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Abstract An algorithm is presented for tagging input word graphs and producing output tag graphs that are to be subjected 
to further syntactic processing. It is  based on an extension of the basic HIVIM equations for tagging an input wordstring that allows it to handle word-graph input , where each arc has been assigned a probabili ty. The scenario is that of some word-graph source, e .g. , an acoustic speech recognizer, producing the arcs of a word graph, and the tagger will in turn produce output arcs, labelled with tags and assigned probabili ties. The processing as done entirely left-to-right , and the output tag graph is constructed using a minimum of lookahead, facili tating real-time processing. 

1 Background 

Ever since [Church 1988) , HMM-based part-of-speech ( PoS ) tagging has been very popular. The task of the particular PoS tagger described in the current article is to act as a module for lexical lookup that is capable of performing some local pruning, and the output is passed on to subsequent syntactic processing. For this reason , it is desirable to retain some ambiguity in the output , namely that which cannot be accurately removed at this stage of processing . This is very similar in spirit to the lexical-lookup and lexical-pruning stages of the SRI Core Language Engine, see [Rayner & Carter 1996) , and the lexical-lookup phase and subsequent morphological disambiguation of the English Constraint-Grammar Parser of Helsinki, see [Karlsson et al ( eels . )  1 99.5] . The tagger is a component of a system employing a pipeline architecture with the design philosophy that at some processing level , a pruned search space, e .g . ,  a word graph , is the input of one module, which produces an output pruned search space , e.g. , a tag graph or preterminal chart,  at the next processing level , which in turn serves as the input of a subsequent module , thus closing the circle. It is also highly desirable ,  both for the goal of mimicking human behavior and for the more practical reason of achieving real-time processing that the tagger process the input left-to-right . This means that the tagger will continuously construct the arcs of the output tag graph as soon as enough input has been seen to do so. This in turn requires that the amount of lookahead employed by the tagger be kept to a minimum. The work described in the current paper is based on previous theoretical work by the author on extending the basic HMM equations for word-string tagging to handle word-graph input , as described in detail in [Samuelsson 1997) .  Section 2 below provides the final equations arrived at , together with some explanations ; the reader is referred to the above publication for the underlying theory and their formal derivations . Section 3 constitutes the new body of work , describing the new left-to-right tagging algorithm and motivating the simplification made to achieve it . The algorithm has been implemented and works satisfactorily. The implementation itself is a straight-forward realization of the described algorithm, and of little interest . No serious empirical evaluation has yet been attempted , partly due to the lack of appropriate test material . 
2 The Equations 

The following is an extension of the basic H:MIVI equations given in for example [Rabiner 1989] ,  pp. 272-27 4 ,  or [I{renn & Samuelsson 1997) ,  pp . 42-46,  to the case vd1ere the input is a word graph, rather than a word string .  
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By first producing a tag graph from the word graph , we reduce the problem of tagging an input word graph to that of applying an N-gram tag model to an input tag graph. This is done by defining 
P ( Lr t = lj I Gr ) = L P ( Lr t = lj I H�-t = k )  · P ( H�-t = k I Gr ) ( 1 ) 

k 

where P ( H7
r t  = k I Gr ) is the probability of word candidate k from node 1' to node t in the input word graph . The conditioning on Gr indicates that the probability distribution is the one of node 1' , i . e . ,  that over the outgoing arcs of node r. P ( Lr t = l1 I M1

r t = k )  is the lexical tag probability, a model parameter estimated from training data. Vve can thus recast the problem as that of applying an N-gram model to reestima.te the arc probabilities of a la.belled directed a.cyclic graph, where a probability distribution over the outgoing arcs has been associated with each node . \¥e require that there be unique globally minimal and maximal elements , the start and end nodes of the graph. This is often referred to as a lattice, although strictly speaking it is not , as we only require a unique global minimal element , not one for any given node pair . We introduce a(ny )  complete ordering < of the nodes of the graph which does not violate the topological ordering defined by the arcs . We refer to each node through its rank in this ordering , the node number, and we let O be the start node and T be the end node. \¥e recursively calculate the a, (3, ,, 6 and c variables for each node ( pair) { ( 1', t )  : 0 :::;  1' < t = l, . . .  , T} and each possible state i, j = 1 ,  . . .  , n. The states encode the N-gram model , and each state corresponds to a label sequence . In the bigram case, each state is a label, in the trigram case, a label pair ,  etc . 
a(t , j ) 

r 

This is the probability of being in state j at node t ,  given that you start from the start node . 
(3( r, i )  P ( (end) I Sr = i ;  G 2'. r ) � L q ( 1', t ,  i, j )  · j3(t ,  j )  t ,j 

This is the probability of reaching the end node , given that you start in node 7' and that you a.re in state i .  
,( r, t , j ) P(St = j; ( end) I Sr = • ;  G )  � c( r, t ,  j )  • f3( t , j )  

L c ( 1', t ,  j )  · /3 ( t ,  j )  
t ,j 

( 2 ) 

( 3 )  

(4 )  

This i s  the joint probability of  transiting from node 1 ·  to  node t ,  being in  state j at node t ,  and reaching the end node , given that you start in node 1' . 

6(t , j )  ( 5 )  

This i s  the joint probability o f  being i n  state j at node t and reaching i t  through the most likely node-state sequence , given that you start from the start node . 
c ( r, t , j) ( 6 )  

This i s  the j oint probability o f  transiting from node r t o  node t and being i n  state j at node t ,  given that you start in the start node . 
q ( 1', t , i , j ) P (  C' • I C . G ) P ( L  l I ---. . G ) Pij . br tj J t = J Jr = z ; r = rt = j /::Jr = i ; r � PJ 

This is the j oint probability of transiting from node r to node t and being in state j at node t ,  given that you start in node r and that you are in state i .  Note that for N-grams with N > 2, li may equal lj for distinct i and j .  
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This is the input arc probability of Eq . ( 1 )  as explained above. 

This is the N-gram transition probability, a model para.meter estimated from training data. 
P.i P ( L  • •  = l:i ) 

This is the label unigram probability, a model para.meter estimated from training data . We also need the initializations 
a(O , j )  o ( O ,  j )  { 1 if j is the initial state 0 otherwise 

J3(T, i )  { 1 if i. is a final state 0 otherwise 
Here G is the input graph,  G <r is the portion of the input graph from nodes 0 to 1•-l ,  G� t is the portion of the input graph from nodes t to T, and Gr is the portion of the graph associated with node 1· , referring to the input probability distribution over the outgoing arcs of node 1·. St = j is the event of being in state j at node t, vi'l1ich will uniquely determine the label of the previous 1V-l arcs leading to node t ,  and Sr = • is the event of being in some state at  node 1· , i .e . , of  visiting node 1· . If in some expression P( . . .  Sr = . . .  St = . . .  ) or P( . . .  St = . .  - I . . . 5,. = . . .  ) , where 1· < t ,  there is no node s :  1· < s < t ,  we will interpret this as implying a n  immediate transition from node 1 ·  to node t . 1 

The o variables are used to find the most probable node and state sequence i , the latter which uniquely determines the most probable node and label sequence: 
argmax P( S I G )  

s 

This can be obtained by t racing the nodes and states for ,vhich the maximum was obtained in ea.eh application of the recurrence equation for the J variables : 
(+m , im)  = (T, lm ) argma.x o( T, j )  j argma.x [0 ( 1· , i ) · q ( r, Tz, , ·i ,  ip ) ]  r, i 

In practice, the a.rgma.x will be constructed during the maximization procedure , and retained as a back pointer for each o variable. In the interest of clarity and brevity, we have omitted these back pointers from Eq. ( 5 ) .  The '"'/ variables are used to estimate the probability of a particular label being assigned to a particular node pair: 
P ( Lrt  = lj I G) L p ( s,. = • ;  St = i I G)  I: 1( 1·, t , i ) ( 7) 

i :l , =11 i : l ; =l_1 

This is the sum over all states whose last label is l:i . The ''l variables allow us to retain ambiguity in the output , while pruning low-probability labels. A similar strategy is adopted for word-string input in [de Marcken 1990] . It is easy to verify, that using the above equations, the optimal label sequence and the reestimated arc probabilities can be constructed in O (LN T3 ) time, where L is the cardinality of the label set , N is the "N'' in "N-gra.m" , and T is the number of input graph nodes . This is because in the worst case we have to scan to the beginning or end of the graph in the recurrence step, while constructing accumulators for each node pair. However, if there is a maximum arc length , which is a common situation , ,ve recover the 0( L 1v T) time complexity of the input-string case. 
1 H there is no arc from r to t in G, the probability in question is simply zero . 
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3 The Algoritlun The problem with the traditional approach, i .e . , using the J variables to find the most likely tag sequence, is firstly that it is geared towards a single best tag sequence, and secondly requires scanning to the end of the current input before producing its output . A third problem is that of assigning probabilities to the arcs of the output tag graph . The first two problems can certainly be amended for example by maintaining multiple best candidates at each node and state, and start tracing back from the best candidates already before the end of the input is reached .  The third problem can perhaps be solved by determining the output probabilities from the value of the relevant J accumulators . We will however choose another approach based on the , variables, from which the output arc probabilities can be directly estimated. These variables too , a.s the equations stand, require that the input be processed in its entirety before any output arcs can be produced . The key observation here is that the ;3 variables can be approximated with a reasonable degree of accuracy without scanni1ig the entire input . We realize that without taking the N-gram model into account, the ;3 variables will a.11 be 1 ,  if the input graph is consistent . A first , crude approximation ,vould simply set them to 1 ,  and only use the c variables to calculate the , variables. An improvement on this ,  that costs little, is to set them to 1 in the ;3-variable recurrence equation: 
/3(1', i) P( (end) I Sr = i ;  G2: r ) � L q (r, t, i , j ) · ;3(t , j ) � L q ( r, t , i , j) · 1 ( 8 )  t ,j t ,j This is exactly what the tagging algorithm does. When devising the tagging algorithm, we capitalize on the requirement that lexicographical ordering respect the topological one, and on the complete ordering introduced in Section 2 .  The status of any node i s  one o f  EM PTY, PARTIAL ,  FULL ,  P E N D I N G  o r  F I N ISH ED :  • EM PTY means that no  inbound or outbound arcs have yet been seen. • PARTIAL means that a.t least one inbound or outbound arc has been seen , but not all outbound arcs. • F U LL means that a.11 outbound arcs have been seen , but that the ;3 and c accumulators have not yet been constructed . • P E N D I N G  means that the ;3 and c accumulators have been· constructed, using Eq. ( 8 )  and Eq. ( 6 )  respectively, but not the , accumulators . Also , the contributions from the outgoing arcs to the n accumulators of their end nodes have been recorded according to Eq. ( 2 ) .  • F I N IS H E D  means that the , accumulators have been constructed using Eq. ( 4 ) ,  and the reestimated a.re probabilities of Eq. ( 7 )  have been passed on to the next processing step. By the Last Node of some node r ,  we mean the greatest node t for which there exists an a.re from node r to node 

t .  
\Ne define two distinguished nodes Front and Back with the following properties : • All nodes prior to Front are either F I N I SHED  or PEN D ING  (or EM PTY but discarded) .  • All nodes prior to Back a.re F I N ISH ED (or E M PTY but discarded ) .  • Back i s  prior to Front .  If a.II nodes prior to some FU LL  node t are PEND ING  or F I N I SHED ,  then the a accumulators for node t a.re completed , and we can construct the c accumulators for node t .  This is also a. convenient time to construct the ;3 accumulators for node t ,  and to update the a accumulators for the end nodes of the arcs from node t .  1 .  Since all nodes prior to Front a.re PEN D I N G  or F I N IS H E D ,  we can advance Front until a PARTIAL node is encountered, in the process converting the FULL  nodes into PEN D ING  nodes by constructing the c and 
;3 accumulators , and updating subsequent a, accumulators . Any E M PTY nodes encountered in the process can be discarded, since they are unreachable from the start node, due to the relationship between the node numbering and the topological ordering. 174 



2. Since all nodes prior to Front have completed ;3 accumulators and all PEN D I N G  nodes have completed E accumulators, any P E N D I N G  node whose Last Node is prior to Front can be converted into a F IN IS H E D  node by constructing its , accumulators and outputting the reestimated arc probabilities. \Ve can thus scan to Front for such nodes, taking this action . Since all nodes prior to Back are F I N I S H E D ,  we can start the scan from Back.  
3 .  We now advance Back over all  F I N I S H E D  nodes , again discarding E M PTY nodes, and await the arrival of more incoming arcs, converting E M PTY nodes to PARTIAL nodes and PARTIAL nodes to F U L L  nodes. \iVhenever Front becomes FU LL ,  we goto 1 .  
V>/e also need t o  know the start node to initialize Front ,  Back and the a variables. And we need t o  know the end node to allow breaking the recursion and proceeding to the next input graph,  when the current one has been completely processed .  The algorithm allows the input arcs to  arrive in any order they wish, and passes them on , appropriately processed, as quickly as the mathematical model allows . The mathematical model in question is the basic set of HMl'vl equations found everywhere , extended to word-graph input , as described in [Samuelsson 1997] ,  with the extra approximation in the ,8-variable recursion Eq. ( 8 ) .  The key i ssue is to introduce a complete node ordering that respects the topological ordering of the arcs of the input word graph. By doing this ,  the nodes can be processed in number order as soon as enough of the remaining input has been seen . The Back pointer indicates how far complete processing has progressed . The Front and Last Node pointers indicate how far sufficient information has been seen to complete processing. 
4 Sununary 

The algorithm presented in the current article is based on an extension of the basic HMM equations for tagging an input vvord-string that allows it to handle word-graph input,  where each arc has been assigned a probability. The produced output is a probabilistic tag graph, or chart , that is further processed in subsequent syntactic parsing steps . The processing is clone entirely left-to-right , and the output tag graph is constructed using a minimum of lookahead , facilitating real-time transduction of the input arcs of a word graph , generated by some word-graph source , e .g . , an acoustic speech recognizer, into output arcs labelled with tags and assigned probabilities. There are points of similarity with the presented approach and that of using weighted transductions to transduce a probabilistic word graph into a probabilistic ( lexical) tag graph , and in a subsequent transduction step apply a probabilistic N-gram model , see [P�reira et al 1994] .  There , the resulting tag graph is effectively the ( probabilistic ) intersection of the lexical tag graph with the tag N-gram model ,  where the nodes of the output graph encode the set of possible predecessor tags , thus changing the topology of the lexical tag graph, and generally drastically increasing its size. Their implementation allows realtime processing mimicking the behavior of the method presented · in the current article. However, the method of the current article retains the topology of the lexical tag graph , and merely readjusts the arc probabilities , thus limiting the size of the output graph . Future and ongoing work includes extending the scheme in both directions, i . e . , to handle preceding phonemeto-word transduction and subsequent phrasal parsing respectively. 
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