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Adrià de Gispert

Rafael E. Banchs
Patrik Lambert

Marta Ruiz
Universitat Politècnica de Catalunya
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Abstract

This paper describes a statistical machine trans-
lation system that uses a translation model
which is based on bilingual n-grams. When this
translation model is log-linearly combined with
four specific feature functions, state of the art
translations are achieved for Spanish-to-English
and English-to-Spanish translation tasks. Some
specific results obtained for the EPPS (Euro-
pean Parliament Plenary Sessions) data are pre-
sented and discussed. Finally, future research
issues are depicted.

1 Introduction

Statistical machine translation (SMT) consti-
tutes a research area that has gained much at-
tention worldwide during the last years. The
idea of machine translation can be traced back
to the early fifties (Knight, 1997). However, it
wasn’t until the beginning of the nineties when
this technology experienced an actual growth
which was motivated by the development of
computer resources needed to allow the imple-
mentation of translation algorithms based on
statistical methods (Brown et al., 1990) and
(1993).

The first SMT systems were based on the
noisy channel approach, which models the prob-
ability of a target language sentence T given
a source language sentence S as a translation
model probability p(S|T ) times a target lan-
guage model probability p(T ). In recent sys-
tems such an approach has been expanded to
a more general maximum entropy approach in
which a log-linear combination of multiple fea-
ture functions is implemented (Och and Ney,
2002). Additionally, original word-based trans-
lation models (Brown et al., 1993) have been
replaced by phrase-based translation models
(Zens et al., 2002) and (Koehn et al., 2003),
which are estimated from aligned bilingual cor-
pora by using relative frequencies.

On the other hand, the translation problem
has also been approached from the finite-state
perspective as the most natural way for inte-
grating speech recognition and machine trans-
lation into a speech-to-speech translation sys-
tem (Riccardi et al., 1996), (Vidal, 1997), (Ban-
galore and Riccardi, 2001) and (Casacuberta,
2001). In this kind of systems the translation
model constitutes a finite-state network which
is learned from training data.

The translation system described in this pa-
per implements a translation model based on
the finite-state perspective, (de Gispert and
Mariño, 2002) and (de Gispert et al., 2004),
which is used along with a log-linear combina-
tion of four additional feature functions (Crego
et al., 2005). The implemented translation
model, which is referred to as tuple n-gram
model, differs from the well known phrase-model
approach (Koehn et al., 2003) in two basic is-
sues. First, training data is monotonously and
uniquely segmented into bilingual units called
tuples. And second, the model considers n-gram
probabilities instead of relative frequencies.

This paper is structured as follows. Next
section describes in detail the bilingual n-gram
translation model. Then, section 3 presents a
description of the overall system. Section 4
presents and discusses some translation results
obtained for the EPPS (European Parliament
Plenary Sessions) data, specifically for Spanish-
to-English and English-to-Spanish translation
tasks. Finally, some discussion and conclusions
are presented along with some further intended
work.

2 The Tuple N-gram Model

As already mentioned, the translation model
used here is based on bilingual n-grams. This
section describes in detail this translation
model, which is called the tuple n-gram model.
This model is actually a language model of a
particular language composed by bilingual units
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which are referred to as tuples (de Gispert and
Mariño, 2002). This model approximates the
joint probability between source and target lan-
guages by using 3-grams as described by the fol-
lowing equation:

p(T, S) ≈
N∏

n=1

p((t, s)n|(t, s)n−2, (t, s)n−1) (1)

where t refers to target, s to source and (t, s)n
to the nth tuple of a given bilingual sentence
pair. It is important to notice that, since both
languages are linked up in tuples, the context
information provided by this translation model
is bilingual.

Tuples are extracted from a word-to-word
aligned corpus. More specifically, word-to-word
alignments are performed in both directions,
source-to-target and target-to-source, by using
GIZA++ (Och and Ney, 2000). Then, tuples
are extracted from the union set of alignments
according to the following constraints (Crego et
al., 2004):

• a monotonous segmentation of each bilin-
gual sentence pairs is produced,

• no word inside the tuple is aligned to words
outside the tuple, and

• no smaller tuples can be extracted without
violating the previous constraints.

As a consequence of these constraints, only one
segmentation is possible for a given sentence
pair. Figure 1 presents a simple example illus-
trating the tuple extraction process.

I would like NULL to have a huge ice−cream

NULL quisiera ir a comer un helado gigante

t
1

t
2

t
3

t
4

t
5

t
6

Figure 1: Example of tuple extraction from an
aligned bilingual sentence pair.

Once tuples have been extracted, the tuple
vocabulary is pruned by using histogram counts.
This pruning is performed by keeping the N
most frequent tuples with same source sides. In
the case of the EPPS data, a value of N =

20 provided a good trade off between trans-
lation quality and computational expenses for
Spanish-to-English translations; while a value
of N = 30 provided the best trade off in the
case of English-to-Spanish. After pruning, the
tuple 3-gram model is trained by using the SRI
Language Modeling toolkit (Stolcke, 2002) and
the improved back-off smoothing method pro-
posed by Kneser and Ney (1995).

Two important issues regarding this trans-
lation model must be considered. First, it of-
ten occurs that an important amount of single-
word translation probabilities are left out of the
model. This happens for all those words that
appear always embedded into tuples containing
two or more words. Consider for example the
word “ice-cream” from figure 1. As seen from
the figure, “ice-cream” appears embedded into
tuple t6. If a similar situation is encountered
for all occurrences of “ice-cream” in the train-
ing corpus then no translation probability for an
independent occurrence of such word will exist.

To overcome this problem, the tuple 3-gram
model is enhanced by incorporating 1-gram
translation probabilities for all the embedded
words detected during the tuple extraction step
(de Gispert et al., 2004). These 1-gram transla-
tion probabilities are computed from the inter-
section of both, source-to-target and target-to-
source, alignments.

The second important issue has to do with
the fact that some words linked to NULL end
up producing tuples with NULL source sides.
Consider for example the tuple t3 from figure
1. Since no NULL is actually expected to oc-
cur in translation inputs, such a kind of tuple
cannot be allowed. This problem is solved by
preprocessing the union set of alignments before
the tuple extraction is performed. During this
preprocessing, any target word that is linked to
NULL is attached to either its precedent word
or its following word1. In this way, no target
word remains linked to NULL, and tuples with
NULL source sides will not occur during tuple
extraction.

3 The Translation System

As already mentioned in the introduction, the
translation system presented here implements
a log-linear combination of feature functions

1In the present version of the system, target words
aligned to NULL are always attached to the following
word. Further work in this area is proposed in the last
section.
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along with the tuple n-gram model. This sec-
tion describes the log-linear model and each of
the four specific feature functions that are used.
Finally, a brief description of the customized de-
coding tool that is used is presented.

3.1 Log-Linear Model Framework
According to the maximum entropy framework
(Berger et al., 1996), the corresponding transla-
tion hypothesis T , for a given source sentence S,
is defined by the target sentence that maximizes
a log-linear combination of feature functions
hi(S, T ), as described in the following equation:

argmax
T

∑

i

λihi(S, T ) (2)

where the λi’s constitute the weighting coeffi-
cients of the log-linear combination and the fea-
ture function hi(S, T ) corresponds to a logarith-
mic scaling of the ith-model probabilities.

These weights are computed via an optimiza-
tion procedure which maximizes the translation
BLEU (Papineni et al., 2002) over a given de-
velopment set. This optimization is performed
by using an in-house developed optimization al-
gorithm, which is based on a simplex method
(Press et al., 2002).

3.2 Implemented Feature Functions
The proposed translation system implements a
total of five feature functions:

• tuple 3-gram model,

• target language model,

• word penalty model,

• source-to-target lexicon model, and

• target-to-source lexicon model.

The first of these functions is the tuple 3-gram
model, which was already described in the pre-
vious section.

The second feature function implemented is
a target language model. This feature actually
consists of an n-gram model, in which the prob-
ability of a translation hypothesis is approxi-
mated by the product of word 3-gram probabil-
ities:

pLM (Tk) ≈
k∏

n=1

p(wn|wn−2, wn−1) (3)

where Tk refers to the partial translation hy-
pothesis and wn to the nth word in it.

This model is trained from the target side
of the bilingual corpus by using the SRI Lan-
guage Modeling toolkit and, again, the Kneser-
Ney smoothing method.

An extended target language model might
also be obtained by considering additional in-
formation from other available monolingual
sources. These extended target language mod-
els are actually computed by performing a log-
linear combination of independently computed
target language models. The weights of the log-
linear combination are adjusted so perplexity,
with respect to a given development set, is min-
imized. In the particular case of the EPPS data
used, no significant improvement was achieved
by using extended target language models.

The third feature function corresponds to a
word penalty model. This function introduces
a sentence length penalization in order to com-
pensate the system preference for short target
sentences caused by the presence of the previous
target language model. This penalization de-
pends on the total number of words contained
in the partial translation hypothesis, and it is
computed as follows:

wp(Tk) = exp(number of words in Tk) (4)

where, again, Tk refers to the partial translation
hypothesis.

The fourth and fifth feature functions corre-
spond to a forward and backward lexicon mod-
els. These models provide IBM 1 translation
probabilities for each tuple based on the IBM
1 lexical parameters p(t|s) (Och et al., 2004).
These lexicon models are computed according
to the following equation:

pIBM1((t, s)n) =
1

(I + 1)J

J∏

j=1

I∑

i=0

p(tin|sj
n) (5)

where sj
n and tin are the jth and ith words in the

source and target sides of tuple (t, s)n, being J
and I the corresponding total number words in
each side of it.

For computing the forward lexicon model,
IBM model 1 lexical parameters from GIZA++
source-to-target alignments are used. In the
case of the backward lexicon model, GIZA++
target-to-source alignments are used instead.

3.3 N-gram Based Decoder
The search engine used for the presented trans-
lation system was developed by Crego et al.
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(2005). This decoder, which takes into account
simultaneously all the five feature functions de-
scribed above, implements a beam-search strat-
egy and allows for three different pruning meth-
ods:

• Threshold pruning : In this case, hypothe-
ses with scores below a predetermined
threshold value are eliminated.2

• Histogram pruning : In this case, the maxi-
mum number of competing hypotheses in
a given stack is limited to the K-best
ranked ones. For the case of the EPPS
data, a value of K = 50 provided a
good trade off between translation quality
and computational expenses for both direc-
tions, English-to-Spanish and Spanish-to-
English.

• Hypothesis recombination: In this case, a
risk free pruning method (Koehn, 2004) for
recombining hypotheses is implemented.
At any step of the search, two or more hy-
potheses are recombined if they agree in
both the present tuple and the tuple 3-gram
history.

All the results presented here were obtained
by using the monotonous search modality of the
decoder (i.e. without including reordering capa-
bilities).

4 EPPS Translation Tasks

This section presents and discusses translation
results obtained for the EPPS tasks in both
directions, English-to-Spanish and Spanish-to-
English. First the EPPS data as well as
the training procedure are described. Then
some experimental results are presented and
discussed.

4.1 European Parliament Data
The EPPS data set corresponds to the par-
liamentary session transcriptions of the Eu-
ropean Parliament and is currently available
at the Parliament’s website (http://www.euro
parl.eu.int/). In the case of the results pre-
sented here, we have used the version of the
EPPS data that was made available by RWTH
Aachen University through the TC-STAR con-
sortium3. The training and test data used in-

2This type of pruning, although available in the de-
coder, was actually not used in experiments presented in
this work.

3TC-STAR (Technology and Corpora for Speech to
Speech Translation) is an European Community project

cluded session transcriptions from April 1996
until September 2004, and from November 15th
until November 18th, 2004, respectively.

Table 1 presents some basic statistics of both,
training and test, data sets for each consid-
ered language: English (eng) and Spanish (spa).
More specifically, the statistics presented in Ta-
ble 1 are the total number of sentences, the total
number of words, the vocabulary size (or total
number of distinct words) and the average num-
ber of words per sentence.

1.a.- Train data set

Lang. Sentences Words Vocab. Aver.
Eng 1.22 M 33.4 M 105 k 27.3
Spa 1.22 M 34.8 M 169 k 28.4

1.b.- Test data set

Lang. Sentences Words Vocab. Aver.
Eng 1094 26.8 k 3.9 k 24.5
Spa 840 22.7 k 4.0 k 27.0

Table 1: Basic statistics for the considered
training (a) and test (b) data sets (M and k
stands for millions and thousands, respectively).

It can be observed from Table 1 that although
the total number of words in the training corpus
is very similar for both languages, this is not the
case for the vocabulary sizes. Indeed the Span-
ish vocabulary is 60% larger than the English
vocabulary. This can be explained by the more
inflected nature of Spanish vocabulary, which is
particularly evident in the case of nouns, ad-
jectives and verbs which may have many differ-
ent forms depending on gender, number, tense
and mode. As will be seen in the discussion
section, this difference between vocabulary sizes
has important consequences in translation qual-
ity when translating from English into Spanish.

Also from Table 1, it can be observed that a
different test set was used for each translation
direction. In the English test set, 0.4% of the
total number of words (112 words) did not occur
in the training data. From these 112 words, only
81 corresponded to different words. Similarly,
in the Spanish test set, 0.2% of the words (46
words) were not in the training data. In this
case, 40 different words occurred.

funded by the Sixth Framework Programme. More infor-
mation can be found at the consortium website: http:
//www.tc-star.org/
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4.2 Preprocessing and Training

The training data was preprocessed by using
standard tools for tokenizing and filtering. In
the filtering stage, sentence pairs with a word
ratio larger than 2.4 have been removed, as well
as sentence pairs with at least one sentence of
more than 100 words in length.

Once the training data was preprocessed,
word-to-word alignments were performed in
both directions, source-to-target and target-to-
source, by using GIZA++; and the intersection
and union sets of both alignments were com-
puted. For computing these alignments, five it-
erations for models IBM1 and HMM, and three
iterations for models IBM3 and IBM4, were per-
formed.

Then, a tuple set for each translation
direction, Spanish-to-English and English-to-
Spanish, was extracted from the union set of
alignments and the resulting tuple vocabular-
ies were pruned. Table 2 presents the total tu-
ple vocabulary size, as well as tuple vocabulary
sizes for two different pruning values N = 30
and N = 20. As already mentioned the best
trade off between translation quality and com-
putational expenses have been obtained for val-
ues of N = 20 and N = 30 for Spanish-
to-English and English-to-Spanish, respectively.
Notice from Table 2, that in both cases the re-
sulting tuple vocabulary sizes are very similar.

Direction Total N = 30 N = 20
S → E 2.5 M 2.1 M 2.0 M
E → S 2.5 M 2.0 M 1.9 M

Table 2: Tuple vocabulary sizes for different
pruning values (M stands for millions).

A tuple 3-gram translation model was trained
for each translation direction by using the re-
spective pruned tuple sets. Then, each model
was enhanced by including the 1-gram proba-
bilities for the embedded word tuples, which
were extracted from the intersection set of align-
ments.

Table 3 shows the total number of n-grams
contained in the models for each translation di-
rection.

Similarly, the target language model and the
forward and backward lexicon models were com-
puted for each translation direction according to
the procedures described in subsection 3.2.

Direction 1-grams 2-grams 3-grams
S → E 2.040 M 6.009 M 1.798 M
E → S 2.023 M 6.092 M 1.747 M

Table 3: Total number of n-grams for each
translation direction (M stands for millions).

Once the models were computed, sets of op-
timal log-linear coefficients were estimated for
each translation direction and system configu-
ration according to the procedure described in
subsection 3.1. As will be described in next sec-
tion, four different system configurations were
considered. For all these optimizations, a devel-
opment data set of five hundred sentences was
used. This data corresponded to parliamentary
session transcriptions from October 21st until
October 28th, 2004, so it was independent from
both the training and the test data sets. The de-
velopment data included three reference trans-
lations for both English and Spanish. Each opti-
mization required to translate the development
corpus between 20 and 100 times, depending on
the system configuration.

Finally, the English and Spanish test data
was translated into Spanish and English, respec-
tively, by using the computed models and the
estimated optimal coefficients for each system
configuration and translation direction. The
n-gram based decoding tool described in sub-
section 3.3 was used for generating the transla-
tions. The translation results are presented in
the next section.

4.3 Task Results and Discussion
In order to evaluate the translation model per-
formance and the feature contributions to the
translation tasks, four different system configu-
rations were considered in each translation di-
rection:

• Baseline System: Only the tuple 3-gram
translation model is used.

• Target-reinforced System: The translation
model is used along with the target lan-
guage and word penalty models.

• Lexicon-reinforced System: The translation
model is used along with the forward and
backward lexicon models.

• Full System: The translation model is used
along with all the four additional feature
functions.
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The algorithms used for computing the eval-
uation measurements (mWER and BLEU)
were the official TC-STAR evaluation tools
distributed by ELDA (http://www.elda.org/).
Two reference translations were available for
each language test set.

Table 4 presents the mWER and BLEU val-
ues obtained for each system configuration and
each translation direction.

Direction System mWER BLEU
S → E Baseline 39.55 0.476

Target 39.61 0.485
Lexicon 35.65 0.537
Full 34.91 0.543

E → S Baseline 44.45 0.428
Target 44.67 0.436
Lexicon 41.69 0.450
Full 40.96 0.466

Table 4: Evaluation results for the Spanish-
to-English and English-to-Spanish translation
tasks.

As can be observed from Table 4, the inclu-
sion of the four feature functions into the trans-
lation system definitively produces an impor-
tant improvement in translation quality in both
translation directions. Particularly, it becomes
evident that features with the most impact on
translation quality are the lexicon models. The
target language model and the word penalty
also contributed to improve translation quality,
but in less degree.

Also, although it is more evident in the
English-to-Spanish direction than in the oppo-
site one, it can be noticed from the presented
results that the contribution of target language
and word penalty models is more relevant when
the lexicon models are used (full system). In
fact, as seen from λLM values in Table 5, when
the lexicon models are not included, the tar-
get language model contribution to the over-
all translation system becomes significantly less
important. This result suggests that including
the lexicon models tends to favor short tuples
over long ones, so the target language model be-
comes more important for providing target con-
text information when the lexicon models are
used. However more experimentation and re-
search is required for fully understanding this
interesting result.

Table 5 presents the optimized λi values4 for
each system configuration and each translation
direction.

Direct. System λLM λwp λfl λbl

S → E Baseline − − − −
Target 0.30 0.32 − −
Lexicon − − 0.48 0.06
Full 0.48 0.28 0.48 0.13

E → S Baseline − − − −
Target 0.32 0.26 − −
Lexicon − − 0.17 0.07
Full 0.80 0.75 0.23 0.18

Table 5: Optimized λi values for each system
configuration and each translation direction.

Another important observation, which fol-
lows from comparing results between both
translation directions, is that in all the cases
Spanish-to-English translations are consistently
and significantly better than English-to-Spanish
translations. As already mentioned, this is
clearly due to the more inflected nature of Span-
ish vocabulary. For example the single English
word “the” can generate any of the four Spanish
words “el”, “la”, “los” and “las”. Similar situ-
ations occur with nouns, adjectives and verbs
which may have many different forms in Span-
ish.

Additionally, a detailed review of about 130
translated sentence pairs, in each direction, was
performed. This exercise resulted to be very
useful since it allowed to identify the most com-
mon errors and problems related to the pro-
posed SMT system in each translation direc-
tion. Three Spanish-to-English translation out-
puts are presented below for illustrative pur-
poses. For each presented example, errors have
been boldfaced and correct translations are pro-
vided in brackets:

• The policy of the European Union on Cuba
NULL must [must not] change .

• To achieve these purposes , it is necessary
NULL for the governments to be allo-
cated [to allocate] , at least , 60 000 million
NULL dollars a year . . .

• In the UK we have NULL [already] laws
enough [enough laws] , but we want to en-
courage NULL other States . . .

4Since the log-linear weight of the tuple 3-gram model
was fixed to unity, it has been omitted from the table.
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A detailed analysis of all the reviewed trans-
lations revealed that most of translation prob-
lems encountered were basically related to the
following four different types of errors:

• Verbal Forms: A great amount of wrong
verbal tenses and auxiliary forms were de-
tected. This problem turned out to be the
most common one, reflecting the difficulty
of the current statistical approach to cap-
ture the linguistic phenomena that shape
head verbs, auxiliary verbs and pronouns
into full verbal forms in each language.

• Omitted Translations: A large amount of
translations involving tuples with NULL
target sides were detected. Although in
some cases these situations correspond to a
correct translation, most of the time they
result in omitted-word errors.

• Reordering Problems: The two specific
situations that most commonly occurred
were problems related to adjective-noun
and subject-verb structures.

• Concordance Problems: Inconsistencies re-
lated to gender and number were the most
commonly found.

5 Conclusions and Further Work

As can be noticed from the presented results,
the tuple n-gram translation model, when used
along with additional feature functions, pro-
vides state of the art translations for the two
considered translation directions. Comparison
between this translation system and a system
that does not use the proposed bilingual n-gram
based translation model has not been included
here because of paper-length restrictions. How-
ever, a detailed comparison of the proposed sys-
tem with other phrase-based translation sys-
tems is available through the TC-STAR consor-
tium as a progress report (Ney et al., 2005).

An important fact, that was also seen from
the results, is that the quality obtained in the
Spanish-to-English translation task is much bet-
ter than the one obtained in the English-to-
Spanish direction. According to this, significant
efforts should be dedicated for properly exploit-
ing morphological analysis and synthesis meth-
ods for improving English-to-Spanish transla-
tion quality.

Another interesting result was the evident im-
portant contribution of the lexicon models to
the overall system performance. This result

suggests further research is needed for studying
the impact of these lexicon models at different
stages of the translation process. In this way, a
tuple-vocabulary pruning strategy, as well as a
post-processing re-ranking procedure, based on
these lexicon models seem to be very promising.

Additionally, four commonly-occurring types
of translation errors were identified by reviewing
a considerable amount of translated sentence
pairs. This analysis has provided us with use-
ful hints for future research and improvement of
the proposed SMT system. However, more eval-
uation and discussion is required in this area
for fully understanding such common transla-
tion failures and, then, implementing appropri-
ate solutions.

In this way, our further research will focus on
the following issues:

• The definition of the tuple, as a bilingual
pair, will be revised in order to better
handle the NULL occurrences in both the
source and the target sides of it. As was
mentioned in section 2, a better strategy for
dealing with target words aligned to NULL
is required. Similarly, a better handling of
NULLs in the target side will result in less
omitted-translation type of errors.

• Linguistic information must be used to
cope with the observed morphology prob-
lems in the English-to-Spanish translation
direction, as well as the more general prob-
lem of incorrect verbal form translations.
In this sense, ongoing research on linguistic
tuples classification is being done, in order
to improve translation results. Preliminary
results when detecting and classifying verb
forms have been presented by de Gispert
(2005).

• Reordering strategies, as well as non-
monotonous decoding schemes, for the pro-
posed SMT system must be developed
and tested. As mentioned before, re-
ordering problems specifically related to
adjective-noun and subject-verb structures
occur very often in Spanish-to-English and
English-to-Spanish translations.
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