
6 Appendix

6.1 Models

• BERT: Off the shelf ”bert-base-uncased”
from the huggingface transformers library
(Wolf et al., 2019)

• QA-SQUAD-1: Both SQuAD QA models
are trained with the huggingface question an-
swering training script 4. This adds a span
prediction head to the default BERT, I.e. a
linear layer that computes logits for the span
start and span end. So for a given ques-
tion and a context, it classifies the indices in
in which the answer starts and ends. As a
loss function it uses crossentropy. The model
was trained on a single GPU. We used the
huggingface default training script and stan-
dard parameters: 2 epochs, learning rate 3e-
5, batch size 12.

• QA-SQUAD-2: Single GPU, also using hug-
gingface training script with standard param-
eters. Learning rate was 3e-5, batch size 12,
best model after 2 epochs.

• MLM-SQUAD: Fine tuned on text from
SQUAD using the masked language model-
ing objective as per (Devlin et al., 2019).
15% of the tokens masked at random.
Trained for 4 epochs with LR 5e-5. Single
GPU.

• RANK-MSMARCO: Trained as described in
(Nogueira and Cho, 2019). MSMARCO,
100k iterations with batch size 128 (on a
TPUv3-8).

• MLM-MSMARCO: 15% of the tokens
masked at random. 3 epochs, batch size 8,
LR 5e-5. Single gpu.

6.2 Experimental results:

• Computing infrastructure used: Everything
can be run in Colab notebook with 12gb of
RAM and the standard GPU. The experi-
ments, however, have been run on a comput-
ing cluster with 6 nodes. Every node had 4
gtx 1080ti and 128gb RAM. Thus being able
to parallize the probing of different layers.

4https://github.com/huggingface/transformers

• Average runtime: Circa 3 hours per layer
(that is training the MLM head and probing
the LAMA probes) on a single GPU.

• Number of parameters: Since we use stan-
dard BERT, the base model + MLM head
combined have 110,104,890 parameters. The
MLM head itself has 24,459,834 parameters.

• Validation performance for test results: Since
we probed the data, we could not do valida-
tion on it.

• Explanation of evaluation metrics used with
links to code: It is done in knowl-
edge probing/probing/metrics.py. But the
one that we use are Precision @ k where we
just check if the model predicts the correct
token at index <= k (P@k)

6.3 Hyperparameter seach:
Not applicable.

6.4 Datasets:
• Wikitext-2: Used for fine-tuning the MLM

head. Subset of the Englisch Wikipedia for
long term dependency language modeling.
2,088,628 tokens for training, 217.646
for validation, 245.569 for testing. Vo-
cab size: 33,278 out of vocab: 2.6% of
tokens. It can be downloaded from here:
https://www.salesforce.com/products/einstein/ai-
research/the-wikitext-dependency-language-
modeling-dataset/

• LAMA probe data: Can be
downloaded from their github:
https://github.com/facebookresearch/LAMA
. Only used for testing. Consists of:
Google-RE: 5528 instances over 3 relations.
T-REx: 34017 instances over 41 relations.
ConceptNet: 12514 instances. This is not
grouped into relations. Squad: 305 instances.
Context in-sensitive questions rewritten to
cloze-statements. No specific relation either.

• SQuAD 1.1: Can be downloaded from
here: https://rajpurkar.github.io/SQuAD-
explorer/ . 100,000+ question answer pairs
based on wikipedia articles. Produced by
crowdworkers.

• SQuAD 2: Can be downloaded from here:
https://rajpurkar.github.io/SQuAD-explorer/



. Combines the 100,000+ question answer
pairs with 50,000 unanswerable questions.

• MSMARCO: Can be downlaoded from here:
https://microsoft.github.io/msmarco/ . For
ranking: Dataset for passage reranking was
used. Given 1,000 passages, re-rank by rele-
vance. Dataset contains 8,8m passages. For
MLM training: Dataset for QA was used.
It consists of over 1m queries and the 8,8m
passages. Each query has 10 candidate pas-
sages. For MLM, we appended the queries
with all candidate passages before feeding
into BERT.

6.5 Knowledge captured in BERT
6.5.1 Intermediate Layers Matter
Additional precisions for Figure 4 can be found in
Figure 9.

6.5.2 Relational Knowledge Evolution
Additional precisions for Figure 2 can be found in
Figure 10.

6.5.3 Effect of dataset size
Figure 11 and 12 show the P@10 and P@100 plots
for Figure 5. Respectively, Figure 13 and 14 show
the same for 6.

6.6 Effect of fine tuning objective
For comparing MLM and QA on SQuAD (7), Fig-
ure 15 and 16 show more precisions. Also, for
comparing fine tune objectives on MSMARCO
(Figure 8), Figure 17 and 18 show P@10 and
P@100.
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Figure 9: Mean performance in different precisions on T-REx sets for BERT, QA-SQUAD-2, RANK-
MSMARCO, NER-CONLL.
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Figure 10: Mean performance of BERT across all layers and probe sets.
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Figure 11: Effect of dataset size. Showing P@10

(a) ConceptNet (b) T-REx (c) Squad (d) Google-RE

Figure 12: Effect of dataset size. Showing P@100

(a) ConceptNet (b) T-REx (c) Squad (d) Google-RE

Figure 13: Effect of dataset size. Showing P@10 for the QA objective.

(a) ConceptNet (b) T-REx (c) Squad (d) Google-RE

Figure 14: Effect of dataset size. Showing P@100 for the QA objective.



(a) ConceptNet (b) T-REx (c) Squad (d) Google-RE

Figure 15: Effect of Fine-Tuning Objective on fixed size data: SQUAD. Showing P@10.

(a) ConceptNet (b) T-REx (c) Squad (d) Google-RE

Figure 16: Effect of Fine-Tuning Objective on fixed size data: SQUAD. Showing P@100.

(a) ConceptNet (b) T-REx (c) Squad (d) Google-RE

Figure 17: Effect of Fine-Tuning Objective on fixed size data: MSMarco. Showing P@10.

(a) ConceptNet (b) T-REx (c) Squad (d) Google-RE

Figure 18: Effect of Fine-Tuning Objective on fixed size data: MSMarco. Showing P@100.

Model Google-RE T-REx ConceptNet Squad
P@1 P@1 P@1 P@1 P@1 P@1 P@1 P@1

BERT 10 15 29 34 15 21 13 20
QA-SQUAD-1 3 9 6 15 7 15 5 15
QA-SQUAD-2 3 9 10 19 8 16 6 13
MLM-SQUAD 4 10 15 23 9 16 6 16
RANK-MSMARCO 6 11 23 29 12 19 10 20
MLM-MSMARCO 3 7 14 21 11 17 7 12

Table 3: Mean knowledge contained in the last layer (P@1) vs knowledge contained in all layers (P@1) for each probe.


