
A Unified Framework

for Phrase-Based, Hierarchical, and Syntax-Based

Statistical Machine Translation

Hieu Hoang, Philipp Koehn, and Adam Lopez

School of Informatics

University of Edinburgh

{hhoang,pkoehn,alopez}@inf.ed.ac.uk

Abstract

Despite many differences between phrase-based, hier-

archical, and syntax-based translation models, their train-

ing and testing pipelines are strikingly similar. Draw-

ing on this fact, we extend the Moses toolkit to imple-

ment hierarchical and syntactic models, making it the

first open source toolkit with end-to-end support for all

three of these popular models in a single package. This

extension substantially lowers the barrier to entry for

machine translation research across multiple models.

1. Introduction

Over the last years, statistical machine translation re-

search has produced rapid progress. After phrase-based

models succeeded the original word-based approach,

new research has focussed on hierarchical and syntax-

based models that take the recursive nature of language

into account and incorporate varying levels of linguistic

annotation.

In this paper, we illustrate the similarities of these

systems at all stages of the translation pipeline: model-

ing (§2), training (§3), and decoding (§4). We describe

our implementation of all these models in a common

statistical machine translation system, Moses (§5). Fi-

nally, we present a comparison of the baseline systems

on German-English translation (§6).

2. Models

A naı̈ve view of translation may describe the task as

the mapping of words from one language into another,

with some reordering. This notion underpins the orig-

inal statistical machine translation models proposed by

the IBM Candide project [1]. However, occasionally

words have to be inserted and deleted without clear lex-

ical correspondence on the other side, and words do not

always map one-to-one. As a consequence, the word-

based models proposed by IBM were burden with ad-

ditional complexities such as word fertilities and NULL

word generation.

2.1. Phrase-Based Models

Over the last decade, word-based models have been all

but abandoned (they still live on in word alignment meth-

ods), and replaced by an even simpler view of language.

Phrase-based models view translation of small text chunks,

again with some reordering [2, 3]. The complexities

of many-to-many translation, insertion and deletion are

hidden within the phrasal translation table.

To give examples, phrase-based models may include

rules such as

assumes ‖ geht davon aus, dass

with regard to ‖ bezüglich

translation system ‖ Übersetzungssystem

Implementations of such phrase-based models of trans-

lation have been shown to outperform all existing trans-

lation systems for some language pairs [4]. Currently

most prominent is the online translation service of Google

that follows this approach.1

2.2. Hierarchical Phrase-Based Models

However, phrase-based methods fail to capture to cap-

ture the essence of many language pairs [5]. One of the

reasons is that reordering cannot always be reduced to

the reordering of atom phrase units.

Consider the mapping of the following sentence pair

fragment:

1
http://translate.google.com/
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take the proposal into account

berücksichtigt den Vorschlag

The English phrasal verb take into account wraps

around its object the proposal. Hierarchical phrase-

based models [6] extend the notion of phrase mapping

to allow rules such as

take X1 into account ‖ berücksichtigt X1

must explain X1 ‖ muss X1 erklären

either X1 or X2 ‖ entweder X1 oder X2

Such translation rules may be formalized as a syn-

chronous context free grammar, where the non-terminal

X matches any constituent, and nonterminals with the

same coindexes (e.g. X1) are recursively translated by

a single rule. Such a formalism reflects one of the ma-

jor insights of linguistics: Language is recursive and all

modern theories of language use recursive structures.

2.3. Syntax-Based Models

The move towards grammar formalism to represent trans-

lation models allows the extension of such formalism

with linguistic annotations. The generic non-terminal

X allows for many nonsensical substitutions in trans-

lations, so we may instead restrain these with explicit

linguistic categories:

take NP into account ‖ berücksichtigt NP

must explain NP ‖ muss NP erklären

either S1 or S2 ‖ entweder S1 oder S2

either NP1 or NP2 ‖ entweder NP1 oder NP2

There are many ways to add linguistic annotation

to translation rules. Different grammar formalism of-

fer different sets of non-terminals. Annotation may be

added at the source or the target or both, Head rela-

tionships may provide additional assistance in transla-

tion. Synchronous context-free grammars may also re-

quire purely non-lexical rules that only consist of non-

terminals.

Nevertheless, let us stress that all the presented mod-

els reduce translation to the mapping of small chunks of

text.

3. Training

The basic notion of statistical machine translation is to

learn translation from the statistics over actual trans-

lation as it is manifest in a translation corpus. When

translating a new sentence, we would like to construct a

translation that has the strongest empirical evidence.

The research questions evolve around how to slice

up the evidence into manageable units and how to weight

their relative importance. There are obvious differences

between the three models that we presented in the pre-

vious section, but there are also overwhelming similar-

ities.

Consider Figure 1. The training pipeline for the

three models is almost identical. Syntax-based models

require the additional step of syntactic annotation of the

training data. The main difference is in rule extraction,

but even here the same method with some additional

steps for some of the models are applies:

• Extract all phrase pairs consistent with the word

alignment. In syntax-based models these have to

correspond to syntactic constituents.

• In hierarchical and syntax-based models: Find

sub-phrases and replace them with non-terminals.

In hierarchical models the non-terminal is X, in

syntactic models the non-terminal is taken from

the syntax tree.

• Store all extracted phrase pairs and rules for scor-

ing.

To provide one empirical fact to support this argu-

ment: The adaptation of the originally purely phrase-

based training process in Moses to hierarchical and syntax-

based models took less than one month of work.

Many syntax-based models relax the requirement

that phrases have to correspond to syntactic constituents.

For instance, in one of the best-performing models trans-

lation units may correspond to syntactic treelets (tree

fragments), permitting reordering at a scope larger than

that of a single constituent and its immediate children

[7]. Also, spans that only match a sequence of con-

stituents or incomplete constituents may be labeled with

complex tags such as DET+ADJ or NP/N [8]. Note that

these are manipulations of the syntax trees that do not

change in any way the rule extraction method.

There are many refinements to the the rule extrac-

tion method. Limits may be imposed to span sizes as

well as number of words and non-terminals. Fractional

counts may be for rules extracted from the same spans.

Only minimal rules may be extracted to explain a sen-

tence pair. Smoothing counts may be done using Good

Turing discounting or other methods.
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PHRASE-BASED HIERARCHICAL SYNTAX-BASED

raw translated text raw translated text raw translated text

⇓ ⇓ ⇓
sentence alignment sentence alignment sentence alignment

⇓ ⇓ ⇓
tokenization tokenization tokenization

⇓ ⇓ ⇓
syntactic parsing

⇓
word alignment word alignment word alignment

⇓ ⇓ ⇓
phrase rule extraction hierarchical rule extraction syntax rule extraction

⇓ ⇓ ⇓
rule scoring rule scoring rule scoring

⇓ ⇓ ⇓
parameter tuning parameter tuning parameter tuning

Figure 1: Training pipelines: Note that some of the steps are not just very similar, but identical. For instance,

the parameter tuning step may the same method that is agnostic about how models generate and score translation

candidates.

4. Decoding

Decoding is the process of finding for an input sentence

the most probable translation according to out models.

Since we will in almost all cases have not seen the sen-

tence before in our training data, we have to break it

up into smaller units, for which we have sufficient sta-

tistical evidence. Each of the units corresponds to a

grammar rule, and the task of the decoding algorithm

is to piece together these rules for the optimal sentence

translation.

The decoding process is complicated by how the

units interact with each other. Reordering models in

phrase-based decoding consider the input position of

neighboring output phrases. But more severely, n-gram

language models tie together translated words that were

generated by several rules, so it is not possible to view

sentence translation simply as the independent combi-

nation of the applied translation rules. In other words,

we cannot simply search for the most probable rules

that apply to a sentence, but we have to take a number

of different scoring functions into account.

There is a fundamental difference when decoding

phrase-based models on the one hand, and hierarchi-

cal or syntax-based models on the other hand. Phrase-

based decoding may proceed sequentially, by building

the translation from left to right. This is not easily

possible with the other models, since hierarchical rules

require the insertion of phrases within other (gapped)

phrases. Instead, typically, a chart parsing algorithm

is used, which builds up the translation bottom-up by

parsing with the source side of the synchronous gram-

mar, covering ever larger spans of the input sentence

(that do not have to start at the beginning of the sen-

tence).

Nevertheless, the principles and major components

of sequential and chart decoding are the same. The

sentence is constructed step-by-step and all component

scores are computed immediately. Due to the constraints

imposed by the language model, the translation is build

in contiguous sequences of words. Each partial trans-

lation (or hypothesis) is built by applying a translation

rule to one or more already constructed hypotheses. Since

the number of hypotheses is exploding, they are orga-

nized in stacks which are pruned.

4.1. Hypotheses

We build a sentence translation step-by-step, by apply-

ing a translation rule at a time. Each such step results

in a partial translation, which we call hypothesis. A

new hypothesis is formed by combining one or more

hypotheses with a translation rule.

In phrase-based decoding, hypotheses are expanded
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by covering additional source words and adding an out-

put phrase.

In hierarchical decoding, more than one hypotheses

may be combined by a translation rule. For instance,

when appying the rule

either X1 or X2 ‖ entweder X1 oder X2

we combine the two hypotheses that are matched by X1

and X2.

Note that we can only apply this rule, if we have al-

ready translations for X1 and X2. In other words, we

first find translations for smaller spans, and then use

these translations in hierarchical rules to cover larger

spans.

4.2. Incremental Scoring

When building a new hypothesis, we compute all com-

ponent scores as much as possible. Some of the com-

ponent scores are partial estimates, since they require

information about future expansions.

Consider the case of the language model. In phrase-

based decoding, we compute the language model score

for a partial translation from the start of the sentence

to the last added word. This last word may lead to very

bad language model scores further on (consider a period

in the middle of a sentence), but we do not know this at

this point.

Even worse, a hypothesis in hierarchical decoding

often covers a span that does not start at the beginning

of the sentence, so the language model cost for the ini-

tial words has to be a estimate, which will be revised

once more words are added before it.

However, we do require that each hypothesis repre-

sents a contiguous sequence of output words and disal-

low the insertion of words in the middle later on. This

requirement allows us to compute relatively realistic par-

tial language model scores.

4.3. Dynamic Programming

While each application of a translation rule leads to a

new hypothesis, we may also reduce the number of hy-

potheses by combining two hypotheses that are identi-

cal in their future search behavior.

In the simplest case, consider two hypotheses that

cover the same input words and produced the same out-

put words. They differ only in the translations rules

that were applied, i.e. their derivation. For instance,

they may have been constructed using shorter or longer

phrase pairs. Any subsequent application of translation

rules for one of the hypotheses may also be applied to

the other, with identical subsequent scores. This is what

we mean by identical future search behavior.

Since there is no gain in carrying out identical sub-

sequent searches, we combine these two hypotheses.

We may simply drop the worse-scoring hypotheses, but

for some applications (e.g., k-best list generation) it is

useful to keep a back-pointer from the surviving hy-

potheses to the path that led to its competitor.

Note that the matching criterion for combining hy-

potheses is future search behavior. This does not require

identical output. Only some aspects of the output mat-

ter for future search. For instance an n-gram language

model only looks back at the last n− 1 words in future

rule applications. So, in phrase based models, the lan-

guage model only requires that two hypotheses match

in their last n − 1 words, or even less, if these n − 1
words are a unknown history to the language model.

In chart decoding the partial output does not nec-

essarily start at the beginning of the sentence, so we

also need to consider the first n − 1 words (or less).

The reordering model in phrase-based decoding may

introduce additional constraints, and so does any other

scoring function that does not solely depend on a single

translation rule application.

4.4. Search Graphs and Hypergraphs

A good way to visualize decoding is as search for the

best path in a graph: the nodes of the graph are hypothe-

ses (§4.1) and the edges of the graph are rule applica-

tions that extend a hypothesis to produce a new hypoth-

esis. From each node, several transitions fan out, due to

different translation rules. But several transitions may

also fan in to a node due to dynamic programming.

A hypothesis, or state in the search graph, points

back to its highest-probable path, but also alternative

paths with lower probability. In practice, we store with

each state information such as which foreign words have

been covered so far, the partial translation constructed

so far, and the model scores along with all underlying

component scores. But this information may also be

obtained by walking back the best possible path.

In chart decoding the transitions may originate from

multiple hypotheses. This can visualized as a hyper-

graph [9, 10], a generalization of a graph in which an

edge (called a hyperedge) may originate from multiple

nodes (called tail nodes). The nodes of the hypergraph
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correspond to hypotheses, while the hyperedges corre-

spond to rule applications. Just as in the graph case, we

can extract a best hyperpath that corresponds to a single

set of rule applications.

Note that this is simply an extension of the case for

phrase-based models, and indeed the graph generated

by a phrase-based model is simply the special case of

a hypergraph in which each hyperedge has only one

tail node. The virtue of the hypergraph view is that,

even though our models have superficially quite differ-

ent structures, their search spaces can all be represented

in the same way, making them amenable to a variety of

hypergraph algorithms [11]. These algorithms general-

ize familiar graph algorithms, which are simply special

cases of their hypergraph generalizations. With this in

mind, most statistical translation systems can be viewed

as implementations of a very small number of generic

algorithms, in which the main difference is a model-

specific logic [12].

4.5. Stacks

Viewing decoding as the task of finding the most prob-

able path in a search graph or hypergraph, is one visu-

alization of the problem. However, this graph is too

large to efficiently construct even for relatively short

sentences. We need to focus on the most promising

part of the graph. To this end, we first group together

comparable hypotheses in stacks, and then prune out the

weaker ones.

There are many ways to define the stacks. In se-

quential decoding, we group together hypotheses that

cover the same number of input words. In chart decod-

ing, we group together hypotheses that cover the same

input span.

More fine-grained groupings are possible: in se-

quential decoding we could distinguish between hypothe-

ses that cover different input words [13], and in chart

decoding for models with target side syntax, we may

keep different stacks for different target-side labels. How-

ever, we want to avoid having too many stacks, and such

additional distinctions may also be enforced by diver-

sity requirements during pruning [14].

We prune bad hypotheses based on their incremen-

tal score so far. When comparing hypotheses that cover

different input words, we also include a future cost es-

timate for the remaining words.

4.6. Search Strategy

The final decision of the decoding algorithm is: In which

order do we generate the hypotheses?

The incremental scoring allows us to already com-

pute fairly indicative scores for partial translation, so we

broadly pursue a bottom-up decoding strategy, where

we generate hypotheses of increasing input word cover-

age. This also allows efficient dynamic programming,

since we generate all hypotheses for a particular span at

one time, thus making it easy to find and process match-

ing hypotheses.

We may process all hypotheses in one stack or for

one stack at one time. In other words, either we may

go through all hypotheses of one stack, for each find all

applicable translation rules, and generate the resulting

new hypotheses. Or, we look at a new empty stack, find

all sets of hypotheses and translation rules that generate

hypotheses in this stack, and then proceed to populate

the stack.

The second strategy allows for a nice integration

with pruning. If we sort the original hypotheses and

the translation rules by their score, then we can focus

on first generating the most promising new hypotheses.

We may even stop this process early to avoid generating

hypotheses. This latter strategy has become known as

cube pruning [6], and it has been shown to be a generi-

cal algorithm applicable to both phrase-based and hier-

archical models [10].

4.7. Decision Rule

Finally, we have to pick one of the hypotheses that cover

the entire input sentence to output a translation. Most

commonly, this is the hypothesis with the best score,

but that is not the only choice.

There may be multiple ways to produce the same

output. If our goal is to find the most probable trans-

lation given the input, then we should find all possi-

ble paths through the search graph that result in the

same output and sum up their scores. Then, we output

the translation with the highest score over all deriva-

tion. This is called max-translation decoding vs. max-

derivation decoding [15].

But what if the best translation is an outlier? Given

the uncertainty in all our models, we may prefer instead

a different high-scoring translation that is most similar

to the other high-scoring translations. This is the mo-

tivation for minimum Bayes risk decoding [16], which

has been shown to often lead to better results.
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5. Implementation

Based on our observations about the deep similarities

between many popular translation models, we have sub-

stantially extended the functionality of the Moses toolkit

[17], which previously supported only phrase-based mod-

els. In particular, our implementation includes a chart

decoder that can handle general synchronous context-

free grammars, including both hierarchical and syntax-

based grammars.

Both phrase-based and hierarchical decoders imple-

ment cube pruning [6, 10] and minimum Bayes risk de-

coding [16].

Our training implementation also includes rule ex-

traction for hierarchical [6] and syntax-based transla-

tion. The syntax-based rule extractor produces rules

similar to the “composed rules” of [18]. The source

code is freely available.2

This allows us to take advantage of the mature Moses

infrastructure by retaining much of the existing compo-

nents. Also, the development of a hierarchical system

alongside a phrase-based system allows us to more eas-

ily and fairly compare and contrast the models.

Re-using and extending the existing Moses decoder

reduces the amount of development required. As an

illustration, the phrase-based decoder 24,000 lines of

code. The more complex hierarchical and syntax exten-

sion added 10,000 lines to the codebase.

Some components in a phrase-based and hierarchi-

cal decoder are identical, for example, the purpose and

application of language models do not change. The lin-

ear scoring model is also unchanged. Many of the pe-

ripheral modules needed by the decoder also remain un-

changed.

Other components required straight-forward exten-

sion. This includes the vocabulary and phrase compo-

nents which are extended to allow non-terminal sym-

bols. The phrase model is also extended to allow non-

terminal symbols which can cover multi-word spans.

Because the search spaces of phrase-based and hi-

erarchical models differ, the implementations for search

differ. Stack organization, partial translations (hypothe-

ses) and search logic are separate for each translation

model. However, we note the many similarity between

each implementation which can be abstracted at a later

date, following [12].

Consistent with the Moses heritage, the hierarchical

decoder supports the factored representation of words.

2
http://mosesdecoder.svn.sourceforge.net

Model Rule Count BLEU

phrase-based 6,246,548 13.0

hierarchical 59,079,493 12.9

target-syntax 2,291,400 12.5

Table 1: Comparison of English-German models using

the WMT 2009 News Commentary training set

Also, as a generalization of word factors, non-terminals

labels on both source and target multi-word spans are

permitted, non-terminal words in translation rules are

labelled with both the source and target labels, and the

left-hand side of all rules have both source and target

labels. Using this representation, input sentences to the

decoder can be annotated with its corresponding parsed

tree, dependency tree, or other span labels.

Also inherited from the original phrase-based Moses

decoder is the ability to use multiple language models

and alternative translation models.

6. Experiments

Having a uniform framework for a wide range of mod-

els allows the comparison of different methods, while

keeping most of the secondary conditions equal (e.g.

language model, training data preparation, tuning, etc.).

We report baseline results for three models: phrase-

based, hierarchical, and a syntax-based model that uses

syntax on the target side.

We trained systems using the News Commentary

training set that was released by WMT 20093 for En-

glish to German translation. See Table 1 for statistics on

rule table sizes and BLEU scores for the news-dev2009b

test set.

Decoding for all the three models took about the

same time, roughly 0.3 seconds per word. Decoding for

hierarchical and syntax-based models is more complex,

and we expect to achieve better results by tuning the

search algorithm and using larger beam sizes.

The syntax-based model uses the BitPar parser for

German [19]. Note that recent work has shown that

state-of-the-art performance requires improvements to

word alignment [20] and data preparation, which were

not done for these experiments.

3
http://www.statmt.org/wmt09/
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7. Conclusions and Outlook

Our experiments illustrate that the hierarchical and syn-

tactic models in Moses achieve similar quality to the

phrase-based model, even though their implementation

is less mature. We expect that their performance will

continue to be improved by drawing on the substantial

body of research in syntactic translation modeling over

the last several years. In particular, we plan to extend

the rule extraction to the produce syntax-augmented gram-

mars [8], which have been shown to improve on both

phrase-based and hierarchical models in some settings

[21]. We also plan to implement optimizations for de-

coding with syntactic grammars, such as tree binariza-

tion [22].
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