
How to do dialogue in a fairy-tale world

Johan Boye and Joakim Gustafson

TeliaSonera R&D, Sweden

johan.boye@teliasonera.com, joakim.gustafson@teliasonera.com

1 Introduction

The work presented in this paper is an endeavor to

create a prototype of a computer game with spoken

dialogue capabilities. Advanced spoken dialogue has

the potential to considerably enrich computer games,

where it for example would allow players to refer to

past events and to objects currently not visible on

the screen. It would also allaow users to interact

socially and to negotiate solutions with the game

characters. The game takes place in a fairy-tale

world, and features two different fairy-tale

characters, who can interact with the player and with

each other using spoken dialogue. The fairy-tale

characters are separate entities in the sense that each

character has its own set of goals and its own

perception of the world. This paper gives an

overview of the functionality of the implemented

dialogue manager in the NICE fairy-tale game

system.

2 Game scenario

The NICE fairy-tale game system takes place in the

fairy-tale world of HC Andersen. The fairy-tale

world is a large 3D virtual world. Five animated

fairy-tale characters have been developed, out of

which three have been used in the dialogue game so

far (Gustafson et al 2005). Charles and Cavazza

(2004) distinguish between two types of characters

in their character-based story telling system –

feature characters and supporting characters. In

the fairy-tale game, a third kind of character has

been added - a helper character. Cloddy Hans is a

friendly helper, that is, a character that guides and

helps the user throughout the whole fairy-tale game.

He has no goals except doing what the user asks him

to, and helping the user along when necessary.

Helper characters need conversational capabilities

allowing both for grounding and cooperation, and

for dialogue regulation and error handling. They

need to have knowledge of all plots and subtasks in

the game. Finally they need simple visual perception

so that they can suggest actions that involves objects

in the scene that the user have not noticed yet, and

they have to be aware of the other characters actions

as well as of their verbal output.

The player is introduced to Cloddy Hans in a

training scene which takes place in HC Andersen’s

fairy-tale laboratory where their task is to get

Cloddy Hans to build the fairy-tale by putting fairy-

tale objects into the right slot of a fairy-tale

machine. The task is deliberately simple and

repetitive in order for the users to acquaint

themselves with the capabilities and limitations of

spoken input understanding. Thumbelina is a non-

verbal supporting character who points at slots in the

machine where she wants an object to be placed, and

if the user gets Cloddy Hans to put it in another slot

she shows her discontent with large emotional body

gestures. When Cloddy Hans pulls the machine’s

lever a hidden trap door opens below Cloddy Hans

and he falls into the fairy-tale world (see Figure 1).

Cloddy Hans tells the user that they have landed

in the fairy-tale world, and soon they encounter their

first problem. Together with Cloddy Hans, the user

is trapped on a small island, from which he can see

the marvels of the fairy-tale world – houses, fields, a

wind mill, etc. – but they are all out of reach. A deep

gap separates him from these wonders. There is a

drawbridge, which can be used for the crossing, but

it is raised, and the mechanism which operates it is

on the other side. Fortunately, a girl, Karen, is

standing on the other side (Figure 1). She has a

different kind of personality compared to Cloddy

Hans. Instead of having Cloddy Hans's positive

attitude, she is sullen and uncooperative, and refuses

to close the drawbridge. The key to solving this

deadlock is for the player to find out that Karen will

comply if she is paid: she wants to have one of the

fairy-tale objects that are lying in the grass on the

player's side of the gap. Thus, it is the task of the

player to find the appropriate object, and use this

object to bargain with Karen.

Figure 1. Karen and Cloddy Hans at the drawbridge

3 World and task representation

In order to be able to behave in a convincing way, a

fairy-tale character needs be aware of other

characters and all physical things in its vicinity. The

character also needs to understand how past events

and interactions influence the current situation. To

this end, each fairy-tale character has an inner state

consisting of

• a world model, representing the character's beliefs

about the state of things and characters in the

world, as a set of interrelated objects;

• a discourse history, representing past interactions;

• an agenda, a set of tree-structures representing the

character's current goals, past and future actions,

and their causal relations.

A task specification is a set of declarative rules

encoding relationships between actions and

propositions concerning the state in the world. The

dialogue manager uses the rules to build agenda

tree-structures that encode current goals, as well as

the causal relationships between the current goals

and past and future actions. The agenda trees

constitute the main driving force for a fairy-tale

character's behavior, and the trees can at times attain

great depth and complexity. Note that the tree also

represents the causal relations: Cloddy Hans is

walking over to the shelf because he wants to stand

there, and he wants to stand there because he wants

to hold the axe. These relations can be verbalized,

enabling Cloddy Hans to explain to the user what he

is up to and why.

This approach is highly reminiscent of

traditional STRIPS-like planning (Fikes and Nilsson

1971). The most important difference is non-

monotonicity in the sense that true propositions do

not necessarily stay true. For instance, the

proposition available(axe) may turn from true to

false because of unexpected changes in the

environment (some other character might take the

axe). For this reason, the system checks all

necessary preconditions before executing any action,

also those preconditions that have been found to be

true at an earlier point in time.

4 The characters’ interactions

4.1 Input and output messages

The dialogue manager receives a stream of input

messages and generates a stream of output

messages. The output messages it can produce are of

two types:

convey <dialogue act>: The dialogue act will be turned

into words by the Natural Language Generation

module, and then an utterance will be produced using

speech synthesis and animation.

perform <action>: A command to perform the action is

sent to the Animation Planner.

Input messages belong to one of the following types:

parserInput <dialogue_act>: The user has said

something, and <dialogue act> is the representation

of that utterance.

gestureInput <object>: The user has made a graphical

reference to a specific object.

recognitionFailure: The user has said something the

recognizer could not interpret.

broadcast <message>: Another fairy-tale character has

said or done something. <message> is either a

dialogue act or an action.

performed <id> <flag>: The character itself has
completed a specific action which had previously

been requested by a perform message. <flag> is
either "ok" or "failed" depending on whether the

action was carried out or not.

trigger <id>: The system has detected that the character

has moved into a trigger with <id> (see section 4.4).

It might seem odd that the performed message is

needed. After all, the character had itself requested

the action to be performed. The reason is that due to

the fact that some actions take considerable time to

carry out, the character cannot consider an action as

completed before it has actually been carried out in

full on the screen. Moreover, requested actions may

fail for a variety of reasons. The message is a

feedback to the character that the action has been

carried out without problems, so that the character

can turn to the next action on the agenda.

4.2 Dialogue acts

Utterances are represented by tree-strucured

expressions, called dialogue acts (Boye et al 2006).

The kind of user utterances the system can interpret

can be categorized as follows:

Instructions: "Go to the drawbridge", "Pick it up"…

Domain questions: "What is that red object?", "How old

are you?"…

Giving information: "I'm fourteen years old"…

Negotiating utterances: "What do you want in return?",

"I can give you the ruby if you lower the bridge"…

Confirmations: "Yes please!", "Ok, do that"…

Disconfirmations: "No!", "Stop!", "I didn't say that!"…

Problem reports and requests for help: "Help!",

"What can I do?", "Do you hear me?"…

Requests for explanation: "Why did you say that?",

"Why are you doing this?"…

The fairy-tale characters use an overlapping but not

completely identical set of classes of utterance:

Responses to instructions: either accepting them

("OK, I'll do that") or rejecting them, ("No I won't

open the drawbridge!", "The knife already is in the

machine").

Answers to questions: "The ruby is red", "The knife is
on the shelf", “I am 30 years old”…

Stating intentions: "I'm going to the drawbridge now"…

Confirmation questions: to check that the system has

got it right, e.g. "So you want me to go to the shelf?"

Clarification questions: when the system has

incomplete information, e.g. "Where do you want me

to go?", "What should I put on the shelf?"...

Suggestions: for future courses of action, e.g. "Perhaps
we should go over to the drawbridge now?".

Negotiating utterances: "I won't do that for nothing",

"What a piece of junk! Find something better"...

Explanations: "Because I want the axe in the machine".

4.3 Turn-taking

The fairy-tale character with whom the player is

talking is always in camera (i.e. is shown on the

screen). The player can control the camera by saying

the name of a character. For example, by saying

“Cloddy”, the camera pans over to show Cloddy

Hans. This is also the way for the player to change

dialogue partner.

The system can also initiate a camera change and

a change of dialogue partner, by triggering on

certain events. For instance, whenever Cloddy Hans

reaches the gap, the camera automatically pans over

to show Karen, and Karen starts talking. There is

also a possibility for a character to make side-

comments (without being in camera). Cloddy Hans

is able to trigger on certain utterances by Karen to

provide hints to the user (“Maybe she will lower the

bridge if we give her something nice”, “Girls like

shiny things, don’t they?”, or commenting on what

Karin said like “she is a bit grumpy today!”).

4.4 Triggers

A trigger is a three-dimensional area with specific

coordinates in the 3D virtual world. Whenever a

character moves into a trigger (or out of a trigger), a

message is generated and sent to the corresponding

dialogue manager, which can be made to react on

the event. A typical use for triggers is to make the

character turn its head or make an utterance when it

passes an object of interest. Triggers are also used in

the fairy-tale world to generate walk paths between

locations that are far apart.

5 Scenes

There are two instances of the dialogue manager in

the fairy-tale game system, one per fairy-tale

character. The functionality of these two dialogue

managers are somewhat different, reflecting the fact

that the personalities of the two fairy-tale characters

are supposed to be different. Moreover, the

functionality of any dialogue manager varies over

time, reflecting supposed changes in the characters’

knowledge, attitudes and state of mind. However,

when considered at an appropriate level of

abstraction, most of the functions any dialogue

manager needs to be able to carry out remain

constant regardless of the character or the situation

at hand. As a consequence, the dialogue

management software in the NICE fairy-tale system

consists of a kernel laying down the common

functionality, and scripting code modifying the

dialogue behaviour as to be suitable for different

characters and different situations. Such a model of

code organization is common in the computer games

field (see e.g. Varanese and LaMothe 2003). In the

spoken dialogue systems field, it is desirable for

both practical and theoretical reasons. On the

practical side, it allows for the development of

systems that are simpler to understand and maintain.

On the theoretical side, it helps distinguishing the

dialogue management concepts that are actually

generic from those that are situation- or character-

specific. Such knowledge can then increase our

understanding of dialogue in general.

As mentioned the NICE fairy-tale game is

divided into different scenes. These scenes may be

divided into subscenes, the subscenes further

divided into sub-subscenes, and so on. From a

dramatic point of view, a (sub)scene can be thought

of as a element of the overall plot, and the transition

from one scene to another marks the passing of

some significant event (for instance, the introduction

of a new character, or the change of locale). From a

gaming point of view, a scene on the top-level

corresponds to a level (in the gaming sense), each

new level introducing a new environment and a new

set of problems. In any case, there is a need for a

method of defining scenes and subscenes in a

modular way, so that new scenes and subscenes can

be added to the system without the need to modify

the dialogue management kernel. Here, "adding a

scene" should mean modifying the behaviour, or

adding new behaviour, to the characters

participating therein. Thus we need to find

primitives at an appropriate level of abstraction, in

which to express this modified behaviour. Our

solution is based on the concept of a dialogue event,

(see Section 6).

The second scene (in the fairy-tale world) is

divided into four subscenes:

• Introduction, in which Cloddy Hans tells the user a

few things about the fairy-tale world.

• Exploration, in which the player and Cloddy Hans

explore the world together.

• Negotiation starts when the player meets Karen for

the first time, and tries to persuade her to lower the

drawbridge.

• Finally, the bridge crossing subscene takes place

after successful negotiation with Karen.

At any moment there is exactly one active phase in

the game, and this active phase changes occasionally

according to some algorithm. In the scene above, the

phases were arranged in a predefined sequence, but

this needs not be the case. The scene might change

according to which geographic location the player

chooses to visit, or because of the action of one of

the characters in a scene (that either was initiated by

the user or that was initiated by the character itself)

6 Dialogue events

The dialogue management kernel issues dialogue

events at important points in the processing. Some

kinds of dialogue events, the so-called external

events, are triggered from an event in a module

outside the dialogue manager (for instance, a

recognition failure in the speech recognizer),

whereas the internal events take place within the

dialogue kernel. Dialogue events can be caught by

the scripting code by use of a callback procedure.

As an example, if the speech recognizer detects

that the user is speaking but cannot recognize any

words, it sends a “recognition failure” message to

the dialogue manager. The dialogue management

kernel receives this message, generates a

RecognitionFailureEvent, and calls the

onDialogueEvent procedure of the current scene. The

current scene may then re-direct the procedure call

to its current phase. In this way, different pieces of

scripting code can be provided for different

characters, scenes and phases, facilitating the

creation of different personalities and scene-

dependent behaviour in a modular systematic way.

As for external dialogue event, there is one type of

dialogue event for each input message that the

dialogue manager can receive (see section 4.1), i.e.

BroadcastEvent: Some other character has said and done

something.

GestureEvent: The Gesture Interpreter has recognized a
gesture, and found one or several objects gestured at.

ParserEvent: The parser has arrived at an analysis of the
latest utterance.

PerformedEvent: The animation system has completed

an operation, either an utterance or an action such as

goTo, pickUp etc.

RecognitionFailureEvent : The speech recognizer has
detected that the user has said something, but failed

to recognize it.

WorldEvent: An event has occurred in the world (e.g. the
drawbridge has changed position, or an object has

been inserted into one of the slots of the fairy-tale

machine).

TriggerEvent: The animation system has detected that

the character has moved into a trigger.

Similarly, there are internal dialogue events:

AlreadySatisfiedEvent: A goal which already is
satisfied has been added to the character's agenda.

CannotSolveEvent: An unsolvable goal has been added
to the character's agenda.

IntentionEvent: The character has an intention to say or
do something.

NoReactionEvent: The character has nothing on the
agenda.

PossibleGoalConflictEvent: A goal is added to the
agenda, but the agenda contains a possibly

conflicting goal.

TimeOutEvent: A timeout has expired.

Internal events such as RequestEvent, QuestionEvent

are also generated as an effect of specific dialogue

acts made by the user (e.g. Request, Question).

The kernel provides a number of operations

through which the scripting code can influence the

dialogue behaviour of the character. These are:

• interpret an utterance in its context

• convey a dialogue act

• perform an action

• add a goal to the character's agenda

• remove a goal from the character's agenda

• find the next goal on the agenda, and pursue it

The convey operation ultimately leads to an

utterance with accompanying gestures from the

character (via text generation, graphics generation,

and speech synthesis). The perform operation

ultimately leads to an action being performed by the

animated character.

The interplay between the instructions in the

scripting code and the dialogue events generated by

the dialogue management kernel creates the overall

dialogue behaviour of the character. For instance,

consider the case where the user requests Cloddy

Hans to "Go to the fairy-tale machine". This would

lead to the following sequence of events:

1. A message from the parser arrives and generates a

ParserEvent.

2. The ParserEvent is caught by the scripting code
of the current scene, which calls the contextual

interpretation procedure of the dialogue kernel.

3. Contextual interpretation establishes that the user's

utterance is a request from the user for Cloddy

Hans to go to a specific spot (the fairy-tale

machine, in this case). A RequestEvent is

generated.

4. The RequestEvent is caught by the scripting

code, which calls convey to produce an utterance
acknowledging the request, and then adds to

Cloddy Hans's agenda the goal that he should be

standing next to the fairy-tale machine.

5. When Cloddy Hans has eventually reached his

destination, a message arrives from the animation

system. This message generates a

PerformedEvent, which can again be caught to
produce a new utterance from Cloddy Hans, etc.

This event-driven model allows for asynchronous

dialogue behaviour (see e.g. Boye et al 2000). This

means that a character in the fairy-tale system is not

confined to a model where the user and character

have to speak in alternation. Rather, a character may

take the turn and start speaking for a number of

reasons: because the user has said something

(RecognitionFailureEvent or a ParserEvent), because
some other fairy-tale character has said or done

something (BroadCastEvent), because of an event in

the fairy-tale world (PerformedEvent, TriggerEvent

or WorldEvent), or because a certain amount of time

has elapsed (TimeOutEvent). Such events arrive

asynchronously; hence they give rise to a more

flexible dialogue model. For instance, in the

example above, more input from the user may arrive

when Cloddy Hans is walking over to the fairy-tale

machine. Using the event-based model outlined

above, that is no problem; a new line of dialogue can

be opened and the user's new utterance can be

answered. Eventually the PerformedEvent in (5)

above will arrive, and Cloddy Hans can then be

made to switch back to the original line of dialogue.

7 Discussion and related work

The NICE fairy-tale game addresses the problem of

managing conversational speech with animated

characters that reside in a 3D-world. Few such

systems have been built; the one is which most

resembles the fairy-tale game is the Mission

Rehearsal Exercise (MRE) system from the USC

Institute of Creative Technologies (Swartout et al.

2004). The MRE system have more complex

interaction between animated characters than the

current version of the fairy-tale game, and uses a

more sophisticated model for emotion (Traum et al.

2004).

Another problems addressed by the fairy-tale

game is handling asynchronous, multimodal input.

Here "asynchronous" means that a strict turn-taking

scheme, where speakers proceed in alternation, need

not be upheld. In particular this means that the user

can make several dialogue contributions in

sequence, without needing to wait for the system's

reply. It also means that not only user utterances can

trigger reactions from the system, but a fairy-tale

character can also be triggered to speak as a reaction

to events in the environment (e.g. that some other

character says or does something). Existing

asynchronous dialogue systems mostly work in

robot domains (see e.g. Rayner et al. 2000, Lemon et

al. 2001), where stimuli from the sensors of the

robot trigger utterances from the spoken dialogue

interface.

Over the recent years interactive story-telling

research systems have been developed that in some

cases allow linguistic input. It has been argued that

interactive storytelling will change computer

entertainment by introducing better narrative content

and allowing users to interfere with the progression

of the storyline (Cavazza et al. 2002). Most

interactive games developed so far allow users to

intervene in the storytelling by acting on physical

objects on the screen using direct maniputation

(Young 2001, Cavazza et al. 2002). Moreover, some

systems allow users to interact with characters by

means of written text input (Mateas and Stern 2002).

In addition, Cavazza et al. (2002) explored using a

speech interface that handled isolated utterances

from the user.

Acknowledgements

This work was carried out within the EU-funded project

NICE (IST-2001-3529, http://www.niceproject.com).

References

Boye, J, Hockey, B.A. and Rayner M. (2000)

Asynchronous dialogue management. Proc. Götalog,

4th workshop on the semantics and pragmatics fo

dialogue, Göteborg.

Boye, J, Gustafson, J. & Wirén, M. (2006) Robust spoken

language understanding in a computer game. J. of

Speech Communication, forthcoming special issue on

spoken language understanding.

Cavazza, M., Charles, F. and Mead S. J. (2002).

Character-based interactive storytelling. IEEE

Intelligent Systems, Special issue on AI in Interactive

Entertainment,, pp. 17-24.

Charles, F. and Cavazza, M. (2004) Exploring the

scalability of character-based storytelling. Proc. ACM

Joint conference on autonomous agents and multi-

agent systems, New York, USA.

Fikes, R. E. and Nilsson, N. (1971) STRIPS: a new

approach to the application of theorem proving to

problem solving. Artificial Intelligence, 2 (3-4), pp.

189-208.

Gustafson, J., Boye, J., Fredriksson, M., Johannesson, L.,

and Königsmann, J., "Providing computer game

characters with conversational abilities," in Proc.of

Intelligent Virtual Agent (IVA05). Greece, forthcoming.

Hindley, R. and Seldin, J. (1986) Introduction to

combinators and λ-calculus. Cambridge University

Press.

Lemon, O., Bracy, A., Gruenstein, A. and Peters, S.

(2001) Information states in a multi-modal dialogue

system for human-robot conversation. Proc. Bi-Dialog,

5th workshop on the semantics and pragmatics of

dialogue, pp 57 – 67.

Mateas, M. and A. Stern (2002). Architecture, authorial

idioms and early observations of the interactive drama

Facade. Technical report CM-CS-02-198.

Rayner M., Hockey B.A. and James, F. (2000) A compact

architecture for dialogue management based on scripts

and meta-outputs. Proc. Applied Natural Language

Processing (ANLP).

Swartout, W., Gratch, J., Hill, R., Hovy, E., Marsella, S.,

Rickel, J. and Traum D. (2004). Toward virtual

humans. AAAI Fall symposium on Achieving human-

level intelligence through integrated systems and

research.

Traum D., Marsella, S. and Gratch J. (2004) Emotion and

dialogue in the MRE virtual humans. Proc. Workshop

on affective systems, Kloster Irsee.

Varanese A. and LaMothe, A. (2003) Game scripting

mastery. Premier Press.

Young, R. M. (2001). An overview of the Mimesis

architecture: Integrating intelligent narrative control

into an existing gaming environment. Working notes of

the AAAI spring symposium on Artificial intelligence

and interactive entertainment.

