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*SEM 2015: Joint Conference on Lexical and Computational Semantics

The Joint Conference on Lexical and Computational Semantics (*SEM) provides a forum of
exchange for the growing number of NLP researchers working on different aspects of semantic
processing. After the previous editions of *SEM in Montreal (2012), Atlanta (2013), and Dublin (2014),
the 2015 edition will take place in Denver on June 4 and 5 and is colocated with SemEval and NAACL.
As in 2014 at COLING, also on this occasion *SEM and SemEval chose to coordinate their programs
by featuring a joint invited talk. In this way, *SEM aims to bring together the ACL SIGLEX and ACL
SIGSEM communities.

The acceptance rate of *SEM 2015 was quite competitive: out of 98 submissions, we accepted 36
papers for an overall acceptance of 37%. The acceptance rate of long paper that were accepted
for oral presentation (18 out of 62) is 29%. The papers cover a wide range of topics including
distributional semantics; lexical semantics and lexical acquisition; formal and linguistic semantics;
discourse semantics; lexical resources, linked data and ontologies; semantics for applications; and
extra-propositional semantics: sentiment and figurative meaning.

The *SEM 2015 program consists of oral presentations for selected long papers and a poster session
for long and short papers.

Day One, June 4th:

e Joint *SEM SemEval keynote talk by Marco Baroni;

e Oral presentation sessions on distributional semantics, lexical semantics, and extra-propositional
semantics;

e Poster session.
Day Two, June Sth:

e Keynote talk by Preslav Natkov;

e Oral presentation sessions on semantics for applications, lexical resources and ontologies, formal
semantics, and discourse semantics;

e *SEM Best Paper Award.

We cannot finish without saying that *SEM 2015 would not have been possible without the considerable
efforts of our area chairs, their reviewers, and the computational semantics community in general.

We hope you will enjoy *SEM 2015,

Martha Palmer, University of Colorado Boulder, General Chair
Gemma Boleda, University of Trento, Program Co-Chair
Paolo Rosso, Universitat Politecnica de Valéncia, Program Co-Chair
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Invited Talks

Playing ficles and running with the corbons:
What (multimodal) distributional semantic models learn during their childhood
Marco Baroni, University of Trento

Joint work with: Angeliki Lazaridou, Marco Marelli (University of Trento),
Raquel Fernandez (University of Amsterdam), Grzegorz Chrupata (Tilburg University)

Distributional semantic methods have some a priori appeal as models of human meaning acquisition,
because they induce word representations from contextual distributions naturally occurring in corpus
data without need for supervision. However, learning the meaning of a (concrete) word also involves
establishing a link between the word and its typical visual referents, which is beyond the scope of
classic, text-based distributional semantics. Since recently several proposals have been put forward
about how to induce multimodal word representations from linguistic and visual contexts, it is natural
to ask if this line of work, besides its practical implications, can help us to develop more realistic,
grounded models of human word learning within the distributional semantics framework.

In my talk, I will report about two studies in which we used multimodal distributional semantics (MDS)
to simulate human word learning. In one study, we first measured the ability of subjects to link a nonce
word to relevant linguistic and visual associates when prompted only by exposure to minimal corpus
evidence about it. We then simulated the same task with an MDS model, finding its behavior remarkably
similar to that of subjects. In the second study, we constructed a corpus in which child-directed speech
is aligned with real-life pictures of the objects mentioned by care-givers. We then trained our MDS
model on these data, and inspected the generalizations it learned about the words in the corpus and the
objects they might denote.

The results highlight interesting issues not only for distributional semantics (can we build meaningful
word representations from very limited contexts? are such representations reasonably human-like?), but
also for the study of human language acquisition (are we "done" with learning a word once we associate
it to a referent? do we incrementally refine our word representations? is an explicit cross-situational
mechanism really necessary?).
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60 Years Ago People Dreamed of Talking with a Machine. Are We Any Closer?
Preslav Nakov, Qatar Computing Research Institute (QCRI)

Joint work with Marti Hearst (UC Berkeley)

The 60-year-old dream of computational linguistics is to make computers capable of communicating
with humans in natural language. This has proven hard, and thus research has focused on sub-problems.
Even so, the field was stuck with manual rules until the early 90s, when computers became powerful
enough to enable the rise of statistical approaches. Eventually, this shifted the main research attention
to machine learning from text corpora, thus triggering a revolution in the field.

Today, the Web is the biggest available corpus, providing access to quadrillions of words; and, in corpus-
based natural language processing, size does matter. Unfortunately, while there has been substantial
research on the Web as a corpus, it has typically been restricted to using page hit counts as an estimate
for n-gram word frequencies; this has led some researchers to conclude that the Web should be only
used as a baseline.

In this talk, I will reveal some of the hidden potential of the Web that lies beyond the n-gram, with focus
on the syntax and semantics of English noun compounds. I will further show how these ideas apply to a
number of NLP problems, including syntactic parsing and machine translation, among others. Finally,
I will share some thoughts about the future of lexical semantics and machine translation, in view of the
ongoing deep learning revolution.
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Neural Networks for Integrating Compositional and Non-compositional
Sentiment in Sentiment Composition

Xiaodan Zhu & Hongyu Guo
National Research Council Canada
1200 Montreal Road, M50
Ottawa, ON K1A OR6, Canada

{xiaodan.zhu, hongyu.guo}@nrc—cnrc.gc.ca

Abstract

This paper proposes neural networks for inte-
grating compositional and non-compositional
sentiment in the process of sentiment compo-
sition, a type of semantic composition that op-
timizes a sentiment objective. We enable in-
dividual composition operations in a recursive
process to possess the capability of choosing
and merging information from these two types
of sources. We propose our models in neural
network frameworks with structures, in which
the merging parameters can be learned in a
principled way to optimize a well-defined ob-
jective. We conduct experiments on the Stan-
ford Sentiment Treebank and show that the
proposed models achieve better results over
the model that lacks this ability.

1 Introduction

Automatically determining the sentiment of a
phrase, a sentence, or even a longer piece of text
is still a challenging problem. Data sparseness en-
countered in such tasks often requires to factorize
the problem to consider smaller pieces of compo-
nent words or phrases, for which much research has
been performed on bag-of-words or bag-of-phrases
models (Pang and Lee, 2008; Liu and Zhang, 2012).
More recent work has started to model sentiment
composition (Moilanen and Pulman, 2007; Choi and
Cardie, 2008; Socher et al., 2012; Socher et al.,
2013), a type of semantic composition that opti-
mizes a sentiment objective. In general, the com-
position process is critical in the formation of the

1

Parinaz Sobhani
EECS, University of Ottawa
800 King Edward Avenue
Ottawa, ON K1N 6NS5, Canada

psobh090@uottawa.ca

sentiment of a span of text, which has not been well
modeled yet and there is still scope for future work.

Compositionality, or non-compositionality, of the
senses of text spans is important for language under-
standing. Sentiment, as one of the major semantic
differential categories (Osgood et al., 1957), faces
the problem as well. For example, the phrase must
See or must try in a movie or restaurant review often
indicates a positive sentiment, which, however, may
be hard to learn from the component words. More
extreme examples, e.g., slangs like bad ass, are not
rare in social media text. This particular example
can actually convey a very positive sentiment even
though its component words are very negative. In
brief, a sentiment composition framework that can
consider both compositional and non-compositional
sentiment is theoretically interesting.

From a more pragmatical viewpoint, if one is
able to reliably learn the sentiment of a text span
(e.g., an ngram) holistically, it would be desirable
that a composition model has the ability to de-
cide the sources of knowledge it trusts more: the
composition from the component words, the non-
compositional source, or a soft combination of them.
In such a situation, whether the text span is actually
composable may be blur or may not be a concern.

In general, the composition of sentiment is a
rather complicated process. As a glimpse of ev-
idence, the effect of negation words on changing
sentiment of their scopes appears to be a compli-
cated function (Zhu et al., 2014). The recently pro-
posed neural networks (Socher et al., 2013; Socher
et al., 2011) are promising, for their capability of
modeling complicated functions (Mitchell, 1997) in

Proceedings of the Fourth Joint Conference on Lexical and Computational Semantics (*SEM 2015), pages 1-9,
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general, handling data sparseness by learning low-
dimensional embeddings at each layer of compo-
sition, and providing a framework to optimize the
composition process in principled way.

This paper proposes neural networks for integrat-
ing compositional and non-compositional sentiment
in the process of sentiment composition. To achieve
this, we enable individual composition operations
in a recursive process to possess the capability of
choosing and merging information from these two
types of sources. We propose our models in neu-
ral network frameworks with structures (Socher et
al., 2013), in which the merging parameters can
be learned in a principled way to optimize a well-
defined objective. We conduct experiments on the
Stanford Sentiment Treebank and show that the pro-
posed models achieve better results over the model
that does not consider this property.

2 Related work

Composition of sentiment Early work on modeling
sentiment does not examine semantic composition
closely (Pang and Lee, 2008; Liu and Zhang, 2012),
as mentioned above. Recent work has considered
sentiment-oriented semantic composition (Moilanen
and Pulman, 2007; Choi and Cardie, 2008; Socher et
al., 2012; Socher et al., 2013), or simply called senti-
ment composition in this paper. For example, Moila-
nen and Pulman (2007) used a collection of hand-
written compositional rules to assign sentiment val-
ues to different granularities of text spans. Choi
and Cardie (2008) proposed a learning-based frame-
work. The more recent work of (Socher et al., 2013)
proposed models based on neural networks that do
not rely on any heuristic rules. Such models work
in a bottom-up fashion over a tree to infer the sen-
timent label of a phrase or sentence as a composi-
tion of the sentiment expressed by its constituting
parts. The approach leverages a principled method,
the forward and backward propagation, to optimize
the system performance. In this paper, we follow the
neural network approach to integrate compositional
and non-compositional sentiment in sentiment com-
position.

Prior knowledge of sentiment Integrating non-
compositional sentiment into the composition pro-
2

cess can be viewed as introducing some prior sen-
timent knowledge, as in general the sentiment of a
word or a phrase perceived independent of its con-
text is often referred to as prior sentiment. Word-
level prior sentiment is typically annotated in man-
ual sentiment lexicons (Wilson et al., 2005; Hu
and Liu, 2004; Mohammad and Turney, 2010),
or learned in an unsupervised or semisupervised
way (Hatzivassiloglou and McKeown, 1997; Esuli
and Sebastiani, 2006; Turney and Littman, 2003;
Mohammad et al., 2009). More recently, senti-
ment indicators, such as emoticons and hashtags,
are utilized (Go et al., 2009; Davidov et al., 2010;
Kouloumpis et al., 2011; Mohammad, 2012; Mo-
hammad et al., 2013a). With enough data, such
freely available (but noisy) annotation can be used to
learn the sentiment of ngrams. In our study, we will
investigate in the proposed composition models the
effect of automatically learned sentimental ngrams.

3 Prior-enriched semantic networks

In this paper, we propose several neural networks
that enable each composition operation to pos-
sess the ability of choosing and merging senti-
ment from lower-level composition and that from
non-compositional sources. We call the networks
Prior-Enriched Semantic Networks (PESN). We
present several specific implementations based on
RNTN (Socher et al., 2013); the latter has showed
to be a state-of-the-art sentiment composition frame-
work. However, the realization of a PESN node is
not necessarily only tied with RNTN.

Figure 1 shows a piece of PESN. Each of the three
big nodes, i.e., N1, No, and N3, corresponds to a
node in a constituency parse tree; e.g., /N3 may cor-
respond to the phrase not a must try, where N1 and
Ny are not and a must try, respectively. We ex-
tend each of the nodes to possess the ability to con-
sider sentiment from lower-level composition and
non-compositional sources. In node /N3, knowledge
from the lower-level composition is represented in
the hidden vector ¢3, which is merged with non-
compositional knowledge represented in es, and the
merged information is saved in mg. The black box
in the center performs the actual merging, which in-
tegrates the two knowledge sources in order to min-



imize an overall objective function that we will dis-
cuss in detail later. The recursive neural networks
and the forward-backward propagation over struc-
tures (Socher et al., 2013; Goller and Kchler, 1996)
provide a principled way to optimize the whole net-
work.

Figure 1: A prior-enriched semantic network (PESN) for
sentiment composition. The three nodes, N1, Ns, and
N3, correspond to three nodes in a constituency parse
tree, and each of them consider sentiment from lower-
level composition (41, i3, ¢3) and from non-compositional
sentiment (e, ea, €3).

3.1 Regular bilinear merging

The most straightforward way of implementing a
PESN node is probably through a regular bilinear
merging. Take node N3 in Figure 1 as an example;
the node vector mg will be simply merged from 73
and e3 as follows:

mg = tanh(W,, [é‘j +bm) (1)

Again, vector i3 contains the knowledge from the
lower-level composition; es is a vector representing
non-compositional sentiment information, which
can be either from human annotation or automati-
cally learned resources. Note that in the network,
all hidden vectors m and ¢ (including word embed-
ding vectors) have the same dimensionality d, but
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the non-compositional nodes, i.e., the nodes e , do
not necessarily have to have the same number of el-
ements, and we let [ be their dimensionality. The
merging matrix W, is d-by-(d+1).

As in this paper we discuss PESN in the frame-
work of RNTN, computation outside the nodes
Ny, N, N3 follows that for the standard three-way
tensors in RNTN. That is, the hidden vector 3 is
computed with the following formula:

T
i = tcmh([Z;] vl [Zj + W, [Z;]) 2

where, W, € Rdx(d-i—d) and V, € R(d—i—d)x(d-ﬁ-d)xd
are the matrix and tensor of the composition func-
tion used in RNTN, respectively, each of which is
shared over the whole tree in computing vectors 71,
’iQ, and ’i3.

3.2 Explicitly gated merging

Compared to the regular bilinear merging model, we
here further explicitly control the input of the com-
positional and non-compositional semantics. Ex-
plicitly gating neural network has been studied in the
literature. For example, the long short-term mem-
ory (LSTM) utilizes input gates, together with out-
put gates and forget gates, to guide memory blocks
to remember/forget history (Hochreiter and Schmid-
huber, 1997).

For our purpose here, we explore an input gate to
explicitly control the two different input sources. As
shown in Figure 2, an additional gating layer g3 is
used to control i3, es explicitly.

I/VgE €3
g3 =o( +by) (3)
ngi3

ms = tanh(Wp(gs ® [2]) +bn) @)

The sign ® is a Hadamard product; o is a logis-
tic sigmoid function instead of a fanh activation,
which makes the gating signal g3 to be in the range
of [0, 1] and serve as a soft switch (not a hard binary



Figure 2: An input-gated network that explicitly controls
the compositional and non-compositional sentiment in-
put.

0/1 switch) to explicitly gate 73 and e3. Note that
elsewhere in the network, we still use tanh as our
activation function. In addition, W,, € R and
W,, € R4 are the weight matrices used to calcu-
late the gate vector.

3.3 Confined-tensor-based merging

The third approach we use for merging composi-
tional and non-compositional knowledge employs
tensors, which are able to explore multiplicative
combination among variables. Tensors have already
been successfully used in a wide range of NLP
tasks in capturing high-order interactions among
variables. The forward computation of mg follows:

AT . .
ms = tanh( [23} 1Ll {13] + W {2]) 5)

€3 €3

where V%Zd] e R(d+Dx(d+)xd jg the tensor m that

defines multiple bilinear forms, and the matrix W,
is as defined in the previous models.

As we focus on the interaction between i3 and e3,
we force each slice of tensor, e.g. Vn[f ], to have zero-
valued blocks. More specifically, the top-right d-by-
I block of the piece matrix V! (k € {1...d}) and
the bottom-left /-by-d block are non-zero parame-
ters, used to capture multiplicative, element-pair in-
teractions between 23 and eg, while the rest block are
set to be zero, to ignore interactions between those
variables within 73 and those within e3. This does
not only make the model focus on the interaction
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between vector 7 and e, it also helps significantly re-
duce the number of parameters to estimate, which,
otherwise, could potentially lead to overfitting. We
call this model confined-tensor-based merging.

3.4 Learning and inference

Objective The overall objective function in learning
PESN, following (Socher et al., 2013), minimizes
the cross-entropy error between the predicted dis-
tribution y*¢" € R*! at a node 4 and the target
distribution #* € R°*! at that node, where ¢ is the
number of sentiment categories. PESN learns the
parameters that are used to merge the compositional
and non-compositional sentiment so that the merg-
ing operations integrate the two sources in minimiz-
ing prediction loss. The neural network over struc-
tures provides a principled framework to optimize
these parameters.

More specifically, the error over an entire sen-
tence is calculated as a regularized sum:

E@0) =) tilogy*™™; + Al0*  (6)
i

where, A is the regularization parameter, j € c de-
notes the j-th element of the multinomial target dis-
tribution, § are model parameters that will be dis-
cussed below, and ¢ iterates over all nodes i, (e.g.,
11, 22, and ¢3) in Figure 1, where the model predicts
sentiment labels.

Backpropagation over the structures To minimize
E(0), the gradient of the objective function with
respect to each of the parameters in 6 is calcu-
lated efficiently via backpropagation through struc-
ture (Socher et al., 2013; Goller and Kchler, 1996),
after computing the prediction errors in forward
propagation with formulas described above.

Regular bilinear merging The PESN implemented
with simple bilinear merging has the following
model parameters: 0 = (V,., Wy, Wy, Wigper, L).
As discussed above, V,. and W, are the tensor and
matrix in RNTN; W, is the weight matrix for merg-
ing the compositional and non-compositional senti-
ment vectors. L denotes the vector representations
of the word dictionary, and Wi, is sentiment clas-
sification matrix used to predict sentiment label at a



node. Backpropagation on the regular bilinear merg-
ing node follows a standard derivative computation
in a regular feed-forward network, which we skip
here.

Explicitly gated merging In this model, in addition
to W,,, we further learn two weight matrices W,
and W, as introduced in Formula 3 and 4 above.
Consider Figure 2 and let §"*3 denote the error mes-
sages passed down to node ms. The error messages
are passed back to i3 directly through the Hadamard
product and also through the gate node g3. The for-
mer, denoted as 64" is calculated with:

5T = (5 @ g3)[1 : d] )

where, g3 is calculated with Formula 3 above in the
forward process; [1 : d] means taking the first d ele-
ments of the vector yielded by the Hadamard prod-
uct; the rest [d+ 1 : d+(] elements of the Hadamard
production are discarded, as we do not update es,
which is given as our prior knowledge.
The error messages passed down to gate vector gs
is computed with
13 /
59 = §"™ @ [63] ® s (g3) (8)
where, s'(.) is the element-wise derivative of logis-
tic function, which can be calculated only using s(.),

as s(.)(1 — s(.)). The derivative of W, can be cal-
culated with:

OF93

Ge

= (6%[1 : d])e )

Similarly, partial derivatives over W, can be cal-
culated. These values will be summed to the to-
tal derivative of Wy, and W,,, respectively. With
these notations, the error messages passed down to
13 through the gate can then be computed with:

sisgate _ WgTi(ags [d+1:d+1]) (10)

and the total error messages to node ¢3 is then:

5i3,t0tal _ (61'3,dir+5i3,gate+6i3,local)®f/(2.3) (11)
5

where §%1°@! is the local error message from the
sentiment prediction errors performed at the node i3
itself to obtain the total error message for ¢3, which
is in turn passed down through regular RNTN tensor
to the lower levels. f’ (.) is the element-wise deriva-
tive of tanh function.

Confined-tensor-based merging In confined-tensor-
based merging, the error messages passed to the two
children i3 and e3 is computed with:

52‘3,63 — (Wg;(;mg) ® f/( [(Z;;]) + 6tns (12)

where,

€3

d . .
e =i [ e s )
(13)

where the error messages to i3 are the first d num-
bers of elements of §?°3. The rest elements of §%:¢3
are discarded; as mentioned above, we do not update
es3 as it is given as the prior knowledge. We skip the
derivative for the W,,,,. While the derivative of each
slice k(k = 1,...,d) of the tensor V' is calculated
with:

oE™3 _ ¢mg,down i3 13 !
e 1

Again, the full derivative for V,,, and W,, is the
sum of their derivatives over the trees. After the er-
ror message passing from mg to ¢3 is obtained, it can
be summed up with the local error message from the
sentiment prediction errors at the node i3 itself to
obtain the total error message for i3, which is in turn
used to calculate the error messages passed down as
well as the derivative in the lower-level tree.

4 Experiments

4.1 Data

We use the Stanford Sentiment Treebank (Socher
et al., 2013) in our experiments. The data contain
about 11,800 sentences from the movie reviews that
were originally collected by Pang and Lee (2005).



The sentences were parsed with the Stanford parser
(Klein and Manning, 2003). Phrases at all the tree
nodes were manually annotated with sentiment val-
ues. We use the same split of the training and test
data as in (Socher et al., 2013) to predict the sen-
timent categories of the roots (sentences) and the
phrases, and use the same evaluation metric, clas-
sification accuracy, to measure the performances.

4.2 Obtaining non-compositional sentiment

In our experiments, we explore in sentiment com-
position the effect of two different types of non-
compositional sentiment: (1) sentiment of ngrams
automatically learned from an external, much larger
corpus, and (2) sentiment of ngrams assigned by hu-
man annotators.

Following the method proposed in (Mohammad
et al., 2013b), we learn sentimental ngrams from
Tweets. The unsupervised approach utilizes hash-
tags, which can be regarded as conveying freely
available (but noisy) human annotation of sentiment.
More specifically, certain words in tweets are spe-
cially marked with the hash character (#) to indi-
cate the topic, sentiment polarity, or emotions such
as joy, sadness, angry, and surprised. With enough
data, such artificial annotation can be used to learn
the sentiment of ngrams by their likelihood of co-
occurring with such hashtagged words.

More specifically, a collection of 78 seed hash-
tags closely related to positive and negative such as
#good, #excellent, #bad, and #terrible were used (32
positive and 36 negative). These terms were chosen
from entries for positive and negative in the Roget’s
Thesaurus. A set of 775,000 tweets that contain at
least a positive hashtag or a negative hashtag were
used as the learning corpus. A tweet was considered
positive if it had one of the 32 positive seed hash-
tags, and negative if it had one of the 36 negative
seed hashtags. The association score for an ngram
w was calculated from these pseudo-labeled tweets
as follows:

score(w) = PMI(w, positive) — PMI(w, negative)
15)

where PMI stands for pointwise mutual information,
and the two terms in the formula calculate the PMI
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between the target ngram and the pseudo-labeled
positive tweets as well as that between the ngram
and the negative tweets, respectively. Accordingly,
a positive score(.) indicates association with pos-
itive sentiment, whereas a negative score indicates
association with negative sentiment.

We use in our experiments the bigrams and tri-
grams learned from the dataset with the occurrences
higher than 5. We assign these ngrams into one
of the 5 bins according to their sentiment scores
obtained with Formula 15: (—o0, 2], (-2, —1],
(—1,1), [1,2), and [2,+00). Each ngram is now
given a one-hot vector, indicating the polarity and
strength of its sentiment. For example, a bigram
with a score of -1.5 will be assigned a 5-dimensional
vector [0,1,0,0,0], indicating a weak negative.
Note that PESN can also take into other forms
of sentiment embeddings, such as those learned in
(Tang et al., 2014).

In addition, the Stanford Sentiment Treebank con-
tains manually annotated sentiment for each indi-
vidual phrase in a parse tree, so we use such an-
notation but not other manual lexicons, by assum-
ing such annotation fits the corpus itself the best.
Specifically, we use bigram and trigram annotation
in the treebank. Note that even longer ngrams are
much sparser and probably less useful in general,
one may learn sentiment for multi-word expressions
of a larger length, which we will leave as future
work.

4.3 Results

Overall prediction performance Table 1 shows
the accuracies of different models on Stanford Sen-
timent Treebank. We evaluate the models on 5-
category sentiment prediction at both the sentence
(root) level and at all nodes (including roots).! The
results reported in Table 1 are all based on the ver-
sion 3.3.0 of the Stanford CoreNLP? and our imple-
mentation of PESN on it. The CoreNLP includes
a java implementation of RNTN.? To make the re-
sults reported in the table comparable, we trained the

'The package only gives approximate accuracies for 2-
category sentiment, which are not included here in the table.

>http://nlp.stanford.edu/sentiment/code.html

3The matlab code used in (Socher et al., 2013) is not pub-
lished.



Models

sentence-level (roots)

all phrases (all nodes)

(1) RNTN 42.44 79.95
(2) Regular-bilinear (auto) 42.37 79.97
(3) Regular-bilinear (manu) 42.98 80.14
(4) Explicitly-gated (auto) 42.58 80.06
(5) Explicitly-gated (manu) 43.21 80.21
(6) Confined-tensor (auto) 42.99 80.49
(7) Confined-tensor (manu) 43.757% 80.6671

Table 1: Model performances (accuracies) on predicting 5-category sentiment at the sentence (root) level and phrase-
level on Stanford Sentiment Treebank. The numbers in the bold font are the best performances achieved on the two
tasks. Both results are statistically significantly better (p < 0.05) than the corresponding RNTN results.

RNTN models with the default parameter* and run
the training from 5 different random initializations,
and report the best results we observed.

The rows in the table marked with aufo are models
using the automatically learned ngrams, and those
marked with manu using manually annotated senti-
ment for bigrams and trigrams. Note that the non-
compositional sentiment of a node is only used to
predict the sentiment of phrases above it in the tree.
For example, in Figure 1 discussed earlier, the effect
of e; and ey will be used to predict the sentiment
of i3 and other node ¢ above, but not that of 7; and
1o themselves, avoiding the concern of using the an-
notation of a tree node to predict the sentiment of
itself.

The models in general benefit from incorporating
the non-compositional knowledge. The numbers in
the bold font are the best performance achieved on
the two tasks. While using the simple regular bi-
linear merging shows some gains, the more compli-
cated models achieve further improvement.

Above we have seen the general performance of
the models. Below, we take a closer look at the
prediction errors at different depths of the senti-
ment treebank. The depth here is defined as the
longest distance between a tree node and its descen-
dant leafs. In Figure 3, the x-axis corresponds to
different depths and y-axis is the accuracy. The fig-
ure was drawn with the RNTN and the model (7) in
Table 1, so as to study the compositional property in
the ideal situation where the lexical has a full cover-
age of bigrams and trigrams.

*java -mx8g edu.stanford.nlp.sentiment.SentimentTraining -
numHid 25 -trainPath train.txt -devPath dev.txt -train -model
model.ser.gz
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Figure 3: Errors made at different depths in the sentiment
tree bank.

The figure shows that using the confined tensor
to combine holistic sentiment information outper-
forms the original RNTN model that does not con-
sider this, starting from depth 3, showing the benefit
of using holistic bigram sentiment. The improve-
ment increases at depth 4 (indicating the benefit of
using trigram sentiment), and then was propagated
to the higher levels of the tree. As discussed above,
we only use non-compositional sentiment of a node
to predict the sentiment of the phrases above it in
the tree but not the node itself. And the system still
needs to balance which source it trusts more, by op-
timizing the overall objective.

Although the empirical improvement may depend
on the percentage of non-compositional instances in
a data set or the sentiment that need to be learned
holistically, we present here the first effort, accord-
ing to our knowledge, on studying the concern of in-



tegrating compositional and non-compositional sen-
timent in the semantic composition process.

5 Conclusions and future work

This paper proposes models for integrating com-
positional and non-compositional sentiment in the
process of sentiment composition. To achieve this,
we enable each composition operation to be able to
choose and merge information from these two types
of sources. We propose to implement such mod-
els within neural network frameworks with struc-
tures (Socher et al., 2013), in which the merging pa-
rameters can be optimized in a principled way, to
minimize a well-defined objective. We conduct ex-
periments on the Stanford Sentiment Treebank and
show that the proposed models achieve better results
over the model that does not consider this property.

Although the empirical improvement may depend
on the percentage of non-compositional instances in
a data set or the sentiment that need to be learned
holistically, we present here the first effort, accord-
ing to our knowledge, on studying the basic concern
of integrating compositional and non-compositional
sentiment in composition. While we focus on senti-
ment in this paper, investigating compositional and
non-compositional semantics for general semantic
composition with neural networks is interesting to
us as an immediate future problem, as such mod-
els provide a principled way to optimize the over-
all objective over the sentence structures when we
consider both compositional and non-compositional
semantics.
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Abstract

We are proposing an extension of the recur-
sive neural network that makes use of a vari-
ant of the long short-term memory architec-
ture. The extension allows information low
in parse trees to be stored in a memory reg-
ister (the ‘memory cell’) and used much later
higher up in the parse tree. This provides a so-
lution to the vanishing gradient problem and
allows the network to capture long range de-
pendencies. Experimental results show that
our composition outperformed the traditional
neural-network composition on the Stanford
Sentiment Treebank.

1 Introduction

Moving from lexical to compositional semantics in
vector-based semantics requires answers to two dif-
ficult questions: (i) what is the nature of the com-
position functions (given that the lambda calculus
for variable binding is no longer applicable), and (ii)
how do we learn the parameters of those functions
(if they have any) from data? A number of classes of
functions have been proposed in answer to the first
question, including simple linear functions like vec-
tor addition (Mitchell and Lapata, 2009), non-linear
functions like those defined by multi-layer neural
networks (Socher et al., 2010), and vector matrix
multiplication and tensor linear mapping (Baroni et
al., 2013). The matrix and tensor-based functions
have the advantage of allowing a relatively straight-
forward comparison with formal semantics, but the
fact that multi-layer neural networks with non-linear
activation functions like sigmoid can approximate
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any continuous function (Cybenko, 1989) already
make them an attractive choice.

In trying to answer the second question, the ad-
vantages of approaches based on neural network ar-
chitectures, such as the recursive neural network
(RNN) model (Socher et al., 2013b) and the con-
volutional neural network model (Kalchbrenner et
al., 2014), are even clearer. Models in this paradigm
can take advantage of general learning procedures
based on back-propagation, and with the rise of
‘deep learning’, of a variety of efficient algorithms
and tricks to further improve training.

Since the first success of the RNN model (Socher
et al., 2011b) in constituent parsing, two classes of
extensions have been proposed. One class is to en-
hance its compositionality by using tensor product
(Socher et al., 2013b) or concatenating RNNs hor-
izontally to make a deeper net (Irsoy and Cardie,
2014). The other is to extend its topology in order to
fulfill a wider range of tasks, like Le and Zuidema
(2014a) for dependency parsing and Paulus et al.
(2014) for context-dependence sentiment analysis.

Our proposal in this paper is an extension of the
RNN model to improve compositionality. Our mo-
tivation is that, like training recurrent neural net-
works, training RNNs on deep trees can suffer from
the vanishing gradient problem (Hochreiter et al.,
2001), i.e., that errors propagated back to the leaf
nodes shrink exponentially. In addition, information
sent from a leaf node to the root can be obscured
if the path between them is long, thus leading to
the problem how to capture long range dependen-
cies. We therefore borrow the long short-term mem-
ory (LSTM) architecture (Hochreiter and Schmidhu-

Proceedings of the Fourth Joint Conference on Lexical and Computational Semantics (*SEM 2015), pages 10-19,
Denver, Colorado, June 4-5, 2015.
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Figure 1: Multi-layer neural network (left) and Recursive
neural network (right). Bias vectors are removed for the
simplicity.

ber, 1997) from recurrent neural network research
to tackle those two problems. The main idea is to
allow information low in a parse tree to be stored
in a memory cell and used much later higher up in
the parse tree, by recursively adding up all mem-
ory into memory cells in a bottom-up manner. In
this way, errors propagated back through structure
do not vanish. And information from leaf nodes is
still (loosely) preserved and can be used directly at
any higher nodes in the hierarchy. We then apply
this composition to sentiment analysis. Experimen-
tal results show that the new composition works bet-
ter than the traditional neural-network-based com-
position.

The outline of the rest of the paper is as fol-
lows. We first, in Section 2, give a brief background
on neural networks, including the multi-layer neural
network, recursive neural network, recurrent neural
network, and LSTM. We then propose the LSTM for
recursive neural networks in Section 3, and its appli-
cation to sentiment analysis in Section 4. Section 5
shows our experiments.

2 Background
2.1 Multi-layer Neural Network

In a multi-layer neural network (MLN), neurons are
organized in layers (see Figure 1-left). A neuron in
layer 7 receives signal from neurons in layer ¢ — 1
and transmits its output to neurons in layer 7 + 1. !
The computation is given by

yi = 9(Wi—1,yi-1 + b;)

"This is a simplified definition. In practice, any layer j < i
can connect to layer <.
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Figure 2: Activation functions: sigmoid(z) = H%,
X
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tanh(z) = ‘;ﬁ%, softsign(z) =

where real vector y; contains the activations of the
neurons in layer i; W;_1; € RI¥ilxlyi-1l is the ma-
trix of weights of connections from layer 7 — 1 to
layer i; b; € Rl is the vector of biases of the
neurons in layer ¢; g is an activation function, e.g.
sigmoid, tanh, or softsign (see Figure 2).

For classification tasks, we put a softmax layer on
the top of the network, and compute the probability
of assigning a class c to an input x by

eu(57§’top)

Seec e @)

ey

Pr(c|x) = softmax(c) =

where [u(cl,ywp), s u(cm,ymp)]T = Wy +
b; C is the set of all possible classes; W €
RICI*ytorl b e RIC! are a weight matrix and a bias
vector.

Training an MLN is to minimize an objective
function J(6) where 0 is the parameter set (for clas-
sification, J(0) is often a negative log likelihood).
Thanks to the back-propagation algorithm (Rumel-
hart et al., 1988), the gradient 0.J/96 is efficiently
computed; the gradient descent method thus is used
to minimize .J.

2.2 Recursive Neural Network

A recursive neural network (RNN) (Goller and
Kiichler, 1996) is an MLN where, given a tree struc-
ture, we recursively apply the same weight matri-
ces at each inner node in a bottom-up manner. In
order to see how an RNN works, consider the fol-
lowing example. Assume that there is a constituent



with parse tree (p2 (p1 = y) 2z) (Figure 1-right), and
that x,y,z € R? are the vectorial representations
of the three words x, y and z, respectively. We use
a neural network which consists of a weight matrix
W, € R for left children and a weight matrix
Wy € R for right children to compute the vec-
tor for a parent node in a bottom up manner. Thus,
we compute pp

p1 = g(Wix+ Wyy + b) (2)

where b is a bias vector and g is an activation func-
tion. Having computed p;, we can then move one
level up in the hierarchy and compute po:

p2 = 9g(Wip1 + Waz + b) 3)

This process is continued until we reach the root
node.

Like training an MLN, training an RNN uses the
gradient descent method to minimize an objective
function J(#). The gradient 0.J/00 is efficiently
computed thanks to the back-propagation through
structure algorithm (Goller and Kiichler, 1996).

The RNN model and its extensions have been em-
ployed successfully to solve a wide range of prob-
lems: from parsing (constituent parsing (Socher et
al., 2013a), dependency parsing (Le and Zuidema,
2014a)) to classification (e.g. sentiment analysis
(Socher et al., 2013b; Irsoy and Cardie, 2014), para-
phrase detection (Socher et al., 2011a), semantic
role labelling (Le and Zuidema, 2014b)).

2.3 Recurrent Networks and Long Short-Term
Memory

A neural network is recurrent if it has at least one
directed ring in its structure. In the natural lan-
guage processing field, the simple recurrent neu-
ral network (SRN) proposed by Elman (1990) (see
Figure 3-left) and its extensions are used to tackle
sequence-related problems, such as machine transla-
tion (Sutskever et al., 2014) and language modelling
(Mikolov et al., 2010).

In an SRN, an input x; is fed to the network
at each time t. The hidden layer h, which has
activation h;_; right before x; comes in, plays a
role as a memory store capturing the whole history
(xo, e xt,l). When x; comes in, the hidden layer
updates its activation by

h; = g(WxXt +Wph, g + b)
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Figure 3: Simple recurrent neural network (left) and long
short-term memory (right). Bias vectors are removed for
the simplicity.

where W, € Rl W, e RIbIxb b ¢ RIb
are weight matrices and a bias vector; g is an activa-
tion.

This network model thus, in theory, can be used
to estimate probabilities conditioning on long histo-
ries. And computing gradients is efficient thanks to
the back-propagation through time algorithm (Wer-
bos, 1990). In practice, however, training recurrent
neural networks with the gradient descent method is
challenging because gradients 0.J;/0h; (j < t, J; is
the objective function at time ¢) vanish quickly af-
ter a few back-propagation steps (Hochreiter et al.,
2001). In addition, it is difficult to capture long
range dependencies, i.e. the output at time ¢ depends
on some inputs that happened very long time ago.
One solution for this, proposed by Hochreiter and
Schmidhuber (1997) and enhanced by Gers (2001),
is long short-term memory (LSTM).

Long Short-Term Memory The main idea of the
LSTM architecture is to maintain a memory of
all inputs the hidden layer received over time, by
adding up all (gated) inputs to the hidden layer
through time to a memory cell. In this way, er-
rors propagated back through time do not vanish
and even inputs received a very long time ago are
still (approximately) preserved and can play a role
in computing the output of the network (see the il-



lustration in Graves (2012, Chapter 4)).

An LSTM cell (see Figure 3-right) consists of a
memory cell ¢, an input gate 7, a forget gate f, an
output gate o. Computations occur in this cell are
given below

i = 0 (Waixe + Wpihy_1 + Weici_1 + by)
f; = U(foXt +Wyrhy 1 +Wepep 1 + bf)
c,=fOci 1+

iy © tanh (szcxt + Wy chy 1+ bc)
0r = 0(Waox; + Wiohy_1 + Weoer + by)
h; = o; ® tanh(c;)

where o is the sigmoid function; i;, f;, o; are the
outputs (i.e. activations) of the corresponding gates;
c; is the state of the memory cell; © denotes the
element-wise multiplication operator; W’s and b’s
are weight matrices and bias vectors.

Because the sigmoid function has the output range
(0,1) (see Figure 2), activations of those gates can
be seen as normalized weights. Therefore, intu-
itively, the network can learn to use the input gate
to decide when to memorize information, and simi-
larly learn to use the output gate to decide when to
access that memory. The forget gate, finally, is to
reset the memory.

3 Long Short-Term Memory in RNNs

In this section, we propose an extension of the
LSTM for the RNN model (see Figure 4). A key
feature of the RNN is to hierarchically combine in-
formation from two children to compute the parent
vector; the idea in this section is to extend the LSTM
such that not only the output from each of the chil-
dren is used, but also the contents of their memory
cells. This way, the network has the option to store
information when processing constituents low in the
parse tree, and make it available later on when it is
processing constituents high in the parse tree.

For the simplicity 2, we assume that the parent
node p has two children a and b. The LSTM at p
thus has two input gates i1, 72 and two forget gates
f1, fo for the two children. Computations occuring
in this LSTM are:

2Extending our LSTM for n-ary trees is trivial.

13

y.c,

Figure 4: Long short-term memory for recursive neural
network.

U(Wilx + Wiy + Weic, + Wepc, + bi)

o(Wity + Wigx + Wejiey + Weiac, + by)
fi = o(Wpix + Wy + Wepic, + Wepaey + by)
£, =0 (Wpy + Weax + Wepicy + Wepace, + by)
¢, =fi0c, +HOcy+

g(Wax @i + Wey @iz + be)
= J(Wolx 4+ Wy + W+ bo)
p=00g(cp)

where u and c,, are the output and the state of the
memory cell at node u; i1, i, f1, f2, 0 are the acti-
vations of the corresponding gates; W’s and b’s are
weight matrices and bias vectors; and g is an activa-
tion function.

Intuitively, the input gate 7; lets the LSTM at the
parent node decide how important the output at the
Jj-th child is. If it is important, the input gate i;
will have an activation close to 1. Moreover, the
LSTM controls, using the forget gate f;, the degree
to which information from the memory of the j-th
child should be added to its memory.

Using one input gate and one forget gate for each
child makes the LSTM flexible in storing memory
and computing composition. For instance, in a com-



plex sentence containing a main clause and a depen-
dent clause it could be beneficial if only information
about the main clause is passed on to higher lev-
els. This can be achieved by having low values for
the input gate and the forget gate for the child node
that covers the dependent clause, and high values for
the gates corresponding to the child node covering
(a part of) the main clause. More interestingly, this
LSTM can even allow a child to contribute to com-
position by activating the corresponding input gate,
but ignore the child’s memory by deactivating the
corresponding forget gate. This happens when the
information given by the child is temporarily impor-
tant only.

4 LSTM-RNN model for Sentiment
Analysis 3

In this section, we introduce a model using the pro-
posed LSTM for sentiment analysis. Our model,
named LSTM-RNN, is an extension of the tradi-
tional RNN model (see Section 2.2) where tradi-
tional composition function g’s in Equations 2- 3 are
replaced by our proposed LSTM (see Figure 5). On
top of the node covering a phrase/word, if its sen-
timent class (e.g. positive, negative, or neutral) is
available, we put a softmax layer (see Equation 1) to
compute the probability of assigning a class to it.

The vector representations of words (i.e. word
embeddings) can be initialized randomly, or pre-
trained. The memory of any leaf node w, i.e. cy,
is 0.

Similarly to Irsoy and Cardie (2014), we ‘untie’
leaf nodes and inner nodes: we use one weight ma-
trix set for leaf nodes and another set for inner nodes.
Hence, let d,, and d respectively be the dimensions
of word embeddings (leaf nodes) and vector repre-
sentations of phrases (inner nodes), all weight ma-
trices from a leaf node to an inner node have size
d x d,,, and all weight matrices from an inner node
to another inner node have size d x d.

3The LSTM architecture was already applied to the
sentiment analysis task, for instance in the model proposed
at http://deeplearning.net/tutorial/lstm.
html. Independently from and concurrently with our work,
Tai et al. (2015) and Zhu et al. (2015) have developed very
similar models applying LTSM to RNNs.
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Training Training this model is to minimize the
following objective function, which is the cross-
entropy over training sentence set D plus an L2-
norm regularization term

90) =~ = 310w Pricylp) + 111

s€D pEs

where ¢ is the parameter set, c,, is the sentiment class
of phrase p, p is the vector representation at the node
covering p, Pr(c,|p) is computed by the softmax
function, and A is the regularization parameter. Like
training an RNN, we use the mini-batch gradient
descent method to minimize .J, where the gradient
0J/00 is computed efficiently thanks to the back-
propagation through structure (Goller and Kiichler,
1996). We use the AdaGrad method (Duchi et al.,
2011) to automatically update the learning rate for
each parameter.

4.1 Complexity

We analyse the complexities of the RNN and LSTM-
RNN models in the forward phase, i.e. computing
vector representations for inner nodes and classifi-
cation probabilities. The complexities in the back-
ward phase, i.e. computing gradients 9.J/06, can be
analysed similarly.

The complexities of the two models are domi-
nated by the matrix-vector multiplications that are
carried out. Since the number of sentiment classes
is very small (5 or 2 in our experiments) compared
to d and d,,, we only consider those matrix-vector
multiplications which are for computing vector rep-
resentations at the inner nodes.

For a sentence consisting of N words, assuming
that its parse tree is binarized without any unary
branch (as in the data set we use in our experiments),
there are N — 1 inner nodes, /N links from leaf nodes
to inner nodes, and N — 2 links from inner nodes to
other inner nodes. The complexity of RNN in the
forward phase is thus approximately

Nxdxdy,+(N—-2)xdxd
The complexity of LSTM-RNN is approximately
NXx6xdxdy+(N—-2)x10xdxd+(N—1)xdxd

If dy, =~ d, the complexity of LSTM-RNN is about
8.5 times higher than the complexity of RNN.



} softmax

o00

Figure 5: The RNN model (left) and LSTM-RNN model (right) for sentiment analysis.

In our experiments, this difference is not a prob-
lem because training and evaluating the LSTM-
RNN model is very fast: it took us, on a single core
of a modern computer, about 10 minutes to train the
model (d = 50, d,, = 100) on 8544 sentences, and
about 2 seconds to evaluate it on 2210 sentences.

5 Experiments

5.1 Dataset

We used the Stanford Sentiment Treebank* (Socher
et al., 2013b) which consists of 5-way fine-grained
sentiment labels (very negative, negative, neutral,
positive, very positive) for 215,154 phrases of
11,855 sentences. The standard splitting is also
given: 8544 sentences for training, 1101 for devel-
opment, and 2210 for testing. The average sentence
length is 19.1.

In addition, the treebank also supports binary sen-
timent (positive, negative) classification by remov-
ing neutral labels, leading to: 6920 sentences for
training, 872 for development, and 1821 for testing.

The evaluation metric is the accuracy, given by
100 X #correct
#total

5.2 LSTM-RNN vs. RNN

Setting We initialized the word vectors by the
100-D GloVe® word embeddings (Pennington et
al., 2014), which were trained on a 6B-word cor-
pus. The initial values for a weight matrix were
uniformly sampled from the symmetric interval
[—ﬁ, ﬁ] where n is the number of total input
units.
‘nttp://nlp.stanford.edu/sentiment/

treebank.html
Shttp://nlp.stanford.edu/projects/Glove/
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Figure 6: Boxplots of accuracies of 10 runs of RNN and
LSTM-RNN on the test set in the fine-grained classifica-
tion task. (LSTM stands for LSTM-RNN.)

For each model (RNN and LSTM-RNN), we
tested three activation functions: softmax, tanh, and
softsign, leading to six sub-models. Tuning those
sub-models on the development set, we chose the
dimensions of vector representations at inner nodes
d = 50, learning rate 0.05, regularization parameter
A = 1073, and mini-batch-size 5.

On each task, we run each sub-model 10 times.
Each time, we trained the sub-model in 20 epochs
and selected the network achieving the highest ac-
curacy on the development set.

Results Figure 6 and 7 show the statistics of the
accuracies of the final networks on the test set in the
fine-grained classification task and binary classifica-
tion task, respectively.

It can be seen that LSTM-RNN outperformed
RNN when using the tanh or softsign activation
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Figure 7: Boxplot of accuracies of 10 runs of RNN and
LSTM-RNN on the test set in the binary classification
task. (LSTM stands for LSTM-RNN.)

functions. With the sigmoid activation function, the
difference is not so clear, but it seems that LSTM-
RNN performed slightly better. Tanh-LSTM-RNN
and softsign-LSTM-RNN have the highest median
accuracies (48.1 and 86.4) in the fine-grained clas-
sification task and in the binary classification task,
respectively.

With the RNN model, it is surprising to see that
the sigmoid function performed well, comparably
with the other two functions in the fine-grained task,
and even better than the softsign function in the bi-
nary task, given that it was not often chosen in recent
work. The softsign function, which was shown to
work better than tanh for deep networks (Glorot and
Bengio, 2010), however, did not yield improvements
in this experiment.

With the LSTM-RNN model, the tanh function,
in general, worked best whereas the sigmoid func-
tion was the worst. This result agrees with the
common choice for this activation function for the
LSTM architecture in recurrent network research
(Gers, 2001; Sutskever et al., 2014).

5.3 Compared against other Models

We compare LSTM-RNN (using tanh) in the pre-
vious experiment against existing models: Naive
Bayes with bag of bigram features (BiNB), Re-
cursive neural tensor network (RNTN) (Socher et
al., 2013b), Convolutional neural network (CNN)
(Kim, 2014), Dynamic convolutional neural network
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Model Fine-grained Binary

BiNB 41.9 83.1
RNTN 45.7 854
CNN 48.0 88.1
DCNN 48.5 86.8
PV 48.7 87.8
DRNN 49.8 86.6
with GloVe-100D

LSTM-RNN 48.0 86.2

" with GloVe-300D

LSTM-RNN 49.9 88.0

Table 1: Accuracies of the (tanh) LSTM-RNN compared
with other models.

(DCNN) (Kalchbrenner et al., 2014), paragraph vec-
tors (PV) (Le and Mikolov, 2014), and Deep RNN
(DRNN) (Irsoy and Cardie, 2014).

Among them, BiNB is the only one that is not a
neural net model. RNTN and DRNN are two ex-
tensions of RNN. Whereas RNTN, which keeps the
structure of the RNN, uses both matrix-vector multi-
plication and tensor product for the composition pur-
pose, DRNN makes the net deeper by concatenat-
ing more than one RNNs horizontally. CNN, DCNN
and PV do not rely on syntactic trees. CNN uses a
convolutional layer and a max-pooling layer to han-
dle sequences with different lengths. DCNN is hi-
erarchical in the sense that it stacks more than one
convolutional layers with k-max pooling layers in
between. In PV, a sentence (or document) is rep-
resented as an input vector to predict which words
appear in it.

Table 1 (above the dashed line) shows the accura-
cies of those models. The accuracies of LSTM-RNN
was taken from the network achieving the highest
performance out of 10 runs on the development set.
The accuracies of the other models are copied from
the corresponding papers. LSTM-RNN clearly per-
formed worse than DCNN, PV, DRNN in both tasks,
and worse than CNN in the binary task.

5.4 Toward State-of-the-art with Better Word
Embeddings

We focus on DRNN, which is the most similar
to LSTM-RNN among those four models CNN,
DCNN, PV and DRNN. In fact, from the results re-
ported in Irsoy and Cardie (2014, Table 1a), LSTM-



RNN performed on par® with their 1-layer-DRNN
(d = 340) using dropout, which is to randomly
remove some neurons during training. Dropout is
a powerful technique to train neural networks, not
only because it plays a role as a strong regulariza-
tion method to prohibit neurons co-adapting, but it
is also considered a technique to efficiently make an
ensemble of a large number of shared weight neu-
ral networks (Srivastava et al., 2014). Thanks to
dropout, Irsoy and Cardie (2014) boosted the accu-
racy of a 3-layer-DRNN with d = 200 from 46.06
to 49.5 in the fine-grained task.

In the second experiment, we tried to boost the
accuracy of the LSTM-RNN model. Inspired by Ir-
soy and Cardie (2014), we tried using dropout and
better word embeddings. Dropout, however, did
not work with LSTM. The reason might be that
dropout corrupted its memory, thus making train-
ing more difficult. Better word embeddings did pay
off, however. We used 300-D GloVe word embed-
dings trained on a 840B-word corpus. Testing on the
development set, we chose the same values for the
hyper-parameters as in the first experiment, except
setting learning rate 0.01. We also run the model
10 times and selected the networks getting the high-
est accuracies on the development set. Table 1 (be-
low the dashed line) shows the results. Using the
300-D GloVe word embeddings was very helpful:
LSTM-RNN performed on par with DRNN in the
fine-grained task, and with CNN in the binary task.
Therefore, taking into account both tasks, LSTM-
RNN with the 300-D GloVe word embeddings out-
performed all other models.

6 Discussion and Conclusion

We proposed a new composition method for the re-
cursive neural network (RNN) model by extending
the long short-term memory (LSTM) architecture
which is widely used in recurrent neural network re-
search.

6Irsoy and Cardie (2014) used the 300-D word2vec word
embeddings trained on a 100B-word corpus whereas we used
the 100-D GloVe word embeddings trained on a 6B-word cor-
pus. From the fact that they achieved the accuracy 46.1 with
an RNN (d = 50) in the fine-grained task and 85.3 in the
binary task, and our implementation of RNN (d = 50) per-
formed worse (see Table 6 and 7), we conclude that the 100-D
GloVe word embeddings are not more suitable than the 300-D
word2vec word embeddings.
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The question is why LSTM-RNN performed bet-
ter than the traditional RNN. Here, based on the fact
that the LSTM for RNNs should work very sim-
ilarly to LSTM for recurrent neural networks, we
borrow the argument given in Bengio et al. (2013,
Section 3.2) to answer the question. Bengio explains
that the LSTM behaves like low-pass filter “hence
they can be used to focus certain units on differ-
ent frequency regions of the data”. This suggests
that the LSTM plays a role as a lossy compressor
which is to keep global information by focusing on
low frequency regions and remove noise by ignor-
ing high frequency regions. So composition in this
case could be seen as compression, like the recursive
auto-encoder (RAE) (Socher et al., 2011a). Because
pre-training an RNN as an RAE can boost the over-
all performance (Socher et al., 2011a; Socher et al.,
2011c), seeing LSTM as a compressor might explain
why the LSTM-RNN worked better than RNN with-
out pre-training.

Comparing LSTM-RNN against DRNN (Irsoy
and Cardie, 2014) gives us a hint about how to im-
prove our model. From the experimental results,
LSTM-RNN without the 300-D GloVe word embed-
dings performed worse than DRNN, while DRNN
gained a significant improvement thanks to dropout.
Finding a method like dropout that does not corrupt
the LSTM memory might boost the overall perfor-
mance significantly and will be a topic for our future
work.
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Abstract

A range of approaches to the representa-
tion of lexical semantics have been explored
within Computational Linguistics. Two of the
most popular are distributional and knowledge-
based models. This paper proposes hybrid
models of lexical semantics that combine the
advantages of these two approaches. Our mod-
els provide robust representations of synony-
mous words derived from WordNet. We also
make use of WordNet’s hierarcy to refine the
synset vectors. The models are evaluated on
two widely explored tasks involving lexical
semantics: lexical similarity and Word Sense
Disambiguation. The hybrid models are found
to perform better than standard distributional
models and have the additional benefit of mod-
elling polysemy.

1 Introduction

The representation of lexical semantics is a core prob-
lem in Computational Linguistics and a variety of
approaches have been developed. Two of the most
widely explored have been knowledge-based and dis-
tributional semantics.

Knowledge-based approaches make use of some
external information source which defines the set of
possible meanings for each lexical item. The most
widely used information source is WordNet (Fell-
baum, 1998), although other resources, such as Ma-
chine Readable Dictionaries, thesaurii and ontologies
have also been used (see Navigli (2009)).

One advantage of these resources is that they rep-
resent the various possible meanings of lexical items
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which makes it straightforward to identify ones that
are ambiguous. For example, these resources would
include multiple meanings for the word ball includ-
ing the ‘event’ and ‘sports equipment’ senses. How-
ever, the fact that there are multiple meanings as-
sociated with ambiguous lexical items can also be
problematic since it may not be straightforward to
identify which one is being used for an instance of an
ambiguous word in text. This issue has lead to signif-
icant exploration of the problem of Word Sense Dis-
ambiguation (Ide and Véronis, 1998; Navigli, 2009).

More recently distributional semantics has become
a popular approach to representing lexical semantics
(Turney and Pantel, 2010; Erk, 2012). These ap-
proaches are based on the premise that the semantics
of lexical items can be modelled by their context
(Firth, 1957; Harris, 1985). Distributional seman-
tic models have the advantages of being robust and
straightforward to create from unannotated corpora.
However, problems can arise when they are used to
represent the semantics of polysemous words. Distri-
butional semantic models are generally constructed
by examining the context of lexical items in unanno-
tated corpora. But for ambiguous words, like ball,
it is not clear if a particular instance of the word in
a corpus refers to the ‘event’, ‘sports equipment’ or
another sense which can lead to the distributional se-
mantic model becoming a mixture of different mean-
ings without representing any of the meanings indi-
vidually.

This paper proposes models that merge elements
of distributional and knowledge-based approaches to
lexical semantics and combines advantages of both
techniques. A standard distributional semantic model
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is created from an unannotated corpus and then re-
fined using WordNet. The resulting models can be
viewed as enhanced distributional models that have
been refined using the information from WordNet
to reduce the problems caused by ambiguous terms
when models are created. Alternatively, it can be used
as a version of the WordNet hierarchy in which dis-
tributional semantic models are attached to synsets.
Thereby creating a version of WordNet for which the
appropriate synsets can be identified more easily for
ambiguous lexical items that occur in text.

We evaluate our models on two standard tasks: lex-
ical similarity and word sense disambiguation. Re-
sults show that the proposed hybrid models perform
consistently better than traditional distributional se-
mantic models.

The reminder of the paper is organised as follows.
Section 2 describes our hybrid models which com-
bine information from WordNet and a standard dis-
tributional semantic model. These models are aug-
mented using Latent Semantic Analysis and Canoni-
cal Correlation Analysis. Sections 3 and 4 describe
evaluation of the models on the word similarity and
word sense disambiguation tasks. Related work is
presented in Section 5 and conclusions in Section 6.

2 Semantic Models

First, we consider a standard distributional seman-
tic space to represent words as vectors (Section 2.1).
Then, we make use of the WordNet’s clusters of syn-
onyms and hierarchy in combination with the stan-
dard distributional space to build hybrid models (Sec-
tion 2.2) which are augmented using Latent Semantic
Analysis (Section 2.3) and Canonical Correlation
Analysis (Section 2.4).

2.1 Distributional Model

We consider a semantic space D, as a word by con-
text feature matrix, L x C. Vector representations
consist of context features C' in a reference corpus.
We made use of pre-computed publicly available vec-
tors! optimised for word similarity tasks (Baroni et
al., 2014). Word co-occurrence counts are extracted
using a symmetric window of two words over a cor-
pus of 2.8 billion tokens obtained by concatenating

"http://clic.cimec.unitn.it/composes/
semantic-vectors.html
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ukWacC, the English Wikipedia and the British Na-
tional Corpus. Vectors are weighted using positive
Pointwise Mutual Information and the set of context
features consists of the top 300K most frequent words
in the corpus.

2.2 Hybrid Models
2.2.1 Synset Distributional Model

We assume that making use of information about
the structure of WordNet can reduce noise introduced
in vectors of D due to polysemy. We make use of
all noun and verb synsets (excluding numbers and
compounds) that contain at least one of the words in
L to create a vector-based synset representation, /.
Where H is a synset by context feature matrix, i.e.
S x C. Each synset vector is generated by computing
the centroid of its lemma vectors in S (i.e. the sum
of the lemma’s vectors normalised by the number of
the lemmas in the synset). For example, the vector of
the synset car.n.01 is computed as the centroid of its
lemma vectors, 1.e. car, auto, automobile, machine
and motorcar (see Figure 1).

2.2.2 Synset Rank Model

The Synset Distributional Model provides a vector
representation for each synset in WordNet which is
created using information about which lemmas share
synset membership. An advantage of this approach
is that vectors from multiple lemmas are combined to
form the synset representation. However, a disadvan-
tage is that many of these lemmas are polysemous
and their vectors represent multiple senses, not just
the one that is relevant to the synset. For example,
in WordNet the lemma machine has several possi-
ble meanings, only one of which is a member of the
synset car.n.01.

WordNet also contains information about the re-
lations between synsets, in the form of the synset
hierarchy, which can be exploited to re-weight the
importance of context features for particular synsets.
We employ a graph-based algorithm that makes use
of the WordNet is-a hierarchy. The intuition behind
this approach is that context features that are relevant
to a given synset are likely to be shared by its neigh-
bours in the hierarchy while those that are not rele-
vant (i.e. have been introduced via an irrelevant sense
of a synset member) will not be. The graph-based
algorithm increases the weight of context features



motorcar

Bl motorcar
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Figure 1: In the Synset Distributional Model the vector representing a synset (white box) is computed as the

centroid of its lemma vectors (grey boxes)

that synsets share with neighbours and reduces those
that are not shared.

PageRank (Page et al., 1999) is a graph-based algo-
rithm for identifying important nodes in a graph that
has been applied to a range of NLP tasks including
word sense disambiguation (Agirre and Soroa, 2009)
and keyword extraction (Mihalcea and Tarau, 2004).

Let G = (V, E) be a graph with a set of vertices,
V, denoting synsets and a set of edges, F, denoting
links between synsets in the WordNet hierarchy. The
PageRank score (Pr) over GG for a synset (V;) can be
computed by the following equation:

V;€1(V;)

where I(V;) denotes the in-degree of the vertex V;
and O(V}) is the out-degree of vertex Vj. d is the
damping factor which is set to the default value of
d = 0.85 (Page et al., 1999). In standard PageRank
all elements of the vector v are the same, % where
N is the number of nodes in the graph.

Personalised PageRank (PPR) (Haveliwala et al.,
2003) is a variant of the PageRank algorithm in which
extra importance is assigned to certain vertices in the
graph. This is achieved by adjusting the values of
the vector v in equation 1 to prefer certain nodes.
The values in v effectively initialises the graph and
assigning high values to nodes in v makes them more
likely to be assigned a high PPR score.

For each context feature c in C' if ¢ € LM where
LM contains all the lemma names of synsets in S,
we apply PPR to assign importance to synsets. The
score of each synset S, in the personalisation vector
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v, is set to ﬁ where |S,| is the number of synsets
that context feature ¢ belongs. The personalisation
value of all the other sysnets is set to 0.

We apply PPR over WordNet for each context
feature using UKB (Agirre et al., 2009) and obtain
weights for each synset-context feature pair resulting
to a new semantic space Hp, S x C, where vector
elements are weighted by PageRank values. Figure 2
shows how the synset scores are computed by ap-
plying PPR over WordNet given the context feature
car. Note that we use the context features of the
distributional model D.

2.3 Latent Semantic Analysis

Latent Semantic Analysis (LSA) (Deerwester et al.,
1990; Landauer and Dumais, 1997) has been used to
reduce the dimensionality of semantic spaces lead-
ing to improved performance. LSA applies Sin-
gular Value Decomposition (SVD) to a matrix X,
W x C, which represents a distributional semantic
space. This is a form of factor analysis where X is
decomposed into three other matrices:

X =uxvT (2)

where U is a W x W matrix of row vectors where its
columns are eigenvectors of X X7, ¥ is a diagonal
W x C matrix containing the singular values and V'
is a C' x C' matrix of context feature vectors where
its columns are eigenvectors of X7 X. The multi-
plication of the three component matrices results in
the original matrix, X. Any matrix can be decom-
posed perfectly if the number of singular values is
no smaller than the smallest dimension of X. When
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Figure 2: In the Synset Rank Model, each synset (grey boxes) is assigned with a score by computing PPR
over WordNet. The personalisation vector (grey array) is initialised by assigning probabilities only to the
synsets that include the context feature as a lemma name.

fewer singular values are used then the matrix prod-
uct is an approximation of the original matrix. LSA
reduces the dimensionality of the SVD by deleting
coefficients in the diagonal matrix ¥ starting with the
smallest. The approximation of matrix X retaining
the K largest singular values, X, is then given by:

X ~ UgSgVE 3)

where Uy is a W x K matrix of word vectors, X i
is a K x K diagonal matrix with singular values and
Vi is a K x C matrix of context feature vectors.
We apply LSA on the Synset Distributional Model,
H and the Synset Rank model, H, to obtained the
reduced semantic spaces H and ﬁp respectively.

2.4 Joint Representation using CCA

Recent work has demonstrated that distributional
models can benefit from combining alternative views
of data (see Section 5). H and H,, provide two dif-
ferent views of the synsets and we incorporate evi-
dence from both to learn a joint representation using
Canonical Correlation Analysis (CCA) (Hardoon et
al., 2004). Given two multidimensional variables x
and y, CCA finds two projection vectors by max-
imising the correlations of the variables onto these
projections. The function to be maximised is:

Elxy]

4
BB @
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The dimensionality of the projection vectors is lower
or equal to the dimensionality of the original vari-
ables.

The computation of CCA directly over H and H,
is computationally infeasible because of their high
dimensionality (300K). We apply CCA over the re-
duced spaces learned using LSA, H and IEIp to ob-
tain two joint semantic spaces following a similar
approach to Faruqui and Dyer (2014). These are
the spaces H*, resulting from the projection of the
Synset Distributional Model H, and H?, resulting

from the projection of the Synset Rank Model I:Ip.

3 Word Similarity
3.1 Computing Similarity

Since hybrid models represent words as synset vec-
tors, similarity between two words can be computed
following two ways. First, we compute similarity be-
tween two words as the maximum of their pairwise
synset similarity. On the other hand, similarity can be
computed as the average pairwise synset similarity
using the synsets that the two words belong. Similar-
ity is computed as the cosine of the angle between
word or synset vectors.

3.2 Data

We make use of six standard data sets that have been
widely used for evaluating lexical similarity and relat-



Max

Model | WS-353 | WS-Sim | WS-Rel | RG | MC | MEN

Distributional Model

D 0.62 0.70 0.59 0.79 | 0.72 | 0.72
Hybrid Models - Full

H 0.49 0.60 0.36 0.69 | 0.64 | 0.58

H, 0.58 0.67 0.49 0.82 | 0.86 | 0.63
Hybrid Models - LSA

q 0.55 0.69 042 [0.71|0.71 | 0.54

FIP 0.58 0.68 0.46 0.85 | 0.86 | 0.55
Hybrid Models - CCA

H* 0.67 0.76 0.57 0.81 | 0.79 | 0.72

Hp 0.52 0.62 0.41 0.86 | 0.80 | 0.56

Table 1: Spearman’s correlation on various data sets. Maximum similarity between pairs of synsets.

edness. First, we make use of WS-353 (Finkelstein
et al., 2001) which contains 353 pairs of words an-
notated by humans. Furthermore, we make use of
the similarity (WS-Sim) and relatedness (WS-Rel)
pairs of words created by Agirre et al. (2009) from
the original WS-353 data set.

We also made use of the RG (Rubenstein and
Goodenough, 1965) and MC (Miller and Charles,
1991) data sets which contain 65 and 30 pairs of
nouns respectively. Finally, we make use of the larger
MEN data set (Bruni et al., 2012) which contains
3,000 pairs of words that has been used as image
tags. Annotations are obtained using croudsourcing.

3.3 Model Parameters

The parameters we need to tune are the number of
the top components in LSA spaces, H and ﬁp, and
CCA spaces, H* and H;. For the LSA spaces, we
tune the number of the top k& components in RG. We
set k € {50,100,...,1000} and select the value that
maximises performance which is k = 700 for H and
k = 650 for flp. For the joint spaces learned using
CCA, we also tune the number of the top [ correlated
features in RG. We set [ € {10, 20, ...,650} and
select the value that maximises performance which
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is [ = 250 for H* and [ = 40 for H;‘.

3.4 Evaluation Metric

Performance is measured as the correlation between
the similarity scores returned by each proposed
method and the human judgements. This is the stan-
dard approach to evaluate word and text similarity
tasks, e.g. (Budanitsky and Hirst, 2001; Agirre et
al., 2009; Agirre et al., 2012). Our experiments use
Spearman’s correlation coefficient.

3.5 Results

Table 1 shows the Spearman’s correlation of simi-
larity scores generated by each model and human
judgements of similarity across various data sets by
taking the maximum pairwise similarity score of two
words’ synsets. The first row of the table shows the
results obtained by the word distributional model
of Baroni et al. (2014). The full hybrid models H
and H, perform consistently worse than the orig-
inal distributional model D across data sets. The
main reason is that a large number of synsets contain
only one lemma name which might be polysemous.
For example, the only lemma name of the synsets
‘ball.n.01” (‘round object that is hit or thrown or



Average

Model | WS-353 | WS-Sim | WS-Rel | RG | MC | MEN

Distributional Model

D 0.62 0.70 0.59 0.79 1 0.72 | 0.72
Hybrid Models - Full

H 0.61 0.71 0.52 0.72 | 0.65 | 0.64

H, 0.65 0.73 0.56 0.79 | 0.81 | 0.58
Hybrid Models - LSA

H 0.59 0.70 0.48 0.68 | 0.68 | 0.63

I:Ip 0.65 0.73 0.56 0.81 | 0.86 | 0.58
Hybrid Models - CCA

H* 0.70 0.77 0.64 0.78 | 0.84 | 0.74

Hy 0.61 0.69 0.52 0.72 1 0.76 | 0.62

Table 2: Spearman’s correlation on various data sets. Average pairwise similarity between pairs of synsets.

kicked in games’) and ‘ball.n.04’ (‘the people as-
sembled at a lavish formal dance’) is ‘ball’. In this
case, the synset vector in H and the lemma vector in
D are identical and still polysemous. This problem
does not hold in H,, and therefore the correlations
are higher for that semantic space but still lower than
those obtained for D. Applying LSA on H and H),
improves results but correlations are still lower than
those obtained using D?. On the other hand, the
joint space learned by applying CCA, H*, produces
consistently better similarity estimates than D while
outperforms all the other models in the majority of
the data sets. That confirms our main assumption
than incorporating information obtained from a large
corpus and a knowledge-base improves word vector
representations.

Table 2 shows the Spearman’s correlation of sim-
ilarity scores generated by each model and human
judgements of similarity across various data sets by
taking the average pairwise similarity score of two
words’ synsets. Results show that using the average
rather than the maximum system similarity improves
results for almost all data sets. For example, the best

Note that Baroni et al. (2014) found that applying SVD to
D did not improve performance over using the full space.

25

hybrid model, H*, achieves correlations that are be-
tween 2% and 12% than D for the majority of data
sets, although performance is 1% lower for the RG
data set. This improved performance suggest that hu-
man judgements of word similarity are based on the
relation between all the senses of two given words
rather than just the most similar ones.

4 Word Sense Disambiguation

4.1 Data

We test the efficiency of our hybrid models on the
English All Words tasks of Senseval-2 (Palmer et
al., 2001) and Senseval-3 (Snyder and Palmer, 2004),
two standard data sets for evaluating WSD. Our ex-
periments focus on the disambiguation of nouns in
these data sets.

4.2 Word Sense Tagging

A simple approach to all-words WSD was imple-
mented in which each sense of an ambiguous word
is compared against its context and the most similar
chosen.

For example suppose that we want to disambiguate



Nouns Senseval-2 Senseval-3
Precision | Recall | Precision | Recall

Hybrid Models - Full

H 0.46 0.45 0.37 0.36

H, 0.65 0.63 0.50 0.48
Hybrid Models - LSA

o 0.45 0.4 0.39 0.37

H, 0.60 0.58 0.46 0.45
Hybrid Models - CCA

H* 0.44 0.43 0.36 0.34

Hp 0.61 0.60 0.48 0.46

Table 3: Results obtained by hybrid models on SenseEval-2 and SenseEval-3 data sets (nouns only).

the word bank in the following sentence:
“Banks provide payment services.”

Assume that the word bank consists of two senses
‘bank.n.01’ and bank.n.02 defined as ‘sloping land
(especially the slope beside a body of water)’ and “a
financial institution that accepts deposits and chan-
nels the money into lending activities’ respectively.
First we consider the vectors of all the possible
noun synsets containing the word bank as a synset
name. Then for each context word (provide, payment
and service) that exists in our semantics spaces we
compute a centroid vector from its constituent senses.
Finally, we compute a context vector for the entire
context by summing up all the context word vectors.
We select the synset of the target word that its vector
has the highest cosine similarity to the context vector.

4.3 Model Parameters

The parameters we need to tune are the same as for
the word similarity task and we use the best settings
obtained for that task. We also experimented with
varying the number of surrounding sentences used
as context by testing values between +1 and +4.
The best performance was obtained using a context
created from the sentence containing the target word
and %1 sentences surrounding it.
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4.4 Evaluation Metrics

Word sense disambiguation systems are evaluated by
computing precision and recall. Precision measures
the proportion of disambiguated words that have been
correctly assigned with a sense. Recall measures the
proportion of words disambiguated correctly out of
all words available for disambiguation.

4.5 Results

Table 3 shows the results obtained by using our hy-
brid models on the two word sense disambiguation
data sets. The full Synset Rank model H), is consis-
tently better method in terms of precision and recall
in both data sets. On the other hand, it is somewhat
surprising that dimensionality reduction and integra-
tion of semantic spaces do not help in improving
performance. That is the ﬁp and H; models achieve
lower precision and recall than the fuller H,.

The Synset Distributional models H, H and H*
consistently fail to perform well. The difference in
precision and recall compared to the Synset Rank
models is between 12% and 19%. This suggests that
the knowledge-based weighting of the context fea-
tures generates less noisy vectors for sense tagging.

The pattern of results observed for the WSD task
is somewhat different to those obtained for word
similarity, where applying LSA and CCA improved
performance (see Section 3). The most likely expla-



nation of this difference is that WSD requires the
model to represent the possible senses of each am-
biguous word. It is also important that these senses
correspond to the ones used in the relevant lexicon
(WordNet in this case). The Synset Rank model H,,
does this by making use of information from Word-
Net. However, these synset representations are dis-
rupted by LSA and CCA which compress the seman-
tic space by extracting general features from them.
This is not a problem for word similarity since there
is no need to model the senses found in the lexicon.

5 Related Work

Dealing with polysemy in distributional semantics
is a fundamental issue since the various senses of a
word type are conflated in a single vector. Previous
work tackled the problem through vector adaptation,
clustering and language models (Erk, 2012). Vector
adaptation methods modify a traditional (i.e. poly-
semous) target word vector by applying pointwise
operations such as addition or multiplication to that
and the surrounding words in a sentence (Mitchell
and Lapata, 2008; Erk and Pad6, 2008; Thater et
al., 2011; Van de Cruys et al., 2011). Alternatively,
clustering methods have been used to cluster together
the different contexts a target word appears assum-
ing that each cluster of contexts captures a different
sense of the target word (Dinu and Lapata, 2010;
Erk and Pado, 2010; Reisinger and Mooney, 2010).
Language models have also been used to remove pol-
ysemy from word vectors by predicting words that
could replace the target word given a context (De-
schacht and Moens, 2009; Washtell, 2010; Moon
and Erk, 2013). More recently, Polajnar and Clark
(2014) applied context selection and normalisation
to improve the quality of word vectors. Our hybrid
models are related to the vector adaptation methods
since we modify the synset vectors using its lemmas’
vectors to remove noise.

Our work is also inspired by recent work on im-
proving classic distributional vector representations
of words by incorporating information from different
modalities. For example, researchers have devel-
oped methods that make use of both visual and con-
textual information to improve word vectors (Bruni
et al., 2011; Silberer et al., 2013; Lazaridou et al.,
2014). Following a similar direction, Faruqui and
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Dyer (2014) found that learning joint spaces from
multilingual vector spaces using CCA improves the
performance of standard monolingual vector spaces
on semantic similarity. Fyshe et al. (2014) showed
that integrating textual vector space models with
brain activation data when people are reading words
achieves better correlation to behavioural data than
models of one modality.

Our hybrid models are also closely related to a
supervised method proposed by Faruqui et al. (2015).
Their method refines distributional semantic mod-
els using relational information from various seman-
tic lexicons, including WordNet, by making linked
words in these lexicons to have similar vector repre-
sentations. While our models are also based on using
information from WordNet for refining vector repre-
sentations, they are fundamentally different. They
create synset vectors in an unsupervised fashion and
more importantly can be used for sense tagging.

6 Conclusions

This paper proposed hybrid models of lexical seman-
tics that combine distributional and knowledge-based
approaches and offer advantages of both techniques.
A standard distributional semantic model is created
from an unannotated corpus and then refined by (1)
using WordNet synsets to create synset vectors; and
(2) applying a graph-based technique over WordNet
to reweight synset vectors. The resulting hybrid mod-
els can be viewed as enhanced distributional models
using the information from WordNet to reduce the
problems caused by ambiguous terms when models
are created. Results show that our models perform
better than traditional distributional models on lex-
ical similarity tasks. Unlike standard distributional
approaches the techniques proposed here also model
polysemy and can be used to carry out word sense
disambiguation.
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Distributional semantics for ontology verification *

Julien Corman
IRIT, University of Toulouse

Abstract

As they grow in size, OWL ontologies tend to
comprise intuitively incompatible statements,
even when they remain logically consistent.
This is true in particular of lightweight on-
tologies, especially the ones which aggregate
knowledge from different sources. The article
investigates how distributional semantics can
help detect and repair violation of common
sense in consistent ontologies, based on the
identification of consequences which are un-
likely to hold if the rest of the ontology does.
A score evaluating the plausibility for a con-
sequence to hold with regard to distributional
evidence is defined, as well as several methods
in order to decide which statements should be
preferably amended or discarded. A conclu-
sive evaluation is also provided, which con-
sists in extending an input ontology with ran-
domly generated statements, before trying to
discard them automatically.

1 Introduction

Ontology learning from texts deals with the auto-
mated extraction of knowledge from linguistic ev-
idence. This article investigates a slightly differ-
ent problem, which is how Natural Language Pro-
cessing may provide hints for the identification of
statements of an input ontology which are unlikely
to hold if the rest of it does. As a minimal exam-
ple, consider the following set A of statements, from
DBpedia (Mendes et al., 2012), and assume that A is
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a subset of a larger set of statements K (for instance
DBpedia itself, or some subset of it) :

Ex 1.

A ={(1) keyPerson(Caixa Bank, CEO),
(2) keyPerson(BrookField Office Properties,
Peter Munk)
(3) occupation(Peter Munk, CEO) }

There is a clear violation of common sense in A :
the individual CEO must be both a key person of
Caixa Bank, and the occupation of another individ-
ual (Peter Munk), who is himself a key person of
some company. Detecting such cases within (larger)
sets of logical statements is of particular interest in
OWL, which facilitates the aggregation of knowl-
edge from multiple sources with overlapping signa-
tures, yielding datasets in which several incompati-
ble understandings of a same individual or predicate
may coexist. This easily leads to undesired infer-
ences, even when the dataset is logically consistent. !
But as the example illustrates, the problem may also
occur within a single knowledge base, especially if
it has been built semi-automatically, and/or is issued
from a collaborative effort.

Another problem of interest consists in deciding
which statement(s) should be preferably discarded
or amended in order to get rid of the nonsense. In
example 1, without further information, it would be
intuitively relevant to discard or modify either (1) or
(2). Unfortunately though, A alone does not give
any indication of which of the two should be prefer-
ably discarded. But the whole input ontology K D

'and coherent in the Description Logics sense, i.e. whose

signature contains unsatisfiable DL atomic concepts/fOWL
named classes

Proceedings of the Fourth Joint Conference on Lexical and Computational Semantics (*SEM 2015), pages 30-39,
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A may. To keep the example simple, let us assume
that Peter Munk, CEO and occupat ion do not ap-
pear in K \ A. Then a reasonable assumption is that
the overall understanding of keyPerson within K
should be the decisive factor. If it generally ranges
over person functions (i.e. if in most instances of the
relation according to K, the second argument is a
person function), then it is to be understood as “has
as a key person someone whose function is”, and
(2) should be preferably discarded. Alternatively, if
keyPerson generally ranges over human beings,
then (1) should be preferably discarded.

The article investigates the use of linguistic evi-
dence to solve both of these problems : identifying
violations of common sense, and selecting the state-
ment(s) to be preferably amended or discarded. This
may be viewed as a small paradigm shift, in that
it questions an assumption commonly made in the
knowledge extraction literature, namely that manu-
ally crafted knowledge strictly prevails over the one
obtained from linguistic sources. By default, the
case of a consistent? input ontology K will be stud-
ied, but section 6 discusses the application of the ap-
proach to an inconsistent K as well.

As a concrete contribution, section 5 evaluates
the adaptation of relatively simple techniques issued
from named entity classification/ontology popula-
tion, and based on distributional semantics. To il-
lustrate how this works, let us assume that the only
other appearance of keyPerson within K is the
following OWL statement :

(4) hasRange(keyPerson, Person)
i.e. in FOL :
(4) Vaxy(keyPerson(z,y) — Person(y))

Then K = ; = Person(CEO), and K =
1y = Person(Peter Munk). Assume also that
there are other instances of Person according to
K, and that most of them are actually human be-
ings (like Peter Munk). Then 1); is an undesirable
consequence of K, whereas 1y on the other hand
reinforces it.

Distributional semantics characterizes a word (or
possibly a multi word unit) by some algebraic rep-
resentation of the linguistic contexts with which it is
observed. These representations have already been

Zand coherent (see footnote 1)
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used for ontology population, for instance by (Tanev
and Magnini, 2008), the main intuition being that
individuals denoted by linguistic terms with similar
contexts tend to instantiate the same classes. The
underlying linguistic phenomenon is known as se-
lectional preference, i.e. the fact that some contexts
tend to select or rule out certain categories of in-
dividuals : e.g. the context “X was born in” tends
to select a human being, whereas “X was launched”
tends to rule it out. Back to the example, one can
expect the similarity between the distributional rep-
resentation of the term “C.E.O” and other terms de-
noting instances of Person according to K to be
relatively low, hindering the plausibility of 1); with
regard to K. In other words, 11 should stand as an
outlier among consequences of K, and therefore is
probably undesirable. Conversely, the similarity be-
tween “Peter Munk” and terms denoting other in-
stances of Person should be relatively high. For
simplicity, suppose that (1), (2), (3) and (4) are the
only 4 statements of K which are candidate for re-
moval. Then in order to give up the belief in
while preserving 1o, it is necessary to discard (1),
and retain (2) and (4). It is also sufficient to discard
(1), i.e. discarding (3) as well would result in an un-
necessary information loss. So in this case, the ev-
idence provided by distributional semantics should
suggest the removal of (1), or at least its modifica-
tion, which is also intuitively the correct solution.

Section 4 formalizes this approach, by defining a
score which estimates the plausibility of some con-
sequences a subbases I' of K, given distributional
evidence. Section 5 then provides an original eval-
uation of this strategy, based on the prior exten-
sion of a small OWL ontology with randomly gener-
ated statements. The approach is evaluated for both
problems, i.e. the identification of undesired con-
sequences and statements. Performances of several
forms of distributional representations are also com-
pared. Section 6 discusses immediate applications,
in particular for (consistent and inconsistent) ontol-
ogy debugging. Finally, section 7 considers possi-
ble extensions of this framework, as well as their
limitations. Section 2 is a brief overview of related
works in the fields of ontology learning and debug-
ging, whereas section 3 introduces notational con-
ventions, and lists some preliminary requirements to
be met by the input K.



2 State of the art

Ontology learning from texts (Cimiano, 2006;
Buitelaar et al., 2005) aims to automatically build or
enriching a set of logical statements out of linguistic
evidence, and is closely related to the field of infor-
mation extraction. The work presented here borrows
from a subtask called ontology population (which it-
self borrows from named entity classification), but
only when the individuals and concepts of inter-
est are already known (Cimiano and Voélker, 2005;
Tanev and Magnini, 2008; Giuliano and Gliozzo,
2008), which is not standard. A comparison may
also be drawn with the use of linguistic evidence by
(Suchanek et al., 2009) for information extraction in
the presence of conflicting data.

But the objective of the present work is different,
pertaining to ontology debugging, which covers a
wide range of techniques, from syntactic verifica-
tions (Poveda-Villalén et al., 2012) to anti-patterns
detection (Roussey and Zamazal, 2013), both based
on common modeling mistakes, or the submission
of models (Ferré and Rudolph, 2012; Benevides
et al., 2010) or consequences (Pammer, 2010) of
the input ontology to the user. As discussed in
section 6, the framework depicted here presents an
interesting complementarity with debugging tech-
niques developed in the Description Logics com-
munity, prototypically based on diagnosis (Friedrich
and Shchekotykhin, 2005; Kalyanpur et al., 2006;
Qi et al., 2008; Ribeiro and Wassermann, 2009), be-
cause they require the prior identification of some
undesired consequence of K (be it L). But distribu-
tional evidence may also provide a principled way
of selecting most relevant diagnoses among a poten-
tially large number of candidates, as well as an al-
ternative to their exhaustive computation, which has
been shown costly by (Schlobach, 2005).

3 Conventions and presuppositions

The prototypical input is a set of statements in OWL
DL or OWL 2, although the approach may be gener-
alized to other representation languages. OWL DL
and OWL 2 are based on Description Logics (DL),
which are themselves decidable fragments of first-
order logic (FOL). The OWL notation is preferred
to the DL one for readability, and FOL translations
are given when not obvious.
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An ontology is just understood here as a (finite)
set of logical statements. A class will designate a
named class in OWL, i.e. a FOL unary predicate,
like Person, whereas a named individual, or just
individual, designates a constant, like Peter Munk.

The input ontology K must provide English terms
denoting some of its named individuals (e.g. the
term “Peter Munk™). These terms are prototypically
named entities, but may also occasionally be com-
mon nouns (or common noun phrases), as shown
in example 1 with “C.E.O”. There may be multiple
terms for a same individual. The approach cannot
handle polysemy though, in particular the fact that
some individuals of K may have homonyms (within
K or not), for instance that the term “JFK” can stand
for a politician, airport or movie. Ideally, no dis-
tributional representation should be built for indi-
viduals of K with potential homonyms. Some of
them may be identified with simple strategies, like
checking the existence of a Wikipedia disambigua-
tion page. On the opposite, labels for classes of
K (prototypically common nouns or common noun
phrases, which are arguably more ambiguous) are
never used during the process.

4 Proposition

Given a subbase I' of the input ontology K (possi-
bly K itself), the ontology verification strategy pre-
sented in introduction relies on the evaluation of a
set Ur of consequences of I'. This section first de-
fines a score scp(¢)) for each ¢ € W, which intu-
itively evaluates the plausibility of ¢ wrt I', provided
some distributional representation for each named
individual appearing in Wr. Then it discusses how
this score can be used to select statements of the in-
put ontology K which, according to distributional
evidence, should be preferably discarded, or at least
amended.

4.1 Plausibility of a consequence ¢) € U

For the experiments described in section 5, Ur is
the set of consequences of T' of the form A(e) or
—A(e), with e a constant (like CEO) and A a unary
predicate (like Person), and for which linguistic
occurrences of a term denoting e could be retrieved.
Possible extension of WUt with other types of formu-
las is discussed in section 7.



Let ¢ be a formula of Wp, of the form
A(e), eg. 1 = Person(CEO) or ¢ =
Person(Peter Munk). Then instp(A) will des-
ignate all instances of A according to I' for
which linguistic occurrences could be retrieved, i.e.
instr(A) = {¢’ | A(¢’) € ¥r}, and instp(A) \ {e}
will be called the support set for A(e). Similarly,
instp(T) will designate all named individuals ap-
pearing in Wr.

Let sim(ej, e2) be a measure of similarity be-
tween the distributional representations of individ-
uals e; and ey (prototypically the cosine similar-
ity between some vector representations of the lin-
guistic contexts of e; and ey). Then for each ¢/ €
instr(A) \ {e}, if sim(e,€’) is lower than what
could be expected if ¢/ was a random individual of
instp(T) \ {e} (i.e. not necessarily an instance of
A), the hypothesis that A(e) is an outlier within ¥
will be reinforced.

For instance, in example 1, let % =
Person(CEO) and I' = K. Then the sup-
port set instp(A) \ {e} is composed of all other
instances of Person according to I'. For each indi-
vidual ¢’ of this support set, if sim(CEO, ¢’) is lower
than what can be expected for a random individual
of K with linguistic occurrences (and different
from CEO), then the confidence in Person(CEO)
should decline. Conversely, if sim(e,e’) is higher
that expected, the hypothesis that v is in line with
U will be reinforced.

Here is a cost-efficient and relatively simple
method to compute a plausibility score scp(A(e)).
Let S = instr(A)\ {e} designate the support set for
I" and e, and | S| the cardinality of .S, i.e. the number
of other instances of A according to I'. And let us
assume a set W of |S| randomly chosen elements
of instp(T') \ {e}, i.e. of |S| individuals which are
different from e, but not necessarily instances of A.
Finally, let the random variable X£| 3] model the
expected value of > Simlge"e,)

e'eWw
similarities between e and each individual of W.
In other words, if |S| individuals were randomly
chosen instead of those of the support set, X«EI 3]
models what the average similarity between e and
these individuals can be expected to be. Then the
plausibility scr(A(e)) of A(e) can be defined by :

, 1.e. the mean of the
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Definition 4.1. If S = instp(A) \ {e}, then

ser(A(€)) = (XL g < 3 Smes))
e'eS
scr(A(e)) estimates of how surprisingly high the
similarity between e and the individuals of the sup-
port set S is, considering the overall similarity be-
tween e and the individuals of I

For the evaluation described in section 5, the
random variable Xg,l g Was assumed to follow a
beta distribution Beta(c, ), which intuitively al-
lows taking the size |.S| of the support set into ac-
count. For instance, if S = {€'}, ie. |S| = 1,
then ceteris paribus a high similarity between e
and ¢’ will be less informative than an equally high
average similarity between e and all elements of
a large S. Stated another way, the lower |S| is,
the more uniform the distribution of X[ should
be. This can be obtained by setting Xer" s~
Beta(m|S| + 1, (1 —m)|S| + 1), where m is the
average similarity between e and all other individu-

sim(e,e’)

2 INE
e'el\{e}

A possible interrogation here is the choice of
instp(A) \ {e} as the support set for A(e). For in-
stances, if 1) = Person(Peter Munk), a case could
be made for using instp(—A) as well, i.e. for ex-
ploiting the (dis)similarity between Peter Munk and
individuals which, according to kK, are instances of
—Person.® This is quite unrealistic though from
a linguistic point of view, which can be intuitively
seen in this example by replacing Peter Munk with
CEO. Assume for instance that Thelonious Monk
and Beijing are (reliable) instances of Person
and ~Person respectively according to I". There
is no reason to expect that sim(CEO, Beijing) >
sim(CEO, Thelonious Monk). In other words, it is
implausible to assume that elements of instp(—A)
should a priori share similar contexts.

als of the signature of I, i.e. m =

Interestingly enough, and for the same reason,
the support set for a consequence of I' of the
form —A(e) is not instp(—A), but instr(A), which
yields :

Definition 4.2. If S = instp(A), then
ser(—A(e) = p(X[ g > 3 2mec))
e'es

Yie. T |= —Person(e’) not only T' j= Person(e’)



4.2 Linguistic compliance of I’

This does not directly address the second problem
mentioned in introduction though. For practical on-
tology verification, it is also desirable to identify the
cause of this nonsense, i.e. statements (axioms in the
DL terminology) which are intuitively problematic.
For instance, in example 1, computing scr(v) for
each ¢ € Vg may signal that the consequence ¢;
is unlikely to hold wrt the larger ontology /K. And
discarding either (1) or (4) is sufficient to get rid of
the belief in ¢. But given the additional assump-
tions made about K, discarding the former is prefer-
able, in that discarding the latter would also result in
the loss of 1)9. In other words, some subbases of K
(like K\ (1) here) are more relevant than others (e.g.
K \ (4)), which can be simply captured as follows.
Let comp(T") be an estimation of the compliance of
a subbase I' of K with the gathered linguistic evi-
dence. A straightforward option consists in setting
comp(I") to be the mean of the scores of evaluated
consequences for I, i.e. :

Definition 4.3. comp(I') = )
pevp

Then a strict partial order < over 2% can sim-
ply be defined by T'; < T’y iff either comp(T'y) <
comp(T'a), or (comp(T';) = comp(I'z) and T’y C
F2>,4 and a subbase I' of K can be viewed as opti-
mal if it is maximal wrt <.’

In practice though, identifying optimal subbases
is a non trivial task. To see this, note that the func-
tion to be maximized is not directly a function of
the statements in I', but of W, i.e. some of the
consequences of I'. So even if one could identify
a subset ¥’ of Uy which maximizes this function,
there may not exist a subbase I' of K such that
U = U, Another difficulty comes from the fact
that for two subbases I'y and I's of K, and a con-
sequence ¢ € ¥, N ¥r,, it doesn’t hold in gen-
eral that scr, (¢) = scr,(¢), because the support
set for ¢ in I'y may differ from its support set in

“The assumption is made that a minimum of syntactic in-
formation should be lost whenever possible, i.e. 'y and I's
are primarily viewed as bases, not as theories. In particular,
if Cn(Fl) = CH(FQ), but Fl Z Fz and FQ g Fl, then Fl and
I's are not comparable wrt <. Redundancies in this view should
also be preserved when possible, i.e. if Cn(I';) = Cn(I'2) and
'yt C I'g, then Iy < I's still holds.

>There may be several several optimal subbases.
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I'5. In particular, it may be the case that I'y C I'y
but scr, (¥) > scr, (), which greatly reduces the
possible uses of monotonicity (if I'y C I's, then
Cn(I'1) € Cn(I';)) to optimize the exploration of
2K More generally, if the optimal subbases of K
are small (say twice smaller that K), it can be right-
fully argued that dropping so many statements for
the sake of linguistic evidence is not a viable debug-
ging strategy.

Therefore a more plausible application scenario
is one in which the search space has been previously
circumscribed, either by setting a maximal (small)
number of statements to discard, or by identifying a
set of potentially erroneous statements, through ax-
iom pinpointing, as explained in section 6. This is
also why the evaluation presented in section 5 fo-
cuses on the simplest possible case, i.e. the removal
from K of one statement only, whereas the integra-
tion of distributional evidence to more complex de-
bugging strategies is discussed in section 6.

As an alternative to the function comp, and in or-
der to avoid the fact that a same consequence may
have different plausibility scores wrt two subbases
of K, one may choose to discard unlikely conse-
quences based on their respective scores in K, i.e.
to use the score comp (I'), defined by :

Definition 4.4. comp(I) = Y =K
e

This solution is arguably less satisfying, but more
amenable to optimizations. A trivial example is that
of a subbase I'; with wnggx sci (¢) < compy (T'2)

r

for some already evaluateii subbase I'9, in which
case no subbase of I'; can be optimal wrt <.

Additionally, instead of taking the mean of the
scores of evaluated consequences of I', one may
want to penalize the subbases of K with the most
unlikely consequences, which gives a standard (to-

tal) lexicographic ordering <., on 2K defined as

follows. Let wr = w%, ..,w{ﬂqlrl be the vector of

formulas of Wt order by increasing score scr, and
let scr(wr) = scp(wg), ..,scF(wlpq}Fl). Then <,
is defined by I'y =<, I'p iff either scp, (wr,) =
scr, (wr, ), or (there is a 1 < ¢ < |Wr,| such that
sery (wp, ) = scr, (wh, ) forall 1 < j < 4, and either

scr, (wh, ) < scry(wh,) or [¥r,| = i — 1). Then

Sor more generally compy. (T'), for some I” D T'



as previously, a strict partial order < over 2% can
be defined by I'y < T’y iff either I'y <., T'g, or
(I'y =tex I'2 and 'y C T'g).

Again, scx(¢) may be used instead of scp(¢),
yielding the lexical ordering =<y, . This last possi-
bility corresponds to a relatively intuitive operation,
which consists in giving up in priority the most im-
plausible consequences of K. All four possibilities
are evaluated in what follows.

5 Evaluation

The dataset used for this evaluation is a fragment
of the fisheries ontology from the NEON project.’
It has been automatically built out of 10 randomly
selected named individuals, applying a module ex-
traction procedure, followed by a trimming algo-
rithm. The fragment contains 1038 (logical) state-
ments, and involves 71 named individuals (mostly
geographical or administrative entities), the least ex-
pressive underlying DL being SZ.

The linguistic input is a small corpus of approxi-
mately 6300 web pages, retrieved with a search en-
gine, using the labels of named individuals of F' as
queries. The HTML documents were cleaned with
the BootCat library (Baroni and Bernardini, 2004).

The construction of the distributional representa-
tions of the named individuals of F' was basic, the
use of more elaborate methods (SVD,...) being left
for future work. The approach presented in this ar-
ticle remains generic enough to be applied to most
existing distributional frameworks, the only require-
ment being a real-valued similarity measure.

Two different forms of linguistic contexts were
alternatively tested. The first option considers as a
context any n-gram (2 < n < 5) without punc-
tuation mark which immediately precedes or fol-
lows a term t denoting an individual of F. The
other option is a more customized one, extracting se-
quences of lemmatized words (lemmaPOS in what
follows) surrounding ¢, in a shifting window of 3
to 5 tokens + the size of ¢, ignoring certain cat-
egories of word. Part-of-speech tagging was per-
formed thanks to the Stanford Parser (Toutanova
et al., 2003), with a pre-trained model for English.
If Cont designates the set of contexts observed with
at least 2 individuals, then an individual was rep-

"http://www.neon-project.org/nw/Ontologies
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resented by the vector of its respective frequencies
with each context ¢ € Cont. Different possibilities
were compared to weight these frequencies. The
pointwise mutual information (PMI) was used in a
standard way for n-grams and lemmaPOS contexts
(with possible negative resulting frequencies set to
0). Following (Giuliano and Gliozzo, 2008), the
self-information self(c) was also used for n-grams,
defined by self(c) = —logp(c), the probability
p(c) being estimated thanks to the Microsoft Web
N-gram Services. A combined weighting by PMI
and self-information was also tested for n-grams.
These alternative settings are represented by capi-
tal letters in tables 1 and 2 : LP for lemmaPOS with
PMI, and NP, NS and NPS for n-grams with PMI,
self-information and both respectively.

The ontology F' has been extended for the sake
of the evaluation, with statements randomly gener-
ated out of its signature. The underlying assumption
is that adding such statements to F' is very likely
to generate violations of common sense (although
nothing prevents in theory the generation of plausi-
ble statements too). The goal for the evaluation was
then to automatically retrieve proper consequences
of each extension of ' on the one hand, and the ran-
dom statements themselves on the other hand.

To prevent any misunderstanding, it should be
emphasized that this is not a realistic application
case. The input ontology was selected for its quality,
and degraded through random statement generation,
allowing an arguably artificial, but also very objec-
tive evaluation procedure (the only bias may come
from randomly generated statements which are ac-
tually plausible). By contrast, using a non modified
input dataset, and evaluating whether or not the ax-
ioms/consequences spotted by the algorithm are ac-
tually erroneous is a complex and subjective task,
with a possibly low inter-annotator agreement.

The generation procedure randomly selects a
statement ¢ € F', and yields a statement ¢’ with the
same syntactic structure as ¢, but in which individ-
uals and predicates have been replaced by random
individuals and predicates appearing in F'. For in-
stance, if ¢ = Vay(A(xz) Ar(z,y) — —B(y)), then
¢ = Vay(C(z) A s(z,y) — —D(y)), with C and
D (resp. s) randomly chosen among classes (resp.
binary predicates) of the signature of F'.

100 randomly generated statements ¢, ..., ¢100



rank p-val
LP 4.15/216.1 | <0.001
NP | 9.73/216.1 | <0.001
NS 7.33/216.1 | <0.001
NPS || 5.59/216.1 | <0.001

Table 1: Average ranking among Wg, of the lowest-
ranked formula of \Ilf,‘éf’fd, and p-value for the rankings of
all formulas of all \IJ%”

were added independently to F', yielding 100 in-
put ontologies K7, ..., Kigo, such that each K; was
consistent, and that there was at least one conse-
quence of the form A(e) or —A(e) entailed by K;
but not by F', with e sharing at least one linguistic
context with some other individual of F. All 100
input ontologies are available online.®

The first part of the evaluation was performed
as follows. For each K; and each ¢ € Vk,, the
plausibility scg;, (1)) was computed as in definitions
4.1/4.2, and W g, was ordered by increasing plausi-
bility.” Within W, are consequences which were
not initially entailed by F', but have been obtained
after the extension of F' with the random statement
¢;. So in a sense, these consequences are ran-
domly generated too, and therefore one may expect
many of them to convey absurd information (for in-
stance Architect(Belgium)), or at least to be out-
liers (like Person(CEO) in ex 1) within Wg,. Let
\I/’“"d designate these additional consequences, i.e.
\I/’“”d U, \VYp. If¢p € \I/mfzd, and if sck, () is
actually lower than for most other formulas of U,
this would indicate that the plausibility score, as for-
mulated in definitions 4.1/4.2, is actually a good es-
timator.

In order to evaluate this, column “rank” in table
1 gives the average ranking (for all 100 ontologies)
within W, of the formula 1; € \I/%’d with low-
est score. The lower this ranking, the more efficient
the plausibility score is at detecting outlier conse-
quences. Column “pVal” gives the probability (t-
test) for the cumulated rankings of all formulas in all
\I”““d to be as low as the observed ones, if all conse-
quences in all ¥, had been randomly ordered.

8http://www.irit.fr/~Julien.Corman/index_en.php

° The ranking was a strict ordering : if two consequences
had the same score, one of them was randomly designated as
strictly lower ranked.

36

Results are convincing, with a significant p-value
for all four settings. For most ontologies (75/100),
there was only one formula in \Il"‘”d A closer look
at the data revealed that, for the best setting (LP),
in most of theses cases (57/75), the only formula in
\Il’“”d was also the one with lowest plausibility in
W,, over 216.1 on average, i.e. the only randomly
generated consequence was also the least plausible
one according to linguistic evidence. This is very
encouraging, especially considering the relatively
small number of named individuals (71) in F, i.e.
the fact that the support to evaluate the plausibility of
a consequence ¢ € Vg, was limited. On the other
hand, performances were generally poor when the
cardinality of \Ilg‘é:‘d was important (> 0.25 % W, |),
which may be explained by the fact that support sets
for some classes of F' were significantly modified
after the extension of F' with ¢;.

As for the settings, unsurprisingly, the two most
beneficial (but unfortunately incompatible) factors
were the use of lemmatized contexts on the one hand
(LP), and the queries over the Web N-gram corpus
on the other hand (NS and NPS)

The second part of the evaluation focused on the
retrieval of the random statements ¢q, .., p100, for
the LP setting only, because it gave the best re-
sults in the previous experiment. For each extended
base K, all immediate subbases I'; 1, .., I'; |41 of
K; were generated, i.e. each I';; was such that
K; = T;; U{¢;} for some statement ¢; of K.
The different I'; ; were ordered by decreasing com-
pliance score comp(I'; ;) (resp. compg, (I'i;)),
or by decreasing lex1cographlc ordering =<, (resp.
jlexK,).lo Intuitively, this yields a ranking on K;
where the least reliable statements wrt linguistic ev-
idence should appear first : if ¢; € Kj;, and if the
subbase of K; obtained by discarding ¢; (i.e. I'; ;)
has a higher linguistic compliance score than Kj,
then discarding I'; ; can be viewed as an improve-
ment over K;. And if I'; ; is among the best ranked
subbases of K;, then ¢; is among the least reliable
statements of K; wrt distributional evidence. For in-
stance, in example 1, one may expect the subbase
K \ (1) to have a maximal linguistic compliance
score among immediate subbases of K (or to be

1 Again, the ranking was randomly turned into a strict order-
ing (see footnote 9).



rank p-val
comp(T") 7.86 / 80.03 | < 0.001
compy, (I') || 8.05 /80.03 | < 0.001
=lex 6.51 / 80.03 | < 0.001
Slexx 2.47 / 80.03 | < 0.001

Table 2: Average ranking of the randomly generated
statement ¢; for each K, and p-value for the rankings
of all ¢;

maximal wrt the lexicographic ordering), such that
(1) is the best candidate for removal. So back to the
test data, if K; = F U {¢;}, i.e. if ¢; is, among the
| F+1| statements of K;, the one which has been ran-
domly generated, and if I'; ; = K; \ ¢; is among the
best ranked immediate subbases of K;, this would
indicate that the linguistic compliance score in def-
initions 4.3 (resp. 4.4), or the corresponding lexi-
cographic ordering =<y, (resp. =yex ) is actually a
good estimator of faulty statements. '

An additional precaution was taken in order to
avoid artificially good results. For most statements
¢; € K;, discarding ¢; did not have any impact
on the set \Ilpw. of consequences to be evaluated,
ie. W, , = Vg, and therefore comp(I'; ;) =
comp(K;). Let A; C K, be the set of statements
whose removal did have an impact instead (on av-
erage, there were 79.3 statements in A;). Then the
compliance of a subbase I'; ; of K; was evaluated
onlyif ¢; € A;, i.e. only if the removal of ¢; made a
difference. K; was also added to this set of evaluated
subbases, yielding a ranking of 79.03 + 1 = 80.03
bases on average.

Results are again positive. Column “rank” in table
2 gives the average ranking of I'; ;, i.e. the base ob-
tained after the removal of the randomly generated
statement ¢;. Both lexicographic orderings outper-
formed the compliance scores (i.e. the mean of plau-
sibility scores), and the best configuration was the
fourth presented in section 4.2, using scg, (¢) as a
plausibility score instead of scr, ; (¥)).

6 Applications

This section describes a few concrete use cases of
the propositions made in section 4. A first basic
but useful application is the identification of unde-
sired consequences of a consistent input ontology
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K. As illustrated by example 1, violations of com-
mon sense often go unnoticed in publicly available
OWL datasets, even though effective procedures can
detect inconsistency!! in most DLs. This is corre-
lated with the overall sparse usage of negation in
OWL, yielding ontologies which are consistent by
default rather than by design. The identification of
such cases can be very simply performed, by return-
ing to the user the formulas of W i with lower plausi-
bility scores, like Person(CEO) in example 1. Ax-
iom pinpointing algorithms (Schlobach and Cornet,
2003; Kalyanpur et al., 2007; Horridge, 2011) may
then be used to compute all justifications for each
returned consequence ), i.e. all (set-inclusion) min-
imal subsets of K which have 1) as a consequence.
In a more automated fashion, the greedy trimming
approach described in (Corman et al., 2015) returns
n statements of K which are candidate for removal,
n being given as a parameter, by incrementally se-
lecting the immediate subbase of I' with maximal
linguistic compliance score, starting with I' = K.
But inconsistent!? ontology debugging may also
benefit from distributional evidence. As discussed
in section 2, state-of-the-art approaches to ontology
debugging suffer from the number of candidate out-
puts, i.e. of (set-inclusion) maximal consistent sub-
sets of K, as well as from the cost of their compu-
tation. If the set 7 of justifications for the inconsis-
tency of K is known though, and if some (discrim-
inant enough) preference relation <, over | J J can
be obtained, then prioritized base revision, as it is
defined in (Nebel, 1992), provides a principled and
computationally attractive solution to these prob-
lems. Even if the whole process cannot be depicted
here, <, may actually be obtained through distri-
butional evidence, by evaluating, for each statement
¢ € U J, the plausibility of some consequences of
candidate subbases in which ¢ does or does not ap-
pear. The support set in this case is reduced to con-
sequences of the “safe” part of K, i.e. K\ |JJ.

7 Extensions

A first straightforward extension of this framework
consists in taking more complex classes into ac-

"or incoherence (see footnotel)
2or incoherent (see footnote 1), or for which a set of unde-
sired consequences has already been identified



count. OWL (and most Description Logics) fa-
vor the recursive construction of arbitrarily com-
plex classes out of the signature of I', and this
mechanism could naturally be used to extend Wp
with more consequences of the form C(e), where
C is one of these complex classes. For instance,
in example 1, if C7 and Cs are respectively de-
fined by Vz(Ci(z) < 3Fy(occupation(y,z))
and Vz(C2(z) < Fy(occupation(z,y)), then
U g can be extended “for free” with C(CEO) and
Cy(Peter Munk). Unfortunately, if U} is the set of
all consequences of I' which can be built this way,
there is in general no finite subset ¥ of \Iflf such
that U = ¢ for all b € W;'. Therefore the com-
plex classes to be used must be selected, which is
not trivial. Intuitively, some complex classes are
more relevant than other (e.g. the class of “phys-
ical objects owned by someone” may be linguisti-
cally relevant, but probably not “Moldavian or Mus-
lim lawyers whose father lives in an apartment”).

Another simple variation of the framework pre-
sented here consists in setting W to be all con-
sequences of I'" of the form e; # eo, ie. the
fact that that e; and ey are not the same individ-
ual according to I'. The unique name assumption
is not made in OWL, which means that two dis-
tinct named individuals can be interpreted identi-
cally, and therefore these consequences do not hold
by default. They may be explicitly stated in I’
(owl:differentIndividuals(eq, e2)), but are in most
cases entailed by I', provided it contains some form
of negation (e.g. instances of two disjoint classes
cannot be the same individual). If I'y and I'y are
two subbases of K such that 'y = e; # e, but
[y £ e # e9, and if the similarity between e; and
eo is lower than expected, then ceteris paribus, T';
will be preferred to I's.

Conclusion

This article is centered on the use of distributional
representations of (labels of) named individuals of
an input ontology K, in order to identify and repair
violations of commonsense within K. For a set of
statements I' C K, and U a specific set of con-
sequences of T, a score scp () is attributed to each
1 € Y, which evaluates the plausibility of ¢ wrt I"
according to distributional evidence. Several meth-
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ods based on this plausibility score are then pro-
posed in order to compare two subbases I'; and I's of
K, leading to the identification of potentially erro-
neous statements. An evaluation is provided, which
consists in extending a test ontology with randomly
generated statements before trying to spot them au-
tomatically, with significant results. A more thor-
ough evaluation is still required though, testing in
particular the impact of a higher number of named
individuals and/or classes. Scalability of the ap-
proach may also be limited by its heavy reliance on a
reasoner. Finally, potential improvements may come
from using more elaborated distributional represen-
tations, like the one described in (Mikolov et al.,
2013).
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Abstract

Implicit semantic role labeling, the task of
retrieving locally unrealized arguments from
wider discourse context, is a knowledge-
intensive task. At the same time, the annotated
corpora that exist are all small and scattered
across different annotation frameworks, genres,
and classes of predicates. Previous work has
treated these corpora as incompatible with one
another, and has concentrated on optimizing
the exploitation of single corpora. In this paper,
we show that corpus combination is effective
after all when the differences between corpora
are bridged with domain adaptation methods.
When we combine the SemEval-2010 Task 10
and Gerber and Chai noun corpora, we obtain
substantially improved performance on both
corpora, for all roles and parts of speech. We
also present new insights into the properties of
the implicit semantic role labeling task.

1 Introduction

Semantic role labeling (SRL) is the task of identify-
ing semantic arguments of predicates in text. It is an
important step in text analysis and has applications
in information extraction (Christensen et al., 2010),
question answering (Shen and Lapata, 2007; Moreda
et al., 2011) and machine translation (Wu and Fung,
2009; Xiong et al., 2012) . A large body of work
exists on algorithms for SRL (Gildea and Jurafsky,
2002; Srikumar and Roth, 2011). Their success is
closely connected to the availability of two large,
hand-constructed semantic role resources, FrameNet
(Fillmore et al., 2003) and PropBank (Palmer et al.,
2005). They used to concentrate on overt semantic
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roles, that is, semantic roles that are realized within
the local syntactic structure of the predicate.

Recent years have seen a broadening of the focus
in SRL to implicit semantic roles, that is all roles that
remain locally unrealized but can be retrieved in the
(typically prior) context (Ruppenhofer et al., 2010).
In the following example annotated with PropBank
roles (cf. Section 2), the target predicate come has
two roles, a locally realized one (A1, the entity in
motion), it, and an implicit role mentioned in the
previous sentence (A4, the goal):

Well, sir, it’s [a4 this lonely, silent house]
and the queer thing in the kitchen . ... I
thought [ it] had come again.

Implicit SRL is useful to complete predicates’ ar-
gument structures for inference (Mirkin et al., 2010)
and paraphrasing (Roth and Frank, 2013), or to assess
the coherence of discourse (Burchardt et al., 2005).
It however requires (even) more training data than
traditional SRL. One reason is that potential argu-
ments come from the whole text rather than just the
sentence. Another one is that most of the power-
ful syntactic features that are a staple in traditional
SRL are unavailable across sentence boundaries. Un-
fortunately, existing corpora for implicit SRL are
quite small: The task requires full-text annotation,
which is time-consuming and pushes semantic role
frameworks to their limits (Palmer and Sporleder,
2010). It is also hard to do consistently, and can only
be crowdsourced in limited settings (Feizabadi and
Pad6, 2014). Thus, even though multiple systems for
implicit SRL exist (among others, Tonelli and Del-
monte (2011), Laparra and Rigau (2012), Silberer
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and Frank (2012)), results are still relatively poor.
In this paper, we focus on the fact that the cor-
pora that exist for implicit SRL differ not only in
the semantic role frameworks used (FrameNet vs.
PropBank), but also in genre (newswire vs. nov-
els), and classes of annotated predicates (verbs vs.
nouns). As a result, they are generally regarded as
incompatible, and previous work has concentrated
on getting most out of individual corpora, or spend-
ing annotation effort on focused extensions of these
corpora. Instead, we will follow the intuition that
the performance of implicit SRL can be improved
significantly by combining corpora, using simple do-
main adaptation techniques to bridge the differences
between them. We combine the two largest datasets
for implicit SRL, the SemEval-2010 Task 10 dataset
(Ruppenhofer et al., 2010) and the Gerber and Chai
dataset (Gerber and Chai, 2012). This combination
achieves improvements across all target and seman-
tic roles despite the differences in genre, domain,
and parts of speech. Our analyses indicates that the
properties of the implicit SRL task — where syntactic
features play a relatively minor role compared to se-
mantic and discourse features — are responsible for
this picture, and mean that models can actually profit
from complementarity between combined corpora.

Plan of the paper. Section 2 summarizes the re-
source and model situation in SRL. Section 3 defines
a simple system for implicit SRL that uses domain
adaptation. Sections 4 and 5 report experiments and
provide analysis. Section 6 concludes.

2 Traditional and Implicit SRL

This section first describes existing resources for tra-
ditional and implicit SRL (frameworks and corpora).
Then it outlines the state of the art in modeling.

2.1 Frameworks for Semantic Roles

Almost all contemporary work on SRL is based on
one of two frameworks: FrameNet and PropBank.

FrameNet is a dictionary and corpus annotated
in the Frame Semantics paradigm (Fillmore et al.,
2003). In Frame Semantics, the meaning of pred-
icates (verbs, nouns, or adjectives) is conveyed by
frames, conceptual structures which represent sit-
uations and define salient entities. Semantic roles
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describe these salient entities and are therefore lo-
cated at the level of frames. E.g., the verb approach
is analyzed as an instance of the frame ARRIVING,
with the roles THEME, SOURCE, GOAL:

[Theme He] was approaching [source from
behind and slightly to the right of Sharpe].

Frame Semantics also offers an analysis of unre-
alized roles, called Null Instantiations, that distin-
guishes three classes. Indefinite non-instantiations
(INIs) are interpreted generically. Constructional non-
instantiations (CNI) include, e.g., passives. Finally,
definite non-instantiations (DNIs) have a specific in-
terpretation and often refer to expressions in the con-
text. DNIs correspond to the pre-theoretic concept of
implicit roles. The FrameNet corpus, however, does
not annotate the antecedents of DNIs, so it cannot be
used directly as training data for implicit SRL.

PropBank The second major framework for se-
mantic role annotation is PropBank (Palmer et al.,
2005). It defines a set of general semantic roles
named ARG0-ARGS of which ARGO and ARG are
interpreted as proto-agent and proto-patient (Dowty,
1991), respectively. The higher-numbered roles re-
ceive more predicate-specific interpretations. These
“core” roles are complemented by adjunct roles such
as MNR (manner) or TMP (time). For example,

Jim Unruh ... said [4; he] is approaching
[a2 next year] [pmnr With caution].

PropBank has annotated the WSJ part of the Penn
Treebank, i.e., newswire text, exhaustively with se-
mantic roles. While it originally concentrated on
verbs, the NomBank project (Meyers et al., 2004)
extended the annotation scheme to nouns. PropBank
does not have a specific taxonomy of null instantia-
tions like FrameNet, but it can nevertheless be used
equally for implicit role annotation.

2.2 Annotated Corpora for Implicit SRL

FrameNet and PropBank are both very large corpora,
covering tens of thousands of instances. Corpora with
implicit role annotation are generally much smaller;
the main corpora are summarized in Table 1.

Ruppenhofer et al. Arguably the first corpus with
a substantial set of annotations for implicit roles was



Corpus Scheme POS Genre # predicates  # instances # implicit roles
Ruppenhofer et al. (2010) | FrameNet V,N Novels 801 1575 245

Gerber & Chai (2012) PropBank N Newswire | 10 1253 1172

Moor et al. (2013) FrameNet V Newswire | 5 1992 242

Feizabadi & Pad6 (2014) | FrameNet V Novels 10 384 363

Table 1: Size of available English corpora with implicit semantic role annotation

created for SemEval 2010 Task 10 (Ruppenhofer et
al., 2010). This dataset covers a number of chapters
from Arthur Conan Doyle short stories and provides
full-text annotation of both explicit and implicit se-
mantic roles. The texts were annotated manually with
FrameNet roles. This dataset is a de-facto standard
benchmark for implicit SRL.

Gerber and Chai. A study by Gerber and Chai
(2012) investigated implicit arguments of NomBank
nominalizations. They extended a part of the Prop-
Bank corpus with implicit roles for 10 nominal pred-
icates, of which they annotated all instances.

Further Corpora with Implicit Role Annotation.
Moor et al. (2013) created a corpus with all annotated
instances for five verbs with the goal of focused im-
provement of implicit SRL. Feizabadi & Padé (2014)
investigated the use of crowdsourcing to create an-
notations for implicit roles. Both corpora are more
restricted in size and scope than the first two.

2.3 Models for Semantic Role Labeling

Traditional SRL. A broad range of models have
been proposed for “traditional”, i.e., local SRL
(Palmer et al., 2010). The task can be seen as a
sequence of two classification tasks, predicate dis-
ambiguation and role labeling. Earlier models mod-
eled them in a pipeline architecture, but recent works
demonstrates the benefits of joint inference (Sriku-
mar and Roth, 2011; Das et al., 2014). SRL mod-
els have drawn on a wide variety of features from
two main groups: syntactic features describing the
structural relation between predicate and argument
candidate, and semantic features describing role and
candidate. A general observation is that SRL models
are lexically specific to a substantial degree, i.e., do
not generalize very well between predicates, so that
the availability of annotations remains a bottleneck.

Implicit SRL was formulated by SemEval 2010
Task 10 in two versions. The “full task” includes
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identification of all (explicit or implicit) semantic
roles of the target predicate. The “null instantiation
task” is the subtask of the full task concerned only
with the identification and labeling of antecedents
for implicit roles. It assumes that predicates and
overt roles are already available. We follow the lead
of almost all models for implicit SRL on the null
instantiation task. Structurally, it can be approached
similarly to role identification in traditional SRL.
The first systems on large-coverage implicit SRL
adopted traditional SRL modeling techniques (Chen
et al., 2010; Tonelli and Delmonte, 2010). but strug-
gled with the scarcity of training data for the com-
plex task. Work since then has concentrated on tap-
ping into novel knowledge and data sources. There
are three main directions. The first one is knowl-
edge about semantic types. This includes Ruppen-
hofer et al. (2011) who extract semantic types for
null instantiations from FrameNet and Laparra and
Rigau (2012) who learn distributions over seman-
tic types for each role from explicit role annotations
in FrameNet. Similarly, Roth and Frank (2013) re-
trieve overt instances of implicit roles from compara-
ble corpora. The second direction is discourse level
knowledge. Laparra and Rigau (2013) and Gorin-
ski et al. (2013) treat implicit SRL as a task similar
to anaphor resolution, which motivates the use of
several features of discourse such as distance and
salience. A third set of studies concentrated on sim-
ply obtaining more annotated instances. Silberer and
Frank (2012) use an entity-based coreference resolu-
tion model to automatically extended the training set.
Moor et al. (2013) and Feizabadi and Padé (2014)
manually construct focused corpora (cf. Section 2.2).

3 Combining Corpora for Implicit SRL

3.1 Rationale and Challenges

Despite the progress made by on implicit SRL, as dis-
cussed in the previous section, data sparsity remains
the main bottleneck. This has two main reasons.



First, the set of constitutents included in the search
for each role is very large, potentially including the
whole discourse. To address this problem, implicit
SRL systems typically concentrate on a window of n
sentences, typically the sentence with the predicate
and its preceding discourse. Second, the powerful
class of syntactic features becomes largely unavail-
able beyond sentence boundaries.

This situation calls for large, richly annotated cor-
pora. Unfortunately, the annotation effort that has
been expended on implicit role has been distributed
over a number of different corpora, all of which are
fairly small (cf. Section 2.2). The question that we
are asking in this paper is: Can data from existing cor-
pora be combined rather than spending annotation
effort on yet another corpus?

We will consider the combination of the standard
benchmark, the SemEval 2010 Task 10 dataset (Rup-
penhofer et al., 2010) (henceforth SEMEVAL), with
the corpus with the largest number of implicit roles,
the Gerber and Chai (2012) corpus (henceforth GER-
BERCHAI). The main challenge in this endeavour is
that these corpora have very different properties (cf.
Table 1). Consequently, a number of challenges arise
for data combination. Below we discuss them, our
expectations, and our strategies to address them.

Challenge: Differences in Role Framework. SE-
MEVAL was annotated with FrameNet roles, while
GERBERCHAI was annotated with PropBank roles.
While semi-automatic conversion schemes now exist
in both directions, we decided to adopt the Prop-
Bank paradigm, working on the basis of the semi-
automatically converted SEMEVAL annotation pro-
vided by the task organizers. The reasons are twofold:
(a), we believe that, in parallel to results on traditional
SRL, PropBank roles should be generally easier to
label than FrameNet roles; (b), this effect should
be particularly pronounced when facing sparse data
problems, as is the case here.

Challenge: Differences in Parts of Speech. SE-
MEVAL covers both verbal and nominal predicates,
while GERBERCHAI contains only nominal predi-
cates (cf. Table 1). Given the absence of syntactic
features from implicit SRL, we believe that this is
not a huge impediment. We will, however, evaluate
on a per-POS basis to test this assumption.
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Challenge: Differences in Genre/Domain. Also,
SEMEVAL is based on novels dealing with everyday
affairs, while GERBERCHAI consists of newswire
text focusing on finance and politics. It is well known
that the performance of NLP models degrades when
applied across domains and genres. This holds for
traditional SRL (Carreras and Marquez, 2005) and
is likely to extend to the implicit variant. For this
reason, we believe that it is crucial to apply domain
adaptation methods to ensure that reasonable gener-
alizations can be learned. See Section 3.3 for details.

3.2 A Simple Implicit SRL System

We now describe the simple classification-based sys-
tem for implicit SRL that we will use in our experi-
ments. Like many systems from the literature, it fo-
cuses on the “null instantiation” step (cf. Section 2.2)
—i.e., we assume that overtly realized roles are already
available. The architecture of our system is inspired
by the system by Laparra and Rigau (2012) which is
among the best-performing systems on SEMEVAL.

Our system decomposes the task into two steps:
(1), Determining a set of implicit roles that should be
identified in context; (2) Determining the antecedents
of these missing roles. For the first step, we extract
the predominant role set (i.e., most frequently real-
ized set) for each predicate by searching the predicate
in a large corpus, OntoNotes (Hovy et al., 2006). We
assume that all instances of the predicate realize these
roles and select the subset that is not realized overtly
for inclusion in the second step.

We phrase the second step as binary classification.
The items to be classified are triples (target predi-
cate, implicit role, candidate realization). The set of
candidate realizations is defined as all constituents
from the target predicate’s sentence and the two prior
sentences which do not fill an explici