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Abstract
This paper describes TALPtuples, the 2007 N -gram-based
statistical machine translation system developed at the TALP
Research Center of the UPC (Universitat Politècnica de
Catalunya) in Barcelona. Emphasis is put on improvements
and extensions of the system of previous years. Mainly,
these include optimizing alignment parameters in function of
translation metric scores and rescoring with a neural network
language model.

Results on two translation directions are reported,
namely from Arabic and Chinese into English, thoroughly
explaining all language-related preprocessing and translation
schemes.

1. Introduction
Ngram-based Machine Translation (MT), originally based
in the Finite-State Transducers approach to Statistical MT
(SMT) [1, 2], has proved to be a competitive alternative to
phrase-based and other state-of-the-art systems in previous
evaluation campaigns, as shown in [3, 4].

Efforts have been focused on improving translation ac-
cording to human evaluation by further developing different
stages of the SMT system: alignment and rescoring.

As in previous years, we aligned the training corpus us-
ing Giza++ software. However, instead of keeping the de-
fault parameters, we performed a minimum translation error
training procedure to adjust Giza++ smoothing parameters to
the task. This procedure had been successful with an align-
ment system based on discriminative training [5].

For the rescoring we incorporate a neural network lan-
guage model as previously experienced in [6]. The neural
network language model mainly is able to produce a better
generalization in the translation system.

This paper is organized as follows. Section 2 briefly re-
views last year’s system, including tuple definition and ex-
traction, translation model and feature functions, decoding
tool and reordering and optimization criterion. Section 3

describes the alignment translation-minimum-error training
procedure. Section 4 focuses on rescoring using a neural lan-
guage model (NNLM). Next, Section 5 reports on all exper-
iments carried out from Arabic and Chinese into English for
IWSLT 2007. Finally, Section 6 sums up the main conclu-
sions from the paper.

2. Baseline description
2.1. N-gram-based Machine Translation

The TALP Ngram-based SMT system performs a log-linear
combination of a translation model and additional feature
functions (see further details in [7, 8]). In contrast to phrase-
based models, our translation model is estimated as a stan-
dard n-gram model of a bilingual language expressed in tu-
ples. In this way, it approximates the joint probability be-
tween source and target languages capturing bilingual con-
text, as described by the following equation:

p(S, T ) =
K∏

k=1

p((s̃, t̃)k|(s̃, t̃)k−N+1, ..., (s̃, t̃)k−1) (1)

where s refers to source, t to target, and (s̃, t̃)k to the
kth tuple of a given bilingual sentence pair segmented in K
tuples.

2.2. Tuple extraction

Given a certain word-aligned parallel corpus, tuples are ex-
tracted according to the following constraints [9]:

• a monotonic segmentation of each bilingual sentence
pair is produced

• no word in a tuple is aligned to words outside of it

• no smaller tuples can be extracted without violating
the previous constraints



However, when dealing with pairs of languages with non-
monotonic word order, a certain reordering strategy is re-
quired to extract more reusable units (less sparse). Hence,
we allow the source words to be reordered before extract-
ing translation units from training sentence pairs by follow-
ing the word-to-word alignments. The unfolding technique
is fully described in [10].

Figure 1 shows an example of tuple unfolding compared
to the monotonic extraction. The unfolding technique pro-
duces a different bilingual n-gram language model with re-
ordered source words.

Figure 1: Comparing regular and unfolded tuples.

The unfold method needs the input source words be re-
ordered during decoding similarly to how source words were
reordered in training. If monotonic decoding were used with
unfolded units, translation hypotheses would be formed fol-
lowing the source language word order. The reordering ap-
proach used in this work is detailed in section 2.6.

2.3. Feature functions

As additional feature functions to better guide the translation
process, the system incorporates six models: a target lan-
guage model, a word bonus model, two lexicon models, a
target (part-of-speech) tagged language model and a source
(part-of-speech) tagged language model.

The target language model (target LM) is estimated as a
standard n-gram over the target words, as follows:

pLM (T ) ≈
N∏

n=1

p(tn|tn−2, tn−1) (2)

where tn refers to the nth word in the partial translation hy-
pothesis T .

Usually, this feature is accompanied by a word bonus
model based on sentence length, compensating the target lan-
guage model preference for short sentences (in number of
target words). This bonus depends on the number of target
words in the partial hypothesis, denoted as:

pWP (T ) = exp(number of words in T ). (3)

The third and fourth feature functions correspond to
source-to-target and target-to-source lexicon models. These
models use IBM model 1 translation probabilities to compute
a lexical weight for each tuple, accounting for the statistical
consistency of the pairs of words inside the tuple. These lex-
icon models are computed according to the following equa-
tion:

pIBM1((s̃, t̃)k) =
1

(I + 1)J

J∏
j=1

I∑
i=0

p(tik|s
j
k) (4)

where sj
k and tik are the jth and ith words in the source

and target sides of tuple (s̃, t̃)k, being J and I the corre-
sponding total number of words in each side of it.

To compute the forward lexicon model, IBM model
1 lexical parameters from GIZA++ source-to-target align-
ments are used. In the case of the backward lexicon model,
GIZA++ target-to-source alignments are used instead.

The target tagged language model is estimated as a stan-
dard N -gram LM. It aims at achieving generalization power
over the target side words.

Finally, the source tagged language model is also esti-
mated as a standard N -gram LM. It is computed over the
source side POS tags after being reordered. Hence, aiming at
describing the reordering process introduced in training.

2.4. MARIE decoder

As decoder, we use MARIE [11], a beam-search decoder
which taking the previous models into account developed at
TALP Research Center. For efficient pruning of the search
space, threshold pruning, histogram pruning and hypothesis
recombination are used.

Apart from monotone search, MARIE also implements
full reordered search, which can be constrained by a set of
parameters, as explained in the following section.

The primary TALPtuples systems did not incorporate any
rescoring module, therefore choosing their 1-best hypothesis
as final translation solution. Nevertheless, for the Chinese-
English task, a secondary run was performed with a rescoring
module, as described in Sections 4 and 5.3.2.

2.5. Feature Weights Optimization

To tune the weight of each feature function in the SMT sys-
tem, we used the Simultaneous Perturbation Stochastic Ap-
proximation (SPSA) algorithm [12]. SPSA is a stochastic



implementation of the conjugate gradient method which re-
quires only two evaluations of the objective function in each
iteration, regardless of the dimension of the optimization
problem. It was observed to be more robust than the Down-
hill Simplex method when tuning SMT coefficients [13]. The
SPSA procedure is in the general recursive stochastic ap-
proximation form:

λ̂k+1 = λ̂k − akĝk(λ̂k) (5)

where k here refers to the iteration number, ĝk(λ̂k) is the es-
timate of the gradient g(λ) ≡ ∂E/∂λ at the iterate λ̂k based
on the previous mentioned evaluations of the objective func-
tion. ak denotes a positive number that usually gets smaller
as k gets larger.

Two-sided gradient approximations involve evaluations
of E(λ̂k + perturbation) and E(λ̂k − perturbation).

In the simultaneous perturbation approximation, all ele-
ments of λ̂k are randomly perturbed together and the approx-
imated gradient vector is:

E(λ̂k + ck∆k)− E(λ̂k − ck∆k)
2ck


1/∆k1

1/∆k2

...
1/∆kN

 (6)

In equation 6, ∆k is a perturbation vector of same di-
mension N as λ, whose values ∆i are computed randomly.
ck denotes a small positive number that usually gets smaller
as k gets larger. Notice that in general, SPSA converges to a
local minimum.

Two optimization schemes are possible. In the first one,
the development corpus is translated at each iteration. With
6 parameters (one parameter can remain fixed to 1, the oth-
ers being scaled accordingly), the algorithm converges after
about 60 to 100 iterations. Thus, in this scheme, in the order
of 80 development corpus translations are required. In the
second scheme, an N-best list is produced by the decoder.
The optimization algorithm is used to minimize the transla-
tion error while rescoring this N-best list. With the optimal
coefficients, a new decoding is performed so as to produced
an updated N-best list [14]. This process converges after only
5 to 10 decodings. For each internal optimization, about 80
iterations are still required, but each iteration is much shorter
since it only requires to rescore an N-best list.

We used the second scheme with 1
2 (BLEU+NIST) as

maximization criterion.

2.6. Reordering Strategies

The reordering framework followed in this work consists of
using a set of automatically learned rewrite rules to extend
the monotonic search graph with reordering hypotheses (de-
tails in [15]).

Patterns are extracted in training from the crossed links
found in the word alignment, in other words, found in trans-

lation tuples (as no word within a tuple can be linked to a
word out of it [9]).

Starting from the monotonic graph, each sequence of in-
put POS tags fulfilling a source-side rewrite rule implies the
addition of a reordering arc (which encodes the reordering
detailed in the target-side of the rule). Figure 2 shows how
three rewrite rules applied over an input sentence extend the
search graph given the reordering patterns that match the
source POS tag sequence 1.

Figure 2: Search graph extension.

In the search, the decoder makes use of the whole set of
models to score each reordering hypothesis, mainly driven by
the N-gram translation model, as it has been estimated with
reordered source words.

3. Alignment Minimum Translation Error
Training

Alignment smoothing parameters were tuned via the opti-
mization procedure depicted in Figure 3.

Figure 3: Optimization loop.

The training corpus was aligned with a set of initial pa-
rameters λ1, . . . , λν . This alignment was used to extract tu-
ples and build a bilingual N-gram translation model (TM). A
basic SMT system, consisting of MARIE decoder and this
translation model as single feature2, was used to produce

1NC, CC and AQ stand respectively for name, conjunction and adjective.
2An N-gram SMT system can produce good translations without addi-

tional target language model since the target language is modeled inside the
bilingual N-gram model.



a translation (OUT) of the development source set. Then,
translation quality over the development set is maximized by
iteratively varying the set of coefficients.

The optimization procedure was performed by using the
SPSA algorithm, described in Section 2.5. Each function
evaluation required to align the training corpus and build a
new translation model. The algorithm converged after about
50-80 evaluations.

Finally, the corpus was aligned with the optimum set of
coefficients. Translation units were extracted from this align-
ment.

4. Neural Network Language Model
The basic idea of the continuous space LM, also called neural
network LM, is to project the word indexes onto a continu-
ous space and to use a probability estimator operating on this
space. Since the resulting probability functions are smooth
functions of the word representation, better generalization to
unknown n-grams can be expected. This is believed to be
particularly important for tasks with limited resources, as it
is the case for IWSLT. A neural network can be used to si-
multaneously learn the projection of the words onto the con-
tinuous space and to estimate the n-gram probabilities. This
is still a n-gram approach, but the LM posterior probabilities
are ”interpolated” for any possible context of length n-1 in-
stead of backing-off to shorter contexts. For more details on
this approach, see [6] and references there in.

5. Experiments
In this section the experimental work conducted for IWSLT
2007 shared tasks is reported. UPC participated in the Arabic
to English and the Chinese to English tasks.

5.1. Tasks Description

Although this year all publicly available data was allowed,
we only used the provided data to train our system. Our in-
ternal training data consisted in the provided training data
plus dev1, dev2 and dev3 sets. Only dev sets sentence pairs
containing the first English reference were added to the bilin-
gual training data, whereas all English references were added
to the monolingual data3. True case and punctuation marks
were removed from these training data. Punctuation marks
and true case were restored by using SRILM ’disambig’ tool
as suggested by IWSLT organizers. System coefficients were
tuned with dev4 set and dev5 was used as an internal test set.
Both dev4 and dev5 contained punctuation marks and true
case. After obtaining the final configuration, dev4 and dev5
were added to the training data in the same way as dev1,
dev2 and dev3 were previously added, and the final system

3When all references are added to both bilingual and monolingual data,
BLEU score is improved but METEOR score gets worse. Since in this task
BLEU score is well correlated to fluency and METEOR is well correlated
to adequacy [4], we supposed that adding all references was beneficial to
monolingual language models but not to the bilingual language model.

was trained.
In both Arabic to English and Chinese to English tasks,

the 1-best speech recognition output was taken as input to the
translation system. Therefore, no n-best list nor word graph
were used as input.

Tables 1 and 2 show corpora statistics for both language
pairs. Number of sentences, running words, vocabulary, sen-
tence length and human references are indicated. Bilingual
and monolingual corpora statistics are shown for develop-
ment and final training data.

sent. wrds voc. slen.
ar 189k 10.9k 7.7devel bil train
en

24.4k
170k 6.9k 7.0

devel monol train en 71.0k 492k 9.7k 6.9
ar 201k 11.3k 7.9final bil train
en

25.4k
182k 7.1k 7.2

final monol train en 77.9k 578k 10.1k 7.4
dev4 ar 489 5912 1224 12.1
dev5 ar 500 6579 1481 13.2

Table 1: Arabic→English corpus statistics.

sent. wrds voc. slen.
zh 318k 9.8k 6.7devel bil train
en

47.3k
331k 9.0k 7.0

devel monol train en 71.0k 492k 9.7k 6.9
zh 329k 9.9k 6.8final bil train
en

48.3k
343k 9.2k 7.1

final monol train en 77.9k 578k 10.1k 7.4
dev4 zh 489 5476 1094 11.2
dev5 zh 500 5846 1292 11.7

Table 2: Chinese→English corpus statistics.

5.2. Data Preprocessing

For all language pairs, training sentences were split by using
final dots on both sides of the bilingual text (when the number
of dots was equal), increasing the number of sentences and
reducing its length. Specific preprocessing for each language
is detailed in the following respective section.

5.2.1. Arabic

Following a similar approach to that in [16], we used the
MADA+TOKAN system for disambiguation and tokeniza-
tion. For disambiguation only diacritic uni-gram statistics
were employed. For tokenization we used the D3 scheme
with -TAGBIES option. The D3 scheme splits the following
set of clitics: w+, f+, b+, k+, l+, Al+ and pronominal cli-
tics. The -TAGBIES option produces Bies POS tags on all
taggable tokens.



5.2.2. Chinese

Chinese preprocessing included re-segmentation using ICT-
CLAS [17] and POS tagging using the freely available Stan-
ford Parser4.

5.2.3. English

English preprocessing includes Part-Of-Speech tagging us-
ing freely-available TnT tagger [18].

For alignment purpose only (of the ZhEn system), the
English corpus was stemmed using the Snowball stemmer 5,
based on Porter’s algorithm.

5.3. Results

5.3.1. Alignment

In the ZhEn system development work, we tried to improve
word alignment by stemming the English corpus and make
use of classes [19]. We also performed several combina-
tions of source-target and target-source GIZA++ alignments
(union, growing forward diagonal method and Och’s refined
method [20]), as well as concatenations of various of these
combinations. Using stems and classes in the alignment im-
proved translation results in all cases, and the best combi-
nation for the system with pattern-based reordering was the
union6. At the end, the best alignment configuration for our
baseline system was obtained with Giza++ software, running
respectively 5, 5, 3 and 3 iterations of models 1, HMM, 3 and
4, using English stems and 50 classes and taking the union of
source-target and target-source alignments.

Table 3 show results for the new features of this year’s
system.

We optimized the following GIZA++ parameters by
means of the minimum translation error training (MET) pro-
cedure described in section 3: smoothing factors for models
HMM, IBM3 and IBM4, as well as the probability for the
empty word. Notice that the empty word plays an impor-
tant role in our translation model, so tuning this parameter
may have some impact. We performed an optimization of
these parameters in function of machine translation score for
each value of the deficient distortion for empty word (defdis-
Empty) parameter (0, 1 and 2). Then we aligned the corpus
with the optimal parameters, built the SMT system, and eval-
uated it. Among the three optimizations, only the one per-
formed with defdisEmpty = 1 yielded an improvement in
both dev and test sets. The corresponding results are shown
in table 3.

5.3.2. Rescoring

In this work, the continuous space LM was trained on the
same data than the back-off LM. The design parameters for

4http://www-nlp.stanford.edu/software/lex-parser.shtml
5http://snowball.tartarus.org/
6For the system with SMR reordering the best combination was the

growing forward diagonal.

the neural networks are as follows. The hidden layer was
of dimension 200 and the output layer was limited to the
8192 most frequent words (short list). As in previous works,
several neural networks with different sizes of the projection
layer were trained and interpolated, together with the back-
off LM. The interpolation coefficients were optimized on the
development data using an EM procedure.

Incorporation into the SMT system was done using 1000-
best lists. After replacing the LM scores in the n-best list the
feature-function coefficients were tuned again.

Table 3 summarizes the results obtained when the con-
tinuous space LM (NNLM) was used. After optimization of
the overall system, a continuous space LM was trained on all
the available data, including Dev4 and Dev5, using the same
settings of the various parameters and coefficients.

Notice that Table 3 shows only results for the Chinese-
English task, because the new features of this year’s system
have only been applied to that system.

5.3.3. Official Evaluation Results

In this section we report the BLEU scores obtained in the of-
ficial evaluation for Arabic to English and Chinese to English
tasks.

UPC Best Rank
AE ASR Primary 0.4445 0.4445 1/11
AE Clean Primary 0.4804 0.4923 3/11
CE Clean Primary 0.2991 0.4077 11/15

CE Clean Primary + NNLM 0.2920 0.4077 -

Table 4: Official translation results (BLEU scores) for IWSLT
2007 Chinese-English and Arabic-English tasks. Next to our
system’s score, we indicated the Best system’s score. For
the primary runs, we also indicated the rank of our system
among all primary runs.

The Arabic translation scores show that our system is
able to achieve excellent results in this type of task, compared
to other systems. It achieved indeed the best BLEU score in
the Arabic ASR output task, and the third best score in the
Arabic Clean task, with a little more than a point BLEU dif-
ference from the best system. However, there was obviously
a problem in translating from Chinese, since our system ob-
tained nearly 11 BLEU points less than the best system. We
think that our processing of the Chinese language was not ad-
equate, and we are also investigating other possible causes.

6. Conclusions and Further work
In this year’s evaluation we optimized Giza++ smoothing pa-
rameters by means of a minimum error training procedure.
Alignment parameters were adjusted directly in function of
automated translation metrics scores. During this procedure,
only the basic n-gram MT system, with only the translation
model, was used. In future work, we could consider using



dev (dev4) test (dev5)
1
2

(BLEU+METEOR) BLEU NIST METEOR WER PER
Chinese→English

baseline 0.340 0.186 5.84 0.487 68.6 54.9
giza++ MET 0.349 0.190 5.97 0.490 69.1 54.8

giza++ MET+NNLM 0.350 0.205 6.06 0.496 69.2 54.9

Table 3: Internal translation results for IWSLT 2007 Chinese-English task. MET refers to alignment tuning with Minimum
(translation) Error Training. NNLM refers to rescoring a translation N-best list with a continuous space target language model.

various SMT features (as would be required for a phrase-
based SMT system).

In this evaluation, we have also shown the use of a neural
network LM that performs probability estimation in a contin-
uous space in the Ngram-based system. Since the resulting
probability functions are smooth functions of the word rep-
resentation, better generalization to unknown n-grams can be
expected. The NNLM has been used to rescore the n-best
lists of the Ngram-based SMT system that has participated
in the 2007 IWSLT evaluation.

Our system achieved excellent scores compared to other
systems in the Arabic-English task. However, it was not very
competitive in the Chinese-English task. We are currently
investigating the reasons for this performance difference be-
tween the two tasks.
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