids the reorderings
around it, the alignment information allows us to de-
termine where the translation of every subtitle starts
and ends. Thus, the original subtitle segmentation can
be restored in the translated sentences.

3.2. Probabilistic sentence selection

In the TALK task, we had to face the problem of using sev-
eral training corpora, some of which are out-of-domain. This
scenario posed a very appealing problem, i.e., how several
information sources from different domains and sizes, can
be used in order to find a trade-off between resources and
performance.

The proposed approach consists in trying to conserve
the probability distribution of which the in-domain cor-
pora is assumed to be a representative sample. For doing
this, it is mandatory to exclude sentences from the out-of-
domain corpora, specifically, those that would distort the in-
domain probability the most. In other words, we developed
a sentence selection framework in which the training set is
split into two corpora:

• In-domain corpora: the part of the corpora that shares
the domain with the test sentences, and

• Out-of-domain corpora: the part that belongs to other
domains.

It is assumed that there are not enough resources available to
process all the corpora; or that by doing so, the system per-
formance may be decreased, due to differences between the
in-domain and the out-of-domain corpora. The proposed ap-
proach consists in approximating the in-domain probability
distribution and, then, sampling sentences from the out-of-
domain corpora accordingly to the approximated in-domain
probability distribution.

The in-domain probability was approximated as follows:

p(e, f , |e|, |f |) = p(e, f/|e|, |f |)p(|e|, |f |) (6)

where the length distribution was computed by maxi-
mum likelihood estimation applied to the in-domain train-
ing corpus; and the in-domain translation probability,
p(e, f/|e|, |f |), was approximated by a log-linear model:

p(e, f/|e|, |f |) =
1

Z(e, f)
exp(

∑

k

λkhk(e, f)) (7)

where Z(e, f) stands for the normalization constant. As for
the features hk(. . .), we used: a direct and an inverse IBM
model 4 [16]; and both, source and target, 5-gram language
models. All previous feature models are estimated using the
in-domain corpora. Although computing the optimum λk
weights may have some interest, in this first approach all
weights were set to 1.

3.3. On-line sentence selection for infrequent n-grams
recovery

When a source language n-gram appears few times in the
training corpus, its alignment with the corresponding target
language cannot be computed accurately. The problem is
even worse when the n-gram does not appear (in the case
of 1grams, it is considered an out of vocabulary word). As
we stated in the previous subsection, only a small part of
all the possible training data is used. Thus, some important
information for the test set translation can be found in the
discarded sentences. In this subsection, we explain a method
to recover the sentence pairs from the discarded corpus that
contain infrequent n-grams important to translate the test set.

A sentence pair is considered important for the test trans-
lation when it contains n-grams of the source language test
sentences that are infrequent (or even non existent) in the se-
lected training set. An n-gram is infrequent when it appears
in the training set less than t times. Thus, each n-gram x of
the source sentences of the test set is scored using the follow-
ing function:

s(x) = max{0, t−N(x)} (8)

where N(x) is the number of times the n-gram x appears in
the training corpus. All the n-grams that do not appear in the
test set have an score of 0. The sentences e discarded for the
training can be scored with:

sc(e) =
∑

0≤i<j≤|e|
s(eji ) (9)

where eji is the n-gram corresponding to the source language
sentence positions from i to j.

Once all the discarded sentences are scored, the sentences
with the highest score are incorporated into the training set.
In order to avoid the inclusion of a lot of sentences with the
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same n-grams, the score of the sentences is computed dy-
namically, so that the counts of an n-gram in the training
(N(x)) are recomputed each time a new sentence is included
in the training.

One last consideration is that including too many sen-
tences selected with the strategy presented here may alter sig-
nificantly the probability distribution underlying the training
data available. This is, in general, not a good idea, and for
this reason it is only prudent to use the strategy presented
here to introduce into the translation system only a small
amount of bilingual samples.

3.4. Bayesian adaptation for model stabilization

Log-linear weights are typically estimated by means of the
MERT [4] algorithm. However, this approach often shows
stability issues whenever the amount of development data
is not big enough. For this reason, we analyzed the effect
of applying Bayesian adaptation [17] for stabilizing the log-
linear weights involved in the translation process. Under the
Bayesian adaptation paradigm, model parameters (i.e. log-
linear weights in this case) are viewed as random variables
having some kind of a priori distribution. Following the
derivation presented in [17], the decision rule in Section 1
is re-written as:

ê = argmax
e

Pr(e|f ;T,A) (10)

where T is the training data and A the adaptation data. Then,
Pr(e|f ;T,A) is computed as follows:

p(e|f ;T,A) = Z ′
∫
p(A|Λ;T )p(Λ|T )p(e|f ,Λ)

= Z ′
∫ ∏

∀a∈A

exp
∑

k λk fk(fa, ea)∑
e′ exp

∑
k λk fk(fa, e′)

exp

{
−1

2
(Λ− ΛT )Tσ−1

T (Λ− ΛT )

}

exp
∑

k λk fk(f , e)∑
e′ exp

∑
k λk fk(f , e′)

dλ (11)

where the first term in the integral stands for the probability
of the adaptation data, the second term is the prior distribu-
tion of the model parameters, and the last term is the proba-
bility of the sentence which is currently being translated.

Since computing the integral over the complete paramet-
ric space is unfeasible, a random sampling of these param-
eters was performed by choosing alternatively only one of
the weights in Λt, and modifying it randomly within a given
interval. This being done, Λt was renormalized accordingly.

Moreover, the sum
∑

e′ is approximated as the sum over
all the hypothesis within the n-best list generated by the de-
coder, and instead of performing a full search we will per-
form a re-rank of the n-best list according to Equation 11.

Since complete coverage of all sentence pairs is not guar-
anteed by state-of-the-art SMT systems, ea in Equation 11 is

Subset Language |S| |W | |V |
train

English 30K 330K 7928
Chinese 30K 272K 9891

zh-en dev English 200∗ 2457.75∗ 436∗

Chinese 200 2140 379

en-zh dev English 210 3095 399
Chinese 210∗ 2661.5∗ 624∗

Table 1: Main figures of the DIALOG corpus. The numbers
with ∗ are computed over multi-reference sets (average for
sentences and running words, and total size of vocabulary).

replaced by e∗a, which is the best hypothesis the search al-
gorithm is able to produce, according to a given translation
quality measure.

Once normalization terms have been removed, and
the above-mentioned approximations have been introduced,
p(e|f ;T,A) is no longer a probability. Hence, a leveraging
term δ is introduced, and the final formula for p(e|f ;T,A) is

p(e|f ;T,A) =
∑

Λm∈MC(Λt)

(p(A|Λ;T )p(e|f ,Λ))
1
δ p(Λ|T ) (12)

where MC(ΛT ) is the set of Λm weights generated by the
above-mentioned random procedure.

4. Evaluation results
In all the tables reported in this section, K stands for thou-
sands of elements, |S| stands for the number of sentences
within a corpus, |W | is the number of running words, and |V |
the vocabulary size. In addition, corpus statistics are reported
on the tokenized and lowercased corpora, and after filtering
sentences considered too long (i.e. more than 40 words).

4.1. Baseline system

For building the initial SMT systems, the open-source SMT
toolkit Moses [15] was used in its standard setup. The
decoder features a log-linear model comprising a phrase-
based translation model, a language model and a lexical-
ized distortion model. The translation model, in turn, com-
prises direct and inverse phrase-translation probabilities, lex-
icalized weights, and word and phrase penalties. Phrases
were obtained from symmetrized word alignments gener-
ated by means of GIZA++ [18]. In the baseline setup, the
weights of the log-linear interpolation were optimized by
means of ME RT [4]. In addition, a 5-gram LM with Kneser-
Ney [19] smoothing and interpolation was built by means of
the SRILM [20] toolkit.

4.2. DIALOG: Chinese–English system

Table 1 shows the main statistics for the official training
train and development dev partitions. Note that each of
the translation directions has a different development set.

In order to cope with this task, we used a combination of
several systems.
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Subset Language |S| |W | |V |
train

English 47.5K 747.2K 24.6K
French 47.5K 792.9K 31.7K

indev
English 571 9.2K 1.9K
French 571 10.3K 2.2K

ofdev
English 641 12.6K 2.4K
French 641 12.8K 2.7K

Table 2: Main figures of the TALK corpus.

The first system is the phrase-based system Moses [15].
In order to train this system, we included all the development
sets into the training data. Moreover, since the development
sets are multi-reference, we decided to include all the refer-
ences in the training for the phrase-based models but not for
the language model since duplicating sentences distorts the
LM estimates. The phrase-based models are not significantly
distorted by this duplications and they are meaningfully en-
riched by synonym phrases.

Based on previous experimentation [8], we decided to use
linguistic information in the ITG-based system. In order to
train the ITG, we used the Chinese and English versions of
the Stanford Parser [21]. All the development sets were in-
cluded in the training of the final system.

The system for ASR and SMT coupling was created fol-
lowing the next procedure. To begin with, a phrase-based
Moses system was trained for which the source was prepro-
cessed to form sentences resembling the ASR input. To do
that, the source was tokenized, then converted to lowercase
and, finally, all punctuation marks were removed. In addi-
tion, several words were substituted to a normalised form
since there was a mismatch between their training and ASR
representations. Secondly, the lattices were preprocessed as
well. After the words in the lattices were tokenized, a CN
was created from them using the SRILM toolkit [20]. At
last, we used the CN translation decoder [11] implemented
in Moses to perform the ASR and SMT integration.

Given that we have only two systems to be combined
(three for the ASR output condition), we choose to combine
the 20-best translations of each individual system rather than
using only the single best ones. Therefore, 40 (60 for the
ASR output condition) hypotheses are combined to obtain
our final submission. All the combinations were computed
by means of the approximate median string algorithm.

4.3. TALK: English–French system

For internal development purposes and because the final test
set was not released until about one month before the final
translations were due, we decided to split the training set
provided for the task in two different subsets: one for train-
ing and a smaller one for internal development purposes. We
will name the training set train, the internal development
set indev, whereas the official development set, which was
used as test set until the final test set was released, will be
named ofdev. Statistics can be seen in Table 2.

Corpus Language |S| |W | |V |
Europarl English 1.25M 25.6M 81.0K

French 1.25M 28.2M 101.3K
News English 67.6K 1.4M 35.6K

Commentary French 67.6K 1.6M 43.3K
United English 5.0M 94.4M 302.7K
Nations French 5.0M 107.4M 283.7K

Gigaword English 15.5M 302.9M 1.6M
French 15.5M 360.6M 1.6M

Table 3: Main figures of the out-of-domain corpora provided
for the English→French TALK task.

In addition to the TALK corpus, larger out-of-
domain corpora were also provided. Statistics of such cor-
pora are provided in Table 3. As it can be seen, these corpora
are farely big, and the amount of data available is enough to
overwhelm the amount of data of the in-domain corpus. For
this reason, and as described in Section 3.2, we confronted
the problem as a data selection task. For this purpose, we
considered all four out-of-domain corpora as a single, very
large corpus, from which appropriate sentences were selected
according to the strategies described in Sections 3.2 and 3.3.

The results of applying the probabilistic sentence selec-
tion technique described in 3.2 can be seen in Table 4. For
each one of the systems presented in this table, MERT was
re-run in order to optimize the log-linear weights according
to the indev set.

nK BLEU TER
0 23.2 60.8
10 23.5 60.5
50 24.2 59.8

100 25.0 59.0
200 25.1 58.9
500 25.5 58.7

Table 4: Evolution of translation quality according to the
amount nK (in thousands) of sentences added to the base-
line system. Results are given in terms of BLEU and TER
evaluated on the ofdev set.

Results of applying the on-line selection strategy de-
scribed in Section 3.3 can be seen in Table 5. Specifically,
and in order to avoid introducing too much distortion into the
system, we decided to introduce with this technique a maxi-
mum of 10% of the amount of sentences introduced with the
probabilistic technique. Several things should be noted:

• Translation quality when optimizing the log-linear
weights by means of MERT shows a fairly unstable
behavior, and no real conclusion about the effect of
the on-line sentence selection technique can be drawn.

• When using a constant set of weights, estimated on the
development set of the Europarl data and with a trans-
lation model trained only on Europarl data, the tech-
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nique described seems to be beneficial, achieving im-
provements of up to 0.6 BLEU points when adding a
total of 10K sentences (for nK = 100 and t = 25).
However, in some cases the translation quality ob-
tained is slightly lower than in the case of MERT, e.g.
in the case of nK = 50 and t = −.

• When applying Bayesian adaptation for stabilizing the
log-linear weights, we obtain the best performance in
any case, both when comparing with MERT or Euro.
Improvements prove to be consistent when increasing
t, which seems reasonable. In this case, the Gaussian
for the prior of the Bayesian adaptation technique was
centered on the weights estimated for Europarl, since
they can be considered to be well estimated on a 2000
sentence development set. δ was set to 32 and the size
of the n-best list considered was 200, both according
to the experiments reported in [17].

• Although in some cases the total number of sentences
in the system is the same (e.g. for nK = 50; t = 10
and t = 25), it should be emphasized that the spe-
cific sentences included are not the same, since sen-
tences are added until the maximum amount allowed
is reached.

• Experiments with other nK values were not performed
because of time constraints.

At the sight of these results, the final system submitted
for final evaluation was built by sampling a total of 500K
sentences from the out-of-domain corpora, and then adding
50K sentences by means of the on-line sentence selection
technique, with t = 10. Both indev and ofdev were also
included into the system, adding up to a final total of 645.6K
sentences. The test set was translated using the log-linear
weights estimated for the Europarl development data and
Bayesian adaptation was applied by considering the ofdev
set as adaptation data. For translating the ofdev set for
the purpose of selecting e∗ as described in Section 3.4, the
ofdev set itself was not included into the system in order to
avoid over-training.

5. Conclusions
With respect to the DIALOG task, the consensus translations
computed take advantage of the high coverage of phrase-
based models and the good performance on syntactically dif-
ferent languages of SITGs. In addition, for the ASR output
condition, the use of the CN translation system helped the
1-best systems to recover from ASR errors.

In the TALK task, it has been shown that an intelligent
selection of training data might be a good strategy towards
a better utilization of computational resources. Specifically,
the final system presented by the PRHLT group ranked only
two BLEU points below the best system, by only using about
3% of the available training sentences. Of course, it is still

nK t |S| MERT Euro bayes

50

- 96.9K 24.2/59.8 24.5/59.8 24.7/58.7
1 99.9K 23.7/60.6 24.5/59.6 24.9/58.8

10 101.9K 24.1/60.5 24.8/59.4 25.2/58.4
25 101.9K 24.1/60.3 24.7/59.3 25.2/58.4

100

- 146.9K 25.0/59.0 24.6/59.0 25.1/58.6
1 149.8K 24.6/59.6 24.9/59.3 25.3/58.5

10 156.9K 24.1/60.2 25.0/59.3 25.4/58.3
25 156.9K 24.6/59.4 25.2/59.2 25.5/58.4

Table 5: Evolution of translation quality, as measured by
BLEU/TER, when considering the on-line sentence selec-
tion technique described. nK stands for the amount of sen-
tences added to the system with the probabilistic technique
described in Section 3.2. t is the threshold described in Sec-
tion 3.3. - means that the on-line technique was not applied
at all. In the MERT column, translation quality when opti-
mizing the log-linear weights by means of MERT over the
indev set is shown, whereas Euro is in the case of con-
sidering the weights optimized for the Europarl corpus and
bayes displays the results of applying the Bayesian adapta-
tion technique described in Section 3.4.

necessary to know whether such best system also applied
some kind of data selection strategy. In addition, it has also
been shown that Bayesian adaptation can be applied in or-
der to stabilize the log-linear weights within the core of a
SMT system, and that such stabilization can be very help-
ful towards elucidating whether a given technique provides
improvements or not.

6. Future work
In the future, we plan to study the use of lexicalized maxi-
mum entropy models for the reordering of hypotheses in the
ITG-based decoder. In addition, the syntactic information
used in the process of decoding can be used to find and cor-
rect grammatical errors in the output sentences.

Concerning the integration of the ASR and SMT systems,
we would like to compare translation of CNs with different
techniques of translating lattices. Although the complexity
of the latter is higher, improvements in the output quality are
expected. We are specially interested in using lattice confi-
dence measures, which take into account multiple sources of
information regarding the input.

Regarding the system combination technique, we are in-
terested in modifying the approximate median string algo-
rithm by allowing, in addition to substitutions, deletions and
insertions of single words, shifts of word sequences. The use
of other different distance functions will also be studied.

With respect to the sentence selection strategies de-
scribed in this paper, there is still a lot of work to be done.
Specifically, we would like to assess whether such selection
strategy proves to outperform a random selection strategy.
Although preliminary results seem to point in that direction,
more experimentation is still needed in order to confirm such
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conclusion. Other future work involves investigating the ef-
fect of optimizing the log-linear combination applied for ap-
proximating the probability of a given sentence pair. In addi-
tion, more work is also needed towards establishing a good
proportion between the amount of sentences added by means
of the probabilistic sentence selection and the infrequent n-
gram recovery techniques. With respect to Bayesian adapta-
tion as applied for model stabilization, the results shown in
this paper seem very promising, moreover considering that
the different parameters present in the Bayesian adaptation
framework were chosen based on very different work.
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