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A Related Compression Methods

A.1 BERT Compression Methods
Many techniques have been proposed to compress
BERT (Devlin et al., 2018). Ganesh et al. (2020)
provide a survey on various compression methods
for BERT. Most existing methods focus on alterna-
tive architectures in transformer layers or learning
strategies.

In our work, we use DistilBERT and ALBERT-
base as light pretrained language model encoders
for semantic parsing. DistilBERT (Sanh et al.,
2019) uses distillation to pretrain a model that is
40% smaller and 60% faster than BERT-base, while
retaining 97% of its downstream performances.
ALBERT (Lan et al., 2019) factorizes the embed-
ding and shares parameters among the transformer
layers in BERT and results in better scalability than
BERT. ALBERT-xxlarge outperforms BERT-large
on GLUE (Wang et al., 2018), RACE (Lai et al.,
2017), and SQUAD (Rajpurkar et al., 2016) while
using less parameters.

We use compositional code learning (Shu and
Nakayama, 2017) to compress the model embed-
dings, which contain a substantial amount of model
parameters. Previously ALBERT uses factorization
to compress the embeddings. We find more com-
pression possible with code embeddings.

A.2 Embedding Compression Methods
Varied techniques have been proposed to learn com-
pressed versions of non-contextualized word em-
beddings, such as, Word2Vec (Mikolov et al., 2013)
and GLoVE (Pennington et al., 2014). Subrama-
nian et al. (2018) use denoising k-sparse autoen-
coders to achieve binary sparse intrepretable word
embeddings. Chen et al. (2016) achieve sparsity by
representing the embeddings of uncommon words
using sparse linear common combination of com-
mon words. Lam (2018) achieve compression by
quantization of the word embeddings by using 1-2
bits per parameter. Faruqui et al. (2015) use sparse
coding in a dictionary learning setting to obtain
sparse, non-negative word embeddings. Raunak
(2017) achieve dense compression of word embed-
dings using PCA combined with a post-processing
algorithm. Shu and Nakayama (2017) propose to
represent word embeddings using compositional
codes learnt directly in end-to-end fashion using
neural networks. Essentially few common basis
vectors are learnt and embeddings are reconstructed
using their composition via a discrete code vector

specific to each token embedding. This results in
98% compression rate in sentiment analysis task
and 94% - 99% in machine translation tasks with-
out performance loss while applied to LSTM based
models. All the above techniques are applied to
embeddings such as WordVec and Glove, or LSTM
models.

We aim at learning space-efficient embeddings
for transformer-based models. We focus on com-
positional code embeddings (Shu and Nakayama,
2017) since they maintain the vector dimensions,
do not require special kernels for calculating in a
sparse or quantized space, can be finetuned with
transformer-based models end-to-end, and achieve
extremely high compression rate. Chen et al.
(2018) explores similar idea as Shu and Nakayama
(2017) and experiment with more comples compo-
sition functions and guidances for training the dis-
crete codes. Chen and Sun (2019) further show that
end-to-end training from scratch of models with
code embeddings is possible. Given various pre-
trained language models, we find that the method
proposed by Shu and Nakayama (2017) is straight-
forward and perform well in our semantic parsing
experiments.
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