
Fast Approximate String Matching with Suffix Arrays and A* Parsing

Philipp Koehn
University of Edinburgh

10 Crichton Street
Edinburgh, EH8 9AB

Scotland, United Kingdom
pkoehn@inf.ed.ac.uk

Jean Senellart
Systran

La Grande Arche
1, Parvis de la Défense

92044 Paris, France
senellart@systran.fr

Abstract

We present a novel exact solution to the ap-
proximate string matching problem in the con-
text of translation memories, where a text seg-
ment has to be matched against a large cor-
pus, while allowing for errors. We use suf-
fix arrays to detect exact n-gram matches, A*
search heuristics to discard matches and A*
parsing to validate candidate segments. The
method outperforms the canonical baseline by
a factor of 100, with average lookup times of
4.3–247ms for a segment in a realistic sce-
nario.

1 Introduction

Approximate string matching is a pervasive problem
in natural language processing applications, such
as spelling correction, information retrieval, evalu-
ation, and translation memory systems. Often we
cannot find an exact match for a query string in a
large corpus, but we are still interested in an approx-
imate match that is similar according to some metric,
typically string edit distance.

The problem is of great concern in genetic se-
quence retrieval. In fact, as we discuss below, most
of the work on approximate string matching ad-
dresses this task.

We present a new method that was developed in
the context of translation memory systems, which
are used by human translators. When translating an
input sentence (or segment), the human translator
may be interested in the translation of a similar seg-
ment, which is stored in a translation memory. The
term translation memory is roughly equivalent to a
parallel corpus: a collection of segments and their
translations. The approximate string matching prob-
lem for translation memories is to find the source

language segment that is most similar to the input.
Note that translation memories are rarely used in

recent machine translation research, since that work
is driven by open domain translation tasks such as
news translation. In the practical commercial world
of human translation, however, translation tasks of-
ten involve the translation of material that is very
similar to prior translations. Consider, for instance,
the translation of a manual for an updated product.

This paper defines the problem of approximate
string matching (Section 2) and reviews related work
(Section 3). Our method uses a suffix array to find n-
gram matches (Section 4), principles of A* search to
filter the matches, and an A* parsing method to iden-
tify the most similar segment match (Section 5.3). It
retrieves the most similar fuzzy match in an average
time of 4.3–247 milliseconds (Section 6).

2 Approximate String Matching

Let us first formally define approximate string
matching. We follow the definition by Navarro
(2001):

The problem involves:
• a finite alphabet Σ of size |Σ| = σ

• a corpus T ∈ Σ∗ of length |T | = n

• a pattern P ∈ Σ∗ of length |P | = m

• a distance function d : Σ∗ × Σ∗ → R
• a maximum error allowed k ∈ R

The problem is typically defined as: given
T ,P ,d(),k, retrieve all text positions j so that there
exists an interval Ti..j with d(P, Ti...j) ≤ k.

In this paper, we modify the definition of problem,
as follows:

Segments: The corpus T tiles into a sequence of
segments {S1, ..., Ss} so that
• start(S1) = 1

0

A B C D A B E

E
A
B
E
C
D
E

1

2

2

3

4

5

6

2

1

1 2 3 4 5 6

6

6

5

4

5

6

43345

4

3

2 2 3 4 5

5

4323

2 3 4

5

63

3 4 4

4 5

1 2 3 4 5 6 7

1

2

3

4

5

6

7

Figure 1: Canonical dynamic programming solution to
the approximate string matching problem under a unit
cost string edit distance. Each alignment point between
the two strings ABCDABE and EABECDE is filled with
the minimal cost and a backpointer to its prior alignment
point.

• end(Ss) = |T |, and
• ∀1<z≤send(Sz−1) + 1 = start(Sz),

i.e., the segments start at the beginning of the text,
end at the end of the text, and follow each other.

Minimum matching cost: Given the sequence
of all segments {S1, ..., Ss} as defined above, the
minimum matching cost is c = min{d(P, Sz)|Sz ∈
{S1, ..., Ss}, d(P, Sz) ≤ k}.

Task: retrieve all segments Sz with distance
d(P, Sz) = c.

3 Related Work

The canonical method for the approximate string
matching problem under the string edit distance met-
ric has been discovered many times. It uses dynamic
programming, as illustrated in Figure 1. Given the
matrix of possible alignment points {(i, j)|0 ≤ i ≤
|a|, 0 ≤ j ≤ |b|} between the two strings a and b,
we compute for each point the optimal path, with
only depends on the directly preceding points, as
defined by the deletion, insertion, substitution, and
match operations.

The method can be adapted straightforwardly to
the problem where the pattern may match at any
starting point and end point in the corpus (the gen-
eral approximate string matching problem), or our

problem, where the pattern may be matched against
any of the segments of the corpus. The complexity
of the algorithm is O(nm) — linear both with re-
spect to the corpus size and the pattern size. Our
method has sub-linear complexity with respect to
corpus size.

Most of the work in this area deals with genetic
sequence retrieval. Biologists search for genes or
other DNA sequences consisting of the letters A,
C, G, and T in the genetic code of a living being.
Our problem differs from this application in various
points:
• the lexicon is much larger: 10,000s or more dis-

tinct words found in a text vs. four bases
• the allowable error is larger: in translation

memories, we may accept up 30% error
• sequences are shorter, typically 10-50 words
• there are natural starting and end points, i.e.,

segment boundaries
• we search for the best matches, not all matches

The first two differences make our problem
harder, while the last three make it easier, and we
exploit them in our method.

The main building blocks of approximate string
matching methods are corpus indexing, filtering,
pattern processing, and improvements to the dy-
namic programming techniques (Navarro, 2001).

Common corpus indexing methods are suffix trees
and suffix arrays. Suffix trees compile the cor-
pus into a trie, which allows the quick retrieval of
any substring in the corpus. However, worst case
quadratic space requirements are prohibitive for our
application. We use suffix arrays (Manber and My-
ers, 1990), which are described in detail in Section 4.

The idea of filtering is to discard most of the
search space and to focus on the promising areas.
The method is divided into a filtering and valida-
tion stage. The focus is typically on filtering, while
standard techniques are used for validating poten-
tial matches. Filters based on suffix arrays are com-
monly used, see for instance work by Kärkkäinen
and Na (2007). Our method is partly a filtering
method. It gets most of its gains from the filtering
stage, although we also optimize validation based on
the information gained in the filtering stage.

There are various ways to process the pattern, for
instance splitting it into sub-patterns for which exact

matching is performed, or compiling it into a finite
state machine. Our method utilizes exact matches of
sub-patterns.

The dynamic programming techniques can be im-
proved in many ways. To give an example, in the
canonical algorithm, we do not need to compute the
entire matrix but can focus on the alignment points
with the lowest cost.

The only description of a method addressing the
approximate string matching problem in translation
memories, that we are aware of, is work by Man-
dreoli et al. (2002), which uses simple filtering
methods using a database. They report speeds of
”8 seconds to compare 419 query sentences against
1497 reference sentences”, and ”1.5 seconds per
query sentence” with a larger corpus, which is a few
orders of magnitude slower than our method.

Suffix arrays have been applied to a related prob-
lem in machine translation, namely looking up
phrases in a word-aligned parallel corpus to compute
phrase translation probabilities. Work by Callison-
Burch et al. (2005); Zhang and Vogel (2005); Mc-
Namee and Mayfield (2006) was extended to so-
called hierarchical phrases, essentially phrases with
gaps, by Lopez (2007).

4 Suffix Arrays

Our method uses n-gram matches between the in-
put segment (the pattern) and the translation mem-
ory (the corpus) to identify potential candidate cor-
pus segments.

We store the corpus in a suffix array to enable
quick lookup. The data structure uses an index of
starting positions of all suffixes in the corpus, which
is sorted alphabetically (see Figure 2). This allows
us to use binary search to find a particular suffix in
the corpus.

We sort the index using quick sort, which is
O(n log n). Our implementation takes a few seconds
even for corpora with tens of millions of words. We
identify words with integer word ids, so we also sort
the index based on these word ids, not actually al-
phabetically. The suffix array takes up O(n) space,
doubling the space requirements for storing the cor-
pus, which is not a problem with modern computers
and customary corpora. Searching the array for an
n-gram of size g takes O(g log n) time.

1 government of the people , by the people , for the people
2 of the people , by the people , for the people
3 the people , by the people , for the people
4 people , by the people , for the people
5 , by the people , for the people
6 by the people , for the people
7 the people , for the people
8 people , for the people
9 , for the people
10 for the people

11 the people

12 people

6 by the people , for the people
10 for the people

5 , by the people , for the people
9 , for the people

1 government of the people , by the people , for the people

12 people

8 people , for the people
4 people , by the people , for the people

2 of the people , by the people , for the people

3 the people , by the people , for the people
7 the people , for the people

11 the people sort alphabetically

suffix array: sorted index of corpus positions

Figure 2: Suffix array: When sorting all suffixes of a
corpus (here, a 12 word phrase) and keeping track of their
corpus positions, a suffix array is created. The suffix ar-
ray can be used to find a particular suffix by binary search.

Finding all occurrences of an n-gram in the cor-
pus builds on the binary search method to find an
existing suffix in the corpus. Matching an n-gram
requires that the g words of the n-gram match the
first g words of the suffix. First, we attempt to find
any match in the corpus (and terminate if we fail
to do so). Then we perform two binary searches to
find the first and last occurrence of the n-gram. This
gives a range of corpus positions, where the n-gram
occurs. This range is an interval in the index.

A pattern of m words contains O(m2) n-grams.
Since the binary search for a n-gram of size g takes
O(m log n) time (and g ≤ m), looking up all n-
grams takes O(m3 log n) in the worst case. How-
ever, since when looking up, say, the trigram start-
ing at the beginning of the pattern, we can re-use the
results of the previous search for the bigram start-
ing at the beginning of the pattern. The range of
matches for the trigram is a subset of the matches for

the bigram. Since, we cannot be sure that the ranges
get smaller with longer n-grams, this does not re-
duce the worst case cost of O(m3 log n), but it does
dramatically reduce the cost in the average case to
O(m log n).

5 A* Search

A* search uses a heuristic to estimate the cost of a
partial solution to a search problem. A* search re-
quires that the heuristic is admissible, i.e. it may
over-estimate the cost of a partial solution, but never
under-estimate it.

If we find a ceiling cost — for instance, by find-
ing a (typically sub-optimal) complete solution to
the problem, or by other means — A* search can
safely discard all partial solutions that have a worse
heuristic cost than the ceiling cost.

The strategy to employ A* search is two-fold: we
would like to explore the most likely part of the
search space (as indicated by the heuristic cost of
partial solutions), and we would like to drive down
the ceiling cost to safely discard much of the space.

In our method, we use A* search in two stages:
first as a filtering methods to discard n-gram matches
and candidate segments, and then as a validation
method to compare a pattern against a corpus seg-
ment. During both stages we are keenly interested
in reducing the ceiling cost.

We initialize the ceiling cost to the maximum cost
allowed when matching the pattern against the cor-
pus. In a translation memory application, we are
only interest in segments that match at least 70%
(or more), i.e. the maximum allowable string edit
distance k is d0.3me.

See Figure 3 for the pseudo code of the algorithm.
The rest of this section describes it in detail.

5.1 Match Filtering
Recall that we use the suffix array to generate all n-
gram matches between the pattern and the corpus.
When we identify such an n-gram match, we record
its
• start and end position in the pattern
• start and end position in the corpus segment
• the corpus segment id

We also compute two cost estimates: its mini-
mum and maximum cost. The minimum cost is the

lowest possible cost for matching the pattern against
the corpus segment in which the match was found,
when everything else goes perfectly fine. The maxi-
mum cost assumes that this n-gram is the only match
between the pattern and the corpus.

The minimum cost composed of:
• the difference between the starting position of

the n-gram in the pattern and the starting po-
sition of the n-gram in the corpus segment, or
1 if they are the same except if both are at the
segment start.
• the difference between the number of words af-

ter the n-gram in the pattern and the number of
words after the n-gram in the corpus segment,
or 1 if they are the same except if both are at
the segment end.

The maximum cost is composed of:
• the maximum of the starting position of the n-

gram in the pattern and the starting position of
the n-gram in the corpus segment.
• the maximum of the number of words after the

n-gram in the pattern and the number of words
after the n-gram in the corpus segment

If a newly found match has a lower maximum cost
than the ceiling cost, we can update the ceiling cost
to this value.

If the match has a higher minimum cost than the
ceiling cost, we can safely discard the match. Sur-
viving matches are stored in a hash indexed by the
corpus segment id.

Note that if we find a corpus segment that is iden-
tical to the pattern, it has a maximum cost of 0,
invalidating all matches that are not also such full
matches.

Also note that if we find, say, a trigram match,
we will also find two underlying bigram and three
underlying unigram matches. However, we remove
such sub-matches from our set of matches, since
they cannot be used with a lower cost than the tri-
gram match.

5.2 Length Filtering
The collection of a set of n-gram matches yields a
set of candidate corpus segments. We perform an
additional filtering step before full validation, i.e.,
before computing the string edit distance between
each corpus segment and the pattern.

MAIN:
Input: pattern p = p1..pn

Output: best matching segments S
1: ceiling-cost = d0.3×p.lengthe
2: M = find-matches(p)
3: S = find-segments(p,M)

FIND-MATCHES:
Input: pattern p = p1..pn

Output: matches M
1: for start = 1 .. p.length do
2: for end = start .. p.length do
3: remain = p.length − end
4: Mstart,end = find-in-suffix-array(pstart..pend)
5: break if Mstart,end == ∅
6: for all m ∈M do
7: m.leftmin = |m.start− start|
8: m.leftmin = 1 if m.leftmin == 0 & start > 0
9: m.rightmin = |m.remain− remain|

10: m.rightmin = 1
if m.rightmin == 0 & remain > 0

11: min-cost = m.leftmin+m.rightmin
12: break if min-cost > ceiling-cost
13: m.leftmax = max(m.start, start)
14: m.rightmax = max(m.remain, remain)
15: m.pstart = start; m.pend = end
16: M = M ∪ {m}
17: end for
18: end for
19: end for
FIND-IN-SUFFIX-ARRAY:
Input: string
Output: matches N

1: first-match = find first occ. of string in array
2: last-match = find last occ. of string in array
3: for index i = first-match .. last-match do
4: m = new match()
5: m.start = i.segment-start
6: m.end = i.segment-end
7: m.length = i.segment.length
8: m.remain = m.length −m.end
9: m.segment-id = i.segment.id

10: N = N ∪ {m}
11: end for
FIND-SEGMENTS:
Input: pattern p, matches M
Output: best matching segments S

1: for all s : ∃m ∈M : m.segment-id = s.id do
2: a = new agenda-item()
3: a.M = {m ∈M : m.segment-id = s.id}
4: a.sumlength =

∑
m∈a.M m.length

5: a.priority = − a.sumlength
6: a.s = s
7: A = A ∪ {a}
8: end for
9: while a = pop(A) do

10: break if a.s.length - p.length > ceiling-cost
11: break if max(a.s.length, p.length) - a.sumlength

> ceiling-cost
12: cost = parse-validate(a.s, a.M)
13: if cost < ceiling-cost then
14: ceiling-cost = cost
15: S = ∅
16: end if
17: S = S ∪ {a.s} if cost == ceiling-cost
18: end while
PARSE-VALIDATE:
Input: string, M
Output: cost

1: for all m1 ∈M, m2 ∈M do
2: A ∪ {a} if a = combinable(m1,m2)
3: end for
4: cost = min {m.leftmax +m.rightmax|m ∈M}
5: while a = pop(A) do
6: break if a.mincost > ceiling-cost
7: mm = new match()
8: mm.leftmin = a.m1.leftmin
9: mm.leftmax = a.m1.leftmax

10: mm.rightmin = a.m2.rightmin
11: mm.rightmax = a.m2.rightmax
12: mm.start = a.m1.start; mm.end = a.m2.end
13: mm.pstart = a.m1.pstart; mm.pend = a.m2.pend
14: mm.internal = a.m1.internal + a.m2.internal +

a.internal
15: cost = min(cost, mm.leftmax + mm.rightmax +

mm.internal)
16: for all m ∈M do
17: A = A ∪ {a} if a = combinable(mm,m)
18: end for
19: end while
COMBINABLE:
Input: matches m1, m2

Output: agenda item a
1: return null unless m1.end < m2.start
2: return null unless m1.pend < m2.pstart
3: a.m1 = m1; a.m2 = m2

4: delete = m2.start−m1.end-1
5: insert = m2.pstart−m1.pend-1
6: internal = max(insert,delete)
7: a.internal = internal
8: a.mincost = m1.leftmin + m2.rightmin + internal
9: a.priority = a.mincost

Figure 3: Pseudo code of the algorithm

Note that a large number of corpus segments is
already excluded implicitly by our n-gram match re-
quirements. If the difference in length between the
corpus segment and the pattern is larger than the
ceiling cost, then none of its n-gram matches has a
minimum cost that is lower than the ceiling cost.

We pose another requirement for a corpus seg-
ment. The difference between the larger of segment
length and pattern match minus sum of the length
of all its n-gram matches has to be smaller than the
ceiling cost. In other words, in addition to the cost
due to length differences between the pattern and the
corpus segment, the remainder has to made up by
sufficient n-gram matches to not exceed the ceiling
cost (optimistically, all of them are used).

5.3 Validation with A* Parsing
At this point, we have a set of candidate corpus seg-
ments. We could simply compute string edit dis-
tance to validate them and to find the segments with
the lowest cost.

However, we also have all n-gram matches for
each candidate corpus segment, so we can use a
more efficient method for validation. This method
draws from ideas in A* parsing. We combine the n-
gram matches to build a binary tree that matches the
pattern against the corpus segment.

See Figure 4 for an illustration of the process. We
first arrange the matches in a chart covering the cor-
pus segment, as it is commonly done in chart pars-
ing. For each match, we record the minimum and
maximum cost. The illustration also shows how
these costs are composed of left (with respect to seg-
ment start) and right (with respect to segment end)
matching costs.

Of all the matches in the example, the lowest max-
imum cost is 6, which hence constitutes the ceiling
cost. Note that we may have external information
that gives us a lower ceiling cost. Due to the ceil-
ing cost of 6, we can safely discard the match of the
first word in the candidate and the last word of the
pattern (this match has a cost of 13).

We then proceed to pairwise combine matches
into multi-matches. In the example, we first com-
bine the match that covers candidate segment po-
sitions 2–3 with the match covering positions 5–6.
The resulting multi-match inherits the left cost esti-
mate from the first match and the right cost estimate

1
A

2
B

3
C

4
D

5
A

6
B

7
E

E
1

A
2

B
3

E
4

C
5

D
6

E
7

min-max
left min-max right min-max

2-6
1 1-5

6-7
3-4 3

6-9
3-6 3

4-7
2-4 2-3

1-6
1-6 0

13
6 7

pattern

candidate

E
1

A
2

B
3

E
4

C
5

D
6

E
7

2-6

6-7

6-9

4-7 1-6

candidate

4-5
1 2-3

E
1

A
2

B
3

E
4

C
5

D
6

E
7

2-6 4-7 1-6

candidate

4-5

ceiling: 6

new ceiling: 5

4
1 0

1

3

final match

internal min-max

scores in each match:

Figure 4: A* parsing to match a translation memory
segment (candidate) to the input segment (pattern): For
each n-gram match, the minimum and maximum cost is
recorded. New matches are generated by pairwise com-
bination. The ceiling cost is updated to the lowest max-
imum cost, which allows the removal of matches with
higher minimum cost (indicated by grey boxes).

from the second match. It also incurs an internal cost
of 1 due to the insertion of wordE (position 4) in the
candidate.

Overall, it has a maximum cost estimate of 5.
Since the maximum cost estimate of the multi-match
is lower than the ceiling cost, we update the ceiling
cost. This also triggers the removal of two matches
of the chart: the match covering candidate word po-
sitions 2–4, and the match covering position 4 have
each a minimum cost of 6, and hence cannot possi-
ble be used in an optimal edit path.

In the example, the final step is the composition of
the multi-match covering positions 2–7, which has a
minimum and maximum cost of 4. No other com-
bination of (multi-)matches has a lower minimum
cost, so we found an optimal edit path and its string
edit distance.

In the description of the example above, we
glossed over the exact strategy of combining
matches. There are many possible strategies for
such a A* parsing method. We implemented a sim-
ple bottom up parser that incrementally adds valid
multi-matches composed of an increasing number
of matches. The parser terminates, when now new
surviving matches are generated at a iteration (corre-
sponding to certain number of matches). The canon-
ical A* parsing strategy is best-first parsing with a
priority queue.

The theoretical cost of the described A* parsing
method is worse than the standard dynamic pro-
gramming method, but in practice it is faster, except
for degenerate cases. The fewer initial matches are
found, the higher the speed-ups. For more on this,
refer to the experimental section.

5.4 Refinement
The number of unigram matches between a pattern
an the corpus is very large. Consider that in a text
corpus most segments contain a period. This results
in costly generation of matches, and a large number
of candidate segments before filtering.

However, given a maximum error of, say, 30%,
a candidate segment must have a matching n-gram
larger than a unigram, except for very short patterns.
Hence, we do not need to generate unigram matches
for length filtering.

We gain significant speed-ups by postponing the
generation of unigram matches after length filtering,

Acquis Corpus Test
segments 1,169,695 4,107
words 23,566,078 128,005
words/seg. 20 31

Product Corpus Test
segments 83,461 2,000
words 1,038,762 24,643
words/seg. 12 12

Table 1: Statistics of the corpus used in experiments

when a much smaller number of segments are left
to be considered. By hashing the unigrams in the
pattern, we loop through all words in the candidate
segment to detect unigram matches, and add them
to the set of matches (unless they are subsumed by
larger matches). While this implies a linear cost with
respect to total length of all surviving candidate seg-
ments, it is still much cheaper than generating all
unigram matches earlier on.

Note that when using lower maximum error rates,
or when lower ceiling costs are detected, we may
also postpone the generate of other small n-gram
matches (bigrams, trigrams).

6 Experiments

We carried out experiments using two English data
sets: the publicly available JRC-Acquis corpus1

(Acquis) and a commercial product manual corpus
(Product). We use the same test set as Koehn et al.
(2009). See Table 1 for basic corpus statistics.

The Acquis corpus is a collection of laws and reg-
ulations that apply to all member countries of the
European Union. It has more repetitive content than
the parallel corpora that are more commonly used in
machine translation research. Still, the commercial
Product corpus is more representative of the type of
data used in translation memory systems. It is much
smaller (around a million words), with shorter seg-
ments (average 12 words per segments).

See Table 2 for a quantitive analysis of the ratio of
approximate matches in the corpus. For the Acquis
corpus the ratio of matches ranges from 45% to 60%,
and for the Product corpus from 47% to 73%, when

1http://wt.jrc.it/lt/Acquis/ (Steinberger et al., 2006)

Max. Acquis Product
error matches speed matches speed
40% 60% 462ms 73% 5.1ms
30% 54% 247ms 66% 4.3ms
20% 50% 163ms 58% 3.8ms
10% 45% 85ms 47% 3.2ms

Table 2: Number of matches and speed of lookup

Method Acquis Product
Baseline 33,776ms 371.2ms
with length filtering 2,965ms 77.1ms
Our method 247ms 4.3ms
w/o refinement 2,831ms 40.3ms
w/o length filtering 4,414ms 46.2ms
w/o A* parsing 6,079ms 113.0ms

Table 3: Main results: Performance of the method and
contribution of its steps

varying the error threshold for acceptable segments
from 10% to 40%.

Timing experiments were run on a machine with
a 64-bit Intel Xeon E5430 2.66GHz CPU. Speed is
measured in average time per segment lookup. The
speed of our method varies for the different maxi-
mum error threshold numbers — in the given range
roughly by a factor of 5 for Acquis and 2 for Prod-
uct. With a lower maximum error more segments
can be discarded early in the process.

The main results are shown in Table 3. When
using a 30% threshold for accepting approximate
matches, our method takes 3.0 milliseconds per in-
put segment for the Acquis corpus, and 4.3ms for
the Product corpus. This compares very favorably
against the canonical baseline method, the well-
known dynamic programming solution to the string
edit distance problem (33,776ms and 371.2ms),
even if we filter out segments that disqualify due to
length differences (2,965ms and 77.1ms).

The table also gives an indication of the contri-
bution of the steps of the method. The refinement
of delaying the generation of unigram matches (see
Section 5.4) is responsible for reducing the time
needed by roughly a factor of ten — without it the
time costs increases to 2,831ms and 40.3ms, respec-
tively. If we leave out length filtering (see Sec-

Step Acquis Product
range finding 29.7ms 2.06ms
match generation 119.0ms 0.69ms
filtering 94.4ms 1.49ms
validation 3.7ms 0.01ms

Table 4: Time per segment for each step of the method

tion 5.2), time per segment increases to 4,414ms and
46.2ms. Finally, if we carry out the comparison of
candidate segments against the input segment with-
out A* parsing, time increases further to 6,079ms
and 113.0ms.

Another way to inspect the time requirements of
the various steps of the method is to look at the time
spent in each stage. See Table 4 for details. For the
Product corpus, most time is spent on range find-
ing and filtering, while for the Acquis corpus match
generation dominates..

The validation step takes in both cases very lit-
tle time. The A* parsing method is twice as fast as
the canonical dynamic programming method (taking
about 3.7ms vs 0.016ms per input segment in both
corpora), but this is clearly not the bottleneck.

Note that there is also the stage of creating the
suffix array, which takes about 40 seconds for the
Acquis corpus and 2 seconds for the Product corpus.
Since this is a one-time pre-processing cost, which
can be incurred offline, we did not consider it in this
analysis

It is worth pointing out that for the Product cor-
pus, one degenerate case out of the 2000 input seg-
ments is responsible for a quarter of the average cost.
It takes over 1000ms seconds to complete. The seg-
ment consist of a sequence of 120 periods, which
are treated as tokens, which generates a very large
number of n-gram matches, which requires a large
amount of match filtering. Note that such outliers
are a concern, but they can be easily detected and
properly addressed.

Table 5 gives the average number of segments
considered by the method. The number of seg-
ments with n-gram matches is 24,258.3 for the Ac-
quis and 580.1 for the Product corpus. Segment fil-
tering reduces these numbers to 77.8 and 6.8. Fi-
nally, 25.9 and 3.3 segments on average are con-
sider best matches since they all have the optimal

Segments Acquis Product
with matches 24,258.3 580.1
after length filtering 77.8 6.8
best 25.9 3.3

Table 5: Number of corpus segments considered at dif-
ferent steps

edit cost. In our implementation we use string edit
distance based on letter matches as the tie-breaker,
which adds negligible computational cost.

7 Conclusion and Future Work

We present a novel method for approximate string
matching and applied it to the translation memory
search problem. The method outperforms the base-
line canonical dynamic programming method by a
factor of 100 in our experiments. It is an exact solu-
tion — it always find the optimal match.

The method involves n-gram lookup from a suf-
fix array over the corpus, match and length filtering
based on A* search principles and and A* parsing
method for validation.

The largest gains in performance are due to the
filtering techniques which leave very few segments
for validation. The method may be improved by in-
tegrating the A* principle of maintaining and driv-
ing down the ceiling cost more tightly. For instance,
if large n-gram matches with low maximum error
are found, this may eliminate the need to look up
smaller n-grams. Or, if we compute the actual scores
for the most promising segments early on (for in-
stance, when the longest matching n-gram is found),
we may find a lower ceiling leading to reduction in
n-gram lookup and finer match filtering.

While the method is very fast for our application
(4.3–247ms) and further improvements are not an
urgent matter, we would like to extend the method
to similar approximate string problems, for instance
using edit distances that allow moves or matching
against word graphs. Such problems arise in word
alignment, machine translation evaluation, and in-
teractive machine translation.

Acknowledgement This work was partly sup-
ported by the EuroMatrixPlus project funded by
the European Commission (7th Framework Pro-
gramme).

References
Callison-Burch, C., Bannard, C., and Schroeder, J.

(2005). Scaling phrase-based statistical machine trans-
lation to larger corpora and longer phrases. In Pro-
ceedings of the 43rd Annual Meeting of the Associ-
ation for Computational Linguistics (ACL’05), pages
255–262, Ann Arbor, Michigan. Association for Com-
putational Linguistics.

Kärkkäinen, J. and Na, J. C. (2007). Faster filters for
approximate string matching. In Proceedings of the
Ninth Workshop on Algorithm Engineering and Exper-
iments (ALENEX), pages 84–90.

Koehn, P., Birch, A., and Steinberger, R. (2009). 462 ma-
chine translation systems for europe. In Proceedings
of the Twelfth Machine Translation Summit (MT Sum-
mit XII). International Association for Machine Trans-
lation.

Lopez, A. (2007). Hierarchical phrase-based translation
with suffix arrays. In Proceedings of the 2007 Joint
Conference on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Lan-
guage Learning (EMNLP-CoNLL), pages 976–985.

Manber, U. and Myers, G. (1990). Suffix arrays: A new
method for on-line string searches. In First Annual
ACM-SIAM Symposium on Dicrete Algorithms, pages
319–327.

Mandreoli, F., Martoglia, R., and Tiberio, P. (2002).
Searching similar (sub)sentences for example-based
machine translation. In Italian Symposium on Ad-
vanced Database Systems (SEBD).

McNamee, P. and Mayfield, J. (2006). Translation of
multiword expressions using parallel suffix arrays.
In 5th Conference of the Association for Machine
Translation in the Americas (AMTA), Boston, Mas-
sachusetts.

Navarro, G. (2001). A guided tour to approximate
string matching. ACM Computing Surveys (CSUR),
33(1):31–88.

Steinberger, R., Pouliquen, B., Widiger, A., Ignat, C., Er-
javec, T., Tufis, D., and Varga, D. (2006). The JRC-
Acquis: A multilingual aligned parallel corpus with
20+ languages. In LREC.

Zhang, Y. and Vogel, S. (2005). An efficient phrase-to-
phrase alignment model for arbitrarily long phrase and
large corpora. In Proceedings of the 10th Conference
of the European Association for Machine Translation
(EAMT), Budapest.

