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Introduction

Every year, as we send out the call for papers for the Workshop on Innovative Use of NLP for Building
Educational Applications, we wonder which subfield of educational applications will be prevalent in the
submissions. One year it is speech recognition for automated evaluation, the next it may be grammatical
error correction, another year the focus may be on automated scoring of textual assessments. Inevitably,
even with more than 130 Program Committee members, we find ourselves scrambling to recruit more
reviewers for that year’s hot topic.

There was no clear winner this year. The majority of the 2018 submissions were primarily automated
writing assessment, automated test generation, and reading. Overall, there was a nice mix of all of the
topics above and more.

This year we received 41 submissions and accepted 8 papers as oral presentations and 18 as poster
presentations, for an overall acceptance rate of 63 percent. Each paper was reviewed by three members
of the Program Committee who were believed to be most appropriate for each paper. We continue to have
a strong policy to deal with conflicts of interest. First, we made a concerted effort to not assign papers
to reviewers to evaluate if the paper had an author from their institution. Second, organizing committee
members recused themselves from discussions of papers when there was a conflict of interest.

We do recognize that there is a core group of institutions and researchers who work in this area. With
a higher acceptance rate, we were able to include papers from a wider variety of topics and institutions.
The papers accepted were selected on the basis of several factors, including the relevance to a core
educational problem space, the novelty of the approach or domain, and the strength of the research.
The accepted papers were highly diverse — an indicator of the growing variety of foci in this field. We
continue to believe that the workshop framework designed to introduce work in progress and new ideas
needs to be revived, and we hope that we have achieved this with the breadth and variety of research
accepted for this workshop, a brief description of which is presented below.

The BEA13 workshop has presentations on automated writing evaluation, item generation, readability,
dialogue, annotation, speech and grammatical error correction (GEC), annotation and resources:

Automated Writing Evaluation (AWE):

Zhang and Litman present an investigation of using a co-attention based neural network for scoring
essays. Horbach et al. investigate the feasibility of cross-lingual content scoring. Gao et al. examine
how and why automated content analysis can be used to assess precis writing by university students.
Zhang et al. use other texts written by an examinee, in the same test, as extra references in an automated
scoring system.

Automated Item Generation (AIG):

Flor and Riordan present a novel rule-based system for automatic generation of factual questions using
semantic role labeling. Jiang et al. generate a CLOZE test for Chengyu, a special kind of Chinese idiom.
Finally, there are two papers on generating distractors for multiple choice questions. Ha and Yaneva use
the question (stem) and the correct answer as input to produce a ranked list of possible distractors. Liang
et al. use machine learning models to select distractors that resemble those in actual exam questions.

Reading and Text Complexity:

Bingel et al. predict reading mistakes by children who have reading difficulties by using eye-tracking
data. Chinkina et al. automate the selection of reading passages to support teachers. Holz et al. present
a web-based application to automatically enhance syllable structure, word stress, and spacing in texts.
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Three papers focus specifically on text complexity. Nadeem and Ostendorf propose a neural approach
for automated text complexity analysis. Alfter and Volodina investigate the usefulness of previously
created word lists to the task of single-word lexical complexity analysis and prediction. Vajjala and
Rama explore a universal Common European Framework of Reference (CEFR) classification system.

Dialogue:

When interpreting questions in a virtual patient dialogue system, Jin et al. tackle the challenge of
interpreting a long tail of relatively infrequently asked questions. Ramanarayanan and LaMar look at the
psychometrics and validity of CALL technologies when evaluating and providing feedback on student
learning and conversational ability. Kulkarni and Boyer explore the possibility of building a tutorial
question-answering system for Java programming from data sampled from a community-based forum.

Speech:

Loukina et al. look at a new way to test speech systems. As well as training and evaluating against
human scores, they report on a system that evaluates a speech scoring engine against corpora.

Grammatical Error Correction (GEC) — the next steps:

None of these papers report on GEC per se. Instead, they are looking ahead to the next steps. Bryant
and Briscoe re-examine the use of language modeling in GEC and argue that it is possible to build a
simple system that requires minimal annotated data. Rudzewitz et al. develop an approach to provide
feedback for second language learners. Finally, Afrin and Litman focus on the quality of revisions in
writing. They introduce a corpus of between-draft revisions of student essays that are annotated as to
whether each revision improves essay quality.

Annotation:

Two very interesting novel annotation schemas are presented. King and Dickinson investigate issues of
variability and acceptability in written text, for both native and non-native speakers, using a dataset of
picture description task responses. They define and annotate a handful of features pertaining to form
and meaning in order to capture the multi-dimensional ways in which responses can vary. Lugini et al.
annotate student talk in text-based (English Language Arts) classroom discussions. They focus on three
aspects of student talk: argumentation, specificity, and knowledge domain.

Resources:

Three new resources are being introduced this year. Del Rio Gayo et al. present NLI-PT, the first
Portuguese dataset compiled for Native Language Identification. Tack et al. introduce NT2Lex, a lexical
resource for Dutch as a foreign language. Vajalla and Lucic describe the collection and compilation of
the OneStopEnglish corpus, a collection of texts written at three reading levels.

In addition, this year the BEA Workshop is sponsoring two shared tasks.
Shared Task on Second Language Acquisition Modeling (SLAM):

Settles et al. present the Second Language Acquisition Modeling shared task.! Given a history of errors
made by learners of a second language, the task is to predict errors that they are likely to make in the
future. They describe a large corpus of more than 7M words produced by more than 6k learners of
English, Spanish, and French using Duolingo, a popular online language-learning app. Then they report
on the results of the challenge. Fifteen teams took part in the task and reports appear in these proceedings.

The Second Shared Task on Complex Word Identification (CWI):

1http: //sharedtask.duolingo.com



Yimam et al. report the findings of the Second Complex Word Identification shared task.> This shared task
features multilingual and multi-genre datasets divided into four tracks: English monolingual, German
monolingual, Spanish monolingual, and a multilingual track with a French test set, and two tasks: binary
classification and probabilistic classification. A total of 12 teams submitted their results in different
task/track combinations and 11 of them wrote system descriptions that appear in these proceedings.

On this 13th edition of the workshop, BEA is officially adolescent. Last year saw the creation of the
Special Interest Group on Education and NLP (SIGEDU) which is a major step in growing our subfield.
SIGEDU held its first elections this winter with over 20 candidates running. The elected SIGEDU
officials are all familiar names with respect to the workshop. Jill Burstein is President, Ekaterina
Kochmar is Secretary, and Helen Yannakoudakis is Treasurer. The four Board Members are Claudia
Leacock, Nitin Madnani, Ildiko Pilan, and Torsten Zesch. Joel Tetreault, who has been the primary
contact for the workshop for the last 11 years, and the interim President, chose not to run for office. At
the end of this workshop, the reins will be handed over to the new team. Another development from
the last year is the creation of a permanent website for the SIGEDU and BEA workshop.? Created by
Ekaterina Kochmar and Sowmya Vajjala, we hope to develop this into a regularly updated resource and
reference site for the community.

We wish to thank everyone who showed interest and submitted a paper, all of the authors for their
contributions, the members of the Program Committee for their thoughtful reviews, and everyone
who is attending this workshop. We would especially like to thank our sponsors: at the Gold Level,
Duolingo, Grammarly®, National Board of Medical Examiners (NBME) and Turnitin®; at the Silver
level, Educational Testing Service (ETS®) and iLexIR; at the Bronze level, Cognii. Their contributions
help fund workshop extras, such as T-shirts and the dinner, which is a great social and networking event.
Also, thanks to Joya Tetreault for designing the t-shirts again this year.

Joel Tetreault, Grammarly

Jill Burstein, Educational Testing Services
Ekaterina Kochmar, University of Cambridge
Claudia Leacock, Grammarly

Helen Yannakoudakis, University of Cambridge

https://sites.google.com/view/cwisharedtask2018/
*https://ekaterinakochmar.wixsite.com/sig—edu
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Abstract

Automated scoring engines are usually trained
and evaluated against human scores and com-
pared to the benchmark of human-human
agreement. In this paper we compare the per-
formance of an automated speech scoring en-
gine using two corpora: a corpus of almost
700,000 randomly sampled spoken responses
with scores assigned by one or two raters dur-
ing operational scoring, and a corpus of 16,500
exemplar responses with scores reviewed by
multiple expert raters. We show that the choice
of corpus used for model evaluation has a ma-
jor effect on estimates of system performance
with r varying between 0.64 and 0.80. Sur-
prisingly, this is not the case for the choice of
corpus for model fraining: when the training
corpus is sufficiently large, the systems trained
on different corpora showed almost identical
performance when evaluated on the same cor-
pus. We show that this effect is consistent
across several learning algorithms. We con-
clude that evaluating the model on a corpus of
exemplar responses if one is available provides
additional evidence about system validity; at
the same time, investing effort into creating a
corpus of exemplar responses for model train-
ing is unlikely to lead to a substantial gain in
model performance.

1 Introduction

Systems that automatically score constructed re-
sponses in an assessment — such as essays or spo-
ken responses — are typically trained and evalu-
ated on a corpus of such test taker responses with
scores assigned by trained human raters, consid-
ered to be the “gold standard” for both training
and evaluation of the automated scoring system
(Page, 1966; Attali and Burstein, 2006; Bernstein
et al., 2010; Williamson et al., 2012). Human
raters follow certain agreed-upon scoring guide-
lines (“rubrics”) that define the characteristics of a

1

response for each discrete score level of the scor-
ing scale. For instance, in the case of speech
scoring, human raters may evaluate certain aspects
of a test taker’s speech production, such as flu-
ency, pronunciation, prosody, vocabulary diver-
sity, grammatical accuracy, content correctness,
or discourse organization when determining their
score for a given spoken response (Zechner et al.,
2009).

Even as assessment companies try their best to
ensure high quality of human scores, human raters
do not always agree in the scores they assign to
a constructed response. One reason is related to
properties of the responses themselves: the raters
use a unidimensional (holistic) scale to score a
multidimensional performance. In this situation
different raters may differently weight various as-
pects of performance (Eckes, 2008) resulting in
disagreement. The second reason is related to
various imperfections of human raters, e.g., rater
fatigue (Ling et al., 2014), differences between
novice and experienced raters (Davis, 2016), and
the effect of raters’ linguistic background on their
evaluation of the language skill being measured
(Carey et al., 2011).

To guard against such rater inconsistencies, in
addition to extensive rater training and monitoring,
responses for high-stakes tests are often scored by
multiple raters and scores from responses to mul-
tiple test questions are used to compute the final
score reported to the test taker and other stake-
holders, with different responses scored by dif-
ferent raters (Wang and von Davier, 2014; Pen-
field, 2016). As a result, the final score remains
highly reliable despite variation in human agree-
ment at the level of the individual question. How-
ever, since automated scoring engines are usually
trained using response-level scores, any inconsis-
tencies in such scores due to the variety of reasons
outlined above may negatively affect the system
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performance.

To monitor rater performance, testing programs
sometimes use previously scored responses that
are intermixed with the operational responses.
These responses are selected from operational re-
sponses to represent exemplar cases of each score
level and the scores are further reviewed by multi-
ple raters to ensure their accuracy.

In this paper we are examining the effect of us-
ing such “exemplar” responses for scoring model
training and evaluation in the context of automated
speech scoring. In particular, we aim to address
the following research questions:

1. How do automated speech scoring models
perform when trained on a corpus with ran-
domly selected responses vs. a corpus with
exemplar responses?

2. How is performance affected by the choice of
evaluation corpus (random response selection
vs. exemplar responses)?

Our initial hypothesis about research question
(1) is that if the size and score distribution for
the training corpora are comparable, we would
expect to see the scoring model perform better
when trained on the exemplar responses since the
model is trained on clear-cut examples (less noise
in the data). Similarly, as for research question (2),
we hypothesize that when evaluating on clear-cut
exemplar responses, scoring model performance
should be better than in the default case (random
selection) since the machine would likely benefit
from the same response properties that also result
in more consistent and reliable human scores.

Constructing large corpora of exemplar re-
sponses is a very resource-intensive task and there-
fore little is known about the possible impact of
the use of such corpora for training and evalua-
tion of automated scoring models. Our paper uses
a very large corpus of spoken responses and an
exemplar corpus constructed by experts over the
course of multiple years to address this gap and
improve our understanding of the effect of train-
ing data on the performance of automated scoring
models.

2 Related work

Previous studies considered the effect of annota-
tion noise on the performance of various NLP sys-
tems (Schwartz et al., 2011; Reidsma and Carletta,

2008; Martinez Alonso et al., 2015; Plank et al.,
2014).

In a series of papers, Beigman Klebanov and
Beigman (2014; 2009; 2009) studied annotation
noise in linguistic data, namely, a situation where
some of the data is easy to judge, with clear-cut an-
notation/classification, whereas some of the data
is harder to judge, yielding disagreements among
raters.

They show that in a binary classification task,
the presence of annotation noise (hard to judge
cases) in the evaluation data could skew bench-
marking, especially in cases of small discrepan-
cies between competing models. They also show
that the presence of hard cases in the training data
could compromise system performance on easy-
to-judge test cases, a phenomenon they termed
hard case bias. Using data annotated through
crowd-sourcing and across five linguistic tasks,
Jamison and Gurevych (2015) extended that work
and showed that filtering out low-agreement cases
improved performance on test data for some of the
tasks without having a substantial detrimental ef-
fect on the rest of the cases. They also showed that
the filtering of low-agreement instances from the
training data ceased being effective if the agree-
ment threshold is set too high, which resulted in
too little training data.

In the context of automated scoring, the size
of the training set has been shown to have a con-
sistent effect on model performance (Chen, 2012;
Heilman and Madnani, 2015; Zesch et al., 2015).
At the same time, a number of studies also con-
sidered the possibility of training automated sys-
tems on a smaller but well-chosen subset of exam-
ples. Horbach et al. (2014) simulated a grading
approach where responses are clustered automati-
cally, teachers labeled only one item per cluster,
and that label was then propagated to the other
items in the cluster. They reported a 90% grading
accuracy of their system. Zesch et al. (2015) fur-
ther applied this approach to selecting responses
for training automated scoring models for short
answer scoring. They used k-means clustering to
identify similar responses and trained their clas-
sifier on responses closest to the centroid of each
cluster. Note that in their study % corresponded to
the number of responses to be annotated, not the
score levels. They found that the system trained
on such responses did not outperform the system
trained on the same number of randomly sampled



responses. They also found no improvement when
the score was propagated to all responses in the
cluster and the resulting scores were used to train
the model. However, the performance increased
when the training data was limited to ‘pure’ clus-
ters only, that is clusters that contained responses
assigned the same score. This system, trained on
a subset of responses selected in this fashion, sub-
stantially outperformed the system trained on the
same number of randomly sampled responses, and
in the case of short responses, performed as well
as the system trained on the whole training set.

To summarize, previous studies indicate that
training NLP systems including automated scor-
ing engines on a selected subset of responses that
are either more typical in terms of feature values
or easy-to-judge for human annotators may lead
to an increase in system performance despite a re-
duction in the size of the training set.

While previous studies on automated scoring
used automated clustering to identify the exem-
plars, we further extend this work by using a large
corpus of exemplar responses identified by experts
in assessment to train and evaluate an automated
speech scoring engine. We compare the perfor-
mance of the models to those trained on a large
corpus of randomly sampled responses.

3 Description of the data

Both corpora use real responses submitted to a
large-scale assessment of English language profi-
ciency. The test takers whose responses were used
in this study gave their consent for use of their re-
sponses for research purposes during the original
test administration. The responses in both corpora
were anonymized.

3.1 MAIN corpus

The main corpus in this study contains responses
sampled randomly from spoken responses submit-
ted to the same assessment over the course of sev-
eral years. We selected responses to 6 different
types of questions. Each question was designed
to elicit spontaneous speech. For some questions
test-takers were expected to use the provided ma-
terials (e.g., a reading passage) as the basis for
their response, other questions were more general
such as “What is your favorite food and why?”.
Depending on the question type, the speakers were
given 45 seconds or 1 minute to complete their
response. The corpus consisted of 683,694 spo-

Corpus Total Per model
MAIN: Train 464,664 77,444
MAIN: Test 219,030 36,505
MAIN* : Train 12,398 2,066
EXEMPLAR:Train | 12,390 2,065
EXEMPLAR:Test 4,137 689

Table 1: Characteristics of the corpora used in this
study. The table shows the total number of responses
in each partition across all 6 question types and the av-
erage number of responses used to train/evaluate the
model for each question type.

ken responses, 113,949 responses for each ques-
tion type. For this study, the responses for each
question were partitioned randomly into a training
(2/3) and evaluation set (1/3).

All responses in the corpus were scored on a
scale of 1-4 by human raters. The raters assigned
a single holistic score to each response using a
scoring rubric that covered three aspects of lan-
guage proficiency: delivery (pronunciation, flu-
ency), language use (vocabulary, grammar), and
content and topical development. Most responses
were scored by a single rater, with 8.5% randomly
selected responses independently scored by two
raters. The average correlation between two hu-
man raters for double-scored responses was Pear-
sons’s r = 0.59.

3.2 EXEMPLAR responses

The second corpus used in this study contained
responses from the same assessment selected for
training and monitoring human raters. These re-
sponses are expected to be typical examples of the
different score levels. They are usually selected
from double-scored responses that were assigned
the same scores by both raters and then reviewed
by multiple experts in human scoring to ensure
that the final score is accurate. The corpus only in-
cludes responses where all experts agree about the
appropriate score. Thus the responses in this cor-
pus have two important characteristics: first, the
final score can be considered a true gold standard;
second, this final score is not controversial.

The original set of responses had a uniform dis-
tribution of human scores. To separate the ef-
fect of distribution, in this study we used a sub-
set sampled to match the score distribution in the
MAIN corpus. This corpus consisted of 16,527 re-



sponses to the same 6 types of questions' with on
average 2,754 responses per task. This corpus was
also randomly partitioned into training and test
sets using a 2:1 ratio.

Since the total number of responses in the
EXEMPLAR corpus was much smaller than in
the MAIN corpus, we randomly sampled 12,398
responses from the training partition of the
MAIN corpus matching the score distributions
in the other two corpora. We will use this
MAIN* corpus to separate the effect of the nature
of the training set (random sample vs. exemplar)
from the effect of the size of the training set. Table
1 summarizes main properties of each corpus.

4 Automated scoring engine

4.1 Automated speech recognition

All responses were processed using an automated
speech recognition system using the Kaldi toolkit
(Povey et al., 2011) and the approach described by
Tao et al. (2016). The language model was based
on tri-grams. The acoustic models were based on
a 5-layer DNN and 13 MFCC-based features. Tao
et al. (2016) give further detail about the model
training procedure.

The ASR system was trained on a propri-
etary corpus consisting of 800 hours of non-native
speech from 8,700 speakers of more than 100 na-
tive languages. The speech in the ASR training
corpus was elicited using questions similar to the
ones considered in this study. There was no over-
lap of speakers or questions between the ASR
training corpus and the corpus used in this pa-
per. We did not additionally adapt the ASR to the
speakers or responses in this study.

To estimate the ASR word error rate (WER), we
obtained human transcriptions for 480 responses
randomly selected from the evaluation partition.
The median WER for these responses was 34%.

4.2 Features

For each response, we extracted 77 different fea-
tures which covered two of the three aspects of
language proficiency considered by the human
raters: delivery (51 features) and language use (22
features). For this study we did not use any fea-
tures that cover the content of the response.
Features related to delivery covered general flu-
ency, pronunciation and prosody. Fluency fea-
tures include general speech rate as well as fea-

'"The actual questions were different across the corpora.

tures that capture pausing patterns in the response
such as mean duration of pauses, mean number of
words between two pauses, and the ratio of pauses
to speech. Pronunciation quality was measured
using the average confidence scores and acoustic
model scores computed by the ASR system for
the words in the 1-best ASR hypothesis. Finally,
prosody was evaluated by measuring patterns of
variation in time intervals between stressed sylla-
bles as well as the number of syllables between
adjacent stressed syllables and variation in the du-
rations of vowels and consonants.

Features related to language use covered vo-
cabulary, grammar and some aspects of discourse
structure. Vocabulary-related features included
average log of the frequency of all content words
and a comparison between the response vocabu-
lary and several reference corpora. Grammar was
evaluated using CVA-based comparison computed
based on part-of-speech tags, a range of features
which measured occurrences of various syntac-
tic structures and the language model score of re-
sponse. Finally, a set of features measured the oc-
currence of various discourse markers.

4.3 Scoring models

To ensure that the results are not an artifact of a
particular learning algorithms (hereafter referred
to as ‘learners’), we used 7 different regressors,
both linear and non-linear. For the linear models
we used OLS Linear Regression, ElasticNet, Lin-
ear SVR, and Huber Regressor. Non-linear models
included Random Forest Regressor (RF), Gradient
Boosting Regressor (GB), and Multi-layer Percep-
tron regressor (MLP). In the operational scoring
engine the coefficients in the linear models are of-
ten restricted to allow only positive values (Louk-
ina et al., 2015). We did not apply such a restric-
tion in this study to allow for a comparison be-
tween different types of learners.

We used the scikit-learn (Pedregosa et al., 2011)
implementation of the learners and the RSMTool
toolkit (Madnani et al., 2017) for model train-
ing and evaluation. The hyper-parameters for
non-deterministic models were optimized using
a cross-validated search over a grid with mean
squared error (MSE) as the objective function.

The scoring models were trained on the train-
ing partition of each of the three corpora. Sepa-
rate models were trained for each of the 6 question
types for a total of 126 models (3 corpora * 6 ques-



tion types * 7 regressors). Each model was then
evaluated on the responses to the same task con-
tained in the evaluation partitions of the MAIN and
the EXEMPLAR corpora.

5 Results

5.1 The effect of training set, evaluation set
and learner

We used a linear mixed-effect model (Searle et al.,
1992; Snijders and Bosker, 2012) fitted using
the stat smodels Python package (Seabold and
Perktold, 2010) to identify statistically signifi-
cant differences among the various models. We
used prediction squared error for each response
(N=3,124,338) as a dependent variable, response
as a random factor, and learner, training set and
test set as fixed effects. We included both the
main effects of training and test set as well as
their interaction and used the Linear Regression
and MAIN corpus as the reference categories.

The average model performance for each model
is shown in Table 2. While the model was fitted us-
ing squared prediction error, for ease of interpreta-
tion and comparison with other studies, we report
Pearson’s correlation coefficient in the table and
in the body of the paper. Corresponding values of
root mean squared error (RMSE) are given in the
Appendix. Unless stated otherwise, p < .0001 for
all effects is reported as significant.

The effect of the choice of learner on model
performance was statistically significant but very
small. Most of the more complex models resulted
in higher prediction error than OLS linear regres-
sion. Huber regression (p = 0.007) and MLP re-
gression gave a slight boost in performance. Ran-
dom Forest and Linear SVR gave the highest pre-
diction error. In all cases the differences in per-
formance were very small: for RF and SVR the
difference between these learners and OLS was
0.03%; in other cases the differences were around
0.01%.

The choice of the evaluation set had the
strongest effect on the estimates of model perfor-
mance. The best model trained on the MAIN cor-
pus of randomly selected responses achieved
r = 0.66 (MLP) when evaluated on the MAIN cor-
pus. This is consistent with other results reported
for similar corpora: Loukina et al. (2017) cite val-
ues between 0.60 and 0.67 depending on the ques-
tion type and system used. This model achieved
substantially higher performance on the EXEM-

PLAR corpus with = 0.80. In other words, the
corpus that contained typical responses that could
be accurately scored by human raters was also ac-
curately scored by the automated engine.

Disappointingly, we did not see any improve-
ment in performance when the models were
trained on the EXEMPLAR corpus: the perfor-
mance on the MAIN corpus was in fact slightly
worse than when the models were trained on the
MAIN corpus, with the highest correlation being
r =0.64 (vs. r = 0.66). The performance of these
models was also no better than the performance
of the models trained on the same amount of ran-
domly sampled responses (MAIN*).

As expected, models trained on EXEMPLAR re-
sponses reached high agreement when evaluated
on EXEMPLAR responses (7 = 0.79). The perfor-
mance of this model was also better than the per-
formance of the model trained on MAIN*. That
is, training on EXEMPLAR responses gives an ad-
vantage over training on the same number of ran-
domly sampled responses when the model is eval-
uated on EXEMPLAR responses. However, there
was no difference between the model trained on
the full training set of the MAIN corpus and the
model trained on the EXEMPLAR corpus.

5.2 Size of the training set

To further evaluate whether training on a larger
number of EXEMPLAR responses may have lead
to better performance on the MAIN corpus, we
re-trained the models using all responses pooled
across the different question types. Such an ap-
proach has been previously used in other stud-
ies in situations where all types of questions are
scored based on the same or similar rubrics and
the scoring models do not include any question-
specific features (Higgins et al., 2011; Loukina
et al., 2015). A substantial increase in the size
of the training set to some extent compensates for
loss of information about question-specific pat-
terns. The models were evaluated by question
type, as in the rest of this paper.

To obtain the learning curves for different train-
ing sets, we trained all models using training sets
of varying sizes from 1000 responses to the full
training partition of a given corpus. For each N
other than where NV is the length of full corpus we
trained models 5 times using 5 randomly sampled
training sets. Figure 1 shows the learning curves
for different combinations of training and evalua-



Evaluation set MAIN EXEMPLAR

Training set MAIN MAIN*  EXEMPLAR | MAIN MAIN* EXEMPLAR
RandomForestRegressor 0.644 0.619 0.616 | 0.790 0.762 0.777
GradientBoostingRegressor | 0.656 0.621 0.630 | 0.800 0.764 0.784
ElasticNet 0.643 0.634 0.636 | 0.783 0.772 0.783
LinearSVR 0.635 0.623 0.636 | 0.767 0.753 0.782
HuberRegressor 0.652 0.635 0.640 | 0.792 0.771 0.788
MLPRegressor 0.656 0.636 0.640 | 0.796 0.774 0.787
LinearRegression 0.653 0.633 0.641 | 0.793 0.771 0.790

Table 2: Average performance (Pearsons’s 1) across 6 question types from the two corpora in these studies using

different combinations of learners and training sets.

tion sets (see Appendix for table with numerical
values). All models were trained using OLS linear
regression.

The comparison between the two curves
showed that when models are evaluated on the
MAIN corpus, training on EXEMPLAR responses
has a small advantage for a very small training
set (N=1000). Once the training set is sufficiently
large (for our data, N > 4,000) training on ran-
domly sampled responses leads to a slightly higher
performance than training on the same number of
EXEMPLAR responses.

At the same time, training on EXEMPLAR re-
sponses had a clear advantage when models were
evaluated on EXEMPLAR responses, although the
difference between the two models decreased with
the increase in the size of the training set. Thus,
our results are consistent with the phenomenon of
hard case bias described in Beigman Klebanov and
Beigman (2009) — training on noisy data leads to
somewhat weaker performance on clear-cut cases.

To conclude, having a larger set of EXEM-
PLAR responses might have slightly increased the
performance of the models on EXEMPLAR re-
sponses, but it is unlikely that it would have given
a performance boost on the MAIN corpus.

5.3 How similar are predictions from
different models?

While differences in training data do not seem to
yield consistent differences in performance for the
various learners, it is still possible that learners
create somewhat different representations when
trained on MAIN vs. EXEMPLAR, as was the
case, for example, in (Beigman Klebanov and
Beigman, 2014). This would, in turn, suggest that
the two models could embody different and po-
tentially complementary views of the data, each

dealing better with a different subset of the data.
It is likewise possible that different learners cre-
ated usefully different representations. To assess
whether this is likely to be a promising direction
for further investigation, we compared the predic-
tions generated by different models by computing
correlations between the predictions generated by
these models. The correlations were very high:
the average correlations between predictions gen-
erated by different learners trained on the same
data sets were r=0.97 (min r=0.92). Average
correlation between predictions generated by the
same learner trained on different datasets was also
r=0.98 (min r=0.95). In other words, different
learners trained on different corpora seem to be
producing essentially the same predictions; this
suggests that model combination strategies are un-
likely to be very effective.

6 Error analysis

To better understand the source of errors on the
MAIN corpus, we conducted qualitative error anal-
ysis of 80 responses (20 per score level) with the
worst scoring error, based on predictions gener-
ated using OLS linear regression.

Inconsistencies in human scoring accounted for
discrepancies for 25 of these responses. For an
additional 18 responses (11 of these with a human
score of 4), the ASR hypothesis was flagged as
particularly inaccurate.

For the remaining responses we observed dif-
ferent patterns at different score levels. At lower
score points (1 and 2), responses incorrectly
scored by the automated scoring engine often
contained individually intelligible words or even
small chunks of locally grammatical strings but
the response as a whole was incoherent or incom-
prehensible in terms of content. Out of the 37 re-
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Figure 1: Model performance (r) depending on the size of the training set for different combinations of train-

ing and test sets. The dotted line indicates the maximum performance obtained on the EXEMPLAR responses to
facilitate comparison with the MAIN set. Note that the x-axis is plotted on a logarithmic scale.

maining responses, 15 fell into this category, most
of them for score 1 (13 responses). These re-
sponses were over-scored by the automated scor-
ing engine based on fluency features or grammar
features that correctly captured local patterns.

The pattern was reversed at score levels 3 and 4:
these responses were clear, intelligible and syntac-
tically well-formed, with content that was tightly
targeted to the question. Yet the speech was halt-
ing, choppy, slow and contained frequent long
pauses. Out of the 22 remaining responses, 9 fell
into this category. As a result they were scored
lower by the automated scoring engine since such
fluency patterns are generally more common of re-
sponses at lower score levels.

7 Discussion

Based on the results of our evaluations reported in
Table 2, our initial hypothesis for research ques-
tion (1) has to be rejected for the MAIN corpus:
the results show that there is no observable effect
in scoring model performance based on the train-
ing set (the large corpus with randomly selected
responses (MAIN) or the EXEMPLAR corpus) —
average prediction error and Pearson r correla-
tions vary only minimally for these two evaluation
corpora when using the different training corpora
for scoring model building. Training on EXEM-
PLAR responses has a small advantage over train-
ing on the same number of randomly sampled re-
sponses from the MAIN corpus when the models
are evaluated on EXEMPLAR responses, but this

advantage disappears by using a training corpus
with sufficiently large number of randomly sam-
pled responses.

On the other hand, our initial hypothesis for re-
search question (2) is confirmed, i.e., the system
performance increases substantially when evaluat-
ing scoring models on the EXEMPLAR corpus vs.
the MAIN corpus (r = 0.80 vs.r = 0.66). Addi-
tionally, our results also show that all 7 regressors
we used to build scoring models perform similarly
on our data, which is also borne out by high corre-
lations between scores generated by the different
learners.

In short, we can summarize that while the prop-
erties of the evaluation set matter substantially,
this does not hold for the training set (as long as
its size is not too small). On the one hand, this
is somewhat disappointing since we would have
hoped to obtain better scoring models when using
exemplar responses for training; on the other hand,
it is encouraging to see how well automated scor-
ing models work (r = 0.80) when evaluated on
data where human raters are in agreement about
the response scores (true gold standard data). In
some sense, making errors on clear-cut cases is a
bigger validity problem for a scoring system than
making errors on cases where the correct label is
somewhat controversial. Evaluation on clear-cut
cases thus provides additional information about
the performance of a scoring system.

We now consider possible reasons for the lack
of substantial improvement in performance on EX-
EMPLAR data when trained on EXEMPLAR data



vs. a sufficiently large MAIN corpus. Based
on Beigman and Klebanov (2009), the potential
for hard case bias — namely, a situation where
the presence of hard cases in the training data
compromises performance on “easy” test data —
could arise when the hard cases have an adversar-
ial placement in the feature space for a particular
learning algorithm. For example, they show that
the clustering of hard cases in an area that is far
from the separation plane creates the potential for
hard case bias for a system that is trained through
hinge-loss minimization. Our results thus repre-
sent good news for the feature set: it is apparently
rich enough to not represent data in a way that
puts a large cluster of hard cases in an unfortu-
nate location, for a variety of learning algorithms.
That said, we do observe that Linear SVR suffers
from some hard case bias, as it performs some-
what worse on EXEMPLAR responses when trained
on MAIN vs. EXEMPLAR (0.767 vs. 0.782). We
also note that hard case bias does emerge for Lin-
ear Regression when the amount of noisy training
data is relatively small; a larger dataset thus seems
important for counteracting the detrimental effect
of the presence of hard cases in the training data.

We also performed manual error analysis on a
small set of highly discrepant machine and hu-
man scores and found that a substantial subset of
the data investigated had human rater errors that
caused score discrepancies (around 30%). In most
other cases, the discrepancies between machine
and human scores could be attributed to situations
where different sub-constructs of speaking profi-
ciency diverged substantially from each other. For
instance, we identified responses with locally cor-
rect grammar and reasonable fluency but with no
meaningful content. For the latter reason, such re-
sponses are scored very low by human raters but
somewhat higher by the machine, e.g., based on
features related to fluency and local grammatical
accuracy. We also found the opposite, i.e., re-
sponses with very good content but sub-optimal
fluency characteristics. Human raters typically
award high scores for such responses if the sub-
optimal fluency aspects do not interfere substan-
tially with intelligibility of the response, but the
machine scores are lower based on the sub-optimal
performance in the fluency domain.

For both scenarios, it is important to mention
that our scoring models do not contain any features
related to content or discourse; developing and

adding such features to the automated speech scor-
ing system is an important goal for future work
to remediate the score discrepancy in these situa-
tions, in addition to the overall goal of providing a
comprehensive coverage of the speaking construct
in an automated speech scoring system.

8 Conclusion

In this study, we compared the effect of using
two different corpora of scored spoken responses
for training and evaluation of automated scoring
models built using seven different regressor ma-
chine learning systems. The MAIN corpus con-
tained a large set of randomly selected responses
from an English language assessment. The EXEM-
PLAR corpus contained responses where multiple
human raters had agreed on the scores.

Our main findings were that while the choice of
training corpus has no substantial effect on scoring
model performance, as long as the noisier train-
ing set is sufficiently large, the reverse is true for
the choice of evaluation corpus: human-machine
score correlations were as high as » = (.80 for the
EXEMPLAR corpus, no matter what training cor-
pus was used to build the model or what regressor
machine learning system was used. This compares
to r = 0.65 when using the MAIN corpus for eval-
uation.

Unfortunately, contrary to our initial assump-
tions, it is not possible to achieve improvement in
performance by simply training the model on the
EXEMPLAR corpus, since the model performance
in our experiments was only minimally dependent
on the training corpus. While we observed that
the number of responses necessary to achieve op-
timal performance is higher when the model is
trained on the randomly-selected responses from
the MAIN corpus than on the EXEMPLAR corpus,
the practical demands of collecting the EXEM-
PLAR corpus of such quality as used in this study
in many real-life situations are likely to outweigh
the cost of collecting a larger set of slightly more
‘noisy’ data, especially considering a very limited
gain in performance.

Furthermore, we observed effects of differential
profiles of responses in terms of various speak-
ing proficiency sub-constructs: e.g., for responses
with low human scores where the content is less
well rendered than fluency, machine scores may
be inflated; the reverse holds for responses with
high human scores where the content is very well



rendered but where machine scores can be lower
due to lack of fluency.

One main goal for future work derived from
our results and the associated error analysis is that
features capturing content aspects of the response
need to be developed and integrated into the au-
tomated speech scoring system to yield a more
comprehensive construct coverage and to mitigate
the observed effects of responses that exhibit dif-
ferential performance across various speech sub-
constructs.
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A Appendix: supplementary tables

Evaluation set MAIN EXEMPLAR

Training set MAIN MAIN* EXEMPLAR | MAIN MAIN* EXEMPLAR
MLP Regressor 0.525 0.535 0.538 | 0.418 0.435 0.421
Huber Regressor 0.526 0.536 0.539 | 0.422 0.438 0.420
Linear Regression 0.525 0.538 0.539 | 0.421 0.436 0.419
Elastic Net 0.531 0.536 0.540 | 0.432 0.438 0.425
Linear SVR 0.535 0.544 0.542 | 0.443 0.451 0.425
Gradient Boosting Regressor | 0.523 0.544 0.543 | 0.413 0.442 0.423
Random Forest Regressor 0.531 0.545 0.550 | 0.424 0.448 0.430

Table 3: Corresponding RMSE coefficients for values reported in Table 2.

Evaluation set MAIN EXEMPLAR
Training set MAIN EXEMPLAR | MAIN EXEMPLAR
N train

1000 0.615 0.623 | 0.741 0.771
2000 0.632 0.634 | 0.764 0.785
4000 0.639 0.640 | 0.773 0.790
8000 0.645 0.641 | 0.779 0.792
12390 0.646 0.641 | 0.781 0.793
16000 0.647 0.782

32000 0.648 0.783

64000 0.649 0.785

128000 0.649 0.785

256000 0.649 0.785

464664 0.649 0.785

Table 4: The values for the learning curves presented in Figure 1.
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Abstract

When interpreting questions in a virtual pa-
tient dialogue system, one must inevitably
tackle the challenge of a long tail of rela-
tively infrequently asked questions. To make
progress on this challenge, we investigate the
use of paraphrasing for data augmentation and
neural memory-based classification, finding
that the two methods work best in combina-
tion. In particular, we find that the neural
memory-based approach not only outperforms
a straight CNN classifier on low frequency
questions, but also takes better advantage of
the augmented data created by paraphrasing,
together yielding a nearly 10% absolute im-
provement in accuracy on the least frequently
asked questions.

1 Introduction

To develop skills such as taking a patient history
and developing a differential diagnosis, medical
students interact with actors who play the part of a
patient with a specific medical history and pathol-
ogy, known as Standardized Patients (SPs). Al-
though SPs remain the standard way to test medi-
cal students on such skills, SPs are expensive and
can behave inconsistently from student to student.
A virtual patient dialogue system aims to over-
come these issues as well as provide a means of
supplying automated feedback on the quality of
the medical student’s interaction with the patient
(see Figure 1).

In previous work, Danforth et al. (2009, 2013);
Maicher et al. (2017) used a hand-crafted pattern-
matching system called ChatScript together with a
3D avatar in order to collect chatted dialogues and
provide useful student feedback (Danforth et al.,
2016). ChatScript matches input text using hand-
written patterns and outputs a scripted response for
each dialogue turn. With sufficient pattern-writing
skill and effort, pattern matching with ChatScript
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can achieve relatively high accuracy, but it is un-
able to easily leverage increasing amounts of train-
ing data, somewhat brittle regarding misspellings,
and can be difficult to maintain as new questions
and patterns are added.

To address these issues, Jin et al. (2017) de-
veloped an ensemble of word- and character-
based convolutional neural networks (CNNs) for
question identification in the system that attained
79% accuracy, comparable to the hand-crafted
ChatScript patterns. Moreover, they found that
since the CNN ensemble’s error profile was very
different from the pattern-based approach, com-
bining the two systems yielded a nearly 10% boost
in system accuracy and an error reduction of 47%
in comparison to using ChatScript alone. Perhaps
not surprisingly, the CNN-based classifier outper-
formed the pattern-matching system on frequently
asked questions, but on the least frequently asked
questions—where data sparsity was an issue—
the CNN performed much worse, only achieving
46.5% accuracy on the quintile of questions asked
least often.

In this paper, we aim to combat this data spar-
sity issue by investigating (1) whether paraphras-
ing can be used to create novel synthetic train-
ing items, examining in particular lexical substi-
tution from several resources (Miller, 1995; Le
and Mikolov, 2014; Ganitkevitch et al., 2013; Co-
cos and Callison-Burch, 2016) and neural MT for
back-translation (Mallinson et al., 2017); and (2)
whether neural memory-based approaches devel-
oped for one-shot learning (Kaiser et al., 2017)
perform better on low-frequency questions. We
find that the two methods work best in combina-
tion, as the neural memory-based approach not
only outperforms the straight CNN classifier on
low frequency questions, but also takes better ad-
vantage of the augmented data created by para-
phrasing. Together, the two methods yield nearly

Proceedings of the Thirteenth Workshop on Innovative Use of NLP for Building Educational Applications, pages 13-23
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| was hoping you could help me with my back

Figure 1: Virtual Patient Dialogue System

a 10% absolute improvement in accuracy on the
quintile of least frequently asked questions.

2 Related Work

Question identification is a task that can be ap-
proached in at least two ways. One way is to treat
it as a multiclass classification problem (e.g., us-
ing logistic regression), which can take advantage
of class-specific features but tends to require a sub-
stantial amount of training data for each class. For-
mally, letting g be the candidate question, Y be a
set of question classes and ¢ a feature extractor,
we seek to find the most likely label 9:

e?@y)
Zy’EY e?(@.y") ’

Alternatively, a pairwise setup can be used. For
example, for each class a binary classification de-
cision can be made as to whether a given question
represents a paraphrase of a member of the class,
choosing the highest confidence match. More gen-
erally, let qu € L7 be the i-th question variant for
label y (where the question variants are the para-
phrases of the label appearing in the training data);
given some similarity metric o-, we seek to find the
label § with the most similar question variant ¢, in
the set L' to the candidate question ¢:

¥ = argmax
yeyY

¥ = argmax max o(q, qu )
yeyY t[iy”c—l)"

Early work on question answering (Ravichan-
dran et al., 2003) found that treating the task as
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a maximum entropy re-ranking problem outper-
formed using the same system as a multiclass clas-
sifier. By contrast, DeVault et al. (2011) observed
that maximum entropy multiclass classifiers per-
formed well with simple n-gram features when
each class had a sufficient number of training ex-
amples. Jaffe et al. (2015) explored a log-linear
pairwise ranking model for question identification
in a virtual patient dialogue system and found it
outperformed a multiclass baseline along the lines
of DeVault et al. (2011). However, Jaffe et al. used
a much smaller dataset with only about 915 user
turns, less than one-fourth as many as in the cur-
rent dataset. For this larger dataset, a straightfor-
ward logistic regression multiclass classifier out-
performs a pairwise ranking model.

In general it appears reasonable to expect that
the comparative effectiveness of multiclass vs.
pairwise approaches depends on the amount of
training data, and that pairwise ranking meth-
ods have potential advantages for cross-domain
and one-shot learning tasks (Vinyals et al., 2016;
Kaiser et al., 2017) where data is sparse or non-
existent. Notably, in the closely related task
of short-answer scoring, Sakaguchi et al. (2015)
found that pairwise methods could be effectively
combined with regression-based approaches to
improve performance in sparse-data cases.

Other work involving dialogue utterance classi-
fication has traditionally required a large amount
of data. For example, Suendermann-Oeft et al.
(2009) acquired 500,000 dialogues with over 2
million utterances, observing that statistical sys-
tems outperform rule-based ones as the amount of
data increases. Crowdsourcing for collecting ad-
ditional dialogues (Ramanarayanan et al., 2017)
could alleviate data sparsity problems for rare cat-
egories by providing additional training examples,
but this technique is limited to more general do-
mains that do not require special training/skills. In
the current medical domain, workers on common
crowdsourcing platforms are unlikely to have the
expertise required to take a patient’s medical his-
tory in a natural way, so any data collected with
this method would likely suffer quality issues and
fail to generalize to real medical student dialogues.
Rossen and Lok (2012) have developed an ap-
proach for collecting dialogue data for virtual pa-
tient systems, but their approach does not directly
address the issue that even as the number of dia-
logues collected increases, there can remain a long
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Figure 2: Label frequency distribution is extremely
long-tailed, with few frequent labels and many infre-
quent labels. Values are shown above quintile bound-
aries.

tail of relevant but infrequently asked questions.

As an alternative to crowdsourcing, we pur-
sue paraphrasing for data augmentation in this
paper, focusing on the simplest methods to em-
ploy, namely lexical substitution and neural back-
translation (see Section 5). The idea is to augment
the observed question instances for questions with
infrequent labels in the dataset with automatically
generated paraphrases, with the aim of making
such questions easier to recognize using machine-
learned models. In future work, we plan to explore
more complex paraphrasing methods, including
syntactic paraphrasing (Duan et al., 2016) and in-
ducing paraphrase templates from aligned para-
phrases (Fader et al., 2013).

3 Data Imbalance

Our dataset currently consists of 4330 question-
answer pairs from 94 dialogues between first year
medical students and the virtual patient. After
classifying an asked question as having a certain
label, the virtual patient replies with the canned
response for that label, as illustrated in Table 1.
Unfortunately, the labels do not have a uniform
distribution with regards to the number of variants
each label has (that is, the number of question in-
stances for that label in the dataset). In fact, most
of the labels are underrepresented.

On average, each question label has 12 variants,
but 8 labels account for nearly 20% of the data,
while 256 labels account for the bottom 20% (Fig-
ure 2). We define a rare label to be any label that is
in that set of 256 infrequent labels. Supplement-
ing the data to account for this imbalance is the
primary focus of our work.
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4 Memory-Augmented CNN Classifier

Because of the data sparsity issue, we cast the
problem of sentence classification for infrequent
labels as a problem of few-shot learning. In par-
ticular, we use Kaiser et al.’s (2017) memory mod-
ule together with a CNN encoder (Kim, 2014; Jin
et al., 2017) as our main model, the memory-
augmented CNN classifier (MA-CNN). Our aim
is to take advantage of the MA-CNN’s one-shot
learning capability to mitigate the issue of data
sparsity and also to make better use of data aug-
mentation to achieve better performance.

4.1 The CNN encoder

The CNN encoder follows Kim (2014) and Jin
et al. (2017). We briefly summarize the architec-
ture here and direct interested readers to these two
papers for implementation details. There are four
layers in the encoder: an embedding layer, a con-
volution layer, a max-pooling layer and a linear
layer. Let x; € R* be a k-dimensional embed-
ding for the i-th element of the sentence s. We
concatenate all of the element embeddings to get
S € Rk a5 the representation of the whole sen-
tence.

The convolution layer may have many kernels,
which are defined as weight matrices w; € R"*,
where 4 is the width of the kernel. They slide
across the sentence representation and then pass
through a nonlinearity to produce a feature map
¢; € RM"*1 Then the max-pooling layer uses
max-over-time pooling (Collobert et al., 2011) on
the feature maps to ensure fixed-dimensional out-
puts.

Finally, we concatenate all the outputs from all
the kernels into a single vector o, multiply it with
the weight matrix W; and apply p2-normalization
to it as the final fully-connected neural network
layer for the CNN encoder:

o-W;+by

e=— (1)
llo - Wi+ byl

Here W, and b; are the weight matrix and the bias
term for the final layer, respectively.

4.2 The memory module

We follow Kaiser et al. (2017) for implementation
of our memory module. The memory module is a
tuple of three matrices K, V and A, which stores



Student question

Label detected

Canned response

hello mr. wilkins
can you tell me a little about your issue

what brings you in today

hello mr

<None>

what brings you in today

hello doctor. i am so glad to see
you.

i’m sorry, i don’t understand

that question. would you restate it?
i was hoping you could help me
with my back pain, it really

hurts! it has been awful.

Table 1: Sample interactions between a first year medical student and the virtual patient. The virtual patient’s task
is to accurately detect the kind of question the medical student is asking and then reply with the appropriate canned

response.

one key, one label and one age of one memory en-
try in each corresponding row. A key is an en-
coded presentation of a training item, a label is the
class identifier that the key belongs to, and the age
is the number of memory updates that have taken
place since the key was inserted or updated. To use
the memory, a normalized query item q is multi-
plied by the key matrix

s'=q-K (2)

to yield a vector of cosine similarities s between
the query and every entry in the memory. The pre-
diction made by the memory is then ¥ = V[i],
where 7 = argmax(s) and ¥ is the predicted class
label.

The memory operations include insert, update
and erase, and loss calculation of the memory de-
pends on the memory operations, therefore we
briefly summarize them here. Let 7 be the row in-
dex in s with the highest similarity score such that
V(7] is the true label of the query, 7 be the row
index of the entry with the highest similarity score
that has a different label from the true label, and v
be the true label. When s[71] > s[7i], the memory
loss is a margin loss between the similarity scores
at 2 and at 2 with some margin a:

3)

In this case, the memory entry at 72 will be updated
by replacing it with the normalized average of it-
self and the query:

loss = [s[7] — s[i] + ]+

. q + K]
K —_ 4
M g KAl @
When s[#1] < s[7i], the memory loss is:
loss = [s[#i] — s[i] + a]. (5)

In this case, a new entry is inserted at a previously
empty row n’:

K[n'] <q V[n']<v (6)
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In both cases, the entry in A at the update or insert
site will be replaced by 0, and all the other entries
in A will add 1. When the memory is full, a new
insertion will take place where A[n’] is the biggest.

Finally, if there is no entry in K that has the true
label v, the insert operation is carried out without
any loss calculation. The erase operation is to reset
all three matrices to empty, which is used at the
end of a training episode.

4.3 Episodic training and evaluation

We train our memory-augmented CNN classi-
fier using a novel episodic training scheme based
on the episodic training scheme used in one-
shot learning (Vinyals et al., 2016; Kaiser et al.,
2017). The main difference is that in one-shot
learning, most tasks offer a balanced dataset with
many classes but small numbers of instances per
class. In our scenario, the dataset is imbalanced,
and some classes may have a large number of
instances. Moreover, in evaluation, there are
no unseen classes in our case. We modify the
episodic training scheme to accommodate these
differences.

Episodic training

In training, we define an episode to be a complete
k-shot learning trial with gradient updates. At the
beginning of each episode, a batch of |C]| X (k + 1)
samples, where |C| is the number of classes, is
sampled from the training data. The first sample
of each class is then encoded and inserted into the
memory with no loss calculated, which we call
loading the memory. From the second sample on,
the encoder encodes each sample, and the mem-
ory calculates its loss according to its prediction.
After all classes have had one sample to complete
this process, the encoder is updated by the gradi-
ents calculated with the memory loss. The mem-
ory is then updated according to the operations
corresponding to its predictions of the seen sam-



ples in each shot. When all k shots have been pro-
cessed, the memory is completely erased ready for
the next episode (though naturally the updates to
the encoder remain in effect).

It is easy to see that this process involves over-
sampling, which is a known technique for rebal-
ancing imbalanced datasets. Because each class
must have k + 1 samples for each episode, the mi-
nority classes have to be oversampled. However,
experiments show that oversampling itself does
not lead to better performance.

Episodic evaluation

In evaluation, we define a support set to be a batch
of |C| X k samples from the training data. For a
given test set, we first load the memory, then com-
pare each test item to all the entries in the memory
in order to generate the memory prediction for the
test item based on the most similar memory entry.
This forms the model’s 1-shot predictions. Then
we update the memory with the second sample for
each class and redo the prediction step. We now
have the model predictions with 2 shots. We con-
tinue to follow this routine until predictions from
all k shots have been collected.

Because there is some randomness in how a
support set is sampled from the data, we use mul-
tiple support sets in evaluation. Since some of the
classes have a large number of instances, each ran-
domly sampled support set tends to be sufficiently
different from other support sets that using multi-
ple support sets becomes analogous to ensembling
different models.

Finally, letting p be the number of support sets,
we have k X p predicted labels for each item in
the test set. We use majority voting across all the
predicted labels to get the final model prediction.
This capitalizes on the ensembled support sets and
reduces the variance of the model predictions.

S Data Augmentation

Since previous work (Jin et al., 2017) showed
that the majority of labels in our dataset have 11
variants or fewer, we explore using lexical sub-
stitution (McCarthy and Navigli, 2009) and neu-
ral machine translation (NMT) back-translation
(Mallinson et al., 2017) for data augmentation.
The main difference in our use of lexical substi-
tution and previous works’ is that our setup is un-
supervised, as we have no gold test set for deter-
mining acceptable paraphrases. Similarly for the
NMT system, we do not know which outputs are
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acceptable. To mediate this, we employ the use of
both human and automatic filtering of the gener-
ated paraphrases with the end-goal of facilitating
question label identification for infrequent labels.

5.1 Paraphrase generation

We exploit advances in lexical substitution and
NMT to automatically produce paraphrases. We
also combine these approaches to determine their
collective effectiveness in our downstream label
identification task.

Lexical substitution

Lexical substitution has often been held up as a ex-
emplary task for paraphrase generation. In its sim-
plest form, one must simply replace a given word
with an appropriate paraphrase, i.e. one that re-
tains most of the original sentence’s meaning. As
an example, in the question have you ever been
seriously ill?, seriously could be replaced with
severely, and we would consider this to be an ap-
propriate substitution. However, if we instead sub-
stituted solemnly for the same word, we would not
accept this as the meaning would have deviated too
far.

For generating paraphrases, we employ three re-
sources: WordNet (Miller, 1995), Word2Vec (Le
and Mikolov, 2014), and paraphrase clusters from
Cocos and Callison-Burch (2016). To evaluate
these resources, we took the mean average preci-
sion (MAP) of a given resource’s ability to pro-
duce a lexical substitution which matched a word
that already existed in another variant for the same
label. That is, if the label how has the pain affected
your work? had only two variants, has the injury
made your job difficult? and is it hard for you to
do your job?, and a resource successfully produces
the swap of hard — difficult (producing the sen-
tence is it difficult for you to do your job?), this
would positively affect a resource’s MAP score.
We only performed this evaluation on labels with
30 or more variants as this form of evaluation dis-
proportionately penalizes labels with fewer vari-
ants.

These preliminary experiments indicated that
pooling candidates from all three resources per-
formed better than any given one alone did. We
also found that in the case of multiple word senses
(e.g. bug meaning an insect, an illness, or a flaw
in a program), simply picking the first sense pro-
duced a higher MAP score than a variety of other
selection algorithms. This is not surprising since,



in the case of WordNet, the first synset is the most
frequently used sense of a given word. For Co-
cos and Callison-Burch’s semantic clusters, these
were ordered by a given cluster’s average mutual
paraphrase score as annotated in the Paraphrase
Database (Ganitkevitch et al., 2013). Although
our domain is medical, the dialogues are patient
directed, less technical, and more colloquial, al-
lowing us to use such a simple selection method
for word sense disambiguation.

For augmenting the data in a way that would
help the most sparse labels, we focused our lex-
ical substitution task on labels with less that 11
variants. After pooling all the lexical substitution
candidates from each resource, we ranked the sub-
stitutions by subtracting the original sentence’s n-
gram log probability from its paraphrase’s.! We
then extracted the top 100 scoring paraphrases for
our initial unfiltered data set.

Neural machine translation

We additionally use Neural Machine Translation
(NMT) to generate paraphrases by pivoting be-
tween languages. In multiple back-translation, a
method developed in Mallinson et al. (2017), we
take a given English source sentence and generate
n-best translations into a pivot language. This is
the forward step. For each pivot translation we
generate an m-best list of translations back into
English. Thus this backward step yields nxm para-
phrases for a given source sentence, where each
paraphrase within this final set has a weight based
on which of the original » translations it came
from in the forward step and its ranking among
the m translations in the back step. Any dupli-
cates within this final set are collapsed and their
weights are combined before the set is ranked ac-
cording to weight. This method favors transla-
tions which come from high quality sources (high-
ranking translations in the lists n and m) as well as
translations which occur multiple times.

In our work we translated each given source
sentence into 10-best forward translations and 10-
best back translations before finally collapsing and
ranking the 100 paraphrases. We used a model
from Sennrich et al. (2016) and chose German as
our pivot language given the quality of the transla-
tions and paraphrases we observed.”

"We used a 5-gram language model with back off, trained
on the Gigaword (Parker et al., 2011).

2We found that the pretrained model for German pro-
duced the best back-translations when compared to other pre-
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Figure 3: A graphical representation of the pseudo-
oracle selection process. For a given test item (here
Target), the n-gram overlap with the paraphrase must
be greater than the overlap with the source sentence that
paraphrase was derived from.

5.2 Filtering

Since both the lexical substitution and NMT meth-
ods generate helpful and unhelpful paraphrases,
we needed a way to select useful paraphrases. Al-
though a typical next step might be to manually
filter each system’s output by hand, we were un-
sure if expensive human filtering would produce
any gain in downstream performance. To explore
this question, we experimented with a fully auto-
matic pseudo-oracle.

The pseudo-oracle is an automatic filter which
we designed to look at a particular test item in a
cross-validation setup and select the paraphrases
whose n-gram recall with that test item was higher
than the original source sentence’s, as illustrated in
Figure 3. In using this initial step of filtering, we
are able to isolate the paraphrases which are most
likely to be helpful for classifying question labels.
In preliminary experiments using logistic regres-
sion, we tested the performance of the pseudo-
oracle selection process on the downstream clas-
sification task, where we found that the pseudo-
oracle was able to facilitate classifying question
labels, whereas using all the outputs from the lex-
ical substitution and NMT paraphrase generations
systems (without filtering) led to a drop in perfor-
mance.

Thus, to lessen the expense of human filter-
ing, we used the pseudo-oracle as an automated
first step, under the assumption that the selected
paraphrases would mostly be kept as well using
manual filtering. Next, using the same Giga-
word trained language model from Section 5.1,
we ranked the lexical substitution and NMT out-
trained models. In future work, we plan to train our own mod-

els across various pivot languages to produce an increased
variety of paraphrases.



puts. From these ranked lists, we extracted the
highest scoring subsets such that each paraphrase
not only had a high log probability, but also con-
tributed a unique n-gram (i.e., if two paraphrases
contributed the same new n-gram, only the highest
scoring paraphrase was selected). This diversity-
enhancing filtering reduced the size of the dataset
to around 20% of the original raw lexical substi-
tution output and 2.5% of the raw NMT output,
greatly lessening human annotation costs.

Since we instructed the annotators (a subset
of the authors) to only select useful paraphrases
which contributed novel n-grams not present in
any other variant, their task was necessarily differ-
ent from the pseudo-oracle’s. Annotators required
16 hours per annotator to manually filter the data.
We found that the annotators selected paraphrases
which might not necessarily help the downstream
task in a cross-validation setup, but which could be
expected to help with completely unseen data. For
this reason, we chose to combine the pre-selected
paraphrases chosen by the pseudo-oracle together
with the human-filtered paraphrases in our evalua-
tion.

6 Experiments

We use the best model in Jin et al. (2017), namely
a stacked convolutional neural network (Stacked-
CNN), together with the model proposed in this
work (MA-CNN) in all of the experiments. Our
task is to accurately predict a question’s label
based solely on the typed input from the medical
student. With improved accuracy, the virtual pa-
tient will be able to more coherently answer the
students’ questions.

We shuffle the gold dataset first and use 10-fold
cross-validation to evaluate our data augmentation
process. We specifically focus our analysis on
rare labels since that is also where we concentrate
our data augmentation efforts. The model we pro-
pose here is targeted at improving performance for
the rare labels, therefore we are interested in how
the model performs on them. Paraphrases are not
added to test sets, and paraphrases derived from
those test items are filtered from training. Finally,
we compute significance using the McNemar test
(McNemar, 1947).

6.1 Hyperparameters

We mostly follow Jin et al. (2017) in setting the
hyperparameters of the CNN encoder in MA-
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CNN. We only use word-based features in the en-
coder. Following Jin et al. (2017), we set the num-
ber of kernels of the encoder of MA-CNN to be
300. We use kernels of widths 3 to 5 for the CNN
encoder. All non-linearities in the models are rec-
tified linear units Nair and Hinton (2010). We
use Adadelta (Zeiler, 2012) as the optimizer for
the whole MA-CNN, and use the recommended
values for its hyperparameters (p = 0.9, = 1 x
107, learning _rate = 1.0). We initialize the em-
beddings with Word2Vec but allow them to be
tuned by the system (Mikolov et al., 2013).

For episodic training, we set the number of
shots to be 10. For the episodic evaluation, we use
5 support sets. For each support set, we also do
10-shot evaluation. Therefore for each test item,
there are 50 predictions in total. We combine all
predictions with majority voting, weighted by the
similarity score of each prediction.

6.2 MA-CNN on rare labels

We first train our model MA-CNN and the stacked
CNN model from Jin et al. (2017) using just the
original VP dataset and explore how the model
architecture affects rare label accuracy. Table 2
shows the test accuracy for both models. MA-
CNN performs very well on the rare labels. The
performance difference between the stacked CNN
model and MA-CNN is highly significant, which
shows that the pairwise-classification approach
paired with episodic training is really powerful on
the items which belong to labels with few train-
ing instances. We can also see that MA-CNN does
not perform as well as the CNN ensemble on all
labels, which is consistent with the previous ob-
servation that non-pairwise classifiers work bet-
ter when training data is large. It is worth not-
ing though that the stacked CNN ensemble con-
sists of 10 CNNss that take in word- and character-
based features as their inputs, meanwhile the en-
coder of the MA-CNN is just a single word-based
CNN. This further illustrates how a pairwise sys-
tem which is designed specifically for dealing with
classes with few training instances can help im-
prove performance on those classes by using near-
est neighbor comparison and episodic training in-
spired by one-shot learning.

6.3 Generated paraphrases as training data

We further explore the effect on model perfor-
mance of using the generated paraphrases along
with the gold training data in training. We use the



System Full Acc | Rare Acc
StackedCNN | 79.02 46.54
MA-CNN 75.22 | 51.78%**

Table 2: Test results for the stacked CNN ensemble (Jin
et al., 2017) and the memory-augmented CNN clas-
sifier (MA-CNN) without any generated paraphrases.
The difference of performance on the rare items is
highly significant (p = 9.5 x 107, McNemar'’s test).

System Full Acc | Rare Acc
StackedCNN | 78.45 53.04
MA-CNN 75.33 | 56.14%**

Table 3: Test results for the stacked CNN ensem-
ble and the memory-augmented CNN classifier (MA-
CNN) with the manually filtered paraphrases. The
gain brought by the adding the automatically generated
paraphrases into training data for MA-CNN is highly
significant (p = 1.6 X 107*, McNemar’s test).

manually filtered dataset with both paraphrasing
methods, and train both the stacked CNN ensem-
ble and MA-CNN with it plus the gold set. Table 3
shows the results on the test set. First, we can see
that both models benefit in terms of rare label ac-
curacy by using the augmented dataset. The differ-
ence between MA-CNN trained with only the gold
dataset and the augmented dataset is highly signif-
icant, showing that the generated paraphrases are
of high quality and help MA-CNN to achieve even
better performance on the rare labels. It is interest-
ing to note that for full accuracy, performance of
both models does not significantly change, show-
ing that the paraphrases are of high enough quality
to not be harmful to the frequent labels.

6.4 Effects of data augmentation

Table 4 shows the effect of using pseudo-oracle
and manually filtered data on rare labels. We find
that the MA-CNN is able to use the data augmen-
tation in a way that directly benefits the rare labels.
Specifically, the MA-CNN benefits from the hu-
man filtered data, indicating that it benefits from
information provided to it that raw n-gram overlap
does not capture. At the same time, however, fil-
tering using the pseudo-oracle evidently provides
areasonable approximation of what improvements
in accuracy can be obtained with human filtering
of the generated paraphrases.
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System Rare Acc
Pseudo-oracle 54.87
Manual 56.14

Table 4: Test results for the memory-augmented
CNN classifier (MA-CNN) with different filtering tech-
niques.

Paraphrases Rare Acc
No paraphrases 51.78
Lexical substitution 53.16
Neural Machine Translation 55.22
Both 56.14

Table 5: Test results for the memory-augmented CNN
classifier (MA-CNN) with different subsets of the man-
ual filtered paraphrases generated using different para-
phrase methods.

6.5 Quality of generated paraphrases

We also want to see how the performance on rare
labels is connected to the method with which the
paraphrases are generated. We use the individ-
ual subsets each of which is generated by a sin-
gle method to augment the training data. Table 5
shows how these methods compete against each
other. Surprisingly, simple lexical substitution
is already good at providing information that is
helpful to MA-CNN, but the neural machine back
translation is an even better method at providing
paraphrases that have positive impact on rare label
accuracy. We inspect the paraphrases generated by
both methods and find that paraphrases from back
translation are generally more diverse in phrasal
structure and contain more novel words than those
generated with lexical substitution. The combined
dataset gives further improvement, showing that
lexical substitution and neural machine translation
are at least partially complementary to each other
as generation methods.

6.6 Combining the stacked CNN and the
MA-CNN

Given the fact that the MA-CNN performs very
well on rare labels, but not so well on all la-
bels, it is interesting to see if a combined system
with the stacked CNN and MA-CNN can provide
a further performance increase. We here choose
a relatively simple logistic regression model as
our model combiner, though a more sophisticated
model could be used in principle. Using 1-5 grams
of words and stemmed words as well as 2-5 grams



System Full Acc | Rare Acc
StackedCNN 79.02 46.54
MA-CNN 75.33 56.14
Combiner | 79.86*** 50.98

Table 6: Test results for the combiner as well as the
two combined subsystems: the stacked CNN ensem-
ble trained with gold and the memory-augmented CNN
classifier trained with gold and generated paraphrases.
The gain compared to stacked CNN on full accuracy is
highly significant (p = 1.9 x 10™°, McNemar’s test).

of characters, we trained the model to predict the
rarity of a label for a question, i.e. if a candidate
question belongs to a rare label or not. This rarity
predictor gets 94.2% accuracy on all labels, and
78.1% accuracy on rare labels. Note that the ma-
jority baseline for all labels is 80%, but for rare
labels it is 20%. This rarity predictor serves as our
combiner; that is, we use the combiner to choose
whose result to trust between the two classifica-
tion systems. If the combiner predicts that an item
belongs to a rare label, we choose the prediction
from the MA-CNN; if the combiner instead pre-
dicts it belongs to a frequent label, we choose the
prediction for it from the stacked CNN. This is
done with 10-fold cross validation, just like how
the classifiers were trained above.

The stacked CNN model we use here is the one
trained with only gold training data, which is the
model with the best accuracy on all labels. We use
the MA-CNN model trained with both gold and
generated data. With the combiner, we get 50.98%
accuracy on rare labels, and 79.86% accuracy on
all labels, as shown in Table 6. The result indicates
that the two systems are complementary to each
other, and simple combination is already effective
in providing a significant performance boost. Al-
though the accuracy on rare labels is not as high as
the MA-CNN by itself, it is higher than the stacked
CNN model by 5 points, and all of these points are
translated into an accuracy increase on all labels
that is close to 1 point.

7 Conclusion

In this paper, we have investigated the use of
paraphrasing for data augmentation and neural
memory-based classification in order to tackle the
challenge of a long tail of relatively infrequently
asked questions in a virtual patient dialogue sys-
tem. We find that both lexical substitution and
neural back-translation yield paraphrases of ob-
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served questions that improve system performance
on rare labels once the generated paraphrases are
manually filtered down to ones taken to be use-
ful, with neural back-translation contributing more
to gains in accuracy than lexical substitution. We
also find that neural memory-based classification
with a novel method of episodic training outper-
forms a straight CNN classifier on low frequency
questions and takes better advantage of the gener-
ated paraphrases, together yielding a nearly 10%
absolute improvement in accuracy on the least fre-
quently asked questions. Finally, using a simple
logistic regression model to combine the predic-
tions of the straight CNN and memory-based clas-
sifier, we find that the combined system performs
better on all labels, and the gain is from more ac-
curate predictions of rare labels. We expect these
gains to yield increased user engagement and ulti-
mately better learning outcomes. In future work,
we plan to investigate using the memory-based
classifier for fully automatic paraphrase filtering
as well as more advanced methods of paraphras-
ing, including deep generative paraphrasing, syn-
tactic paraphrasing and using aligned paraphrases
to induce paraphrase templates. More powerful
models may also be explored to better combine the
models.
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Abstract

We present the first work on predicting reading
mistakes in children with reading difficulties
based on eye-tracking data from real-world
reading teaching. Our approach employs sev-
eral linguistic and gaze-based features to in-
form an ensemble of different classifiers, in-
cluding multi-task learning models that let us
transfer knowledge about individual readers to
attain better predictions. Notably, the data we
use in this work stems from noisy readings
in the wild, outside of controlled lab condi-
tions. Our experiments show that despite the
noise and despite the small fraction of mis-
readings, gaze data improves the performance
more than any other feature group and our
models achieve good performance. We further
show that gaze patterns for misread words do
not fully generalize across readers, but that we
can transfer some knowledge between readers
using multitask learning at least in some cases.
Applications of our models include partial au-
tomation of reading assessment as well as per-
sonalized text simplification.

1 Introduction

Reading disabilities are impairments affecting in-
dividuals’ access to written sources, with down-
stream effects such as low self-confidence in the
classroom and limited access to higher education.
Dyslexia, for instance, while being highly preva-
lent with estimates reaching up to 17.5% of the
entire population of the U.S. (Interagency Com-
mittee on Learning Disabilities, 1987), often goes
undiagnosed, such that unattributed weaknesses
in reading comprehension further intimidate af-
fected persons. Due to these severe and broad-
ranging impacts of reading difficulties, many gov-
ernments have implemented early screening tests
for dyslexia and other reading difficulties and pro-
vide special training and assistance for struggling
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Figure 1: Scanpath and fixations (blue circles)
when reading a sentence. This particularly clear
example from our dataset shows extended process-
ing time for misread words (marked in red).

readers throughout the educational system and
into adulthood.

In Denmark, for example, such programs pro-
vide children with specialist training through fo-
cused multi-week reading courses in one-on-one
or small group settings. Still, the specialized teach-
ers can only attend to one student at a time when
closely monitoring their reading, and the quality of
any analysis is strictly limited by the human ob-
server’s processing ‘“bandwidth” while attending
the live reading.

As a possible mitigation, advances in eye-
tracking technology—in particular the increased
availability of eye trackers—have made it possible
to reliably record children’s gaze during reading,
both allowing teachers to attend to their students’
reading post-hoc as well as providing additional
insight into reading strategies based on gaze, in-
cluding the development of these strategies over
time. For the teacher to track and keep records of

Proceedings of the Thirteenth Workshop on Innovative Use of NLP for Building Educational Applications, pages 24-34
New Orleans, Louisiana, June 5, 2018. (©2018 Association for Computational Linguistics



reading mistakes (henceforth referred to as mis-
readings), however, the students are still required
to read out loud, and the teacher has to review the
entire reading and annotate for misreadings.

In this work, we investigate to what extent we
can predict misreadings from gaze patterns for in-
dividual words. While the aim is not to fully au-
tomate reading reviews, being able to successfully
predict misreadings from gaze data can be part of a
semi-automatic system for reading quality assess-
ment and increase teacher efficiency by pointing
out potential misreadings for closer review.

Another motivation for this work comes from
text simplification, in particular from the obser-
vation that individuals’ highly specific reading
strengths and weaknesses require text simplifica-
tion models to be customized to specific users in
order to unfold their full potential and truly be
helpful. Predicting misreadings in concrete read-
ing scenarios and based on individual gaze pat-
terns can be used as a first step in the typical lexi-
cal simplification pipeline (Shardlow, 2014).! This
task, known as complex word identification, has
received a considerable amount of attention in the
literature, but has exclusively been approached in
a user-agnostic fashion.

The data used in this study are gaze recordings
of children with reading difficulties, reading Dan-
ish texts assigned by their reading teacher as part
of their reading intervention. The recordings stem
from EyelJustRead, an eye-tracking based soft-
ware used in special reading intervention in Dan-
ish schools.? In Section 3, we discuss further as-
pects of the treatment of gaze data in general and
the collection of the data used in this study in par-
ticular.

While the difficulty of processing a word is un-
doubtedly reflected in the fixation time on that
word (Rayner et al., 1989), many other factors
affect fixation durations, the most prominent be-
ing word length and word frequency, but also pre-
dictability and relative position in sentence have
strong effects—see Figure 1 for a particularly clear
example from our dataset. Notably, almost all
analyses of eye-tracking reading data use data
collected in research laboratories, where these—

"While today it may hardly sound plausible to equip each
laptop with an eye-tracker in order to track people’s reading,
further technological advances may well make this possible
in the future. Recent development in eye-tracking technology
has taken it from expensive research equipment to a gaming

interface with a price point as low as $100.
http://www.eyejustread.com
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otherwise confounding—factors can be controlled
for. We show that we can perform reasonable mis-
reading detection on real-world eye tracking data,
including a limited number of textual features to
control for these factors.

Contributions a) We present the first work on
the automatic detection of misreadings based on
gaze patterns of children with reading difficulties.
b) This is, to the best of our knowledge, the first
attempt at modeling noisy, real-world eye-tracking
data from readers. c) We also present, to the best
of our knowledge, the first published results using
a multi-task learning setup to transfer knowledge
between individual readers for personalized, com-
plex word identification.

2 Related Work

Our work is a special case of complex word identi-
fication, a task that has recently received a signifi-
cant amount of interest, including two shared tasks
(Paetzold and Specia, 2016; Yimam et al., 2018).
The most successful approaches to these tasks had
in common that they employed ensembles of clas-
sifiers that learned from a number of semantic and
psycholinguistic features. Note however, that these
previous approaches to complex word identifica-
tion aimed at developing generic models that took
no account of any specifics of a certain user.

Children’s eye movements during reading are
not as well-studied as adults’, and previous stud-
ies typically analyze data collected in experiments
designed for research. The overall established ob-
servations with regards to reading development
are: older children have shorter fixation durations,
fewer fixations and fewer regressions. They have
a higher skipping probability and also higher sac-
cade amplitude. See Blythe and Joseph (2011) for
a review. It is not conclusive whether these vari-
ations follow chronological age or their increased
reading proficiency. Regardless of the underlying
cause, due to the observed systematic differences,
the standard procedure is to control as closely
as possible for age and reading proficiency level
when designing reading experiments.

There are several psycholinguistic studies that
show that also in children, the typicality and plau-
sibility of sentences (Joseph et al., 2008) as well
as temporary sentence ambiguity (Traxler, 2002)
can be traced in eye movements, suggesting that
also other types of comprehension difficulties are
reflected in the reading patterns.



Using gaze data to augment models is a recent
addition to NLP. Previous approaches that have
used gaze data in the context of natural lan-
guage processing include the work of Barrett et al.
(2016), who aim to improve part-of-speech induc-
tion with gaze features, Klerke et al. (2016), where
gaze data is used as an auxiliary task in sentence
compression, and Klerke et al. (2015b), where
gaze data is used to evaluate the output of ma-
chine translation. The most related work is Klerke
et al. (2015a) and Gonzalez-Garduiio and Sggaard
(2017). Klerke et al. (2015a) compared gaze from
reading original, manually compressed, and auto-
matically compressed sentences. They found that
the proportion of regressions to previously read
text is sensitive to the differences in human- and
computer-induced complexity. Gonzalez-Gardufio
and Sggaard (2017) show that text readability pre-
diction improves significantly from hard parame-
ter sharing when models try to predict word-based
gaze features in a multi-task-learning setup. All
of these works, however, use gaze data that was
collected under laboratory conditions from skilled,
adult readers.

3 Gaze Data

In eye-tracking studies, gaze data is normally
sampled under experimental circumstances, where
e.g. instructions, location, environment, lighting,
participant sampling, textual features, order, dura-
tion etc. are controlled for. Our real-world data, on
the contrary, lacks all of these controls. While in
controlled, cognitive psychology experiments, fix-
ation durations have proven to systematically cor-
relate with cognitive load (see Rayner (1998) for a
review), eye movements from-real world applica-
tions have been largely understudied, and specific
findings from the literature on controlled data may
not apply here or may be swamped by extraneous
factors. Further, the often-used statistical tests of
significant differences between gaze patterns lose
some of their legitimacy when data is retrieved un-
der noisy conditions.

3.1 Data collection and preprocessing

The data we use in this work is collected in Dan-
ish schools using commercial software specifically
developed to record and track children’s reading
development. The system records the eye move-
ments and voice while the children are reading
aloud. The teacher can afterwards replay the read-
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ing along with the recorded eye movements. The
software performs some low-level eye-movement
analyses to help the teacher understand how the
child processes the text. The teacher can mark
which words are erroneously read by the child and
later access this and other basic statistics about the
reading — see Klerke et al. (2018) for a workflow
description. The genre is children’s fiction books
and the children read contextualized, running text.

As the data is fairly noisy compared to data
from laboratory-based eye tracking experiments,
we perform thorough cleaning before running any
experiments. This cleaning procedure is described
below. Table 1 contains a summary of the dataset
sizes after each cleaning step. Before any cleaning
is performed, the dataset contains 369 reading ses-
sions from 95 unique readers. In total it has 3,161
read pages.

Help word activated on page We start by re-
moving all pages where the reader activated the
help word function, which dynamically isolates
and enlarges a single word on the screen. This dy-
namic display generates a series of eye movements
that do not resemble typical reading activity. This
step removes 94 pages.

Fixation detection We pre-process the raw gaze
data by first detecting fixations using a custom
implementation of the algorithm of Nystrom and
Holmgqvist (2010). We remove fixations shorter
than 40ms and longer than 1.5s.% For the calcu-
lation of gaze features (see below), we further dis-
card all data points that are not detected as a fixa-
tion on text (but instead on images or blank parts
of the page). We remove 19 pages where we do not
have any fixations on text (e.g. due to the reader
just browsing through a book or because of tech-
nical issues).

Bad calibration Prior to reading, the student is
prompted to calibrate the eye tracker. In the data
used in this study, most reading sessions (91%) at-
tain the best calibration score on a five-point scale,
while 6% miss a calibration score. The remaining
3% do not have the best calibration score. We re-
move everything but the 91% with the best cali-
bration score.

Only parts of the readings have been reviewed

3Removing short fixations also removes the majority of
blinks which presents as a sudden downward-upward pattern
of saccades separated by a pause in the signal or a short,
falsely detected fixation.



Cleaning step Reading sessions Unique readers Read pages Read words Misreadings
No cleaning 369 95 3161 73,965 644
Help word activated 366 95 3067 71,911 619
Fixation detection 366 95 3048 64,191 613
Bad calibration 335 87 2865 56,166 565
Marked by teacher 83 44 405 8,681 565
Table 1: Dataset size after each cleaning step

and marked for misreadings by a teacher. How-

ever, whether a teacher reviewed a reading or not ! 10 '

is not explicitly encoded in the data. Thus, if there o !
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only consist of one misread word — everything be-
fore and after was removed. See Figure 2a for an
overview of the distribution of number of words
per reading after this cleaning step. This leaves
us with the subset of the readings that posed most
problems for the subjects. Figure 2b shows the dis-
tribution of misread words in the cleaned dataset.
It is worth noting that since this is not controlled,
experimental data, “misread” is not necessarily in-
terpreted equally by all teachers, or even consis-
tently across markings from the same teacher, due
to the lack of an annotation protocol. We assume
that “misread” means that the pronounced word
deviates substantially from the written word. Ul-
timately, we retain 83 reading sessions from 44
readers with at least one misread word.

3.1.1 Apparatus

The eye tracker used is a Tobii Eye Tracker 4C
with a sample rate of 90 Hz. It is an affordable,
consumer eye tracker targeted at gaming. The lap-
top computers to which the trackers are attached,
and which run the software, are provided by the
different institutions and vary. Screen resolution is
locked by the eye tracker software to 1366 x 768,
and most systems reportedly run on a 14”-15.6”
monitor. The font size is 50pt, which is equivalent
to approximately 6mm x-height. Distance between
baselines was approximately 18mm with the most
commonly used font—otherwise 24mm.
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(a) Words per cleaned
reading session

(b) Misreading ratio per
cleaned session

Figure 2: Distributions of total number of words
and misreading ratios per session after cleaning.

3.1.2 Subjects

The cleaned dataset contains 44 unique readers
with different reading durations. Readers are prob-
ably between 5 and 15 years old, which is the of-
ficial age of students in the Danish schools, but
we do not know their exact ages. To control for
reading proficiency, we include the texts’ readabil-
ity scores as a feature in all experiments. All stu-
dents receive extra reading classes, because they
struggle with reading. Many of them are probably
dyslexic, but we do not have access to this infor-
mation. Because this is not experimental data, the
students will have received different instructions
from the teachers. We do not know if they picked
the text themselves or for how long they read prior
to each recording. They are not necessarily alone
in the room, but it is a fair assumption that they
all make an effort to read correctly because they
are recorded. The data comes from a number of
different systems that we were informed is in the
range between 10 and 20, but the actual num-
ber of schools and teachers is unknown to us. All



children and their parents gave consent that the
anonymized eye-tracking data may be used for this
research.

3.2 Features

Reading patterns have been shown to be influ-
enced by a number of factors, including textual
features and the instructions given to a reader, such
as encouraging a specific reading strategy. Read-
ers, or different groups of readers, furthermore dis-
play individual reading styles which affect the eye
movements (Benfatto et al., 2016). Other factors
include the reader’s individual skill level, cogni-
tive abilities and mood, among others.

We extract a number of gaze features that have
been associated with processing load. Some of our
gaze features directly reflect the processing load
associated with a word, especially the two corre-
lated measures total fixation duration and number
of re-fixations, but also the mean fixation duration.
Some gaze features are included to account for
preview effects (whether the next or previous word
was fixated) as well as the scan path immediately
surrounding the word. We split the gaze features
into two groups: GAZE (W) for features directly
associated with word-level processing and GAZE
(C) for features associated with the eye move-
ments on the immediate context of the word. All
features are scaled to the [—1, 1] interval.

We further extract a number of basic features
that are known to affect gaze features and thus
need to be controlled for. These include word
length and word frequency (Hyond and Olson,
1995), but also position in sentence (Rayner et al.,
2000) and position on the page have shown to af-
fect reading for adults. We also include a range of
linguistic features that we expect to describe word
difficulty. All features and feature groups are listed
in Table 2 and described below.

Gaze features During reading, the reader per-
forms a series of stable fixations of a couple of
hundred milliseconds duration on average. Be-
tween fixations, the eyes perform rapid, targeted
movements, called saccades. All gaze features are
computed on the word level and use the applica-
tion’s definition of the area of interest surrounding
each word.

For gaze duration, we extract both late and early
processing measures. Late measure such as total
fixation duration and number of re-fixations reflect
late syntactic and semantic processing in skilled
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adult reading (Rayner et al., 1989). For children
with reading difficulties, we assume these mea-
sures to likely reflect processing difficulty.

For the first three passes over a word, we also
extract the direction and the word distance of both
the ingoing and outgoing saccade.* These six fea-
tures are expected to map the activity around the
word and, for example, show whether some word
was part of sequential, forward reading or oc-
curred in a series of erratic saccades.

Four features indicate the landing positions of
fixations in four equally-sized parts of the display
width of a word. This captures whether a word,
for instance, has three fixations on the last quarter
of its display width, which would be atypical and
suggest that the reader is struggling with the end-
ing of this word. We further explicitly encode the
landing position of the first and last fixation. Note
that because of the anatomy of the eye, eye track-
ing can never be pixel-accurate, but has at least
2° inaccuracy. For short words (or words printed
very small, which does not apply for this study)
these features may be misleading.

The data also provides pupil sizes for both eyes.
It is well known that the pupil dilates as response
to external lighting factors, but there is also evi-
dence that the pupil systematically—but on a much
smaller scale—dilates as a response to mental state,
emotions or concentration (Beatty et al., 2000).
In an experiment collecting pupil size, one would
control lighting, which was not possible in the
present scenario. For all pupil measures, we sub-
tracted the same side mean of the reading ses-
sion. We confirmed that all changes larger than
0.6 times the mean were captured when remov-
ing short fixations, as they may be caused by
the tracker mistaking eyelashes for pupils during
blinks.

Basic features The basic features span 16 tex-
tual and presentational features that are either di-
rectly accessible via the system or easily obtain-
able. They are included in all our experiments and
serve as control features for the gaze features be-
cause we expect them to explain some of the vari-
ance in the gaze features, e.g. reading changes

*As we removed everything that was not a fixation on
text before calculating the gaze features, intermediary non-
text fixations may have occurred between text fixations, such
as image fixations. We count the last/next fixated word. For
example, if a word has index 5, and the first pass incoming
saccade is from word index 4, we get a feature value of -1 for
first pass ingoing.



BAsic

Is bold

Is italic

Is lowercase

Is uppercase

Has punctuation

Line index on page

Word index on line

Page number

Position in sentence (relative)
Position in sentence (absolute)
Sentence length (characters)
Sentence length (words)
Word index

Sentence index

Word length (characters)

GAZE IN CONTEXT (C)

1st pass ingoing saccade dist. and dir.
1st pass outgoing saccade dist. and dir.
2nd pass ingoing saccade dist. and dir.
2nd pass outgoing saccade dist. and dir.
3rd pass ingoing saccade dist. and dir.
3rd pass outgoing saccade dist. and dir.
Next word fixated

Previous word fixated

GAZE ON WORD (W)

Number of fixations on word

First fixation duration

Mean fixation duration

Total fixation duration

Count of passes over the word

Left pupil size

Right pupil size

Refixation counts

Fixations in first quarter count
Fixations in second quarter count
Fixations in third quarter count
Fixations in fourth quarter count
Relative landing position of first fixation
Relative landing position of last fixation
Average character index of fixations

LINGUISTIC

LIX score for entire text

Previous occurrences of word stem in text
Previous occurrences of word type in text
Vowel count

Character perplexity

Word frequency

Universal POS tag

Table 2: Overview of the feature groups used in the experiments.

over the course of a line and the course of a sen-
tence (Just and Carpenter, 1980). We further en-
code the line number a word is located in on a
page, as well as its position in that line.

Linguistic features The linguistic features in-
clude the absolute vowel count, which in Dan-
ish is highly correlated with the number of syl-
lables. Universal POS tags are obtained from the
Danish Polyglot tagger.> We also include the pro-
vided Ldsbarhetsindex (LIX) (Bjornsson, 1968),
a Swedish readability metric (commonly also ap-
plied to Danish) that considers the mean sentence
length and the ratio of long words (more than
6 characters). The log word probability is esti-
mated from a language model we train on the en-
tire Danish Wikipedia (downloaded in November
2017) using KenLM (Heafield, 2011). Frequency

5http: //polyglot.readthedocs.io
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affects processing load and thus fixation dura-
tion for adults as well as dyslexic and neurotyp-
ical Finnish children (Hyona and Olson, 1995),
but there is conflicting evidence whether text fre-
quencies from adult text explain variance in chil-
dren’s eye movements (Blythe and Joseph, 2011).
Character perplexity is estimated using a 5-gram
character language model, also using KenLM on
the Danish Wikipedia. The previous occurrence of
stems and word types is included as reading time
for low-frequency words has shown to decrease on
later repeats in a text (Rayner et al., 1995). We use
NLTK’s snowball stemmer for Danish.

4 Model

In preliminary experiments, we observed that the
relatively small overall amount of data, as well
as the low fraction of positive instances, caused
significant variation between repeated random



Feature group I3

BASIC 18.78 ¢
+ GAZE (W) 40.50 *
+ GAZE (C) 1849
+ LINGUISTIC 19.24 7§
+ GAZE (W) + GAZE (C) 41.19 *
+ GAZE (W) + LINGUISTIC 41.08 *
+ GAZE (W) + LINGUISTIC 18.65 ¢
All features 4042 *

Table 3: Performance across feature groups for Ex-
periment 1. Scores are averaged I over ten cross-
validation folds. Using an independent ¢-test, *
and T indicate results from ten cross validation
rounds significantly different from BASIC and the
best feature combination BASIC + GAZE(W) +
GAZE(C), respectively.

restarts of various classification algorithms. We
thus approach the task of predicting misreadings
from gaze with ensemble methods, training N
classifiers independently on the same data and let-
ting them vote on the instances in a held-out devel-
opment set. Using this development set, we then
optimize a threshold ¢, which is the fraction of the
number of classifiers that need to cast a positive
vote on an item before we accept it as such.

All of our ensembles consist of 10 random
forest classifiers and 10 feed-forward neural net-
works. The random forests, in turn, consist of
100 trees that create splits based on Gini impu-
rity (Breiman, 2001). The neural network models
are implemented in Pytorch and trained with the
Adam algorithm (Kingma and Ba, 2014), with an
initial learning rate of 3-10~ and a dropout rate of
0.2 on the hidden layers, whose number and sizes
we vary in our experiments. We further employ
early stopping, monitoring the loss on the devel-
opment set with a patience of 30 steps.

4.1 Multi-task learning for cross-user
knowledge transfer

One of the central questions we investigate in this
paper is to what degree gaze patterns for mis-
read words vary between readers, and whether
we can learn to transfer knowledge about predic-
tors of misreadings between readers. We address
these questions in the experiments reported in Sec-
tion 5.2, for which we use a multi-task learning
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(MTL) model that employs hard parameter shar-
ing. MTL has received significant attention in the
natural language processing community over the
past years (see Bjerva (2017) for a review). One
of the most intriguing properties of MTL is that it
allows for the transfer of knowledge between dif-
ferent tasks and datasets, which has been investi-
gated and exploited in a growing number of works
(Klerke et al., 2016; Martinez Alonso and Plank,
2017; Bingel and Sggaard, 2017), including work
on the identification of complex words (Bingel and
Bjerva, 2018).

In this work, we view the different readers as
different fasks, motivated by Bingel and Bjerva
(2018), who interpret different languages as dif-
ferent tasks for cross-lingual complex word iden-
tification. We define a feed-forward neural net-
work model with one output layer per reader, all of
which are dense projections from a shared hidden
layer. In this framework, each training step con-
sists of flipping a coin to sample any of the tasks
and retrieving a batch of training data for this task.
This batch is then used to optimize both the shared
and the respective task-specific parameters. For a
detailed definition of the model, see Bingel and
Bjerva (2018).

5 Experiments

5.1 Experiment 1: Across entire dataset

As a first experiment, we investigate the perfor-
mance of our models and the predictiveness of
the individual feature groups through 10-fold cross
validation across the entire dataset. At each fold,
we reserve one tenth of the data for testing and
another tenth to monitor validation loss of the net-
work as the early stopping criterion.

Note that we split the data randomly and do not
stratify the cross-validation splits in any way. In
conjunction with the strong class imbalance, this
means that we are likely to encounter very differ-
ent class distributions across splits. This setup may
generally lead to lower performance scores, likely
with greater variance. However, this was a deliber-
ate choice as we cannot assume a consistent class
distribution across train and test set in the real
world, or in fact hardly any prior knowledge with
regards to class distribution in the test set. Random
splitting also means that data from the same read-
ing will likely be distributed across train and test
partitions for a certain cross-validation iteration.

We perform a first baseline experiment with
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Figure 3: Words and misreading counts for readings of three readers in cross-user experiment

Userld Number of Words per reading Thereof misread
reading sessions Mean std.dev. Mean std.dev.

10 7 285.9 67.5 16.6 9.9
15 6 219.2 148.1 5.0 2.3
16 5 91.6 32.7 8.0 3.1

Table 4: Statistics of (misread) words in sessions for the three readers with most readings.

only the basic features that we list in Section 2. On
top of this baseline feature set, we perform further
experiments, incorporating all combinations over
the other feature groups. The results we present in
Table 3 are based on the best respective model ar-
chitecture for each feature combination, evaluated
via the average over validation splits.®

5.2 Experiment 2: Cross-reader prediction

Without reader’s own data In a second exper-
iment, we are interested in how well our model
can predict misreadings for specific readers. For
this, we identify the three readers with most read-
ing sessions and perform a range of experiments,
testing our models on the readings of each of
these readers after training them on all other data.
We denote the three most active readers by their
unique, anonymized IDs as they appear in the
dataset: 10, 15 and 16. These readers have 7, 6
and 5 recorded and marked readings, respectively,
and we present statistics on these readings in Ta-
ble 4 and Figure 3. As in the previous experiment,
we optimize our model through cross validation to
tune hyperparameters and perform early stopping.
We report test data results for the model with op-
timal validation performance in Figure 4, broken
down into each reader’s different sessions.

To address the variation in input dimensionality as we
consider different feature group combinations, we train mod-
els with different architectures: (i) a single hidden layer with
20 units, (ii) two hidden layers with 20 units each, and (iii) a
single hidden layer with 40 units.
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Learning from reader’s own data Comple-
menting the setup above, we now investigate how
data from the same reader, but from different read-
ing sessions, can inform our models. Therefore,
we further perform cross-validation experiments
across each reader’s sessions. More concretely, for
a reader with n marked readings, we perform n-
fold cross validation, holding out one reading a
time as a test set and another to monitor valida-
tion loss for early stopping of the neural model,
while training on the remaining n — 2 readings.

MTL As outlined in Section 4.1, we now view
readers as tasks in an MTL model. For each of
the three readers identified above and for each test
reading, we train an ensemble whose neural MTL
models define two outputs: one for the reader in
question and one combined output for all other
readers in the entire dataset. The random forest
classifiers are trained on all remaining data except
the held-out validation and test readings.

6 Results and Discussion

From Experiment 1, we observe that gaze fea-
tures of the target word itself contribute strongly to
model improvements over the baseline of textual
features (see Table 3). Contextual gaze features
and linguistic features do so to a lesser degree. The
best feature group combination consists of the ba-
sic features and both gaze feature groups. Adding
the linguistic features to this seems to slightly di-
lute the model.
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Figure 4: F score distributions across test readings
for each of the three readers with most sessions for
three tasks.

The results from Experiment 2 in Figure 4 show
that, at least for these three readers, there is a
considerable degree of specificity attested in the
reading patterns of misread words: in the scenario
where we learn only from other users’ gaze pat-
terns (shown in light blue), performance is gen-
erally worse than for the other approaches. The
high degree of reader specificity is also reflected
in the comparison between learning just across a
single user’s readings and a multi-task setup that
also considers other readers. Here, we observe that
the former attains higher mean F} scores across
readings for readers 10 and 16, although MTL is
superior to the single-task setup for reader 15. An-
other observation is that misreadings can gener-
ally be predicted much better for reader 16 than for
the other readers, which may in part be due to the
higher ratio of misread words in these readings.

As especially our cross-reader experiments
show, there is reason to believe that the manifes-
tations of misreadings in gaze differ strongly be-
tween these readers. However, since we do not
have information on the individual readers’ age
or general reading proficiency, we cannot con-
fidently conclude whether the better stability of
within-user experiments attested in Figure 4 is due
to reader-specific idiosyncrasies or group-internal
patterns (which would be supported by evidence
that readers 10 and 16 were more atypical read-
ers than others in the present dataset). We find
some support for the latter hypothesis in literature
describing children’s reading development, which
identifies a range of patterns common to young
and low-proficiency readers. These patterns in-
clude longer and more frequent fixations, shorter
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saccadic amplitude and more regressions — all of
which are also associated with comprehension dif-
ficulties, see Blythe and Joseph (2011) for a re-
view. The presence of group-internal patterns is
further supported by the observation that we are
still able to successfully transfer knowledge about
readings patterns between users in some cases, in-
creasing performance for the readings of user 15.

One disadvantage of noisy, real-world data is
that we do not know to what degree similarities
and differences in the data, as well as our results,
are influenced by chance, or whether they will
generalize to other gaze data. The fact that many
parameters are outside of our control and also out-
side of our knowledge means that we cannot de-
scribe certain biases in the data (such as age or
reading skill) and consider them as causes for sta-
tistical variations in model performance.

7 Conclusion

This paper presented first work in the auto-
matic prediction of reading errors in children
with dyslexia and other reading difficulties using
real-world gaze data. We showed that despite the
noisy conditions under which this data was ob-
tained, features we extract from the gaze patterns
are predictive of reading mistakes among children.
Besides the immediate application in automating
some parts of reading teaching, this could be ex-
ploited in personalized text simplification, where
gaze could be used as feedback to the system.
Our experiments further show that while gaze
patterns for misreadings seem to be largely spe-
cific to individual readers or groups of readers, we
can successfully use MTL to transfer knowledge
between readers at least in some cases. Note also
that we have very little knowledge of the age and
general proficiency of specific readers, including
those investigated in our MTL experiments, and
we expect that our MTL approach can be much
more successful between more similar readers.
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Abstract

Input material at the appropriate level is cru-
cial for language acquisition. Automating the
search for such material can systematically
and efficiently support teachers in their ped-
agogical practice. This is the goal of the
computational linguistic task of automatic in-
put enrichment (Chinkina and Meurers, 2016):
It analyzes and re-ranks a collection of texts
in order to prioritize those containing tar-
get linguistic forms. In the online study de-
scribed in the paper, we collected 240 re-
sponses from English teachers in order to in-
vestigate whether they preferred automatic in-
put enrichment over web search when select-
ing reading material for class. Participants
demonstrated a general preference for the ma-
terial provided by an automatic input enrich-
ment system. It was also rated significantly
higher than the texts retrieved by a standard
web search engine with regard to the represen-
tation of linguistic forms and equivalent with
regard to the relevance of the content to the
topic. We discuss the implications of the re-
sults for language teaching and consider the
potential strands of future research.

1 Introduction

Input material at the appropriate level is impor-
tant for language learners — whether it is a re-
vision of the already acquired linguistic forms
or an introduction of the structures to be ac-
quired next, in line with the input hypothesis by
Krashen (1977). Automating the search for such
material can systematically and efficiently sup-
port teachers and is the goal of the computa-
tional linguistic task of automatic input enrich-
ment (Chinkina and Meurers, 2016): It provides
reading material containing target grammatical
and lexical forms by analyzing and re-ranking a
collection of texts. Automatic input enrichment
systems rely on rigorous NLP analysis of texts
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provided either by a search engine or by the user.
As a result, the most linguistically appropriate
texts are prioritized and presented to the user.

Automatic input enrichment is in essence
closely related to the notion of input flood sub-
stantially motivated and discussed in second lan-
guage acquisition research (Trahey and White,
1993) and is a necessary step in providing any
type of text-based activities for language learn-
ing. It has been shown that a richer representa-
tion of target linguistic forms in the input leads to
a better acquisition of these forms by the learner
(Pigada and Schmitt, 2006). However, the bene-
fits of input flood for language teachers have not
been empirically tested so far.

In order to fill this gap, we developed an online
study investigating whether English teachers pre-
ferred automatic input enrichment, or input flood,
over web search when selecting reading material
for class. The study implemented a repeated mea-
sures design: Participants read and rated 20 news
articles on ten different topics. The articles were
presented in pairs, with one of them being the top
search result retrieved by a standard search engine
and the other one provided by an automatic input
enrichment system. A topic and a pair of target
linguistic forms were kept constant for each pair of
articles. The repeated measures design allowed us
to collect a sufficient number of responses (n=240)
discriminating different types of linguistic forms.

We start by reviewing the relevant research from
the field of second language acquisition in Sec. 2
and dwell on the importance of automatic input
enrichment for language teaching and its practical
implementation in Sec. 3. We then describe the
design of the current study and the obtained re-
sults in Sec. 4 and discuss the findings in Sec. 5.
Finally, we conclude with the implications of the
results and ideas for further research in Sec. 6.

Proceedings of the Thirteenth Workshop on Innovative Use of NLP for Building Educational Applications, pages 35-44
New Orleans, Louisiana, June 5, 2018. (©2018 Association for Computational Linguistics



2 Motivation and Related Work

Research on second language acquisition has pro-
vided insights on effective language teaching and
learning techniques. The role of comprehensible
input (Krashen, 1977) has been emphasized by
many researchers, and extensive exposure to writ-
ten input has shown positive effects on vocabulary
(Krashen, 1989; Waring and Nation, 2004) and
grammar acquisition (Pigada and Schmitt, 2006).

While stressing the importance of input, re-
searchers agree that in order for the learner to ac-
quire a linguistic form, it has to be frequent and
salient enough in the input (Slobin, 1985). At the
same time, the learners should be provided with
pedagogical support to notice (Schmidt, 1990) and
process the forms (VanPatten, 1990).

The effectiveness of activities targeting certain
linguistic forms has been thoroughly investigated
by second language acquisition researchers: Ac-
cording to Long (1991), focus on form instruc-
tion encourages learners to attend to form within a
communicative classroom environment, which has
proved to be superior to purely communicative in-
struction (Leeman et al., 1995). Pointing out the
importance of systematic focus on target linguis-
tic forms, VanPatten and Oikkenon (1996) found
that contextualized practice activities were more
effective than explicit explanations of rules for in-
termediate learners of Spanish. In a meta-review
of research on reading and second language acqui-
sition, Chio (2009) also emphasized the potential
of supplementing reading with discussion or inter-
active activities targeting certain linguistic forms.

Either incidentally drawing learners’ attention
to certain vocabulary and grammar or providing
exercises targeting those, all of the aforemen-
tioned approaches rely on the existence of appro-
priate reading material with a rich representation
of linguistic forms for effective language acquisi-
tion. The following section provides information
on how language teachers can efficiently search
for such material.

3 Automatic Input Enrichment for
Language Teaching

Automatic provision of reading material for lan-
guage learners has been guided by text complex-
ity (Vajjala and Meurers, 2012), lexical and gram-
matical properties (Brown and Eskenazi, 2004;
Bennohr, 2007), and the learner’s language pro-
ficiency (Collins-Thompson et al., 2011).
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We refer to automatic selection of lexically and
grammatically appropriate texts as automatic input
enrichment and approach it as a web search task
(Chinkina and Meurers, 2016). We developed a
linguistically aware web search system FLAIR!
that provides automatic input enrichment of cer-
tain lexical and grammatical forms by detecting
them in a collection of texts and reordering the
texts accordingly. This process can be seen as vo-
cabulary and grammar retrieval.

Vocabulary retrieval is indeed the core of any
web search engine: One obtains an appropriate
text containing target lexical items by including
them in a search query. Grammar retrieval, on the
other hand, requires an extension to web search
as the user is unlikely to find appropriate texts by
simply searching for, e.g., texts containing present
perfect. Such an extension is implemented in
FLAIR as an algorithm detecting linguistic forms
relevant for English learners, such as regular and
irregular verb forms. The heatmap at the top of
Fig. 1 demonstrates that although these two lin-
guistic forms are highly frequent, they are not
equally represented across the top 60 search re-
sults retrieved by Microsoft Bing.> The heatmap
at the bottom of the same figure shows the result
of automatic input enrichment by FLAIR: a re-
ordered list of the same search results with those
containing the best representation of both regular
and irregular verbs closer to the top (i.e., to the left
in the figure).

FLAIR is built on top of a web search engine
Microsoft Bing, relies on third-party tools for text
extraction and parsing, detects 87 linguistic forms
from the grammar section of the official curricu-
lum of English, and uses a ranking algorithm for
prioritizing texts containing the target linguistic
forms specified by the user. Once the user has
typed in a search query, specified the target lin-
guistic forms and a number of search results to re-
trieve, they receive a list of web pages, with those
that contain the best representation of the target
forms at the top of the list. The user can then ex-
plore the retrieved texts with the highlighted target
linguistic forms and select the texts of appropriate
complexity and length (see Fig. 2).

We used FLAIR to find out whether teach-
ers benefit from automatic input enrichment, as
compared to a standard web search engine, when

lwww.purl.org/icall/flair
2www.bing .com
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Figure 1: Comparison of the top results retrieved by a standard web search engine before and after automatic input
enrichment. The 60 search results are plotted along the X axis, and the two target linguistic forms, regular and
irregular verbs, are plotted on the Y axis.

searching for reading material for their students. = Microsoft Bing were compared to those provided
The following section presents our research ques- by the automatic input enrichment system FLAIR.
tions and hypotheses, the design of the online  As FLAIR relies on Bing for retrieving web pages,
study, and the results. the study in fact evaluates the impact of the NLP-
driven re-ranking provided by FLAIR. The follow-
4 Automatic Input .Enrichm.ent VvS. We.b ing hypotheses guided the design and the contents
Search for Selecting Reading Material of our study:
HI: Teachers prefer texts provided by FLAIR
over those provided by Bing when choosing a
reading assignment for their students.
H2: Texts provided by FLAIR are perceived
to have a richer representation of target linguistic
forms than those provided by Bing.
H3: Texts provided by FLAIR are perceived to
be less relevant to the topic than those provided by
Bing.
H4: The more infrequent the target linguistic
forms are, the more teachers prefer texts provided
e is enriched with target linguistic forms rele- by FLAIR over those provided by Bing.
vant in the context of language learning,

The current study focuses on teachers as media
between students and reading material. It as-
sesses teachers’ experience and satisfaction with
the every-day task of searching for supplementary
texts online and provides insights on this process.

The research questions of the study address
the importance of content and linguistic form and
teachers’ attitude towards their optimal balance:
Does automatic input enrichment succeed in giv-
ing teachers the material that:

4.1 Design of Online Study

In order to address the aforementioned hypothe-
ses, we designed an online study where the par-
ticipants were asked to rate and compare pairs of
news articles: One was the top search result from
a standard search engine and the other one was a

The online study was designed to operationalize ~ search result prioritized by FLAIR after specify-
these research questions. In the study, news arti-  ing the target linguistic forms. Each article had to
cles retrieved by the standard web search engine  be rated on two scales: (i) its relevance to a given

e is in line with the information need expressed
via a search query, and

e is suitable as a reading assignment for their
students?
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Figure 2: FLAIR interface.

topic and (ii) the representation of given linguis-
tic forms in it. These two criteria are an integral
part of language teachers’ pedagogical practice:
Teachers want to expose their students to language
richly containing the structure to be taught or re-
vised using a text that is on a topic that is relevant
and motivating to the students.

We opted for a repeated-measures within-
subjects design and ensured a random order of
news articles retrieved from Bing and FLAIR as
well as a random combination of topics and pairs
of linguistic forms in the main task. The study
proceeded as follows.

Procedure Participants received a message with
the link to the online study and were asked to care-
fully read the information for the participants and
the consent form before registering. Upon regis-
tration, they filled out a short questionnaire ask-
ing for their age, gender, native language(s), En-
glish language proficiency, the highest degree in
teaching, and the proficiency level(s) of their stu-
dents. They were also asked whether they used
web search to look for reading material for their
classes. Once they submitted the answers to the
questionnaire, they could read the detailed instruc-
tions, which were displayed on every login.

The flow of the main task is demonstrated in
Fig. 3: Participants were presented with a topic
and a pair of target linguistic forms. They read and
rated each of the two provided news articles by an-
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swering two questions and were asked to pick one
article as a reading assignment for their students
with a preference scale from Definitely Text 1 to
Definitely Text 2.

Once they have completed the ten topics, partic-
ipants filled out a debriefing questionnaire, where
they explained general strategies for answering
each of the questions in the main task (e.g., How
did you decide on the relevance of an article to a
given topic?). Finally, they submitted their email
address and received a 20 Euro voucher as reim-
bursement.

4.2 Implementation of Online Study

We implemented the online study as a Java J2EE
web application. To ensure anonymity, the user
personal information obtained from the question-
naire was stored separately from their responses.
Upon registration, each user was assigned a list
of ten topics in a random order. Each topic was
randomly matched with one of the three types of
linguistic forms (see Sec. 4.3 below), one news
article provided by FLAIR and one news article
retrieved by Bing. For each topic, the two articles
were displayed in a random order, and participants
could not change their rating of the first news arti-
cle once the second one was displayed.

4.3 Data and Participants

The total of 60 news articles were used in the
study. The texts were presented in pairs that shared



Topic: News

Linguistic Comparative degree of short

forms: adjectives and adverbs (smarter)
Comparative degree of long (more
adjectives and adverbs intelligent)

Start

Text 1
“Title of the news article 1..."

1. How relevant is the article to the topic?

(irrelevant) 1 2 3 o4 5 (relevant)

2. How rich is the representation of the two target linguistic forms in the article?

(poor) 1 2 3 4 5 (good)

Next

Text 2
“Title of the news article 2..."

1. How relevant is the article to the topic?

(irrelevant) 1 ¢ 2 3 4 5 (relevant)

2. How rich is the representation of the two target linguistic forms in the article?
(poor) 1 2 3 4 e 5(good)
Next

Question

Which news article would you give as a reading assignment to your students?
Text1:  “Title of the news article 1.."
Text2: ITitle of the news article 2.

Definitely Text 1 Likely Text 1 Doesn't matter Likely Text 2 Definitely Text 2

Submit

Figure 3: The main task in the online study included
reading and rating two news articles and selecting one
of them as a reading assignment for class.

the same topic (e.g., Brexit) and the same pair of
target lingusitic forms (e.g., the present simple and
the present continuous tenses). One article in each
pair was obtained by submitting a search query to
the web search engine Microsoft Bing and select-
ing the top search result. The other article in each
pair was obtained by submitting the same query to
FLAIR, configuring the settings to prioritize texts
with the two target linguistic forms and selecting
the top search result from the re-ranked list. As
FLAIR relies on Microsoft Bing for retrieving the
original search results, the only variable that dif-
fered between the two conditions was the auto-
matic input enrichment component implemented
in FLAIR.
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Linguistic forms For the current study, we se-
lected three pairs of linguistic forms (frequent,
mixed, and infrequent) based on their document
co-occurrence frequency in a corpus of 2400 news
articles. Table 1 provides the distribution of their
mean relative term frequencies across the texts
provided by Bing and FLAIR.

The frequent pair was represented by regular
(e.g., typed) and irregular (e.g., wrote — written)
verb forms. It had a high document co-occurrence
frequency of 95%. This means that these two lin-
guistic forms occur together in 95 out of 100 doc-
uments, on average. Both constructions are also
highly frequent: in the texts chosen for our study,
regular and irregular verbs both had an average rel-
ative term frequency of 0.016. We did not count
those forms when they occurred in modifier posi-
tions (e.g., is interested, coloured balloons).

The mixed pair of linguistic forms was repre-
sented by two grammatical tenses, present sim-
ple (e.g., Kate plays guitar) and present contin-
uous (e.g., Kate is playing guitar now.). Their
respective relative term frequencies in the study
were 0.012 and 0.003, with their document co-
occurrence frequency being 50%. Predicates con-
taining modal verbs were not counted as the
present simple tense (e.g., He can swim.), with the
exception of the verbs have to, need, and want.
When a form constituted a part of a conditional
sentence, it was not counted either (e.g., I will not
go out if it is still raining.).

The infrequent pair was represented by the com-
parative degree of short adjectives and adverbs
(e.g., nicer) and that of long adjectives and ad-
verbs (e.g., more beautiful). In addition to only
co-occurring in 4% of documents, these linguis-
tic forms had low term frequencies of 0.002 and
0.001. When the comparative form more occurred
as part of a longer form (e.g., more intelligent), the
whole expression was counted as a long form, and
more was not additionally counted as a short one.

Texts Using Microsoft Bing, we did a web
search for Reuters® news articles by expanding the
search query with site:reuters.com. The follow-
ing ten topics popular on Bing at the time served
as search queries: Game of Thrones, healthcare,
street artists, Roger’s Cup 2017, SpaceX, electric
cars, Bitcoin, Venezuela coup, Brexit, opioid epi-
demic. The top result for each topic was stored in
our database as a Bing result, and the top 20 results

3www.reuters.com



Bing FLAIR

% regular verbs 0.012 0.020
&
=
~  irregular verbs  0.012 0.019
2 present simple 0.011 0.014
>
=

present continuous 0.001 0.005
S comparative d. of
% short adj. and adyv. 0.001 0003
O
i= .
£ comparative d. of 0.001

long adj. and adv.

Table 1: Mean relative term frequencies of the linguis-
tic forms used in the study across the top search results
provided by Bing and FLAIR.

were used for further reordering.* For each topic,
we repeatedly configured the FLAIR settings to
prioritize texts containing each of the three pairs
of linguistic forms presented above and stored the
three top hits as FLAIR results. In the end, we
had three pairs of news articles per topic: One
was the top web search result from Bing and the
other one was the top one from FLAIR. The two
texts for a given topic and a given pair of linguis-
tic forms were of comparable length (the differ-
ence was at most 50% of the shortest article) and
at the same or adjacent readability levels calcu-
lated using a simple Automated Readability Index
(Senter and Smith, 1967).

Participants Twelve English teachers working
with upper-intermediate and advanced learners of
English in Germany were recruited through uni-
versity and social media channels. Each partici-
pant was reimbursed with a 20 Euro voucher, and
all 240 responses were anonymized.

The ages of the participants ranged from 25 to
59 years old, 91% of them being women. The first
language of the majority of the participants was
German (75%) followed by English (8%), French

“The number of texts to be retrieved can be configured in
the interface. Fig. 1 presented the top 60 results for demon-
stration purposes. In practice, 20 results are quite heteroge-
neous and provide a good balance of sufficient variability and
speed of analysis.
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(8%), and Spanish (8%). All participants had an
advanced level of English proficiency and a degree
in teaching English. They worked at a secondary
school (50%), a high school (42%), or a university
(8%). The majority (75%) specified that they were
using web search to look for reading material for
their students, and 25% said they sometimes used
web search for this purpose.

4.4 Results

All the analyses were conducted using R version
3.2.1 (R Core Team, 2009). Packages for individ-
ual tests and models are specified in the footnotes.

First, we compared the general preference for
FLAIR to that for Bing. The option Doesn’t matter
was selected 25% of the time, and the correspond-
ing responses were not included in the analysis. A
chi-square test® revealed a significant preference
for FLAIR: Participants chose it over Bing 71% of
the time; x2(1) = 16.04, p < .001. They were
also more confident in choosing FLAIR: The an-
swer Definitely was selected three times more for
FLAIR than for Bing; x?(1) = 12.60, p < .001.
Thus, our first hypothesis could be confirmed:
Teachers indeed preferred the linguistically en-
riched texts provided by FLAIR over those pro-
vided by Bing when choosing a reading assign-
ment for their students.

We conducted two logistic regression analyses
to investigate how texts provided by FLAIR and
Bing compared in terms of (i) representation of
linguistic forms and (ii) relevance of the content
to the topic. In line with the descriptive statis-
tics in Tab. 1, logistic regression models showed
that FLAIR (M = 3.22,5SD = 1.07) was sig-
nificantly more likely to be rated higher in terms
of representation of linguistic forms than Bing
(M = 251,5SD = 1.15); b = 1.89, SE = 0.51,
p < .001. Moreover, texts provided by FLAIR
(M = 3.67,SD = 1.08) were perceived to be
slightly more relevant to the topic than those pro-
vided by Bing (M = 3.58, 5D = 1.00) although
the difference failed to reach statistical signifi-
cance; b= 0.53, SE = 0.74,p = .470.

In order to test whether the absence of statistical
significance was due to chance or texts provided
by FLAIR and Bing were indeed comparable with
regard to content, we conducted two one-sided
tests of equivalence (Schuirmann, 1987).” The

6

SR native stats package, method chisg.test()
®R native stats package, method glm()
R package TOSTER, method TOSTtwo()



results were statistically significant (¢; = 4.55,
to —3.19, p1 < .001, po < .001, 90% CI
[—0.13;0.31]), so we could confirm that the sam-
ples were equivalent with a medium effect size of
0.5 and an alpha level of .05.

Finally, we used a two-way repeated-measures
analysis of variance® to test whether the prefer-
ence for FLAIR depended on the type of linguis-
tic forms. We hypothesized that the more infre-
quent the target linguistic forms were, the more
teachers would prefer texts provided by FLAIR.
The first factor was the preference for FLAIR (a
five-point scale), and the second factor was the
type of linguistic forms (frequent, mixed, or in-
frequent). ANOVA did not show the tendency that
we expected; F'(2,90) = 0.87,p = .419; so we
inspected the means of all three groups and per-
formed paired samples t-tests.

The biggest mean preference for FLAIR
was found for the mixed pair of linguistic
forms (present simple and present continuous;
M =3.92, SD =1.99), followed by the infre-
quent group (comparative degree of short adjec-
tives and adverbs; M = 3.69, SD = 1.30) and
the frequent one (regular and irregular verbs;
M =3.46, SD = 1.39). When we turned the
five-point scale into a binary outcome variable
(i.e., either selected FLAIR as a reading assign-
ment or not) and calculated the percentage of
responses, we found 76% of responses favoring
FLAIR in the infrequent group, 75% in the mixed
group, and 65% in the frequent one.

As the data in the three groups were not
normally distributed (Shapiro-Wilk’s normality
test’ yielded significant differences from a nor-
mal distribution), we opted for paired two-
samples Wilcoxon tests.'  The paired tests
revealed that there was no significant differ-
ence between the groups with regard to prefer-
ence for FLAIR: infrequent and mixed groups,
Z =128, p = .352; mixed and frequent groups,
Z =157, p = .643; infrequent and frequent
groups, Z = 217, p = .727.

5 Discussion

English teachers demonstrated an overall prefer-
ence for FLAIR over a standard web search en-
gine when choosing a reading assignment for their

8R native stats package, method aov()
R package dplyr, method shapiro.test()
1R native stats package, method wilcox.test()
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students. This is in line with our first hypothesis
and a strong argument in support of the automatic
input enrichment approach.

Feedback from teachers suggested that the rel-
evance of the article to the topic and the content
of the article were the decisive factors in choos-
ing one article over the other as a reading assign-
ment. We were, therefore, particularly interested
whether there was a trade-off between the content
and the representation of linguistic forms in the ar-
ticles because a large number of the news articles
retrieved by FLAIR (40%) were not among the top
ten original search results. Thus, we hypothesized
that the texts retrieved by FLAIR would have a
richer representation of linguistic forms while be-
ing less relevant to the topic.

As the number of occurrences of the given lin-
guistic forms in the texts retrieved by FLAIR was
higher (see Tab. 1), this indeed resulted in sig-
nificantly higher teachers’ ratings for the repre-
sentation of linguistic forms. However, counter
to our expectations, the texts provided by FLAIR
were neither inferior nor superior to those origi-
nally retrieved by Bing in terms of content: They
were rated slightly, but not significantly, more rel-
evant to the given topic. This suggests that the
most appropriate texts for language learners may
not appear within the top web search results, and
those texts that are not ranked high by standard
web search engines can have a higher linguistic
and pedagogical potential than the top hits.

As the study showed, automatic input enrich-
ment is particularly beneficial for retrieving texts
containing target linguistic forms of lower fre-
quency levels, although the differences were non-
significant. This can be explained by document
and term frequencies: The high term and doc-
ument frequencies of frequent linguistic forms
make it likely for every retrieved text to contain at
least several instances of each form. In this case,
the texts prioritized by an automatic input enrich-
ment system may not differ from the original top
hits with regard to their linguistic characteristics.
Other frequently co-occurring pairs of linguistic
forms relevant for language teaching are, for ex-
ample: adjectives and adverbs (co-occur in 97%
of documents), the definite and the indefinite arti-
cles (96%), present simple and past simple (93%),
to infinitives and ing verb forms (90%). We pro-
pose a way to improve the functionality of auto-
matic input enrichment systems targeting frequent



linguistic forms in the next section.

Infrequent linguistic forms, on the contrary, ap-
pear in few texts together, with a small number
of occurrences within each text. The advantage
of automatic input enrichment in this case is that
it can detect those few texts containing the target
infrequent linguistic forms. Other pairs of linguis-
tic forms with a low document co-occurrence fre-
quencies as well as low term frequencies are, for
example: the modal verbs can and may (14%),
past perfect and past progressive (12%), future
simple and going to (9%), wh- questions and
yes/no questions (7%), real and unreal condition-
als (4%).

In case of mixed pairs of linguistic forms (i.e.,
the ones consisting of one frequent and one infre-
quent form), the reordering algorithm pushes the
few texts containing the infrequent form to the top.
Those texts are at the same time likely to also con-
tain several occurrences of the frequent form be-
cause of its high term and document frequencies.
Other mixed pairs of linguistic forms relevant for
teaching English are: past simple and present per-
fect (63%), positive and comparative degrees of
short adjectives (58%) and adverbs (45%), present
simple and future simple (40%), past simple and
past continuous (30%). The full list of pairs of lin-
guistic forms with their co-occurrence document
frequency was compiled by Chinkina (2015).

The aforementioned results show that, while re-
lying on a standard web search engine for retriev-
ing the results, automatic input enrichment suc-
ceeds in providing the texts that are a) enriched
with respect to the linguistic forms, b) in line with
the information need, and c) suitable as a reading
assignment.

6 Conclusion and Outlook

In this paper, we described an online study inves-
tigating the effects of automatic input enrichment
on English teachers selecting reading material for
class. The results of the study show that partici-
pants preferred the texts provided by automatic in-
put enrichment over those originally retrieved by
a standard web search engine both in terms of rep-
resentation of linguistic forms and content. The
study also provides insights about which linguis-
tic forms benefit the most from automatic input
enrichment.

It is important to note that our goal was not
to compare automatic input enrichment to web
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search but to show that the linguistically motivated
re-ranking of texts leverages the content and form
aspects of the retrieved material. With the abun-
dance of authentic texts available on the web, such
reordering does not prioritize texts of low qual-
ity but selects the most linguistically appropriate
ones in the pool of relevant texts. This means that
such systems as FLAIR can rely on standard web
search engines for retrieving texts of sound con-
tent. Whether automatic input enrichment systems
also provide an effective learning environment for
language learners should be tested in further end-
to-end empirical studies.

Another interesting empirical question would
be: For which kind of queries will an input enrich-
ment system find enough texts? Our assumption is
that the topics covered in a language classroom are
current, prominent, and widely discussed: This is
why we selected the texts on popular topics for
our online study. However, when searching for
texts on more specific topics — or in other less
represented languages — fewer relevant texts may
be retrieved and the balance of content and form
may be skewed. This could be the case for courses
targeting English for specific purposes, though for
such courses it is likely that special repositories of
sample texts from that specific domain would be
used. Thus, the automatic analysis and re-ranking
can be done on the provided corpus, which is also
a capability of the FLAIR system.

Therefore, FLAIR provides an ecologically
valid, real-life setting for an empirical evaluation
of a number of phenomena discussed in second
language acquisition research, such as input flood,
input enhancement, structured input activities, and
extensive reading. For instance, one could con-
duct a randomized controlled field study and com-
pare the learning outcomes of two groups of stu-
dents: one reading and working with the results re-
ranked by FLAIR and the other one working with
the standard Bing results. In fact, such an exper-
imental yet real-world evaluation in essence only
becomes possible thanks to a technology-enabled
input enrichment approach such as FLAIR.

Finally, based on the feedback from the English
teachers who took part in our study, we identi-
fied two strands for potential improvement of au-
tomatic input enrichment systems:

1. Providing a variety of contexts in which lin-
guistic forms are used. This challenge can
be addressed by the tasks of word and tense



sense disambiguation (Stevenson and Wilks,
2003; Reichart and Rappoport, 2010) that
could be expanded to the disambiguation of
other linguistic forms. The insights from
the task of finding good dictionary exam-
ples (Kilgarriff et al., 2008) can help make
sure that the contexts in which target linguis-
tic form occur are informative, typical, and
intelligible for the learner (Atkins and Run-
dell, 2008). This could be particularly ad-
vantageous for frequent linguistic forms that
currently benefit the least from automatic in-
put enrichment as they are richly represented
across texts.

Integration of a component that automati-
cally generates exercises targeting the se-
lected linguistic forms. The task of automatic
question generation has explored generating
factual wh- questions (Heilman, 2011), gap
sentences (Becker et al., 2012), a combina-
tion of those, and grammar-concept questions
asking for the meaning of linguistic forms
(Chinkina and Meurers, 2017). In line with
the idea of providing a variety of contexts,
one could generate different types of ques-
tions targeting not only different linguistic
forms but also different contexts in which
those forms occur.
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Abstract

Evaluation of text difficulty is important both
for downstream tasks like text simplification,
and for supporting educators in classrooms.
Existing work on automated text complexity
analysis uses linear models with engineered
knowledge-driven features as inputs. While
this offers interpretability, these models have
lower accuracy for shorter texts. Traditional
readability metrics have the additional draw-
back of not generalizing to informational texts
such as science. We propose a neural ap-
proach, training on science and other informa-
tional texts, to mitigate both problems. Our
results show that neural methods outperform
knowledge-based linear models for short texts,
and have the capacity to generalize to genres
not present in the training data.

1 Introduction

A typical classroom presents a diverse set of stu-
dents in terms of their reading comprehension
skills, particularly in the case of English language
learners (ELLs). Supporting these students often
requires educators to estimate accessibility of in-
structional texts. To address this need, several
automated systems have been developed to es-
timate text difficulty, including readability met-
rics like Lexile (Stenner et al., 1988), the end-to-
end system TextEvaluator (Sheehan et al., 2013),
and linear models (Vajjala and Meurers, 2014; Pe-
tersen and Ostendorf, 2009; Schwarm and Osten-
dorf, 2005). These systems leverage knowledge-
based features to train regression or classifica-
tion models. Most systems are trained on liter-
ary and generic texts, since analysis of text diffi-
culty is usually tied to language teaching. Existing
approaches for automated text complexity analy-
sis pose two issues: 1) systems using knowledge
based features typically work better for longer
texts (Vajjala and Meurers, 2014), and 2) complex-
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ity estimates are less accurate for informational
texts such as science (Sheehan et al., 2013). In
the context of science, technology and engineer-
ing (STEM) education, both problems are signif-
icant. Teachers in these areas have less expertise
in identifying appropriate reading material for stu-
dents as opposed to language teachers, and shorter
texts become important when dealing with assess-
ment questions and identifying the most difficult
parts of instructional texts to modify for support-
ing students who are ELLs.

Our work specifically looks at ways to address
these two problems. First, we propose recurrent
neural network (RNN) architectures for estimating
linguistic complexity, using text as input without
feature engineering. Second, we specifically train
on science and other informational texts, using the
grade level of text as a proxy for linguistic com-
plexity and dividing grades k-12 into 6 groups. We
explore four different RNN architectures in order
to identify aspects of text which contribute more
to complexity, with a novel structure introduced
to account for cross-sentence context. Experi-
mental results show that when specifically trained
for informational texts, RNNs can accurately pre-
dict text difficulty for shorter science texts. The
models also generalize to other types of texts, but
perform slightly worse than feature-based regres-
sion models on a mix of genres for texts longer
than 100 words. We use attention with all mod-
els, both to improve accuracy, and as a tool to
visualize important elements of text contributing
to linguistic complexity. The key contributions of
the work include new neural network architectures
for characterizing documents and experimental re-
sults demonstrating good performance for predict-
ing reading level of short science texts.

The rest of the paper is organized as follows:
section 2 looks at existing work on automated
readability analysis and introduces RNN architec-
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tures we build on for this work. Section 3 lays out
the data sources, section 4 covers proposed mod-
els, and section 5 presents results. Discussion and
concluding remarks follow in sections 6 and 7.

2 Background

Studies have shown that language difficulty of in-
structional materials and assessment questions im-
pacts student performance, particularly for lan-
guage learners (Hickendorff, 2013; Abedi and
Lord, 2001; Abedi, 2006). This has lead to exten-
sive work on readability analysis, some of which
is explored here. The second part of this section
looks at work that leverages RNNs in automatic
text classification tasks and the use of attention
with RNNS.

2.1 Automated Readability Analysis

Traditional reading metrics including Flesch-
Kincaid (Kincaid et al., 1975) and Coleman-Liau
index (Coleman and Liau, 1975) are often used
to assess a text for difficulty. These metrics uti-
lize surface features such as average length of sen-
tences and words, or word lists (Chall and Dale,
1995). The development of automated text analy-
sis systems has made it possible to leverage addi-
tional linguistic features, as well as conventional
reading metrics, to estimate text complexity quan-
tified as reading level. NLP tools can be used to
extract a variety of lexical, syntactic and discourse
features from text, which can then be used with
traditional features as input to models for predict-
ing reading level. Some of the models include sta-
tistical language models (Collins-Thompson and
Callan, 2004), support vector machine classifiers
(Schwarm and Ostendorf, 2005; Petersen and Os-
tendorf, 2009), and logistic regression (Feng et al.,
2010). Text coherence has also been explored as
a predictor of difficulty level in (Graesser et al.,
2004), with an extended feature set that includes
syntactic complexity and discourse in addition to
coherence (Graesser et al., 2011).

A study conducted in (Nelson et al., 2012) in-
dicates that metrics that incorporate a large set of
linguistic features perform better at predicting text
difficulty level; the metrics were specifically tested
on the Common Core Standards (CCS) texts.!
Features from second language acquisition com-
plexity measures were used in (Vajjala and Meur-
ers, 2012) to improve readability assessment. This

'http://www.corestandards.org/
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feature set was further extended to include mor-
phological, semantic and psycholinguistic features
to build a readability analyzer for shorter texts (Va-
jjala and Meurers, 2014). A tool specifically built
for text complexity analysis for teaching and as-
sessing is the TextEvaluator ™. While knowledge-
based features offer interpretability, a drawback is
that if the text being analyzed is short, the feature
vector is sparse, and prediction accuracy drops
(Vajjala and Meurers, 2014). This is particularly
true for assessment questions, which are shorter
than the samples most models are trained on.

Generally, for any text classification task, the
type of text used for training the model is im-
portant in terms of how well it performs; train-
ing on more representative text tends to improve
performance. The work in (Sheehan et al., 2013)
shows that traditional readability measures under-
estimate the reading level of literary texts, and
overestimate that of informational texts, such as
history, science and mathematics articles. This is
due, in part, to the vocabulary specific to the genre.
Science texts have longer words, though they may
be easier to infer from context. Literary texts,
on the other hand, might have simpler words, but
more complicated sentence structure. The work
demonstrated that more accurate grade level esti-
mates can be obtained by two stage classification:
1) classify the text as either literary, informational,
or mixed, and then ii) use a genre-dependent ana-
lyzer to estimate the level. In an analysis on how
well a model trained on news and informational
articles generalizes to the categories in CCS, the
work in (Vajjala and Meurers, 2014) shows better
performance on informational genre than literary
texts. Training on more representative text, how-
ever, requires genre-specific annotated data.

2.2 Text Classification with RNNs

Recurrent neural networks (RNNs) are adept at
learning text representations, as demonstrated by
language modeling (Mikolov et al., 2010) and text
classification tasks (Yogatama et al., 2017). Addi-
tional RNN structures have been proposed for im-
proved representation, including tree LSTMs (Tai
et al., 2015) and a hierarchical RNN (Yang et al.,
2016). In addition, hierarchical models have been
proposed to better represent document structure
(Yang et al., 2016).

Attention mechanisms were introduced to im-
prove neural machine translation tasks (Bahdanau
et al.,, 2014), and have also been shown to im-



prove the performance of text classification (Yang
et al., 2016). In machine translation, attention is
computed over the source sequence when predict-
ing the words in the target sequence. This “con-
text” attention is based on a score computed be-
tween the target hidden state h; and a subset of the
source hidden states hs;. The score can be com-
puted in several ways, of which a general form is
score(hy, hs) = hl WohT (Luong et al., 2015).

Attention has also been used for a variety of
other language processing tasks. In particular, for
text classification, attention weights are learned
that target the final classification decision. This
approach is referred to as “self attention” in (Lin
et al., 2017), but will be referred to here as “task
attention.” The hierarchical RNN in (Yang et al.,
2016) uses task attention mechanisms at both word
and sentence levels. Since our work builds on this
model, it is described in further detail in section
4. In addition, we propose extensions of the hi-
erarchical RNN that leverage attention in different
ways, including combining the concept of context
attention from machine translation with task atten-
tion to capture interdependence of adjoining sen-
tences in a document.

3 Data

For our work we consider grade level as a proxy
for linguistic complexity. Within a grade level,
there is variability across different genres, which
students are expected to learn. Since there is no
publicly available data set for estimating grade
level and text difficulty aimed at informational
texts, we created a corpus using online science,
history and social studies textbooks. The text-
books are written for either specific grades, or for
a grade range, e.g. grades 6-8. There are a total
of 44 science textbooks and 11 history and social
studies textbooks, distributed evenly across grades
K-12. Given the distribution of textbooks for each
grade level, we decide to classify into one of six
grade bands: K-1, 2-3, 4-5, 6-8, 9-10 and 11-12.
Because of our interest in working with short texts,
we split the books into paragraphs, using end line
as the delimiter.2 In addition to the textbooks, we
also used the WeeBit corpus (Vajjala and Meurers,
2012) for training, again split into paragraphs.

2In splitting the text into paragraphs, we are implicitly as-
suming that all paragraphs have the same linguistic complex-
ity as the textbook, which is probably not the case. Thus,
there will be noise in both the training and test data, so some
variation in the predicted levels is to be expected.
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Grade Level | All chapters Test set
chapters
K-1 25 -
2-3 22 2
4-5 53 9
6-8 165 12
9-10 48 5
11-12 28 3

Table 1: Chapter-based test data split

We have three different sources of test data: 1)
the CCS appendix B texts, ii) a subset of the on-
line texts that we collected,® and iii) a collection
of science assessment items.

The CCS appendix B data is of interest be-
cause it has been extensively used for evaluat-
ing linguistic complexity models, e.g. in (Sheehan
et al., 2013; Vajjala and Meurers, 2014). It in-
cludes both informational and literary texts. We
use document-level samples from the CCS data
for comparison to prior work, and paragraph-level
samples to provide a more direct comparison to
the information test data we created.

For the informational texts, we selected chap-
ters from multiple open source texts. Since we had
so few texts at the K-1 level, the test data only in-
cluded texts from higher grade levels, as shown
in table 1. The paragraphs in these chapters were
randomly assigned to test and validation sets.

To assess the models on stand alone texts, we
assembled a corpora of science assessment ques-
tions from (Khot et al., 2015; Clark et al., 2018),
AI2 Science Questions Mercury,* and AI2 Sci-
ence Questions v2.1 (October 2017).> This test
set includes 5470 questions for grades 6-8 from
sources including standardized state and national
tests. The average length of a question is 49 words.

For training, two data configurations were used.
When testing on the CCS data and the science
assessment questions, there is no concern about
overlap between training and test data, so all text
can be used for training. We held out 10% of this
data for analysis, and the remaining text is used for
the D; training configuration. Data statistics are
given in table 2. About 20% of the training sam-

3Available at https://tinyurl.com/yc59hlgi.

‘http://data.allenai.org/
ai2-science-questions-mercury/

Shttp://data.allenai.org/
ai2-science-questions/



Grade Train Mean
Level Samples | Length
K-1 739 24.42
2-3 723 62.05
4-5 4570 63.82
6-8 15940 74.79
9-10 3051 68.24
11-12 2301 75.28

Table 2: Training data (D;) with mean length of text in
words

ples (5152) are from WeeBit, spread across grades
2-12. For testing on all three sets, we defined
a training configuration D that did not include
any text from chapters overlapping with the test
data, so there training set is somewhat smaller than
for D1, except for grades K-1. The same WeeBit
training data was included in both cases.

For the elementary grade levels, we have much
less data than for middle school, and for high
school, we have substantial training data with
coarser labels (grades 9-12). To work around both
issues, we first used all training samples to train
the RNN to predict one of four labels (grades K-3,
4-5, 6-8 and 9-12). We then used the training data
with fine labels to train to predict one of six labels.
This approach was more effective than alternating
the training.

4 Models for Estimating Linguistic
Complexity

This section introduces the four RNN structures
for linguistic complexity estimation, including: a
sequential RNN with task attention, a hierarchical
attention network, and two proposed extensions
of the hierarchical model using multi-head atten-
tion and attention over bidirectional context. In all
cases, the resulting document vector is used in a fi-
nal stage of ordinal regression to predict linguistic
complexity. All systems are trained in an end-to-
end fashion.

4.1 Sequential RNN

The basic RNN model we consider is a sequential
RNN with task attention, where the entire text in
a paragraph or document is taken as a sequence.
For a document ¢; with words K words w;; k €
{1,2,..., K}, a bidirectional GRU is used to learn
representation for each word h;j, using a forward
run from w;; to w;k, and a backward run from
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w; g 1o w;1.
fon = GRU (wiy,) (1)
?Tk = GRU (wi) ©)
= [P, Frar] 3)

Attention is computed over the entire sequence
i, and used to compute the document represen-
tation v; “?:

wir, = tanh(Wghg, + by) 4
g = ea:p(uz;cus) (5)

v sz exp(uﬁus)
seq Zk; azkhzk (6)

The document vector is used to predict reading
level. Since the grade levels are ordered categori-
cal labels, we implement ordinal regression using
the proportional odds model (McCullagh, 1980).

For the reading level labels j € {1,2,...,J}, the
cumulative probability is modeled as
P(y < j[vj™) = o(8j —wg,qvi™), (D)

where o(.) is the sigmoid function, and /; and
Worq are estimated during training by minimizing
the negative log-likelihood

Eord: _ZiIOg( (5] ordvseq) (8)
U(Bj(i)—l Z}dvseq))-
4.2 Hierarchical RNN

While a sequential RNN has the capacity to cap-
ture discourse across sentences, it does not capture
document structure. Therefore, we also explored
the hierarchical attention network for text classifi-
cation from (Yang et al., 2016). The model builds
a vector representation v; for each document ¢;
with L sentences s;, [ € {1,2,.., L}, each with
T; words wyy, t € {1,2,...,7;}. The first level of
the hierarchy takes words as input and learns a rep-
resentation for each word h;; using a bidirectional
GRU. Task attention at the word level oy high-
lights words important for the classification task,
and is computed using the word level context vec-
tor u,. The word representations are then aver-
aged using attention weights to form a sentence
representation s;

exp(ul Uy )
ap = s~ A
5, cap(ufua)

= Zt agihg,

©))
(10)



where uy = tanh(Wy,hy + by) is a projection
of the target hidden state for learning word-level
attention. The second level of the hierarchy takes
the sentence vectors as input, learns representation
h; for them using a bidirectional GRU. Using a
method similar to the word-level attention, a doc-
ument representation v; is created using sentence-
level task attention «; which is computed using the
sentence level context vector ug

_ eapluy)
= S (T us) (1n
v; = Y aqhy, (12)

where u; = tanh(Wsh;+bs) is analogous to uy; at
the sentence level. The word- and sentence-level
context vectors, u,, and ug, as well as W, W, b,
and by, are learned during training.

4.3 Multi-Head Attention

Work has shown that having multiple attention
heads improves neural machine translation tasks
(Vaswani et al., 2017). To capture multiple aspects
contributing to text complexity, we learn two sets
of word level task attention over the word level
GRU output. These two sets of sentence vectors
feed into separate sentence-level GRUs to give us
two document vectors by averaging using task at-
tention weights at the sentence level. The doc-
ument vectors are then concatenated to form the
document representation. The multi-head atten-
tion RNN is shown in figure 1.

4.4 Hierarchical RNN with Bidirectional
Context

The hierarchical model is designed for represent-
ing document structure, however, the sentences
within a document are encoded independently. To
capture information across sentences, we extend
the concept of context attention used in machine
translation, using it to learn context vectors for
adjoining sentences. We extend the hierarchical
RNN by introducing bi-directional context with
attention. Using the word level GRU output, a
“look-back” context vector ¢;_1 (wy;) is calculated
using context attention over the preceding sen-
tence, and a “look-ahead” context vector ¢;11(wy)
using context attention over the following sen-
tence for each word in the current sentence.

exp(score(hy 7h(l—1)t))
o exp(score(hyg,h_q1y,))

a1y (wi) = 5 (13)

ci—1(wi) = Xy gy (W) hg_1yy  (14)
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exp(score(hit,h(1 1))
o exp(score(hig,h( 1))

gy (W) = 5 (15)

cir1(wie) = Xy gy (W) by (16)

where score(hy, hi) = hltWahft and a single
W, is used for computing the score in both direc-
tions. The context vectors are concatenated with
the hidden state to form the new hidden state h;t.

Ry = [ci—1(wir), hug, i1 (wyy)] (17)
The rest of the structure is the same as a hierarchi-
cal RNN, using equations 9-12 with hj, instead of
his. Figure 2 shows the structure for calculating
‘look-back” context.

4.5 Implementation Details

The implementation is done via the Tensorflow
library (Abadi et al., 2016).5 All RNNs use
GRUs (Cho et al., 2014) with layer normalization
(Ba et al., 2016), trained using Adam optimizer
(Kingma and Ba, 2014) with a learning rate of
0.001. Regularization was done via drop out. The
validation set was used to do hyper-parameter tun-
ing, with a grid search over drop out rate, number
of epochs, and hidden dimension of GRU cells.
Good result for all four architectures are obtained
with a batch size of 10, a dropout rate of 0.5-0.7, a
cell size of 75-250 for the word-level GRU, and a
cell size of 40-75 for the sentence-level GRU. For
the RNN, we also trained a version with a larger
word-level hidden layer cell size of 600.

Pre-trained Glove embeddings’ are used for all
models (Pennington et al., 2014), using a vocabu-
lary size of 65000-75000.8 The out of vocabulary
(OQV) percentage on the CCS test set was 3%,
and on the informational test set was 0.5%. All
OOV words were mapped to an ‘UNK’ token. The
text was lower-cased, and split into sentences for
the hierarchical models using the natural language
toolkit (NLTK) (Loper and Bird, 2002).

5 Results and Analysis

We test our models on the two science test sets,
as well as on the CCS appendix B document
level texts and a paragraph-level version of these
texts. We also evaluated the best performing

®The code and trained models are available at https:
//github.com/Farahn/Liguistic-Complexity.

"http://nlp.stanford.edu/data/glove.
840B.300d.zip

8In vocabulary words not present in Glove had randomly
initialized word embeddings.
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tion

model on the middle school science questions data
set. Since both the true reading level and predicted
levels are ordered variables, we use Spearman’s
rank correlation as the evaluation metric to cap-
ture the monotonic relation between the predic-
tions and the true levels.

As a baseline, we use the WeeBit linear regres-
sion system (Vajjala and Meurers, 2014). The
WeeBit system uses knowledge-based features as
input to a linear regression model to predict read-
ing level as a number between 1 and 5.5, which
maps to text appropriate for readers 7-16 years
of age. The feature set includes parts-of-speech
(e.g. density of different parts-of-speech), lexical
(e.g. measurement of lexical variation), syntactic
(e.g. the number of verb phrases), morphological
(e.g. ratio of transitive verbs to total words) and
psycholinguistic (e.g. age of acquisition) features.
There are no features related to discourse, thus it
is possible to compute features for sentence level
texts. The system was trained on a subset of the
data that our system was trained on, so it is at a
disadvantage. We did not have the capability to
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retrain the system.

5.1 Results by Genre

Results for the different models:

o sequential RNN with self attention (RNN),

e large sequential RNN with self attention
(RNN 600),

e hierarchical RNN with attention at the word
and sentence level (HAN),

e hierarchical RNN with bidirectional context
and attention (BCA), and

e multi-head attention (MHA)

are shown in table 3, together with the results for
the WeeBit system which has state-of-the-art re-
sults on the CCS documents. For the CCS data,
both D; and D5 training configurations are used
for the neural models; only D3 is used for the in-
formational test set. For all of these models the
hidden layer dimension for the word level was be-
tween 125 and 250. We also trained a sequential
RNN with a larger hidden layer dimension of 600.

The HAN does better for document level sam-
ples than a sequential RNN; the converse is true
for paragraph level texts. The RNN with a larger
hidden layer dimension performs better for longer
texts, while the performance for smaller dimen-
sion RNN deteriorates with increasing text length.
The BCA model seems to generalize to longer
documents and new genres better than the other
neural networks.

Figure 3 shows the error distribution for
BCA(D) in terms of distance from true prediction
broken down by genre on the 168 CCS documents.
The category of informational texts is often over



Test Set Model | Samples WeeBit RNN RNN 600 HAN BCA MHA
CCS Document Dy 168 0.69 0.28 0.43 0.47 0.55 0.42
CCS Paragraphs Dy 1532 0.36 0.30 0.25 0.29 0.32 0.28
CCS Document Do 168 0.69 0.34 0.38 0.43 0.48 0.43
CCS Paragraphs Do 1532 0.36 0.27 0.26 0.24 0.30 0.29
Informational D, 1361 022 051 0.60 060 062  0.60
Paragraphs
Table 3: Results (Spearman Rank Correlation)
Samples === MHA —— BCA === WeeBit
—— RNN === HAN - RNN 600

& = :Jn: 3x102 %

20 r;;ech [o7

2 x10? F0.6

% 5 3 Los

3 -2 -1 o 1 2 3
True - Prediction

Figure 3: Error distribution for the CCS documents
BCA(Dy)

predicted, which we hypothesize is roughly due to
specific articles related to the United States history
and constitution. The only training data for our
models with that subject is in the grades 6-8 and
9-12 categories. The performance for literary and
mixed texts, on the other hand, is roughly unbi-
ased; this shows that the model is better at general-
izing to non-informational texts, even when there
are no literary text samples in the training data.

5.2 Results by Length

Figures 4 and 5 show the performance of our mod-
els and the WeeBit model as a function of docu-
ment length, both on the informational paragraphs
test set and the CCS paragraph level test set. The
results indicate that for shorter texts, particularly
under 100 words, neural models tend to do better.
Even for a mixture of genres, the model with bidi-
rectional context performs better than the feature-
based regression model, as shown in figure 5.

It is likely that the WeeBit results results on
shorter texts would improve if trained on the same
training set that is used for the neural models.
However, we hypothesize that the feature-based
approach is less well suited for shorter documents
because the feature vector will be more sparse.

51

1024

Spearman Rank Correlation

6 x 10!

100 125 150 175 175+

Text Length

25 50 75

Figure 4: Performance vs. text length for informational
paragraphs BCA(D-)

Comparing the CCS document- and paragraph-
level test sets, the average percentage of features
that are zero-valued is 28% for document-level
texts and 44% for paragraph-level texts. The most
sparse vectors are 40% and 81% for document and
paragraph-level texts, respectively.

5.3 Results for Science Assessment Questions

Finally, we apply both the baseline WeeBit system
and our best model (BCA trained on D7) to the set
of 5470 grade 6-8 science questions. The results
are shown in figures 6 and 7, where the grade 6-
8 category (ages 11-14) corresponds to predicted
level 3 for BCA and predicted level 4 for WeeBit.
The results indicate that BCA predictions are bet-
ter aligned with human rankings than the baseline.
As expected, grade 6 questions more likely to be
predicted as less difficult than grade 8 questions.

5.4 Attention Visualization

Attention can help provide insight into what the
model is learning. In the analyses here, all at-
tention values are normalized by dividing by the
highest attention value in the sentence/document
to account for different sequence lengths.

Figure 8 shows the word-level attention for the
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BCA and HAN for a sample text from the science
assessment questions test set. (Attention weights
in the figure are smoothed to reflect the fact that
a word vector from a biLSTM reflects the word’s
context.) The results show that attention weights
are more sparse for HAN than for BCA. At the
sentence level (not shown here), the BCA sentence
weights tend to be more uniformly distributed,
whereas HAN weights are again more selective.
Another aspect of the attention is that a word
does not have the same attention level for all oc-
currences in a document. We look at maximum
and minimum values of attention as a function of
word frequency for each grade band, shown in fig-
ure 9 for grade 6-8 science assessment questions.
The pattern is similar for each grade band in
the validation and test sets. The minimum atten-
tion values assigned to a word drop with increas-
ing word frequency, while the maximum values
increase. This suggests that the attention weights
are more confident for more frequent words, such
as of. Words like fusion and m/s get high max-

Emm 6th Grade
mmm 7th Grade
8th Grade

Percentage Samples
o o o o o
N w > w o

o
=

o
o

0 1 2 3 4 5
BCA Predicted Level

Figure 6: BCA predicted levels for middle school sci-
ence assessment questions
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imum attention values, despite not being as high
frequency as words like of and the. This may in-
dicate that they are likely to contribute to linguis-
tic complexity. The fact that transformation has a
high minimum is also likely an indicator of its im-
portance. For HAN without bidirectional context,
a similar visualization shows that while the trend
is similar, the attention weights typically tend to be
lower, both for minimum and maximum values.

We find that sentence-end tokens (period, ex-
clamation and question mark) have high average
attention weight, ranging from 0.54 to 0.81, while
sentence-internal punctuation (comma, colon and
semicolon) get slightly lower weights, ranging
from 0.20 to 0.47. The trend is similar for all
grades. These high attention values might be due
to punctuation serving as a proxy for sentence
structure. It is interesting to note that the question
mark gets higher minimum attention value than
period, despite being high frequency. It may be
that questions carry information that is particularly
relevant to informational text difficulty.

6 Discussion

Our work differs from existing models that es-
timate text difficulty since we do not use engi-
neered features. There are advantages and dis-
advantages to both approaches, which we briefly
discuss here. Models using engineered features
based on research on language acquisition offer
interpretability and insight into which specific lin-
guistic features are contributing to text difficulty.
An additional advantage of using engineered fea-
tures in a regression or classification model is that
less training data is required.

However, given both the evolving theories in
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Figure 7: WeeBit predicted levels for middle school
science assessment questions



a physicist wants to determine the speed a car must reach
to jump over a ramp . the physicist conducts three trials .
in trials two and three , the speed of the car is increased
by 20 miles per hour . what is the physicist investigating
when he changes the speed ? (a ) the control (b ) the
hypothesis statement ( ¢ ) the dependent ( responding )
variable ( d ) the independent ( manipulated ) variable

a physicist wants to determine the speed a car must reach
to jump over a ramp . the physicist conducts three trials .
in trials two and three , the speed of the car is increased
by 20 miles per hour . what is the physicist investigating
when he changes the speed ? (a ) the control (b ) the
hypothesis statement ( ¢ ) the dependent ( responding )
variable ( d ) the independent ( manipulated ) variable

Figure 8: Word level attention visualization for BCA
(top) and HAN (bottom) for a middle school science
assessment question
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Figure 9: Maximum and minimum values of attention
as a function of word count for BCA

language acquisition and the large number of vari-
ables that impact second language acquisition, the
methodologies used in language acquisition re-
search have certain limitations. For example, the
number of variables that can be considered in a
study is practically limited, the sample popula-
tion is often small, and the question of qualita-
tive vs. quantitative methodologies used can influ-
ence outcomes (more details in (Larsen-Freeman
and Long, 2014; Mitchell et al., 2013)). These
limitations can carry into the feature engineering
process. Using a model with text as input ensures
that these constraints are not inherently part of the
model; the performance of the system is not lim-
ited by the features provided. Of course, perfor-
mance is limited by the training data, both in terms
of the cost of collection and any biases inherent in
the data. In addition, with advances in neural ar-
chitectures such as attention modeling, there may
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be opportunities for identifying specific aspects of
texts that are particularly difficult, though research
in this direction is still in early stages.

7 Conclusion

In summary, this work explored different neural
architectures for linguistic complexity analysis, to
mitigate issues with accuracy of systems based on
engineered features. Experimental results show
that it is possible to achieve high accuracy on texts
shorter than 100 words using RNNs with attention.
Using hierarchical structure improves results, par-
ticularly with attention models that leverage bidi-
rectional sentence context. Testing on a mix of
genres shows that the best neural model can gen-
eralize to subjects beyond what it is trained on,
though it performs slightly worse than a feature-
based regression model on texts longer than 100
words. More training data from other genres will
likely reduce the performance gap. Analysis of
attention weights can provide insights into which
phrases/sentences are important, both at the aggre-
gate and sample level. Developing new methods
for analysis of attention may be useful both for
improving model performance and for providing
more interpretable results for educators.

Two aspects not considered in this work are ex-
plicit representation of syntax and discourse struc-
ture. Syntax can be incorporated by concatentat-
ing word and dependency embeddings at the token
level. Our BCA model was designed to capture
cross-sentence coherence and coordination, but it
may be useful to extend the hierarchy for longer
documents and/or introduce explicit models of the
types of discourse features used in Coh-Metrix
(Graesser et al., 2004).
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Abstract

We present the task of second language acqui-
sition (SLA) modeling. Given a history of er-
rors made by learners of a second language, the
task is to predict errors that they are likely to
make at arbitrary points in the future. We de-
scribe a large corpus of more than 7M words
produced by more than 6k learners of English,
Spanish, and French using Duolingo, a popular
online language-learning app. Then we report
on the results of a shared task challenge aimed
studying the SLA task via this corpus, which
attracted 15 teams and synthesized work from
various fields including cognitive science, lin-
guistics, and machine learning.

1 Introduction

As computer-based educational apps increase in
popularity, they generate vast amounts of student
learning data which can be harnessed to drive per-
sonalized instruction. While there have been some
recent advances for educational software in do-
mains like mathematics, learning a language is
more nuanced, involving the interaction of lexi-
cal knowledge, morpho-syntactic processing, and
several other skills. Furthermore, most work that
has applied natural language processing to lan-
guage learner data has focused on intermediate-to-
advanced students of English, particularly in as-
sessment settings. Much less work has been de-
voted to beginners, learners of languages other
than English, or ongoing study over time.

We propose second language acquisition (SLA)
modeling as a new computational task to help
broaden our understanding in this area. First, we
describe a new corpus of language learner data,
containing more than 7.1M words, annotated for
production errors that were made by more than
6.4k learners of English, Spanish, and French, dur-
ing their first 30 days of learning with Duolingo
(a popular online language-learning app).
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Then we report on the results of a “shared task”
challenge organized by the authors using this SLA
modeling corpus, which brought together 15 re-
search teams. Our goal for this work is three-
fold: (1) to synthesize years of research in cog-
nitive science, linguistics, and machine learning,
(2) to facilitate cross-dialog among these disci-
plines through a common large-scale empirical
task, and in so doing (3) to shed light on the most
effective approaches to SLA modeling.

2 Shared Task Description

Our learner trace data comes from Duolingo:
a free, award-winning, online language-learning
platform. Since launching in 2012, more than
200 million learners worldwide have enrolled in
Duolingo’s game-like courses, either via the web-
site! or mobile apps.

Figure 1(a) is a screen-shot of the home screen,
which specifies the game-like curriculum. Each
icon represents a skill, aimed at teaching themati-
cally or grammatically grouped words or concepts.
Learners can tap an icon to access lessons of new
material, or to review material once all lessons are
completed. Learners can also choose to get a per-
sonalized practice session that reviews previously-
learned material from anywhere in the course by
tapping the “practice weak skills” button.

2.1 Corpus Collection

To create the SLA modeling corpus, we sampled
from Duolingo users who registered for a course
and reached at least the tenth row of skill icons
within the month of November 2015. By limit-
ing the data to new users who reach this level of
the course, we hope to better capture beginners’
broader language-learning process, including re-
peated interaction with vocabulary and grammar

"https://www.duolingo.com

Proceedings of the Thirteenth Workshop on Innovative Use of NLP for Building Educational Applications, pages 56—65
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Figure 1: Duolingo screen-shots for an English-speaking student learning French (iPhone app, 2017). (a) The home
screen, where learners can choose to do a “skill” lesson to learn new material, or get a personalized practice session
by tapping the “practice weak skills” button. (b—d) Examples of the three exercise types included in our shared task
experiments, which require the student to construct responses in the language they are learning.

over time. Note that we excluded all learners who learner: wen can help

took a placement test to skip ahead in the course, reference: when  can I help 7
since these learners are likely more advanced. label: X v X v

2.2 Three Language Tracks Figure 2: An illustration of how data labels are gener-

ated. Learner responses are aligned with the most simi-
lar reference answer, and tokens from the reference that
do not match are labeled errors.

An important question for SLA modeling is: to
what extent does an approach generalize across
languages? While the majority of Duolingo users
learn English—which can significantly improve
job prospects and quality of life (Pinon and Hay-  translate it into the L2. Figure 1(c) illustrates a re-
don, 2010)—Spanish and French are the second  verse tap item, which is a simpler version of the
and third most popular courses. To encourage re-  same format: learners construct an answer using a
searchers to explore language-agnostic features, bank of words and distractors. Figure 1(d) is a lis-
or unified cross-lingual modeling approaches, we  ten item, where learners hear an utterance in the L.2
created three tracks: English learners (who speak  they are learning, and must transcribe it. Duolingo
Spanish), Spanish learners (who speak English), does include many other exercise formats, but we

and French learners (who speak English). focus on these three in the current work, since con-
structing L2 responses through translation or tran-
2.3 Label Prediction Task scription is associated with deeper levels of pro-

The goal of the task is as follows: given a his-  cessing, which in turn is more strongly associated
tory of token-level errors made by the learner in ~ With learning (Craik and Tulving, 1975).
the learning language (L.2), accurately predict the Since each exercise can have multiple correct
errors they will make in the future. In particular, answers (due to synonyms, homophones, or ambi-
we focus on three Duolingo exercise formats that  guities in tense, number, formality, etc.), Duolingo
require the learners to engage in active recall, that  uses a finite-state machine to align the learner’s re-
is, they must construct answers in the L2 through  sponse to the most similar reference answer form
translation or transcription. a large set of acceptable responses, based on token
Figure 1(b) illustrates a reverse translate item,  string edit distance (Levenshtein, 1966). For ex-
where learners are given a prompt in the language  ample, Figure 1(b) shows an example of corrective
they know (e.g., their L1 or native language), and  feedback based on such an alignment.
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Figure 2 shows how we use these alignments to
generate labels for the SLA modeling task. In this
case, an English (from Spanish) learner was asked
to translate, “; Cudndo puedo ayudar?” and wrote
“wen can help” instead of “When can L help?” This
produces two errors (a typo and a missing pro-
noun). We ignore capitalization, punctuation, and
accents when matching tokens.

24 Data Set Format

Sample data from the resulting corpus can be found
in Figure 3. Each token from the reference an-
swer is labeled according to the alignment with the
learner’s response (the final column: @ for cor-
rect and 1 for incorrect). Tokens are grouped
together by exercise, including user-, exercise-,
and session-level meta-data in the previous line
(marked by the # character). We included all ex-
ercises done by the users sampled from the 30-day
data collection window.

The overall format is inspired by the Universal
Dependencies (UD) format?. Column 1 is a unique
B64-encoded token ID, column 2 is a token (word),
and columns 3-6 are morpho-syntactic features
from the UD tag set (part of speech, morphology
features, and dependency parse labels and edges).
These were generated by processing the aligned
reference answers with Google SyntaxNet (Andor
et al., 2016). Because UD tags are meant to be
language-agnostic, it was our goal to help make
cross-lingual SLA modeling more straightforward
by providing these features.

Exercise meta-data includes the following:

* user: 8-character unique anonymous user ID

for each learner (B64-encoded)

e countries: 2-character ISO country codes

from which this learner has done exercises

* days: number of days since the learner started

learning this language on Duolingo

* client: session device platform

* session: session type (e.g., lesson or practice)

 format: exercise format (see Figure 1)

e time: the time (in seconds) it took the learner

to submit a response for this exercise.

Lesson sessions (about 77% of the data set)
are where new words or concepts are introduced,
although lessons also include previously-learned
material (e.g., each exercise attempts to introduce
only one new word or inflection, so all other to-
kens should have been seen by the student be-

2h‘ctp ://universaldependencies.org
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TRAIN DEV TEST
Track Users Tokens &m Tokens ) Tokens (Em)
English 2.6k 2.6M a3%) 387k 4% 387k (15%)
Spanish 2.6k 2.0M (4% 289%k 6% 282k (16%)
French 1.2k 927k a6%) 138k (18%) 136k (18%)
Overall 64k 55M 4% 8l4k a5%) 804Kk (16%)

Table 1: Summary of the SLA modeling data set.

fore). Practice sessions (22%) should contain only
previously-seen words and concepts. Test sessions
(1%) are mini-quizzes that allow a student to skip
out of a single skill in the curriculum (i.e., the stu-
dent may have never seen this content before in the
Duolingo app, but may well have had prior knowl-
edge before starting the course).

It is worth mentioning that for the shared task,
we did not provide actual learner responses, only
the closest reference answers. Releasing such data
(at least in the TEST set) would by definition give
away the labels and might undermine the task.
However, we plan to release a future version of the
corpus that is enhanced with additional meta-data,
including the actual learner responses.

2.5 Challenge Timeline

The data were released in two phases. In phase 1
(8 weeks), TRAIN and DEV partitions were re-
leased with labels, along with a baseline system
and evaluation script, for system development. In
phase 2 (10 days), the TEST partition was released
without labels, and teams submitted predictions to
CodaLab? for blind evaluation. To allow teams to
compare different system parameters or features,
they were allowed to submit up to 10 predictions
total (up to 2 per day) during this phase.

Table 1 reports summary statistics for each of
the data partitions for all three tracks. We created
TRAIN,DEV, and TEST partitions as follows. For
each user, the first 80% of their exercises were
placed in the TRAIN set, the subsequent 10% in
DEYV, and the final 10% in TEST. Hence the three
data partitions are sequential, and contain ordered
observations for all users.

Note that because the three data partitions are
sequential, and the DEV set contains observations
that are potentially valuable for making TEST
set predictions, most teams opted to combine the
TRAIN and DEV sets to train their systems in fi-
nal phase 2 evaluations.

*http://codalab.org



# user:XEinXf5+ countries:CO0 days:2.678 client:web session:practice format:reverse_translate time:6

oMGsnnH/0101  When ADV PronType=Int | fPOS=ADV++WRB advmod 4 1
oMGsnnH/0102  can AUX VerbForm=Fin | fPOS=AUX++MD aux 4 0
oMGsnnH/0103 I PRON  Case=Nom|Number=Sing|Person=1|PronType=Prs | fPOS=PRON++PRP nsubj 4 1
oMGsnnH/0104  help VERB  VerbForm=Inf|fP0S=VERB++VB ROOT 0 0

# user:XEinXf5+ countries:CO days:5.707 client:android session:practice format:reverse_translate time:22

W+QU2fm70301  He PRON  Case=Nom|Gender=Masc |[Number=Sing|Person=3|PronType=Prs|fPOS=PRON++PRP  nsubj 3 0
W+QU2fm70302 's AUX Mood=Ind|Number=Sing|Person=3|Tense=Pres |VerbForm=Fin | fPOS=AUX++VBZ aux 31
W+QU2fm70303 wearing VERB  Tense=Pres|VerbForm=Part | fPOS=VERB++VBG ROOT 0 0
W+QU2fm70304  two NUM NumType=Card | fPOS=NUM++CD nummod 5 0
W+QU2fm70305 shirts NOUN  Number=Plur | fPOS=NOUN++NNS dobj 3 0

# user:XEinXf5+ countries:CO days:10.302 client:web session:lesson format:reverse_translate time:28

v0eGrMgP0101 We PRON  Case=Nom|Number=Plur|Person=1|PronType=Prs | fPOS=PRON++PRP nsubj 2 0
v0eGrMgP0102 eat VERB  Mood=Ind|Tense=Pres |VerbForm=Fin | fPOS=VERB++VBP ROOT 0 1
v0eGrMgP@103  cheese NOUN  Degree=Pos | fP0OS=ADJ++]J dobj 2 1
v0eGrMgP@104  and CONJ  fPOS=CONJ++CC cc 2 0
v0eGrMgP@105 they PRON Case=Nom|Number=Plur |Person=3|PronType=Prs | fPOS=PRON++PRP nsubj 6 0
v0eGrMgP0106 eat VERB  Mood=Ind|Tense=Pres|VerbForm=Fin|fP0S=VERB++VBP conj 2 1
v0eGrMgP0107  fish NOUN  fPOS=X++FW dobj 6 0

Figure 3: Sample exercise data from an English learner over time: roughly two, five, and ten days into the course.

2.6 Evaluation

We use area under the ROC curve (AUC) as
the primary evaluation metric for SLA model-
ing (Fawcett,2006). AUC is acommon measure of
ranking quality in classification tasks, and can be
interpreted as the probability that the system will
rank a randomly-chosen error above a randomly-
chosen non-error. We argue that this notion of
ranking quality is particularly useful for evaluating
systems that might be used for personalized learn-
ing, e.g., if we wish to prioritize words or exer-
cises for an individual learner’s review based on
how likely they are to have forgotten or make er-
rors at a given point in time.

We also report F1 score —the harmonic mean of
precision and recall—as a secondary metric, since
it is more common in similar skewed-class label-
ing tasks (e.g., Ng et al., 2013). Note, however,
that F1 can be significantly improved simply by
tuning the classification threshold (fixed at 0.5 for
our evaluations) without affecting AUC.

3 Results

A total of 15 teams participated in the task, of
which 13 responded to a brief survey about their
approach, and 11 submitted system description pa-
pers. All but two of these teams submitted predic-
tions for all three language tracks.

Official shared task results are reported in Ta-
ble 2. System ranks are determined by sorting
teams according to AUC, and using DeL.ong’s test
(DeLong et al., 1988) to identify statistical ties.
For the remainder of this section, we provide a
summary of each team’s approach, ordered by the
team’s average rank across all three tracks. Certain
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teams are marked with modeling choice indicators
(&, &, 1), which we discuss further in §5.

SanaLabs (Nilsson et al., 2018) used a combi-
nation of recurrent neural network (RNN) predic-
tions with those of a Gradient Boosted Decision
Tree (GBDT) ensemble, trained independently for
each track. This was motivated by the observa-
tion that RNNs work well for sequence data, while
GBDTs are often the best-performing non-neural
model for shared tasks using tabular data. They
also engineered several token context features, and
learner/token history features such as number of
times seen, time since last practice, etc.

singsound (Xu et al., 2018) used an RNN ar-
chitecture using four types of encoders, represent-
ing different types of features: token context, lin-
guistic information, user data, and exercise for-
mat. The RNN decoder integrated information
from all four encoders. Ablation experiments re-
vealed the context encoder (representing the token)
contributed the most to model performance, while
the linguistic encoder (representing grammatical
information) contributed the least.

NYU (Rich et al., 2018) used an ensemble of
GBDTs with features engineered based on psy-
chological theories of cognition. Predictions for
each track were averaged between a track-specific
model and a unified model (trained on data from all
three tracks). In addition to the word, user, and ex-
ercise features provided, the authors included word
lemmas, corpus frequency, L1-L2 cognates, and
features indicating user motivation and diligence
(derived from usage patterns), and others. Abla-
tion studies indicated that most of the performance
was due to the user and token features.



English Track Spanish Track French Track
1 Team AUC Fl1 1 Team AUC Fl1 1 Team AUC Fl1
1 SanaLabs {de 861 561 1 SanaLabs $de 838 530 1 SanaLabs 857 573
1 singsound <> 861 559 2 NYU &i 835 420 2 singsound 854 569
3 NYU & 859 468 2 singsound < 835 524 2 NYU &t 854 493
4 TMU 1 848 476 4 TMU &I 824 439 4 CECLt 843 487
5 CECL % 846 414 5 CECL % 818 390 5 TMU i 839 502
6 Cambridge ¢ 841 479 6 Cambridge ¢ .807 435 6 Cambridge ¢ 835 508
7 UCSD & 829 424 7 UCSD & .803 375 7 UCSD & 823 442
8 nihalnayak 821 376 7 LambdaLab & 801 344 8 Lambdalab & 815 415
8 LambdaLab & 821 .389 9 Grotoco 791 452 8 Grotoco 813 502
10 Grotoco 817 462 9 nihalnayak 790 338 10 nihalnayak 811 431
11 jilljenn 815 329 11 ymatusevych 189 347 10 jilljenn .809 406
12 ymatusevych 813 381 11 jilljenn 788 306 10 ymatusevych 808 441
13 renhk J97 448 13 renhk J73 432 13 simplelinear 807 394
14 zIb241 787 003 14 SLAM baseline 746 175 14 renhk 796 481
15 SLAM_baseline 774 190 15 zIb241 682 389 15 SLAM_baseline 771 281

Table 2: Final results. Ranks (1) are determined by statistical ties (see text). Markers indicate which systems
include recurrent neural architectures (<{>), decision tree ensembles (&), or a multitask model across all tracks ().

TMU (Kaneko et al., 2018) used a combination
of two bidirectional RNNs— the first to predict po-
tential user errors at a given token, and a second to
track the history of previous answers by each user.
These networks were jointly trained through a uni-
fied objective function. The authors did not engi-
neer any additional features, but did train a single
model for all three tracks (using a track ID feature
to distinguish among them).

CECL (Bestgen, 2018) used a logistic regres-
sion approach. The base feature set was expanded
to include many feature conjunctions, including
word n-grams crossed with the token, user, format,
and session features provided with the data set.

Cambridge (Yuan, 2018) trained two RNNs—
a sequence labeler, and a sequence-to-sequence
model taking into account previous answers—and
found that averaging their predictions yielded the
best results. They focused on the English track, ex-
perimenting with additional features derived from
other English learner corpora. Hyper-parameters
were tuned for English and used as-is for other
tracks, with comparable results.

UCSD (Tomoschuk and Lovelett, 2018) used a
random forest classifier with a set of engineered
features motivated by previous research in mem-
ory and linguistic effects in SLA, including “word
neighborhoods,” corpus frequency, cognates, and
repetition/experience with a given word. The sys-
tem also included features specific to each user,
such as mean and variance of error rates.

LambdaLab (Chen et al., 2018) used GBDT
models independently for each track, deriv-
ing their features from confirmatory analysis
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of psychologically-motivated hypotheses on the
TRAIN set. These include proxies for student en-
gagement, spacing effect, response time, etc.
nihalnayak (Nayak and Rao, 2018) used a lo-
gistic regression model similar to the baseline,
but added features inspired by research in code-
mixed language-learning where context plays an
important role. In particular, they included word,
part of speech, and metaphone features for previ-
ous:current and current:next token pairs.

Grotoco (Klerke et al., 2018) also used logis-
tic regression, including word lemmas, frequency,
cognates, and user-specific features such as word
error rate. Interestingly, the authors found that ig-
noring each user’s first day of exercise data im-
proved their predictions, suggesting that learners
first needed to familiarize themselves with app be-
fore their data were reliable for modeling.

jilljenn (Vie, 2018) used a deep factorization
machine (DeepFM), a neural architecture devel-
oped for click-through rate prediction in recom-
mender systems. This model allows learning from
both lower-order and higher-order induced fea-
tures and their interactions. The DeepFM outper-
formed a simple logistic regression baseline with-
out much additional feature engineering.

Other teams did not submit system description
papers. However, according to a task organizer
survey ymatusevych used a linear model with
multilingual word embeddings, corpus frequency,
and several L1-L2 features such as cognates. Ad-
ditionally, simplelinear used an ensemble of some
sort (for the French track only). renhk and zlb241
provided no details about their systems.



SLAM_baseline is the baseline system pro-
vided by the task organizers. It is a simple logis-
tic regression using data set features, trained sepa-
rately for each track using stochastic gradient de-
scent on the TRAIN set only.

4 Related Work

SLA modeling is a rich problem, and presents a
opportunity to synthesize work from various sub-
fields in cognitive science, linguistics, and ma-
chine learning. This section highlights a few key
concepts from these fields, and how they relate to
the approaches taken by shared task participants.

Item response theory (IRT) is a common psy-
chometric modeling approach used in educational
software (e.g., Chen et al., 2005). In its simplest
form (Rasch, 1980), an IRT model is a logistic re-
gression with two weights: one representing the
learner’s ability (i.e., user ID), and the other rep-
resenting the difficulty of the exercise or test item
(i.e.,token ID). An extension of this idea is the ad-
ditive factor model (Cen et al., 2008) which adds
additional “knowledge components” (e.g., lexical,
morphological, or syntactic features). Teams that
employed linear models (including our baseline)
are essentially all additive factor IRT models.

For decades, tutoring systems have also em-
ployed sequence models like HMMs to perform
knowledge tracing (Corbett and Anderson, 1995),
a way of estimating a learner’s mastery of knowl-
edge over time. RNN-based approaches that en-
code user performance over time (i.e., that span
across exercises) are therefore variants of deep
knowledge tracing (Piech et al., 2015).

Relatedly, the spacing effect (Dempster, 1989)
is the observation that people will not only learn
but also forget over time, and they remember more
effectively through scheduled practices that are
spaced out. Settles and Meeder (2016) and Ridge-
way et al. (2017) recently proposed non-linear re-
gressions that explicitly encode the rate of forget-
ting as part of a decision surface, however none of
the current teams chose to do this. Instead, forget-
ting was either modeled through engineered fea-
tures (e.g., user/token histories), or opaquely han-
dled by sequential RNN architectures.

SLA modeling also bears some similarity to re-
search in grammatical error detection (Leacock
et al., 2010) and correction (Ng et al., 2013). For
these tasks, a model is given a (possibly ill-formed)
sequence of words produced by a learner, and
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the task is to identify which are mistakes. SLA
modeling is in some sense the opposite: given
a well-formed sequence of words that a learner
should be able to produce, identify where they are
likely to make mistakes. Given these similarities, a
few teams adapted state-of-the-art GEC/GED ap-
proaches to create their SLA modeling systems.

Finally, multitask learning (e.g., Caruana, 1997)
is the idea that machine learning systems can do
better at multiple related tasks by trying to solve
them simultaneously. For example, recent work
in machine translation has demonstrated gains
through learning to translate multiple languages
with a unified model (Dong et al., 2015). Simi-
larly, the three language tracks in this work pre-
sented an opportunity to explore a unified multi-
task framework, which a few teams did with posi-
tive results.

5 Meta-Analyses

In this section, we analyze the various modeling
choices explored by the different teams in order to
shed light on what kinds of algorithmic and feature
engineering decisions appear to be useful for the
SLA modeling task.

5.1 Learning Algorithms

Here we attempt to answer the question of whether
particular machine learning algorithms have a sig-
nificant impact on task performance. For example,
the results in Table 2 suggest that the algorithmic
choices indicated by (<>, &, T) are particularly ef-
fective. Is this actually the case?

To answer this question, we partitioned the
TEST set into 6.4k subsets (one for each learner),
and computed per-user AUC scores for each
team’s predictions (83.9k observations total). We
also coded each team with indicator variables to
describe their algorithmic approach, and used a re-
gression analysis to determine if these algorithmic
variations had any significant effects on learner-
specific AUC scores.

To analyze this properly, however, we need to
determine whether the differences among model-
ing choices are actually meaningful, or can simply
be explained by sampling error due to random vari-
ations among users, teams, or tracks. To do this,
we use a linear mixed-effects model (cf., Baayen,
2008, Ch. 7). In addition to modeling the fixed
effects of the various learning algorithms, we can
also model the random effects represented by the



Fixed effects (algorithm choices)  Effect p-value Features used Popularity  Effect
Intercept 786 <.001 Hkx* Word (surface form) +.005
Recurrent neural network (<>) +.028 012 * User ID +.014
Decision tree ensemble (&) +.018  .055 Part of speech —.008
Linear model (e.g., IRT) —.006 541 Dependency labels — 011
Multitask model () +.023 017 * Morphology features —.021
Random effects St. Dev. Requnse Bl R
Days in course +.023
User ID +.086 Client +.005
Team ID +.013 Countries +.012
Track ID +.011 Dependency edges —.000
Session +.014
Table 3: Mixed-effects analysis of learning algorithms. Word corpus frequency - +.008
Spaced repetition features mmn +.013
L1-L2 cognates 111} +.001
user ID (learners may vary by ability), the team ID ~ Word embeddings m +.020
Word stem/root/lemma m +.007

(teams may differ in other aspects not captured by
our schema, e.g., the hardware used), and the track
ID (tracks may vary inherently in difficulty).

Table 3 presents a mixed-effects analysis for the
algorithm variations used by at least 3 teams. The
intercept can be interpreted as the “average” AUC
of .786. Controlling for the random effects of user
(which exhibits a wide standard deviation of 4+-.086
AUC), team (4-.013), and track (+.011), three of
the algorithmic choices are at least marginally sig-
nificant (p < .1). For example, we might expect
a system that uses RNNs to model learner mas-
tery over time would add +.028 to learner-specific
AUC (all else being equal). Note that most teams’
systems that were not based on RNNs or tree en-
sembles used logistic regression, hence the “linear
model” effect is negligible (effectively treated as a
control condition in the analysis).

These results suggest two key insights for SLA
modeling. First, non-linear algorithms are particu-
larly desirable*, and second, multitask learning ap-
proaches that share information across tracks (i.e.,
languages) are also effective.

5.2 Feature Sets

We would also like to get a sense of which fea-
tures, if any, significantly affect system perfor-
mance. Table 4 lists features provided with the
SLA modeling data set, as well as several newly-
engineered feature types that were employed by at
least three teams (note that the precise details may
vary from team to team, but in our view aim to cap-

* Interestingly, the only linear model to rank among the
top 5 (CECL) relied on combinatorial feature conjunctions —
which effectively alter the decision surface to be non-linear
with respect to the original features. The RNN hidden nodes
and GBDT constituent trees from other top systems may in
fact be learning to represent these same feature conjunctions.
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Table 4: Summary of system features—both provided
(top) and team-engineered (bottom)— with team popu-
larity and univariate mixed-effects estimates.

ture the same phenomena). We also include each
feature’s popularity and an effect estimate’.

Broadly speaking, results suggest that feature
engineering had a much smaller impact on system
performance than the choice of learning algorithm.
Only “response time” and “days in course” showed
even marginally significant trends.

Of particular interest is the observation that
morpho-syntactic features (described in §2.4) ac-
tually seem to have weakly negative effects. This
echoes singsound’s finding that their linguistic en-
coder contributed the least to system performance,
and Cambridge determined through ablation stud-
ies that these features in fact hurt their system. One
reasonable explanation is that these automatically-
generated features contain too many systematic
parsing errors to provide value. (Note that NYU
artificially introduced punctuation to the exercises
and re-parsed the data in their work.)

As for newly-engineered features, word infor-
mation such as frequency, semantic embeddings,
and stemming were popular. It may be that these
features showed such little return because our cor-
pus was too biased toward beginners—thus rep-
resenting a very narrow sample of language —for
these features to be meaningful. Cognate features
were an interesting idea used by a few teams, and
may have been more useful if the data included

5This is similar to the analysis in §5.1, except that we
regress on each feature separately. That is, a feature is the
only fixed effect in the model (alongside intercept), while still
controlling for user, team, and track random effects.



users from a wider variety of different L1 lan-
guage backgrounds. Spaced repetition features
also exhibited marginal (but statistically insignif-
icant) gains. We posit that the 30-day window
we used for data collection was simply not long
enough for these features to capture more long-
term learning (and forgetting) trends.

5.3 Ensemble Analysis

Another interesting research question is: what is
the upper-bound for this task? This can be esti-
mated by treating each team’s best submission as
an independent system, and combining the results
using ensemble methods in a variety of ways. Such
analyses have been previously applied to other
shared task challenges and meta-analyses (e.g.,
Malmasi et al., 2017).

The oracle system is meant to be an upper-
bound: for each token in the TEST set, the oracle
outputs the team prediction with the lowest error
for that particular token. We also experiment with
stacking (Wolpert, 1992) by training a logistic re-
gression classifier using each team’s prediction as
an input feature®. Finally, we also pool system pre-
dictions together by taking their average (mean).

Table 5 reports AUC for various ensemble meth-
ods as well as some of the top performing team sys-
tems for all three tracks. Interestingly, the oracle
is exceptionally accurate (>.993 AUC and >.884
F1, not shown). This indicates that the potential
upper limit of performance on this task is quite
high, since there exists a near-perfect ranking of
tokens in the TEST set based only on predictions
from these 15 diverse participating teams.

The stacking classifier produces significantly
better rankings than any of the constituent sys-
tems alone, while the average (over all teams)
ranked between the 3rd and 4th best system in all
three tracks. Inspection of stacking model weights
revealed that it largely learned to trust the top-
performing systems, so we also tried simply av-
eraging the top 3 systems for each track, and this
method was statistically tied with stacking for the
English and French tracks (p = 0.002 for Spanish).
Interestingly, the highest-weighted team in each
track’s stacking model was singsound (+2.417
on average across the three models), followed

SNote that we only have TEST set predictions for each
team. While we averaged stacking classifier weights across
10 folds using cross-validation, the reported AUC is still
likely an over-estimate, since the models were in some sense
trained on the TEST set.
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System English Spanish French
Oracle 995 .996 993
Stacking 867 .844 .863
Average (top 3)  .867 .843 .863
Ist team 861 .838 857
2nd team 861 .835 854
3rd team 859 .835 .854
Average (all) .857 .832 852
4th team 848 .824 .843

Table 5: AUC results for the ensemble analysis.

by NYU (41.632), whereas the top-performing
team Sanal.abs had a surprisingly lower weight
(40.841). This could be due to the fact that their
system was itself an ensemble of an RNN and
GBDT models, which were used (in isolation) by
each of the other two teams. This seems to add
further support for the effectiveness of combining
these algorithms for the task.

6 Conclusion and Future Work

In this work, we presented the task of second
language acquisition (SLA) modeling, described a
large data set for studying this task, and reported on
the results of a shared task challenge that explored
this new domain. The task attracted strong par-
ticipation from 15 teams, who represented a wide
variety of fields including cognitive science, lin-
guistics, and machine learning.

Among our key findings is the observation that,
for this particular formulation of the task, the
choice of learning algorithm appears to be more
important than clever feature engineering. In par-
ticular, the most effective teams employed se-
quence models (e.g., RNNs) that can capture user
performance over time, and tree ensembles (e.g.,
GBDTs) that can capture non-linear relationships
among features. Furthermore, using a multitask
framework—in this case, a unified model that
leverages data from all three language tracks —can
provide further improvements.

Still, many teams opted for a simpler algo-
rithm (e.g., logistic regression) and concentrated
instead on more psychologically-motivated fea-
tures. While these teams did not always perform as
well, several demonstrated through ablation stud-
ies that these features can be useful within the lim-
itations of the algorithm. It is possible that the
constraints of the SLA modeling data set (beginner
language, homogeneous L1 language background,
short 30-day time frame, etc.) prevented these
features from being more useful across different



teams and learning algorithms. It would be inter-
esting to revisit these ideas using a more diverse
and longitudinal data set in the future.

To support ongoing research in SLA mod-
eling, current and future releases of our data
set will be publicly maintained online at:
https://doi.org/10.7910/DVN/8SWHNO.
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Abstract

We report the findings of the second Com-
plex Word Identification (CWI) shared task
organized as part of the BEA workshop co-
located with NAACL-HLT’2018. The sec-
ond CWI shared task featured multilingual and
multi-genre datasets divided into four tracks:
English monolingual, German monolingual,
Spanish monolingual, and a multilingual track
with a French test set, and two tasks: binary
classification and probabilistic classification.
A total of 12 teams submitted their results
in different task/track combinations and 11 of
them wrote system description papers that are
referred to in this report and appear in the BEA
workshop proceedings.

1 Introduction

The most common first step in lexical simplifi-
cation pipelines is identifying which words are
considered complex by a given target population
(Shardlow, 2013). This task is known as complex
word identification (CWI) and it has been attract-
ing attention from the research community in the
past few years.

In this paper we present the findings of the sec-
ond Complex Word Identification (CWI) shared
task organized as part of the thirteenth Work-
shop on Innovative Use of NLP for Building
Educational Applications (BEA) co-located with
NAACL-HLT’2018. The second CWI shared
task follows a successful first edition featuring 21
teams organized at SemEval’2016 (Paetzold and
Specia, 2016a). While the first CWI shared task
targeted an English dataset, the second edition fo-
cused on multilingualism providing datasets con-
taining four languages: English, German, French,
and Spanish.
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In an evaluation paper (Zampieri et al., 2017), it
has been shown that the performance of an ensem-
ble classifier built on top of the predictions of the
participating systems in the 2016 task degraded,
the more systems were added. The low perfor-
mance of the CWI systems that competed in the
first CWI task left much room for improvement
and was one of the reasons that motivated us to
organize this second edition.

1.1 Task Description

The goal of the CWI shared task of 2018 is to
predict which words challenge non-native speak-
ers based on the annotations collected from both
native and non-native speakers. To train their sys-
tems, participants received a labeled training set
where words in context were annotated regarding
their complexity. One month later, an unlabeled
test set was provided and participating teams were
required to upload their predictions for evaluation.
More information about the data collection is pre-
sented in Section 3.

Given the multilingual dataset provided, the
CWI challenge was divided into four tracks:

¢ English monolingual CWI;

¢ German monolingual CWI;

e Spanish monolingual CWI; and

e Multilingual CWI with a French test set.

For the first three tracks, participants were pro-
vided with training and testing data for the same
language. For French, participants were provided
only with a French test set and no French training
data. In the CWI 2016, the task was cast as binary
classification. To be able to capture complexity
as a continuum, in our CWI 2018 shared task, we

Proceedings of the Thirteenth Workshop on Innovative Use of NLP for Building Educational Applications, pages 66—78
New Orleans, Louisiana, June 5, 2018. (©2018 Association for Computational Linguistics



additionally included a probabilistic classification
task. The two tasks are summarized as follows:

¢ Binary classification task: Participants were
asked to label the target words in context as
complex (1) or simple (0).

e Probabilistic classification task: Partici-
pants were asked to assign the probability of
target words in context being complex.

Participants were free to choose the task/track
combinations they would like to participate in.

2 Related Work

Until the appearance of the CWI shared task of
2016, there was no manually annotated and veri-
fied CWI dataset. The 2016 shared task brought us
one of the largest CWI datasets to that date, con-
sisting of a total of 9,200 sentences manually an-
notated by 400 different non-native English speak-
ers. In total, 200 sentences are used as a training
set where each target is annotated by 20 annota-
tors. The rest of the dataset (9,000 sentences) are
used for test set where each target is annotated by
a single annotator from the entire pool of 400 an-
notators.

The approaches used in the first SemEval 2016
Task 11: Complex Word Identification are de-
scribed in Table 1.

3 Datasets

We have used the CWIG3G2 datasets from (Yi-
mam et al., 2017b,a) for the complex word iden-
tification (CWI) shared task 2018. The datasets
are collected for multiple languages (English, Ger-
man, Spanish). The English datasets cover differ-
ent text genres, namely News (professionally writ-
ten news), WikiNews (news written by amateurs),
and Wikipedia articles. Below, we will briefly de-
scribe the annotation process and the statistics of
collected datasets. For detail explanation of the
datasets, please refer to the works of Yimam et al.
(2017b,a)

Furthermore, to bolster the cross-lingual CWI
experiment, we have collected a CWI dataset for
French. The French dataset was collected through
the same method used for the CWIG3G2 cor-
pus (Yimam et al., 2017b,a). The dataset con-
tains Wikipedia texts extracted from a compara-
ble simplified corpus collected by Brouwers et al.
(2014). Similar to CWIG3G2, for each article,
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all paragraphs containing between 5 and 10 sen-
tences were extracted. From this pool of para-
graphs, only the best paragraph was selected via
a ranking procedure maximizing sentence length
and lexical richness, and minimizing the ratio of
named entities and foreign words. From this large
selection of best paragraphs per article, an optimal
subset of 100 paragraphs was then selected using
a greedy search procedure similar to that of Tack
et al. (2016), minimizing the vocabulary overlap
between pairs of paragraphs using the Jaccard co-
efficient. Finally, a random test split of 24 para-
graphs was selected to be annotated.

3.1 Annotation Process

Annotations were collected using the Amazon
Mechanical Turk (MTurk). Instead of showing a
single sentence, we presented 5 to 10 sentences to
the annotator in a single HIT (Human Intelligence
Task) and requested them to highlight words or
phrases that could pose difficulty in understanding
the paragraph. The annotation system is unique
in many aspects such as: 1) The instruction makes
clear that the annotators should assume a given tar-
get reader such as children, language learners or
people with reading impairments. 2) A bonus re-
ward is offered when the user’s selection matches
at least half of the other annotations to encourage
extra care during the complex word or phrase (CP)
selection. 3) The maximum number of annotations
allowed is limited to 10 so that we could prohibit
an arbitrarily large number of selections intend-
ing to attain the bonus reward. 4) For the English
dataset, more than 20 annotators were able to an-
notate the same HIT, among which are at least 10
native English speakers and 10 non-native English
speakers so that it is possible to investigate if na-
tive and non-native speakers have different CWI
needs. 5) Complex words are not pre-highlighted,
as in previous contributions, so that annotators
are not biased to the pre-selection of the complex
phrases. 6) In addition to single words, we allowed
the annotation of multi-word expressions (MWE),
up to a size of 50 characters.

Table 2 shows the total, native, and non-native
number of annotators that participated in the an-
notation task.

3.2 Analysis of Collected Datasets

Table 3 shows statistics of the datasets for the
English (combinations of three genres), German,
Spanish and French (test set only) CWI tasks.



Team Approach System Paper
SV000gg System voting with threshold and machine learning-based classi- (Paetzold and Specia, 2016b)
fiers trained on morphological, lexical, and semantic features
TALN Random forests of lexical, morphological, semantic & syntactic (Ronzano et al., 2016)
features
UWB Maximum Entropy classifiers trained over word occurrence (Konkol, 2016)
counts on Wikipedia documents
PLUJAGH Threshold-based methods trained on Simple Wikipedia (Wrébel, 2016)
JUNLP Random Forest and Naive Bayes classifiers trained over semantic, (Mukherjee et al., 2016)
lexicon-based, morphological and syntactic features
HMC Decision trees trained over lexical, semantic, syntactic and psy- (Quijada and Medero, 2016)
cholinguistic features
MACSAAR Random Forest and SVM classifiers trained over Zipfian features (Zampieri et al., 2016)
Pomona Threshold-based bagged classifiers with bootstrap re-sampling (Kauchak, 2016)
trained over word frequencies
Melbourne Weighted Random Forests trained on lexical/semantic features (Brooke et al., 2016)
T Nearest Centroid classifiers trained over semantic and morpho- (Palakurthi and Mamidi, 2016)
logical features
LTG Decision Trees trained over number of complex judgments (Malmasi et al., 2016)
MAZA Ensemble methods various word frequency features (Malmasi and Zampieri, 2016)
Sensible Ensembled Recurrent Neural Networks trained over embeddings (Gillin, 2016)
ClacEDLK Random Forests trained over semantic, morphological, lexical (Davoodi and Kosseim, 2016)
and psycholinguistic features
Amrita-CEN  SVM classifiers trained over word embeddings and various se- (S.Petal., 2016)
mantic and morphological features
AI-KU SVM classifier trained with word embeddings of the target and (Kuru, 2016)
surrounding words
BHASHA SVM and Decision Tree trained over lexical and morphological (Choubey and Pateria, 2016)
features
USAAR Bayesian Ridge classifiers trained over a hand-crafted word sense  (Martinez Martinez and Tan, 2016)
entropy metric and language model perplexity
CoastalCPH  Neural Network and Logistic Regression system trained over (Bingel et al., 2016)
word frequencies and embedding
Table 1: SemEval 2016 CWI — Systems and approaches
Language | Native | Non-native | Total percentage of agreements decreases to 83% at
English 134 49 183 the lowest. This might be because native and
German 12 11 23 non-native annotators have a different perspective
Spanish 48 6 54 what is a complex phrase. Furthermore, we have
French 10 12 22 seen that native annotators agree more within their

Table 2: The number of annotators for different lan-
guages

Table 3: The number of instances for each training, de-
velopment and test set

An analysis of the English dataset shows that
around 90% of complex phrases have been se-
lected by at least two annotators (both native and
non-native). When separated by language, the

68

group (84% and above) than non-native speakers
(83% and above). We also see that the absolute
agreement between native and non-native anno-
tators is very low (70%), which further indicates
that the two user groups might have different CWI

For the German annotation task, we have fewer
annotators than the other languages. As it can
be seen from Table 2, there are more native an-
notators, but they participate on fewer HITs than
the non-native annotators (on average, 6.1 non-
native speakers and 3.9 native speakers partici-
pated in a HIT). Unlike the English annotation
task, non-native annotators have a higher inter-
annotator agreement (70.66%) than the native an-
notators (58.5%).

Language | Train | Dev | Test

English 27,299 | 3,328 | 4,252 needs.
German 6,151 795 959

Spanish 13,750 | 1,622 | 2,233

French - - 2,251



The Spanish annotation task is different from
both the English and the German annotation tasks
since its annotations come almost exclusively
from native annotators. In general, Spanish anno-
tators have shown lower agreements than the En-
glish and German annotators. Also the Spanish
annotators highlight more MWEs than the English
and German annotators.

Regarding the French annotation task, we ob-
serve a comparable distribution in the number of
native and non-native annotators compared to the
German annotation task (Table 2). There were
slightly more non-native participants than native
ones, but the number of native annotators who
completed the same number of HITs was consid-
erably larger. This means that although there were
more non-native participants, they did not partici-
pate equally in all HITs.

Train Dev Test
# % # D # %
EN | 11,253 41 | 1,388 42 | 1,787 42
DE | 2562 42 334 42 376 39
ES 5,455 40 653 40 907 41
FR - - 657 29

Table 4: The number (#) and ratio (%) of complex in-
stances per language

A striking difference that can be observed in
the French dataset pertains to the proportion of
identified complex words. Compared to the other
languages, we have a considerably lower relative
count of complex instances (Table 4). However,
this does not necessarily mean that the texts were
simpler for French than for the other languages.
Looking at the proportion of MWEs annotated as
complex (Table 5), we observe that the French
dataset contains more MWE annotations than sin-
gle words compared to the other datasets. One
plausible explanation for this could be attributed
to the limitation of allowing at most 10 unique an-
notations per HIT in MTurk. Indeed, a number
of annotators highlighted the fact that they some-
times found more than 10 possible annotations of
complex words. As aresult, in order to account for
all of these possibilities, the annotators sometimes
grouped nearly adjacent single complex words as
one sequence, leading to a larger relative propor-
tion of MWE (3-gram+) annotations. Another ex-
planation for this disparity could be attributed to
the lower number of annotators for French com-

69

pared to English or Spanish. If we had had a sim-
ilar number of annotators for French, we would
probably also have obtained a more varied sam-
ple and hence a higher relative amount of different
complex word annotations.

l-gram 2-gram 3-gram+ total

EN # | 10,676 2,760 992 | 14,428
% | T74.00 19.13 6.87

DE # 2,770 307 195 | 3,272
% | 84.66 9.38 5.96

ES # 4,712 1,276 1,027 | 7,015
% | 67.17 18.19 14.64

FR # 414 118 125 657
% | 63.01 17.96 19.03

Table 5: The distribution of single and MWE annota-
tions of complex words per language

4 System Descriptions and Results

In this section, we briefly describe the systems
from all 11 teams that have participated in the
2018 CWI shared task and wrote a system descrip-
tion paper to be presented at the BEA conference.
Table 6 and 7 shows the results of all systems for
the monolingual and multilingual binary classifi-
cation tasks while Table 8 and 9 presents the prob-
abilistic classification results for the monolingual
and multilingual tracks.

4.1 Baseline Systems

For both the binary and probabilistic classification
tasks, we build a simple baseline system that uses
only the most basic features described in Yimam
et al. (2017b,a), namely only frequency and length
features. The Nearest Centroid classifier and the
Linear Regression algorithms from the scikit-learn
machine learning library are used for the binary
and probabilistic classification tasks resp. For the
binary classification task, we have used the accu-
racy and macro-averaged F1 evaluation metrics.
For the probabilistic classification task, the Mean
Absolute Error (MAE) measure is used. The base-
line results are shown in Table 6, 7, 8, and 9 for
the monolingual and multilingual tracks.

4.2 Shared Task Systems

UnibucKernel The UnibucKernel (Butnaru and
Tonescu, 2018) team participated on the monolin-
gual CWI shared task, specifically on the NEWS,
WIKINEWS, and WIKIPEDIA domain datasets.



News F-1 Rank | WikiNews F-1 Rank | Wikipedia F-1 Rank
Camb 0.8736 1 Camb 0.84 1 Camb 0.8115 1
Camb 0.8714 2 Camb 0.8378 2 NILC 0.7965 2
Camb 0.8661 3 Camb 0.8364 4 UnibucKernel 0.7919 3
ITEC 0.8643 4 Camb 0.8378 3 NILC 0.7918 4
ITEC 0.8643 4 NLP-CIC 0.8308 5 Camb 0.7869 5
TMU 0.8632 6 NLP-CIC 0.8279 6 Camb 0.7862 6
ITEC 0.8631 7 NILC 0.8277 7 SB@GU 0.7832 7
NILC 0.8636 5 NILC 0.8270 8 ITEC 0.7815 8
NILC 0.8606 9 NLP-CIC 0.8236 9 SB@GU 0.7812 9
Camb 0.8622 8 CFILT_IITB 0.8161 10 | UnibucKernel 0.7804 10
NLP-CIC 0.8551 10 | CFILT_IITB 0.8161 10 | Camb 0.7799 11
NLP-CIC 0.8503 12 | CFILT_IITB 0.8152 11 CFILT_IITB 0.7757 12
NLP-CIC 0.8508 11 CFILT_IITB 0.8131 12 | CFILT_ITB 0.7756 13
NILC 0.8467 15 | UnibucKernel 0.8127 13 | CFILT_IITB 0.7747 14
CFILT_IITB 0.8478 13 | ITEC 0.8110 14 | NLP-CIC 0.7722 16
CFILT_IITB 0.8478 13 SB@GU 0.8031 15 | NLP-CIC 0.7721 17
CFILT_IITB 0.8467 14 | NILC 0.7961 17 | NLP-CIC 0.7723 15
SB@GU 0.8325 17 | NILC 0.7977 16 | NLP-CIC 0.7723 15
SB@GU 0.8329 16 | CFILTITB 0.7855 20 | SB@GU 0.7634 18
Gillin Inc. 0.8243 19 | TMU 0.7873 19 | TMU 0.7619 19
Gillin Inc. 0.8209 | 24 | SB@GU 0.7878 18 | NILC 0.7528 | 20
Gillin Inc. 0.8229 20 | UnibucKernel 0.7638 23 UnibucKernel 0.7422 24
Gillin Inc. 0.8221 21 hu-berlin 0.7656 | 22 | hu-berlin 0.7445 22
hu-berlin 0.8263 18 | SB@GU 0.7691 21 SB@GU 0.7454 | 21
Gillin Inc. 0.8216 | 22 | LaSTUS/TALN | 0.7491 25 | UnibucKernel 0.7435 | 23
UnibucKernel 0.8178 | 26 | LaSTUS/TALN | 0.7491 25 | LaSTUS/TALN | 0.7402 | 25
UnibucKernel 0.8178 | 26 | SB@GU 0.7569 | 24 | LaSTUS/TALN | 0.7402 | 25
CFILT_IITB 0.8210 | 23 | hu-berlin 0.7471 26 | NILC 0.7360 | 26
CFILT_IITB 0.8210 | 23 | Gillin Inc. 0.7319 | 28 | hu-berlin 0.7298 | 27
hu-berlin 0.8188 | 25 | Gillin Inc. 0.7275 30 | CoastalCPH 0.7206 | 28
UnibucKernel 0.8111 28 | Gillin Inc. 0.7292 | 29 | LaSTUS/TALN | 0.6964 | 29
NILC 0.8173 27 | Gillin Inc. 0.7180 | 31 Gillin Inc. 0.6604 | 30
LaSTUS/TALN/TALN | 0.8103 | 29 | LaSTUS/TALN | 0.7339 | 27 | Gillin Inc. 0.6580 | 31
LaSTUS/TALN 0.8103 | 29 | Gillin Inc. 0.7083 32 | Gillin Inc. 0.6520 | 32
LaSTUS/TALN 0.7892 | 31 UnibucKernel 0.6788 | 33 | Gillin Inc. 0.6329 | 33
UnibucKernel 0.7728 | 33 SB@GU 0.5374 | 34 | SB@GU 0.5699 | 34
SB@GU 0.7925 30 |- - - Coastal CPH 0.5020 | 35
SB@GU 0.7842 | 32 |- - - LaSTUS/TALN | 0.3324 | 36
LaSTUS/TALN 0.7669 | 34 | - - - - - -
UnibucKernel 0.5158 36 - - - - - -
SB@GU 0.5556 | 35 - - - - - -
LaSTUS/TALN 0.2912 | 37 | - - - - - -
LaSTUS/TALN 0.1812 | 38 | - - - - - -
LaSTUS/TALN 0.1761 39 |- - - - - -
Baseline 0.7579 - Baseline 0.7106 - Baseline 0.7179 -

Table 6: Binary classification results for the monolingual English tracks.

The pipeline consists of feature extraction, com-
puting a kernel matrix and applying an SVM clas-
sifier.

The feature sets include low-level features such
as character n-grams, and high-level features such
semantic properties extracted from lexical re-
sources and word embeddings. The low-level fea-
tures were extracted based on the target complex
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word, and include count of characters, count of
vowels, count of consonants, count of repeating
characters, and count of character n-grams (up to
4 characters).

The first set of word embedding features take
into account the word’s context which is obtained
by computing the cosine similarity between the
complex word and each of the other words in the



German F-1 Rank | Spanish F-1 Rank | French F-1 Rank
TMU 0.7451 1 TMU 0.7699 1 CoastalCPH | 0.7595 1
SB@GU 0.7427 2 ITEC 0.7637 3 TMU 0.7465 2
hu-berlin 0.6929 4 NLP-CIC 0.7672 2 SB@GU 0.6266 3
SB@GU 0.6992 3 CoastalCPH | 0.7458 5 SB@GU 0.6130 4
CoastalCPH | 0.6619 5 CoastalCPH | 0.7458 5 hu-berlin 0.5738 6
Gillin Inc. 0.5548 10 | NLP-CIC 0.7468 4 SB@GU 0.5891 5
Gillin Inc. 0.5459 11 NLP-CIC 0.7419 6 hu-berlin 0.5343 7
Gillin Inc. 0.5398 12 | SB@GU 0.7281 7 hu-berlin 0.5238 8
Gillin Inc. 0.5271 14 | SB@GU 0.7259 8 hu-berlin 0.5124 9
Gillin Inc. 0.5275 13 CoastalCPH | 0.7238 9 - - -
CoastalCPH | 0.6078 6 hu-berlin 0.7080 11 - - -
CoastalCPH | 0.5818 7 CoastalCPH | 0.7153 10 | - - -
CoastalCPH | 0.5778 8 Gillin Inc. 0.6804 13 - - -
CoastalCPH | 0.5771 9 Gillin Inc. 0.6784 14 - - -
- - - Gillin Inc. 0.6722 15 - - -
- - - Gillin Inc. 0.6669 16 | - - -
- - - Gillin Inc. 0.6547 17 | - - -
- - - CoastalCPH | 0.6918 12 |- - -
Baseline 0.7546 - Baseline 0.7237 - Baseline 0.6344 -

Table 7: Binary classification results for the multilingual German, Spanish and French tracks.

sentence (minimum, maximum and mean simi-
larity values are used). Furthermore, sense em-
beddings are used, which are computed based on
WordNet synsets. Lastly, using word embeddings,
additional features were designed based on the lo-
cation of the complex word in a dimensionally re-
duced embedding space. For this, they used PCA
to reduce the dimension of the embeddings from
300 to 2 dimensions.

Once features are extracted, kernel-based learn-
ing algorithms are employed. For the binary clas-
sification setup, the SVM classifiers based on the
Lib-SVM were used. For the regression setup,
they used v-Support Vector Regression (v-SVR).
For both setups, different parameters were tuned
using the development dataset.

SB@GU systems (Alfter and Pilan, 2018) are
adapted from a previous system, which was used
to classify Swedish words into different language
proficiency levels and participated on the mul-
tilingual binary classification part of the shared
task. For each target word or MWE, the follow-
ing set of feature categories were extracted: 1)
count and word form features such as length of the
target, number of syllables, n-gram probabilities
based on Wikipedia, binary features such as “is
MWE” or “is number”, and so on 2) morpholog-
ical features, mainly part-of-speech tag and suffix
length, 3) semantic features, such as the number
of synsets, number of hypernyms, and number of
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hyponyms, 4) context features, like topic distribu-
tions and word embeddings, and 5) psycholinguis-
tic features, such as British National Corpus fre-
quency, reaction time, bigram frequency, trigram
frequency, and so on. For MWE, they averaged
the feature values for each word in them.

For English datasets, experiments are con-
ducted with context-free, context-only and
context-sensitive features, mainly by excluding
word embeddings, using only word embeddings,
and combining all features explained above
respectively. Classifiers such as Random Forest,
Extra Trees, convolutional networks, and recur-
rent convolutional neural networks were tested.
Furthermore, feature selection is performed using
the SelectFromModel feature selection method
from scikit-learn library. The best performing
features includes word frequency, word sense and
topics, and language model probabilities.

For the German, Spanish, and French datasets,
features such as character-level n-grams were ex-
tracted from n-gram models trained on Wikipedia.
For the French dataset, the n-gram models from
English, German and Spanish were used to obtain
n-gram probabilities of each entry. They config-
ured two setups to extract features for the French
dataset: 1) Uses English, German and Spanish
classifiers and apply majority voting to get the fi-
nal label, 2) Uses only the Spanish classifier as
French and Spanish are both Romance languages.



An Extra Tree classifier with 1000 and 500 es-
timators was their best classifier.

hu-berlin The systems (Popovié, 2018) mainly
explored the use of character n-gram features us-
ing a multinomial Naive Bayes classifier specifi-
cally designed for the multilingual binary classi-
fication task. For each target word, all the char-
acter n-grams of a given length and their frequen-
cies were extracted and the target word was rep-
resented as a “bag of n-grams”. Different lengths
of n-grams such as a combination of 2-gram, 3-
gram, 4-gram, and 5-grams have been experi-
mented with. The experimental results show that
the combinations of 2-gram and 4-gram features
are the best character level n-gram features for the
binary classification task.

For the English datasets, they combined all
the training datasets (NEWS, WIKINEWS, and
WIKIPEDIA), used 3-gram, 4-gram and S5-gram
character level n-gram features in order to max-
imize performance. The results show that char-
acter level n-gram features do not work well for
cross-language complex word identification as the
performance generally degraded.

For English, two variants of results were sub-
mitted, one classified using the corresponding in-
domain training corpus and the second one classi-
fied using the concatenated training data. For Ger-
man and Spanish, one result was submitted using
the corresponding training data sets. For French,
four submissions were made 1) one classified with
English Wikipedia training, 2) one classified with
all three English datasets, 3) one classified with
Spanish data, and 4) one classified with German
data.

NILC present systems (Hartmann and dos San-
tos, 2018) for the monolingual binary and prob-
abilistic classification tasks. Three approaches
were created by 1) using traditional feature
engineering-based machine learning methods, 2)
using the average embedding of target words as
an input to a neural network, and 3) modeling the
context of the target words using an LSTM.

For the feature engineering-based systems, fea-
tures such as linguistic, psycholinguistic, and lan-
guage model features were used to train different
binary and probabilistic classifiers. Lexical fea-
tures include word length, number of syllables,
and number of senses, hypernyms, and hyponyms
in WordNet. For N-gram features, probabilities
of the n-gram containing the target words were
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computed based on language models trained on
the BookCorpus dataset and One Billion Word
dataset. Furthermore, psycholinguistic features
such as familiarity, age of acquisition, correctness
and imagery values were used. Based on these
features (38 in total), models were trained using
Linear Regression, Logistic Regression, Decision
Trees, Gradient Boosting, Extra Trees, AdaBoost,
and XGBoost classifiers.

For embedding-based systems, a pre-trained
GloVe model (Pennington et al., 2014) was used
to get the vector representations of target words.
For MWE, the average of the vectors is used. In
the first approach, the resulting vector is passed on
to a neural network with two ReLu layers followed
by a sigmoid layer, which predicted the probabil-
ity of the target word being complex.

Their experiments show that the feature engi-
neering approach achieved the best results using
the XGBoost classifier for the binary classifica-
tion task. They submitted four systems using XG-
Boost, average embeddings, LSTMs with trans-
fer learning, and a voting system that combines
the other three. For the probabilistic classification
task, their LSTMs achieve the best results.

TMU submitted multilingual and cross-lingual
CWI systems for both of the binary and probabilis-
tic classification tasks (Kajiwara and Komachi,
2018). The systems use two variants of frequency
features from the learner corpus (Lang-8 corpus)
from Mizumoto et al. (2011) and from the general
domain corpus (Wikipedia and WikiNews). The
list of features used in building the model include
the number of characters in the target word, num-
ber of words in the target phrase, and frequency
of the target word in learner corpus (Lang-8 cor-
pus) and general domain corpus (Wikipedia and
WikiNews).

Random forest classifiers are used for the binary
classification task while random forest regressors
are used for the probabilistic classification task us-
ing the scikit-learn library. Feature ablation shows
that both the length, frequency, and probability
features (based on corpus statistics) are important
for the binary and probabilistic classification tasks.
They also discover that features obtained from the
learner corpus are more influential than the general
domain features for the CWI tasks. The systems
perform very well both for the binary and proba-
bilistic classification tasks, winning 5 out of the 12
tracks.



ITEC addresses both the binary and probabilis-
tic classification task for the English and Spanish
multilingual datasets (De Hertog and Tack, 2018).
They have used 5 different aspects of the target
word in the process of feature extractions, namely,
word embedding, morphological structure, psy-
chological measures, corpus counts, and topi-
cal information. Psychological measures are ob-
tained from the MRC Psycholinguistic Database,
which includes age of acquisition, imageability,
concreteness, and meaningfulness of the target
word. Word frequencies and embedding features
are computed based on a web corpus. The word
embedding model is computed using the gensim
implementation of word2vec, with 300 dimen-
sional embedding space, window-size of 5 and
minimum frequency threshold of 20.

They have employed deep learning structure us-
ing the keras deep learning library with the ten-
sorflow gpu as a backend. Word embeddings are
employed in two input layers, first to replace tar-
get words with the appropriate embeddings and
second to represent the entire sentences as an in-
put sequence which is considered the topical ap-
proximation using contextual cues. The final layer
takes into account morphological features based
on character embeddings that are trained with a
convolutional network. The systems perform rea-
sonably better than the average systems, for both
of the binary and probabilistic classification tasks.

Camb describes different systems (Gooding
and Kochmar, 2018) they have developed for the
monolingual English datasets both for the binary
and probabilistic classification tasks. They have
used features that are based on the insights of
the CWI shared task 2016 (Paetzold and Spe-
cia, 2016a) such as lexical features (word length,
number of syllables, WordNet features such as
the number of synsets), word n-gram and POS
tags, and dependency parse relations. In addi-
tion, they have used features such as the num-
ber of words grammatically related to the target
word, psycholinguistic features from the MRC
database, CEFR (Common European Framework
of Reference for Languages) levels extracted
from the Cambridge Advanced Learner Dictio-
nary (CALD), and Google N-gram word frequen-
cies using the Datamuse API The MCR fea-
tures include word familiarity rating, number of
phonemes, thorndike-lorge written frequency, im-
ageability rating, concreteness rating, number of
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categories, samples, and written frequencies, and
age of acquisition.

For the binary classification task, they have used
a feature union pipeline to combine the range
of heterogeneous features extracted from differ-
ent categories of feature types. The best perform-
ing classification algorithms are obtained based on
the ensemble techniques where AdaBoost classi-
fier with 5000 estimators achieves the highest re-
sults, followed by the bootstrap aggregation clas-
sifier of Random Forest. All the features are used
for the NEWS and WIKINEWS datasets, but for the
WIKIPEDIA dataset, MCR psycholinguistic fea-
tures are excluded. For the probabilistic classifi-
cation task, the same feature setups are used and
the Linear Regression algorithm is used to esti-
mate values of targets.

As it can be seen from Tables 6, 7, 8, and 9,
most of the systems submitted ranked first for En-
glish monolingual binary and probabilistic classi-
fication tasks.

CoastalCPH describe systems developed for
multilingual and cross-lingual domains for the bi-
nary and probabilistic classification tasks (Bingel
and Bjerva, 2018). Unlike most systems, they have
focused mainly on German, Spanish, and French
datasets in order to investigate if multitask learn-
ing can be applied to the cross-lingual CWI task.
They have devised two models, using language-
agnostic approach with an ensemble that com-
prises of Random Forests (random forest classi-
fiers for the binary classification task and random
forest regressors for the probabilistic classification
tasks, with 100 trees) and feed-forward neural net-
works.

Most of the features are similar for all languages
except some of them are language-specific fea-
tures. The set of features incorporated include
1) log-probability features: unigram frequen-
cies as a log-probabilities from language-specific
Wikipedia dumps computed using KenlLM, char-
acter perplexity, number of synsets, hypernym
chain. 2) Inflectional complexity: number of suf-
fixes appended to a word stem. 3) Surface fea-
tures: length of the target and lower-case informa-
tion. 4) Bag-of-POS: for each tag based on Uni-
versal Parts-of-Speech project, count the number
of words in a candidate that belong to the respec-
tive class. 5) Target-sentence similarity: the cosine
similarity between averaged word embeddings for
the target word or phrase and the rest of the words



News MAE | Rank | WikiNews | MAE | Rank | Wikipedia | MAE | Rank
T™MU 0.051 1 Camb 0.0674 1 Camb 0.0739 1
ITEC 0.0539 2 Camb 0.0674 1 Camb 0.0779 2
Camb 0.0558 3 Camb 0.0690 2 Camb 0.0780 3
Camb 0.056 4 Camb 0.0693 3 Camb 0.0791 4
Camb 0.0563 5 T™U 0.0704 4 ITEC 0.0809 5
Camb 0.0565 6 ITEC 0.0707 5 NILC 0.0819 6
NILC 0.0588 7 NILC 0.0733 6 NILC 0.0822 7
NILC 0.0590 8 NILC 0.0742 7 Camb 0.0844 8
SB@GU | 0.1526 9 Camb 0.0820 8 T™U 0.0931 9
Gillin Inc. | 0.2812 | 10 | SB@GU | 0.1651 9 SB@GU | 0.1755 | 10
Gillin Inc. | 0.2872 | 11 | GillinInc. | 0.2890 | 10 | NILC 0.2461 11
GillinInc. | 0.2886 | 12 | GillinInc. | 0.3026 | 11 | Gillin Inc. | 0.3156 | 12
NILC 0.2958 | 13 | GillinInc. | 0.3040 | 12 | GillinInc. | 0.3208 | 13
NILC 0.2978 | 14 | GillinInc. | 0.3044 | 13 | GillinInc. | 0.3211 14
Gillin Inc. | 0.3090 | 15 | GillinInc. | 0.3190 | 14 | GillinInc. | 0.3436 | 15
SB@GU | 0.3656 | 16 | NILC 0.3203 | 15 | NILC 0.3578 | 16
NILC 0.6652 | 17 | NILC 0.3240 | 16 | NILC 0.3819 | 17
Baseline 0.1127 - Baseline 0.1053 - Baseline 0.1112 -
Table 8: Probablistic classification results for the monolingual English tracks.
German MAE | Rank | Spanish MAE | Rank | French MAE | Rank
T™U 0.0610 1 TMU 0.0718 1 CoastalCPH | 0.0660 1
CoastalCPH | 0.0747 2 ITEC 0.0733 2 CoastalCPH | 0.0660 1
Coastal CPH | 0.0751 3 Coastal CPH | 0.0789 3 CoastalCPH | 0.0762 2
Gillin Inc. 0.1905 4 CoastalCPH | 0.0808 4 T™MU 0.0778 3
Gillin Inc. 0.2099 5 Gillin Inc. 0.2513 5 CoastalCPH | 0.0866 4
Gillin Inc. 0.2102 6 Gillin Inc. 0.2634 6 - - -
Gillin Inc. 0.2122 7 Gillin Inc. 0.2638 7 - - -
- - - Gillin Inc. 0.2644 8 - - -
- - - CoastalCPH | 0.2724 9 - - -
- - - CoastalCPH | 0.2899 | 10 | - - -
Baseline 0.0816 - Baseline 0.0892 - Baseline 0.0891 -

Table 9: Probablistic classification results for the multilingual German, Spanish, and French tracks.

in the sentence where out-of-vocabulary problems
are addressed using a pre-trained sub-word em-
beddings (Heinzerling and Strube, 2017).

They have made qualitative and quantitative er-
ror analysis, mainly for the cross-lingual French
dataset experiments and reported that: 1) The sys-
tem picks longer targets as positive examples. 2)
Short targets are predicted as false negative but
they are potentially unknown named entities and
technical terms. 3) Complex words are generally
longer than simple words. 4) Language models
produce lower log-probability for complex words.

The systems submitted performed the best out
of all systems for the cross-lingual task (the
French dataset) both for the binary and probabilis-
tic classification tasks, showing a promising direc-
tion in the creation of CWI dataset for new lan-
guages.
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LaSTUS/TALN present systems for the
monolingual English binary classification task
(AbuRa’ed and Saggion, 2018). Two different
systems are designed, the first system is based on
a set of lexical, semantic and contextual features,
and the second system incorporates word embed-
ding features. The word embedding features are
obtained from a pre-trained word2vec model'.

For each sentence, the centroid of the dimen-
sions of the context before the target word, the
target word itself, and the context after the tar-
get word are computed using word2vec embed-
ding vectors (300 dimensions each), resulting in
a total of 900 feature dimensions. Furthermore,
two extra features are generated using the embed-
ding vectors, which represent the distance between

"https://code.google.com/archive/p/word2vec/



the target word and the context before and after
the target word respectively. These features are
computed using the cosine similarity measures be-
tween each pair of the vectors.

A large set of shallow lexical and semantic fea-
tures are also used in addition to the embedding
features. These features include target word length
(number of characters), the position of the tar-
get word in the sentence, number of words in
the sentence, word depth in the dependency tree,
parent word length in dependency relation, fre-
quency features based on the BNC, Wikipedia, and
Dale and Chall list corpora, number of synsets and
senses in WordNet, and so on.

The experiment is conducted using the Weka
machine learning framework using the Support
vector machine (with linear and radial basis func-
tion kernels), Naive Bayes, Logistic Regression,
Random Tree, and Random Forest classification
algorithms. The final experiments employ Support
Vector Machines and Random Forest classifiers.

CFILT_IITB Developed ensemble-based clas-
sification systems for the English monolingual bi-
nary classification task (Wani et al., 2018). Lexi-
cal features based on WordNet for the target word
are extracted as follows: 1) Degree of Polysemy:
number of senses of the target word in WordNet,
2) Hyponym and Hypernym Tree Depth: the po-
sition of the word in WordNet’s hierarchical tree,
and 3) Holonym and Meronym Counts: based on
the relationship of the target word to its compo-
nents (meronyms) or to the things it is contained
in (Holonym’s). Additional feature classes include
size-based features such as word count, word
length, vowel counts, and syllable counts. They
also use vocabulary-based features such as Ogden
Basic (from Ogden’s Basic Word list), Ogden Fre-
quency (Ogden’s Frequent Word List), and Bar-
ron’s Wordlist (Barron’s 5000 GRE Word List).

They have used 8 classifiers namely Random
Forest, Random Tree, REP Tree, Logistic Model
Tree, J48 Decision Tree, JRip Rules Tree, PART,
and SVM. Using these classifiers, a hard voting
approach is used to predict a label for the target
word. Voting of the positive or negative class is
decided if more than 4 classifiers agree on the la-
bel. Word-embedding-based classifier is used to
decide in the case of a 4-4 tie.

An ablation test shows that size-based features

such as word length, vowel counts, and syllable
counts, word counts constitute the four top impor-
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tant features. Their best system shows an aver-
age performance compared to the other systems in
the shared task for the monolingual English binary
classification track.

NLP-CIC present systems for the English and
Spanish multilingual binary classification tasks
(Aroyehun et al., 2018). The feature sets include
morphological features such as frequency counts
of target word on large corpora such as Wikipedia
and Simple Wikipedia, syntactic and lexical fea-
tures, psycholinguistic features from the MRC
psycholinguistic database and entity features using
the OpenNLP and CoreNLP tools, and word em-
bedding distance as a feature which is computed
between the target word and the sentence.

Tree learners such as Random Forest, Gradient
Boosted, and Tree Ensembles are used to train dif-
ferent classifiers. Furthermore, a deep learning
approach based on 2D convolutional (CNN) and
word embedding representations of the target text
and its context is employed.

Their best system ranked 10®, 5®, and 16" for
the NEWS, WIKINEWS, and WIKIPEDIA mono-
lingual English tracks, which is better than the
average systems in the shared task. The system
based on the CNN model on the Spanish monolin-
gual dataset ranked 2™

5 Conclusions

This paper presented the results and findings of the
second CWI shared task. Thirty teams enrolled to
participate in the competition and 12 of them sub-
mitted their results. Subsequently, 11 teams wrote
system description papers that have been reviewed
in this report.

Overall, traditional feature engineering-based
approaches (mostly based on length and frequency
features) perform better than neural network and
word embedding-based approaches. However,
compared to the SemEval 2016 Task 11 shared
task systems presented in Table 1, we have ob-
served that more systems employed deep learning
approaches and the results are getting better for the
CWI task; the difference is less pronounced for the
probabilistic classification tasks.

One of our most important findings is that cross-
lingual experimental results are very promising,
which we think implies in fundamental progress
for CWI research. Despite the fact that we do
not provide a training dataset for French, the re-
sults obtained have superior or equivalent scores



(though they of course cannot be directly com-
pared) to the German and Spanish datasets, when
the system uses either one or several training
datasets from the other languages.
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Abstract

In this paper we present work-in-progress
where we investigate the usefulness of previ-
ously created word lists to the task of single-
word lexical complexity analysis and predic-
tion of the complexity level for learners of
Swedish as a second language. The word lists
used map each word to a single CEFR level,
and the task consists of predicting CEFR lev-
els for unseen words. In contrast to previous
work on word-level lexical complexity, we ex-
periment with topics as additional features and
show that linking words to topics significantly
increases accuracy of classification.

1 Introduction

A way of addressing the second-language (L.2) ac-
quisition needs of the recent influx of new immi-
grants to Sweden would be to provide an extensive
amount of digitally accessible self-study materi-
als for practice. This could be achieved through
the development of specific algorithms for exer-
cise/material generation, but such algorithms gen-
erally heavily rely on linguistic resources, such as
descriptions of vocabulary and grammar scopes
per each stage of language development, so that
automatic generation of learning materials would
follow some order of increasing complexity.
Vocabulary scope can be described through
graded vocabulary lists. These are lexical re-
sources where each lexical item is linked to a
level at which the item is appropriate for learn-
ers to study, one prominent example being the
English Vocabulary Profile (Capel, 2010, 2012).
Graded lexical resources are useful, for exam-
ple, for course book writers, language test design-
ers, language teachers and language learners, since
they can inform the users as to what knowledge is
to be expected at which proficiency level, as well
as which words to teach and test at which levels.
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However, any graded list is a finite resource, as
it would never be possible to list by levels all items
that learners might encounter. We intend, there-
fore, to use previously compiled graded vocabu-
lary lists to learn from them to predict levels of
previously unseen, out-of-vocabulary (OOV), lex-
ical items.

In practical terms, we look at three auto-
matically created corpus-based vocabulary lists,
namely Kelly list (Volodina and Kokkinakis,
2012), a resource based on L1 web corpora that
identifies frequent vocabulary to guide language
learners in their acquisition of vocabulary', as well
as SVALex (Francois et al., 2016) and SweLLex
(Volodina et al., 2016b), two L2-targeted word
lists covering receptive vocabulary and productive
vocabulary respectively?. The aim of this work is,
thus, to create a model that is able to predict the
difficulty (i.e. appropriate CEFR? level) of any
Swedish word with regard to productive and re-
ceptive aspects. These graded vocabulary lists are
then intended for use in generation of exercises
for learners of different levels, though other usage
scenarios are also possible.

2 Related Work

There has been some work on the creation and
evaluation of automatically graded vocabulary
lists (Gala et al., 2013, 2014; Tack et al., 2016b).
Gala et al. (2013) aim at identifying criteria that
make words easy to understand, independently
of the context in which they appear. Since it
has been shown that the concept of difficulty de-
pends on the target group (Blache, 2011; Francois,
'Swedish Kelly list is available with CC-BY license from
https://spraakbanken.gu.se/eng/resource/kelly
?Both lists are a part of CEFRLex family of resources, and
are available from http.//cental.uclouvain.be/cefrlex/
*Common European Framework of Reference for Lan-

guages (Council of Europe, 2001) describes six levels of pro-
ficiency, starting from A1l to C2

Proceedings of the Thirteenth Workshop on Innovative Use of NLP for Building Educational Applications, pages 79-88
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2012), and thus different combinations of fea-
tures might model certain groups better than oth-
ers, they focus on speech productions by patients
with Parkinson’s disease. Gala et al. (2013) look
at 27 intra-lexical and psycholinguistic variables.
The intra-lexical variables include number of let-
ters, number of phonemes, number of syllables,
syllable structure (CV structure), consistency be-
tween graphemes and phonemes, and selected dif-
ficult spelling patterns such as double vowels and
double consonants. Among psycholinguistic vari-
ables are orthographic neighborhood (words that
only differ by one letter), lexical frequency and
presence/absence from the Gougenheim list, a list
of easy-to-understand vocabulary items.

They train a Support Vector Machine (SVM)
classifier on the nine (out of initial 27) most
predictive features to predict the difficulty level
of unseen words. 5-fold cross-validation on the
data shows an average accuracy of 62% in the
three-way classification. They conclude that syl-
labic structures and spelling patterns are not very
predictive of difficulty and that the most predic-
tive features are the lexical frequency and pres-
ence/absence from the Gougenheim list.

Gala et al. (2014) focus on learners of French,
both L1 learners and learners of French as a for-
eign language. They use Manulex (Lété et al.,
2004) to model L1 learners’ vocabulary and
FLELex (Francois et al., 2014) to model L2 learn-
ers’ vocabulary. In contrast to Gala et al. (2013),
they use 49 features which can be grouped into or-
thographic features (e.g. number of letters, num-
ber of phonemes, number of syllables), morpho-
logical features (number of morphemes, affix fre-
quency, compounding), semantic features (degree
of polysemy) and statistical features (frequency,
Gougenheim list). They train two SVM classifiers,
one for L1 learners and one for learners of French
as a foreign language. The first one is a three-way
classification while the latter is a six-way classifi-
cation. On the three-way classification, they reach
63% accuracy and on the six-way classification
they reach 43% accuracy. As in Gala et al. (2013),
they find the most predictive features to be lexical
frequency and presence/absence from the Gougen-
heim list. However, they also find the binary poly-
semous status, i.e. whether the word polysemous
or not, as well as the degree of polysemy to cor-
relate well with the complexity of words. This is
an interesting finding, as the degree of polysemy
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is not directly correlated with frequency.

A related area of work is complex word iden-
tification for text simplification. For this task, it
is important to identify target difficult words or
phrases that need simplification (Shardlow, 2013;
Paetzold and Specia, 2016; gtajner et al., 2018).
However, in contrast to our work, complex word
identification is a binary classification and the fo-
cus is slightly different, although there are sig-
nificant overlaps. Tack et al. (2016a) and Tack
et al. (2016b) for example aim at identifying and
classifying words of a text into known and un-
known ones either for an individual learner or
for learners of a given proficiency level as a
group. They compare different personalized mod-
els with a model based on the graded vocabulary
list FLELex (Frangois et al., 2014). Their per-
sonalized models also use frequency information,
CEFR levels of single words as calculated in Gala
et al. (2014), number of letters, and number of
senses of a word. For the FLELex vocabulary
based model and a learner of a given CEFR level,
the model considers all words that are of the same
or lower level as the learner’s level as known and
all words that are of higher level as unknown.

Our recent participation in the Complex Word
Identification Task 2018 (étajner et al., 2018) has
yielded interesting findings that we hope will fur-
ther improve the presented system (Alfter and
Pilan, 2018).

3 Data

Our data consists of three different word lists for
Swedish, namely SVALex (Francois et al., 2016),
SweLLex (Volodina et al., 2016b) and Kelly list
(Volodina and Kokkinakis, 2012).

SVALex is compiled from the COCTAILL text-
book corpus (Volodina et al., 2014), comprised
of reading comprehension texts marked for CEFR
levels, and covers receptive vocabulary knowl-
edge. SweLLex is derived from the pilot SweLL
learner essay corpus (Volodina et al., 2016a)
graded for CEFR levels and covers productive vo-
cabulary knowledge. Kelly list is derived from the
Swedish Web-as-Corpus (SweWaC) and contains
the 8425 most frequent lemmas appearing in na-
tive speaker writing divided into CEFR level ac-
cording to the frequency of the items and corpus
coverage. See table 1 for the overview of the three
resources.

While Kelly list already assigns each word to a
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Figure 1: Distribution of the verb arbeta ‘to work’, in receptive and productive resources

Al A2 Bl B2 Cl1 Total
SVALex 968 1973 2761 6223 3697 15 681
SweLLex 602 1258 1317 1024 1248 6 965
Kelly list 1404 1404 1404 1404 2809 8 425

Table 1: Data distribution across lists. In SVALex and SweLLex vocabulary items partially overlap between levels,
and hence the total number of items in the list does not equal the sum of items per level.

target CEFR level, SVALex and Swel.Lex present
distributions over CEFR levels, i.e. how often a
word occurs at the different CEFR levels, as ex-
emplified in table 2. Since SVALex and SwelLLex
cover 5 proficiency levels and Kelly list covers 6
proficiency levels, we assimilated the highest level
in Kelly list (C2) to the previous level (C1).

To go from distributions to target levels in
SweLLex and SVALex, we use the mapping pro-
cedures described in Gala et al. (2013), Gala et al.
(2014) (first occurrence) and Alfter et al. (2016)
(threshold). For first-occurrence mapping, we as-
sign each word to the level it first occurs at. For
threshold mapping, we assign each word to the
level where it occurs significantly more often than
at the preceding level, with the level of signifi-
cance set at 30%.

Figure 1 shows the distribution of frequencies
for the word arbeta (Eng. “to work™) over the five
CEFR levels in SVALex (receptive resource, st
bar) and SwelL.Lex (productive resource, 2nd bar).
According to the first occurrence approach, the
target level for both receptive and productive com-
petence for the word arbeta would be A1, whereas
the threshold approach suggests that A1 would be
the target level for receptive knowledge, and A2

81

would be the target level for productive level.

We did a comparison of both mapping meth-
ods to find out to what degree they agree. Ta-
ble 3 shows the levels assigned by both methods
for the two resources SVALex and SweLLex. By
comparing the output of these two mapping meth-
ods, we can see that both methods agree to a large
extend. When both methods did not agree, they
tended to still assign levels that were adjacent, e.g.
if one method assigned level B1, the other would
assign B2 or A2. This is not a surprise, as the
border between different proficiency levels can be
fluid. We call this type of disagreement within one
level. We also see that a certain amount of words
were classified as different levels but with the lev-
els assigned being more than one level apart, e.g.
one method assigns level A2 and the other method
assigns level B2. We call this type of disagree-
ment more than one level. Given this finding, and
for comparability between studies, e.g. with Gala
et al. (2013) and Gala et al. (2014), we have opted
to use the first-occurrence approach in the remain-
der of the study.

The SVALex and SwelLLex data is noisy, be-
cause, for one, we cannot validate whether the au-
tomatically assigned (mapped) levels are accurate



Lemma Part-of- Al A2 B1 B2 Cl
Speech

beta ‘to graze’ VB 0.0 0.0 0.0 19.27 13.21

bo ‘to live’ VB 4978.93 2515.92 1252.19 718.53 497.75

hund ‘dog’ NN 251.89 81.26 250.26 74.29 98.87

Table 2: Example of word distributions over levels in SVALex
Resource  Same Within More than tic complexity, among others in readability
level one level  one level assessment formulas, for example in Smith

(1961); Bjornsson (1968); O’Regan and Ja-

SVALex 12775 1592 1255
cobs (1992).

SwelLLex 5689 706 516

Table 3: Number of items that were assigned the same
level, within one level and more than level by both
mapping techniques

due to missing gold standard annotations, and sec-
ondly because of certain errors resulting from au-
tomatic corpus annotation. The data is also sparse,
and since the mapping procedure for SVALex and
SweLLex very much depends on the data avail-
able, this introduces further noise. These are the
limitations we are aware of and plan to address in
the future by collecting and annotating more data.

4 Features

From each word, including multi-word expres-
sions such as gdra ont ‘to hurt’ and god morgon
‘good morning’, we extract features, grouped into
count-based features (i), morphological features
(i1), semantic features (iii) and context-based fea-
tures (iv). Table 4 gives an overview of the av-
erage values for some selected features per level
and resource. As can be seen from this table,
words at higher levels tend to be longer, have
more syllables, longer suffixes, a higher number
of compounds and lower degrees of polysemy and
homonymy. Indeed, concerning polysemy, more
common words, which are typically found at lower
levels, tend to have more different senses than
more specialized words found at higher levels.

(i) Count-based and surface form features

e Length is the length of the word in char-
acters, our example word arbeta (Eng “to
work”) containing 6 characters. Word length
has previously been used to assess linguis-
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Syllable count is the number of syllables in
the word, where arbeta contains three syl-
lables. Syllables are counted as number of
vowels except for diphthongs ending in ‘v’
(e.g. ‘eu’, ‘au’) which are counted as one
syllable. Syllable count has been applied in
readability assessment as a measure of in-
creasing text difficulty, e.g. in Flesch (1948);
Kincaid et al. (1975), where multi-syllable
words have been proven to increase the over-
all linguistic complexity of a text. By anal-
ogy, we assume that the same applies on a
single word level.

Contains non-alphanumeric characters is a
boolean value that is true if the word contains
non-alphanumeric characters, i.e. any charac-
ter other than A-Z and digits 0-9, for example
13-aring (Eng. 13-year old).

Contains number is a boolean value that is
true if the word contains digits or consists
solely of digits.

The multi-word feature indicates whether the
lexical expression is made up of more than
one single word.

For bigrams, we calculated all character-level
bigrams from each word list and retained
only the 53 most predictive ones. This feature
is a vector indicating the presence or absence
of these 53 bigrams in the target word.

For n-gram probabilities, we calculate
character-level unigram, bigram and trigram
probabilities with a language model based on
the Swedish Wikipedia dump from February
2018. We surmise this also implicitly cap-



Al A2 B1 B2 C1
Average word length
SVALex 6.00 7.49 8.51 8.85 9.58
SweLLex 5.10 5.98 7.66 8.89 991
Kelly 5.74 7.00 7.54 7.86 7.80
Average syllable count
SVALex 2.08 2.52 2.88 291 3.24
SweLLex 1.80 2.01 2.58 2.94 3.28
Kelly 2.04 2.44 2.62 2.78 2.76
Average suffix length
SVALex 0.54 0.63 0.77 0.80 0.91
SweLLex 0.47 0.51 0.56 0.63 0.71
Kelly 0.70 0.80 0.86 0.88 0.87
Average number of compounds
SVALex 0.014 0.037 0.052 0.062 0.067
SweLLex 0.038 0.058 0.112 0.125 0.162
Kelly 0.043 0.095 0.137 0.175 0.167
Average degree of polysemy
SVALex 0.64 0.51 0.39 0.29 0.24
SweLLex 0.55 0.62 0.46 0.36 0.30
Kelly 0.84 0.73 0.67 0.56 0.56
Average degree of homonymy
SVALex 1.25 1.11 1.06 1.05 1.02
SwelLLex 1.35 1.18 1.10 1.08 1.04
Kelly 1.30 1.13 1.08 1.10 1.05

Table 4: (Selected) feature averages per level and resource

tures information about grapheme-phoneme
correspondence, frequency and suffixes.

(ii) Morphological features

e Part-of-speech corresponds to the part-of-
speech of the word. For multi-word expres-
sions, the part-of-speech of the head noun is
taken.

o For suffix length, we stem the word using the
NLTK stemmer (Bird et al., 2009) and sub-
tract the length of the resulting stem from the
length of the original word. In arbeta, the
final -a is a suffix. Previous work on order
of acquisition of inflectional versus deriva-
tional morphemes, e.g. Derwing (1976),
argue that knowledge of derivational mor-
phology is acquired gradually in the learn-
ing progress, thus motivating this feature for
our experiments. This intuition also seems to
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hold when looking at average suffix length by
level, as shown in table 4.

For compound count, we run the word
through the SPyRo/SALDO pipeline (Ostling
and Wirén, 2013), which generates possible
analyses of the word with regard to com-
pounding. Compound count is the number of
possible compounding alternatives. Arbeta
can theoretically be analyzed as ar ‘are (unit
of measurement)’ + beta ‘to graze’ and thus
would have a compound count of 1. Glasskdl
on the other hand can be analyzed as glas
‘glass’ + skadl ‘bowl’, glass ‘ice cream’ + skal
‘bowl’ and glass ‘ice cream’ + kal ‘cabbage’
and thus would have a compound count of 3.
The cognitive load for processing a word, that
potentially has several (compounding) inter-
pretations, hypothetically also influences the
word’s complexity, and hence the level at
which it is acquired.



e For compounds, we calculate all compound
elements, i.e. words that have been identified
in compounds, in all lists and selected the 12
most predictive compounds. This feature is a
vector indicating the presence or absence of
these compounds in the target word.

Gender for nouns is taken from Saldo’s mor-
phology (Borin et al., 2008) and encoded nu-
merically as -1 (no information about gen-
der or not applicable), 0 (common gender,
aka “en-ord”), 1 (neuter, aka “ett-ord”) and 2
(variable gender). For arbeta the value would
be -1 since gender only applies to nouns. The
majority of nouns in Swedish are of com-
mon gender (e.g. in the Kelly-list there are
3465 nouns of common gender, while 1065
are neuter).

(iii) Semantic features

e Degree of polysemy is calculated by count-
ing the sub-entries of a given dictionary en-
try in Lexin (Gellerstam, 1999). The verb
arbeta has only one sub-entry, and is thus
non-polysemous. From empirical sources
(e.g. various frequency lists), we can observe
that non-polysemous words tend to be less
used constituting a large bulk of non-frequent
words, something that is quite logical given
that most word lists are compiled based on
lem-grams (e.g. a combination of base form
of a word plus its part-of-speech), and not
on senses. Usages of several senses of the
same lem-gram are thus grouped together in
one entry and push the word to the top of the
frequency lists. Highly polysemous words,
like komma ‘to come’ are thus often learned
in the beginning. This seems to be a con-
tradictory trend with regards to our example
word, arbeta ‘to work’. However, if we ex-
tend the search to phrasal verbs with arbeta
in Saldo, there would be seven more entries,
and in Lexin four more.

o Degree of homonymy is calculated by count-
ing the number of dictionary entries in Lexin
with the same orthographic form. An ex-
ample of a homonym across word classes
would be gift: it could either be the adjec-
tive meaning “married” or the noun mean-
ing “poison”. Homonymy within the same
word class would be vara (Eng. “to last”,
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“to be”’). The example word arbeta has only
one entry in Lexin. Studies on homonymy
within second language learning (Mashhady
et al., 2012) show that honomymous words
take longer to remember and differentiate be-
tween meanings than e.g. several synonyms
relating to the same concept, demanding dis-
ambiguation of a homonym given the con-
text, which makes homonymy an interesting
feature to include into our experiments.

(iv) Context features

e For topic distributions, we indicate in which
topic lists the target word occurs. Topic lists
were extracted from the COCTAILL corpus,
where each reading text is assigned one or
more topics. We thus extracted all lemmata
from reading texts, assigning them to the top-
ics as given in the corpus. We then ran a
TF-IDF algorithm over the lists to eliminate
words that occurred across all topic lists. This
yielded 33 topic lists, such as animals, arts,
daily life, food and drink, nature, places, or
technology.

Thus, for the verb arbeta, we can summarize
the above features into the following (simplified)
word complexity description: 6-letter 3-syllable
non-polysemous non-homonymous verb with one
possible suffix, one possible compound analysis,
no gender information (since this only applies to
nouns), not a multi-word expression and a word
used in topics characteristic of presenting people
(CEFR levels Al and A2) which is - supposedly
- the reason why the empiric data points out Al
level for receptive and productive knowledge ac-
cording to first-occurrence approach; and Al for
receptive and A2 for productive knowledge if we
follow the threshold mapping strategy.

5 C(lassification

In order to check how well the features we have
chosen model single word complexity, we use
different classifiers and stratified 10-fold cross-
validation on the different data sets.

For classification of unseen words, we train
classifiers on the available data. We train one clas-
sifier for receptive predictions on SVALex and one
classifier for productive predictions on SweL.Lex.

The classification task consists in assigning
each word in our word lists a target CEFR level.



Svalex Swellex Kelly
Majority baseline  0.29 £ 0.00 0.29 £+ 0.00 0.33 £ 0.00
SVM 0.32 £ 0.02 0.37+£0.05 0.39+0.04
MLP 0.32 £0.03 0.37+£0.04 0.39 £ 0.04
ET 0.27 £0.02 0.33 £0.05 0.32+0.04
SVM+T 0.44 +£0.03 0.41 +0.04 0.45 +0.05
MLP+T 0.53 £0.04 0.38 £0.05 0.44 £ 0.05
ET+T 0.55 +0.05 0.37 £ 0.06 0.43 £ 0.05
SVM+TL 0.48 £0.03 0.41 £0.05 0.45+0.04
MLP+TL 0.53 £0.04 0.39 £ 0.06 0.44 +£0.03
ET+TL 0.59 +£0.03 0.37 £ 0.06 0.42 +£0.03

Table 5: Results: Accuracy and standard deviation using 10-fold cross-validation

For evaluation of the features, accuracy is calcu-
lated by comparing the predicted level with the
level given by the graded word list. We cannot, at
this moment, evaluate classifiers for unseen words,
as we would have to have manually graded word
lists against which to compare our predictions.

6 Results

Table 5 shows the results of 10-fold cross-
validation classification using different algo-
rithms. Majority baseline always predicts the ma-
jority class. Since our data is not balanced, this de-
viates from the expected chance baseline of 0.2 for
five-class classification. SVM is a support vector
machine with default parameters C' = 1 and radial
basis function (rbf) kernel. MLP is a multilayer
perceptron with 100 hidden layers and a learning
rate of 0.01. These parameters were chosen based
on a randomized grid search over the parameter
space. ET is an extra trees classifier, a classifier
from the group of random tree classifiers. Prelim-
inary experiments have shown an initial increase
in accuracy with an increase in the number of es-
timators of the ET algorithm but which shows no
further improvement after 100 estimators. We thus
have fixed the number of estimators for the ET al-
gorithm at 100. SVM+T, MLP+T and ET+T show
the accuracies obtained by the same algorithms but
with topic distributions added to the data. For
comparability, since we have included all word
classes in our experiments, we also tried classi-
fying only lexical word classes (nouns, verbs, ad-
jectives and adverbs) as in Gala et al. (2014). The
results of these experiments are shown in the rows
SVM+TL, MLP+TL and ET+TL.
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Write a lemma

byracka

Select a part-of-speech

noun v

Receptive ® Productive O Beth O

Gol
Results
Word POS ROP Predicted
level
byracka NN receptive B2
vovve NN receptive A2
hund NN receptive A1

Figure 2: User interface for lexical complexity predic-
tion

In addition, we have created a user interface®,
as shown in figure 2. This user interface can be
used for getting predictions of any word, not only
words present in the word lists . The input word
is transformed into a feature vector as described
above and then fed into the classifier, which pre-
dicts a label. Figure 2 shows the predictions for
hund ‘dog’, vovve ‘childish or endearing term for
dog’ and byracka ‘derogatory term for dog’.

7 Discussion

We found that our features excluding topic distri-
butions barely outperform the majority baseline,
yielding even lower scores than the baseline in

some cases. Adding topic distributions signifi-

*https://spraakbanken.gu.se/larkalabb/
siwoco



cantly improves accuracy.

In comparison to the results presented in Gala
et al. (2014), we can see an expected trend. In-
deed, on the L1 resource Manulex and Kelly
(which is based on L1 data but intended for L2
audiences), they reach 63% accuracy in a three-
way classification while we reach 45% accuracy
in a five-way classification. On the L2 textbook
corpus resources FLELex and SVALex, they reach
43% accuracy in a six-way classification while we
reach 59% accuracy in a five-way classification.

If we are comparing our results without topic
distributions, which are more similar to the results
presented in Gala et al. (2014) due to the simi-
larity of features, we see that our best system on
L2 data performs worse in a five-way classifica-
tion (0.32) than theirs in a six-way classification
(0.43). This is probably due to the size of the cor-
pus that was used to compile these lists. While
FLELex was compiled from 28 textbooks and 29
readers, COCTAILL was compiled from 12 text-
books only. As such, their distributions are less
sparse and hypotheses about the target level can
be made with more certainty.

Another point is that, in contrast to previous
work, we have not included information about lex-
ical frequency explicitly. Including such informa-
tion could possibly further improve accuracy. It
can be argued that n-gram probabilities latently
encode this information, but it would be interest-
ing to see whether a more explicit approach would
lead to better results.

We also ran cross-validated recursive feature
elimination (Guyon et al., 2002) to get a rank-
ing of features and discard useless features.
This interestingly identified bigram features (pres-
ence/absence of most predictive bigrams; not to be
confused with bigram frequency) and compound
features as useless, but excluding those features
does not lead to an increase in accuracy. However,
looking at the most predictive bigram and com-
pound files, it seems that something went wrong
during calculation of these, since, for example in
bigrams, there are only very rare combinations
such as ‘44’, ‘do’, ‘xf” and ‘xb’. We would like to
address this issue in future work. The final model
uses 64 features.

One problem for the classifiers could be that
representing words as vectors can lead to the same
representation for different words with different
levels, which leads to a decrease in learnability
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since it introduces contradictory data points. We
have checked for this and found out that our data
contains about 5% of contradictory data points. A
possible approach could be to add more disam-
biguating features.

8 Conclusion and future work

We have presented insights from work-in-progress
on single word lexical complexity. In contrast to
previous work, we show that adding topic infor-
mation significantly improves results on the clas-
sification task. However, the current topic lists can
be further refined, for example by synonym expan-
sion, in the hope of improving accuracy.

For future work, one concern that was also ex-
pressed in Gala et al. (2014) is that the current
lists do not discriminate between different senses
of a word. Thus, words like glas, meaning either
‘glass’ as substance or ‘glass’ as receptacle for
drinks, would be assigned one single level while
their different senses clearly should be assigned
different levels. We are currently working on re-
calculating the resources SVALex and SwelLex
on the sense level by including a word sense dis-
ambiguation component in the pipeline.

Another interesting experiment could be to in-
clude number of phonemes in our study, since
Swedish has some non-transparent grapheme-to-
phoneme correspondences.

There is currently ongoing work concerning the
collection and annotation of learner essays, which
we hope will alleviate the data sparseness problem
that we face at the moment, especially with regard
to the learner essay based word list.

We would also like to implicitly crowdsource
learner knowledge by embedding words from
these automatically mapped lists in automatically
generated learner exercises. By monitoring how
learners of a given level are dealing with words
predicted to be of their level, we hope to be able to
draw conclusions about the target level of words,
i.e. if learners of intermediate B1 level consis-
tently have problems with certain words that our
mapping predicts to be of B1 level, we can assume
that the prediction was incorrect.

In the future, we intend to evaluate these re-
sources both with teachers of Swedish as a second
language as well as language learners to estimate
the validity of the automatic mapping. We would
also like to create gold standard annotations, both
based on these resources as well as new resources.
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Abstract

This paper presents COAST, a web-based ap-
plication to easily and automatically enhance
syllable structure, word stress, and spacing in
texts, that was designed in close collaboration
with learning therapists to ensure its practical
relevance. Such syllable-enhanced texts are
commonly used in learning therapy or private
tuition to promote the recognition of syllables
in order to improve reading and writing skills.

In a state of the art solutions for automatic syl-
lable enhancement, we put special emphasis
on syllable stress and support specific marking
of the primary syllable stress in words. Core
features of our tool are i) a highly customiz-
able text enhancement and template function-
ality, and ii) a novel crowd-sourcing mecha-
nism that we employ to address the issue of
data sparsity in language resources. We suc-
cessfully tested COAST with real-life practi-
tioners in a series of user tests validating the
concept of our framework.

1 Introduction

Reading and writing disabilities are a pressing is-
sue for today’s society — approximately 4-8 % of
the German population suffer from dyslexia (Moll
and Landerl, 2009; Bundesverband Legasthenie
und Dyskalkulie e.V, 2014). Research on reading
acquisition has shown that phonological awareness
is a crucial skill for successful reading and writing
acquisition (Rober-Siekmeyer, 2005). Important
dimensions of phonological awareness are syllable
synthesis and analysis. Syllable synthesis refers
to the ability to blend syllables to a whole word,
and syllable analysis to the ability of segmenting a
word into its syllables. Experimental studies have
shown that syllable synthesis and syllable analysis
are essential components of evidence-based read-
ing training (Galuschka and Schulte-Ko6rne, 2016;

* These authors contributed equally to this work.
fhttp://icall-research.de
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Galuschka et al., 2014). Scheerer-Neumann (1981)
have shown that specific training of segmenting
words into syllables can improve reading accuracy
of impaired German primary-school children sig-
nificantly. Additionally, computer-based programs
for primary-school children that sequentially speak
and highlight syllables can facilitate the learning
process of reading (Jiménez et al., 2007; Olson and
Wise, 1992).

Based on these empirical findings, enhanced
texts with custom spacing and syllables alternately
displayed in different font colors are commonly
used in teaching and learning therapy to support ac-
quisition of reading and writing. This so-called Sil-
benmethode (syllable method) (Mildenberer Verlag,
2018) teaches children to focus on and understand
syllables and their structures rather than single char-
acters and is commonly used in Germany, which
is reflected by popular reading materials , such as
ABC der Tiere and Leselowe, and by available tools
that facilitate the learning process of reading and
writing, such as Celeco Druckstation and ABC Sil-
bengenerator.

While first language acquisition happens through
mere exposure, learning to read and write is a
learned skill and thus requires explicit instruction,
similar to Second Language Acquisition (SLA). In
this regard, insights form SLA research on input
enhancement relate to reading and writing acqui-
sition. The well-established Noticing Hypothesis
(Schmidt, 1990) states that learning requires the
exposure to salient linguistic constructions that
may be recognized by the learner. To facilitate
this recognition of relevant linguistic constructions,
Input Enhancement (Smith, 1993) has been suc-
cessfully used, in particular in terms of visual en-
hancement of texts (e.g. colors, font changes, cap-
italization, spacing), cf. (Rello and Baeza-Yates,
2017; Zorzi et al., 2012; Meurers et al., 2010).

In response to this, we developed COAST.!

"www.sfs.uni-tuebingen.de/coast/
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COAST is a web-based application to easily and au-
tomatically enhance syllable structure, word stress,
and spacing in texts. Its primary focus is on func-
tionality and practicability. In terms of functional-
ity, COAST offers a high degree of customization
for text enhancement, supports management of an-
notation schemes, and includes syllable stress. The
performance of detecting syllable stress strongly
predicts dyslexia (e.g., Goswami et al. (2013); Lan-
derl (2003)) and correlates highly with reading and
writing skills (Sauter et al., 2012) and, thus, is of
special importance for dyslexic children. Trainings
to improve the awareness of syllable stress are be-
ing developed and evaluated (Holz et al., 2017). We
extend the approach of text enhancement that are
provided by state of the art tools to make syllable
structures and stress more salient for German native
(dyslexic) speakers using NLP resources. Enhanc-
ing the text with such additional linguistic infor-
mation might boost children’s ability to segment
words into relevant components and might help
them to learn to focus on relevant areas of words
— as major orthographic challenges, such as vowel
length markers, mainly occur in (conjunction with)
stressed syllables (Staffeldt, 2010). To account for
practicability, we implement this functionality by
collaborating closely with prospective users and in
particular teaching practitioners to meet real-life
demands.

The remainder of the article is structured as fol-
lows: In Section 2, we report findings of a require-
ment analysis that we conducted in form of expert
interviews prior to the system design to determine
the wishes and needs of practitioners and compare
COAST to two state of the art tools currently used
in learning therapy and reading and writing acqui-
sition. In Section 3, we describe the framework
of COAST and explain the two core functional-
ities crowd-sourcing and text enhancement with
real-life use cases. In Section 4, we evaluate the
usability and user experience of COAST by means
of user tests conducted with learning therapists and
validate its practical applicability. We conclude
by describing the current state of COAST and pro-
viding an outlook for its further development in
Section 5.

2 Requirements Analysis

2.1 Expert Interviews

As the primary focus of our work was on the design
of a tool that allowed for the immediate practical
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application by language teachers and learning ther-
apists, we performed a requirement analysis for
our system preceding its implementation. We con-
ducted four expert interviews with teaching thera-
pists to establish their wishes and requirements for
a text-enhancement tool that would facilitate their
work. During this process, we identified a series of
concrete requests going beyond the tool’s basic text
analysis functionality. They were centered around
four main issues: i) input/output options, ii) flex-
ible customization settings, iii) user profiles and
re-usability of settings, and iv) optional expert/user
judgments.

Input/Output Options proved to be of particu-
lar interest for prospective users. They emphasized
the wish to not only be allowed to upload their own
texts, but also to be able to flexibly edit them while
seeing the syllable enhancement. Therefore, we
provide a text box for users in which they may enter
and alter their texts. Regarding output options users
expressed interest in being able to choose between
the formats HTML, MS Word, and PDF/printing,
or simply copying texts with enhancements to the
clipboard. All of these were incorporated into our
system.

Flexible Customization Settings were, aside
from the I/O options, one of the most prominent
user concerns. We found that the text represen-
tations should be customizable not only in terms
of the basic text layout, but also preferably in all
aspects of the actual syllable enhancement. Thus,
users may freely customize the spacing of lines,
words, syllables, and characters, as well as differ-
ent font sizes. Furthermore, the visual syllable
enhancement is customizable in terms of the colors
used for stressed and unstressed syllables with the
additional options to assign a separate color to sec-
ondary unstressed syllables. Colors may either be
applied to the background or the font. Users may
further decide to additionally highlight stressed syl-
lables with bold font. They may also choose to
mark syllable boundaries with a freely selectable
delimiter. Finally, users can select certain parts-
of-speech to be either i) annotated, ii) marked as
unstressed, or iii) ignored. Combined, these param-
eters allow for a highly customizable text design
and visual enhancement, that gives users a high
degree of freedom regarding the representation of
their texts.



User Profiles and Re-Usability became rele-
vant concerns in the course of our expert interviews:
Our flexible customization options give users the
freedom to design text representations and visual
enhancements that are tailored specifically to their
purposes. However, users stressed the importance
that they could re-use their elaborate customization
across sessions, and that they need to be able to
switch between various customized enhancement
templates. To allow users to save, manage, and
re-use their templates, we created user accounts
that allow users to locally save their customization.
Users may also save the texts they uploaded under
a user-defined title in previous sessions.

Expert/User Judgments proved to be a final,
pressing issue for prospective users: The option to
adjust the automatic analyses in cases where users
disagree with the syllabification or stress annota-
tion performed by the system was crucial to our
prospective users. To give them complete authority
over their analyses, each of both analyses may be al-
tered by the user on click. Furthermore, they asked
us to flag words that were unknown to our system
and thus more error prone. To facilitate manual
corrections, we offer users to review all unknown
words consecutively in a separate view, where they
are supported by the syllabification and stress sug-
gestions of our systems. All changes conducted by
users are saved in their local syllabification data
base and used for future analyses. Users may re-
view and edit these new entries in their account
settings. A final suggestion of our expert users was
to allow the system to learn from user feedback.
We thus include a crowd-sourcing based mecha-
nism for updates to the global data base, which is
explained in detail in Section 3.2.

2.2 Related Work

There are two dominant syllable enhancement tools
for German whose functionality is centered around
the so called Silbenmethode (*“syllable method”),
in which reading is taught by focusing on sylla-
bles and their pronunciation rather than single char-
acters: the Silbengenerator (“syllable generator”)
and the Celeco Druckstation (“Celeco printing sta-
tion”).2 Table 1 shows a comparison of the tools
with COAST based on the characteristics that we
identified in our expert interviews and some more

2We are not aware of any tools for the English market that
provide any syllable enhancement beyond character-based
markings.
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System Feature ~ Silbengenerator Celeco COAST

Platform Independent v
‘Web-Based

Freely Available

Free Text Input

Text Box

Basic Text Layout Customization
Additional Text Layout Customization
Customizable Syllable Enhancement
Configuration Templates

Stress Annotation

Syllable Arcs

Customizable Analysis
Crowd-Sourcing

Exercise Generation

NS % %
NSNS % %%
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Cx WX X X X XN X
TXAUX NSNS NNNNANN

Table 1: Comparison of ABC Silbengenerator,
Celeco Druckstation, and COAST.

general usability considerations.

Silbengenerator is a Windows program pub-
lished by Mildenberger Verlag (2018).3 1t is part of
their ABC der Tiere (“animal alphabet”) series of
learning materials based on syllabification as read-
ing aid. Its main functionality is to allow teachers
to visually enhance syllables in their reading ma-
terials. While the full version has to be purchased,
a free demo is freely available for downloads on
their web page.The tool allows users to upload own
texts for analyses, but not to modify them from
within the tool via some form of text box. Sup-
ported output formats for enhanced texts are MS
Word or PDF/print. The general text layout is ad-
justable in terms of line spacing, fonts, font sizes,
text alignment, line breaks, and background color.
However, more advanced changes to the text lay-
out, such as customized syllable, character, or word
distances are not supported. The latest customized
layout may be re-used upon system restart, but it
is not possible to store multiple templates. Sylla-
bles are visually enhanced using the conventions
of the ABC der Tiere materials, which hyphenates
syllables and additionally marks alternating sylla-
bles with red and blue font. Monosyllabic words
default to blue. Word stress is not encoded. To
accommodate limited printing capacities, syllables
may be enhanced using gray and black instead of
red and blue, but further customization is not sup-
ported. Users may locally overwrite the syllable
boundaries set by the system for individual words
by editing a plain text file outside of the program.
Changes are applied to all documents upon restart.
Changes during run-time or for individual docu-
ments are not supported User corrections are not

3For details, see: www .abc-der—-tiere.de/index.
php?id=388



re-used to improve the system’s syllabification per-
formance. The Silbengenerator also includes a
limited tutoring functionality, which includes two
variations of syllable reading exercises as well as
capitalization, vowel, and spelling training.

Celeco Druckstation is a Windows program dis-
tributed by Celeco (Klische, 2007).* Since there is
no free demo version, we base our review on the
elaborate tool description provided on their web
page. It should be pointed out that — unlike the Sil-
bengenerator and our system — the Celeco Druck-
station is distributed as a full fledged diagnosis and
therapy tool for reading disorders for learning ther-
apists and home tutoring alike. It thus provides a
number of tests and exercises for reading and diag-
nosis, which are generated from texts specified by
the user. This also includes a syllable enhancement
facility that allows to load texts into the program,
visually enhance syllables, and print them. Celeco
Druckstation offers to adjust the basic text layout
in terms of fonts, font size, font color, and back-
ground color. It also supports advanced layout
modifications in terms of text segmentation: users
may choose to put spaces after every syllable or
every 3rd, 4th, or 5th character. Syllables are en-
hanced with two alternating, freely customizable
colors, or with syllable arcs. No special encoding
of word stress is offered. Users may provide indi-
vidual syllable analyses of unknown words. These
are saved in a local data base. However, the syllab-
ification of known words can — as far as we could
determine — not be altered by the user. We could
not determine whether enhancement settings may
be saved and re-used as templates.

3 Tool

3.1 System Description

We developed COAST as a platform-independent
web-based tool that is deployed with Apache on
a server hosted on the Amazon Web Services
(AWS).? The front-end was developed with HTML,
CSS, JavaScript, and AngularDart. ¢ The back-
end was developed with Python using the frame-
works Flask,” and SQLAIchemy. ® We use spaCy
(Honnibal and Johnson, 2015) for natural language
processing (NLP).

celeco.de/
aws.amazon.com/
angulardart.org/
flask.pocoo.org/
sglalchemy.org/

WWW .
WWW .
WWW .
WWW .

® N o wn

WWW .
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Target Users are on the one hand teaching prac-
titioners, but on the other hand any person with an
interest in syllabified reading material, such as tu-
tors or parents. We account for this divide with two
separate types of user accounts: regular and expert
users. Currently, this distinction is relevant for our
crowd-sourcing mechanism, which is discussed in
Section 3.2.

Analyzing Input Texts is the core functionality
of COAST. Figure 1 shows the workflow of auto-
matic text analysis and enhancement. Before users
can enhance texts in the front-end as described
in Section 3.2, texts need to be processed accord-
ingly: First, spaCy is used for parsing, tokenization,
and part-of-speech (PoS) tagging. The letters of
a word and its PoS are used as a combined pri-
mary key to query the global and local database
stored in SQLite. The global database is initialized
with the German version of the language corpus
CELEX2 of Baayen et al. (1995) and is available
to all users. For the approximately 360,000 lem-
mas and inflected word forms that are included in
CELEX2, we infer primary word stress and syl-
lable structure from CELEX2’s orthographic and
phonetic transcriptions.The local database consists
of manually annotated entries and is only avail-
able to the specified user. If an entry was found,
the syllabification, syllable stress, and lemma of
the word are returned. If no entry was found, the
word is marked as unknown and must be manually
annotated. Manually annotated entries are auto-
matically stored in the local database of the user
and forwarded to the crowd-sourcing mechanism
explained in detail in Section 3.2. The annotated
information is used afterwards to enhance syllables
and words of the text as can be seen in Appendix A,
Figure 5. Further linguistic information for each
enhanced word may be obtained individually, see
Appendix A, Figure 6.

3.2 Features

Crowd-Sourcing is one of COAST’s most inno-
vative features. We exploit the crowd-knowledge
for long-term improvements of our automatic syl-
labification and word stress analysis. Currently, the
crowd is derived from COAST’s active users. To re-
liably identify not only syllable boundaries but also
stress patterns is one of the biggest challenges in
automatic syllable enhancement due to limitations
of the available linguistic resources. This is espe-
cially true for languages other than English and
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Figure 1: System overview of COAST.

for German this issue is particularly pressing, be-
cause irrespective of the size of the underlying data
base, morphological composition and derivation
are highly productive in German, which makes the
occurrence of unknown words more likely. This
issue of data sparsity is well-known from other
NLP applications such as machine translation or
information retrieval, and often addressed in work
on compound splitting (Ziering and van der Plas,
2016; Weller et al., 2014). Furthermore, both pro-
cesses may alter the word stress making the issue
more difficult (Féry, 1998).

During the expert interviews it became apparent
that prospective users prefer to be alerted to un-
known words that may have been mis-analyzed, so
they may review and if necessary manually correct
them. In this context, we found that users would
also prefer the system to learn from their correc-
tions so that they could contribute to making the
system more efficient in the long run. Together
with our experts we therefore developed a crowd-
sourcing mechanism, that would allow local cor-
rections of users to be incorporated to our system’s
global data base after they have been verified by
either two more users or an expert user. We de-
rived this role of an expert user to prioritize the
votes of learning therapists and linguists over lay-
man judgments. Upon registration, new users may
self-identify as experts or as regular users. A veri-
fication of this self-assignment remains for future
work.Experts may also revoke crowd-induced up-
dates to the data base. With this combined expertise
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and additional layer of control through experts, our
system may draw from a constantly growing pool
of analyses, which ultimately increases its usability
and robustness while building a promising resource
for future work.

The verification mechanism is located on a sep-
arate page that asks users to voluntarily identify
syllable boundaries and word stress of words un-
known to the system. To facilitate analyses, we
provide users with information on how our auto-
matic tools would analyze a word as help as well
as with previous analyses of other users. We incor-
porate the freely accessible MARY-TTS (Schroder
and Trouvain, 2003) for automatic suggestions for
stress annotation and Pyphen for syllabification.
We require users to manually annotate each word
unknown to the database due to insufficient per-
formance of automatic stress assignment. This is
an extensible framework, which may be expanded
with more detailed information in the future.

The following use case illustrates this process:
User 1 uploads a text containing two words un-
known to the system: Hitzeschock (‘“heat shock™)
and Hacken (“heels”). She is asked to determine
the syllable boundaries and stress (marked in bold
font) for both words and submits Hit-ze-schock and
Hac-ken. This syllabification assumes a bisyllabic
consonant doubling for both terms. While this is
correct for most consonants at syllable boundaries,
ck is an exception to this rule which is unknown
to many laymen. Thus, when our system prompts
Users 2 and 3 to verify User 1’s analysis, they agree
with her and both analyses are updated to the global
data base. User 4 uploads another text containing
Hitzeschock. Afterwards, the word is not flagged
as unknown, but analyzed together with all other
words that were originally included in the data base.
Expert User 5 is asked to review the updates to the
data base. She identifies the mistake that has been
made and revokes the analysis of Hacken to Ha-
cken. The entry is immediately corrected in the
global data base and will be displayed correctly for
all future analyses.

Text Enhancement is the core functionality of
our tool. We enhance syllable boundaries as well
as — unlike other systems — stress. For this, we
rely on automatic analyses and manual post-hoc
corrections by the user for words that are flagged
as unknown: Our expert interviews clearly showed
that prospective users not only prefer a high de-
gree of customization in the visual representation



Ich berat schlag mein

Mei ster mit einem
Elefanten und einer

Rie sen ge

Figure 2: Template inspired by ABC der Tiere.

of their texts, but also want to re-use and switch be-
tween templates. Therefore, we not only facilitate
advanced customization options for the text and
enhancement layout, but also allow users to store
various templates, which may be consecutively ap-
plied to a text with a simple click.

Our settings feature two main categories: First,
they allow to modify the enhancement of syllable
stress by allowing users to choose freely the col-
ors assigned to 1) stressed syllables, ii) unstressed
syllables, and optional iii) the second unstressed
syllable. Stressed syllables may be enhanced with
bold font. Users can choose whether to apply
the color enhancement to the font or the syllables’
background. Furthermore, syllable boundaries may
be made more salient by using a syllable delim-
iter character that users may choose freely. Finally,
users may specify to which extend certain parts of
speech should be analyzed, e.g. they may choose
to ignore articles or to default connectives to be
enhanced as unstressed. Second, they allow users
to customize the text layout independent of the syl-
lable enhancement. This includes basic options
such as adjusting font size or line space. How-
ever, we also allow to freely choose the distance of
words, syllables, and characters. Users may further
make word boundaries more salient by choosing
a background color for them. The combination
of these syllable enhancement and text layout set-
tings may be saved under a descriptive title as a
template, which may be re-used and altered at any
point across texts or sessions.

The following use case illustrates how this
works: User 1 works with children with reading dis-
abilities from two groups: Group A uses the ABC
der Tiere materials in school. The children are thus
used to the blue and red layout, which User 1 wants
to alter as little as possible, while still providing her
pupils with materials that also mark syllable stress.
Therefore, she customizes a template to use the
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be=rat=schlag=
=ster= =nem
E=le=fan=ten =ner
=sen= =ge

Figure 3: Template inspired by Leselowen.

ABC der Tiere style for her enhancement. Figure 2
shows the result for the sentence Ich beratschlagte
mein Meisterwerk mit einem Elefanten und einer
Riesenschlange (“I consulted my masterpiece with
an elephant and a giant snake”).

She sets the marking color of stressed syllables
to dark red and of unstressed to blue. In order to
make the alternation of syllables more salient, sec-
ondary unstressed syllables are also marked in red.
To clearly distinguish them from stressed syllables,
she additionally uses bold font to mark stress and
uses a lighter type of red to mark secondary un-
stressed syllables. Because ABC der Tiere colors
monosyllabic words in blue, User 1 further sets
typically monosyllabic parts of speech, such as
articles and prepositions, from the analysis to be
analyzed as unstressed. Finally, she makes syllable
boundaries more salient by widening the distance
between syllables. To make word boundaries more
salient, despite this increased syllable distance, she
further widens word distance and assigns a beige
background color to words.

Children from Group B do not use the ABC der
Tiere materials at school, but they are reading syl-
labified stories at home from the Leselowen (“read-
ing lions”) materials by the Loewe publisher.’
These materials use three colors to mark alternating
syllables and they do not treat monosyllabic words
differently from others. For this group, too, User
1 wants to make stressed syllables more salient in
her materials, while otherwise not deviating much
from the layout the children are already used to.
Thus, she designs a second layout which mimics
the Leselowen style. The result of applying this
template to the same sentence she used for Group
A may be seen in Figure 3.

The colors used by Leselowen are green, red,
and blue. She assigns stressed syllables the color

9www.loewe—verlag.de/

content-1013-1013/1leseloewen/



green and again additionally marks them with bold
font. Unstressed and secondary unstressed sylla-
bles are colored red and blue. Because this style
already features three colors, she does not want to
use a background color for words. At the same
time, she wants to make word as well as syllable
boundaries more salient. For this, User 1 chooses
to mark syllable boundaries with a delimiter (in
this case =) but without additional space between
syllables and increases the distance between words.
While the initial customization took a couple of
minutes, User 1 may re-apply her two templates to
any text in the future, reducing the time required
for customization to mere seconds. She may also
alter the templates at any time or add new ones
when required.

4 Evaluation

We conducted user tests to evaluate COAST with
both practitioners as well as with non-experts. Prior
to these, we performed an internal pilot testing to
identify runtime issues that are not directly related
to the functionality of COAST.

Five scenarios were defined to evaluate the
tool’s functionality, usability, and user experience.
They cover i) account creation, ii) text analysis and
enhancement, iii) generation and use of annotation
templates, iv) reuse of previously stored texts, and
v) verification of user-generated entries (“crowd-
sourcing”).

In the first scenario, the users were asked to
create an account with given credentials.

The second scenario consisted of four major
steps: First, users were asked to log into the re-
cently created account. Secondly, they had to
switch to the Text Analysis view of the tool and
to analyze and enhance a given text. After analyz-
ing the text, they were told to clarify all words un-
known to the system, which are flagged and shaded
in red. Finally, users were asked to adjust the anno-
tation settings based on their personal preferences.

The third scenario covered the instructed genera-
tion and use of annotation templates. Users were
asked to rebuild two annotation schemes by adjust-
ing the annotation settings and save them as new
templates.

In the fourth scenario, users were asked to store
the analyzed text in their account and re-analyze it
by selecting the stored text in the Account view of
the tool.
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In the fifth and final scenario, users were re-
quired to verify entries added by other users that
are unknown to the global database. In order to do
so, they were asked to switch to the Verification
view (see Figure 7) and approve or edit five entries.

The second, third, and fifth scenario are of spe-
cial importance as they cover the core-functionality
of COAST and can be seen in Figure 8.

User Tests were conducted by seven users from
two groups: three experts (learning therapists) to
receive subject-specific feedback and four laymen
to evaluate the general usability of the tool. The
three experts were women aged between 40 and 51
(M = 45). The laymen aged between 22 and 27
(M = 25) included two men and two women with
non-educational professions. The user test was
carried out equally for both groups. None of the
participants had interacted with the system before.

We used the after-scenario questionnaire (ASQ)
by Lewis (1995) for quantitative data analysis.
They were answered for each scenario directly after
its completion. The ASQ consists of three ques-
tions covering ease of use, time efficiency, and
documentation of the tool:

1. Overall, I am satisfied with the ease of use of

completing the tasks in this scenario

. Overall, I am satisfied with the amount of time
it took to complete the tasks in this scenario

. Overall, I am satisfied with the support and
documentation when completing the tasks

We used a five-point Likert scale ranging from
strongly agree to strongly disagree.

For qualitative analysis, the users were explic-
itly instructed to “think-aloud” (Rauterberg, 1996)
while working on a scenario, thus told to accurately
comment each of their actions and to express ex-
pectations, thoughts, and critics.

The user test was carried out as follows: Users
were free to use their preferred browser for the
user test. The default browser was Google Chrome.
The user test was conducted on the users’ personal
laptop if possible, to recreate their home or work
environment and to mimic a real-life application
as close as possible. If no personal laptop was
available, users were provided with one. All input
devices were configured according to user prefer-
ences. After setting up the work place, users were
informed and instructed about the procedure of the
user test, its purpose and the think-aloud method.



After clarifying all questions, users processed all
scenarios consecutively in fixed order. The user
tests were concluded with an interview to get gen-
eral feedback and to assess the usefulness of the
tool with respect to the users’ professions.

4.1 Results

The results of the second, third, and fifth scenario
are explained in detail due to their relevance, results
for scenario one and four can be found in the Table
2.

We normalized the options of the ASQ to range
from —2 (strongly disagree) to +2 (strongly agree)
with O (neither) being neutral. In the following, we
report positive values (i.e. agree, strongly agree)
as positive feedback, negative values (i.e. disagree,
strongly disagree) as negative feedback. For a more
detailed differentiation of the user feedback, please
see Figure 4.

The second scenario was successfully completed
by all users. The ease of use (M = 1.57,5D =
0.53) and documentation (M = 1.57, 5D = 0.53)
of the tool was rated 100 % positively in the ASQ,
time efficiency received 86 % positive and 16 %
neutral ratings (M = 1.57,SD = 0.78). Some
users criticized the layout of the Text Analysis view,
suggesting a more compact representation of the
annotation settings.

The third scenario was completed by five users
without help, two needed hints from the investiga-
tor to complete all tasks. While the first template
could be rebuilt by all users, two users required
help with the second template. Error source was
the confusion about and between the features Silbe
hervorheben (enhance syllables), with which either
the fore- or background color of syllables could
be adjusted accordingly, and Wort Hintergrund-
farbe (word background color), with which the
background color of words could be set (see Fig-
ure 5). Three users completed this scenario by
trial-and-error. The ease of use of this scenario was

Question Rating
-2 -1 0 1 2
Scenario 1
ease of use 0% 0% 0% 290% 71.0%
time efficiency 0% 0% 0% 0% 100%
documentation 0 % 0% 0% 29.0% 71.0%
Scenario 4
ease of use 0% 0% 0% 28.6% 71.4%
time efficiency 0 % 0% 0% 28.6% 71.4%
documentation 0 % 0% 0% 28.6% 71.4%

Table 2: Results of the ASQ for scenario 1 and 4.
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Scenario 2 Scenarlo 3

14,29 %
28,57 %

B 42,86 %

57.0% 57,0 %

71,43 %
57,14 %

28,57 %

28,57 %

14,29 %

43.0% 14,29 % 43,0%

28,57 % 28,57 % 28,57 %

14,29 %

Easeof Use  Time Efficiency Documentation Easeof Use  Time Efficiency Documentation

Scenario 5

strongly disagree
disagree
neither

agree

gooen

71,43 % 71,43 % 71,43 % strongly agree

28,57 % 2857 % 28,57 %

Easeof Use  Time Efficiency Documentation

Figure 4: Results of the after-scenario questionnaire
completed for scenario 2, 3, and 5.

rated 71.4 % positively and 28.57 % negatively
(M = 0.57,SD = 1.27), the time efficiency 71%
positively and 29 % negatively (M = 0.86,SD =
1.34), and 57.2 % positively, 14.3% neutral, and
28.6% negatively in terms of documentation and
support (M = 0.57,SD = 1.14).

The fifth and last scenario was completed by all
users successfully. Ease of use, time efficiency,
and documentation of this functionality were rated
100 % positively (M = 1.71, 5D = 0.49 for each
item respectively). Users suggested to design this
functionality to be more user friendly by displaying
and processing multiple entries at once.

The think-aloud and concluding interviews addi-
tionally revealed general layout and design flaws
of COAST’s visual appearance. While this goes
beyond the scope of this paper, we list problems,
comments, and feature requests directly linked to
the core features of our tool: i) the general navi-
gation of the tool was not very intuitive and self-
explaining, ii) some features could only be ac-
cessed with scrolling, which was not explicitly visi-
ble to the users, iii) some features, e.g. background
color of words and syllable enhancement, need
explicit documentation/tutorials, iv) some users
asked for a simple solution to color syllables al-
ternately independently of syllable stress, v) the
feature to not enhance monosyllabic words instead



of unchecking the annotation of typically monosyl-
labic parts of speech was requested, vi) fore- and
background color of syllables and words should
independently be customizable.

5 Conclusion and Outlook

COAST is a highly user-oriented, platform inde-
pendent, web-based and easily extensible frame-
work for the automatic augmentation of texts with
syllable, stress, and word enhancement. It was de-
veloped in close collaboration with practitioners
and includes a series of features which were ex-
plicitly requested by prospective users and that are
lacking from currently available, state of the art
systems. This paper presents and evaluates its abil-
ity to generate appropriate reading materials based
on real-life use cases. Additionally, we evaluated
the practical applicability of our tool by conducting
user tests based on a series of real-life scenarios.

Our exemplary enhanced texts (see Figure 2 and
3) prove that appropriate reading materials can be
easily generated automatically, customized, and
exported with COAST. The use cases show that
the tool meets the requirements deduced from the
a priori requirement analysis based on our expert
interviews. Compared to other tools that support
syllable enhancement, COAST offers a higher de-
gree of customization and more features, such as
annotating syllable stress, setting spacing of lines,
words, syllables, and characters. The automatic
analysis of syllable stress and part of speech also
make COAST linguistically more informed than
other tools. Finally, we carried out user tests with
special focus on practical application. These indi-
cate that the majority of users were able to solve
the tasks intuitively and time efficiently for each of
the scenarios.

We have successfully shown that the current ver-
sion of COAST allows practitioners to generate
enhanced texts as reading materials for their teach-
ing. Being able to save annotation templates and
texts has proven to be an especially useful func-
tionality to easily generate new reading materials
within the application with little time effort. Fur-
thermore, COAST features a novel crowd-sourcing
approach to overcome the pressing issue of limited
resources and data sparsity. This is particularly rel-
evant for languages other than English. Currently,
our tool illustrates this for the German language.
However, the entire framework was designed to be
easily extended for any other language for which
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sufficient resources are available.

Our consultation with prospective users also
yielded a series of practical suggestions to opti-
mize user experience further and to include more
features. In particular, we aim at including the fea-
tures discussed in Section 4.1. We also plan to re-
design COAST’s visual appearance. Furthermore,
we intend to elaborate on the current documen-
tation and to provide application-oriented feature
tutorials. To improve the reliability of our proposed
crowd-sourcing mechanism, we plan to address the
verification of user roles, i.e. expert and regular
users. In this regard, the need of further user type
customization shall be analysed and implemented
accordingly. Finally, we intend to carry out user
studies to compare COAST’s efficiency and effi-
cacy to state of the art tools that support syllable
enhancement in texts.

Our ultimate goal is to develop and include a
front-end for learners, the COAST App. This results
in a tutoring system offering reading and spelling
exercises optimized for mobile devices. The cur-
rent COAST Tool could be used by practitioners to
generate teaching materials to be shared with the
COAST App and, thus, to supply exercises directly
to their pupils.
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A Supplemental Material
A.1 Screenshots of COAST

Home Textanalyse Verifizierung olibrehm@gmail.com
Einstellungen Vorschau
Betonte Silbe: Einem reichen Manne , dem wurde seine Frau krank , und als Sie fihlte
Fett . . daB ihr Ende herankam , rief Sie ihr einziges Téchterlein zu sich ans
#E84F2F
Bett und sprach : " Liebes Kind , Bleibe fromm und gut , so wird dir der
Unbetonte Slibe: liebe Gott immer beistehen , und Ich will vom Himmel auf dich
#2D2FFF
herabblicken , und will um dich Sein . " Darauf Tat Sie die Augen zu
2. Unbetonte Silbe: und verschied . Das Madchen ging jeden Tag hinaus zu dem Grabe der
Benutzen Wil

Mutter und weinte , und blieb fromm und gut . Als der Winter kam ,
#21AEE9

deckte der Schnee ein weiBes Tichlein auf das Grab , und als die Sonne

Wort Hintergrundfarbe:

im Frihjahr Es wieder herabgezogen hatte , nahm sich der Mann eine
Benutzen @il

andere Frau

Silbe hervorheben:
(@ Vordergrundfarbe

DRUCKEN KOPIEREN (ZWISCHENABLAGE)

(O Hintergrundfarbe

SchriftgréBe: TEXt

st
1 Einem reichen Manne, dem wurde seine Frau krank, und als sie filhlte, dass ihr Ende
herankam, rief sie ihr einziges Téchterlein zu sich ans Bett und sprach: ‘Liebes Kind,
Silbenabstand: bleibe fromm und gut, so wird dir der liebe Gottimmer beistehen, und ich will vom
02 Himmel auf dich herabblicken, und will um dich sein.” Darauf tat sie die Augen zu und
verschied. Das Madchen ging jeden Tag hinaus zu dem Grabe der Mutter und weinte,
und blieb fromm und gut. Als der Winter kam, deckte der Schnee ein weilles Tiichlein
Wortabstand: auf das Grab, und als die Sonne im Frilhjahr es wieder herabgezogen hatte, nahm sich

0.4 der Mann eine andere Frau.

NEU ANALYSIEREN
Zeilenabstand:

22

Figure 5: COAST - View for text analysis and enhancement. Users can insert or edit text in the lower
text box. The preview of syllable enhancement is given in the upper box. On the left side, users can
edit settings regarding syllable annotation: boldness, colors of stressed and unstressed syllables (either
background or foreground), background color of words, font size, and spacing between syllables, words,
and lines.

Einem reichen Manne , dem wurde

, daB ihr Ende herankam , rief Sie

a

herankam

Annotieren @il A

Betonungsmuster: i

her 'an kam | [Unbetont]

Silbentrennung:

her-an-kam
(Silben mit "-" trennen)
GLEICHE WORTER UBERNEHMEN

Wortart: Verb
Lemma: herankam

Figure 6: COAST — Word-Popup. Popup with additional information that is invoked when a known word
is clicked in the text-view. At the moment, we offer information about syllabification, part of speech, and
lemma. Users can additionally manually change the syllabification or stress assignment of the selected
word and apply it to the preview.
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Verifizierung: geschlossenen

Noch zu verifizierende Worter: 33

Betonungsmuster Vorschlage

ge schlos se nen Maria Musterfrau (Benutzer)

ge |schlos' se nen

(betonte Silbe durch Klicken auswahlen)

MARY TTS (Source: MARY TTS)

) ge |schlos se nen

Silbentrennung ¥
Pyphen (Source: Pyphen)

ge-schlos-se-nen
ge schlos se nen

(Silben mit "-" trennen)

SPEICHERN ~ IGNORIEREN ~ ZURUCK ZUM TEXT

Figure 7: COAST — Verification-view of entries added by users unknown to the global database. Current
word is geschlossenen (ge-schlos-sen-en, closed). Users can edit stress assignment and syllabification on
the left side or agree to a user’s judgment or to automatically generated suggestions on the right side.

Scenario 2: Text Analysis and Enhancement
. Log in with your credentials.

. Go to “Text Analysis”.

. Insert the given text into the text box.

. Let the tool analyze the text.

. Clarify all unknown words. Unknown words are shaded in red.

o 0o b~ W N B

. Play around with the annotation settings until the preview suits you.

Scenario 3: Annotation and Enhancement Template

1. Please try to rebuild the following annotation scheme by changing the
annotation settings.

Ei=nem rei=chen Man=ne , dem wur=de sei=ne Frau krank , und als
2. Save your annotation settings as a template with the name ,Template 1.
3. Now, please try to rebuild the following annotation scheme.

Einem reichen Manne , dem wurde seine Frau krank , und als

4. Save your annotation settings as a template with the name ,Template 2“.
5. Now, switch between “Template 1” and “Template 2” back and forth.

Scenario 5: Verification of User-Generated Entires
1. Switch to “Verification”.

2. Approve or edit five entries.

Figure 8: User tests of scenario 2 (text analysis and enhancement), 3 (creation and use of annotation and
enhancement templates), and 5 (verification of user-generated entries).

100



Annotating Picture Description Task Responses for Content Analysis

Levi King
Indiana University
leviking@indiana.edu

Abstract

Given that all users of a language can be
creative in their language usage, the overar-
ching goal of this work is to investigate is-
sues of variability and acceptability in writ-
ten text, for both non-native speakers (NNSs)
and native speakers (NSs). We control for
meaning by collecting a dataset of picture de-
scription task (PDT) responses from a number
of NSs and NNSs, and we define and anno-
tate a handful of features pertaining to form
and meaning, to capture the multi-dimensional
ways in which responses can vary and can
be acceptable. By examining the decisions
made in this corpus development, we high-
light the questions facing anyone working with
learner language properties like variability, ac-
ceptability and native-likeness. We find re-
liable inter-annotator agreement, though dis-
agreements point to difficult areas for estab-
lishing a link between form and meaning.

1 Introduction

The (written) data of second language learners
poses many challenges, whether it is being an-
alyzed for grammatical errors (Leacock et al.,
2014), for linguistic patterns (Kyle and Cross-
ley, 2015), for content analysis (Weigle, 2013), or
for interactions with intelligent computer-assisted
language learning (ICALL) systems (Amaral and
Meurers, 2007). One of the core issues in doing
anything with learner data is the inherent amount
of variability in how linguistic forms are used to
convey meaning (cf., e.g., Meurers and Dickinson,
2017). It may indeed seem like learners can use
an infinite variety of forms to express a particular
meaning; here we attempt to investigate how large
the problem of variability in one particular testing
context is for computational processing.

To investigate variability and the mappings be-
tween linguistic form and meaning, in this paper
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we control for meaning by collecting a dataset
of picture description task (PDT) responses from
a number of NSs and NNSs, and we annotate a
handful of features, thereby capturing the multi-
faceted ways in which responses can vary and can
be acceptable or unacceptable. We call this the
SAILS Corpus, for Semantic Analysis of Image-
based Learner Sentences—our intended use. By
examining the decisions made in this corpus de-
velopment, we highlight the questions facing any-
one working with learner language properties such
as variability, acceptability and native-likeness.
Given the form-meaning aspect of variability,
we are interested in how variable linguistic be-
havior is for the same content, both within and
between NS and NNS groups, and the potential
use of NS responses to evaluate NNS responses.
There is a long-standing notion that systems pro-
cessing learner data would be wise to constrain
the data in some way (e.g., Heift and Schulze,
2007; Somasundaran et al., 2015), but we do not
know how much constraint is needed—or whether
we sacrifice the possibility of observing particu-
lar learner behavior for the sake of a constraint—
without knowing more about the ways in which
variation happens (cf. Bailey and Meurers, 2008).
The corpus presented here bears some similar-
ities to other task-based learner corpora. Meurers
et al. (2011) examined German learner responses
to short-answer reading comprehension questions.
A target answer was produced by an expert, and
annotators used this target to label the meaning
of responses as correct or incorrect, along with a
more detailed set of labels related to form, mean-
ing, and task appropriateness. In our own previ-
ous work (King and Dickinson, 2016, 2013), we
annotated a small set of PDT responses as correct
or incorrect, with incorrect responses further la-
beled as errors of form or meaning. Somasundaran
and Chodorow (2014) presented work on PDT re-
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sponses in which respondents used provided vo-
cabulary words. Responses were manually anno-
tated on a holistic four point scale, and a set of
five features (relating to meaning, relevance and
language use) were calculated based on statisti-
cal assumptions. Somasundaran et al. (2015) per-
formed a nearly identical analysis with transcribed
texts from a six-picture narration task, but neither
of these datasets is publicly available.

Our work reverses this mapping by providing
manually annotated features, which we hope will
be useful for mapping to holistic scores. For ex-
ample, a response may present the main content of
an item correctly but add imaginary details, while
another may address background information not
asked about in the prompt (see section 3). The ac-
ceptability of a response is thus taken as a function
of several interacting features, most of which re-
late the text to the known semantic content. Relat-
ing to known content is distinct from typical gram-
matical error correction (GEC) (Leacock et al.,
2014) and from more linguistically driven work
such as parsing (e.g., Cahill et al., 2014; Ragheb
and Dickinson, 2014), but providing the dimen-
sions of acceptability and elucidating how they are
applied provides insight for any enterprise desir-
ing to connect learner text with semantic content,
in addition to unpacking the sources of variation
and of difficulty in processing a range of learner
data.

In section 2 we outline the picture description
task (PDT) we use, designed with items that elicit
specific types of linguistic behavior. Section 3 out-
lines the annotation, tackling the five-dimensional
scheme; inter-anntotator agreement results are in
section 4. While agreement seems reliable, high-
lighting areas of disagreement showcases difficult
areas for establishing a link between form and
meaning (cf., e.g., Meurers and Dickinson, 2017).

2 Picture Description Task

2.1 PDT Stimuli

The PDT is built around 30 cartoon-like vector
graphics, or items. The images were modified
to remove any non-essential detail or background;
some examples are in Table 1. To factor out the in-
fluence of previous linguistic context, images are
devoid of any text or symbols, with the exceptions
of two images containing numerals, two with mu-
sic notes, and one with a question mark. Each im-
age depicts an ongoing or imminent action, per-
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formed by a person or an animal. The images are
divided evenly into canonically intransitive, tran-
sitive and ditransitive actions.

Two main versions of the PDT were used.
In each version, the first half contains targeted
items, where questions take the form of What is
<subject> doing?, with the subject provided (e.g.,
the boy, the bird). The second half contains un-
targeted items, where the question is, What is
happening?. Collecting both versions allows one
to examine response variation with and without a
subject constraint, thereby informing approaches
to task design and automatic content assessment
(Foster and Tavakoli, 2009; Cho et al., 2013).
Roughly equal numbers of targeted and untargeted
responses were collected for each item.

Each half (targeted and untargeted) is intro-
duced with instructions, including an example
item with sample responses. The instructions ask
participants to focus on the main event depicted in
the image and for each response to be one com-
plete sentence. The PDT was presented as an
online survey, and all participants typed their re-
sponses. Participants were instructed not to use
any reference materials, but were permitted to use
browser-based spell checking.

2.2 Data Collection

A total of approximately 16,000 responses were
collected from 499 participants. Of these, 141
were NNSs, recruited from intermediate and ad-
vanced writing courses for English as a Second
Language students attending Indiana University.
Nearly 90% of these recruits were native speakers
of Mandarin Chinese, which could have important
implications for conclusions drawn from the cor-
pus. These participants performed the task in a
computer lab with the researchers present. They
were native speakers of Mandarin Chinese (125),
Korean (4), Burmese (3), Hindi (2), and one na-
tive speaker each of Arabic, Indonesian Bahasa,
German, Gujarati, Spanish, Thai and Vietnamese.

Of the 358 NS participants, 29 were person-
ally known by the researchers. Responses from
the remaining 329 NSs were purchased via an on-
line survey platform where participants earn cred-
its they can redeem for gift cards and prizes. Due
to length restrictions for purchased surveys, these
NSs each completed only half of the task, so their
data is equivalent to 164.5 full participants.

In previous similar work (King and Dickinson,
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What is the woman doing? [Intrans.] | Al | A2
The woman is running. 1 1
She is wearing a red shirt. 0 0
Trying to run from her bad decisions | 1 0
What is the woman doing? [Trans.] Al | A2
Holding a puppy & looks happy 1 1
She is happy with the dog. 0] 0
The lady loves her dog. 1 0
What is the man doing? [Ditrans.] Al | A2
giving directions to a woman. 1 1
The man is reading a map. 0 0
The man is is telling her where to go | 1 0

Table 1: Test sample items and example responses
with Core Event annotations from Annotators 1 and 2.

2013), NSs were found to produce less variation
than NNSs. Many NSs provided identical re-
sponses or ones very similar to the most canonical
way of expressing the main action. One purpose of
gathering the data is to be able to assess NNS re-
sponse content by comparing it against the NS re-
sponses; thus, NSs were asked to provide two non-
identical responses, in the hopes that this would
result in more examples of native-like responses
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for the NNS responses to compare against.

Targeted Untargeted
Set NS NNS || NS NNS
Intrans || 0.628 | 0.381 || 0.782 | 0.492
Trans 0.752 | 0.655 || 0.859 | 0.779
Ditrans || 0.835 | 0.817 || 0.942 | 0.936

Table 2: NS and NNS type-to-token ratios (TTR) for
complete responses (not words), for all the data.

To examine the degree of variation among the
NS and NNS groups in the current study, type-
to-token ratios (TTR) were calculated on the re-
sponse level (ignoring case and final punctuation)
for the entire set of items, shown in Table 2. For
each data point in the table, the corpus contains
roughly 150 NS responses and 70 NNS responses.
To control for this imbalance and its effect on the
likelihood of seeing new responses, the TTR was
calculated for each item based on a random sample
of 50 responses. Specifically, we randomly sam-
pled 50 responses, calculated the TTR, and aver-
aged them. The scores in in Table 2 show that,
in all cases, the NS set shows a greater degree of
response variation, meaning that asking for two re-
sponses is an effective way of collecting a broader
range of NS responses.

The ratios show the direct relationship between
the complexity of the event portrayed (represented
here as intransitive, transitive and ditransitive) and
the degree of variation elicited. In all cases, TTR
increases with this complexity. Interestingly, this
trend seems more pronounced in the NNS re-
sponses; in the targeted NNS responses, the TTRs
for intransitive and ditransitive items are 0.381 and
0.817, respectively, compared to 0.628 and 0.835
for NS responses. The ratios also show that in
all cases, variation is greater for untargeted items
than it is for targeted items. In other words, asking
about a particular subject in the prompt question
does constrain the variety of responses.

3 Annotation scheme

The data were annotated with the aim of provid-
ing information that would be useful for the auto-
matic assessment of NNS responses via compar-
ison with NS responses. The annotation scheme
was developed through an iterative process of an-
notation, discussion and revision, with input from
two annotators and multiple language profession-
als. The initial scheme was planned as a three-



point scale, ranging from accurate and native-like
(2) to accurate but not native-like (1) to not accu-
rate (0). This proved problematic, however, as ac-
curacy and native-likeness could not be adequately
defined and applied to the data. For example, in
the middle picture of Table 1, it is not clear how
accurate or native-like She is happy with the dog
is. Grammatically, it is native-like, but it does not
seem like an appropriate answer to the question,
What is the woman doing?

To address the specifics of appropriate answers,
five binary features were eventually settled on,
with each feature having some relation to the orig-
inal concepts of accuracy and native-likeness. A
set of annotation guidelines were produced with
definitions, rules and examples for each feature.
For most features, the rules for targeted and un-
targeted items vary slightly; the untargeted rules
are generally less strict. The features and brief de-
scriptions are listed here and discussed further in
the following sections:

1. Core Event: Does the response capture the
core event depicted in the image? Core
events are not pre-defined but should be fairly
obvious given the nature of the images. The
response should link an appropriate subject to
the event. In the top picture of Table 1, The
woman is running clearly captures the core
event, while She is wearing a red shirt is ir-
relevant to the event happening.

. Verifiability: Does the response contain only
information that is true and verifiable based
on the image? Inferences should not be spec-
ulations and are allowed only when neces-
sary and highly probable, as when describ-
ing a familial relationship between persons
depicted in the image. For example, in Ta-
ble 1, She is wearing a red shirt conveys in-
formation that is irrelevant to the core event
but is nonetheless recoverable from the image
(annotation=1), while Trying to run from her
bad decisions has information that cannot be
inferred from the picture.

. Answerhood: Does the response make a
clear attempt to answer the question? This
generally requires a progressive verb. For tar-
geted items, the subject of the question, or an
appropriate pronoun, must be used as the sub-
ject of the response. For example, The dog
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is happy is answering a question other than
What is the woman doing? (Table 1).

Interpretability: Does the response evoke a
clear mental image (even if different from the
item image)? Any required verb arguments
must be present and unambiguous. For ex-
ample, The map is hard to read is too vague
to generate a clear mental image (Table 1).

Grammaticality: Is the response free from
errors of spelling and grammar? In our data
set, this is a relatively straightforward feature
to annotate (see section 4).

Example annotations In Table 3, we see exam-
ple responses with all five features annotated, il-
lustrating each feature’s distinctiveness from the
others. For example, for He is eating food one can
generate a mental picture, e.g., of someone chew-
ing (interpretability=1), but the pizza is
important to the item image (core event=0).
As another example, He may get fat eating pizza
seems to be addressing a question about the con-
sequences of the eating action (answerhood=0)
and talks about hypotheticals not in the picture
(verifiability=0). Teasing apart these an-
notations is the focus of the next section.

4 Agreement

Two annotators participated in the annotation.
Both are native speakers of (US) English, and each
has several years of language teaching experience
with both children and adult learners. Annotator 1
(A1) annotated the complete corpus. Annotator 2
(A2) annotated only the development set and the
test set, data subsets described next.

Three items were used as a development set
for creating and revising the annotation scheme.
These items were also used as examples in the
guidelines. They represent one intransitive, one
transitive and one ditransitive item. Both anno-
tators annotated portions of the development set
multiple times throughout the process, discussing
and adjudicating disagreeing annotations before
moving on to the test set, which was completed
without consultation between the annotators.

The test set parallels the development set and
consists of one intransitive, one transitive and one
ditransitive item; it is shown in Table 1. Agree-
ment and Cohen’s kappa scores are given in Ta-
ble 4, broken down by different criteria. We will
now walk through these results.



What is the boy doing? \

He is eating food.
eatting.

The child is about to eat
pizza.

He may get fat eating
pizza.
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What is happening?
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Child is eating pizza.
Tommy is eating pizza.
The boy’s eating his fa-
vorite food.

Pizza is this boy’s fa-
vorite food.
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Table 3: Targeted and untargeted sample responses
from the development set transitive item, shown with
adjudicated annotations for the five features: core event
(O), verifiability (V), answerhood (A), interpretability
(1) and grammaticality (G).

4.1 Transitivity

Comparing the intransitive, transitive and ditran-
sitive items reveals an association between agree-
ment and item complexity. The highest raw agree-
ment and Cohen’s kappa scores are found with the
intransitive item (97.8%, x = 0.910) and the low-
est with the ditransitive (92.4%, k = 0.764).

This is as expected, as ditransitive sentences are
longer and have more verbal arguments, making
for more opportunities for responses to vary (see
Table 2), and thus more opportunities for anno-
tators to disagree on a response. This trend also
matches annotator feedback: both ranked the di-
transitive item as the most difficult to annotate
overall, and the intransitive as the easiest.

4.2 Targeting

Grouping the annotations into targeted and untar-
geted sets, the raw agreement scores are compara-
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ble (94.9% vs. 95.2%). However, despite a greater
degree of response variation, the untargeted group
has a higher kappa score (0.872 vs. 0.823). When
asked to compare the annotations, A2 noted that
targeted responses require more concentration and
closer consultation of the guidelines. For exam-
ple, answerhood does not allow for targeted
responses to modify the subject provided in the
question in any way, whereas in answering What
is happening?, the respondent is free to speak of
characters in the pictures in many different ways.
Both Al and A2 thus describe the annotation of
untargeted items as less restrictive.

4.3 Features

Grouped by feature, the annotations all show raw
agreement scores above 91% and Cohen’s kappa
scores above 0.74 (Table 4). For future use of this
corpus in content assessment, these kappa scores
are comfortably above the 0.67 suggested as a
baseline for meaningful, reliable agreement (Lan-
dis and Koch, 1977; Artstein and Poesio, 2008).
We discuss each feature in turn, highlighting dif-
ficulties in coming to an agreement, as such dis-
agreements illustrate some sources of variability.

Core event Isolating whether the main content
of the picture is being described or not, the core
event feature is the most relevant of the five for
content assessment. All five features are skewed
toward yes annotations, but with an average yes
rate of 72.5%, core event is the least skewed; i.e.,
more responses receive a no annotation for core
event than for any other feature.

Core event has the second lowest inter-
annotator agreement kappa score, at 0.808. This
is somewhat lower than expected, as the pre-
adjudication development set score was 0.889.
This appears to be largely attributable to the diffi-
culty of the ditransitive item, challenging for both
participants and annotators (section 4.1).

The main issue in this case has to do with the
amount of specificity required to be the core event.
The development set item depicts a man deliver-
ing a package to a woman, and most responses de-
scribe this as such a transaction, using give, deliver
or receive. The test set item shows a man giving
directions to a woman (Table 1), and this resulted
in a greater degree of variation. Many (particu-
larly NNS) responses portray this not as a canon-
ical giving directions event but as pointing, help-
ing a lost person or reading a map, with A2 more



Set

Total ‘ AlYes ‘ A2Yes ‘ AvgYes H Chance ‘ Agree H Kappa ‘

Intransitive 2155 | 0.863 | 0.855 | 0.859 0.758 0.978 | 0.910
Transitive 2155 1 0.780 | 0.774 | 0.777 0.653 0.949 || 0.853
Ditransitive 2155 | 0.812 | 0.786 | 0.799 0.678 0.924 | 0.764
Targeted 3390 | 0.829 | 0.818 | 0.824 0.709 | 0.949 | 0.823
Untargeted 3075 | 0.806 | 0.790 | 0.798 0.678 0.952 | 0.872
Core Event 1293 | 0.733 | 0.717 | 0.725 0.601 0.923 | 0.808
Verifiability 1293 | 0.845 | 0.817 | 0.831 0.719 | 0.968 | 0.884
Answerhood 1293 | 0.834 | 0.831 | 0.833 0.721 0.982 | 0.936
Interpretability | 1293 | 0.818 | 0.787 | 0.802 0.682 | 0919 || 0.744
Grammaticality | 1293 | 0.861 | 0.872 | 0.866 0.768 0.960 || 0.827

Table 4: Agreement scores broken down by different properties of the test set: total annotations (7otal), yes anno-
tations for Annotator 1 and 2 (A/Yes, A2Yes), average yes annotations (AvgYes), total expected chance agreement
for yeses and nos (Chance), actual raw agreement (Agree) and Cohen’s kappa (Kappa).

likely to accept these less specific descriptions.

Similarly, but to a lesser extent, the transitive
item, which shows a woman hugging a dog (Ta-
ble 1), resulted in disagreements where A2 ac-
cepts the word pet as the object, but Al rejects
such responses as too vague. Despite the accept-
able scores for core event agreement, the fact
that many disagreements hinge on particular word
choice or annotators having minor differences in
interpretation of the event suggest that greater
agreement could be achieved by providing anno-
tators with suggestions about the acceptable con-
tent for each response. In other words: by more
clearly determining the desired level of specificity
of a response—for the verb or its arguments—
agreement could be higher. The desired speci-
ficity may vary in accordance with the intended
use of the annotations; in the current annotations,
the standard discussed between annotators and in
the guidelines included pragmatic considerations
like naturalness, native-likeness and effort.

Verifiability On the flipside of the question of
whether the core semantic content is expressed is
the question of whether any extraneous content is
added, or any content used in a way which can-
not be verified from the picture. The average yes
rate for verifiability is 83.1%, making it
the third most skewed feature.

The raw agreement score is 96.8%, and the
kappa score is 0.884. By both measures,
this is the second highest agreement score, af-
ter answerhood. Of 42 disagreements for
verifiability, annotators agree that at least
eight are avoidable. Of these, five involve the in-

correct use of plurals. For example, Al accepted A
man is pointing the way for the women, when the
image shows only one woman, but the guidelines
reject such responses. Two other errors stem from
inaccuracy, with respondents referring to a dog in
the illustration as a cat. Each annotator incorrectly
accepted one such response. One disagreement
involved the misspelling of a crucial object: The
woman is holding the pat. It is unclear whether
pet or cat was intended. This should render the
response unverifiable, but Al accepted it.

The remaining disagreements are attributable
to different opinions about inferences, with A2
being, in general, more strict. For the ditransi-
tive item, for example, both annotators accept re-
sponses that refer to the woman as a hiker, but only
A1l accepts responses where the man and woman
are collectively referred to as hikers. For the in-
transitive item depicting a woman running, Al ac-
cepts multiple responses that refer to this as a race,
as well as responses that infer the runner’s motiva-
tion (fitness, leisure, etc.).

Answerhood Capturing the semantic content of
the picture isn’t the only criterion for determin-
ing the quality of a response; the answerhood
feature was added largely as a way to identify re-
sponses that simply do not follow the instructions.
Such responses tend to be: i. responses that do
not directly answer the given question, perhaps by
reframing the perspective so that it seems like a
different question was asked; ii. responses that are
gibberish or very low-effort and entered only so
the participant can proceed to the next item; or iii.
“troll” responses that attempt to be funny or ob-
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scene at the cost of attempting a direct answer.

The majority of participants do attempt to fol-
low the instructions and answer the question, how-
ever, and it is unsurprising that this feature skews
strongly toward yes annotations and results in the
highest raw agreement (98.2%) and kappa (0.936)
scores among the five features.

Of 23 disagreements, seven stem from one an-
notator failing to enforce the requirement that a
targeted response subject be either an appropriate
pronoun or the exact subject given in the question,
without adjectives, relative clauses or other modi-
fiers. Given the question What is the woman do-
ing?, for example, the responses The lady is run-
ning and The woman who in pink is running were
incorrectly accepted by one annotator. While this
criterion may seem strict, this subject-identity rule
separates the task of identifying an attempt to an-
swer the question from the task of verifying infor-
mation (see verifiability above).

Another ten disagreements involve responses
lacking a progressive verb, generally required as
an indication that the response refers to the spe-
cific action in the image and does not merely de-
scribe a state or a general truth (cf., e.g., The
woman is running vs. The woman runs). An-
notator fatigue thus accounts for the majority of
answerhood disagreements.

Interpretability The average yes rate for
interpretability is 0.802; only core
event is less skewed: responses were thus
also more likely to be unacceptable. The raw
agreement score is 91.9% and kappa is 0.744, the
lowest scores among the five features. This was
anticipated, because interpretability is
perhaps the most difficult to define, leaving room
for annotators’ personal judgments. Annotators
must decide whether a given response evokes a
clear mental image, regardless of how well that
mental image matches the PDT image. In this
way, responses such as The man is working which
may be completely verifiable may still fall
short, in that the man could be picking fruit,
building a bridge, and so forth.

The guidelines place some restrictions on what
it means to be a clear mental image. To begin with,
if one were to illustrate the response, the result
would be a complete, representational, canonical
image. It would not be necessary to guess at major
elements, like subjects or objects. All necessary
semantic arguments would be identifiable from the

sentence and thus not obscured or out of the frame
in the mental image. Vague language should be
avoided, but human gender does not need to be
specified, especially when a non-gendered word
like doctor or teacher is natural.

Consider a response like A woman is receiving
a package. By these criteria, the response is an-
notated as 0 because the person or entity deliver-
ing the package is not specified, and an illustrator
would need to either guess or compose the image
with the deliverer oddly out of the frame. A man
is delivering a package, on the other hand, would
be accepted. An illustrator could simply show a
delivery person carrying a package, as an indirect
object would not be necessary for the verb deliver.

Among the 105 annotator disagreements, fa-
tigue accounts for roughly 30; this is difficult to
determine precisely because annotators expressed
difficulty in identifying a single root cause for
many disagreements. Those that are clearly at-
tributable to annotator error tend to involve re-
sponses with some internal inconsistency, as with
subject-verb disagreements, where the number of
the subject is uninterpretable. Among true dis-
agreements, the level of specificity is often the
point of contention, as with core event. For
example, Al accepted several transitive item re-
sponses with the verb love, as in The woman loves
her dog (Table 1). A2 explained that these are too
vague to illustrate as an action; A1 disagreed, and
this seems to indicate differing judgments regard-
ing the use of love as a dynamic verb.

Grammaticality The grammaticality fea-
ture is the most heavily skewed one, with an aver-
age yes rate of 86.6%. As the only non-semantic
annotation, this is perhaps not surprising.

Grammaticality has a raw agreement score of
96.0% and a kappa of 0.827. Among 52 dis-
agreements, annotators concurred in discussion
that 19 involve an avoidable annotator error. These
are primarily responses with typos, misspellings,
subject-verb disagreement and bare nouns, all re-
jected by the annotation rules. Such cases are
likely attributable to annotator fatigue.

The remainder reflect an unavoidable level of
disagreement. Many of these stem from differing
interpretations of bare nouns as either errors or as
acceptable mass nouns, as in The man is giving di-
rection to the tourist. In several cases, annotators
disagree over prepositions, which are known to be
a common source of disagreement and pose spe-
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cial challenges in the context of learner language
(Tetreault and Chodorow, 2008a,b). For example,
annotators could not agree on the grammaticality
of the prepositions in The girl is asking for help to
the man and The girl is hugging with her cat.

4.4 NS & NNS responses

Agreement scores were also calculated separately
for NS and NNS responses, as shown in Table 5.
Comparing the average rate of yes annotations
shows that the NNSs outperform the NSs by be-
tween roughly 8% and 12% on all features ex-
cept grammaticality. Itis not surprising that
NSs outperform NNSs on this feature (90.2% to
79.3%), but to account for their superior perfor-
mance on the other features, one must consider
the fact that the NNSs were recruited from ESL
courses and performed the task with peers and re-
searchers present. The NNSs were more likely to
make a good faith effort than the NSs, the major-
ity of whom performed the task anonymously and
remotely. Furthermore, with twice as many re-
sponses to provide for each item for NSs, fatigue
and boredom may have been a contributing factor.

AvgYes Kappa
Set NS NNS || NS NNS
Core 0.686 | 0.805 || 0.819 | 0.767
Verif 0.807 | 0.882 || 0.904 | 0.819
Answer || 0.800 | 0.899 || 0.928 | 0.961
Interp 0.764 | 0.881 | 0.752 | 0.697
Gramm || 0.902 | 0.793 || 0.786 | 0.863

Table 5: NS and NNS test set responses: average yes
annotations (AvgYes) and Cohen’s kappa (Kappa).

Raw agreement scores are high among both
groups, ranging from 91% to 99.3% (not shown).
Notably, for core event, verifiability
and interpretability, kappa scores are
higher for NS responses than for NNS ones; i.e.,
annotators agree more on NS responses for these
features. It may be no coincidence that these
three features are the most closely tied to mean-
ing, while answerhood gets at pragmatics and
grammaticality focuses on form correctness.

The lower kappa score for NS answerhood
is also attributable to task effects, as a second re-
sponse (as required of NSs) is more likely to be
off topic or in bad faith. For grammaticality,
kappas for annotator agreement are higher for
NNS responses. A relatively low rate of expected
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(chance) agreement contributes to this fact. Addi-
tionally, annotators note that many grammar prob-
lems with NNS responses are obvious (e.g., The
man who in yellow is showing the way to a girl,
see Table 1), but the few grammar problems in NS
data are mostly typos and more easily overlooked
due to fatigue (e.g., The man is giving ditections).

5 Conclusion

The SAILS corpus presented here was developed
with specific research in mind, but also in the
hopes that it may be used to address a broad
range of questions. We have demonstrated here a
set of binary features that were successfully im-
plemented with reliable levels of inter-annotator
agreement. These features were defined with an
eye toward content analysis and ICALL, but we
believe the annotations and raw responses could
find uses in question answering, dialogs, prag-
matic modeling, visual references and other chal-
lenges in natural language processing. The feature
set could also be expanded to better suit other pur-
poses, and the task could easily be extended to in-
clude new items. Guidelines, task materials and
annotation tools are included with the corpus.'

A number of lessons have been learned in this
process, and as we intend this work to be ex-
tendable, a few suggestions are in order. The
inclusion of any symbols or numerals should be
avoided as they resulted in response complica-
tions; some participants gave clever “meta” re-
sponses (She’s breathing in music notes, rather
than She’s singing), and others focused on the
symbols rather than the abstract concepts they rep-
resent (The teacher is teaching ‘2 + 2 = 4’, rather
than The teacher is teaching math). The compar-
ison of crowdsourced NS data with the data of
known NS participants and the NNS student data
makes it clear that motivations and task environ-
ment can affect the quality of responses.

Additionally, more clearly defining acceptable
core events could lessen the ambiguity for
annotators. While we intend the NS responses col-
lected here to be useful for comparing with NNS
responses and addressing related research ques-
tions, for specific applications like language test-
ing, the use of expert annotators and constructed
reference materials or gold standards may be
more appropriate (Somasundaran and Chodorow,
2014).

"https://github.com/sailscorpus/sails
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Abstract

Classroom discussions in English Language
Arts have a positive effect on students’ read-
ing, writing, and reasoning skills. Although
prior work has largely focused on teacher
talk and student-teacher interactions, we fo-
cus on three theoretically-motivated aspects
of high-quality student talk: argumentation,
specificity, and knowledge domain. We intro-
duce an annotation scheme, then show that the
scheme can be used to produce reliable annota-
tions and that the annotations are predictive of
discussion quality. We also highlight opportu-
nities provided by our scheme for educational
and natural language processing research.

1 Introduction

Current research, theory, and policy surround-
ing K-12 instruction in the United States high-
light the role of student-centered disciplinary dis-
cussions (i.e. discussions related to a specific
academic discipline or school subject such as
physics or English Language Arts) in instruc-
tional quality and student learning opportunities
(Danielson, 2011; Grossman et al., 2014). Such
student-centered discussions — often called “dia-
logic” or “inquiry-based” — are widely viewed as
the most effective instructional approach for dis-
ciplinary understanding, problem-solving, and lit-
eracy (Elizabeth et al., 2012; Engle and Conant,
2002; Murphy et al., 2009). In English Language
Arts (ELA) classrooms, student-centered discus-
sions about literature have a positive impact on
the development of students’ reasoning, writing,
and reading skills (Applebee et al., 2003; Reznit-
skaya and Gregory, 2013). However, most stud-
ies have focused on the role of teachers and their
talk (Bloome et al., 2005; Elizabeth et al., 2012;
Michaels et al., 2008) rather than on the aspects of
student talk that contribute to discussion quality.
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Additionally, studies of student-centered dis-
cussions rarely use the same coding schemes,
making it difficult to generalize across studies
(Elizabeth et al., 2012; Soter et al., 2008). This
limitation is partly due to the time-intensive work
required to analyze discourse data through quali-
tative methods such as ethnography and discourse
analysis. Thus, qualitative case studies have gen-
erated compelling theories about the specific fea-
tures of student talk that lead to high-quality dis-
cussions, but few findings can be generalized and
leveraged to influence instructional improvements
across ELA classrooms.

As a first step towards developing an automated
system for detecting the features of student talk
that lead to high quality discussions, we propose
a new annotation scheme for student talk during
ELA “text-based” discussions - that is, discussions
that center on a text or piece of literature (e.g.,
book, play, or speech). The annotation scheme
was developed to capture three aspects of class-
room talk that are theorized in the literature as im-
portant to discussion quality and learning oppor-
tunities: argumentation (the process of systemat-
ically reasoning in support of an idea), specificity
(the quality of belonging or relating uniquely to
a particular subject), and knowledge domain (area
of expertise represented in the content of the talk).
We demonstrate the reliability and validity of our
scheme via an annotation study of five transcripts
of classroom discussion.

2 Related Work

One discourse feature used to assess the quality
of discussions is students’ argument moves: their
claims about the text, their sharing of textual evi-
dence for claims, and their warranting or reason-
ing to support the claims (Reznitskaya et al., 2009;
Toulmin, 1958). Many researchers view student
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reasoning as of primary importance, particularly
when the reasoning is elaborated and highly infer-
ential (Kim, 2014). In Natural Language Process-
ing (NLP), most educationally-oriented argumen-
tation research has focused on corpora of student
persuasive essays (Ghosh et al., 2016; Klebanov
et al., 2016; Persing and Ng, 2016; Wachsmuth
et al., 2016; Stab and Gurevych, 2017; Nguyen
and Litman, 2018). We instead focus on multi-
party spoken discussion transcripts from class-
rooms. A second key difference consists in the
inclusion of the warrant label in our scheme, as it
is important to understand how students explicitly
use reasoning to connect evidence to claims.

Educational studies suggest that discussion
quality is also influenced by the specificity of stu-
dent talk (Chisholm and Godley, 2011; Sohmer
et al., 2009). Chisholm and Godley found that
as specificity increased, the quality of students’
claims and reasoning also increased. Previous
NLP research has studied specificity in the con-
text of professionally written newspaper articles
(Li and Nenkova, 2015; Li et al., 2016; Louis and
Nenkova, 2011, 2012). While the annotation in-
structions used in these studies work well for gen-
eral purpose corpora, specificity in text-based dis-
cussions also needs to capture particular relations
between discussions and texts. Furthermore, since
the concept of a sentence is not clearly defined in
speech, we annotate argumentative discourse units
rather than sentences (see Section 3).

The knowledge domain of student talk may also
matter, that is, whether the talk focuses on dis-
ciplinary knowledge or lived experiences. Some
research suggests that disciplinary learning oppor-
tunities are maximized when students draw on ev-
idence and reasoning that are commonly accepted
in the discipline (Resnick and Schantz, 2015), al-
though some studies suggest that evidence or rea-
soning from lived experiences increases discus-
sion quality (Beach and Myers, 2001). Previ-
ous related work in NLP analyzed evidence type
for argumentative tweets (Addawood and Bashir,
2016). Although the categories of evidence type
are different, their definition of evidence type is
in line with our definition of knowledge domain.
However, our research is distinct from this re-
search in its application domain (i.e. social me-
dia vs. education) and in analyzing knowledge do-
main for all argumentative components, not only
those containing claims.
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3 Annotation Scheme

Our annotation scheme' uses argument moves as
the unit of analysis. We define an argument
move as an utterance, or part of an utterance, that
contains an argumentative discourse unit (ADU)
(Peldszus and Stede, 2013). Like Peldszus and
Stede (2015), in this paper we use transcripts al-
ready segmented into argument moves and focus
on the steps following segmentation, i.e., label-
ing argumentation, specificity, and knowledge do-
main. Table 1 shows a section of a transcribed
classroom discussion along with labels assigned
by a human annotator following segmentation.

3.1 Argumentation

The argumentation scheme is based on (Lee, 2006)
and consists of a simplified set of labels derived
from Toulmin’s (1958) model: (i) Claim: an ar-
guable statement that presents a particular inter-
pretation of a text or topic. (ii) Evidence: facts,
documentation, text reference, or testimony used
to support or justify a claim. (iii) Warrant: rea-
sons explaining how a specific evidence instance
supports a specific claim. Our scheme specifies
that warrants must come after claim and evidence,
since by definition warrants cannot exist without
them.

The first three moves in Table 1 show a natural
expression of an argument: a student first claims
that Willy’s wife is only trying to protect him, then
provides a reference as evidence by mentioning
something she said to her kids at the end of the
book, and finally explains how not caring about
her kids ties the evidence to the initial claim. The
second group shows the same argument progres-
sion, with evidence given as a direct quote.

3.2 Specificity

Specificity annotations are based on (Chisholm
and Godley, 2011) and have the goal of captur-
ing text-related characteristics expressed in stu-
dent talk. Specificity labels are directly related to
four distinct elements for an argument move: (1)
it is specific to one (or a few) character or scene;
(2) it makes significant qualifications or elabora-
tions; (3) it uses content-specific vocabulary (e.g.
quotes from the text); (4) it provides a chain of
reasons. Our annotation scheme for specificity in-
cludes three labels along a linear scale: (i) Low:

'The coding manual is in the supplemental material.



Move

Stu

Argument Move

Argument

Specificity

Domain

23

S1

She’s like really just protecting Willy from
everything.

claim

medium

disciplinary

24

S1

Like at the end of the book remember how
she was telling the kids to leave and never
come back.

evidence

medium

disciplinary

25

S1

Like she’s not even caring about them, she’s
caring about Willy.

warrant

medium

disciplinary

41

S2

It’s like she’s concerned with him trying to
[inaudible] and he’s concerned with trying
to make her happy, you know? So he feels
like he’s failing when he’s not making her
happy like

claim

high

disciplinary

42

S2

”Let’s bring your mother some good news”

evidence

high

disciplinary

43

S2

but she knew that, there wasn’t any good
news, so she wanted to act happy so he
wouldn’t be in pain.

warrant

high

disciplinary

55

S3

Some people they just ask for a job is just

evidence

low

experiential

like, some money.

Table 1: Examples of argument moves and their respective annotations from a discussion of the book Death of a
Salesman. As shown by the argument move numbers, boxes for students S1, S2, and S3 indicate separate, non

contiguous excerpts of the discussion.

statement that does not contain any of these ele-
ments. (ii) Medium: statement that accomplishes
one of these elements. (7ii) High: statement that
clearly accomplishes at least two specificity ele-
ments. Even though we do not explicitly use la-
bels for the four specificity elements, we found
that explicitly breaking down specificity into mul-
tiple components helped increase reliability when
training annotators.

The first three argument moves in Table 1 all
contain the first element, as they refer to select
characters in the book. However, no content-
specific vocabulary, clear chain of reasoning, or
significant qualifications are provided; therefore
all three moves are labeled as medium specificity.
The fourth move, however, accomplishes the first
and fourth specificity elements, and is labeled as
high specificity. The fifth move is also labeled
high specificity since it is specific to one char-
acter/scene, and provides a direct quote from the
text. The last move is labeled as low specificity as
it reflects an overgeneralization about all humans.

3.3 Knowledge Domain

The possible labels for knowledge domain are: (i)
Disciplinary: the statement is grounded in knowl-
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edge gathered from a text (either the one under
discussion or others), such as a quote or a descrip-
tion of a character/event. (ii) Experiential: the
statement is drawn from human experience, such
as what the speaker has experienced or thinks that
other humans have experienced.

In Table 1 the first six argument moves are
labeled as disciplinary, since the moves reflect
knowledge from the text currently being dis-
cussed. The last move, however, draws from a stu-
dent’s experience or perceived knowledge about
the real world.

4 Reliability and Validity Analyses

We carried out a reliability study for the proposed
scheme using two pairs of expert annotators, P1
and P2. The annotators were trained by coding one
transcript at a time and discussing disagreements.
Five text-based discussions were used for testing
reliability after training: pair P1 annotated discus-
sions of The Bluest Eye, Death of a Salesman,
and Macbeth, while pair P2 annotated two sepa-
rate discussions of Ain’t I a Woman. 250 argument
moves (discussed by over 40 students and consist-
ing of over 8200 words) were annotated. Inter-
rater reliability was assessed using Cohen’s kappa:



Argu.m en- Specificity | Domain
Moves tation (qwkappa) | (kappa)
(kappa)
169 0.729 0.874 0.980
81 0.725 0.930 1

Table 2: Inter-rater reliability for pairs P1 and P2.

Argumentation | evidence | warrant | claim
evidence 25 5 0
warrant 6 92 12

claim 0 2 27

Specificity low medium | high

low 59 5 3
medium 5 25 2
high 1 6 63
Knowledge discipl- | experi-
Domain inary ential
disciplinary 138 1
experiential 0 30

Table 3: Confusion matrices for argumentation, speci-
ficity, and knowledge domain, for annotator pair P1.

unweighted for argumentation and knowledge do-
main, but quadratic-weighted for specificity given
its ordered labels.

Table 2 shows that kappa for argumentation
ranges from 0.61 — 0.8, which generally indicates
substantial agreement (McHugh, 2012). Kappa
values for specificity and knowledge domain are
in the 0.81 — 1 range which generally indicates al-
most perfect agreement (McHugh, 2012). These
results show that our proposed annotation scheme
can be used to produce reliable annotations of
classroom discussion with respect to argumenta-
tion, specificity, and knowledge domain.

Table 3 shows confusion matrices> for annota-
tor pair P1 (we observed similar trends for P2).
The argumentation section of the table shows that
the largest number of disagreements happens be-
tween the claim and warrant labels. One reason
may be related to the constraint we impose on war-
rants - they require the existence of a claim and
evidence. If a student tries to provide a warrant
for a claim that happened much earlier in the dis-
cussion, the annotators might interpret the warrant
as new claim. The specificity section shows rel-
atively few low-high label disagreements as com-

2The class distributions for argumentation and specificity
labels vary significantly across transcripts, as can be seen in
(Lugini and Litman, 2017) and (Godley and Olshefski, 2017).
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pared to low-med and med-high. This is also re-
flected in the quadratic-weighted kappa as low-
high disagreements will carry a larger penalty (un-
weighted kappa is 0.797). The main reasons for
disagreements over specificity labels come from
two of the four specificity elements discussed in
Section 3.2: whether an argument move is related
to one character or scene, and whether it provides
a chain of reasons. With respect to the first of these
two elements we observed disagreements in argu-
ment moves containing pronouns with an ambigu-
ous reference. Of particular note is the pronoun it.
If we consider the argument move “I mean even
if you know you have a hatred towards a standard
or whatever, you still don’t kill it”, the pronoun it
clearly refers to something within the move (i.e.
the standard) that the student themselves men-
tioned. In contrast, for argument moves such as “It
did happen” it might not be clear to what previous
move the pronoun refers, therefore creating con-
fusion on whether this specificity element is ac-
complished. Regarding specificity element (4) we
found that it was easier to determine the presence
of a chain of reasons when discourse connectives
(e.g. because, therefore) were present in the ar-
gument move. The absence of explicit discourse
connectives in an argument move might drive an-
notators to disagree on the presence/absence of a
chain of reasons, which is likely to result in a dif-
ferent specificity label. Additionally, annotators
found that shorter turns at talk proved harder to an-
notate for specificity. Finally, as we can see from
the third section in the table, knowledge domain
has the lowest disagreements with only one.

We also (Godley and Olshefski, 2017) explored
the validity of our coding scheme by comparing
our annotations of student talk to English Ed-
ucation experts’ evaluations (quadratic-weighted
kappa of 0.544) of the discussion’s quality. Us-
ing stepwise regressions, we found that the best
model of discussion quality (R-squared of 0.432)
included all three of our coding dimensions: argu-
mentation, specificity, and knowledge domain.

5 Opportunities and Challenges

Our annotation scheme introduces opportunities
for the educational community to conduct futher
research on the relationship between features of
student talk, student learning, and discussion qual-
ity. Although Chisholm and Godley (2011) and we
found relations between our coding constructs and



discussion quality, these were small-scale studies
based on manual annotations. Once automated
classifiers are developed, such relations between
talk and learning can be examined at scale. Also,
automatic labeling via a standard coding scheme
can support the generalization of findings across
studies, and potentially lead to automated tools for
teachers and students.

The proposed annotation scheme also intro-
duces NLP opportunities and challenges. Exist-
ing systems for classifying specificity and argu-
mentation have largely been designed to analyze
written text rather than spoken discussions. This
is (at least in part) due to a lack of publicly avail-
able corpora and schemes for annotating argumen-
tation and specificity in spoken discussions. The
development of an annotation scheme explicitly
designed for this problem is the first step towards
collecting and annotating corpora that can be used
by the NLP community to advance the field in
this particular area. Furthermore, in text-based
discussions, NLP methods need to tightly couple
the discussion with contextual information (i.e.,
the text under discussion). For example, an argu-
ment move from one of the discussions mentioned
in Section 4 stated “She’s saying like free like, 1
don’t have to be, I don’t have to be this salesman’s
wife anymore, your know? I don’t have to play
this role anymore.” The use of the term salesman
shows the presence of specificity element (3) (see
Section 3.2) because the text under discussion is
indeed Death of a Salesman. If the students were
discussing another text, the mention of the term
salesman would not indicate one of the specificity
elements, therefore lowering the specificity rating.
Thus, using existing systems is unlikely to yield
good performance. In fact, we previously (Lug-
ini and Litman, 2017) showed that while using
an off-the-shelf system for predicting specificity
in newspaper articles resulted in low performance
when applied to classroom discussions, exploiting
characteristics of our data could significantly im-
prove performance. We have similarly evaluated
the performance of two existing argument min-
ing systems (Nguyen and Litman, 2018; Niculae
et al., 2017) on the transcripts described in Sec-
tion 4. We noticed that since the two systems were
trained to classify only claims and premises, they
were never able to correctly predict warrants in our
transcripts. Additionally, both systems classified
the overwhelming majority of moves as premise,
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resulting in negative kappa in some cases. Using
our scheme to create a corpus of classroom dis-
cussion data manually annotated for argumenta-
tion, specificity, and knowledge domain will sup-
port the development of more robust NLP predic-
tion systems.

6 Conclusions

In this work we proposed a new annotation scheme
for three theoretically-motivated features of stu-
dent talk in classroom discussion: argumentation,
specificity, and knowledge domain. We demon-
strated usage of the scheme by presenting an an-
notated excerpt of a classroom discussion. We
demonstrated that the scheme can be annotated
with high reliability and reported on scheme va-
lidity. Finally, we discussed some possible ap-
plications and challenges posed by the proposed
annotation scheme for both the educational and
NLP communities. We plan to extend our anno-
tation scheme to label information about collabo-
rative relations between different argument moves,
and release a corpus annotated with the extended
scheme.
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Abstract

While dialog systems have been widely de-
ployed for computer-assisted language learn-
ing (CALL) and formative assessment systems
in recent years, relatively limited work has
been done with respect to the psychometrics
and validity of these technologies in evaluat-
ing and providing feedback regarding student
learning and conversational ability. This paper
formulates a Markov decision process based
measurement model, and applies it to text chat
data collected from crowdsourced native and
non-native English language speakers interact-
ing with an automated dialog agent. We inves-
tigate how well the model measures speaker
conversational ability, and find that it effec-
tively captures the differences in how native
and non-native speakers of English accom-
plish the dialog task. Such models could have
important implications for CALL systems of
the future that effectively combine dialog man-
agement with measurement of learner conver-
sational ability in real-time.

1 Introduction

Advances in multimodal dialog technologies have
helped improve the state of the art in interactive
computer-assisted language learning (CALL) and edu-
cational assessment applications in recent years. How-
ever, while much progress has been made with respect
to the technology infrastructure and automated pro-
cessing required in such dialog applications, relatively
less work has carefully investigated the efficacy and
validity of such assessment instruments, for instance,
how well they measure students’ capabilities. In other
words, there is relatively little investigation into the
psychometrics of such CALL applications and dialog-
based assessments!.

IPsychometrics is the field of study concerned with the
theory and technique of psychological measurement, which
includes the measurement of knowledge, abilities, attitudes,
and personality traits. Psychometricians use a specialized set
of statistical tools to create scientifically valid “standardized”
assessments of various behaviors. Typically, a test is consid-

Michelle LaMar
Educational Testing Service R&D
90 New Montgomery Street, #1500
San Francisco, CA
mlamar@ets.org

Interactive tasks such as multi-turn conversations
have had limited use as standardized assessments due
in part to the difficulty of evaluating these perfor-
mances. When such assessment tasks are used, the con-
versational performance is scored primarily using hu-
man raters (take for instance, the IELTS exam?). Ma-
chine scoring of complex task performances has made
substantial progress, especially is the domain of written
essays (Shermis, 2014), but has been limited by path
complexity in interactive performances such as dialog
(Graesser et al., 2005).

While technical language use, (e.g. grammar or pro-
nunciation) might be scorable at the word or phrase
grain size, pragmatic conversational ability can only be
judged in the context of the conversation history, per-
sonal goals, and interpersonal dynamics. In a conversa-
tional task, for example, the “correctness” of single ut-
terances cannot be scored independently as their func-
tion, and therefore their value, depends upon the cur-
rent state of the dialog. An utterance at one stage of the
conversation might be of high value while the same ut-
terance at a different point would be detrimental. Each
utterance must be evaluated based on the speaker’s con-
versational goals, what they have already accomplished
in the conversation, and what sequence of interactions
might bring them closer to their goal.

Such data is unsuitable to model with traditional psy-
chometric models that assume conditionally indepen-
dent performance data, such as either classical test the-
ory or item response theory (De Boeck and Wilson,
2004), requiring a more structured and dynamic model
(Mislevy et al., 2002). It is this modeling gap that
we attempt to bridge in this paper using Markov De-
cision Process (or MDP)-based measurement modeling
(LaMar, 2018). To our knowledge, this is the first at-
tempt at developing a psychometric model for dialog
data that explicitly accounts for temporal dependencies
in the observed data stream.

ered to have been standardized if data have been collected on
large numbers of subjects using a set of structured rules for
administration and scoring. These data are used to determine
the mean score and the standard deviation, which the psycho-
metrician then uses to benchmark the performance of those
being tested. For more details, see Association et al. (1999)
or Weiss and Zureich (2008).

Zhttps://www.ielts.org/
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While the field does need more research into psycho-
metrics and validity of dialog-based summative assess-
ments, there has been substantial work by the learn-
ing and formative assessment community in examin-
ing learning gains/progressions and modeling cognitive
strategies in conversational tutoring applications (see
for example Person et al., 2001; VanLehn et al., 2002;
Heffernan and Koedinger, 2002; Michael et al., 2003;
Pon-Barry et al., 2006; Rus et al., 2013). Researchers
have also examined how one can perform adaptive di-
alog management to personalize the instruction to in-
dividual participants over the course of the interac-
tion (Forbes-Riley and Litman, 2011; Vail and Boyer,
2014). This includes using learning progressions, nat-
ural language processing and affective computing to
adaptively selecting appropriate tasks for the learner to
work on, but also adapting the scaffolding while the
learner is working on a tasks (Rus et al., 2013).

Such research has important implications for dialog
system design as well. Particularly for CALL applica-
tions, it is important to integrate formative assessment
of student ability into the dialog management process,
in order to better adapt instruction to student needs,
both in terms of the level of instruction (obtained in
real time through measurement models) as well as the
content and dialog path (decided by the dialog man-
ager). We envision that future statistical dialog systems
could combine statistical dialog management achieved
using Partially Observable Markov Decision Processes
or POMDPs (see for instance Young, 2006; Williams
and Young, 2007; Young et al., 2010) in tandem with
statistical measurement (using POMDP-based models)
in order to develop more effective conversational lan-
guage learning applications.

Our work also directly relates to user modeling in di-
alog systems. While there is plenty of theoretical work
on such models (see for example, Kobsa, 1990; Kass,
2012), implemented statistical versions of user models
typically estimate the probability of a particular user
response given a candidate system response or a inter-
action history thereof (e.g., Eckert et al., 1997; Levin
et al., 2000; Horvitz and Paek, 2001; Pietquin, 2005;
Kim et al., 2008). However, the difference in our case
is that in order to serve as a measurement model of stu-
dent performance, our MDP represents the cognitive
model of an ideal automated interlocutor. Given a spec-
ified set of model parameters, the MDP model can gen-
erate action (or response) probabilities for every pos-
sible conversational state, depending on a learner/user-
specific latent ‘conversational ability’ parameter which
needs to be estimated for each user. Note that for the
purposes of this paper, we will be broadly looking at
conversational ability (in achieving a certain goal), and
not necessarily technical English language proficiency.

The rest of the paper is organized as follows: Section
2 lays out the mathematical foundations of how MDP
models can be used to model learner ability, includ-
ing the equations for statistical parameter estimation.
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Section 3 then describes the dialog infrastructure used
along with details regarding the conversational task and
crowdsourcing data collection, followed by the formu-
lation of the task-specific MDP for our use case in Sec-
tion 4. Section 5 analyzes the results of running the
model on our dataset and studies how well the model
differentiates between native and non-native speakers
(who are potential language learners) of English, with
example dialogs included for illustration purposes. Fi-
nally, we conclude with a discussion of the current state
of the art and outstanding issues for future research.

2 Markov Decision Process
Measurement Models

As an extension of inverse reinforcement learn-
ing, partially observable Markov Decision Processes
(POMDPs) have recently been used to represent a cog-
nitive model that describes both human decision mak-
ing and people’s ability to infer the goals and beliefs of
others. Baker et al. (2011) describe a “Bayesian theory
of mind” in which cognition is modeled as a POMDP.
They hypothesize that people act based on their beliefs,
modeled by the state space, action set, and transition
functions, and in accordance to their desires, which are
modeled by the reward structure. With this cognitive
framing, POMDPs can be used for measurement within
a goal-directed task by comparing actions selected by
human participants with the model’s predicted proba-
bility of those actions (LaMar, 2018). The model and
estimation algorithms will be described briefly below;
for full details can be found in LaMar (2018). Note
that in this work we utilize the more constrained MDP,
in which the problem state is assumed to be observable,
but extensions to full POMDP models are a natural next
step.

2.1

As a decision model, the MDP defines the probability
of selecting of an action a € A given a specific state of
the task s € S. This probability, p(als), is known as the
policy. Action selection occurs within the context of
a reward function r(s,a,s’), which specifies the imme-
diate reward for taking action « in state s and entering
state 5" and a transition model p(s’|s,a), which is the
probability of transitioning to a state s’ given that ac-
tion a was taken in state s. An additional parameter
Y € [0,1], known as the discount parameter, represents
the relative value of future versus immediate rewards.
From this specification, one can calculate the Q func-
tion, which is the expected sum of discounted rewards
obtained by taking action a while in state s,

Mathematical Formulation

Q(S,a)=):x’es p(s/|s,a) (F(S, a,s/) + YZ(/EA p(a/\sl)Q(s/, a/)) .

ey
Note that Y4 p(d’|s')Q(s',d’) is the expected value
of the next state, marginalized over the possible next
actions. Thus the quantity inside the large parentheses



is the sum of the immediate reward and the discounted
value of the future state. The expectation of this sum
is then taken over all possible states s” that might result
from action a in state s. The Q function is recursive, as
the value of a state is defined using the Q function it-
self, but can be calculated using dynamic programming
(Howard, 1960).

When MDPs are used in the context of artificial
agents, they generally employ an optimal policy which
selects the action that maximized Q in each state. To
model human performance, however, optimal decision
making is not assumed. Instead a Bolzmann policy is
used (Baker et al., 2009),

BO(s.a)

)

@)

where f8 € [0,00) represents the decision maker’s abil-
ity to choose actions that will result in higher total re-
wards. As f3 increases, the probability choosing an op-
timal action increases. When f goes to zero, actions
are selected uniformly at random from the action set.

plals) e

2.2 MDPs for Measurement and Inference

Researchers have recently extended the MDP frame-
work to study the quality of inferences that can be made
about student/learner cognition based on records of ac-
tion; for instance, to model learner goals and beliefs
(Rafferty et al., 2015; Baker et al., 2009), to model in-
quiry strategies (LaMar et al., 2017), and to model stu-
dent decision making ability (LaMar, 2018). Using the
Boltzmann policy (Eq. 2), the MDP model can be seen
as a generative latent-trait model provided that the la-
tent traits of interest can be formulated as parameters of
the model. While elements of the reward function and
the transition model can be parameterized for inference
about the decision maker’s goals and beliefs, here we
focus on the capability parameter 3;, a person-specific
Boltzmann parameter, indicating a person’s capability
to optimally solve the given problem. The formulation
of the Q function remains as in Equation 1, except that
we note explicitly the dependency upon the capability
parameter f3;. The conditional probability of student j
selecting action a when in state s now becomes

slals ) — SR BIOG.alB)

! Za’GAexp(ﬁjQ(Svallﬁj))
If the reward and transition parameters are fixed to ob-
jectively correct values, the Q function acts as a scoring
function, determining the relative value of the actions
available in each state. The ; parameter is then simi-
lar to a traditional ability parameter in IRT, measuring
the extent to which the highest valued action is taken at
each decision point.

3)

2.3 Parameter Estimation

The observed data for student j consist of a sequence
of state-action pairs,

“)

0] = {(Slj;alj)7(Szj?azj)?'"(ijj7aij>}a
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where N; is the total number of actions taken by the
student. Each pair indicates a state and the action taken
in that state.

The Markov property applies to this model, allow-
ing us to take each action to be conditionally indepen-
dent, conditioned upon student capability and the sys-
tem state in which the action was taken. Thus the prob-
ability of the observed data can be written as

T
P(ijjaﬂﬁ) :Hp(afj|sljvﬁj7“a6) (%)

=1

T.

J

_ exp (Q(st)»a|B)B))
i1 Laeaexp (O, d'|Bj)B))

where B; ~ Lognormal (u, 6%)

(6)

where the optimal value of the person-specific ability
parameter, f3;, can be estimated by finding the value of
BB, that maximizes this likelihood:

Bi= arg;laXp(O/\ﬁj,uﬁ) (7

J

To estimate the population parameters of the log-
normal distribution’>, y and o, we use marginal
maximum likelihood (MML), marginalizing over the
person-specific parameter distributions. The person-
specific B; can be estimated either using maximum a-
posteriori (MAP) or maximum likelihood estimation
(MLE) methods. With smaller population sizes the
MLE estimation has been found to be more robust and
is used for this study. Both the MML and MLE es-
timations are performed using a two-phase numerical
optimization with a global optimization algorithm fol-
lowed by a local optimization algorithm, both drawn
from the nlopt library. Gaussian quadrature is used for
the approximation of the integrals and the Q-function
is approximated using policy iteration methods.

3 Dialog Data
3.1 Dialog System

We use an open-source dialog system* to develop a
text-based chatbot application. But note that this work
is not limited to or dependent on the dialog system be-
ing used. Indeed, there are multiple academic (Olym-
pus (Bohus et al., 2007), Alex (Jurcicek et al., 2014),
Virtual Human Toolkit (Hartholt et al., 2013), Open-
Dial, etc.) and industrial (Voxeo6, Alexa 7, etc.) im-
plementations of dialog systems, any of which can be

3We chose to model 8 ; using the Lognormal distribution
as it has a non-negative range and has been used to describe
growth patterns in nature. Moreover, person-specific “abil-
ity” can be argued to be the result of a growth process (mul-
tiplicative rather than additive).

4Link to software anonymized.

Shttp://www.opendial-toolkit.net

61'1ttps ://voxeo.com/prophecy/

"https://developer.amazon.com/alexa



Participant Instructions

This is a simulated conversation task in which you will be conversing with an artificial agent. The agent will communicate using text.
You will use the text chat box on the right to speak to the agent.

In this scenario you work at Tony's Pizza Shop. You are taking an order by telephone from a customer. Your primary goal is to sell a
pizza and ensure that all of the information necessary for the order has been collected. However, this week there is a special on
Mushrooms. If you can sell a mushroom pizza you will get a bonus. You do not need to worry about payment, as the customer will be
charged when they receive their pizza. Do be sure to get the customer’s name, however, to label the box.

Ring! Ring! Ring!
Hello!
Hi! I'd like to order a large pizza.
What is your name?
My name's Mike Anderson.

What toppings would you like?

#.Pizza menu for Tony's pizza shop.

Tony's Pizza Shop Menu

Small Medum targe

In your employee training, they gave you this basic script: Chee:
= (Phone will ring) "
= Greet the customer.

« (Customer will place an order)
« Ask the customer for all of the information needed to complete the Pizza Order.

$10 s12
s1 s1

For Take Out or Delivery

« Tell the customer when the pizza will be ready. (Pizzas take 20 minutes for pick-up and 30 minutes for delivery.)

« Thank the customer and hang up.

Interact with the customer through text-chat with the chatbot interface shown. If you would like to exit the interaction at any time,
please enter "bye" or "goodbye" into the chat window. After the interaction is complete, please fill out the survey at the bottom of the

page. Thank you!

Just cheese, please.

Would you like that for delivery or take out?|

Figure 1: Example webpage screenshot of the text dialog interface that participants might see for the task described in this

paper.

used, but many of these often use special architectures,
interfaces, and languages paying relatively less atten-
tion to existing W3C and other industry standards (see
Ramanarayanan et al. (2017) for more details). We
however choose to use the Anonymous cloud-based di-
alog system for its standards-compliance, modularity
and flexibility in developing both text- and speech-
based applications. In this study we will limit ourselves
to text-based dialog for simplicity.

3.2 Conversational item design

This study leverages a conversational practice task de-
veloped for English language learners, where subjects
are asked to pose as a customer services representative
at a pizza restaurant, and field an order from an au-
tomated customer (played by the dialog system). See
Figure 1 for a screenshot of the web-based dialog inter-
face that participants interacted with. Participants are
instructed that their primary goal is to sell a pizza while
ensuring that they collect all information necessary to
complete the order (such as the name of the customer,
his address if delivery is requested, etc.). They are fur-
ther instructed that if they manage to sell the customer
mushroom toppings, they will be awarded a bonus for
task performance. We used regular expressions to per-
form the natural language understanding. Figure 2 de-
picts the dialog flow of the conversational item. Recall
that for the purposes of this paper, the target of mea-
surement is the student’s ability to navigate conversa-
tional conventions and achieve the pre-specified task
goal (to maximize the pizza sale) through conversation
with the automated customer, and not their technical
language skills.

3.3 Crowdsourcing data collection

We used Amazon Mechanical Turk for our crowdsourc-
ing data collection experiments. Crowdsourcing has
been used in the past for the assessment of dialog sys-
tems as well as for collection of dialog interactions (see
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for instance (McGraw et al., 2010; Rayner et al., 2011;
Jurcicek et al., 2011; Ramanarayanan et al., 2016)). In
addition to interacting with the text chatbot interface
to complete the conversational task, workers were re-
quested to fill out a 2-3 minute survey regarding dif-
ferent aspects of the interaction, such as their over-
all experience, how engaged they felt while interact-
ing with the system, how well the system understood
them, and basic demographic information. Particularly
relevant for this study are callers’ self-reported first lan-
guage, and their ratings of system performance, defined
as a qualitative measure of how the system performed
as per caller expectations and whether the system re-
sponses were appropriate. In all we collected and ana-
lyzed dialogs from 390 participants, 54% of which self-
reported as native English language speakers and 70%
of which were male, primarily in the 20-40 age range.
See Tables 3—7 for example dialogs.

4 MDP Model for the Pizza Dialog Task

Table 1: The action set and transition function for the
MDP PizzaOrder cognitive model.

Action Prob  Customer ...
RequestToppings 0.6  requests cheese pizza
RequestToppings 0.4  requests mushroom pizza
SuggestMushroom 0.4  requests cheese pizza
SuggestMushroom 0.6  requests mushroom pizza
AskDelivery 0.5  wants delivery
AskDelivery 0.5  wants take-out

AskName 1.0  gives name

AskSize 1.0 orders large pizza
AskAddress 1.0  gives address

AskPhone 1.0  gives phone number
SayOther 1.0 no effect
EndConversation 1.0  hangsup
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Figure 2: Workflow design of the pizza restaurant-based conversational task deployed and analyzed in this paper. The dialog
flow employs a slot-filling structure, where the customer service representative has to ask the automated customer multiple

questions in order to fill slots on an order form.

Table 2: The reward table for the simple Pizza Order
task

Reward Type Value | Trigger
PizzaOrdered 3 end-of-call and got
all needed info
Mushrooms 1 end-of-call and Piz-
zaOrdered + mush-
rooms ordered
Completelnfo 0.5 | end-of-call and also
got phone #
AngryCustomers | -0.3 | any action while cus-
tomer is annoyed
TimelsMoney -0.2 | any action

To serve as a measurement model for student perfor-
mance, the MDP must represent the cognitive model of
an ideal pizza shop representative. The full MDP cog-
nitive model consists of a set of actions, a state space,
the transition functions, and the reward structure. In Ta-
ble 1 the action set is listed in the left column, while the
transition function is partially illustrated by the proba-
bility of effects from each action. The state space is
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defined by a set of state variables which includes in-
formation slot boolean variables such as gotSize, go-
tAddress, and gotCustomerName. For order informa-
tion which might affect the choice of future actions,
we model the possible values along with a value for
“unknown.” For example, the wantsMushroom variable
has three discrete values, O for unknown, -1 for “does
not want mushrooms,” and 1 for “wants mushrooms;”
wantsDelivery is coded similarly. The possibility of
customer annoyance (isAnnoyed), which was ommitted
from Table 1 for clarity, adds complexity to the dialog
task. The cognitive model assumes that every time the
customer is asked a question that they have already an-
swered they have a .5 probability of becoming annoyed.
This means that while pestering the customer to order
mushrooms might result in an mushroom pizza order,
it also might result in an annoyed customer. Annoyed
customers do not buy pizzas. The final isSold state
variable gets set to 1 only if all the required informa-
tion has been gathered:name, topping-preference, size,
delivery-or-takeout, and address (in the case of deliv-
ery) and the customer is not annoyed. Note that the
model is intended to reflect the thinking of a competent
participant engaging with that task and thus includes



stochastic transitions based on “likely” outcomes from
different conversational moves. For example, in the test
task the customer will always ask for delivery, however
the cognitive model for the pizza salesperson gives the
probability of the customer wanting delivery as .5, as
the representative does not know whether the customer
will want delivery until they ask.

The rewards are defined based on actions taken and
values of the state variables. Table 2 shows the five
reward or cost conditions used for this model. The
biggest reward comes from completing the call with a
pizza ordered, for a reward of 3 points. An additional
point is awarded if the pizza order includes mush-
rooms and an additional half point is given for col-
lecting the not-required, but nice-to-have phone num-
ber of the customer. When customers get annoyed, the
whole conversation gets unpleasant causing a cost of
0.3 points (equivalently a reward of -0.3) for every ac-
tion taken while the customer is annoyed. Finally, each
and every action costs 0.2 points. This “time cost” is
essential for motivating efficiency in action planning.

Given this specification, the PizzaOrder MDP can
generate action probabilities for every possible conver-
sational state, dependent upon the 3; parameter, which
we take to be conversational ability as demonstrated by
the task.

5 Analyses and Observations

Table 3: Example dialog from a native Hindi speaker

(log(B) = —2.75).

Speaker Dialog

Human  Hello, Welcome to Tony’s Pizza Shop,
How may I help you today?

System  Hi! I"d like to order a large pizza.

Human  Of course. May I know your name please?

System My name’s Mike Anderson.

Human  Sure sir, We have a special on mushroom
pizza this week, would you be interested in
that?

System  Just cheese, please.

Human Is that a large or an extra large? A large
cheese pizza is $14, andd an extra large is
$16.

System  Just cheese, please.

Human  Large cheese pizzza.

System  Just cheese, please.

Human the pizza will be ready in 30 minutes

System  Alright, thanks! Goodbye!

We ran the MDP measurement model over the full
data set of 390 dialogs, estimating the person-specific
conversational ability (which, again, is their ability to
achieve the pre-specified task goal through conversa-
tion, and not their technical language skill) for each
dialog as B;. In our analyses we examine log(f3;)
which should follow a more familiar normal distribu-

Table 4: Example dialog from a native Tamil speaker
(log(B) = —1.26).

Speaker Dialog

Human  hello

System  Hi! I’d like to order a large pizza.
Human  Are you want mushroom pizza?
System  Just cheese, please.

Human  Are you want large one?

System  I'd like a large, please.

Human It will take 30 minutes to deliver.
System  Alright, thanks! Goodbye!

Table 5: Example dialog from a native Dutch speaker
(log(B) = 0.258).

Speaker Dialog

Human  Hi, welcome to Tony’s Pizza Shop

System  Hi! I'd like to order a large pizza.

Human  Absolutely, what kind of pizza would you
like? We have a special on mushroom
pizza, where you can get a medium mush-
room pizza for just $1

System  Just cheese, please.

Human A large cheese pizza is nearly 10 times as
expensive as a mushroom

System  Okay, I’d like mushrooms on my pizza as
well.

Human  Absolutely, would you like it delivered or
do you want to pick it up?

System  Delivery, please.

Human  And what’s your name and adress?

System My name’s Mike Anderson.

Human  and your adress?

System  I'm sorry, I didn’t catch that. Can you re-
peat that, please?

Human  and your address?

System 23 Maple Street.

Human Ok, that will take 30min

System  Alright, thanks! Goodbye!

tion. To evaluate the validity® of the resulting esti-
mates, we analyzed them vis-a-vis their reported na-
tive language, with the expectation that native-English
speakers would generally have higher conversational
ability’. Recall that our sample included 209 native
English speakers, and 181 participants who reported a
non-English language as their native tongue.

We observed that participants who reported English
as their first language had average log(f;) estimates
0.31 logits higher than players who reported a non-
English language as their first language (+ = 3.00,df =

8In other words, does this test actually measure what it
sets out to measure?

9Note that native language is not the best variable to use
to evaluate validity, merely something that might be a cor-
relate thereof. We used this in lieu of better evidence for
establishing validity. Future work will explicitly look into
measuring better correlates of validity.
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Table 6: Example dialog from a native Indonesian
speaker (log(B) = 1.57).

Speaker Dialog
Human Hello, thanks for calling Tony’s Pizza.
How can I help you?
System  Hi! I’d like to order a large pizza.
Human  Would you like mushrooms on your pizza?
System  Just cheese, please.
Human  Will this be take out or delivery?
System  Delivery, please.
Human  May I have your address?
System 23 Maple Street.
Human  And your phone number?
System My number’s 5550134.
Human  And your name please.
System My name’s Mike Anderson.
Human  Great, we will send the pizza over in 30
minutes.
System  Alright, thanks! Goodbye!
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Figure 3: Estimated conversational ability by partici-
pant’s self-reported primary language.

374, p = 0.003). Figure 3 shows a boxplot of the esti-
mated log(B) values grouped by native language.

We also compared the dialog-ability estimates to
participant-reported satisfaction ratings with respect to
the dialog system performance. Here we hypothesize
that participants who used phrases that the dialog en-
gine did not recognize would both be dissatisfied with
the performance of the system and have low estimated
conversational ability. In our sample, 254 participants
reported that the system performed well (4 or 5 on a 5-
point Likert scale), while 103 participants rated the sys-
tem at a 3 or lower. Players who rated that the system
performed well had an average log(f;) estimate 0.47
logits higher than those who rated the system poorly
(t = 3.64,df = 159.7,p < 0.001) (Figure 4), which
seems to conform with our hypothesis. However, note
that these system performance ratings are subjective
and might vary depending on the speaker sample and
specific conversational item under study.
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While these results provide, as yet, only weak valid-
ity evidence for the measurement model, they do indi-
cate that the model is performing as expected. We also
examined the actual dialogs of different participants in-
teracting with the system in order to better understand
how the model of student dialog reflects actual student
performance. We have listed example dialogs of non-
native participants interacting with the system of dif-
ferent estimated dialog ability and self-reported system
performance rating. Note that these are presented as
is, without correcting for errors in spelling or grammar.
Table 3 shows an example dialog which was assigned a
low dialog ability rating (log(3;)) as well as a low sys-
tem performance rating. In this case, while the Hindi
speaker mentioned the deal on mushrooms, he asked
for the pizza size again even though the automated cus-
tomer had already given him that information. Per our
earlier model specification, this might have ‘annoyed’
the automated customer. Crucially, though, he failed
to ask the automated customer whether he wanted de-
livery or not, and subsequently his address, which re-
sulted in a low log(3;) score on the task overall. Table
4 shows an example where the automated customer did
not get annoyed, but it nonetheless shows clear gaps in
the non-native participant’s conversational competence
in achieving the goal of maximizing the sale. In con-
trast to these examples, the Indonesian speaker (Table
6) asked the automated customer for each of the requi-
site pieces of information to complete the task success-
fully resulting in a successful interaction that received
a high log(B;) score, despite the fact that he didn’t sell
the customer mushrooms. A native speaker of Dutch
(Table 5) who performed well on the task in general,
but was scored slightly lower (log(B;) = 0.258) did
persist in selling mushroom toppings to the automated
customer while asking for his name and address, but
incorrectly spelled the word ‘address’. However, the
participant caught this error in the next dialog turn, ul-
timately resulting in successful completion. Note that
there were also cases that received a high log(3;) score
with low system performance ratings, many of which
were due to system natural language understanding is-
sues. Going forward, we will aim to improve this as-
pect of the system to improve user experience and mod-
eling accuracy.

6 Discussion and Outlook

We have presented a Markov decision process-based
measurement model (MDP-MM) for the assessment of
of learners’ ability to complete a simple customer in-
teraction dialog task. We put forth a formal mathe-
matical description of the model including a maximum
likelihood based method to estimate the parameters of
the model given input data. On applying the model to
crowdsourced customer services dialog interactions at
a pizza restaurant, we observed that the model abil-
ity (log(B;)) estimate is able to differentiate between
native and non-native speakers of English and partic-
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Figure 4: Estimated conversational ability by par-
ticipant’s rating of the system’s performance, where
“Low” indicates a rating of 1, 2, or 3 and “High” in-
dicates a rating of 4 or 5 on the 5-point Likert scale.

ipant ratings of system performance in a statistically
significant manner. Note that the MDP-MM is partic-
ularly useful over traditional methods of measurement
when the dialogs increase in complexity and branching,
and the resulting paths cannot be easily enumerated for
scoring.

We plan to investigate several lines of research go-
ing forward. First, while we have shown the model’s
efficacy in capturing conversational ability of partici-
pants in successfully completing a given task to a cer-
tain extent, neither the degree of nativeness nor their
rating of system performance are ideal correlates to es-
tablish the validity of the model. A more appropriate
variable might be, for instance, an 3"-party expert rat-
ing of their conversational ability (where experts could
be English language teachers, for instance). In addi-
tion, we hand-crafted a specific set of actions, transi-
tion probabilities and rewards for the model presented
in this paper based on our subjective expertise. Care-
ful selection of these parameters is important because
they directly influence model behavior. Future itera-
tions could benefit from a more scientifically objective
method of model specification. We will also need more
data from more conversational items and participants
to concretely establish the utility of the model and its
applicability to a wide variety of dialog use cases in a
statistically significant manner.

Second, while this paper has focused on conversa-
tional task ability, our longer term goal is to apply such
a model to the measurement of conversational language
proficiency. This will require modifications to both the
task (the goals, dialog flow design, natural language un-
derstanding and dialog management logic) as well as
the specific variables we measure (such as fluency, lan-
guage use, vocabulary and grammatical accuracy, prag-
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matics and historical discourse context, among others).

Third, while the proposed model assumes that the
state of the system is known at every given point of
time for simplicity, relaxing this assumption is a natural
next step. In such a case, we would have to use a par-
tially observable extension of the MDP-MM model (or
a POMDP-MM) that explicitly models the uncertainty
in the observation process that estimates the state of the
system at every time step.

A fourth important future research direction, as men-
tioned in this paper’s introductory paragraphs, involves
the integration of statistical measurement of student
conversational ability with dialog management, espe-
cially for computer-assisted language learning (CALL)
or formative assessment applications. Such integration
would leverage the measurement of learner conversa-
tional ability and/or language proficiency into the dia-
log manager, allowing one to adapt the conversational
instruction flow both based on the content of what the
learner said, as well as his/her conversational ability. In
addition, popular statistical dialog management mod-
ules are based on POMDPs, which might allow for eas-
ier combination with the POMDP-based measurement
model into a unified model, given that both share the
underlying mathematical framework. For example, in
such a scenario, one could imagine that the user action
model, user goal model and dialog model in a POMDP-
based dialog manager (that estimate the user’s next ac-
tion and state, and the next dialog system state, respec-
tively, as described in Young, 2006) would now depend
(and be conditional) on the user’s conversational ability
and/or language proficiency estimate.

Finally, we also plan to evaluate model efficacy and
integrability into a full-blown spoken dialog scenario
(as opposed to text chat, as in this paper). In addi-
tion, the current paper uses simple regular expression-
based natural language understanding; incorporating
more accurate statistical natural language understand-
ing modules could further improve model performance
and estimation accuracy. Such improvements and the
early nature of the model notwithstanding, the relative
lack of previous work in measuring conversational abil-
ity in CALL dialogue and the results presented in this
paper speak to the necessity and potential of such mea-
surement models in developing more comprehensive
and effective CALL applications.
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Abstract

While immediate feedback on learner lan-
guage is often discussed in the Second Lan-
guage Acquisition literature (e.g., Mackey
2006), few systems used in real-life educa-
tional settings provide helpful, metalinguistic
feedback to learners.

In this paper, we present a novel approach
leveraging task information to generate the ex-
pected range of well-formed and ill-formed
variability in learner answers along with the
required diagnosis and feedback. We combine
this offline generation approach with an online
component that matches the actual student an-
swers against the pre-computed hypotheses.

The results obtained for a set of 33 thousand
answers of 7th grade German high school stu-
dents learning English show that the approach
successfully covers frequent answer patterns.
At the same time, paraphrases and meaning
errors require a more flexible alignment ap-
proach, for which we are planning to comple-
ment the method with the CoMiC approach
successfully used for the analysis of reading
comprehension answers (Meurers et al., 2011).

1 Introduction

In Second Language Acquisition research and
Foreign Language Teaching and Learning prac-
tice, the importance of individualized, immediate
feedback on learner production for learner pro-
ficiency development has long been emphasized
(e.g., Mackey 20006). In the classroom, the teacher
is generally the only source of reliable, accurate
feedback available to students, which poses a well-
known practical problem: in a class of 30 students,
with substantial individual differences warranting
individual feedback to students, it is highly chal-
lenging for a teacher to provide feedback in class
or, in a timely fashion, on homework.

* http://icall-research.de
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Intelligent Language Tutoring Systems (ILTS)
are one possible means of addressing this prob-
lem. For form-focused feedback, ILTS have tradi-
tionally relied on online processing of learner lan-
guage (Heift and Schulze, 2007; Meurers, 2012).
They model ill-formed variation either explicitly
via so-called mal-rules (e.g., Schneider and Mc-
Coy 1998) or by allowing for violations in the lan-
guage system using a constraint relaxation mech-
anism (e.g., L’Haire and Faltin 2003).

One problem with such approaches is that they
do not take into account what the learner was try-
ing to do with the language they wrote, e.g., which
task or exercise they were trying to complete. Yet
the potential well-formed and ill-formed variabil-
ity exhibited by learner language can lead to vast
search spaces so that integrating top-down, task
information is particularly relevant for obtaining
valid interpretations of learner language (Meur-
ers, 2015; Meurers and Dickinson, 2017). Given
that incorrect feedback is highly problematic for
language learners, ensuring valid interpretations is
particularly important. Combining the bottom-up
analysis of learner data with top-down expecta-
tions, such as those that can be derived from an
exercise being completed, can also be relevant for
obtaining efficient processing.

In this paper, we present an approach that
pursues this idea of integrating task-based infor-
mation into the analysis of learner language by
combining offline hypothesis generation based on
the exercise with online answer analysis in order
to provide immediate and reliable form-focused
feedback. Basing our approach on curricular de-
mands and the exercise properties resulting from
these demands, we generate the space of well-
formed and ill-formed variability expected of the
learner answers, using the well-formed target an-
swers provided for the exercises as a starting point.
We thus avoid the problems introduced by directly
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analyzing potentially ill-formed learner language.
Since generation is done ahead of time, before
learners actually interact with the system, we also
avoid the performance bottleneck associated with
creating and exploring the full search space at run
time. The resulting system can be precise and fast
in providing feedback on the grammar concepts in
a curriculum underlying a given set of exercises.

The paper is organized as follows: Section 2
discusses relevant related work before section 3
introduces our system and section 4 provides an
overview on the data we elicit. In section 5,
we dive into the feedback architecture and ex-
plain both the offline and online component of the
mechanism in detail. Section 6 then provides both
a quantitative and a qualitative evaluation before
section 7 concludes the paper.

2 Related Work

Intelligent Language Tutoring Systems (ILTS)
proposed in the literature range from highly ambi-
tious conversation machines (e.g., DeSmedt 1995)
to more modest workbook-like approaches (e.g.,
Heift 2003; Nagata 2002; Amaral and Meurers
2011). However, as discussed by Heift and
Schulze (2007), the vast majority of the systems
are research prototypes that have never seen real-
life testing or use. We therefore limit our discus-
sion here primarily to practical systems that are in
use for foreign language learning.

In the domain of general-purpose tools, there
are a number of writing aids and gram-
mar checkers available, such as Grammarly
(http://grammarly.com) and LanguageTool (http:
/Nanguagetool.org). They offer grammar and
spelling error correction for arbitrary English text
and are intended to assist (non-native) writers of
English in composing texts. Such general-purpose
systems do not have any information on what the
writer is trying to accomplish with the text. As a
result, while local grammatical problems such as
subject-verb agreement are well-within reach for
such tools, the identification of contextually inap-
propriate forms, such as wrong tense use in a nar-
rative, require task information.

One step further in the direction of task-
based language learning, one finds tools such as
duolingo (von Ahn, 2013). duolingo offers ex-
ercises for learners of various languages, mainly
based on translation into or from the target lan-
guage. Learners can input free-text answers
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and obtain immediate feedback from the system.
However, while for certain phenomena the feed-
back is quite explicit and accurate (Settles and
Meeder, 2016, p. 1849), cases such as the one in
Figure 1 are not handled appropriately.

0 | remembering her.

Du hast das falsche Wort benutzt.
| remember her.

Bedeutung: Ich erinnere mich an sie.

Figure 1: Problematic feedback in duolingo

The learner used the -ing-form of the verb fo
remember in place of the simple present. Instead
of identifying the form and recognizing that the
lemma is the same as that in the expected an-
swer, duolingo responds with ‘You used the wrong
word’, which is misleading the learner to select an-
other word. For more appropriate feedback, more
metalinguistic information about the identified and
the expected form would be needed. However,
manually specifying such information quickly be-
comes infeasible even for relatively closed task
types, as shown by Nagata (2009, p. 563) in the
context of the Robo-Sensei system.

Laarmann-Quante (2016) proposes an approach
for the diagnosis of spelling errors in the writing
of German children that was independently devel-
oped but is conceptually similar to the perspective
we pursue in this paper. Instead of attempting to
process the erroneous forms directly, Laarmann-
Quante obtains phonological analyses for correct
spellings and uses rewrite rules that emulate typi-
cal misspellings to derive alternatives that can then
be matched against actual input. However, the ap-
proach is limited to spelling errors and relies heav-
ily on a model of German orthography. It does not
target other linguistic levels of analysis, such as
morphology and syntax, and the potential interac-
tion of well-formed and ill-formed variability at
the sentence level.

3 The Tutoring System

The feedback mechanism discussed in this arti-
cle is implemented as part of a web-based on-
line workbook FeedBook (Rudzewitz et al., 2017,
Meurers et al., 2018). The foreign language tutor-



ing system is an adaptation of a paper workbook
for a 7th grade English textbook approved for use
in German high schools. The FeedBook provides
an interface for students to select and work on ex-
ercises. For exercises that aim at teaching gram-
mar topics, students receive automatic, immediate
feedback by the system informing them whether
their answer is correct (via a green check mark)
or why their answer is incorrect (via red color,
highlighting of the error span, and a metalinguistic
feedback message). The message is formulated as
scaffolding feedback, intended to guide the learner
towards the solution, without giving it away. The
process of entering an answer and receiving feed-
back can be repeated, incrementally leading the
student to the correct answer. If there are multiple
errors in a learner response, the system presents
the feedback one at a time.

Students can save and resume work, interact
with the system to receive automatic feedback and
revise their answers, and eventually submit their
final solutions to the teacher. In case the answers
are all correct in a selected exercise, the system
grades the submission automatically, requiring no
work by the teacher. For those answers that are
not correct with respect to a given target answer,
the teacher can manually annotate the with feed-
back parallel to the traditional process with a pa-
per workbook. Any such manual feedback is saved
in a feedback memory and suggested automati-
cally to the teacher in case the form occurs in an-
other learner response to this exercise. The sys-
tem provides students with immediate feedback in
circumstances where they would normally not re-
ceive it, or only after long delay needed for col-
lecting and manually marking up homework as-
signments, while at the same time relieving teach-
ers from very repetitive and time-consuming work.
The exercises are embedded in a full web applica-
tion with a messaging system for communication,
a profile management including e-mail settings,
tutorials for using the system, classroom man-
agement, and various functions orthogonal to the
NLP-related issues (cf. Rudzewitz et al., 2017).

4 Elicited Data

The FeedBook system is being used since October
2016 in several German secondary schools as part
of the regular 7th grade English curriculum. The
data analysis discussed here is based on a March
2018 snapshot of the data. We collected 6341 sub-
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missions of complete exercises by 538 7th grade
students from whom we received written permis-
sion to use their data in pseudonymized form for
research.

From the total of 234 tasks implemented in the
system, in the current system version 111 pro-
vide the immediate feedback that is introduced
and evaluated in this paper. The feedback-enabled
tasks include 64 short answer tasks (usually one
sentence as input) and 47 fill-in-the-blanks tasks
(usually one word to one phrase as input).

The frequency distribution in Figure 2 shows
the number of submissions (y-axis) per task in
the system, ranked from most frequent to least
frequent (x-axis). Blue bars denote that the task
provides immediate feedback, and yellow bars in-
dicate that the system does not provide any au-
tomatic feedback (these are the tasks where the
teacher can manually provide feedback through
the system). The figure shows a tendency that
more submissions exist for tasks that provide im-
mediate feedback: out of the top 50 most worked
on tasks, 36 of them (72%) provide immediate
feedback. These 36 tasks are balanced between
17 fill-in-the-blanks and 19 short answer tasks.

Each submission for a feedback-enabled task
provides an interaction log that stores intermedi-
ate answers and the feedback that the system pro-
vided to each answer. In section 6, we use these
intermediate answers in an evaluation of the feed-
back approach, after introducing the architecture
in the next section.

5 Feedback Architecture

In this section, we describe the feedback mecha-
nism implemented as part of the tutoring system.
The main idea behind our approach is that identi-
fying the well-formed and ill-formed variability of
possible learner answers elicited by different tasks
is the key to providing precise feedback. Our feed-
back mechanism thus relies on well-formed tar-
get answers available for each task and generates
hypothesis about possible learner answers on the
basis of these target answers. This is a key dif-
ference to the use of traditional mal-rules, which
operate on learner language and thus need to an-
alyze the potentially ill-formed interlanguage of
students: instead of trying to model learner lan-
guage, we start from the standard, native language,
for which most computational linguistic models
have been developed.
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Figure 2: Frequency of submissions per task (blue = immediate feedback support, yellow = no automatic feedback).

The architecture allowing the system to provide
immediate feedback consists of two parts: an off-
line generation process of hypotheses modelling
possible well-formed and ill-formed learner an-
swers, and an online matching process that takes
the generated hypotheses and matches them in a
flexible manner with learner data.

5.1 Offline Hypothesis Generation

The automatic hypothesis generation mechanism
works in three steps: 1) linguistically analyzing the
target answer of an exercise, ii) applying rules to
generate alternative forms, and iii) storing the gen-
erated forms together with an error diagnosis. In
the following, these steps are explained in detail.

As a first step, each target answer of an exercise
is analyzed with the help of different NLP tools in
order to build a rich linguistic representation as a
basis for all further analyses. Table 1 shows the
tools employed for analysis.

task tool
segmentation ClearNLP

(Choi and Palmer, 2012)
part-of-speech tagging | ClearNLP
dependency parsing ClearNLP
lemmatization Morpha

(Minnen et al., 2001)
morphological analysis | Sfst (Schmid, 2005)

Table 1: NLP tasks and tools

The analyses are encoded in a UIMA Common
Analysis Structure (CAS, Gotz and Suhre, 2004).
A CAS is a source text with multiple layers of
annotations, such as a token annotation layer or
a dependency-tree annotation layer. By using a
DKPro wrapper (de Castilho and Gurevych, 2014)
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around the UIMA annotators, we ensure flexibility
and interchangeability of the specific implementa-
tions of the NLP tools.

On the CAS representation of the analyses, we
run 40 custom UIMA annotators to explicitly an-
notate further linguistic properties such as com-
plex tenses or irregular comparative forms. The
annotators and the subsequently applied rules de-
scribed below are designed to cover all grammar
topics in the 7th grade English curriculum.

The CAS is then used as input to rules that
introduce changes modeling the space of well-
formed and ill-formed variability. Some rules in-
troduce changes that yield grammatical forms that
are not appropriate in this task context, for exam-
ple changing the tense of verbs. Other rules gen-
erate forms that are never grammatical in any con-
text, such as a regular past tense inflection applied
to the lemma of an irregular verb.

When introducing a change, the current CAS is
first cloned to yield a deep copy. Then this clone is
edited by changing the source text and all linguis-
tic analysis layers that refer to the source text. Fur-
thermore a diagnosis denoting both the type and
span of the change introduced as well as the cat-
egory of the original form is added. The diagno-
sis thus makes it possible to see what change has
been introduced related to which part of the data.
If a previous diagnosis was present, it is put into a
history list and replaced by the new diagnosis.

For rules generating well-formed alternatives,
such as tense changes or contraction expansions,
we run the NLP tools used for analyzing the ini-
tial CAS on the modified clone and then keep the
annotations inside the span that has changed in
the rule application. For ill-formed alternatives,



we manually encode the linguistic analyses of the
changed forms. In any case, the result is a mini-
mally modified clone with an updated, full linguis-
tic analysis. This input-output symmetry makes it
possible to apply rules to the output of other rules.
This is necessary when chains of rules need to be
applied, such as first changing the tense and then
altering the verbal morphology of this tense’s re-
alization. Each rule is self-contained in that it en-
codes the conditions under which it applies and the
complete logic of the changes when applied.

For the purpose of yielding only desired chains
of rule applications and to avoid cycles where two
or more rules would add and remove the same
forms repeatedly, we group rules in so-called “rule
layers”. A rule layer is a sorted set of rules that
are applied in parallel and do not influence each
other. Each of the rules in a layer that is applica-
ble yields a minimally modified clone that serves
as input to the second layer of rules. By introduc-
ing a “self-copy rule” in each layer we ensure that
the original, unmodified target answer percolates
through all layers and each rule in a deeper layer
can be applied to the original answer as well as to
the modified clones.

The algorithm is inspired by graph search al-
gorithms, especially breadth-first graph search
(Moore, 1959). In our case, the nodes in the net-
work are CAS data structures with a rule appli-
cation history, and the edges in the graph are in-
stances of rule applications. An edge can only
be traversed if the conditions of applicability de-
fined in the corresponding rule are met. We thus
restrict the search space based on task informa-
tion, here: the linguistic analysis of the target an-
swer(s). The depth of the search tree corresponds
to our rule layers. Figure 3 illustrates the process
of generating target hypotheses from a target an-
swer by combining multiple layers of rule appli-
cations. Table 2 shows a small excerpt from the

layer 1 layer 2 layer m
target rule 1 rule 5 ‘ ‘ rule 9 }—> hypothesis 1
answer
rule 2 rule 6] -+ [rule 8 }— hypothesis 2
rule 3 rule 7 ‘ ‘ rule 10 }—> hypothesis 3
%rule i rule j ‘ ‘ rule n }—> hypothesis q

Figure 3: Multi-layered hypotheses generation process
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set of answers generated for a tense and and for
a comparative target answer. The table illustrates
that the output of any previous layer serves as in-
put to deeper layers. Every hypothesis generated
at any layer is saved to the data base.

target layer 1 layer 2 layer 3
are you doing  are you doing are you doing are you doing
were you doing were you do was you do
have you been doing have you been do  have you been dos
had you been doing  had you been do  had you been dos
will you do are you do will you dos
did you do did you dos
e are you dos
was you doing
is you dos
is you doing

friendlier

most friendlier
most friendlyer
friendliest
friendlyest

friendlier
more friendlier
more friendlyer

friendlier
more friendly
friendlyer

friendlier

Table 2: Examples for generated answer hypotheses

5.2 From Diagnoses to Feedback Messages

To connect error diagnoses with concrete feed-
back, a language teacher inspected the data we
had collected during one year of system use in
schools and compiled a list of most common er-
ror types made by students with respect to five ar-
eas of grammar topics in the curriculum: tenses,
comparatives, gerunds, relative clauses, reflex-
ive pronouns. The teacher then formulated er-
ror templates for these error types, which spec-
ify precisely what linguistic information needs to
be present and the (parameterized) feedback mes-
sage to be generated. To ensure that the conditions
under which a teacher would provide a particular
feedback and the formulation of the feedback is as
close as possible to the real-life educational set-
tings in schools, our project team includes teach-
ers with experience teaching 7th grade English in
German high schools, who reduced their teaching
load to take on this research project.

Figure 4 shows an example template listing the

SIMPLE PAST
SIMPLE PRESENT
IF-CLAUSE

“With conditional
clauses (type 2), we
use the simple past in
the if-clause, not the
simple present.”

Target form:
Diagnosed form:
Side conditions:
Feedback message:

Figure 4: Example error template



required target and diagnosed forms as well as
necessary side condition along with the resulting
feedback message.

Every error diagnosis generated by the system
as described above is associated with the most spe-
cific compatible feedback template prior to saving
a diagnosis in the data base. The system extracts
the diagnosis associated with the CAS and all its
side conditions, as, for example, signal words for
tense forms. For certain phenomena, such as tense
confusions, multiple templates exist with varying
degrees of specificity depending on the presence
of additional linguistic evidence, so that the tem-
plate providing the best match with the diagnosis
can be selected.

The resulting feedback provided by the system
for a typical tense error is illustrated in Figure 5.
The learner input will feel is not correct with re-
spect to the task context requiring present tense.
The will future form will feel was generated as one
of the target hypothesis for the correct target an-
swer feel. The student answer in Figure 5 can thus
be matched against this generated target hypothe-
sis and the error template associated with this form
is displayed as immediate feedback.

5.3 Flexible Online Matching

The generate-and-retrieve approach described
above works well for relatively constrained learner
input, as it occurs for example with fill-in-the-
blanks tasks. However, there are also more open
form-oriented tasks in the workbook, where learn-
ers have to enter full sentences to practice certain
forms, but the lexical material is constrained by
the task instruction. In these tasks, students often
use slight variations of our pre-computed hypothe-
ses, but make the same systematic errors. Con-
sider the minimal example of an agreement error,
as illustrated by the generated hypothesis he walk,
into which the learner has inserted an additional
adverb in he always walk. We tackle this issue by
allowing for partial matches of target hypotheses,
where the obligatory part of the hypothesis must
be matched, but an optional remainder can be var-
ied. In the example, both ke and walk would be
obligatory to match, whereas always is optional.
Technically, the approach is realized via infor-
mation retrieval on stored target hypothesis forms.
We use Lucene (https://lucene.apache.org) for in-
dexing and retrieval, employing the same linguis-
tic pre-processing as in the hypothesis generation

step in order to ensure comparability of student an-
swers and target hypotheses. Given a list of hits
returned by Lucene, we compare the student in-
put to each of the hits and use the first hypothesis
where the student answer satisfies all of the match-
ing constraints.

Figure 6 shows an example from a task where
students need to enter the correct tenses in con-
ditional clauses. In the example input shown, the
student left out the word more that is part of the
correct answer, and also used pronouns instead of
proper names. But since this is not relevant for the
diagnosis of the first tense error here, we can still
show feedback based on the stored generated hy-
pothesis. Note that the second tense error, simple
present feels instead of would feel, is handled by
a subsequent feedback message once the student
submits the update answer. This is in line with
previous research on the effectiveness of feedback
showing that it is preferable to alert the student of
one problem at a time (cf., e.g., Heift 2003).

5.4 Individual Immediate Feedback

When students enter an answer into a field of a
feedback-enabled exercise, our system executes
the algorithm in Figure 7. Using a multi-fallback
strategy, the algorithm ensures that more com-
plex feedback retrieval is only tried when sim-
pler strategies (such as a direct match) have failed.
Since the student is expected to change their an-
swer upon receiving system feedback, the ap-
proach aims at efficiently guiding the student to
the correct answer in multiple interactive steps.

6 Evaluation

In this section, we describe an evaluation of the
feedback currently given by our system. In a real
end-to-end evaluation of a tutoring system, the
most interesting evaluation would be to assess the
learning gains for the students. We are currently
designing a randomized controlled field study for
just such an evaluation involving several classes in
the coming school year. At this point, however, we
can at least report offline evaluation metrics calcu-
lated on the student answer data that we collected
so far. We plan to make a more comprehensive
data set available for research after having con-
ducted the full-year intervention study.

Based on the elicited data introduced in sec-
tion 4, we selected all individual student answers
from the interaction logs of tasks with active, im-
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Running away

Complete the post on Ally’s Internet message board on the topic of running away.
Fill in the verbs in the correct tense (simple present, simple past or will future).

I'm a bit worried that one of my best friends

She willfeel %@

) Feedback fiir "will feel"
very strict. T

(2 feel) terrible at home because her parents

will run « © (1 run) away soon.

are « ©(3be)

This is the will future. You need to use the

Last weekend we || simple present here.

Q

Ja

Hilfreich?
Nein

iher and she

vith us.

Figure 5: Feedback on tense error

Problems

Everyone has got problems. What could these people do differently?

Feedback fir "If she listens to Gillian, she feel._®

I Mrs Collins had more time for Gillian, Gillian wouldn’t ¢

If she listens to Gillian, she feels better

With conditional clauses (type 2), we use the
simple past in the if-clause, not the simple
present.

If she [iSi€n8 to Gillian, she feels better

Q

xe
Hilfreich?

Ja

Nein

Target answer (for reference):

If Mrs Collins listened more to Gillian, she would not feel so bad.

Figure 6: Student answer including multiple errors with feedback based on a partial hypothesis match

if student input target answer:
visualize this with green check mark
—> DONE
else:
retrieve direct hypothesis matches
if there are direct matches:
show associated feedback
else:
perform token-level Lucene query
if there are Lucene hits:
for every hypothesis:
if student answer matches criteria:
show associated feedback
else:
show default feedback

Figure 7: Feedback algorithm (simplified pseudo-code)

mediate feedback. However, since some of these
tasks have meaning-oriented goals (e.g., compre-
hension, translation), which we do not yet provide
feedback on, we excluded data from tasks where
the title clearly indicated such a goal (e.g., “Read-
ing: ...”). On the other end of the spectrum, we
excluded tasks where students only need to enter
single characters as part of words.

The remaining set of 33,589 individual student
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answers (6,755 distinct types) was provided as in-
put to the feedback algorithm of Figure 7.

Note that this data set consists of the authen-
tic learner answers entered into the system at any
stage of development. So we run the current ver-
sion of the feedback algorithm on all the authentic
learner data to obtain a complete, current picture
of current system performance.

19,809 of the answers were identified as identi-
cal to the target answer after basic normalization
(upper/lower case, spaces, Unicode punctuation).

Since we do not have gold standard feedback
labels for the overall data set, and obtaining them
would be a time-consuming annotation task by it-
self, every student answer that diverges from the
target answer must be treated as potentially erro-
neous and in need of feedback. Note, however,
that this diverging set also includes well-formed
paraphrases, meaning errors, and form errors we
do not intend to provide specific, meta-linguistic
feedback on (e.g., spelling).



6.1 Quantitative Results

Table 3 summarizes the results (TA = target an-
swer). We report both answer type counts and an-
swer token counts. For the answers differing from
the target answer (i.e., the ones the system pro-
vided feedback on), we also report the percentage
relative to the total number of answers differing
from the target forms.

‘ # types # tokens
identical to TA 342 19,809
default feedback 5,717 10,297 74.72%
specific feedback 696 3,483 25.28%
total 6,755 33,589

Table 3: Quantitative evaluation results

For the majority of differing answers (74.72%)
the system provides default feedback, where a diff
with the target answer is shown to the student, as
exemplified by Figure 8. As the example illus-
trates and we will argue in section 6.2, default
feedback does not necessarily mean the system
missed a potentially relevant error, but can also
mean that the default feedback is appropriate or
the type of task does not lend itself well to form-
focused feedback.

In 25.28% of the differing answers, the sys-
tem was able to give specific, meta-linguistic feed-
back, with well-formed and ill-formed tense vari-
ation being by far the most productive error pat-
tern. Note that while 696 answer types with
specific feedback may seem small, they account
for roughly five times as many instances (3,483),
showing that it is well worth the effort to model
specific, typical error patterns. In comparison, the
10,297 default cases are distributed across 5,717
types, each occurring only about two times, sug-
gesting that there is a long tail of rarely occurring
error types that one may not want to model and
provide dedicated, meta-linguistic feedback for.

To further analyze this long tail, we calculated
the edit distance between the differing answer
types and their respective target answers, and in-
vestigated the percentage of specific feedback for
different edit distance ranges. We found that for
the range below the first edit distance tertile, the
percentage was at 30.8% and thus higher than
the average 25.28%. On the other hand, for the
range above the second tertile of edit distances,
the percentage of specific feedback is only at
16.6%. The middle range is close to the average, at
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25.8%. This suggests that for answers with more
variation, including paraphrases and meaning er-
rors, an approach supporting meaning assessment
rather than just the form-focused analysis of well-
formed and ill-formed variability would be rele-
vant. As a result, we are in the process of in-
tegrating the alignment-based CoMiC approach
(Meurers, Ziai, Ott, and Bailey, 2011) originally
developed for meaning assessment of answers to
reading-comprehension questions.

6.2 Qualitative Analysis

Having discussed quantitative results, we now turn
to describing several illustrative cases in more de-
tail, using the task displayed in Figure 8.

Example (1) shows a case where the system cor-
rectly identifies the systematic problem exhibited
by the learner response.

(1) SA: My brother hates loseing in tennis
TA: My brother hates losing at tennis.

FB: If an infinitive ends in -e, we leave out
this -e with -ing-forms.

The learner may be unaware of the fact that
verbs ending in -e drop this suffix in the -ing form,
and since this is a systematic problem covered by
the generation mechanism described in section 5,
the system is able to inform the student about this
particular challenge to help overcome it. A longi-
tudinal learner model recording typical errors by
a user could further support the interpretation and
scaffolding of such phenomena.

As an example for default feedback that falls
short of pointing out the nature of the learner’s er-
ror, consider (2) where ‘SA’ is the student answer,
‘TA’ is the target answer and ‘FB’ is the system’s
feedback. The purpose of the exercise in (2) and
the following examples is to practice the use of the
gerund, as demonstrated by the target answer.

(2) SA: My brother’s hating it if he lose at tennis
TA: My brother hates losing at tennis.

FB: This is not what I am expecting — please
try again

Instead of using a gerund (‘losing’) in connec-
tion with the simple present (‘hates’), the learner
uses an if-clause together with the present progres-
sive (’s hating’). Additionally, there is an agree-
ment error in the finite verb of the if-clause (‘lose’
vs. ‘loses’). While the general feedback message
is not wrong or misleading, a message about the



Using gerunds

Use gerunds to change these sentences. Keep the same meaning.

LiF2: The gerund

My sister enjoys talking about her new boyfriend very much.

I’'m not very good at...

My brother hates at tennis.

Feedback fiir "My brother hates at tennis."

This is not what | am expecting - please try
again. Change the parts shown in red:

My

Q

brother hatesrat tennis.

Hilfreich?
QOuJa

(ONein

Figure 8: Default feedback example

missing gerund or the incorrect verb forms would
have been more helpful.

In (3), a learner has provided a different re-
sponse to the same exercise.

(3) SA: My brother hates at tennis.
TA: My brother hates losing at tennis.

FB: This is not what I am expecting — please
try again

Since there is only one error here and it is about
the omission of a word (‘losing’), the same default
feedback that was insufficient in (2) can in fact be
helpful enough to guide the student to include a
form of the expected word. In a future version,
we plan to to include rules targeting the absence
of specific grammatical forms, which in this case
would enable a more specific message.

7 Conclusion and Outlook

We presented a novel approach to the generation
of feedback for English grammar exercises. Build-
ing on task properties, we explicitly model the
grammar topics targeted by the relevant curricu-
lum (7th grade English) and use a multi-level gen-
eration approach to produce the expected range of
well-formed and ill-formed variation in student re-
sponses to the given tasks. The results of the off-
line generation process are then used at feedback
time in a flexible matching approach in order to ac-
count for additional variation in student responses.

Results suggest that the more frequent error pat-
terns are successfully covered by the system, as
indicated by the 1:5 ratio of types vs. tokens
for which specific feedback is given. In particu-
lar, tense-related problems were often diagnosed,
which teachers identified as the most challenging
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grammar topic in the 7th grade curriculum. How-
ever, there is also a long tail of infrequent devia-
tions from target answers that do not seem to fall
into larger categories. For these, it will be neces-
sary to develop better fallback strategies and eval-
uate the subjective helpfulness ratings provided
by end users at feedback time. Since it is likely
that many of the answer deviations occur due to
meaning-related issues, our next step will be to in-
tegrate meaning error diagnosis into the system.
The availability of explicit target answers and the
need to diagnose meaning deviations or equiva-
lences between target and student answers sug-
gests that an alignment-based approach such as
CoMiC (Meurers et al., 2011) can be effective.

In connection with diagno