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*SEM 2015: Joint Conference on Lexical and Computational Semantics

The Joint Conference on Lexical and Computational Semantics (*SEM) provides a forum of
exchange for the growing number of NLP researchers working on different aspects of semantic
processing. After the previous editions of *SEM in Montreal (2012), Atlanta (2013), and Dublin (2014),
the 2015 edition will take place in Denver on June 4 and 5 and is colocated with SemEval and NAACL.
As in 2014 at COLING, also on this occasion *SEM and SemEval chose to coordinate their programs
by featuring a joint invited talk. In this way, *SEM aims to bring together the ACL SIGLEX and ACL
SIGSEM communities.

The acceptance rate of *SEM 2015 was quite competitive: out of 98 submissions, we accepted 36
papers for an overall acceptance of 37%. The acceptance rate of long paper that were accepted
for oral presentation (18 out of 62) is 29%. The papers cover a wide range of topics including
distributional semantics; lexical semantics and lexical acquisition; formal and linguistic semantics;
discourse semantics; lexical resources, linked data and ontologies; semantics for applications; and
extra-propositional semantics: sentiment and figurative meaning.

The *SEM 2015 program consists of oral presentations for selected long papers and a poster session
for long and short papers.

Day One, June 4th:

• Joint *SEM SemEval keynote talk by Marco Baroni;

• Oral presentation sessions on distributional semantics, lexical semantics, and extra-propositional
semantics;

• Poster session.

Day Two, June 5th:

• Keynote talk by Preslav Natkov;

• Oral presentation sessions on semantics for applications, lexical resources and ontologies, formal
semantics, and discourse semantics;

• *SEM Best Paper Award.

We cannot finish without saying that *SEM 2015 would not have been possible without the considerable
efforts of our area chairs, their reviewers, and the computational semantics community in general.

We hope you will enjoy *SEM 2015,

Martha Palmer, University of Colorado Boulder, General Chair
Gemma Boleda, University of Trento, Program Co-Chair
Paolo Rosso, Universitat Politècnica de València, Program Co-Chair
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Playing ficles and running with the corbons:
What (multimodal) distributional semantic models learn during their childhood

Marco Baroni, University of Trento

Joint work with: Angeliki Lazaridou, Marco Marelli (University of Trento),
Raquel Fernandez (University of Amsterdam), Grzegorz Chrupała (Tilburg University)

Distributional semantic methods have some a priori appeal as models of human meaning acquisition,
because they induce word representations from contextual distributions naturally occurring in corpus
data without need for supervision. However, learning the meaning of a (concrete) word also involves
establishing a link between the word and its typical visual referents, which is beyond the scope of
classic, text-based distributional semantics. Since recently several proposals have been put forward
about how to induce multimodal word representations from linguistic and visual contexts, it is natural
to ask if this line of work, besides its practical implications, can help us to develop more realistic,
grounded models of human word learning within the distributional semantics framework.

In my talk, I will report about two studies in which we used multimodal distributional semantics (MDS)
to simulate human word learning. In one study, we first measured the ability of subjects to link a nonce
word to relevant linguistic and visual associates when prompted only by exposure to minimal corpus
evidence about it. We then simulated the same task with an MDS model, finding its behavior remarkably
similar to that of subjects. In the second study, we constructed a corpus in which child-directed speech
is aligned with real-life pictures of the objects mentioned by care-givers. We then trained our MDS
model on these data, and inspected the generalizations it learned about the words in the corpus and the
objects they might denote.

The results highlight interesting issues not only for distributional semantics (can we build meaningful
word representations from very limited contexts? are such representations reasonably human-like?), but
also for the study of human language acquisition (are we "done" with learning a word once we associate
it to a referent? do we incrementally refine our word representations? is an explicit cross-situational
mechanism really necessary?).
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60 Years Ago People Dreamed of Talking with a Machine. Are We Any Closer?
Preslav Nakov, Qatar Computing Research Institute (QCRI)

Joint work with Marti Hearst (UC Berkeley)

The 60-year-old dream of computational linguistics is to make computers capable of communicating
with humans in natural language. This has proven hard, and thus research has focused on sub-problems.
Even so, the field was stuck with manual rules until the early 90s, when computers became powerful
enough to enable the rise of statistical approaches. Eventually, this shifted the main research attention
to machine learning from text corpora, thus triggering a revolution in the field.

Today, the Web is the biggest available corpus, providing access to quadrillions of words; and, in corpus-
based natural language processing, size does matter. Unfortunately, while there has been substantial
research on the Web as a corpus, it has typically been restricted to using page hit counts as an estimate
for n-gram word frequencies; this has led some researchers to conclude that the Web should be only
used as a baseline.

In this talk, I will reveal some of the hidden potential of the Web that lies beyond the n-gram, with focus
on the syntax and semantics of English noun compounds. I will further show how these ideas apply to a
number of NLP problems, including syntactic parsing and machine translation, among others. Finally,
I will share some thoughts about the future of lexical semantics and machine translation, in view of the
ongoing deep learning revolution.
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Neural Networks for Integrating Compositional and Non-compositional
Sentiment in Sentiment Composition

Xiaodan Zhu & Hongyu Guo
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Abstract

This paper proposes neural networks for inte-
grating compositional and non-compositional
sentiment in the process of sentiment compo-
sition, a type of semantic composition that op-
timizes a sentiment objective. We enable in-
dividual composition operations in a recursive
process to possess the capability of choosing
and merging information from these two types
of sources. We propose our models in neural
network frameworks with structures, in which
the merging parameters can be learned in a
principled way to optimize a well-defined ob-
jective. We conduct experiments on the Stan-
ford Sentiment Treebank and show that the
proposed models achieve better results over
the model that lacks this ability.

1 Introduction

Automatically determining the sentiment of a
phrase, a sentence, or even a longer piece of text
is still a challenging problem. Data sparseness en-
countered in such tasks often requires to factorize
the problem to consider smaller pieces of compo-
nent words or phrases, for which much research has
been performed on bag-of-words or bag-of-phrases
models (Pang and Lee, 2008; Liu and Zhang, 2012).
More recent work has started to model sentiment
composition (Moilanen and Pulman, 2007; Choi and
Cardie, 2008; Socher et al., 2012; Socher et al.,
2013), a type of semantic composition that opti-
mizes a sentiment objective. In general, the com-
position process is critical in the formation of the

sentiment of a span of text, which has not been well
modeled yet and there is still scope for future work.

Compositionality, or non-compositionality, of the
senses of text spans is important for language under-
standing. Sentiment, as one of the major semantic
differential categories (Osgood et al., 1957), faces
the problem as well. For example, the phrase must
see or must try in a movie or restaurant review often
indicates a positive sentiment, which, however, may
be hard to learn from the component words. More
extreme examples, e.g., slangs like bad ass, are not
rare in social media text. This particular example
can actually convey a very positive sentiment even
though its component words are very negative. In
brief, a sentiment composition framework that can
consider both compositional and non-compositional
sentiment is theoretically interesting.

From a more pragmatical viewpoint, if one is
able to reliably learn the sentiment of a text span
(e.g., an ngram) holistically, it would be desirable
that a composition model has the ability to de-
cide the sources of knowledge it trusts more: the
composition from the component words, the non-
compositional source, or a soft combination of them.
In such a situation, whether the text span is actually
composable may be blur or may not be a concern.

In general, the composition of sentiment is a
rather complicated process. As a glimpse of ev-
idence, the effect of negation words on changing
sentiment of their scopes appears to be a compli-
cated function (Zhu et al., 2014). The recently pro-
posed neural networks (Socher et al., 2013; Socher
et al., 2011) are promising, for their capability of
modeling complicated functions (Mitchell, 1997) in
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general, handling data sparseness by learning low-
dimensional embeddings at each layer of compo-
sition, and providing a framework to optimize the
composition process in principled way.

This paper proposes neural networks for integrat-
ing compositional and non-compositional sentiment
in the process of sentiment composition. To achieve
this, we enable individual composition operations
in a recursive process to possess the capability of
choosing and merging information from these two
types of sources. We propose our models in neu-
ral network frameworks with structures (Socher et
al., 2013), in which the merging parameters can
be learned in a principled way to optimize a well-
defined objective. We conduct experiments on the
Stanford Sentiment Treebank and show that the pro-
posed models achieve better results over the model
that does not consider this property.

2 Related work

Composition of sentiment Early work on modeling
sentiment does not examine semantic composition
closely (Pang and Lee, 2008; Liu and Zhang, 2012),
as mentioned above. Recent work has considered
sentiment-oriented semantic composition (Moilanen
and Pulman, 2007; Choi and Cardie, 2008; Socher et
al., 2012; Socher et al., 2013), or simply called senti-
ment composition in this paper. For example, Moila-
nen and Pulman (2007) used a collection of hand-
written compositional rules to assign sentiment val-
ues to different granularities of text spans. Choi
and Cardie (2008) proposed a learning-based frame-
work. The more recent work of (Socher et al., 2013)
proposed models based on neural networks that do
not rely on any heuristic rules. Such models work
in a bottom-up fashion over a tree to infer the sen-
timent label of a phrase or sentence as a composi-
tion of the sentiment expressed by its constituting
parts. The approach leverages a principled method,
the forward and backward propagation, to optimize
the system performance. In this paper, we follow the
neural network approach to integrate compositional
and non-compositional sentiment in sentiment com-
position.

Prior knowledge of sentiment Integrating non-
compositional sentiment into the composition pro-

cess can be viewed as introducing some prior sen-
timent knowledge, as in general the sentiment of a
word or a phrase perceived independent of its con-
text is often referred to as prior sentiment. Word-
level prior sentiment is typically annotated in man-
ual sentiment lexicons (Wilson et al., 2005; Hu
and Liu, 2004; Mohammad and Turney, 2010),
or learned in an unsupervised or semisupervised
way (Hatzivassiloglou and McKeown, 1997; Esuli
and Sebastiani, 2006; Turney and Littman, 2003;
Mohammad et al., 2009). More recently, senti-
ment indicators, such as emoticons and hashtags,
are utilized (Go et al., 2009; Davidov et al., 2010;
Kouloumpis et al., 2011; Mohammad, 2012; Mo-
hammad et al., 2013a). With enough data, such
freely available (but noisy) annotation can be used to
learn the sentiment of ngrams. In our study, we will
investigate in the proposed composition models the
effect of automatically learned sentimental ngrams.

3 Prior-enriched semantic networks

In this paper, we propose several neural networks
that enable each composition operation to pos-
sess the ability of choosing and merging senti-
ment from lower-level composition and that from
non-compositional sources. We call the networks
Prior-Enriched Semantic Networks (PESN). We
present several specific implementations based on
RNTN (Socher et al., 2013); the latter has showed
to be a state-of-the-art sentiment composition frame-
work. However, the realization of a PESN node is
not necessarily only tied with RNTN.

Figure 1 shows a piece of PESN. Each of the three
big nodes, i.e., N1, N2, and N3, corresponds to a
node in a constituency parse tree; e.g., N3 may cor-
respond to the phrase not a must try, where N1 and
N2 are not and a must try, respectively. We ex-
tend each of the nodes to possess the ability to con-
sider sentiment from lower-level composition and
non-compositional sources. In node N3, knowledge
from the lower-level composition is represented in
the hidden vector i3, which is merged with non-
compositional knowledge represented in e3, and the
merged information is saved in m3. The black box
in the center performs the actual merging, which in-
tegrates the two knowledge sources in order to min-
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imize an overall objective function that we will dis-
cuss in detail later. The recursive neural networks
and the forward-backward propagation over struc-
tures (Socher et al., 2013; Goller and Kchler, 1996)
provide a principled way to optimize the whole net-
work.

Figure 1: A prior-enriched semantic network (PESN) for
sentiment composition. The three nodes, N1, N2, and
N3, correspond to three nodes in a constituency parse
tree, and each of them consider sentiment from lower-
level composition (i1, i2, i3) and from non-compositional
sentiment (e1, e2, e3).

3.1 Regular bilinear merging

The most straightforward way of implementing a
PESN node is probably through a regular bilinear
merging. Take node N3 in Figure 1 as an example;
the node vector m3 will be simply merged from i3
and e3 as follows:

m3 = tanh(Wm

[
i3
e3

]
+ bm) (1)

Again, vector i3 contains the knowledge from the
lower-level composition; e3 is a vector representing
non-compositional sentiment information, which
can be either from human annotation or automati-
cally learned resources. Note that in the network,
all hidden vectors m and i (including word embed-
ding vectors) have the same dimensionality d, but

the non-compositional nodes, i.e., the nodes e , do
not necessarily have to have the same number of el-
ements, and we let l be their dimensionality. The
merging matrix Wm is d-by-(d+l).

As in this paper we discuss PESN in the frame-
work of RNTN, computation outside the nodes
N1, N2, N3 follows that for the standard three-way
tensors in RNTN. That is, the hidden vector i3 is
computed with the following formula:

i3 = tanh(
[
m1

m2

]T
V [1:d]
r

[
m1

m2

]
+Wr

[
m1

m2

]
) (2)

where, Wr ∈ Rd×(d+d) and Vr ∈ R(d+d)×(d+d)×d

are the matrix and tensor of the composition func-
tion used in RNTN, respectively, each of which is
shared over the whole tree in computing vectors i1,
i2, and i3.

3.2 Explicitly gated merging

Compared to the regular bilinear merging model, we
here further explicitly control the input of the com-
positional and non-compositional semantics. Ex-
plicitly gating neural network has been studied in the
literature. For example, the long short-term mem-
ory (LSTM) utilizes input gates, together with out-
put gates and forget gates, to guide memory blocks
to remember/forget history (Hochreiter and Schmid-
huber, 1997).

For our purpose here, we explore an input gate to
explicitly control the two different input sources. As
shown in Figure 2, an additional gating layer g3 is
used to control i3, e3 explicitly.

g3 = σ(

Wgee3

Wgii3

+ bg) (3)

m3 = tanh(Wm(g3 ⊗
[
i3
e3

]
) + bm) (4)

The sign ⊗ is a Hadamard product; σ is a logis-
tic sigmoid function instead of a tanh activation,
which makes the gating signal g3 to be in the range
of [0, 1] and serve as a soft switch (not a hard binary
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Figure 2: An input-gated network that explicitly controls
the compositional and non-compositional sentiment in-
put.

0/1 switch) to explicitly gate i3 and e3. Note that
elsewhere in the network, we still use tanh as our
activation function. In addition, Wge ∈ Rd×l and
Wgi ∈ Rl×d are the weight matrices used to calcu-
late the gate vector.

3.3 Confined-tensor-based merging

The third approach we use for merging composi-
tional and non-compositional knowledge employs
tensors, which are able to explore multiplicative
combination among variables. Tensors have already
been successfully used in a wide range of NLP
tasks in capturing high-order interactions among
variables. The forward computation of m3 follows:

m3 = tanh(
[
i3
e3

]T
V [1:d]
m

[
i3
e3

]
+Wm

[
i3
e3

]
) (5)

where V [1:d]
m ∈ R(d+l)×(d+l)×d is the tensor m that

defines multiple bilinear forms, and the matrix Wm

is as defined in the previous models.
As we focus on the interaction between i3 and e3,

we force each slice of tensor, e.g. V [k]
m , to have zero-

valued blocks. More specifically, the top-right d-by-
l block of the piece matrix V [k]

m (k ∈ {1...d}) and
the bottom-left l-by-d block are non-zero parame-
ters, used to capture multiplicative, element-pair in-
teractions between i3 and e3, while the rest block are
set to be zero, to ignore interactions between those
variables within i3 and those within e3. This does
not only make the model focus on the interaction

between vector i and e, it also helps significantly re-
duce the number of parameters to estimate, which,
otherwise, could potentially lead to overfitting. We
call this model confined-tensor-based merging.

3.4 Learning and inference

Objective The overall objective function in learning
PESN, following (Socher et al., 2013), minimizes
the cross-entropy error between the predicted dis-
tribution yseni ∈ Rc×1 at a node i and the target
distribution ti ∈ Rc×1 at that node, where c is the
number of sentiment categories. PESN learns the
parameters that are used to merge the compositional
and non-compositional sentiment so that the merg-
ing operations integrate the two sources in minimiz-
ing prediction loss. The neural network over struc-
tures provides a principled framework to optimize
these parameters.

More specifically, the error over an entire sen-
tence is calculated as a regularized sum:

E(θ) =
∑
i

∑
j

tij logyseni
j + λ ‖θ‖2 (6)

where, λ is the regularization parameter, j ∈ c de-
notes the j-th element of the multinomial target dis-
tribution, θ are model parameters that will be dis-
cussed below, and i iterates over all nodes ix (e.g.,
i1, i2, and i3) in Figure 1, where the model predicts
sentiment labels.

Backpropagation over the structures To minimize
E(θ), the gradient of the objective function with
respect to each of the parameters in θ is calcu-
lated efficiently via backpropagation through struc-
ture (Socher et al., 2013; Goller and Kchler, 1996),
after computing the prediction errors in forward
propagation with formulas described above.

Regular bilinear merging The PESN implemented
with simple bilinear merging has the following
model parameters: θ = (Vr,Wr,Wm,Wlabel, L).
As discussed above, Vr and Wr are the tensor and
matrix in RNTN;Wm is the weight matrix for merg-
ing the compositional and non-compositional senti-
ment vectors. L denotes the vector representations
of the word dictionary, and Wlabel is sentiment clas-
sification matrix used to predict sentiment label at a
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node. Backpropagation on the regular bilinear merg-
ing node follows a standard derivative computation
in a regular feed-forward network, which we skip
here.

Explicitly gated merging In this model, in addition
to Wm, we further learn two weight matrices Wgi

and Wge , as introduced in Formula 3 and 4 above.
Consider Figure 2 and let δm3 denote the error mes-
sages passed down to node m3. The error messages
are passed back to i3 directly through the Hadamard
product and also through the gate node g3. The for-
mer, denoted as δi3,dir, is calculated with:

δi3,dir = (δm3 ⊗ g3)[1 : d] (7)

where, g3 is calculated with Formula 3 above in the
forward process; [1 : d] means taking the first d ele-
ments of the vector yielded by the Hadamard prod-
uct; the rest [d+1 : d+ l] elements of the Hadamard
production are discarded, as we do not update e3,
which is given as our prior knowledge.

The error messages passed down to gate vector g3
is computed with

δg3 = δm3 ⊗
[
i3
e3

]
⊗ s′

(g3) (8)

where, s
′
(.) is the element-wise derivative of logis-

tic function, which can be calculated only using s(.),
as s(.)(1 − s(.)). The derivative of Wgi can be cal-
culated with:

∂Eg3

Wge

= (δg3 [1 : d])eT3 (9)

Similarly, partial derivatives over Wgi can be cal-
culated. These values will be summed to the to-
tal derivative of Wgi and Wge , respectively. With
these notations, the error messages passed down to
i3 through the gate can then be computed with:

δi3,gate = W T
gi

(δg3 [d+ 1 : d+ l]) (10)

and the total error messages to node i3 is then:

δi3,total = (δi3,dir+δi3,gate+δi3,local)⊗f ′
(i3) (11)

where δi3,local is the local error message from the
sentiment prediction errors performed at the node i3
itself to obtain the total error message for i3, which
is in turn passed down through regular RNTN tensor
to the lower levels. f

′
(.) is the element-wise deriva-

tive of tanh function.

Confined-tensor-based merging In confined-tensor-
based merging, the error messages passed to the two
children i3 and e3 is computed with:

δi3,e3 = (W T
mδ

m3)⊗ f ′
(
[
i3
e3

]
) + δtns (12)

where,

δtns =
d∑

k=1

δm3
k (V [k]

m + (V [k]
m )T )

[
i3
e3

]
⊗ f ′

(
[
i3
e3

]
)

(13)

where the error messages to i3 are the first d num-
bers of elements of δi3,e3 . The rest elements of δi3,e3
are discarded; as mentioned above, we do not update
e3 as it is given as the prior knowledge. We skip the
derivative for the Wm3 . While the derivative of each
slice k(k = 1, . . . , d) of the tensor V is calculated
with:

∂Em3

V
[k]
m

= δm3,down
k

[
i3
e3

] [
i3
e3

]T
(14)

Again, the full derivative for Vm and Wm is the
sum of their derivatives over the trees. After the er-
ror message passing fromm3 to i3 is obtained, it can
be summed up with the local error message from the
sentiment prediction errors at the node i3 itself to
obtain the total error message for i3, which is in turn
used to calculate the error messages passed down as
well as the derivative in the lower-level tree.

4 Experiments

4.1 Data
We use the Stanford Sentiment Treebank (Socher
et al., 2013) in our experiments. The data contain
about 11,800 sentences from the movie reviews that
were originally collected by Pang and Lee (2005).
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The sentences were parsed with the Stanford parser
(Klein and Manning, 2003). Phrases at all the tree
nodes were manually annotated with sentiment val-
ues. We use the same split of the training and test
data as in (Socher et al., 2013) to predict the sen-
timent categories of the roots (sentences) and the
phrases, and use the same evaluation metric, clas-
sification accuracy, to measure the performances.

4.2 Obtaining non-compositional sentiment

In our experiments, we explore in sentiment com-
position the effect of two different types of non-
compositional sentiment: (1) sentiment of ngrams
automatically learned from an external, much larger
corpus, and (2) sentiment of ngrams assigned by hu-
man annotators.

Following the method proposed in (Mohammad
et al., 2013b), we learn sentimental ngrams from
Tweets. The unsupervised approach utilizes hash-
tags, which can be regarded as conveying freely
available (but noisy) human annotation of sentiment.
More specifically, certain words in tweets are spe-
cially marked with the hash character (#) to indi-
cate the topic, sentiment polarity, or emotions such
as joy, sadness, angry, and surprised. With enough
data, such artificial annotation can be used to learn
the sentiment of ngrams by their likelihood of co-
occurring with such hashtagged words.

More specifically, a collection of 78 seed hash-
tags closely related to positive and negative such as
#good, #excellent, #bad, and #terrible were used (32
positive and 36 negative). These terms were chosen
from entries for positive and negative in the Roget’s
Thesaurus. A set of 775,000 tweets that contain at
least a positive hashtag or a negative hashtag were
used as the learning corpus. A tweet was considered
positive if it had one of the 32 positive seed hash-
tags, and negative if it had one of the 36 negative
seed hashtags. The association score for an ngram
w was calculated from these pseudo-labeled tweets
as follows:

score(w) = PMI(w, positive)− PMI(w, negative)
(15)

where PMI stands for pointwise mutual information,
and the two terms in the formula calculate the PMI

between the target ngram and the pseudo-labeled
positive tweets as well as that between the ngram
and the negative tweets, respectively. Accordingly,
a positive score(.) indicates association with pos-
itive sentiment, whereas a negative score indicates
association with negative sentiment.

We use in our experiments the bigrams and tri-
grams learned from the dataset with the occurrences
higher than 5. We assign these ngrams into one
of the 5 bins according to their sentiment scores
obtained with Formula 15: (−∞,−2], (−2,−1],
(−1, 1), [1, 2), and [2,+∞). Each ngram is now
given a one-hot vector, indicating the polarity and
strength of its sentiment. For example, a bigram
with a score of -1.5 will be assigned a 5-dimensional
vector [0, 1, 0, 0, 0], indicating a weak negative.
Note that PESN can also take into other forms
of sentiment embeddings, such as those learned in
(Tang et al., 2014).

In addition, the Stanford Sentiment Treebank con-
tains manually annotated sentiment for each indi-
vidual phrase in a parse tree, so we use such an-
notation but not other manual lexicons, by assum-
ing such annotation fits the corpus itself the best.
Specifically, we use bigram and trigram annotation
in the treebank. Note that even longer ngrams are
much sparser and probably less useful in general,
one may learn sentiment for multi-word expressions
of a larger length, which we will leave as future
work.

4.3 Results

Overall prediction performance Table 1 shows
the accuracies of different models on Stanford Sen-
timent Treebank. We evaluate the models on 5-
category sentiment prediction at both the sentence
(root) level and at all nodes (including roots).1 The
results reported in Table 1 are all based on the ver-
sion 3.3.0 of the Stanford CoreNLP2 and our imple-
mentation of PESN on it. The CoreNLP includes
a java implementation of RNTN.3 To make the re-
sults reported in the table comparable, we trained the

1The package only gives approximate accuracies for 2-
category sentiment, which are not included here in the table.

2http://nlp.stanford.edu/sentiment/code.html
3The matlab code used in (Socher et al., 2013) is not pub-

lished.
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Models sentence-level (roots) all phrases (all nodes)
(1) RNTN 42.44 79.95
(2) Regular-bilinear (auto) 42.37 79.97
(3) Regular-bilinear (manu) 42.98 80.14
(4) Explicitly-gated (auto) 42.58 80.06
(5) Explicitly-gated (manu) 43.21 80.21
(6) Confined-tensor (auto) 42.99 80.49
(7) Confined-tensor (manu) 43.75† 80.66†

Table 1: Model performances (accuracies) on predicting 5-category sentiment at the sentence (root) level and phrase-
level on Stanford Sentiment Treebank. The numbers in the bold font are the best performances achieved on the two
tasks. Both results are statistically significantly better (p < 0.05) than the corresponding RNTN results.

RNTN models with the default parameter4 and run
the training from 5 different random initializations,
and report the best results we observed.

The rows in the table marked with auto are models
using the automatically learned ngrams, and those
marked with manu using manually annotated senti-
ment for bigrams and trigrams. Note that the non-
compositional sentiment of a node is only used to
predict the sentiment of phrases above it in the tree.
For example, in Figure 1 discussed earlier, the effect
of e1 and e2 will be used to predict the sentiment
of i3 and other node i above, but not that of i1 and
i2 themselves, avoiding the concern of using the an-
notation of a tree node to predict the sentiment of
itself.

The models in general benefit from incorporating
the non-compositional knowledge. The numbers in
the bold font are the best performance achieved on
the two tasks. While using the simple regular bi-
linear merging shows some gains, the more compli-
cated models achieve further improvement.

Above we have seen the general performance of
the models. Below, we take a closer look at the
prediction errors at different depths of the senti-
ment treebank. The depth here is defined as the
longest distance between a tree node and its descen-
dant leafs. In Figure 3, the x-axis corresponds to
different depths and y-axis is the accuracy. The fig-
ure was drawn with the RNTN and the model (7) in
Table 1, so as to study the compositional property in
the ideal situation where the lexical has a full cover-
age of bigrams and trigrams.

4java -mx8g edu.stanford.nlp.sentiment.SentimentTraining -
numHid 25 -trainPath train.txt -devPath dev.txt -train -model
model.ser.gz

Figure 3: Errors made at different depths in the sentiment
tree bank.

The figure shows that using the confined tensor
to combine holistic sentiment information outper-
forms the original RNTN model that does not con-
sider this, starting from depth 3, showing the benefit
of using holistic bigram sentiment. The improve-
ment increases at depth 4 (indicating the benefit of
using trigram sentiment), and then was propagated
to the higher levels of the tree. As discussed above,
we only use non-compositional sentiment of a node
to predict the sentiment of the phrases above it in
the tree but not the node itself. And the system still
needs to balance which source it trusts more, by op-
timizing the overall objective.

Although the empirical improvement may depend
on the percentage of non-compositional instances in
a data set or the sentiment that need to be learned
holistically, we present here the first effort, accord-
ing to our knowledge, on studying the concern of in-
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tegrating compositional and non-compositional sen-
timent in the semantic composition process.

5 Conclusions and future work

This paper proposes models for integrating com-
positional and non-compositional sentiment in the
process of sentiment composition. To achieve this,
we enable each composition operation to be able to
choose and merge information from these two types
of sources. We propose to implement such mod-
els within neural network frameworks with struc-
tures (Socher et al., 2013), in which the merging pa-
rameters can be optimized in a principled way, to
minimize a well-defined objective. We conduct ex-
periments on the Stanford Sentiment Treebank and
show that the proposed models achieve better results
over the model that does not consider this property.

Although the empirical improvement may depend
on the percentage of non-compositional instances in
a data set or the sentiment that need to be learned
holistically, we present here the first effort, accord-
ing to our knowledge, on studying the basic concern
of integrating compositional and non-compositional
sentiment in composition. While we focus on senti-
ment in this paper, investigating compositional and
non-compositional semantics for general semantic
composition with neural networks is interesting to
us as an immediate future problem, as such mod-
els provide a principled way to optimize the over-
all objective over the sentence structures when we
consider both compositional and non-compositional
semantics.
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255, Montréal, Canada. Association for Computa-
tional Linguistics.

Karo Moilanen and Stephen Pulman. 2007. Senti-
ment composition. In Proceedings of RANLP 2007,
Borovets, Bulgaria.

Charles E Osgood, George J Suci, and Percy Tannen-
baum. 1957. The measurement of meaning. Univer-
sity of Illinois Press.

Bo Pang and Lillian Lee. 2005. Seeing stars: Exploiting
class relationships for sentiment categorization with
respect to rating scales. In Proceedings of the Annual
Meeting of the Association for Computational Linguis-
tics, ACL ’05, pages 115–124.

Bo Pang and Lillian Lee. 2008. Opinion mining and
sentiment analysis. Foundations and Trends in Infor-
mation Retrieval, 2(1–2):1–135.

Richard Socher, Jeffrey Pennington, Eric Huang, An-
drew Y. Ng, and Christopher D. Manning. 2011.
Semi-supervised recursive autoencoders for predicting
sentiment distributions. In Conference on Empirical
Methods in Natural Language Processing.

Richard Socher, Brody Huval, Christopher D. Manning,
and Andrew Y. Ng. 2012. Semantic compositionality
through recursive matrix-vector spaces. In Proceed-
ings of the Conference on Empirical Methods in Nat-
ural Language Processing, EMNLP ’12, Jeju, Korea.
Association for Computational Linguistics.

Richard Socher, Alex Perelygin, Jean Y. Wu, Jason
Chuang, Christopher D. Manning, Andrew Y. Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the Conference on Empirical Meth-
ods in Natural Language Processing, EMNLP ’13,
Seattle, USA. Association for Computational Linguis-
tics.

Duyu Tang, Furu Wei, Nan Yang, Ming Zhou, Ting Liu,
and Bing Qin. 2014. Learning sentiment-specific
word embedding for twitter sentiment classification.
In Proceedings of ACL, Baltimore, Maryland, USA,
June.

Peter Turney and Michael L Littman. 2003. Measuring
praise and criticism: Inference of semantic orientation

from association. ACM Transactions on Information
Systems, 21(4).

Theresa Wilson, Janyce Wiebe, and Paul Hoffmann.
2005. Recognizing contextual polarity in phrase-level
sentiment analysis. In Proceedings of the Confer-
ence on Human Language Technology and Empirical
Methods in Natural Language Processing, HLT ’05,
pages 347–354, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Xiaodan Zhu, Hongyu Guo, Saif Mohammad, and Svet-
lana Kiritchenko. 2014. An empirical study on the
effect of negation words on sentiment. In Proceedings
of ACL, Baltimore, Maryland, USA, June.

9



Proceedings of the Fourth Joint Conference on Lexical and Computational Semantics (*SEM 2015), pages 10–19,
Denver, Colorado, June 4–5, 2015.

Compositional Distributional Semantics with Long Short Term Memory

Phong Le and Willem Zuidema
Institute for Logic, Language and Computation

University of Amsterdam, the Netherlands
{p.le,zuidema}@uva.nl

Abstract

We are proposing an extension of the recur-
sive neural network that makes use of a vari-
ant of the long short-term memory architec-
ture. The extension allows information low
in parse trees to be stored in a memory reg-
ister (the ‘memory cell’) and used much later
higher up in the parse tree. This provides a so-
lution to the vanishing gradient problem and
allows the network to capture long range de-
pendencies. Experimental results show that
our composition outperformed the traditional
neural-network composition on the Stanford
Sentiment Treebank.

1 Introduction

Moving from lexical to compositional semantics in
vector-based semantics requires answers to two dif-
ficult questions: (i) what is the nature of the com-
position functions (given that the lambda calculus
for variable binding is no longer applicable), and (ii)
how do we learn the parameters of those functions
(if they have any) from data? A number of classes of
functions have been proposed in answer to the first
question, including simple linear functions like vec-
tor addition (Mitchell and Lapata, 2009), non-linear
functions like those defined by multi-layer neural
networks (Socher et al., 2010), and vector matrix
multiplication and tensor linear mapping (Baroni et
al., 2013). The matrix and tensor-based functions
have the advantage of allowing a relatively straight-
forward comparison with formal semantics, but the
fact that multi-layer neural networks with non-linear
activation functions like sigmoid can approximate

any continuous function (Cybenko, 1989) already
make them an attractive choice.

In trying to answer the second question, the ad-
vantages of approaches based on neural network ar-
chitectures, such as the recursive neural network
(RNN) model (Socher et al., 2013b) and the con-
volutional neural network model (Kalchbrenner et
al., 2014), are even clearer. Models in this paradigm
can take advantage of general learning procedures
based on back-propagation, and with the rise of
‘deep learning’, of a variety of efficient algorithms
and tricks to further improve training.

Since the first success of the RNN model (Socher
et al., 2011b) in constituent parsing, two classes of
extensions have been proposed. One class is to en-
hance its compositionality by using tensor product
(Socher et al., 2013b) or concatenating RNNs hor-
izontally to make a deeper net (Irsoy and Cardie,
2014). The other is to extend its topology in order to
fulfill a wider range of tasks, like Le and Zuidema
(2014a) for dependency parsing and Paulus et al.
(2014) for context-dependence sentiment analysis.

Our proposal in this paper is an extension of the
RNN model to improve compositionality. Our mo-
tivation is that, like training recurrent neural net-
works, training RNNs on deep trees can suffer from
the vanishing gradient problem (Hochreiter et al.,
2001), i.e., that errors propagated back to the leaf
nodes shrink exponentially. In addition, information
sent from a leaf node to the root can be obscured
if the path between them is long, thus leading to
the problem how to capture long range dependen-
cies. We therefore borrow the long short-term mem-
ory (LSTM) architecture (Hochreiter and Schmidhu-
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Figure 1: Multi-layer neural network (left) and Recursive
neural network (right). Bias vectors are removed for the
simplicity.

ber, 1997) from recurrent neural network research
to tackle those two problems. The main idea is to
allow information low in a parse tree to be stored
in a memory cell and used much later higher up in
the parse tree, by recursively adding up all mem-
ory into memory cells in a bottom-up manner. In
this way, errors propagated back through structure
do not vanish. And information from leaf nodes is
still (loosely) preserved and can be used directly at
any higher nodes in the hierarchy. We then apply
this composition to sentiment analysis. Experimen-
tal results show that the new composition works bet-
ter than the traditional neural-network-based com-
position.

The outline of the rest of the paper is as fol-
lows. We first, in Section 2, give a brief background
on neural networks, including the multi-layer neural
network, recursive neural network, recurrent neural
network, and LSTM. We then propose the LSTM for
recursive neural networks in Section 3, and its appli-
cation to sentiment analysis in Section 4. Section 5
shows our experiments.

2 Background

2.1 Multi-layer Neural Network
In a multi-layer neural network (MLN), neurons are
organized in layers (see Figure 1-left). A neuron in
layer i receives signal from neurons in layer i − 1
and transmits its output to neurons in layer i + 1. 1

The computation is given by

yi = g
(
Wi−1,iyi−1 + bi

)
1This is a simplified definition. In practice, any layer j < i

can connect to layer i.

Figure 2: Activation functions: sigmoid(x) = 1
1+e−x ,

tanh(x) = e2x−1
e2x+1 , softsign(x) = x

1+|x| .

where real vector yi contains the activations of the
neurons in layer i; Wi−1,i ∈ R|yi|×|yi−1| is the ma-
trix of weights of connections from layer i − 1 to
layer i; bi ∈ R|yi| is the vector of biases of the
neurons in layer i; g is an activation function, e.g.
sigmoid, tanh, or softsign (see Figure 2).

For classification tasks, we put a softmax layer on
the top of the network, and compute the probability
of assigning a class c to an input x by

Pr(c|x) = softmax(c) =
eu(c,ytop)∑

c′∈C eu(c
′,ytop)

(1)

where
[
u(c1,ytop), ..., u(c|C|,ytop)

]T = Wytop +
b; C is the set of all possible classes; W ∈
R|C|×|ytop|,b ∈ R|C| are a weight matrix and a bias
vector.

Training an MLN is to minimize an objective
function J(θ) where θ is the parameter set (for clas-
sification, J(θ) is often a negative log likelihood).
Thanks to the back-propagation algorithm (Rumel-
hart et al., 1988), the gradient ∂J/∂θ is efficiently
computed; the gradient descent method thus is used
to minimize J .

2.2 Recursive Neural Network
A recursive neural network (RNN) (Goller and
Küchler, 1996) is an MLN where, given a tree struc-
ture, we recursively apply the same weight matri-
ces at each inner node in a bottom-up manner. In
order to see how an RNN works, consider the fol-
lowing example. Assume that there is a constituent
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with parse tree (p2 (p1 x y) z) (Figure 1-right), and
that x,y, z ∈ Rd are the vectorial representations
of the three words x, y and z, respectively. We use
a neural network which consists of a weight matrix
W1 ∈ Rd×d for left children and a weight matrix
W2 ∈ Rd×d for right children to compute the vec-
tor for a parent node in a bottom up manner. Thus,
we compute p1

p1 = g(W1x + W2y + b) (2)

where b is a bias vector and g is an activation func-
tion. Having computed p1, we can then move one
level up in the hierarchy and compute p2:

p2 = g(W1p1 + W2z + b) (3)

This process is continued until we reach the root
node.

Like training an MLN, training an RNN uses the
gradient descent method to minimize an objective
function J(θ). The gradient ∂J/∂θ is efficiently
computed thanks to the back-propagation through
structure algorithm (Goller and Küchler, 1996).

The RNN model and its extensions have been em-
ployed successfully to solve a wide range of prob-
lems: from parsing (constituent parsing (Socher et
al., 2013a), dependency parsing (Le and Zuidema,
2014a)) to classification (e.g. sentiment analysis
(Socher et al., 2013b; Irsoy and Cardie, 2014), para-
phrase detection (Socher et al., 2011a), semantic
role labelling (Le and Zuidema, 2014b)).

2.3 Recurrent Networks and Long Short-Term
Memory

A neural network is recurrent if it has at least one
directed ring in its structure. In the natural lan-
guage processing field, the simple recurrent neu-
ral network (SRN) proposed by Elman (1990) (see
Figure 3-left) and its extensions are used to tackle
sequence-related problems, such as machine transla-
tion (Sutskever et al., 2014) and language modelling
(Mikolov et al., 2010).

In an SRN, an input xt is fed to the network
at each time t. The hidden layer h, which has
activation ht−1 right before xt comes in, plays a
role as a memory store capturing the whole history(
x0, ...,xt−1

)
. When xt comes in, the hidden layer

updates its activation by

ht = g
(
Wxxt + Whht−1 + b

)

Figure 3: Simple recurrent neural network (left) and long
short-term memory (right). Bias vectors are removed for
the simplicity.

where Wx ∈ R|h|×|xt|, Wh ∈ R|h|×|h|, b ∈ R|h|
are weight matrices and a bias vector; g is an activa-
tion.

This network model thus, in theory, can be used
to estimate probabilities conditioning on long histo-
ries. And computing gradients is efficient thanks to
the back-propagation through time algorithm (Wer-
bos, 1990). In practice, however, training recurrent
neural networks with the gradient descent method is
challenging because gradients ∂Jt/∂hj (j ≤ t, Jt is
the objective function at time t) vanish quickly af-
ter a few back-propagation steps (Hochreiter et al.,
2001). In addition, it is difficult to capture long
range dependencies, i.e. the output at time t depends
on some inputs that happened very long time ago.
One solution for this, proposed by Hochreiter and
Schmidhuber (1997) and enhanced by Gers (2001),
is long short-term memory (LSTM).

Long Short-Term Memory The main idea of the
LSTM architecture is to maintain a memory of
all inputs the hidden layer received over time, by
adding up all (gated) inputs to the hidden layer
through time to a memory cell. In this way, er-
rors propagated back through time do not vanish
and even inputs received a very long time ago are
still (approximately) preserved and can play a role
in computing the output of the network (see the il-
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lustration in Graves (2012, Chapter 4)).
An LSTM cell (see Figure 3-right) consists of a

memory cell c, an input gate i, a forget gate f , an
output gate o. Computations occur in this cell are
given below

it = σ
(
Wxixt + Whiht−1 + Wcict−1 + bi

)
ft = σ

(
Wxfxt + Whfht−1 + Wcfct−1 + bf

)
ct = ft � ct−1+

it � tanh
(
Wxcxt + Whcht−1 + bc

)
ot = σ

(
Wxoxt + Whoht−1 + Wcoct + bo

)
ht = ot � tanh(ct)

where σ is the sigmoid function; it, ft, ot are the
outputs (i.e. activations) of the corresponding gates;
ct is the state of the memory cell; � denotes the
element-wise multiplication operator; W’s and b’s
are weight matrices and bias vectors.

Because the sigmoid function has the output range
(0, 1) (see Figure 2), activations of those gates can
be seen as normalized weights. Therefore, intu-
itively, the network can learn to use the input gate
to decide when to memorize information, and simi-
larly learn to use the output gate to decide when to
access that memory. The forget gate, finally, is to
reset the memory.

3 Long Short-Term Memory in RNNs

In this section, we propose an extension of the
LSTM for the RNN model (see Figure 4). A key
feature of the RNN is to hierarchically combine in-
formation from two children to compute the parent
vector; the idea in this section is to extend the LSTM
such that not only the output from each of the chil-
dren is used, but also the contents of their memory
cells. This way, the network has the option to store
information when processing constituents low in the
parse tree, and make it available later on when it is
processing constituents high in the parse tree.

For the simplicity 2, we assume that the parent
node p has two children a and b. The LSTM at p
thus has two input gates i1, i2 and two forget gates
f1, f2 for the two children. Computations occuring
in this LSTM are:

2Extending our LSTM for n-ary trees is trivial.

Figure 4: Long short-term memory for recursive neural
network.

i1 = σ
(
Wi1x + Wi2y + Wci1cx + Wci2cy + bi

)
i2 = σ

(
Wi1y + Wi2x + Wci1cy + Wci2cx + bi

)
f1 = σ

(
Wf1x + Wf2y + Wcf1cx + Wcf2cy + bf

)
f2 = σ

(
Wf1y + Wf2x + Wcf1cy + Wcf2cx + bf

)
cp = f1 � cx + f2 � cy+

g
(
Wc1x� i1 + Wc2y � i2 + bc

)
o = σ

(
Wo1x + Wo2y + Wcoc + bo

)
p = o� g(cp)

where u and cu are the output and the state of the
memory cell at node u; i1, i2, f1, f2, o are the acti-
vations of the corresponding gates; W’s and b’s are
weight matrices and bias vectors; and g is an activa-
tion function.

Intuitively, the input gate ij lets the LSTM at the
parent node decide how important the output at the
j-th child is. If it is important, the input gate ij
will have an activation close to 1. Moreover, the
LSTM controls, using the forget gate fj , the degree
to which information from the memory of the j-th
child should be added to its memory.

Using one input gate and one forget gate for each
child makes the LSTM flexible in storing memory
and computing composition. For instance, in a com-
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plex sentence containing a main clause and a depen-
dent clause it could be beneficial if only information
about the main clause is passed on to higher lev-
els. This can be achieved by having low values for
the input gate and the forget gate for the child node
that covers the dependent clause, and high values for
the gates corresponding to the child node covering
(a part of) the main clause. More interestingly, this
LSTM can even allow a child to contribute to com-
position by activating the corresponding input gate,
but ignore the child’s memory by deactivating the
corresponding forget gate. This happens when the
information given by the child is temporarily impor-
tant only.

4 LSTM-RNN model for Sentiment
Analysis 3

In this section, we introduce a model using the pro-
posed LSTM for sentiment analysis. Our model,
named LSTM-RNN, is an extension of the tradi-
tional RNN model (see Section 2.2) where tradi-
tional composition function g’s in Equations 2- 3 are
replaced by our proposed LSTM (see Figure 5). On
top of the node covering a phrase/word, if its sen-
timent class (e.g. positive, negative, or neutral) is
available, we put a softmax layer (see Equation 1) to
compute the probability of assigning a class to it.

The vector representations of words (i.e. word
embeddings) can be initialized randomly, or pre-
trained. The memory of any leaf node w, i.e. cw,
is 0.

Similarly to Irsoy and Cardie (2014), we ‘untie’
leaf nodes and inner nodes: we use one weight ma-
trix set for leaf nodes and another set for inner nodes.
Hence, let dw and d respectively be the dimensions
of word embeddings (leaf nodes) and vector repre-
sentations of phrases (inner nodes), all weight ma-
trices from a leaf node to an inner node have size
d × dw, and all weight matrices from an inner node
to another inner node have size d× d.

3The LSTM architecture was already applied to the
sentiment analysis task, for instance in the model proposed
at http://deeplearning.net/tutorial/lstm.
html. Independently from and concurrently with our work,
Tai et al. (2015) and Zhu et al. (2015) have developed very
similar models applying LTSM to RNNs.

Training Training this model is to minimize the
following objective function, which is the cross-
entropy over training sentence set D plus an L2-
norm regularization term

J(θ) = − 1
|D|

∑
s∈D

∑
p∈s

logPr(cp|p) +
λ

2
||θ||2

where θ is the parameter set, cp is the sentiment class
of phrase p, p is the vector representation at the node
covering p, Pr(cp|p) is computed by the softmax
function, and λ is the regularization parameter. Like
training an RNN, we use the mini-batch gradient
descent method to minimize J , where the gradient
∂J/∂θ is computed efficiently thanks to the back-
propagation through structure (Goller and Küchler,
1996). We use the AdaGrad method (Duchi et al.,
2011) to automatically update the learning rate for
each parameter.

4.1 Complexity
We analyse the complexities of the RNN and LSTM-
RNN models in the forward phase, i.e. computing
vector representations for inner nodes and classifi-
cation probabilities. The complexities in the back-
ward phase, i.e. computing gradients ∂J/∂θ, can be
analysed similarly.

The complexities of the two models are domi-
nated by the matrix-vector multiplications that are
carried out. Since the number of sentiment classes
is very small (5 or 2 in our experiments) compared
to d and dw, we only consider those matrix-vector
multiplications which are for computing vector rep-
resentations at the inner nodes.

For a sentence consisting of N words, assuming
that its parse tree is binarized without any unary
branch (as in the data set we use in our experiments),
there areN−1 inner nodes,N links from leaf nodes
to inner nodes, and N − 2 links from inner nodes to
other inner nodes. The complexity of RNN in the
forward phase is thus approximately

N × d× dw + (N − 2)× d× d
The complexity of LSTM-RNN is approximately

N×6×d×dw+(N−2)×10×d×d+(N−1)×d×d
If dw ≈ d, the complexity of LSTM-RNN is about
8.5 times higher than the complexity of RNN.
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Figure 5: The RNN model (left) and LSTM-RNN model (right) for sentiment analysis.

In our experiments, this difference is not a prob-
lem because training and evaluating the LSTM-
RNN model is very fast: it took us, on a single core
of a modern computer, about 10 minutes to train the
model (d = 50, dw = 100) on 8544 sentences, and
about 2 seconds to evaluate it on 2210 sentences.

5 Experiments

5.1 Dataset

We used the Stanford Sentiment Treebank4 (Socher
et al., 2013b) which consists of 5-way fine-grained
sentiment labels (very negative, negative, neutral,
positive, very positive) for 215,154 phrases of
11,855 sentences. The standard splitting is also
given: 8544 sentences for training, 1101 for devel-
opment, and 2210 for testing. The average sentence
length is 19.1.

In addition, the treebank also supports binary sen-
timent (positive, negative) classification by remov-
ing neutral labels, leading to: 6920 sentences for
training, 872 for development, and 1821 for testing.

The evaluation metric is the accuracy, given by
100×#correct

#total .

5.2 LSTM-RNN vs. RNN

Setting We initialized the word vectors by the
100-D GloVe5 word embeddings (Pennington et
al., 2014), which were trained on a 6B-word cor-
pus. The initial values for a weight matrix were
uniformly sampled from the symmetric interval[− 1√

n
, 1√

n

]
where n is the number of total input

units.
4http://nlp.stanford.edu/sentiment/

treebank.html
5http://nlp.stanford.edu/projects/GloVe/

Figure 6: Boxplots of accuracies of 10 runs of RNN and
LSTM-RNN on the test set in the fine-grained classifica-
tion task. (LSTM stands for LSTM-RNN.)

For each model (RNN and LSTM-RNN), we
tested three activation functions: softmax, tanh, and
softsign, leading to six sub-models. Tuning those
sub-models on the development set, we chose the
dimensions of vector representations at inner nodes
d = 50, learning rate 0.05, regularization parameter
λ = 10−3, and mini-batch-size 5.

On each task, we run each sub-model 10 times.
Each time, we trained the sub-model in 20 epochs
and selected the network achieving the highest ac-
curacy on the development set.

Results Figure 6 and 7 show the statistics of the
accuracies of the final networks on the test set in the
fine-grained classification task and binary classifica-
tion task, respectively.

It can be seen that LSTM-RNN outperformed
RNN when using the tanh or softsign activation
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Figure 7: Boxplot of accuracies of 10 runs of RNN and
LSTM-RNN on the test set in the binary classification
task. (LSTM stands for LSTM-RNN.)

functions. With the sigmoid activation function, the
difference is not so clear, but it seems that LSTM-
RNN performed slightly better. Tanh-LSTM-RNN
and softsign-LSTM-RNN have the highest median
accuracies (48.1 and 86.4) in the fine-grained clas-
sification task and in the binary classification task,
respectively.

With the RNN model, it is surprising to see that
the sigmoid function performed well, comparably
with the other two functions in the fine-grained task,
and even better than the softsign function in the bi-
nary task, given that it was not often chosen in recent
work. The softsign function, which was shown to
work better than tanh for deep networks (Glorot and
Bengio, 2010), however, did not yield improvements
in this experiment.

With the LSTM-RNN model, the tanh function,
in general, worked best whereas the sigmoid func-
tion was the worst. This result agrees with the
common choice for this activation function for the
LSTM architecture in recurrent network research
(Gers, 2001; Sutskever et al., 2014).

5.3 Compared against other Models

We compare LSTM-RNN (using tanh) in the pre-
vious experiment against existing models: Naive
Bayes with bag of bigram features (BiNB), Re-
cursive neural tensor network (RNTN) (Socher et
al., 2013b), Convolutional neural network (CNN)
(Kim, 2014), Dynamic convolutional neural network

Model Fine-grained Binary
BiNB 41.9 83.1
RNTN 45.7 85.4
CNN 48.0 88.1
DCNN 48.5 86.8
PV 48.7 87.8
DRNN 49.8 86.6
with GloVe-100D
LSTM-RNN 48.0 86.2
with GloVe-300D
LSTM-RNN 49.9 88.0

Table 1: Accuracies of the (tanh) LSTM-RNN compared
with other models.

(DCNN) (Kalchbrenner et al., 2014), paragraph vec-
tors (PV) (Le and Mikolov, 2014), and Deep RNN
(DRNN) (Irsoy and Cardie, 2014).

Among them, BiNB is the only one that is not a
neural net model. RNTN and DRNN are two ex-
tensions of RNN. Whereas RNTN, which keeps the
structure of the RNN, uses both matrix-vector multi-
plication and tensor product for the composition pur-
pose, DRNN makes the net deeper by concatenat-
ing more than one RNNs horizontally. CNN, DCNN
and PV do not rely on syntactic trees. CNN uses a
convolutional layer and a max-pooling layer to han-
dle sequences with different lengths. DCNN is hi-
erarchical in the sense that it stacks more than one
convolutional layers with k-max pooling layers in
between. In PV, a sentence (or document) is rep-
resented as an input vector to predict which words
appear in it.

Table 1 (above the dashed line) shows the accura-
cies of those models. The accuracies of LSTM-RNN
was taken from the network achieving the highest
performance out of 10 runs on the development set.
The accuracies of the other models are copied from
the corresponding papers. LSTM-RNN clearly per-
formed worse than DCNN, PV, DRNN in both tasks,
and worse than CNN in the binary task.

5.4 Toward State-of-the-art with Better Word
Embeddings

We focus on DRNN, which is the most similar
to LSTM-RNN among those four models CNN,
DCNN, PV and DRNN. In fact, from the results re-
ported in Irsoy and Cardie (2014, Table 1a), LSTM-
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RNN performed on par6 with their 1-layer-DRNN
(d = 340) using dropout, which is to randomly
remove some neurons during training. Dropout is
a powerful technique to train neural networks, not
only because it plays a role as a strong regulariza-
tion method to prohibit neurons co-adapting, but it
is also considered a technique to efficiently make an
ensemble of a large number of shared weight neu-
ral networks (Srivastava et al., 2014). Thanks to
dropout, Irsoy and Cardie (2014) boosted the accu-
racy of a 3-layer-DRNN with d = 200 from 46.06
to 49.5 in the fine-grained task.

In the second experiment, we tried to boost the
accuracy of the LSTM-RNN model. Inspired by Ir-
soy and Cardie (2014), we tried using dropout and
better word embeddings. Dropout, however, did
not work with LSTM. The reason might be that
dropout corrupted its memory, thus making train-
ing more difficult. Better word embeddings did pay
off, however. We used 300-D GloVe word embed-
dings trained on a 840B-word corpus. Testing on the
development set, we chose the same values for the
hyper-parameters as in the first experiment, except
setting learning rate 0.01. We also run the model
10 times and selected the networks getting the high-
est accuracies on the development set. Table 1 (be-
low the dashed line) shows the results. Using the
300-D GloVe word embeddings was very helpful:
LSTM-RNN performed on par with DRNN in the
fine-grained task, and with CNN in the binary task.
Therefore, taking into account both tasks, LSTM-
RNN with the 300-D GloVe word embeddings out-
performed all other models.

6 Discussion and Conclusion

We proposed a new composition method for the re-
cursive neural network (RNN) model by extending
the long short-term memory (LSTM) architecture
which is widely used in recurrent neural network re-
search.

6Irsoy and Cardie (2014) used the 300-D word2vec word
embeddings trained on a 100B-word corpus whereas we used
the 100-D GloVe word embeddings trained on a 6B-word cor-
pus. From the fact that they achieved the accuracy 46.1 with
an RNN (d = 50) in the fine-grained task and 85.3 in the
binary task, and our implementation of RNN (d = 50) per-
formed worse (see Table 6 and 7), we conclude that the 100-D
GloVe word embeddings are not more suitable than the 300-D
word2vec word embeddings.

The question is why LSTM-RNN performed bet-
ter than the traditional RNN. Here, based on the fact
that the LSTM for RNNs should work very sim-
ilarly to LSTM for recurrent neural networks, we
borrow the argument given in Bengio et al. (2013,
Section 3.2) to answer the question. Bengio explains
that the LSTM behaves like low-pass filter “hence
they can be used to focus certain units on differ-
ent frequency regions of the data”. This suggests
that the LSTM plays a role as a lossy compressor
which is to keep global information by focusing on
low frequency regions and remove noise by ignor-
ing high frequency regions. So composition in this
case could be seen as compression, like the recursive
auto-encoder (RAE) (Socher et al., 2011a). Because
pre-training an RNN as an RAE can boost the over-
all performance (Socher et al., 2011a; Socher et al.,
2011c), seeing LSTM as a compressor might explain
why the LSTM-RNN worked better than RNN with-
out pre-training.

Comparing LSTM-RNN against DRNN (Irsoy
and Cardie, 2014) gives us a hint about how to im-
prove our model. From the experimental results,
LSTM-RNN without the 300-D GloVe word embed-
dings performed worse than DRNN, while DRNN
gained a significant improvement thanks to dropout.
Finding a method like dropout that does not corrupt
the LSTM memory might boost the overall perfor-
mance significantly and will be a topic for our future
work.
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Abstract

A range of approaches to the representa-
tion of lexical semantics have been explored
within Computational Linguistics. Two of the
most popular are distributional and knowledge-
based models. This paper proposes hybrid
models of lexical semantics that combine the
advantages of these two approaches. Our mod-
els provide robust representations of synony-
mous words derived from WordNet. We also
make use of WordNet’s hierarcy to refine the
synset vectors. The models are evaluated on
two widely explored tasks involving lexical
semantics: lexical similarity and Word Sense
Disambiguation. The hybrid models are found
to perform better than standard distributional
models and have the additional benefit of mod-
elling polysemy.

1 Introduction

The representation of lexical semantics is a core prob-
lem in Computational Linguistics and a variety of
approaches have been developed. Two of the most
widely explored have been knowledge-based and dis-
tributional semantics.

Knowledge-based approaches make use of some
external information source which defines the set of
possible meanings for each lexical item. The most
widely used information source is WordNet (Fell-
baum, 1998), although other resources, such as Ma-
chine Readable Dictionaries, thesaurii and ontologies
have also been used (see Navigli (2009)).

One advantage of these resources is that they rep-
resent the various possible meanings of lexical items

which makes it straightforward to identify ones that
are ambiguous. For example, these resources would
include multiple meanings for the word ball includ-
ing the ‘event’ and ‘sports equipment’ senses. How-
ever, the fact that there are multiple meanings as-
sociated with ambiguous lexical items can also be
problematic since it may not be straightforward to
identify which one is being used for an instance of an
ambiguous word in text. This issue has lead to signif-
icant exploration of the problem of Word Sense Dis-
ambiguation (Ide and Véronis, 1998; Navigli, 2009).

More recently distributional semantics has become
a popular approach to representing lexical semantics
(Turney and Pantel, 2010; Erk, 2012). These ap-
proaches are based on the premise that the semantics
of lexical items can be modelled by their context
(Firth, 1957; Harris, 1985). Distributional seman-
tic models have the advantages of being robust and
straightforward to create from unannotated corpora.
However, problems can arise when they are used to
represent the semantics of polysemous words. Distri-
butional semantic models are generally constructed
by examining the context of lexical items in unanno-
tated corpora. But for ambiguous words, like ball,
it is not clear if a particular instance of the word in
a corpus refers to the ‘event’, ‘sports equipment’ or
another sense which can lead to the distributional se-
mantic model becoming a mixture of different mean-
ings without representing any of the meanings indi-
vidually.

This paper proposes models that merge elements
of distributional and knowledge-based approaches to
lexical semantics and combines advantages of both
techniques. A standard distributional semantic model
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is created from an unannotated corpus and then re-
fined using WordNet. The resulting models can be
viewed as enhanced distributional models that have
been refined using the information from WordNet
to reduce the problems caused by ambiguous terms
when models are created. Alternatively, it can be used
as a version of the WordNet hierarchy in which dis-
tributional semantic models are attached to synsets.
Thereby creating a version of WordNet for which the
appropriate synsets can be identified more easily for
ambiguous lexical items that occur in text.

We evaluate our models on two standard tasks: lex-
ical similarity and word sense disambiguation. Re-
sults show that the proposed hybrid models perform
consistently better than traditional distributional se-
mantic models.

The reminder of the paper is organised as follows.
Section 2 describes our hybrid models which com-
bine information from WordNet and a standard dis-
tributional semantic model. These models are aug-
mented using Latent Semantic Analysis and Canoni-
cal Correlation Analysis. Sections 3 and 4 describe
evaluation of the models on the word similarity and
word sense disambiguation tasks. Related work is
presented in Section 5 and conclusions in Section 6.

2 Semantic Models

First, we consider a standard distributional seman-
tic space to represent words as vectors (Section 2.1).
Then, we make use of the WordNet’s clusters of syn-
onyms and hierarchy in combination with the stan-
dard distributional space to build hybrid models (Sec-
tion 2.2) which are augmented using Latent Semantic
Analysis (Section 2.3) and Canonical Correlation
Analysis (Section 2.4).

2.1 Distributional Model

We consider a semantic space D, as a word by con-
text feature matrix, L × C. Vector representations
consist of context features C in a reference corpus.
We made use of pre-computed publicly available vec-
tors1 optimised for word similarity tasks (Baroni et
al., 2014). Word co-occurrence counts are extracted
using a symmetric window of two words over a cor-
pus of 2.8 billion tokens obtained by concatenating

1http://clic.cimec.unitn.it/composes/
semantic-vectors.html

ukWaC, the English Wikipedia and the British Na-
tional Corpus. Vectors are weighted using positive
Pointwise Mutual Information and the set of context
features consists of the top 300K most frequent words
in the corpus.

2.2 Hybrid Models

2.2.1 Synset Distributional Model
We assume that making use of information about

the structure of WordNet can reduce noise introduced
in vectors of D due to polysemy. We make use of
all noun and verb synsets (excluding numbers and
compounds) that contain at least one of the words in
L to create a vector-based synset representation, H .
Where H is a synset by context feature matrix, i.e.
S×C. Each synset vector is generated by computing
the centroid of its lemma vectors in S (i.e. the sum
of the lemma’s vectors normalised by the number of
the lemmas in the synset). For example, the vector of
the synset car.n.01 is computed as the centroid of its
lemma vectors, i.e. car, auto, automobile, machine
and motorcar (see Figure 1).

2.2.2 Synset Rank Model
The Synset Distributional Model provides a vector

representation for each synset in WordNet which is
created using information about which lemmas share
synset membership. An advantage of this approach
is that vectors from multiple lemmas are combined to
form the synset representation. However, a disadvan-
tage is that many of these lemmas are polysemous
and their vectors represent multiple senses, not just
the one that is relevant to the synset. For example,
in WordNet the lemma machine has several possi-
ble meanings, only one of which is a member of the
synset car.n.01.

WordNet also contains information about the re-
lations between synsets, in the form of the synset
hierarchy, which can be exploited to re-weight the
importance of context features for particular synsets.
We employ a graph-based algorithm that makes use
of the WordNet is-a hierarchy. The intuition behind
this approach is that context features that are relevant
to a given synset are likely to be shared by its neigh-
bours in the hierarchy while those that are not rele-
vant (i.e. have been introduced via an irrelevant sense
of a synset member) will not be. The graph-based
algorithm increases the weight of context features
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auto
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machine

motorcar

~car
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~motorcar

+ ~car.n.01

Figure 1: In the Synset Distributional Model the vector representing a synset (white box) is computed as the
centroid of its lemma vectors (grey boxes)

that synsets share with neighbours and reduces those
that are not shared.

PageRank (Page et al., 1999) is a graph-based algo-
rithm for identifying important nodes in a graph that
has been applied to a range of NLP tasks including
word sense disambiguation (Agirre and Soroa, 2009)
and keyword extraction (Mihalcea and Tarau, 2004).

Let G = (V,E) be a graph with a set of vertices,
V , denoting synsets and a set of edges, E, denoting
links between synsets in the WordNet hierarchy. The
PageRank score (Pr) over G for a synset (Vi) can be
computed by the following equation:

Pr(Vi) = d ·
∑

Vj∈I(Vi)

1

O(Vj)
Pr(Vj) + (1 − d)v (1)

where I(Vi) denotes the in-degree of the vertex Vi
and O(Vj) is the out-degree of vertex Vj . d is the
damping factor which is set to the default value of
d = 0.85 (Page et al., 1999). In standard PageRank
all elements of the vector v are the same, 1

N where
N is the number of nodes in the graph.

Personalised PageRank (PPR) (Haveliwala et al.,
2003) is a variant of the PageRank algorithm in which
extra importance is assigned to certain vertices in the
graph. This is achieved by adjusting the values of
the vector v in equation 1 to prefer certain nodes.
The values in v effectively initialises the graph and
assigning high values to nodes in v makes them more
likely to be assigned a high PPR score.

For each context feature c in C if c ∈ LM where
LM contains all the lemma names of synsets in S,
we apply PPR to assign importance to synsets. The
score of each synset Sc in the personalisation vector

v, is set to 1
|Sc| where |Sc| is the number of synsets

that context feature i belongs. The personalisation
value of all the other sysnets is set to 0.

We apply PPR over WordNet for each context
feature using UKB (Agirre et al., 2009) and obtain
weights for each synset-context feature pair resulting
to a new semantic space Hp, S × C, where vector
elements are weighted by PageRank values. Figure 2
shows how the synset scores are computed by ap-
plying PPR over WordNet given the context feature
car. Note that we use the context features of the
distributional model D.

2.3 Latent Semantic Analysis

Latent Semantic Analysis (LSA) (Deerwester et al.,
1990; Landauer and Dumais, 1997) has been used to
reduce the dimensionality of semantic spaces lead-
ing to improved performance. LSA applies Sin-
gular Value Decomposition (SVD) to a matrix X ,
W × C, which represents a distributional semantic
space. This is a form of factor analysis where X is
decomposed into three other matrices:

X = UΣV T (2)

where U is a W ×W matrix of row vectors where its
columns are eigenvectors of XXT , Σ is a diagonal
W × C matrix containing the singular values and V
is a C × C matrix of context feature vectors where
its columns are eigenvectors of XTX . The multi-
plication of the three component matrices results in
the original matrix, X . Any matrix can be decom-
posed perfectly if the number of singular values is
no smaller than the smallest dimension of X . When
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Figure 2: In the Synset Rank Model, each synset (grey boxes) is assigned with a score by computing PPR
over WordNet. The personalisation vector (grey array) is initialised by assigning probabilities only to the
synsets that include the context feature as a lemma name.

fewer singular values are used then the matrix prod-
uct is an approximation of the original matrix. LSA
reduces the dimensionality of the SVD by deleting
coefficients in the diagonal matrix Σ starting with the
smallest. The approximation of matrix X retaining
the K largest singular values, X̃ , is then given by:

X̃ ≈ UKΣKV
T
K (3)

where UK is a W ×K matrix of word vectors, ΣK

is a K ×K diagonal matrix with singular values and
VK is a K × C matrix of context feature vectors.

We apply LSA on the Synset Distributional Model,
H and the Synset Rank model, Hp to obtained the
reduced semantic spaces H̃ and H̃p respectively.

2.4 Joint Representation using CCA
Recent work has demonstrated that distributional
models can benefit from combining alternative views
of data (see Section 5). H and Hp provide two dif-
ferent views of the synsets and we incorporate evi-
dence from both to learn a joint representation using
Canonical Correlation Analysis (CCA) (Hardoon et
al., 2004). Given two multidimensional variables x
and y, CCA finds two projection vectors by max-
imising the correlations of the variables onto these
projections. The function to be maximised is:

ρ =
E[xy]√
E[x2]E[y2]

(4)

The dimensionality of the projection vectors is lower
or equal to the dimensionality of the original vari-
ables.

The computation of CCA directly over H and Hp
is computationally infeasible because of their high
dimensionality (300K). We apply CCA over the re-
duced spaces learned using LSA, H̃ and H̃p to ob-
tain two joint semantic spaces following a similar
approach to Faruqui and Dyer (2014). These are
the spaces H∗, resulting from the projection of the
Synset Distributional Model H̃ , and H∗p , resulting
from the projection of the Synset Rank Model H̃p.

3 Word Similarity

3.1 Computing Similarity
Since hybrid models represent words as synset vec-
tors, similarity between two words can be computed
following two ways. First, we compute similarity be-
tween two words as the maximum of their pairwise
synset similarity. On the other hand, similarity can be
computed as the average pairwise synset similarity
using the synsets that the two words belong. Similar-
ity is computed as the cosine of the angle between
word or synset vectors.

3.2 Data
We make use of six standard data sets that have been
widely used for evaluating lexical similarity and relat-
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Max

Model WS-353 WS-Sim WS-Rel RG MC MEN

Distributional Model

D 0.62 0.70 0.59 0.79 0.72 0.72

Hybrid Models - Full

H 0.49 0.60 0.36 0.69 0.64 0.58

Hp 0.58 0.67 0.49 0.82 0.86 0.63

Hybrid Models - LSA

H̃ 0.55 0.69 0.42 0.71 0.71 0.54

H̃p 0.58 0.68 0.46 0.85 0.86 0.55

Hybrid Models - CCA

H∗ 0.67 0.76 0.57 0.81 0.79 0.72

H∗p 0.52 0.62 0.41 0.86 0.80 0.56

Table 1: Spearman’s correlation on various data sets. Maximum similarity between pairs of synsets.

edness. First, we make use of WS-353 (Finkelstein
et al., 2001) which contains 353 pairs of words an-
notated by humans. Furthermore, we make use of
the similarity (WS-Sim) and relatedness (WS-Rel)
pairs of words created by Agirre et al. (2009) from
the original WS-353 data set.

We also made use of the RG (Rubenstein and
Goodenough, 1965) and MC (Miller and Charles,
1991) data sets which contain 65 and 30 pairs of
nouns respectively. Finally, we make use of the larger
MEN data set (Bruni et al., 2012) which contains
3,000 pairs of words that has been used as image
tags. Annotations are obtained using croudsourcing.

3.3 Model Parameters

The parameters we need to tune are the number of
the top components in LSA spaces, H̃ and H̃p, and
CCA spaces, H∗ and H∗p . For the LSA spaces, we
tune the number of the top k components in RG. We
set k ∈ {50, 100, ..., 1000} and select the value that
maximises performance which is k = 700 for H̃ and
k = 650 for H̃p. For the joint spaces learned using
CCA, we also tune the number of the top l correlated
features in RG. We set l ∈ {10, 20, ..., 650} and
select the value that maximises performance which

is l = 250 for H∗ and l = 40 for H∗p .

3.4 Evaluation Metric

Performance is measured as the correlation between
the similarity scores returned by each proposed
method and the human judgements. This is the stan-
dard approach to evaluate word and text similarity
tasks, e.g. (Budanitsky and Hirst, 2001; Agirre et
al., 2009; Agirre et al., 2012). Our experiments use
Spearman’s correlation coefficient.

3.5 Results

Table 1 shows the Spearman’s correlation of simi-
larity scores generated by each model and human
judgements of similarity across various data sets by
taking the maximum pairwise similarity score of two
words’ synsets. The first row of the table shows the
results obtained by the word distributional model
of Baroni et al. (2014). The full hybrid models H
and Hp perform consistently worse than the orig-
inal distributional model D across data sets. The
main reason is that a large number of synsets contain
only one lemma name which might be polysemous.
For example, the only lemma name of the synsets
‘ball.n.01’ (‘round object that is hit or thrown or
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Average

Model WS-353 WS-Sim WS-Rel RG MC MEN

Distributional Model

D 0.62 0.70 0.59 0.79 0.72 0.72

Hybrid Models - Full

H 0.61 0.71 0.52 0.72 0.65 0.64

Hp 0.65 0.73 0.56 0.79 0.81 0.58

Hybrid Models - LSA

H̃ 0.59 0.70 0.48 0.68 0.68 0.63

H̃p 0.65 0.73 0.56 0.81 0.86 0.58

Hybrid Models - CCA

H∗ 0.70 0.77 0.64 0.78 0.84 0.74

H∗p 0.61 0.69 0.52 0.72 0.76 0.62

Table 2: Spearman’s correlation on various data sets. Average pairwise similarity between pairs of synsets.

kicked in games’) and ‘ball.n.04’ (‘the people as-
sembled at a lavish formal dance’) is ‘ball’. In this
case, the synset vector in H and the lemma vector in
D are identical and still polysemous. This problem
does not hold in Hp and therefore the correlations
are higher for that semantic space but still lower than
those obtained for D. Applying LSA on H and Hp
improves results but correlations are still lower than
those obtained using D2. On the other hand, the
joint space learned by applying CCA, H∗, produces
consistently better similarity estimates than D while
outperforms all the other models in the majority of
the data sets. That confirms our main assumption
than incorporating information obtained from a large
corpus and a knowledge-base improves word vector
representations.

Table 2 shows the Spearman’s correlation of sim-
ilarity scores generated by each model and human
judgements of similarity across various data sets by
taking the average pairwise similarity score of two
words’ synsets. Results show that using the average
rather than the maximum system similarity improves
results for almost all data sets. For example, the best

2Note that Baroni et al. (2014) found that applying SVD to
D did not improve performance over using the full space.

hybrid model, H∗, achieves correlations that are be-
tween 2% and 12% than D for the majority of data
sets, although performance is 1% lower for the RG
data set. This improved performance suggest that hu-
man judgements of word similarity are based on the
relation between all the senses of two given words
rather than just the most similar ones.

4 Word Sense Disambiguation

4.1 Data

We test the efficiency of our hybrid models on the
English All Words tasks of Senseval-2 (Palmer et
al., 2001) and Senseval-3 (Snyder and Palmer, 2004),
two standard data sets for evaluating WSD. Our ex-
periments focus on the disambiguation of nouns in
these data sets.

4.2 Word Sense Tagging

A simple approach to all-words WSD was imple-
mented in which each sense of an ambiguous word
is compared against its context and the most similar
chosen.

For example suppose that we want to disambiguate
25



Nouns Senseval-2 Senseval-3

Precision Recall Precision Recall

Hybrid Models - Full

H 0.46 0.45 0.37 0.36

Hp 0.65 0.63 0.50 0.48

Hybrid Models - LSA

H̃ 0.45 0.44 0.39 0.37

H̃p 0.60 0.58 0.46 0.45

Hybrid Models - CCA

H∗ 0.44 0.43 0.36 0.34

H∗p 0.61 0.60 0.48 0.46

Table 3: Results obtained by hybrid models on SenseEval-2 and SenseEval-3 data sets (nouns only).

the word bank in the following sentence:

“Banks provide payment services.”

Assume that the word bank consists of two senses
‘bank.n.01’ and bank.n.02 defined as ‘sloping land
(especially the slope beside a body of water)’ and “a
financial institution that accepts deposits and chan-
nels the money into lending activities’ respectively.

First we consider the vectors of all the possible
noun synsets containing the word bank as a synset
name. Then for each context word (provide, payment
and service) that exists in our semantics spaces we
compute a centroid vector from its constituent senses.
Finally, we compute a context vector for the entire
context by summing up all the context word vectors.
We select the synset of the target word that its vector
has the highest cosine similarity to the context vector.

4.3 Model Parameters

The parameters we need to tune are the same as for
the word similarity task and we use the best settings
obtained for that task. We also experimented with
varying the number of surrounding sentences used
as context by testing values between ±1 and ±4.
The best performance was obtained using a context
created from the sentence containing the target word
and ±1 sentences surrounding it.

4.4 Evaluation Metrics

Word sense disambiguation systems are evaluated by
computing precision and recall. Precision measures
the proportion of disambiguated words that have been
correctly assigned with a sense. Recall measures the
proportion of words disambiguated correctly out of
all words available for disambiguation.

4.5 Results

Table 3 shows the results obtained by using our hy-
brid models on the two word sense disambiguation
data sets. The full Synset Rank model Hp is consis-
tently better method in terms of precision and recall
in both data sets. On the other hand, it is somewhat
surprising that dimensionality reduction and integra-
tion of semantic spaces do not help in improving
performance. That is the H̃p and H∗p models achieve
lower precision and recall than the fuller Hp.

The Synset Distributional models H , H̃ and H∗

consistently fail to perform well. The difference in
precision and recall compared to the Synset Rank
models is between 12% and 19%. This suggests that
the knowledge-based weighting of the context fea-
tures generates less noisy vectors for sense tagging.

The pattern of results observed for the WSD task
is somewhat different to those obtained for word
similarity, where applying LSA and CCA improved
performance (see Section 3). The most likely expla-
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nation of this difference is that WSD requires the
model to represent the possible senses of each am-
biguous word. It is also important that these senses
correspond to the ones used in the relevant lexicon
(WordNet in this case). The Synset Rank model Hp

does this by making use of information from Word-
Net. However, these synset representations are dis-
rupted by LSA and CCA which compress the seman-
tic space by extracting general features from them.
This is not a problem for word similarity since there
is no need to model the senses found in the lexicon.

5 Related Work

Dealing with polysemy in distributional semantics
is a fundamental issue since the various senses of a
word type are conflated in a single vector. Previous
work tackled the problem through vector adaptation,
clustering and language models (Erk, 2012). Vector
adaptation methods modify a traditional (i.e. poly-
semous) target word vector by applying pointwise
operations such as addition or multiplication to that
and the surrounding words in a sentence (Mitchell
and Lapata, 2008; Erk and Padó, 2008; Thater et
al., 2011; Van de Cruys et al., 2011). Alternatively,
clustering methods have been used to cluster together
the different contexts a target word appears assum-
ing that each cluster of contexts captures a different
sense of the target word (Dinu and Lapata, 2010;
Erk and Pado, 2010; Reisinger and Mooney, 2010).
Language models have also been used to remove pol-
ysemy from word vectors by predicting words that
could replace the target word given a context (De-
schacht and Moens, 2009; Washtell, 2010; Moon
and Erk, 2013). More recently, Polajnar and Clark
(2014) applied context selection and normalisation
to improve the quality of word vectors. Our hybrid
models are related to the vector adaptation methods
since we modify the synset vectors using its lemmas’
vectors to remove noise.

Our work is also inspired by recent work on im-
proving classic distributional vector representations
of words by incorporating information from different
modalities. For example, researchers have devel-
oped methods that make use of both visual and con-
textual information to improve word vectors (Bruni
et al., 2011; Silberer et al., 2013; Lazaridou et al.,
2014). Following a similar direction, Faruqui and

Dyer (2014) found that learning joint spaces from
multilingual vector spaces using CCA improves the
performance of standard monolingual vector spaces
on semantic similarity. Fyshe et al. (2014) showed
that integrating textual vector space models with
brain activation data when people are reading words
achieves better correlation to behavioural data than
models of one modality.

Our hybrid models are also closely related to a
supervised method proposed by Faruqui et al. (2015).
Their method refines distributional semantic mod-
els using relational information from various seman-
tic lexicons, including WordNet, by making linked
words in these lexicons to have similar vector repre-
sentations. While our models are also based on using
information from WordNet for refining vector repre-
sentations, they are fundamentally different. They
create synset vectors in an unsupervised fashion and
more importantly can be used for sense tagging.

6 Conclusions

This paper proposed hybrid models of lexical seman-
tics that combine distributional and knowledge-based
approaches and offer advantages of both techniques.
A standard distributional semantic model is created
from an unannotated corpus and then refined by (1)
using WordNet synsets to create synset vectors; and
(2) applying a graph-based technique over WordNet
to reweight synset vectors. The resulting hybrid mod-
els can be viewed as enhanced distributional models
using the information from WordNet to reduce the
problems caused by ambiguous terms when models
are created. Results show that our models perform
better than traditional distributional models on lex-
ical similarity tasks. Unlike standard distributional
approaches the techniques proposed here also model
polysemy and can be used to carry out word sense
disambiguation.
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Abstract

As they grow in size, OWL ontologies tend to
comprise intuitively incompatible statements,
even when they remain logically consistent.
This is true in particular of lightweight on-
tologies, especially the ones which aggregate
knowledge from different sources. The article
investigates how distributional semantics can
help detect and repair violation of common
sense in consistent ontologies, based on the
identification of consequences which are un-
likely to hold if the rest of the ontology does.
A score evaluating the plausibility for a con-
sequence to hold with regard to distributional
evidence is defined, as well as several methods
in order to decide which statements should be
preferably amended or discarded. A conclu-
sive evaluation is also provided, which con-
sists in extending an input ontology with ran-
domly generated statements, before trying to
discard them automatically.

1 Introduction

Ontology learning from texts deals with the auto-
mated extraction of knowledge from linguistic ev-
idence. This article investigates a slightly differ-
ent problem, which is how Natural Language Pro-
cessing may provide hints for the identification of
statements of an input ontology which are unlikely
to hold if the rest of it does. As a minimal exam-
ple, consider the following set ∆ of statements, from
DBpedia (Mendes et al., 2012), and assume that ∆ is

∗ The research reported here was supported by a Marie
Curie FP7 Career Integration Grant, Grant Agreement Number
PCIG13-GA-2013-618550.

a subset of a larger set of statements K (for instance
DBpedia itself, or some subset of it) :

Ex 1.
∆ = { (1) keyPerson(Caixa Bank, CEO),

(2) keyPerson(BrookField Office Properties,
Peter Munk)
(3) occupation(Peter Munk, CEO) }

There is a clear violation of common sense in ∆ :
the individual CEO must be both a key person of
Caixa Bank, and the occupation of another individ-
ual (Peter Munk), who is himself a key person of
some company. Detecting such cases within (larger)
sets of logical statements is of particular interest in
OWL, which facilitates the aggregation of knowl-
edge from multiple sources with overlapping signa-
tures, yielding datasets in which several incompati-
ble understandings of a same individual or predicate
may coexist. This easily leads to undesired infer-
ences, even when the dataset is logically consistent.1

But as the example illustrates, the problem may also
occur within a single knowledge base, especially if
it has been built semi-automatically, and/or is issued
from a collaborative effort.

Another problem of interest consists in deciding
which statement(s) should be preferably discarded
or amended in order to get rid of the nonsense. In
example 1, without further information, it would be
intuitively relevant to discard or modify either (1) or
(2). Unfortunately though, ∆ alone does not give
any indication of which of the two should be prefer-
ably discarded. But the whole input ontology K ⊃

1and coherent in the Description Logics sense, i.e. whose
signature contains unsatisfiable DL atomic concepts/OWL
named classes
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∆ may. To keep the example simple, let us assume
that Peter Munk, CEO and occupation do not ap-
pear in K \∆. Then a reasonable assumption is that
the overall understanding of keyPerson within K
should be the decisive factor. If it generally ranges
over person functions (i.e. if in most instances of the
relation according to K, the second argument is a
person function), then it is to be understood as “has
as a key person someone whose function is”, and
(2) should be preferably discarded. Alternatively, if
keyPerson generally ranges over human beings,
then (1) should be preferably discarded.

The article investigates the use of linguistic evi-
dence to solve both of these problems : identifying
violations of common sense, and selecting the state-
ment(s) to be preferably amended or discarded. This
may be viewed as a small paradigm shift, in that
it questions an assumption commonly made in the
knowledge extraction literature, namely that manu-
ally crafted knowledge strictly prevails over the one
obtained from linguistic sources. By default, the
case of a consistent2 input ontology K will be stud-
ied, but section 6 discusses the application of the ap-
proach to an inconsistent K as well.

As a concrete contribution, section 5 evaluates
the adaptation of relatively simple techniques issued
from named entity classification/ontology popula-
tion, and based on distributional semantics. To il-
lustrate how this works, let us assume that the only
other appearance of keyPerson within K is the
following OWL statement :

(4) hasRange(keyPerson, Person)

i.e. in FOL :

(4) ∀xy(keyPerson(x, y)→ Person(y))

Then K |= ψ1 = Person(CEO), and K |=
ψ2 = Person(Peter Munk). Assume also that
there are other instances of Person according to
K, and that most of them are actually human be-
ings (like Peter Munk). Then ψ1 is an undesirable
consequence of K, whereas ψ2 on the other hand
reinforces it.

Distributional semantics characterizes a word (or
possibly a multi word unit) by some algebraic rep-
resentation of the linguistic contexts with which it is
observed. These representations have already been

2and coherent (see footnote 1)

used for ontology population, for instance by (Tanev
and Magnini, 2008), the main intuition being that
individuals denoted by linguistic terms with similar
contexts tend to instantiate the same classes. The
underlying linguistic phenomenon is known as se-
lectional preference, i.e. the fact that some contexts
tend to select or rule out certain categories of in-
dividuals : e.g. the context “X was born in” tends
to select a human being, whereas “X was launched”
tends to rule it out. Back to the example, one can
expect the similarity between the distributional rep-
resentation of the term “C.E.O” and other terms de-
noting instances of Person according to K to be
relatively low, hindering the plausibility of ψ1 with
regard to K. In other words, ψ1 should stand as an
outlier among consequences of K, and therefore is
probably undesirable. Conversely, the similarity be-
tween “Peter Munk” and terms denoting other in-
stances of Person should be relatively high. For
simplicity, suppose that (1), (2), (3) and (4) are the
only 4 statements of K which are candidate for re-
moval. Then in order to give up the belief in ψ1

while preserving ψ2, it is necessary to discard (1),
and retain (2) and (4). It is also sufficient to discard
(1), i.e. discarding (3) as well would result in an un-
necessary information loss. So in this case, the ev-
idence provided by distributional semantics should
suggest the removal of (1), or at least its modifica-
tion, which is also intuitively the correct solution.

Section 4 formalizes this approach, by defining a
score which estimates the plausibility of some con-
sequences a subbases Γ of K, given distributional
evidence. Section 5 then provides an original eval-
uation of this strategy, based on the prior exten-
sion of a small OWL ontology with randomly gener-
ated statements. The approach is evaluated for both
problems, i.e. the identification of undesired con-
sequences and statements. Performances of several
forms of distributional representations are also com-
pared. Section 6 discusses immediate applications,
in particular for (consistent and inconsistent) ontol-
ogy debugging. Finally, section 7 considers possi-
ble extensions of this framework, as well as their
limitations. Section 2 is a brief overview of related
works in the fields of ontology learning and debug-
ging, whereas section 3 introduces notational con-
ventions, and lists some preliminary requirements to
be met by the input K.
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2 State of the art

Ontology learning from texts (Cimiano, 2006;
Buitelaar et al., 2005) aims to automatically build or
enriching a set of logical statements out of linguistic
evidence, and is closely related to the field of infor-
mation extraction. The work presented here borrows
from a subtask called ontology population (which it-
self borrows from named entity classification), but
only when the individuals and concepts of inter-
est are already known (Cimiano and Völker, 2005;
Tanev and Magnini, 2008; Giuliano and Gliozzo,
2008), which is not standard. A comparison may
also be drawn with the use of linguistic evidence by
(Suchanek et al., 2009) for information extraction in
the presence of conflicting data.

But the objective of the present work is different,
pertaining to ontology debugging, which covers a
wide range of techniques, from syntactic verifica-
tions (Poveda-Villalón et al., 2012) to anti-patterns
detection (Roussey and Zamazal, 2013), both based
on common modeling mistakes, or the submission
of models (Ferré and Rudolph, 2012; Benevides
et al., 2010) or consequences (Pammer, 2010) of
the input ontology to the user. As discussed in
section 6, the framework depicted here presents an
interesting complementarity with debugging tech-
niques developed in the Description Logics com-
munity, prototypically based on diagnosis (Friedrich
and Shchekotykhin, 2005; Kalyanpur et al., 2006;
Qi et al., 2008; Ribeiro and Wassermann, 2009), be-
cause they require the prior identification of some
undesired consequence of K (be it ⊥). But distribu-
tional evidence may also provide a principled way
of selecting most relevant diagnoses among a poten-
tially large number of candidates, as well as an al-
ternative to their exhaustive computation, which has
been shown costly by (Schlobach, 2005).

3 Conventions and presuppositions

The prototypical input is a set of statements in OWL
DL or OWL 2, although the approach may be gener-
alized to other representation languages. OWL DL
and OWL 2 are based on Description Logics (DL),
which are themselves decidable fragments of first-
order logic (FOL). The OWL notation is preferred
to the DL one for readability, and FOL translations
are given when not obvious.

An ontology is just understood here as a (finite)
set of logical statements. A class will designate a
named class in OWL, i.e. a FOL unary predicate,
like Person, whereas a named individual, or just
individual, designates a constant, like Peter Munk.

The input ontologyK must provide English terms
denoting some of its named individuals (e.g. the
term “Peter Munk”). These terms are prototypically
named entities, but may also occasionally be com-
mon nouns (or common noun phrases), as shown
in example 1 with “C.E.O”. There may be multiple
terms for a same individual. The approach cannot
handle polysemy though, in particular the fact that
some individuals of K may have homonyms (within
K or not), for instance that the term “JFK” can stand
for a politician, airport or movie. Ideally, no dis-
tributional representation should be built for indi-
viduals of K with potential homonyms. Some of
them may be identified with simple strategies, like
checking the existence of a Wikipedia disambigua-
tion page. On the opposite, labels for classes of
K (prototypically common nouns or common noun
phrases, which are arguably more ambiguous) are
never used during the process.

4 Proposition

Given a subbase Γ of the input ontology K (possi-
bly K itself), the ontology verification strategy pre-
sented in introduction relies on the evaluation of a
set ΨΓ of consequences of Γ. This section first de-
fines a score scΓ(ψ) for each ψ ∈ ΨΓ, which intu-
itively evaluates the plausibility of ψ wrt Γ, provided
some distributional representation for each named
individual appearing in ΨΓ. Then it discusses how
this score can be used to select statements of the in-
put ontology K which, according to distributional
evidence, should be preferably discarded, or at least
amended.

4.1 Plausibility of a consequence ψ ∈ ΨΓ

For the experiments described in section 5, ΨΓ is
the set of consequences of Γ of the form A(e) or
¬A(e), with e a constant (like CEO) and A a unary
predicate (like Person), and for which linguistic
occurrences of a term denoting e could be retrieved.
Possible extension of ΨΓ with other types of formu-
las is discussed in section 7.
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Let ψ be a formula of ΨΓ, of the form
A(e), e.g. ψ = Person(CEO) or ψ =
Person(Peter Munk). Then instΓ(A) will des-
ignate all instances of A according to Γ for
which linguistic occurrences could be retrieved, i.e.
instΓ(A) = {e′ | A(e′) ∈ ΨΓ}, and instΓ(A) \ {e}
will be called the support set for A(e). Similarly,
instΓ(>) will designate all named individuals ap-
pearing in ΨΓ.

Let sim(e1, e2) be a measure of similarity be-
tween the distributional representations of individ-
uals e1 and e2 (prototypically the cosine similar-
ity between some vector representations of the lin-
guistic contexts of e1 and e2). Then for each e′ ∈
instΓ(A) \ {e}, if sim(e, e′) is lower than what
could be expected if e′ was a random individual of
instΓ(>) \ {e} (i.e. not necessarily an instance of
A), the hypothesis that A(e) is an outlier within ΨΓ

will be reinforced.
For instance, in example 1, let ψ =

Person(CEO) and Γ = K. Then the sup-
port set instΓ(A) \ {e} is composed of all other
instances of Person according to Γ. For each indi-
vidual e′ of this support set, if sim(CEO, e′) is lower
than what can be expected for a random individual
of K with linguistic occurrences (and different
from CEO), then the confidence in Person(CEO)
should decline. Conversely, if sim(e, e′) is higher
that expected, the hypothesis that ψ is in line with
ΨΓ will be reinforced.

Here is a cost-efficient and relatively simple
method to compute a plausibility score scΓ(A(e)).
Let S = instΓ(A)\{e} designate the support set for
Γ and e, and |S| the cardinality of S, i.e. the number
of other instances of A according to Γ. And let us
assume a set W of |S| randomly chosen elements
of instΓ(T ) \ {e}, i.e. of |S| individuals which are
different from e, but not necessarily instances of A.
Finally, let the random variable XΓ

e,|S| model the

expected value of
∑
e′∈W

sim(e,e′)
|S| , i.e. the mean of the

similarities between e and each individual of W .
In other words, if |S| individuals were randomly
chosen instead of those of the support set, XΓ

e,|S|
models what the average similarity between e and
these individuals can be expected to be. Then the
plausibility scΓ(A(e)) of A(e) can be defined by :

Definition 4.1. If S = instΓ(A) \ {e}, then
scΓ(A(e)) = p(XΓ

e,|S| ≤
∑
e′∈S

sim(e,e′)
|S| )

scΓ(A(e)) estimates of how surprisingly high the
similarity between e and the individuals of the sup-
port set S is, considering the overall similarity be-
tween e and the individuals of Γ.

For the evaluation described in section 5, the
random variable XΓ

e,|S| was assumed to follow a
beta distribution Beta(α, β), which intuitively al-
lows taking the size |S| of the support set into ac-
count. For instance, if S = {e′}, i.e. |S| = 1,
then ceteris paribus a high similarity between e
and e′ will be less informative than an equally high
average similarity between e and all elements of
a large S. Stated another way, the lower |S| is,
the more uniform the distribution of XΓ

e,|S| should
be. This can be obtained by setting XΓ

e,|S| ∼
Beta(m|S|+ 1, (1−m)|S|+ 1), where m is the
average similarity between e and all other individu-
als of the signature of Γ, i.e. m =

∑
e′∈Γ\{e}

sim(e,e′)
|Γ|−1 .

A possible interrogation here is the choice of
instΓ(A) \ {e} as the support set for A(e). For in-
stances, if ψ = Person(Peter Munk), a case could
be made for using instΓ(¬A) as well, i.e. for ex-
ploiting the (dis)similarity between Peter Munk and
individuals which, according to K, are instances of
¬Person.3 This is quite unrealistic though from
a linguistic point of view, which can be intuitively
seen in this example by replacing Peter Munk with
CEO. Assume for instance that Thelonious Monk
and Beijing are (reliable) instances of Person
and ¬Person respectively according to Γ. There
is no reason to expect that sim(CEO,Beijing) >
sim(CEO,Thelonious Monk). In other words, it is
implausible to assume that elements of instΓ(¬A)
should a priori share similar contexts.

Interestingly enough, and for the same reason,
the support set for a consequence of Γ of the
form ¬A(e) is not instΓ(¬A), but instΓ(A), which
yields :

Definition 4.2. If S = instΓ(A), then
scΓ(¬A(e)) = p(XΓ

e,|S| ≥
∑
e′∈S

sim(e,e′)
|S| )

3i.e. Γ |= ¬Person(e′) not only Γ 6|= Person(e′)
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4.2 Linguistic compliance of Γ

This does not directly address the second problem
mentioned in introduction though. For practical on-
tology verification, it is also desirable to identify the
cause of this nonsense, i.e. statements (axioms in the
DL terminology) which are intuitively problematic.
For instance, in example 1, computing scΓ(ψ) for
each ψ ∈ ΨK may signal that the consequence ψ1

is unlikely to hold wrt the larger ontology K. And
discarding either (1) or (4) is sufficient to get rid of
the belief in ψ. But given the additional assump-
tions made about K, discarding the former is prefer-
able, in that discarding the latter would also result in
the loss of ψ2. In other words, some subbases of K
(likeK\(1) here) are more relevant than others (e.g.
K \ (4)), which can be simply captured as follows.
Let comp(Γ) be an estimation of the compliance of
a subbase Γ of K with the gathered linguistic evi-
dence. A straightforward option consists in setting
comp(Γ) to be the mean of the scores of evaluated
consequences for Γ, i.e. :

Definition 4.3. comp(Γ) =
∑

ψ∈ΨΓ

scΓ(ψ)
|ΨΓ|

Then a strict partial order ≺ over 2K can sim-
ply be defined by Γ1 ≺ Γ2 iff either comp(Γ1) <
comp(Γ2), or (comp(Γ1) = comp(Γ2) and Γ1 ⊂
Γ2),4 and a subbase Γ of K can be viewed as opti-
mal if it is maximal wrt ≺.5

In practice though, identifying optimal subbases
is a non trivial task. To see this, note that the func-
tion to be maximized is not directly a function of
the statements in Γ, but of ΨΓ, i.e. some of the
consequences of Γ. So even if one could identify
a subset Ψ′ of ΨK which maximizes this function,
there may not exist a subbase Γ of K such that
ΨΓ = Ψ′. Another difficulty comes from the fact
that for two subbases Γ1 and Γ2 of K, and a con-
sequence ψ ∈ ΨΓ1 ∩ ΨΓ2 , it doesn’t hold in gen-
eral that scΓ1(ψ) = scΓ2(ψ), because the support
set for ψ in Γ1 may differ from its support set in

4The assumption is made that a minimum of syntactic in-
formation should be lost whenever possible, i.e. Γ1 and Γ2

are primarily viewed as bases, not as theories. In particular,
if Cn(Γ1) = Cn(Γ2), but Γ1 6⊆ Γ2 and Γ2 6⊆ Γ1, then Γ1 and
Γ2 are not comparable wrt≺. Redundancies in this view should
also be preserved when possible, i.e. if Cn(Γ1) = Cn(Γ2) and
Γ1 ⊂ Γ2, then Γ1 ≺ Γ2 still holds.

5There may be several several optimal subbases.

Γ2. In particular, it may be the case that Γ1 ⊆ Γ2

but scΓ1(ψ) > scΓ2(ψ), which greatly reduces the
possible uses of monotonicity (if Γ1 ⊆ Γ2, then
Cn(Γ1) ⊆ Cn(Γ2)) to optimize the exploration of
2K . More generally, if the optimal subbases of K
are small (say twice smaller that K), it can be right-
fully argued that dropping so many statements for
the sake of linguistic evidence is not a viable debug-
ging strategy.

Therefore a more plausible application scenario
is one in which the search space has been previously
circumscribed, either by setting a maximal (small)
number of statements to discard, or by identifying a
set of potentially erroneous statements, through ax-
iom pinpointing, as explained in section 6. This is
also why the evaluation presented in section 5 fo-
cuses on the simplest possible case, i.e. the removal
from K of one statement only, whereas the integra-
tion of distributional evidence to more complex de-
bugging strategies is discussed in section 6.

As an alternative to the function comp, and in or-
der to avoid the fact that a same consequence may
have different plausibility scores wrt two subbases
of K, one may choose to discard unlikely conse-
quences based on their respective scores in K, i.e.
to use the score compK(Γ),6 defined by :

Definition 4.4. compK(Γ) =
∑

ψ∈ΨΓ

scK(ψ)
|ΨΓ|

This solution is arguably less satisfying, but more
amenable to optimizations. A trivial example is that
of a subbase Γ1 with max

ψ∈ΨΓ1

scK(ψ) < compK(Γ2)

for some already evaluated subbase Γ2, in which
case no subbase of Γ1 can be optimal wrt ≺.

Additionally, instead of taking the mean of the
scores of evaluated consequences of Γ, one may
want to penalize the subbases of K with the most
unlikely consequences, which gives a standard (to-
tal) lexicographic ordering �lex on 2K , defined as
follows. Let ωΓ = ω1

Γ, .., ω
|ΨΓ|
Γ be the vector of

formulas of ΨΓ order by increasing score scΓ, and
let scΓ(ωΓ) = scΓ(ω1

Γ), .., scΓ(ω|ΨΓ|
Γ ). Then �lex

is defined by Γ1 �lex Γ2 iff either scΓ1(ωΓ1) =
scΓ2(ωΓ2), or (there is a 1 ≤ i ≤ |ΨΓ2 | such that
scΓ1(ωjΓ1

) = scΓ2(ωjΓ2
) for all 1 ≤ j < i, and either

scΓ1(ωiΓ1
) < scΓ2(ωiΓ2

) or |ΨΓ1 | = i − 1). Then

6or more generally compΓ′(Γ), for some Γ′ ⊇ Γ
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as previously, a strict partial order ≺ over 2K can
be defined by Γ1 ≺ Γ2 iff either Γ1 ≺lex Γ2, or
(Γ1 =lex Γ2 and Γ1 ⊂ Γ2).

Again, scK(ψ) may be used instead of scΓ(ψ),
yielding the lexical ordering �lexK

. This last possi-
bility corresponds to a relatively intuitive operation,
which consists in giving up in priority the most im-
plausible consequences of K. All four possibilities
are evaluated in what follows.

5 Evaluation

The dataset used for this evaluation is a fragment
of the fisheries ontology from the NEON project.7

It has been automatically built out of 10 randomly
selected named individuals, applying a module ex-
traction procedure, followed by a trimming algo-
rithm. The fragment contains 1038 (logical) state-
ments, and involves 71 named individuals (mostly
geographical or administrative entities), the least ex-
pressive underlying DL being SI.

The linguistic input is a small corpus of approxi-
mately 6300 web pages, retrieved with a search en-
gine, using the labels of named individuals of F as
queries. The HTML documents were cleaned with
the BootCat library (Baroni and Bernardini, 2004).

The construction of the distributional representa-
tions of the named individuals of F was basic, the
use of more elaborate methods (SVD,. . . ) being left
for future work. The approach presented in this ar-
ticle remains generic enough to be applied to most
existing distributional frameworks, the only require-
ment being a real-valued similarity measure.

Two different forms of linguistic contexts were
alternatively tested. The first option considers as a
context any n-gram (2 ≤ n ≤ 5) without punc-
tuation mark which immediately precedes or fol-
lows a term t denoting an individual of F . The
other option is a more customized one, extracting se-
quences of lemmatized words (lemmaPOS in what
follows) surrounding t, in a shifting window of 3
to 5 tokens + the size of t, ignoring certain cat-
egories of word. Part-of-speech tagging was per-
formed thanks to the Stanford Parser (Toutanova
et al., 2003), with a pre-trained model for English.
If Cont designates the set of contexts observed with
at least 2 individuals, then an individual was rep-

7http://www.neon-project.org/nw/Ontologies

resented by the vector of its respective frequencies
with each context c ∈ Cont. Different possibilities
were compared to weight these frequencies. The
pointwise mutual information (PMI) was used in a
standard way for n-grams and lemmaPOS contexts
(with possible negative resulting frequencies set to
0). Following (Giuliano and Gliozzo, 2008), the
self-information self(c) was also used for n-grams,
defined by self(c) = − log p(c), the probability
p(c) being estimated thanks to the Microsoft Web
N-gram Services. A combined weighting by PMI
and self-information was also tested for n-grams.
These alternative settings are represented by capi-
tal letters in tables 1 and 2 : LP for lemmaPOS with
PMI, and NP, NS and NPS for n-grams with PMI,
self-information and both respectively.

The ontology F has been extended for the sake
of the evaluation, with statements randomly gener-
ated out of its signature. The underlying assumption
is that adding such statements to F is very likely
to generate violations of common sense (although
nothing prevents in theory the generation of plausi-
ble statements too). The goal for the evaluation was
then to automatically retrieve proper consequences
of each extension of F on the one hand, and the ran-
dom statements themselves on the other hand.

To prevent any misunderstanding, it should be
emphasized that this is not a realistic application
case. The input ontology was selected for its quality,
and degraded through random statement generation,
allowing an arguably artificial, but also very objec-
tive evaluation procedure (the only bias may come
from randomly generated statements which are ac-
tually plausible). By contrast, using a non modified
input dataset, and evaluating whether or not the ax-
ioms/consequences spotted by the algorithm are ac-
tually erroneous is a complex and subjective task,
with a possibly low inter-annotator agreement.

The generation procedure randomly selects a
statement φ ∈ F , and yields a statement φ′ with the
same syntactic structure as φ, but in which individ-
uals and predicates have been replaced by random
individuals and predicates appearing in F . For in-
stance, if φ = ∀xy(A(x) ∧ r(x, y)→ ¬B(y)), then
φ′ = ∀xy(C(x) ∧ s(x, y) → ¬D(y)), with C and
D (resp. s) randomly chosen among classes (resp.
binary predicates) of the signature of F .

100 randomly generated statements φ1, . . . , φ100
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rank p-val
LP 4.15 / 216.1 <0.001
NP 9.73 / 216.1 <0.001
NS 7.33 / 216.1 <0.001
NPS 5.59 / 216.1 <0.001

Table 1: Average ranking among ΨKi of the lowest-
ranked formula of Ψrand

Ki
, and p-value for the rankings of

all formulas of all Ψrand
Ki

were added independently to F , yielding 100 in-
put ontologies K1, . . . ,K100, such that each Ki was
consistent, and that there was at least one conse-
quence of the form A(e) or ¬A(e) entailed by Ki

but not by F , with e sharing at least one linguistic
context with some other individual of F . All 100
input ontologies are available online.8

The first part of the evaluation was performed
as follows. For each Ki and each ψ ∈ ΨKi , the
plausibility scKi(ψ) was computed as in definitions
4.1/4.2, and ΨKi was ordered by increasing plausi-
bility.9 Within ΨKi are consequences which were
not initially entailed by F , but have been obtained
after the extension of F with the random statement
φi. So in a sense, these consequences are ran-
domly generated too, and therefore one may expect
many of them to convey absurd information (for in-
stance Architect(Belgium)), or at least to be out-
liers (like Person(CEO) in ex 1) within ΨKi . Let
Ψrand
Ki

designate these additional consequences, i.e.
Ψrand
Ki

= ΨKi \ ΨF . If ψ ∈ Ψrand
Ki

, and if scKi(ψ) is
actually lower than for most other formulas of ΨKi ,
this would indicate that the plausibility score, as for-
mulated in definitions 4.1/4.2, is actually a good es-
timator.

In order to evaluate this, column “rank” in table
1 gives the average ranking (for all 100 ontologies)
within ΨKi of the formula ψi ∈ Ψrand

Ki
with low-

est score. The lower this ranking, the more efficient
the plausibility score is at detecting outlier conse-
quences. Column “pVal” gives the probability (t-
test) for the cumulated rankings of all formulas in all
Ψrand
Ki

to be as low as the observed ones, if all conse-
quences in all ΨKi had been randomly ordered.

8http://www.irit.fr/~Julien.Corman/index en.php
9 The ranking was a strict ordering : if two consequences

had the same score, one of them was randomly designated as
strictly lower ranked.

Results are convincing, with a significant p-value
for all four settings. For most ontologies (75/100),
there was only one formula in Ψrand

Ki
. A closer look

at the data revealed that, for the best setting (LP),
in most of theses cases (57/75), the only formula in
Ψrand
Ki

was also the one with lowest plausibility in
ΨKi , over 216.1 on average, i.e. the only randomly
generated consequence was also the least plausible
one according to linguistic evidence. This is very
encouraging, especially considering the relatively
small number of named individuals (71) in F , i.e.
the fact that the support to evaluate the plausibility of
a consequence ψ ∈ ΨKi was limited. On the other
hand, performances were generally poor when the
cardinality of Ψrand

Ki
was important (> 0.25 ∗ |ΨKi |),

which may be explained by the fact that support sets
for some classes of F were significantly modified
after the extension of F with φi.

As for the settings, unsurprisingly, the two most
beneficial (but unfortunately incompatible) factors
were the use of lemmatized contexts on the one hand
(LP), and the queries over the Web N-gram corpus
on the other hand (NS and NPS)

The second part of the evaluation focused on the
retrieval of the random statements φ1, .., φ100, for
the LP setting only, because it gave the best re-
sults in the previous experiment. For each extended
base Ki, all immediate subbases Γi,1, ..,Γi,|F |+1 of
Ki were generated, i.e. each Γi,j was such that
Ki = Γi,j ∪ {φj} for some statement φj of Ki.
The different Γi,j were ordered by decreasing com-
pliance score comp(Γi,j) (resp. compKi

(Γi,j)),
or by decreasing lexicographic ordering �lex (resp.
�lexKi

).10 Intuitively, this yields a ranking on Ki

where the least reliable statements wrt linguistic ev-
idence should appear first : if φj ∈ Ki, and if the
subbase of Ki obtained by discarding φj (i.e. Γi,j)
has a higher linguistic compliance score than Ki,
then discarding Γi,j can be viewed as an improve-
ment over Ki. And if Γi,j is among the best ranked
subbases of Ki, then φj is among the least reliable
statements of Ki wrt distributional evidence. For in-
stance, in example 1, one may expect the subbase
K \ (1) to have a maximal linguistic compliance
score among immediate subbases of K (or to be

10Again, the ranking was randomly turned into a strict order-
ing (see footnote 9).
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rank p-val
comp(Γ) 7.86 / 80.03 < 0.001
compKi

(Γ) 8.05 / 80.03 < 0.001
�lex 6.51 / 80.03 < 0.001
�lexKi

2.47 / 80.03 < 0.001

Table 2: Average ranking of the randomly generated
statement φi for each Ki, and p-value for the rankings
of all φi

maximal wrt the lexicographic ordering), such that
(1) is the best candidate for removal. So back to the
test data, if Ki = F ∪ {φi}, i.e. if φi is, among the
|F+1| statements ofKi, the one which has been ran-
domly generated, and if Γi,i = Ki \ φi is among the
best ranked immediate subbases of Ki, this would
indicate that the linguistic compliance score in def-
initions 4.3 (resp. 4.4), or the corresponding lexi-
cographic ordering �lex (resp. �lexKi

) is actually a
good estimator of faulty statements.

An additional precaution was taken in order to
avoid artificially good results. For most statements
φj ∈ Ki, discarding φj did not have any impact
on the set ΨΓi,j of consequences to be evaluated,
i.e. ΨΓi,j = ΨKi , and therefore comp(Γi,j) =
comp(Ki). Let ∆i ⊆ Ki be the set of statements
whose removal did have an impact instead (on av-
erage, there were 79.3 statements in ∆i). Then the
compliance of a subbase Γi,j of Ki was evaluated
only if φj ∈ ∆i, i.e. only if the removal of φj made a
difference. Ki was also added to this set of evaluated
subbases, yielding a ranking of 79.03 + 1 = 80.03
bases on average.

Results are again positive. Column “rank” in table
2 gives the average ranking of Γi,i, i.e. the base ob-
tained after the removal of the randomly generated
statement φi. Both lexicographic orderings outper-
formed the compliance scores (i.e. the mean of plau-
sibility scores), and the best configuration was the
fourth presented in section 4.2, using scKi(ψ) as a
plausibility score instead of scΓi,j (ψ).

6 Applications

This section describes a few concrete use cases of
the propositions made in section 4. A first basic
but useful application is the identification of unde-
sired consequences of a consistent input ontology

K. As illustrated by example 1, violations of com-
mon sense often go unnoticed in publicly available
OWL datasets, even though effective procedures can
detect inconsistency11 in most DLs. This is corre-
lated with the overall sparse usage of negation in
OWL, yielding ontologies which are consistent by
default rather than by design. The identification of
such cases can be very simply performed, by return-
ing to the user the formulas of ΨK with lower plausi-
bility scores, like Person(CEO) in example 1. Ax-
iom pinpointing algorithms (Schlobach and Cornet,
2003; Kalyanpur et al., 2007; Horridge, 2011) may
then be used to compute all justifications for each
returned consequence ψ, i.e. all (set-inclusion) min-
imal subsets of K which have ψ as a consequence.

In a more automated fashion, the greedy trimming
approach described in (Corman et al., 2015) returns
n statements of K which are candidate for removal,
n being given as a parameter, by incrementally se-
lecting the immediate subbase of Γ with maximal
linguistic compliance score, starting with Γ = K.

But inconsistent12 ontology debugging may also
benefit from distributional evidence. As discussed
in section 2, state-of-the-art approaches to ontology
debugging suffer from the number of candidate out-
puts, i.e. of (set-inclusion) maximal consistent sub-
sets of K, as well as from the cost of their compu-
tation. If the set J of justifications for the inconsis-
tency of K is known though, and if some (discrim-
inant enough) preference relation �a over

⋃J can
be obtained, then prioritized base revision, as it is
defined in (Nebel, 1992), provides a principled and
computationally attractive solution to these prob-
lems. Even if the whole process cannot be depicted
here, �a may actually be obtained through distri-
butional evidence, by evaluating, for each statement
φ ∈ ⋃J , the plausibility of some consequences of
candidate subbases in which φ does or does not ap-
pear. The support set in this case is reduced to con-
sequences of the “safe” part of K, i.e. K \⋃J .

7 Extensions

A first straightforward extension of this framework
consists in taking more complex classes into ac-

11or incoherence (see footnote1)
12or incoherent (see footnote 1), or for which a set of unde-

sired consequences has already been identified
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count. OWL (and most Description Logics) fa-
vor the recursive construction of arbitrarily com-
plex classes out of the signature of Γ, and this
mechanism could naturally be used to extend ΨΓ

with more consequences of the form C(e), where
C is one of these complex classes. For instance,
in example 1, if C1 and C2 are respectively de-
fined by ∀x(C1(x) ⇔ ∃y(occupation(y, x))
and ∀x(C2(x) ⇔ ∃y(occupation(x, y)), then
ΨK can be extended “for free” with C1(CEO) and
C2(Peter Munk). Unfortunately, if Ψ+

Γ is the set of
all consequences of Γ which can be built this way,
there is in general no finite subset ΨΓ of Ψ+

Γ such
that ΨΓ |= ψ for all ψ ∈ Ψ+

Γ . Therefore the com-
plex classes to be used must be selected, which is
not trivial. Intuitively, some complex classes are
more relevant than other (e.g. the class of “phys-
ical objects owned by someone” may be linguisti-
cally relevant, but probably not “Moldavian or Mus-
lim lawyers whose father lives in an apartment”).

Another simple variation of the framework pre-
sented here consists in setting ΨΓ to be all con-
sequences of Γ of the form e1 6= e2, i.e. the
fact that that e1 and e2 are not the same individ-
ual according to Γ. The unique name assumption
is not made in OWL, which means that two dis-
tinct named individuals can be interpreted identi-
cally, and therefore these consequences do not hold
by default. They may be explicitly stated in Γ
(owl:differentIndividuals(e1, e2)), but are in most
cases entailed by Γ, provided it contains some form
of negation (e.g. instances of two disjoint classes
cannot be the same individual). If Γ1 and Γ2 are
two subbases of K such that Γ1 |= e1 6= e2, but
Γ2 6|= e1 6= e2, and if the similarity between e1 and
e2 is lower than expected, then ceteris paribus, Γ1

will be preferred to Γ2.

Conclusion

This article is centered on the use of distributional
representations of (labels of) named individuals of
an input ontology K, in order to identify and repair
violations of commonsense within K. For a set of
statements Γ ⊆ K, and ΨΓ a specific set of con-
sequences of Γ, a score scΓ(ψ) is attributed to each
ψ ∈ ΨΓ, which evaluates the plausibility of ψ wrt Γ
according to distributional evidence. Several meth-

ods based on this plausibility score are then pro-
posed in order to compare two subbases Γ1 and Γ2 of
K, leading to the identification of potentially erro-
neous statements. An evaluation is provided, which
consists in extending a test ontology with randomly
generated statements before trying to spot them au-
tomatically, with significant results. A more thor-
ough evaluation is still required though, testing in
particular the impact of a higher number of named
individuals and/or classes. Scalability of the ap-
proach may also be limited by its heavy reliance on a
reasoner. Finally, potential improvements may come
from using more elaborated distributional represen-
tations, like the one described in (Mikolov et al.,
2013).
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Abstract

Implicit semantic role labeling, the task of
retrieving locally unrealized arguments from
wider discourse context, is a knowledge-
intensive task. At the same time, the annotated
corpora that exist are all small and scattered
across different annotation frameworks, genres,
and classes of predicates. Previous work has
treated these corpora as incompatible with one
another, and has concentrated on optimizing
the exploitation of single corpora. In this paper,
we show that corpus combination is effective
after all when the differences between corpora
are bridged with domain adaptation methods.
When we combine the SemEval-2010 Task 10
and Gerber and Chai noun corpora, we obtain
substantially improved performance on both
corpora, for all roles and parts of speech. We
also present new insights into the properties of
the implicit semantic role labeling task.

1 Introduction

Semantic role labeling (SRL) is the task of identify-
ing semantic arguments of predicates in text. It is an
important step in text analysis and has applications
in information extraction (Christensen et al., 2010),
question answering (Shen and Lapata, 2007; Moreda
et al., 2011) and machine translation (Wu and Fung,
2009; Xiong et al., 2012) . A large body of work
exists on algorithms for SRL (Gildea and Jurafsky,
2002; Srikumar and Roth, 2011). Their success is
closely connected to the availability of two large,
hand-constructed semantic role resources, FrameNet
(Fillmore et al., 2003) and PropBank (Palmer et al.,
2005). They used to concentrate on overt semantic

roles, that is, semantic roles that are realized within
the local syntactic structure of the predicate.

Recent years have seen a broadening of the focus
in SRL to implicit semantic roles, that is all roles that
remain locally unrealized but can be retrieved in the
(typically prior) context (Ruppenhofer et al., 2010).
In the following example annotated with PropBank
roles (cf. Section 2), the target predicate come has
two roles, a locally realized one (A1, the entity in
motion), it, and an implicit role mentioned in the
previous sentence (A4, the goal):

Well, sir, it’s [A4 this lonely, silent house]
and the queer thing in the kitchen . ... I
thought [A1 it] had come again.

Implicit SRL is useful to complete predicates’ ar-
gument structures for inference (Mirkin et al., 2010)
and paraphrasing (Roth and Frank, 2013), or to assess
the coherence of discourse (Burchardt et al., 2005).
It however requires (even) more training data than
traditional SRL. One reason is that potential argu-
ments come from the whole text rather than just the
sentence. Another one is that most of the power-
ful syntactic features that are a staple in traditional
SRL are unavailable across sentence boundaries. Un-
fortunately, existing corpora for implicit SRL are
quite small: The task requires full-text annotation,
which is time-consuming and pushes semantic role
frameworks to their limits (Palmer and Sporleder,
2010). It is also hard to do consistently, and can only
be crowdsourced in limited settings (Feizabadi and
Padó, 2014). Thus, even though multiple systems for
implicit SRL exist (among others, Tonelli and Del-
monte (2011), Laparra and Rigau (2012), Silberer
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and Frank (2012)), results are still relatively poor.
In this paper, we focus on the fact that the cor-

pora that exist for implicit SRL differ not only in
the semantic role frameworks used (FrameNet vs.
PropBank), but also in genre (newswire vs. nov-
els), and classes of annotated predicates (verbs vs.
nouns). As a result, they are generally regarded as
incompatible, and previous work has concentrated
on getting most out of individual corpora, or spend-
ing annotation effort on focused extensions of these
corpora. Instead, we will follow the intuition that
the performance of implicit SRL can be improved
significantly by combining corpora, using simple do-
main adaptation techniques to bridge the differences
between them. We combine the two largest datasets
for implicit SRL, the SemEval-2010 Task 10 dataset
(Ruppenhofer et al., 2010) and the Gerber and Chai
dataset (Gerber and Chai, 2012). This combination
achieves improvements across all target and seman-
tic roles despite the differences in genre, domain,
and parts of speech. Our analyses indicates that the
properties of the implicit SRL task – where syntactic
features play a relatively minor role compared to se-
mantic and discourse features – are responsible for
this picture, and mean that models can actually profit
from complementarity between combined corpora.

Plan of the paper. Section 2 summarizes the re-
source and model situation in SRL. Section 3 defines
a simple system for implicit SRL that uses domain
adaptation. Sections 4 and 5 report experiments and
provide analysis. Section 6 concludes.

2 Traditional and Implicit SRL

This section first describes existing resources for tra-
ditional and implicit SRL (frameworks and corpora).
Then it outlines the state of the art in modeling.

2.1 Frameworks for Semantic Roles

Almost all contemporary work on SRL is based on
one of two frameworks: FrameNet and PropBank.

FrameNet is a dictionary and corpus annotated
in the Frame Semantics paradigm (Fillmore et al.,
2003). In Frame Semantics, the meaning of pred-
icates (verbs, nouns, or adjectives) is conveyed by
frames, conceptual structures which represent sit-
uations and define salient entities. Semantic roles

describe these salient entities and are therefore lo-
cated at the level of frames. E.g., the verb approach
is analyzed as an instance of the frame ARRIVING,
with the roles THEME, SOURCE, GOAL:

[Theme He] was approaching [Source from
behind and slightly to the right of Sharpe].

Frame Semantics also offers an analysis of unre-
alized roles, called Null Instantiations, that distin-
guishes three classes. Indefinite non-instantiations
(INIs) are interpreted generically. Constructional non-
instantiations (CNI) include, e.g., passives. Finally,
definite non-instantiations (DNIs) have a specific in-
terpretation and often refer to expressions in the con-
text. DNIs correspond to the pre-theoretic concept of
implicit roles. The FrameNet corpus, however, does
not annotate the antecedents of DNIs, so it cannot be
used directly as training data for implicit SRL.

PropBank The second major framework for se-
mantic role annotation is PropBank (Palmer et al.,
2005). It defines a set of general semantic roles
named ARG0-ARG5 of which ARG0 and ARG1 are
interpreted as proto-agent and proto-patient (Dowty,
1991), respectively. The higher-numbered roles re-
ceive more predicate-specific interpretations. These
“core” roles are complemented by adjunct roles such
as MNR (manner) or TMP (time). For example,

Jim Unruh ... said [A1 he] is approaching
[A2 next year] [MNR with caution].

PropBank has annotated the WSJ part of the Penn
Treebank, i.e., newswire text, exhaustively with se-
mantic roles. While it originally concentrated on
verbs, the NomBank project (Meyers et al., 2004)
extended the annotation scheme to nouns. PropBank
does not have a specific taxonomy of null instantia-
tions like FrameNet, but it can nevertheless be used
equally for implicit role annotation.

2.2 Annotated Corpora for Implicit SRL

FrameNet and PropBank are both very large corpora,
covering tens of thousands of instances. Corpora with
implicit role annotation are generally much smaller;
the main corpora are summarized in Table 1.

Ruppenhofer et al. Arguably the first corpus with
a substantial set of annotations for implicit roles was
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Corpus Scheme POS Genre # predicates # instances # implicit roles
Ruppenhofer et al. (2010) FrameNet V, N Novels 801 1575 245
Gerber & Chai (2012) PropBank N Newswire 10 1253 1172
Moor et al. (2013) FrameNet V Newswire 5 1992 242
Feizabadi & Padó (2014) FrameNet V Novels 10 384 363

Table 1: Size of available English corpora with implicit semantic role annotation

created for SemEval 2010 Task 10 (Ruppenhofer et
al., 2010). This dataset covers a number of chapters
from Arthur Conan Doyle short stories and provides
full-text annotation of both explicit and implicit se-
mantic roles. The texts were annotated manually with
FrameNet roles. This dataset is a de-facto standard
benchmark for implicit SRL.

Gerber and Chai. A study by Gerber and Chai
(2012) investigated implicit arguments of NomBank
nominalizations. They extended a part of the Prop-
Bank corpus with implicit roles for 10 nominal pred-
icates, of which they annotated all instances.

Further Corpora with Implicit Role Annotation.
Moor et al. (2013) created a corpus with all annotated
instances for five verbs with the goal of focused im-
provement of implicit SRL. Feizabadi & Padó (2014)
investigated the use of crowdsourcing to create an-
notations for implicit roles. Both corpora are more
restricted in size and scope than the first two.

2.3 Models for Semantic Role Labeling
Traditional SRL. A broad range of models have
been proposed for “traditional”, i.e., local SRL
(Palmer et al., 2010). The task can be seen as a
sequence of two classification tasks, predicate dis-
ambiguation and role labeling. Earlier models mod-
eled them in a pipeline architecture, but recent works
demonstrates the benefits of joint inference (Sriku-
mar and Roth, 2011; Das et al., 2014). SRL mod-
els have drawn on a wide variety of features from
two main groups: syntactic features describing the
structural relation between predicate and argument
candidate, and semantic features describing role and
candidate. A general observation is that SRL models
are lexically specific to a substantial degree, i.e., do
not generalize very well between predicates, so that
the availability of annotations remains a bottleneck.

Implicit SRL was formulated by SemEval 2010
Task 10 in two versions. The “full task” includes

identification of all (explicit or implicit) semantic
roles of the target predicate. The “null instantiation
task” is the subtask of the full task concerned only
with the identification and labeling of antecedents
for implicit roles. It assumes that predicates and
overt roles are already available. We follow the lead
of almost all models for implicit SRL on the null
instantiation task. Structurally, it can be approached
similarly to role identification in traditional SRL.

The first systems on large-coverage implicit SRL
adopted traditional SRL modeling techniques (Chen
et al., 2010; Tonelli and Delmonte, 2010). but strug-
gled with the scarcity of training data for the com-
plex task. Work since then has concentrated on tap-
ping into novel knowledge and data sources. There
are three main directions. The first one is knowl-
edge about semantic types. This includes Ruppen-
hofer et al. (2011) who extract semantic types for
null instantiations from FrameNet and Laparra and
Rigau (2012) who learn distributions over seman-
tic types for each role from explicit role annotations
in FrameNet. Similarly, Roth and Frank (2013) re-
trieve overt instances of implicit roles from compara-
ble corpora. The second direction is discourse level
knowledge. Laparra and Rigau (2013) and Gorin-
ski et al. (2013) treat implicit SRL as a task similar
to anaphor resolution, which motivates the use of
several features of discourse such as distance and
salience. A third set of studies concentrated on sim-
ply obtaining more annotated instances. Silberer and
Frank (2012) use an entity-based coreference resolu-
tion model to automatically extended the training set.
Moor et al. (2013) and Feizabadi and Padó (2014)
manually construct focused corpora (cf. Section 2.2).

3 Combining Corpora for Implicit SRL

3.1 Rationale and Challenges
Despite the progress made by on implicit SRL, as dis-
cussed in the previous section, data sparsity remains
the main bottleneck. This has two main reasons.
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First, the set of constitutents included in the search
for each role is very large, potentially including the
whole discourse. To address this problem, implicit
SRL systems typically concentrate on a window of n
sentences, typically the sentence with the predicate
and its preceding discourse. Second, the powerful
class of syntactic features becomes largely unavail-
able beyond sentence boundaries.

This situation calls for large, richly annotated cor-
pora. Unfortunately, the annotation effort that has
been expended on implicit role has been distributed
over a number of different corpora, all of which are
fairly small (cf. Section 2.2). The question that we
are asking in this paper is: Can data from existing cor-
pora be combined rather than spending annotation
effort on yet another corpus?

We will consider the combination of the standard
benchmark, the SemEval 2010 Task 10 dataset (Rup-
penhofer et al., 2010) (henceforth SEMEVAL), with
the corpus with the largest number of implicit roles,
the Gerber and Chai (2012) corpus (henceforth GER-
BERCHAI). The main challenge in this endeavour is
that these corpora have very different properties (cf.
Table 1). Consequently, a number of challenges arise
for data combination. Below we discuss them, our
expectations, and our strategies to address them.

Challenge: Differences in Role Framework. SE-
MEVAL was annotated with FrameNet roles, while
GERBERCHAI was annotated with PropBank roles.
While semi-automatic conversion schemes now exist
in both directions, we decided to adopt the Prop-
Bank paradigm, working on the basis of the semi-
automatically converted SEMEVAL annotation pro-
vided by the task organizers. The reasons are twofold:
(a), we believe that, in parallel to results on traditional
SRL, PropBank roles should be generally easier to
label than FrameNet roles; (b), this effect should
be particularly pronounced when facing sparse data
problems, as is the case here.

Challenge: Differences in Parts of Speech. SE-
MEVAL covers both verbal and nominal predicates,
while GERBERCHAI contains only nominal predi-
cates (cf. Table 1). Given the absence of syntactic
features from implicit SRL, we believe that this is
not a huge impediment. We will, however, evaluate
on a per-POS basis to test this assumption.

Challenge: Differences in Genre/Domain. Also,
SEMEVAL is based on novels dealing with everyday
affairs, while GERBERCHAI consists of newswire
text focusing on finance and politics. It is well known
that the performance of NLP models degrades when
applied across domains and genres. This holds for
traditional SRL (Carreras and Màrquez, 2005) and
is likely to extend to the implicit variant. For this
reason, we believe that it is crucial to apply domain
adaptation methods to ensure that reasonable gener-
alizations can be learned. See Section 3.3 for details.

3.2 A Simple Implicit SRL System
We now describe the simple classification-based sys-
tem for implicit SRL that we will use in our experi-
ments. Like many systems from the literature, it fo-
cuses on the “null instantiation” step (cf. Section 2.2)
– i.e., we assume that overtly realized roles are already
available. The architecture of our system is inspired
by the system by Laparra and Rigau (2012) which is
among the best-performing systems on SEMEVAL.

Our system decomposes the task into two steps:
(1), Determining a set of implicit roles that should be
identified in context; (2) Determining the antecedents
of these missing roles. For the first step, we extract
the predominant role set (i.e., most frequently real-
ized set) for each predicate by searching the predicate
in a large corpus, OntoNotes (Hovy et al., 2006). We
assume that all instances of the predicate realize these
roles and select the subset that is not realized overtly
for inclusion in the second step.

We phrase the second step as binary classification.
The items to be classified are triples 〈target predi-
cate, implicit role, candidate realization〉. The set of
candidate realizations is defined as all constituents
from the target predicate’s sentence and the two prior
sentences which do not fill an explicit role for the tar-
get. We employ a Naive Bayes classifier that can deal
relatively well with sparse data.1 We use 10 features,
shown in Table 1 which attempt to capture relevant
syntacto-semantic and the discourse features.

3.3 Domain Adaptation
The standard assumption in machine leaning is that
data are independent and identically distributed, that
is, drawn from the same underlying population. This

1We also experimented with other classifiers including SVMs,
but did not achieve better results.
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Name Description
Expected roles Set of roles required by the target predicates (based on PropBank and NomBank). This feature

serves as a delexicalized target representation.
Semantic Type Semantic type of the candidate realization’s head word (WordNet supersenses) or, if pronoun,

of the next content words in the coreference chain
Word Frequency Lemma frequency of the candidate filler’s head word
POS Part of Speech of candidate realization’s head word
Constituent type The constituent type of the candidate filler, e.g. NP, PP, VP, etc.
Distance Distance between candidate realization and target predicate (in sentences)
Salience Whether the candidate realization’s head word is included in a non-singleton coreference chain
Previous Role Whether the candidate realization has overtly realized any semantic role in the dataset
Same Role Whether the candidate realization has realized the implicit role as an overt role in the dataset
Role Percentage The percentage with which the candidate realization has realized the implicit role

Table 2: Feature Set (above: syntacto-semantic features; below: discourse features)

assumption is violated if the test data differs substan-
tially from the training data, and consequently the
performance of models learned on the training data
suffers on the test data. Since this situation arises fre-
quently, the field of domain adaptation has developed
(Jiang, 2008). In our application, SEMEVAL and
GERBERCHAI can be understood as two domains.

We adopt Daumé’s (2007) simple but effective fea-
ture augmentation method which makes use of some
training data in both source and target domain. Each
feature is stored in three variants: a general version,
a source version and a target version. Each of the
two domains (source and target) activates two ver-
sions, the general one and its specific one, which can
also be given a Bayesian interpretation (Finkel and
Manning, 2009). In this manner, the model balances
global and domain-specific trends against each other.
As an example, the “expected roles” feature (cf. Ta-
ble 2), which is shaped by subcategorization, is a
likely candidate for changess across domains, due
to sense shifts. In contrast, we would not expect the
part-of-speech features of realization candidates to
undergo major changes across domains.

4 Experiment 1

We present three experiments. Experiment 1 extends
the SEMEVAL training data with out-of-domain data
from GERBERCHAI and evaluates on SEMEVAL. Ex-
periment 2 swaps the setup, extending the GERBER-
CHAI dataset with SEMEVAL data and evaluating on
GERBERCHAI. Experiment 3 aims at providing a
better understanding of these observations.

4.1 Experimental Setup

Design. In this experiment, we evaluate our ap-
proach on the SEMEVAL dataset (SEMEVAL is the tar-
get domain and GERBERCHAI is the source domain).
Since there is an established split of SEMEVAL into
training and test parts, we simply use the test part for
evaluation, and designate the SEMEVAL training part
as well as GERBERCHAI for training.

We compare four experimental scenarios (cf. Ta-
ble 3): (1) The standard “in-domain” setup that only
uses SEMEVAL, as assumed by most studies on the
dataset. (2) A pure “out-of-domain” setup where
we use only GERBERCHAI as training data. Of
course, there is reason to believe that this strategy will
perform quite poorly. (3) A simple “concatenation”
setup where we train on the union of GERBERCHAI

and the SEMEVAL training corpus. (4) The feature
augmentation setting where we train on the combined
corpus, but apply Daumé’s (2007) learning method.

Preprocessing. SEMEVAL comes pre-parsed with
the Collins (Collins, 1997) parser. We parsed GER-
BERCHAI with the same parser, ignoring the Penn
Treebank gold trees. Since all datasets are manually
annotated with semantic roles, no overt SRL is neces-
sary. Coreference information, which we require for
some features, is available from manual annotation in
the SEMEVAL test part, but not for the other datasets.
We computed coreference chains with the Stanford
CoreNLP tools (Manning et al., 2014).

Evaluation. We evaluate implicit role predictions
with precision, recall, and F1 score, following the
official SemEval 2010 Task 10 guidelines. Note that
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Training Set Pr. Rec. F1

(1) SEMEVAL train (in-domain) 0.10 0.20 0.13
(2) GERBERCHAI
(out-of-domain)

0.12 0.08 0.10

(3) SEMEVAL train + GERBER-
CHAI, concat.

0.11 0.19 0.14

(4) SEMEVAL train + GERBER-
CHAI, feature augmentation

0.13 0.30 0.18

Laparra and Rigau (2013) 0.12 0.16 0.14

Table 3: Evaluation of implicit SRL (PropBank roles) on
the SEMEVAL test set

% of GERBERCHAI Pr. Rec. F1

0 0.10 0.20 0.13
5 0.13 0.29 0.17

10 0.14 0.31 0.19
15 0.13 0.31 0.18
20 0.13 0.30 0.18

100 0.13 0.30 0.18

Table 4: Results on SEMEVAL test, training on SEMEVAL
train plus varying amounts of data from GERBERCHAI

according to the guidelines, the true positives include
all predictions that match the gold span indirectly
through a (manually annotated) coreference chain.

Baseline. All previous studies on the SEMEVAL

dataset used the FrameNet annotation, and without
access to the actual predictions we cannot directly
compare our predictions to theirs. We are grateful to
Laparra and Rigau who agreed to share the predic-
tions of their 2013 model with us, which is, at the
time of writing, the system with the second-best re-
ported scores. We converted the predictions into the
PropBank format, using the FrameNet-to-PropBank
mapping provided by the task organizers.

Upper bound. Implicit SRL systems typically
trade off recall against precision by restricting the
search space. Our system uses two heuristics: It
restricts search to the current and two preceding
sentences and to the predominant role set (cf. Sec-
tion 3.2). The upper bound in recall on SEMEVAL

test that can still be achieved in this setting is 60.1%.

4.2 Results

Table 3 shows the results of the four experimental
conditions defined above and the comparison system,

the converted Laparra and Rigau (2013). Our system,
trained in-domain (1), achieves a performance com-
parable to Laparra and Rigau, albeit with a different
precision-recall trade-off. Not surprisingly, pure out-
of-domain training (2) does not perform well either.
Simple data concatenation (3) leads to a minimal nu-
meric improvement, but indicates that the datasets
are indeed rather different.

We see a substantial improvement in performance
when feature augmentation (4) is used. There is not
only a major improvement in recall (+10 percentage
points) but also a smaller improvement in precision
(+3 points). We tested the difference to the in-domain
model (1) for significance with bootstrap resampling
(Efron and Tibshirani, 1993) and found it to be higly
significant (p<0.01). In sum, we see an improvement
of 5% F-Score, despite the differences between the
corpora, when feature augmentation is used. Notably,
we achieve a high recall, despite the upper bound
imposed by the filtering heuristics.

Unfortunately, it is rather difficult to pinpoint in-
dividual instances whose improvements can be inter-
preted in a linguistically meaningful way. A compar-
ative feature ablation study for models (1) and (4)
showed that discourse features such as Previous Role
(cf. Table 2) are among the most important features
in (4), while they are almost useless in (1). This indi-
cates that discourse-level features particularly profit
from the inclusion of out-of-domain data.

Analysis by Amount of Out-of-Domain Data.
Since GERBERCHAI is about ten times as large as
the SEMEVAL training set, we wondered whether the
out-of-domain GERBERCHAI data is “overwhelming”
the SEMEVAL data. Keeping the SEMEVAL test set
for evaluation, we combined SEMEVAL train with
subsets of GERBERCHAI in increments of 5% of the
total number of predicates. The results, shown in
Table 4, show that almost the complete benefit of the
GERBERCHAI data is already present when we add
5% of GERBERCHAI, and we achieve the optimal
result by adding 10%. The results are marginally
higher than when we add the complete GERBER-
CHAI (difference not significant). Our take away is
that, in contrast to the proposal by Moor et al. (2013),
we do not require many annotations for each pred-
icate: the results are best when the in-domain and
out-of-domain corpora have about the same size.
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Verbal predicates Nominal predicates
Training Set Pr. Rec. F1 Pr. Rec. F1

(1) SEMEVAL train (“in-domain”) 0.11 0.20 0.14 0.10 0.21 0.14
(2) GERBERCHAI train (“out-of-domain”) 0.09 0.12 0.10 0.07 0.11 0.09
(3) SEMEVAL train + GERBERCHAI, concat. 0.11 0.18 0.13 0.11 0.21 0.14
(4) SEMEVAL train + GERBERCHAI, feature aug. 0.13 0.30 0.18 0.14 0.32 0.20

Laparra and Rigau (2013) 0.15 0.20 0.17 0.09 0.11 0.09

Table 5: Evaluation of implicit SRL (PropBank roles) on the SEMEVAL test set, by target part of speech

A0 A1 A2
Training Set Pr. Rec. F1 Pr. Rec. F1 Pr. Rec. F1

(1) SEMEVAL train (“in-domain”) 0.19 0.29 0.23 0.09 0.26 0.13 0.06 0.10 0.07
(2) GERBERCHAI (“out-of-domain”) 0.19 0.34 0.24 0.03 0.06 0.03 0.0 0.0 0.0
(3) SEMEVAL train + GERBERCHAI, concat. 0.23 0.34 0.27 0.08 0.22 0.11 0.0 0.0 0.0
(4) SEMEVAL train + GERBERCHAI, feature aug. 0.24 0.42 0.31 0.11 0.37 0.17 0.09 0.24 0.13

Laparra and Rigau (2013) 0.21 0.28 0.24 0.10 0.13 0.11 0.13 0.19 0.15

Table 6: Evaluation of implicit SRL (PropBank roles) on the SEMEVAL test set, by role

Analysis by Predicate POS. Since GERBERCHAI

contains only noun targets, we could hypothesize that
its inclusion improves results in SEMEVAL specifi-
cally for nominal predicates. To test this hypothesis,
we evaluated verbal and nominal predicates sepa-
rately. The results in Table 5 are actually comparable
across parts-of-speech. Even though the benefit is
somewhat smaller for verbs, there is still a substan-
tial improvement (+4.1% F1 for verbs; +5.9% F1 for
nouns). In contrast, studies on traditional SRL found
only small (albeit consistent) improvements for ex-
tending training sets with instances of targets with
different parts-of-speech (Li et al., 2009).

We believe that this is the case because implicit
SRL, as discussed in Section 2.3, can rely less on syn-
tactic features but must make predictions on the basis
of semantic and discourse features, which are more
comparable across target parts of speech. Consider
these two examples – one verbal and one nominal
predicate – of implicit A0 roles. Both occur in the
same sentences as their predicates, but outside their
syntactic domains:

SEMEVAL: The wagonette was paid off ...
while [A0 we] started walking.
GERBERCHAI: His ... house ... is up for
sale to pay for [A0 his] lawyers.

While the role realizations are quite different struc-
turally (subject vs. posessive), they are similar on the

semantics and discourse levels: both are pronouns
referring to agent-like entities and are realized in the
immediately following discourse.

Analysis by Role. Finally, we performed an evalu-
ation by individual semantic roles, shown in Table 6,
to assess to what extent differences in role distribu-
tion between SEMEVAL and GERBERCHAI influence
the improvements. We concentrate on A0 through
A2, since A3 and A4 are so infrequent in SEMEVAL

that evaluation results are not reliable.
Not surprisingly, we see the overall best results for

A0, followed by A1 and A2. The improvement for
combining corpora correlates with the overall perfor-
mance: +7% F1 for A0, +4% for A1, +6% for A2.
The overall pattern of a major boost to recall and a
minor one to precision are also stable across roles.
Thus, corpus combination seems to benefit all roles
as well. A notable observation is the inability of the
naive out-of-domain models (2) and (3) to correctly
predict any A2 roles. The reason is that for the nomi-
nal targets in GERBERCHAI, A2 is an incorporated
role, that is, realized by the predicate itself. This
pattern hardly occurs in SEMEVAL. Interestingly, the
domain adaptation model (4) manages to extract rele-
vant information from GERBERCHAI. Nevertheless,
the fact that (4) is still worse than Laparra & Rigau
(2013), which is trained just in-domain, indicates that
more informative features for A2 are also necessary.
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A0 A1
Training Set Pr. Rec. F1 Pr. Rec. F1

(1) GERBERCHAI (“in-domain”) 0.15 0.10 0.12 0.18 0.23 0.16
(4) SEMEVAL + GERBERCHAI, feature augmentation 0.19 0.13 0.15 0.26 0.35 0.30

Table 7: Evaluation of implicit SRL (PropBank roles) on the SEMEVAL test set, by role

Training Set Pr. Rec. F1

(1) GERBERCHAI (in-domain) 0.16 0.10 0.12
(2) SEMEVAL (out-of-domain) 0.11 0.06 0.07
(3) SEMEVAL + GERBERCHAI,
concat.

0.16 0.09 0.11

(4) SEMEVAL + GERBERCHAI,
feature augmentation

0.24 0.18 0.21

Upper bound: Gerber & Chai
(2012)

0.58 0.44 0.50

Table 8: Evaluation of implicit SRL (PropBank roles) on
GERBERCHAI (3-fold CV)

5 Experiment 2

In Experiment 2, we use a combination of GERBER-
CHAI and the complete SEMEVAL for training and
evaluate on GERBERCHAI. The main question is
whether the addition of the (much smaller) SEMEVAL

corpus to GERBERCHAI can improve performance.
We consider the same four conditions as in Exper-

iment 1. To obtain reliable results, we split GERBER-
CHAI into three equal-sized parts and report averages
over three cross-validation runs where we always use
two thirds for training and one third for testing. Eval-
uation also is performed as before, with the exception
that in the absence of manually annotated coreference
chains, we only count direct matches as true positives.
The upper bound for recall on this dataset (using the
same 3-sentence window and predominant role set)
is rather low, at 44%, which reflects the structural ten-
dency of nominalizations to realize few roles locally.

Unfortunately, we do not have a directly compa-
rable competitor, since Laparra and Rigau did not
run their system on GERBERCHAI data. The results
obtained by Gerber and Chai (2012) are not directly
comparable, since their approach was hand-tailored
towards nominal implicit SRL in the newswire do-
main. It incorporates a large number of detailed lin-
guistic resources (Penn Treebank, Penn Discourse
Bank, NomBank, FrameNet) and assumes gold stan-
dard information on all levels. We therefore see this

system as an upper bound rather than as a competitor.
The results are shown in Table 8. The overall pat-

terns are very similar to Experiment 1: out-of-domain
training (2) works worse than in-domain training
(1), and simple concatenation (3) does not improve
over in-domain training. With feature augmentation,
however, we see a significant improvement of 9%
in precision, recall and F1. The difference is highly
significant at p<0.01. This confirms the effectiveness
of corpus combination, despite the small size of the
added SEMEVAL dataset compared to GERBERCHAI.
It is also clear, however, that the results are much
worse than the upper bound set by Gerber and Chai.

Table 7 subdivides the results by semantic roles
for (1), as the in-domain baseline, and (4), as the best
model. Again, we see improvements for both A0 and
A1, both regarding precision and recall. Interestingly,
the improvements as well as the performance for A1
exceed those for A0 – a difference to the SEMEVAL

results, where we found the best results for A0.

6 Experiment 3

In Experiments 1 and 2, we have found an improve-
ment for including out-of-domain data. However, it
is unclear so far whether the improvements are sim-
ply due to the increased amount of training data, or
to the training data becoming more varied. To distin-
guish between these two hypotheses, Experiment 3
keeps the total size of the training set constant and
varies the proportions of the two source corpora, SE-
MEVAL and GERBERCHAI, in 10% increments, from
100% SEMEVAL to 100% GERBERCHAI. The size
of the training set is limited by the smaller one of the
training sets (SEMEVAL, cf. Table 1).

As before, we apply feature augmentation and
train models, which we now evaluate on both the
SEMEVAL and GERBERCHAI test sets. If the im-
provements we have seen before are solely due to the
larger size of the training sets, we expect to see the
highest performance for the 100% in-domain training
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Figure 1: Evaluation of models trained on a constant-size training set with changing composition

set, and decreasing performance with more out-of-
domain data. If however variety is important, we
expect to see a maximum somewhere between the
two extremes, at the point where there is enough out-
of-domain training data to introduce variety but not
enough to overwhelm the in-domain data.

Figure 1 shows the results. On both test sets, we
do not see the best result for 100% in-domain data
– there is a substantial improvement moving from
100% to 90% in-domain data (from 0.13 to 0.18 F-
Score on SEMEVAL and from 0.10 to 0.18 on GER-
BERCHAI). On the SEMEVAL test set, the result for
90% is the (tied) best result. We see minor variation
until roughly the 50-50 split and then a mild degra-
dation to the cases where the GERBERCHAI training
data dominates, consistent with Experiment 1. On
the GERBERCHAI test set, we see a more symmetri-
cal picture, with relatively constant performance for
almost all mixtures. We see degradation for the both
“pure” (100%) training sets, but still better perfor-
mance for in-domain than for out-of-domain (100%
GERBERCHAI: 0.10; 100% SEMEVAL: 0.08).2

Overall, the results are compatible with the second,
but not the first hypothesis: the models do seem to
profit from the combination of different corpora even
when this does not involve larger training sets.

7 Conclusion

This paper has reviewed the state-of-the-art in im-
plicit semantic role labeling (SRL) where scarcity of
training data is the major bottleneck. We have argued
that rather than annotating new datasets, researchers

2Note that these numbers do not match Experiment 2, since
the training set in this experiment is much smaller.

should gauge the potential for combining existing
corpora, even if they are very different at first glance.

We have presented experiments on two standard
corpora, the SemEval 2010 Task 10 corpus (nov-
els) and Gerber and Chai’s nominalization corpus
(newswire). They demonstrate that systems trained
on either corpus can benefit substantially from combi-
nation with the other one. More specifically, we find
that (a) domain adaptation techniques are helpful to
bridge the differences between corpora; (b) improve-
ments from corpus combination apply surprisingly
uniformly to different roles and different parts of
speech; (c) improvements can be obtained from rela-
tively small amounts of “out-of-domain” data.

Further analyses have indicated that it is indeed
the complementarity of the corpora, rather than the
addition of training data, which is responsible for the
improvement. This suggests that rather than annotat-
ing as many instances as possible, researchers should
concentrate on annotating instances that are as varied
as possible, similar to uncertainty sampling in active
learning (Lewis and Gale, 1994). In future work,
we will experiment with combining more than two
corpora to test the scalability of the present approach.

An open question is to what extent the benefits
that we see for implicit SRL generalize to other tasks.
We believe that two factors combine to give us the
present picture: the first one is the set of properties of
implicit SRL as a task where semantic and discourse
features play important roles. The second one is
simply the low baseline performance; overall better
models are presumably harder to improve.

Acknowledgments. We would like thank Roman
Klinger for helpful suggestions.
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Schneider, and Noah A Smith. 2014. Frame-semantic
parsing. Computational Linguistics, 40(1):9–56.
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Abstract

This research describes the development of a
supervised classifier of English Caused Mo-
tion Constructions (CMCs) (e.g. The goalie
kicked the ball into the field). Consistent iden-
tification of CMCs is a necessary step to a cor-
rect interpretation of semantics for sentences
where the verb does not conform to the ex-
pected semantics of the verb (e.g. The crowd
laughed the clown off the stage). We ex-
pand on a previous study on the classifica-
tion CMCs (Hwang et al., 2010) to show that
CMCs can be successfully identified in the
corpus data. In this paper, we present the clas-
sifier and the series of experiments carried out
to improve its performance.

1 Introduction

While natural language processing performance has
been improved through the recognition that there
is a relationship between the semantics of the verb
and the syntactic context in which the verb is real-
ized (Guildea and Palmer, 2002), sentences where
the verb does not conform to the expected syntax-
semantic patterning behavior remain problematic.

1. The goalie kicked the ball into the field.

2. The crowd laughed the clown off the stage.

These sentences are semantically related – an en-
tity causes a second entity to go along the path de-
scribed by the prepositional phrase: in 1, the goalie
causes the ball to go into the field, and in 2, the
crowd causes the clown to go off the stage.

While only the verb in the first sentence is gen-
erally identified as a verb of motion that can ap-
pear in a caused motion context, both are examples
of caused motion constructions (CMCs) (Goldberg,
1995). The verb laugh of sentence 2 is normally
considered an intransitive manner of speaking verb
(e.g. The crowd laughed at the clown), but in this
sentence, the verb is coerced into the caused motion
interpretation and the semantics of the verb gives
the manner in which the movement happened (e.g.
the crowd caused the clown to move off the stage
by means of laughing). The semantics parallel one
another: both sentences have a causal argument re-
sponsible for the event, an argument in motion, and
a path that specifies the initial, middle, or final lo-
cation, state or condition of the argument in motion
(Hwang et al., 2013).

Thus, if the semantic interpretation is strictly
based on the expected semantics of the verb and
its arguments, it fails to include the relevant infor-
mation from the CMC. Accurate semantic role la-
belling requires that NLP classifiers accurately iden-
tify these coerced usages in data.

In a previous study, we carried out prelim-
inary work on the supervised identification of
CMCs (Hwang et al., 2010). The pilot study was
conducted in a highly controlled environment over a
small portion of Wall Street Journal (WSJ) data. The
annotation of CMCs were limited to 1.8K instances
of WSJ data. In the pilot, we were able to estab-
lish a classifier predicting CMC with high accuracy
(87.2% precision, 86.0% recall, and 0.866 f-score).

In a subsequent study, we developed a detailed
set of criteria for identifying CMCs to insure the
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production of consistent annotation with high inter-
annotator agreement (Hwang et al., 2014). Through
the semantic typing of the CMCs, the annotation
guidelines defining CMCs were further refined from
the guidelines used during the pilot study. Using
the newly established criteria for annotation, we ex-
tended the annotation over the complete WSJ, and
further included the Broadcast News and Webtext
for the annotation of CMC. This study resulted in
over 20K instances of CMC annotation.

In this paper, we carry out a supervised classifi-
cation of the CMC. This study further expands on a
pilot study with the larger set of high-quality anno-
tated data for the further training and testing of CMC
classifiers.

2 Caused Motion Constructions

CMCs are defined as having the coarse-grained syn-
tactic structure of Subject Noun Phrase followed by
a verb that takes both a Noun Phrase Object and
a Prepositional Phrase: (NP-SBJ (V NP PP)); and
the semantic meaning ‘The agent, NP-SBJ, directly
causes the patient, NP, to move along the path spec-
ified by the PP’ (Goldberg, 1995). This construction
is exemplified by the following sentences:

3. Frank sneezed the tissue off the table.

4. John stuffed the letter in the envelope.

5. Sally threw a ball to him.

However, not all syntactic structures of the form
(NP-SBJ (V NP PP)):

6. Mary kicked the ball to my relief.

7. Jen took the highway into Pennsylvania.

8. We saw the bird in the shopping mall.

In 6, the PP does not specify a direction or a path.
In 8, PP indicates the location in which the “seeing”
event happened, not a path along which “we” caused
“the bird” to move. Though the PP in 7 expresses
a path, it is not a path over which Jen causes “the
highway” to move.

3 Experimental Setup

3.1 Corpora
Our data comes from the latest version of
OntoNotes, version 5.0, (Weischedel et al., 2012).

Gold annotations for Penn Treebank, PropBank,
and Verb Sense Annotation are available for all of
OntoNotes corpora. As we did for the pilot study,
we use the Wall Street Journal (WSJ) corpus. This
corpus contains over 846K words selected from the
non “strictly” financial (e.g., daily market reports)
portion of the Wall Street Journal included in the
Penn Treebank II (Marcus et al., 1994). We also pull
from the smaller of the two WebText (WEB) data
sets published in OntoNotes. This corpus contains
85K words selected from English weblogs. This
portion of the data is not to be confused with the
the larger 200K word web data, which is a separate
corpus in OntoNotes. The third corpus used in our
experiments is the 200K word Broadcast News (BN)
data. OntoNotes’ BN data contains news texts from
broadcasting sources such as CNN, ABC, and PRI
(Public Radio International).

3.2 Data Selection

In order to narrow the data down to a more manage-
able size for annotation, we exclude instances that
can be deterministically categorized as NON-CMCs
using the gold Penn Treebank annotation of the cor-
pora. To do this we first select all sentences with the
base syntactic form (NP-SBJ (V NP PP)) based on
the Penn Treebank gold annotation.

Additionally, we use a set of heuristics (a smaller
set than the pilot) to further select instances of po-
tential CMCs. Instances which satisfy the following
three conditions are extracted for annotation:(1) an
NP exists in the verb phrase; (2) at least one PP ex-
ists in the verb phrase; and (3) the NP precedes the
PP in the verb phrase.

For the remaining data, already annotated in-
stances from the pilot study are separated out for
double-checking. We also set aside instances that
can be deterministically categorized as NON-CMC:
instances with the function tags ADV, EXT, PRD,
VOC, or TMP. These sentences are kept for a quick
verification at the annotation stage that they indeed
are cases of NON-CMCs and labeled as such.

3.3 Added Syntactic Complexity

In the pilot study, we had excluded passive instances
(e.g. Coffee was shipped from Colombia by Gra-
cie.), instances with traces in the object NP or PP in-
cluding questions, relative clauses, and subordinate
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clauses (e.g. What did Gracie ship from Colombia?
and It was Gracie that shipped coffee from Colom-
bia.) and instances in which the verb is a conjunct
to the main verb in the sentence (e.g. chop in He
peeled the potatoes and chopped them into a bowl),
opting to match sentences by their surface structure.
For the current study, our data selection includes in-
stances that retain an underlying syntactic form (NP-
SBJ (V NP PP)). In effect, we extend the syntactic
variability in the data.

Form WSJ BN WEB
Questions/

2.3% 3.9% 2.6%
Rel. clauses
Passives 4.4% 4.6% 1.6%
Conjuncts 7.9% 10.2% 16.3%
Other clauses 46.3% 41.2% 37.3%
Other 41.4% 44.1% 44.7%

Table 1: Syntactic forms found in data. Other clauses
include both subordinate and complement clauses.

Table 1 shows the breakdown of the syntactic
forms in the current data. The pilot data was solely
restricted to the “Other” category. More than half
of all the syntactic forms represented in our current
data add to the syntactic complexity beyond that of
the pilot dataset, and lower our baseline classifier
performance significantly.

3.4 Labels and Classfiers

The annotated data includes 4 major types of
CMCs (Hwang et al., 2014). CMC types are listed
below:

• Displacement: These CMCs express a (con-
crete or abstract) change of location of an entity
(e.g. The goalie kicked the ball into the field. or
The market tilted the economy into recession.).
This is the most prototypical CMC type.

• Change of Scale: These CMCs express a
change in value on a linear scale (e.g. Torren-
tial rains raised the water level to 500ft.).

• Change of Possesion: These CMCs express a
change of possession (e.g. John gave a book to
Mary).

• Change of State: These CMCs express a
change of attribute of an item (e.g. I smashed
the vase into pieces.)

The experiments presented in this paper are
geared towards the identification of: (1) all 4 types
unified under a single label and (2) the “Displace-
ment” type of CMCs (1 of the 4 types). We build
two binary classifiers – one for each of the two la-
bels. We will refer to the former classifier as “CMC
classifier” and the latter as the “DISPLACE classi-
fier”. Table 2 shows the classification label distribu-
tion across the three corpora.

For all our experiments, 80% of the anno-
tated data is randomly selected as the train-
ing/development data and the remaining 20% is set
aside as the test/evaluation set. For our experiments,
we use a Support Vector Machine (SVM) classifier
with a linear kernel. In particular, we use LIBSVM
(Chang and Lin, 2001) as our training and testing
software. We use a 5-fold cross-validation process
for the development stage.

3.5 Features

The features encode syntactic and semantic informa-
tion that targets four elements in the sentence: (1)
the verb, which expresses the event or the situation
of the sentence, (2) the preposition, which instan-
tiates the path information in a caused motion sen-
tence, (3) the complement of the preposition, which
covers the rest of the prepositional phrase, (4) the
cause argument, which is recovered from the sub-
ject of the sentence or the prepositional by-phrase in
a passive sentence, and (5) the undergoer argument,
which is recovered from the direct object position of
the sentence or from the subject position in a passive
sentence. We will discuss the cause and undergoer
argument recovery in further detail later.

3.5.1 Feature Sets
The baseline feature set is encoded by the verb

lemma – the lemmatized and case-normalized verb.
The verb lemma feature is the baseline feature for
all our experiments. Following are the semantic
and syntactic features sets used in our experiments.
Anytime we use the terms “Full Set” or full feature
set, we are referring to a set of features that includes
all of the feature sets below for each of the four
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WSJ WEB BN
CMC 2250 14.8% 533 29.2% 703 18.6%
NONCMC 12959 85.2% 1291 70.8% 3073 81.4%
DISPLACE 1261 8.3% 412 22.6% 511 13.5%
NONDISPLACE 13948 91.7% 1412 77.4% 3265 86.5%

Table 2: CMC and DISPLACE label distribution in training and test data

elements as noted above.

Features encoding semantic information are as
following:

• Nominal Entity features which are auto-
matically generated using BBNs IdentiFinder
(Bikel et al., 1999). The IdentiFinder annotates
relevant noun phrases with labels such as “Per-
sons”, “Time”, “Location”, or “Organization”.

• PropBank Frameset features specify the
verb’s sense based on its subcategorization
frame. This is extracted from the gold anno-
tation provided by Ontonotes.

• Ontonotes Verb Sense features which specify
the verb’s sense. The semantics of these fea-
tures are generally finer grained than what the
PropBank framesets encode. These features are
also provided as gold annotation in OntoNotes.

• VerbNet Class features that encode each of the
VerbNet classes in which the verb is a member.
A verb can be a member of one or more classes.

• Preposition Type features obtained from the
automatic preposition labeller developed in a
recent study by (Srikumar, 2013). The labeller
introduces a set of 32 roles to disambiguate se-
mantics of prepositions as used in sentences
(e.g. from in Her sudden death from pneumo-
nia ... (Cause) vs. She copied the lines from the
film.(Source))

Features encoding syntactic information include:

• Part of Speech Tag of the lexical item in the
syntactic parse.

• Dependency Relation Tag of the lexical item
in a dependency parse.

Please note that while we depend on the phrasal
trees for the data selection process, for feature ex-
traction, we employ the CLEAR dependency parses
(Choi, 2012). These parses have been automat-
ically converted from the Penn Treebank phrasal
trees. The decision to encode syntactic features
from the dependency parses rather than from phrasal
parses was based on the flexibility and the amount
of additional information we gain through the de-
pendency parse type. After a series of experimen-
tal runs with features from both parse types, it was
determined that further syntactic features based on
the phrase trees produced relatively similar perfor-
mance to that of its counterpart labels on the de-
pendency trees. However, the dependency labels are
functionally finer grained than phrase structure la-
bels for those syntactic elements that are most rele-
vant to the CMCs.

3.5.2 Cause & Undergoer Argument Recovery
We make a pre-processing pass of the data to re-

cover these arguments when possible. The recov-
ered arguments are as following:

• Passive Sentences: For passive sentences, the
complement of the by-prepositional phrase is
recovered as the cause argument and the sub-
ject is recovered as the undergoer argument.

• Conjunctions: Given two verbal conjuncts
sharing the subject, as in “He cut the peppers
and diced the tomatoes”, the CLEAR depen-
dency parse places the conjunction and the sec-
ond conjunct as dependents of the first verb.
This means that in dependency trees the two
conjuncts’ access to the cause argument is not
symmetrical. The argument He is accessible to
the verb diced via the verb cut, as the argument
is a direct dependent of the verb cut and not
the verb diced. To recover the arguments of the
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WSJ WEB BN
P R F P R F P R F

Baseline 61.23 37.56 0.4656 75.6 55.7 0.641 71.4 53.6 0.612
Baseline+P 75.00 74.67 0.7483† 78.0 80.2 0.791† 84.8 75.7 0.800†
Full Set 74.00 77.78 0.7584† 79.0 78.3 0.787† 84.1 82.9 0.835†
Annotator Agreement 0.667 0.764 0.606

Table 3: System performance on CMC label classification.
Statistically significant change from the Baseline feature set is marked with a †.

WSJ WEB BN
P R F P R F P R F

Baseline 66.80 63.89 0.6531 72.7 58.5 0.649 71.3 55.9 0.626
Baseline+P 76.33 74.21 0.7525† 73.4 70.7 0.720 80.0 70.6 0.750†
Full Set 72.52 75.40 0.7393† 76.5 79.3 0.778† 80.6 77.5 0.790†

Table 4: System performance on DISPLACE label classification.
Statistically significant change from the Baseline feature set is marked with a †.

second verb conjunct we reach for the depen-
dent on the first conjunct as necessary.

• Subordinate clauses: For verbs that are found
in subordinate clauses whose head node is a
verb (also called matrix verb) such as an infini-
tival clause (e.g. He [plans]-HEAD to cut the
peppers into pieces), or a relative clause (e.g.
Joe [cut]-HEAD the tomatoes Mary washed.),
we reach for the head node’s arguments to fill
in the missing cause and theme arguments. If
there is an intervening relative pronoun (e.g.
Joe cut the tomatoes that Mary washed), the
relative pronoun is retrieved as the argument
(either as cause or theme depending whether or
not the subordinate clause is a passive), instead.

3.5.3 POS Tags & Dependency Relation Tags
After a series of experiments, it was determined

that the part of speech and the dependency relation
features might be too fine grained to provide useful
information to the classifier. Thus, all of the features
expressed by the part of speech and the dependency
relation are featurized in the following manner.

• Part of Speech Tags: (1) Cardinal numbers
(CD), pronouns (PRP), and gerundial (VBG)
and participial (VBN) forms of verbs are fea-
turized as found (one feature per tag). (2) Rest
of the verb forms are mapped to the base tag

VB. (3) Plural nouns are mapped to their sin-
gular counterparts. (4) Adjectives and adverbs
are mapped to the base tag JJ and RB, respec-
tively. (5) Rest are given the tag: OTHER.

• Dependency Relation Labels: (1) Relations
specifying subjects, direct object, and agent
(oblique of a passive sentence), and relations
specifying the object of the preposition, com-
plement clauses, and relative clauses are featur-
ized as found (one feature per tag). (2) Comple-
ment clauses (e.g. pcomp, acomp) are grouped
under a single comp label. (3) Modifiers (e.g.
partmod, advmod) are grouped under the mod
label. (4) Rest are given the tag: OTHER.

4 Classifier Experiments

Tables 3 and 4 show the precision and recall per-
centages and the f-score values for our experiments.
Here we show results for three feature combina-
tions: the Baseline set encoded from the verb’s
lemma, the Baseline plus the preposition feature set
(Baseline+P), and the Full Set that includes all of
the features listed in Section 3.5. The best per-
formance values are bold-faced. The significance
of a feature set’s performance was evaluated via a
chi-squared test (McNemar, p < 0.05). Statisti-
cally significant change from the Baseline feature
set is marked with a †. Additionally, for the CMC
classification we show the inter-annotator agreement

55



(Gold) f-score (Hwang et al., 2014). Our best per-
formances in CMC classification as measured by the
f-score are comparable or higher than the inter anno-
tator agreement f-score.

4.1 Syntactic vs. Semantic Features
With the exception of the DISPLACE classifier on
the WEB corpus, both the Baseline+P and the Full
Set of features perform significantly better than the
Baseline in both sets of experiments. It is interest-
ing that the Baseline+P set performs just as well and
sometimes better than the full set of feature consis-
tently across the corpora, though the differences in
the values are not statistically significant.

In order to gain a better understanding of the per-
formance on the full set of features, the full feature
set was divided into syntactic features and seman-
tic features as described in Section 3.5. As a means
of control, both the syntactic and semantic feature
sets also include the features for the verb lemma and
the preposition. Out of the different feature com-
binations examined, the distinction between seman-
tic and syntactic features is the most salient. Ta-
ble 5 shows the system performance values for the
syntactic and semantic features. We also show the
performance of the Baseline+P plus VerbNet class
(Baseline+PV) feature set, as it gives better insight
into the semantic feature performance.

The numbers indicate that the semantic features
have a consistently higher performance than the syn-
tactic features. The syntactic feature sets, perform
significantly lower than the full feature sets and they
barely pass the Baseline features in performance.
In fact, the syntactic features are significantly lower
than the Baseline+P features, despite the fact that,
just like the semantic features, they include the verb
lemma feature and the preposition feature. This sug-
gests, that the syntactic features even in the presence
of the lexical features are not strongly predictive of
caused motion constructions. Moreover, these num-
bers seem to indicate that the performance on the
full set of features likely comes from the semantic
feature performance.

Amongst the semantic features, the Baseline fea-
ture, the Baseline+P feature, and the feature for
VerbNet class membership of the verb (i.e. Base-
line+PV) give the highest results. With the excep-
tion of the CMC classifier on the BN corpus, the

numbers for the Baseline+PV set are not signifi-
cantly different from either the semantic feature or
the full feature set performance. Other semantic
combinations were also tested, but they did not re-
sult in any particular change from the semantic fea-
ture set and the full feature set.

The semantic features perform as the most predic-
tive features. This finding makes intuitive sense. Re-
call that during the data selection stage, we selected
for instances that show syntactic compatibility with
CMCs. Although syntactic variability still exists in
the selected data (e.g. relative clauses and passive
sentences), because of the data selection stage based
on syntax, the task of identification comes primarily
down to the semantic distinction between existing
sentences. Additionally, some of the existing syntac-
tic differences are neutralized by the cause and un-
dergoer argument pre-processing stage described in
Section 3.5.2. Thus, it stands to reason that most of
the useful contributions come from the lexical items
themselves and the semantics of the verb and its ar-
guments.

Finally, the baseline system of the DISPLACE
classification shows either a similar or improved
performance over the CMC classifier. The overall
performances across the different feature sets show
similar values. Given that DISPLACE makes up a
smaller percentage of the total data as shown in Sec-
tion 3.4 (e.g. DISPLACE label for WSJ accounts
for just under 9% of the total test and training data),
the comparable performance is likely indicative that
the DISPLACE label represents a more semantically
coherent phenomenon than the CMC label.

4.2 Removing Frequent NON-CMC Verbs
In this experiment, we remove the top 25 highly fre-
quent verbs1 that do not appear in a CMC usage
from both the training and testing data2. Their se-
mantics are not compatible with the established def-
initions of CMCs. For example, verbs like be, do, or
have cannot have caused motion usages, and verbs

1We effectively went down the list of the most frequent verbs
in our WSJ data, and stopped at the first verb that could be
judged as compatible and non-contrary to the established def-
initions of CMCs. 25 is the number of verbs in this list before
the first CMC-compatible verb was reached.

2Top 25 verbs include: accuse, base, be, build charge, cre-
ate, do, fall, file, find, have, hold, keep, leave, offer, open, play,
prevent, produce, quote, reach, rise, see, use, and view.
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CMC Classification
WSJ WEB BN

P R F P R F P R F
Syntactic 63.79 41.11 0.5000 76.6 55.7 0.645 72.4 54.3 0.620
Semantic 71.02 72.44 0.7173 77.3 64.2 0.701 80.5 76.4 0.784
Baseline+PV 71.78 76.89 0.7425 78.8 77.4 0.781 85.9 82.9 0.844

DISPLACE Classification
WSJ WEB BN

P R F P R F P R F
Syntactic 66.80 63.89 0.6531 73.8 58.5 0.653 72.3 58.8 0.649
Semantic 72.94 73.81 0.7337 76.3 70.7 0.734 74.3 79.4 0.768
Baseline+PV 74.81 76.59 0.7569 78.7 72.0 0.752 82.8 75.5 0.790

Table 5: System performance on semantic and syntactic features.

like keep, leave, or prevent are contrary to the se-
mantics of CMCs. By removing large number of
NON-CMC instances, we focus on how well the
classifier performs on truly ambiguous cases. Fur-
thermore, because these verbs have no instances of
CMCs or DISPLACEs, only the negative label was
reduced in size. Effectively, the removal of the verbs
increases the proportion of the positive labels in the
corpora. The numbers are shown in Table 6.

CMC DISPLACE
Corpus Before After Before After
WSJ 14.8% 18.3% 8.86% 10.2%
WEB 29.2% 33.1% 24.2% 25.6%
BN 18.6% 21.6% 14.3% 15.7%

Table 6: Removed lemma count and effect on CMC label

Tables 7 and 8 show the precision and recall per-
centages and the f-score values when the instances
of the most frequent NON-CMC verbs are removed
from the training and testing data.

There is a general improvement in performance
after the removal of the verbs from the data. The
most marked improvement is in the WEB models
(both CMC and DISPLACE) and the BN model’s
DISPLACE label classification. In particular the
recall value shows improvement in these classifier
models. As we have seen before, the Baseline+PV
set and the full feature set show the best predictions.
There is no noticeable improvement in the WSJ clas-
sifiers except for a slight (statistically insignificant)
increase in the baseline values.

4.3 Random Downsampling of Negative Labels

As we have seen in Section 3.4, the CMC and the
DISPLACE instances in WSJ are outnumbered by
the negative, NON-CMC labels. The previous ex-
periment on removing NON-CMC verbs effectively
brought up the percentage of positive labels for the
CMC and DISPLACE labels to 20% and 11%, re-
spectively. However, label proportions of 20-80
or, worse, 11-89 are still highly unbalanced. Sev-
eral studies have shown that in cases of training
size imbalance, downsampling data can help with
the performance of supervised classifiers (Weiss and
Provost, 2001; Kubat and Matwin, 1997). Thus, for
this experiment, we randomly downsample the neg-
ative labels in the WSJ training data to increase the
percentage of positive labels3. For the sake of sim-
plicity, we base the downsampling proportions on
the CMC label: we cut the negative label so that
the CMC label makes up 25% (Downsample1 ”D1”)
and 30% (Downsample2 ”D2”)of the total data. The
proportions of the DISPLACE labels are, therefore,
14.0% (D1)and 16.8% (D2), respectively.

Table 9 shows the performance of the WSJ mod-
els on the downsampled training set. The results in-
dicate that the downsampling of the negative labels
in the training data leads to increased performance.
We have also tested the semantic feature set and the
Baseline+P feature set as well. Their performances

3The downsampling was only applied to the training set, al-
tering the distribution of labels only for the training data. The
test set remains identical from its previous distribution in Sec-
tion 4.2
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WSJ WEB BN
P R F P R F P R F

Baseline 63.32 40.67 0.4953 69.0 54.7 0.611 75.7 60.0 0.669
Baseline+P 71.71 71.56 0.7164 80.7 86.8 0.836 79.2 81.4 0.803
Baseline+PV 70.97 73.33 0.7213 81.6 87.7 0.845 79.6 83.6 0.815
Semantic 69.37 68.44 0.6890 74.6 80.2 0.773 77.1 84.3 0.805
Full Set 73.88 76.67 0.7525 76.2 87.7 0.816 79.5 82.9 0.811

Table 7: System performance on CMC label classification with frequent NON-CMC verbs removed.

WSJ WEB BN
P R F P R F P R F

Baseline 63.25 58.73 0.6091 70.3 63.4 0.667 71.1 57.8 0.638
Baseline+P 72.77 67.86 0.7023 74.1 76.8 0.754 79.4 75.5 0.774
Baseline+PV 74.89 69.84 0.7228 76.1 81.7 0.788 79.8 81.4 0.806
Semantic 71.81 64.68 0.6806 73.8 75.6 0.747 74.5 77.5 0.760
Full Set 73.60 73.02 0.7331 76.7 84.1 0.802 81.4 81.4 0.814

Table 8: System performance on DISPLACE label classification with frequent NON-CMC verbs removed.

are approximately equal with no significant differ-
ence from the Baseline+PV, so we do not include
those numbers.

We observe a large increase in the recall values,
resulting in the overall improvement of the classi-
fiers trained on downsampled data4 . Interestingly,
with the random downsampling of the training data,
we see a boost in the full feature set’s performance
far more than the Baseline+PV set’s performance.
In fact, in all cases we observed that the full features
now show a significantly higher performance than
the other features (McNemar, p < 0.05). The ob-
served results for the two downsampled classifiers
are not statistically distinct from one another.

5 Final Considerations and Future Work

We have presented our work on the automatic clas-
sification of CMCs in corpus data using the anno-
tated data produced in our earlier study (Hwang et
al., 2014). Our studies have shown that we can
achieve the identification of caused motion instances
at a higher rate than the inter-annotator agreement
scores, the best performance that can be realistically
expected. We have also shown that semantic in-
formation is highly indicative of the caused motion

4We only show the recall values in Table 9 as the increase
observed in the f-score was mainly due to the recall values.

CMC Classification:
D1 D2

R F R F
Baseline 55.33 0.5900 68.00 0.6207
Baseline+PV 86.00 0.7866 89.11 0.7886
Full Set 88.89 0.8180 91.33 0.8171
DISPLACE Classification:

D1 D2
R F R F

Baseline 69.05 0.6705 75.40 0.6798
Baseline+PV 85.32 0.7776 88.10 0.7776
Full Set 88.10 0.8177 91.27 0.8084

Table 9: Classification performance with downsampled
training data.

phenomenon, confirming our general intuition that
the caused motion construction is a semantic phe-
nomenon. We have also carried out cross-genre ex-
periments, which we were not able to include in this
paper in the interest of length. In these experiments,
we find that syntax provides scalable features that
generalize well across different types of text, pro-
ducing better results in cross-genre experiments. We
have also shown that the downsampling of the nega-
tive label has a positive impact on the classification
of the labels.
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This work has made use of various gold anno-
tations for the purposes of feature extraction. The
most obvious next step in this investigation will in-
volve experimentation with automatically obtained
features. Additionally, we hope to examine the im-
pact of further features. As the experiments have
shown, the lexical and semantic features (lemma,
preposition, VerbNet classes) surface as strong pre-
dictors of CMCs. It follows from this, that we
should expand the feature search to other seman-
tic information. One particular set of features that
might be interesting, would be based on FrameNet
frames. Since FrameNet’s frames represent dif-
ferent conceptual semantic domains, features from
FrameNet may be instrumental at capturing and
highlighting the semantics of CMCs that are spread
across VerbNet classes of differing semantic types.
Moreover, it would also be interesting to expand on
the lexical features: lexical features can be extended
to not just the verb of the sentence but also to the
noun phrases. Further investigation into using re-
sources like WordNet (Miller, 1995; Fellbaum et al.,
1998) might be needed to remedy sparse data issues
that lexical features based on words from the noun
phrases might create.
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Abstract

Word Sense Disambiguation has been stuck
for many years. In this paper we explore
the use of large-scale crowdsourcing to cluster
senses that are often confused by non-expert
annotators. We show that we can increase
performance at will: our in-domain experi-
ment involving 45 highly polysemous nouns,
verbs and adjective (9.8 senses on average),
yields an average accuracy of 92.6 using a su-
pervised classifier for an average polysemy of
6.1. Our proposal has the advantage of being
cost-effective and being able to produce differ-
ent levels of granularity. Our analysis shows
that the error reduction with respect to fine-
grained senses is higher, and manual inspec-
tion show that the clusters are sensible when
compared to those of OntoNotes and WordNet
Supersenses.

1 Introduction

Word sense ambiguity is a major hurdle for accu-
rate information extraction, summarization and ma-
chine translation. The utility of Word Sense Dis-
ambiguation (WSD) depends on the accuracy and
on how useful the sense distinctions are. The first
issue is quantitative, as it can be measured using
a WSD system on certain dataset. The second ex-
amines whether the sense distinctions are appropri-
ate, which varies from application to application.
Although usefulness can be explored in a down-
stream application (Agirre et al., 2008), it is usually
assessed subjectively, discussing the quality of the
sense distinctions (Palmer et al., 2007). Both issues

(performance and usefulness) are linked to the gran-
ularity of the sense inventory, and conflict with each
other: finer granularity might produce more useful
distinctions but the accuracy would be worse, and
vice-versa.

WordNet (Fellbaum, 1998) is the most widely
used resource to build word sense disambiguation
tools and word sense annotated corpora, including
recent large efforts (Passonneau et al., 2012), but its
fine-grainedness has been mentioned to be a prob-
lem (Hovy et al., 2006; Palmer et al., 2007).

We think that a desiderata for a sense inventory
would be that it provides useful sense distinctions
and useful performance across a large range of appli-
cations. We would also add that it should be tightly
integrated with WordNet, given its prevalence on
NLP applications, and we thus focus on sense in-
ventories which are mapped to WordNet.

In order to asses usefulness, we need specific
measures. Downstream application is difficult, and
unfeasible for new proposals, as a full-fledged sense
inventories and associated annotations are neces-
sary. We can instead estimate usefulness of pro-
posed sense inventories using several proxy mea-
sures:

• High polysemy. Note that polysemy alone
could be misleading, as a word with many
senses might be skewed to a single sense: 99%
of occurrences could belong to a single sense,
while the rest are only seen once. Besides the
absolute polysemy, we can use the accuracy of
the most frequent sense (MFS, estimated in
train data and applied to test data) as a simple
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and effective indication of skewness. High pol-
ysemy and low MFS are desirable properties.

• High performance, as measured the accuracy of
a supervised system trained on hand-annotated
data. The higher the accuracy, the better.

• Flexible sense granularity, that is, the ability
to produce different degrees of polysemy and
accuracy, from fine-grained to coarse-grained.
When comparing sense inventories with differ-
ent granularities, absolute MFS and supervised
performance are not enough. We propose to use
error reduction of the supervised system with
respect to the MFS as a measure of the balance
between low MFS and high supervised perfor-
mance. The larger the error reduction the bet-
ter.

• Manual inspection of the sense distinctions, as
a complement to quantitative measures.

We propose to use crowdsourced annotations
(Passonneau and Carpenter, 2014) to cluster Word-
Net senses that are often confused by non-expert an-
notators. Our method can provide clusters at dif-
ferent levels of granularity. We show that we can
construct clusters yielding around 90% accuracy for
45 words, with higher error reduction with respect
to MFS than fine-grained senses. By construction,
we merge senses which are often confused by anno-
tators, yielding sensible sense clusters, as corrobo-
rated by manual inspection.

The paper is structured as follows. Section 2 men-
tions related work. We then present the annotations,
followed by the clustering procedure. Section 5 re-
port the main experiments. Section 6 compares our
clustering to that of OntoNotes followed by a com-
parison to WordNet Supersenses. Section 8 draws
the conclusions.

2 Related Work

Our work is close to (Passonneau and Carpenter,
2014) in that we use the same dataset and anno-
tations presented in that work. They present a
comparison of conventional expert-guided annota-
tion model with a probabilistic annotation model
that does not take agreement into account.

Previous efforts to cluster WordNet senses in
order to produce coarse-grained inventories have
shown that improved results can be obtained, but
we think our approach fits the desiderata better.
For instance, clustering together senses which have
the same Semantic File (also called Supersenses)
allowed the best supervised WSD system to date
(Zhong and Ng, 2010) to increase accuracy from
58.3% to 82.6% in the Semeval 2007 all-words
dataset (Navigli et al., 2007). Semantic Files are
useful, but don’t allow to provide flexible sense in-
ventories.

The OntoNotes project (Hovy et al., 2006) de-
vised a manual grouping method which explicitly
sought 90% accuracy. Although the method was
shown to be successful, the fixed sense groupings
had to be produced manually, included complex
mappings to WordNet (cf. Section 6), and was a
limited exercise, with annotations for around 4900
words. Our work is similar in spirit to OntoNotes,
but use a different methodology which allows for
flexible granularity, as the annotation is done at the
fine-grained level, and the clustering is done later
fully automatically.

Automatic clustering algorithms are not new.
(Tou Ng et al., 1999) propose to use annotator
agreement to cluster senses, reporting higher inter-
annotator agreement after clustering. We are in part
inspired by their approach, as we extend it from two
annotators to a sample with 25 annotators, and vali-
date the approach with WSD systems.

The rest of approaches use other sources of in-
formation. Peters et al. (1998) make use of the
WordNet hierarchy to group close senses. Mihal-
cea and Moldovan (1999) present similar approach
that is based in the structure of WordNet. To-
muro (2001) presents are more principled algorithm
based on Minimum Description Length. A work
which is closely related to our work is (Agirre and
Lopez de Lacalle, 2003), in which they examine
a variety of information sources to cluster Word-
Net word senses, including a hierarchical cluster-
ing based on distributional information. Snow et
al. (2007) present a supervised learning algorithm
that learns merging senses and make use of wide
range of WordNet-based and corpus-based features.
(Navigli et al., 2007) mapped WordNet to the top
level sense distinctions in the Oxford Dictionary of
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English. All the above rely on automatic measures,
while our method is based on human annotations.

3 MASC Crowdsourced annotations

The corpus used in the experiments is part of the
Manually Annotated Sub-Corpus of the Open Amer-
ican National Corpus, which contains a subsidiary
word sense sentence corpus consisting of approxi-
mately one thousand sentences per word annotated
with WordNet 3.0 sense labels (Passonneau et al.,
2012). In this work we make use of a publicly avail-
able subset of 45 words (17 nouns, 19 verbs and
9 adjective, see Table2) that have been annotated,
1000 sentences per target word, using crowdsourc-
ing (Passonneau and Carpenter, 2014). The authors
collected between 20 and 25 labels for every sen-
tence. They showed that a probabilistic annotation
model based on crowdsourced data was effective,
with favorable quality when compared to a conven-
tional expert-guided annotation model.

4 Clustering Procedure

Having access to multiple annotations of the same
item allows to identify correlations among senses
of a word. In particular, we can mine how many
times the annotators confused 2 particular senses of
a word. If two senses are confused very often, it
will signal that the annotators find the differences
between the two senses difficult to discriminate in
context. We also want to note that, in some cases, the
context might be underspecified, and several senses
might hold at the same time. We left this second
phenomena for a future study.

We built a confusion matrix for each target word
counting how many times two distinct senses are an-
notated in the same instance. More formally, the
confusion of two senses of a target word conf(s1, s2)
is defined as follows:

1
I

I∑
i=1

1(
Ji
2

) Ji−1∑
m=1

Ji∑
n=m+1

I((yi,n = s1 ∧ yi,m = s2)∨

(yi,n = s2 ∧ yi,m = s1))

where I is number of instances of the word, Ji is the
number of turkers that annotated instance i, and yi,m
is the annotation of turker m in instance i. Finally,
I(s) = 1 iff the condition expressed in s is true.

We cluster the senses based on the information in
the confusion matrix, i.e. two senses (s1, s2) will
tend to be in the same cluster if conf(s1, s2) is high.
We used agglomerative hierarchical clustering for
the sake of simplicity, as we obtain one hierarchy of
senses in one go, and then used different cuts in the
hierarchy to obtain clusters of different sense granu-
larities.

In order to obtain the target coarse-grained inven-
tory, the procedure was the following: (0) we start
at the leaves of the hierarchy, that is, with the fine-
grained senses; (1) we train and test a word sense
disambiguation algorithm on development data us-
ing the current sense distinctions (see the next Sec-
tion for details); (2) if the accuracy is higher than
90%, or if there are only two senses left, we stop
and output the current sense distinctions; (3) we go
up one level in the hierarchical cluster, joining to-
gether the two senses with highest confusion score,
and go to step (1). Note that the algorithm does not
guarantee obtaining 90% on the training data. Once
the coarse-grained senses are obtained, we train the
word sense disambiguation on the development data
and test over held-out data, yielding the final accu-
racy scores.

In order to contrast results, we also produced hier-
archies of senses based on random clustering, where
the clusters yield the same sense granularity as those
of the confusion-based clustering explained above.
We produced 10 random clustering for each word,
and averaged over the runs to obtain the final accu-
racy.

5 Experiments

The gold standard is based on the multiple annota-
tions in the corpus, but a single sense was selected
as the correct one, following (Passonneau and Car-
penter, 2014), which use a probabilistic annotation
model (Dawid and Skene, 1979). We split the 1000
examples for each word into development and test,
sampling 85% (and 15% respectively) at random,
preserving the overall sense distribution.

The Word Sense Disambiguation algorithm of
choice is It Make Sense (IMS) (Zhong and Ng,
2010), which reports the best WSD results to date.
IMS is a freely available Java implementation1,

1http://www.comp.nus.edu.sg/˜nlp/
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which provides an extensible and flexible platform
for researchers interested in using a WSD compo-
nent. Following Lee and Ng (2002), IMS adopts
support vector machines as the classifier and inte-
grates the state of the features extractors including
parts-of-speech of the surrounding words, bag of
words features, and local collocations as features.

IMS provides ready-to-use models trained with
examples collected from parallel texts , SEM-
COR (Miller et al., 1993), and the DSO corpus
(Ng and Lee, 1996). In our experiments we train
IMS with the train examples of the crowdsourced
MASC. We used IMS out-of-the-box, using the
default parametrization and built-in feature extrac-
tion. We compare results obtained with IMS against
the Most Frequent Sense (MFS), which was es-
timated using the training corpus. Both systems
(IMS and MFS) could be trained on fine-grained
senses, on coarse-grained senses induced from the
confusion matrix using the 90% threshold described
above (Coarseconf) and coarse-grained senses in-
duced from random clustering using the 90% thresh-
old (Coarserandom). We also used sense clusters from
OntoNotes and WordNet Supersenses (cf. Sections
6 and 7) .

5.1 Main results

The results of the six systems on development and
test data are shown in Table 1, showing that we suc-
cessfully attained an accuracy over 90% on average.
The results for random clustering show that not any
clustering yields meaningful results. Due to varia-
tion of the random sense-hierarchies, we calculated
the upper and lower margins with 95% of confidence
level (79.2-80.0 accuracy in test). The results show
that random clustering performs significantly lower
than the confusion based clustering. The results in
development and test are very similar, confirming
that the confusion information is stable in our in-
domain scenario.

All in all, as Table 2 shows, 30 words out of the
45 attain an accuracy higher than 90% in test (14
out of 17 nouns, 11 out of 19 verbs and 5 out of
9 adjectives). The precision for the words which
do not attain 90% is 87.4% on average, and 85.4%
for adjective, being the lowest. The polysemy is re-

software.html

Development Test
MFS IMS MFS IMS

Fine-grained 47.2 73.2 46.2 73.1
Coarserandom 60.4 79.9 60.2 79.6
Coarseconf 84.2 92.9 84.1 92.6

Table 1: Development and test results using cross-
validation (left side) and test results (right side) for IMS
and MFS using three sense inventories.
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Figure 1: Accuracy on test of sense granularities and
methods (top) and error reduction with respect to fine-
grained (bottom), for the three sense inventories.

duced from 9.8 to 6.2.The appendix shows detailed
information for each target word. In all but 3 words
coarse-grained accuracy is above fine-grained. Note
that MFS and IMS produce the same results in 11
words out of 45. We will revisit MFS in Section 6.

Figure 1 plots, on top, the results (on test) grouped
on MFS and IMS for easier comparison. The figure
also plots the error reduction of each coarse-grained
inventory with respect to fine-grained. The higher
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Figure 2: Accuracy of sense granularities and methods
(top) and error reduction of IMS with respect to MFS
(bottom), for the three sense inventories.

error reduction of our coarse-grained inventory with
respect to the random clustering shows that the clus-
ters are meaningful, and that the performance gain
is not an artifact of reducing the sense inventory2.

Figure 2 plots, on top, the results (on test) grouped
on each sense inventory. The figure also plots the er-
ror reduction of IMS with respect to MFS in each
coarse-grained inventory. The better error reduc-
tion of IMS with respect to MFS for our coarse-
grained inventory shows that our clusters are eas-
ier to learn, in that reducing the sense inventory in-
creases the delta with respect to the MFS baseline.
Note that reducing the sense inventory is not enough
to show this effect, as exemplified by the fact that
the error reduction for the random clusters is lower
than for the fine-grained senses.

2Note that, by construction, Coarserandom and Coarseconf have
the same granularity.

5.2 Flexible clustering

As we reached 90% of accuracy with relatively high
polysemy, we also checked whether MFS could
reach 90% of accuracy if we continued to cluster
senses. The experiments in development confirmed
that MFS gets above 90% at expenses of coarser
grained senses than IMS does: On average, the fine-
grained polysemy (9.8) would drop to 4.4, compared
to the 6.2 when clustering to reach 90% using IMS.
When we obtain MFS>90% 17 words have 2 senses
and 40 words reach to 90% of accuracy, whilst when
IMS>90% only 5 words are reduced to 2 senses and
42 words reach to 90%. This shows that it makes
more sense to cluster senses using the performance
of IMS as stopping criteria, as the polysemy is pre-
served better.

In case we continued clustering senses until we
have 2 senses for each word, IMS would reach
98.2% and MFS 95.7%, with an error reduction of
58% over the MFS. Note that this error reduction
compares favorably to that of our clustering when
stopping at IMS>90%, showing that we could have
kept clustering senses further without losing predic-
tive power. These figures show that we could stop at
arbitrary performance figures at the cost of obtaining
highly skewed clusters (indicated by the high MFS
value). We will revisit high MFS in Section 6.

6 Comparison to OntoNotes senses

In order to perform a qualitative study and check
whether our sense clusters make sense, we decided
to compare them to another coarse sense inventory
which is mapped to WordNet. We chose Ontonotes
5.0 (Hovy et al., 2006), which also had the goal of at-
taining 90% sense accuracy. Alternatively, we could
have used the Oxford Dictionary of English, which
was mapped automatically to WordNet 2.1 (Navigli
et al., 2007) but we preferred to factor out automatic
mappings and version differences from the analysis.

Ontonotes contains lexical entries for 35 of our
target words. The relation between the sense inven-
tory of WordNet and OntoNotes is complex. Given
that our work clusters WordNet senses, we focused
on the 18 words where the OntoNotes senses where
composed of one or several WordNet senses and
where all WordNet senses were covered3. Table 2

3The rest of words include senses not mapped to Word-
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Fine-grained Conf Random ON SS
Word #S IMS Mfs #S IMS Mfs IMS Mfs #S IMS Mfs #S IMS Mfs
common-j 10 70.5 39.0 7 87.0 83.6 74.3 46.9 - - - 1 100 100
fair-j 11 88.8 67.3 11 88.8 67.3 88.8 67.3 - - - 2 95.9 93.9
full-j 9 78.5 45.1 8 92.4 66.7 80.2 54.2 - - - 2 98.6 98.6
high-j 8 86.3 71.9 7 94.5 86.3 87.1 74.6 - - - 2 97.9 92.5
late-j 8 84.9 52.1 7 87.0 70.5 87.5 58.5 - - - 2 98.6 98.6
long-j 10 78.0 49.3 6 98.7 98.7 79.8 53.6 - - - 2 90.0 86.7
normal-j 5 81.9 66.0 4 85.4 79.9 83.8 72.2 - - - 1 100 100
particular-j 7 85.0 51.0 6 94.6 66.7 89.5 60.0 - - - 1 99.3 99.3
poor-j 6 76.2 52.4 2 94.6 62.6 88.2 73.6 - - - 2 100 100
board-n 10 88.9 79.9 9 93.8 93.1 89.8 80.9 7 88.9 79.9 5 89.6 79.9
book-n 12 56.3 64.4 11 88.9 89.6 58.3 65.3 - - - 5 65.9 71.1
color-n 9 65.5 32.4 2 99.3 99.3 85.6 76.8 - - - 4 84.8 73.8
control-n 12 79.5 46.6 6 96.6 93.8 82.8 52.0 - - - 8 78.1 46.6
date-n 9 80.1 24.1 4 91.5 65.2 84.2 43.4 - - - 5 91.5 85.1
family-n 9 64.3 26.6 2 100 100 79.7 64.9 - - - 3 99.3 99.3
image-n 10 70.6 49.0 7 90.9 85.3 74.6 59.0 - - - 7 77.6 60.8
land-n 12 57.6 20.8 6 96.5 92.4 62.9 43.2 - - - 6 62.5 28.5
level-n 9 69.9 52.1 7 94.5 94.5 74.6 59.3 7 85.6 77.4 5 77.4 53.4
life-n 15 58.0 21.7 5 89.5 88.8 67.3 43.8 - - - 10 65.0 46.2
number-n 12 87.7 71.2 11 92.5 86.3 89.6 73.9 - - - 5 89.0 71.2
paper-n 8 76.4 41.0 2 100 100 87.7 72.4 - - - 5 83.3 74.3
sense-n 6 93.8 38.6 6 93.8 38.6 93.8 38.6 6 93.8 38.6 3 94.5 66.9
time-n 11 90.1 48.4 7 94.5 93.4 89.7 51.7 - - - 5 92.9 48.4
way-n 13 72.1 55.8 7 91.2 78.9 78.6 62.4 - - - 8 78.2 59.9
window-n 9 75.9 38.6 3 91.7 60.7 84.9 59.3 - - - 4 90.3 62.8
work-n 8 69.8 20.5 2 85.9 79.5 80.9 63.1 - - - 5 75.1 38.5
add-v 7 40.3 49.3 2 91.0 91.0 74.3 77.1 3 90.3 90.3 6 40.3 49.3
appear-v 8 64.4 47.3 5 87.7 63.0 69.2 59.6 5 87.7 63.0 5 87.7 63.0
ask-v 8 78.3 36.4 6 96.5 96.5 83.9 53.8 - - - 3 100 100
find-v 17 62.4 28.4 13 86.5 85.8 65.7 30.8 6 80.9 58.9 7 75.2 41.8
fold-v 6 93.2 83.7 6 93.2 83.7 93.2 83.7 5 93.2 83.7 4 94.6 83.7
help-v 9 61.2 36.0 6 99.3 97.1 69.3 48.7 3 100 97.8 4 73.4 59.7
kill-v 16 63.9 59.7 11 89.6 86.8 67.0 62.5 9 89.6 86.8 7 82.6 81.2
know-v 12 63.1 35.4 7 89.2 77.9 64.8 40.3 7 81.5 48.7 2 100 100
live-v 8 73.5 47.6 3 97.3 94.6 82.5 66.9 - - - 3 91.2 87.8
lose-v 12 64.4 50.7 3 93.8 93.8 76.6 69.1 6 70.5 58.2 7 75.3 64.4
meet-v 14 69.7 28.9 2 86.6 59.9 83.5 61.1 7 82.4 52.1 8 78.9 59.9
read-v 12 82.8 73.9 11 85.1 80.6 84.5 76.1 8 82.1 75.4 4 91.0 88.8
say-v 12 64.9 35.7 7 96.1 96.1 67.5 44.0 6 96.1 92.2 3 100 100
serve-v 16 73.1 40.7 11 88.3 83.4 76.4 46.1 7 80.0 49.7 6 81.4 65.5
show-v 13 75.7 27.5 9 94.2 93.7 79.1 41.6 - - - 5 81.5 32.8
suggest-v 5 74.3 63.5 3 97.3 97.3 81.0 73.3 3 91.2 81.8 1 99.3 99.3
tell-v 9 57.6 38.9 6 86.1 83.3 69.2 54.6 4 94.4 92.4 3 97.9 97.2
wait-v 5 70.2 36.6 3 96.2 92.4 82.2 66.1 3 96.2 92.4 4 76.3 64.9
win-v 5 72.8l 60.5 2 100 99.3 87.9 82.3 - - - 4 76.9 70.1
AVG 45 words 9.8 73.1 46.2 6.2 92.6 84.1 79.6 60.2 - - - 4.7 84.2 73.3
AVG 18 words 10.2 69.9 48.8 6.0 91.5 83.2 76.8 59.6 5.7 88.0 73.2 4.3 86.2 74.3

Table 2: The 45 words, with PoS, polysemy, IMS and Mfs accuracy for fine-grained, our clustering (Conf.), random
clustering, OntoNotes coarse-grained senses (ON, cf. Section 6) and Supersenses (SS, cf. Section 7). The bottom
rows report averages for the 45 words and the 18 words in OntoNotes.

Net, or cases where one WordNet sense was mapped to several
OntoNotes senses
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Conf ON WN # Gloss
1 1 1 421 Make an addition (to); join or combine or unite with others; increase the quality,

quantity, size or scope of
1 1 2 115 State or say further
1 1 6 94 Constitute an addition
1 1 3 92 Bestow a quality on
2 2 4 47 Make an addition by combining numbers
2 2 5 44 Determine the sum of

Table 3: Senses for add-v in WN, OntoNotes (ON) and our clusters (Conf), including frequencies in train and glosses.

Conf ON WN # Gloss
1 2 1 449 a position on a scale of intensity or amount or quality
1 2 2 197 a relative position or degree of value in a graded group
1 6 3 143 a specific identifiable position in a continuum or series or especially in a process
5 5 7 18 an abstract place usually conceived as having depth
6 5 8 13 a structure consisting of a room or set of rooms at a single position along a vertical scale
2 1 4 11 height above ground
4 3 6 3 a flat surface at right angles to a plumb line
3 4 5 2 indicator that establishes the horizontal when a bubble is centered in a tube of liquid

Table 4: Senses for level-v in WN, OntoNotes (ON) and our clusters (Conf), including frequencies in train and glosses.

Conf ON WN # Gloss
1 1 1 285 give help or assistance; be of service
1 1 3 217 be of use
1 1 6 194 contribute to the furtherance of
1 1 2 80 improve the condition of
2 1 4 21 abstain from doing; always used with a negative
5 3 8 4 improve; change for the better
3 2 5 0 help to some food; help with food or drink
4 2 7 0 take or use

Table 5: Senses for help-n in WN, OntoNotes (ON) and our clusters (Conf), including frequencies in train and glosses.

lists those 18 words. We leave the analysis of the
rest of words for further work, as they raise issues
about overlapping sense boundaries, and our main
goal is to check the quality of our method to group
fine-grained senses.

Table 2 shows the statistics for those 18 words.
Overall, the average polysemy of our clusters is
higher and the performance of IMS on our clusters is
also higher. We take this as an indication of the good
quality of our clusters. On the other hand, the MFS
on our clusters is considerably higher, which could
mean that our algorithm has a tendency to lump to-
gether frequent senses, casting doubts on the quality
of the clusters.

We selected three words for illustration, depend-

ing on the difference in number of clusters. Tables
3 to 5 show the senses of those four words4. In
the case of add-v (Table 3), the clusters produced
by our algorithm are the same as OntoNotes. For
level-n (Table 4), although the number of clusters is
the same, we group WordNet sense #3 together with
senses #1 and #2, while OntoNotes keeps it sepa-
rate. Note that sense #3 is very frequent, and as such
it is lumped into a coarse grained sense which covers
most of the occurrences. WordNet sense #8, on the
contrary, is grouped by Ontonotes with #7, while we
keep them separate. We think that in both cases, one
could argue that our clusters make as much senses
as those of OntoNotes, even if the distribution of our

4Note that coarse senses not in WordNet are not included.

67



cluster is more skewed than that of Ontonotes.
In the case of help-v (Table 5) our clusters pro-

duces more senses than those in Ontonotes. We
think that sense #4, which is always used with a neg-
ative, can be sensibly considered a separate sense.
Senses #5 and #7 are very similar, but being unat-
tested in the train data, our algorithm is unable to
cluster them.

In summary, the analysis of those (and other) ex-
amples shows that, in general, the sense clusters pro-
duced by our algorithm make sense. In a way, this
was to be expected, as the clustering decisions de-
pend on how often the volunteers confused the use
of two senses. Our analysis also shows that our clus-
tering does have an undesired tendency to cluster
together frequent senses, while senses which occur
rarely the train data are usually kept separate, adding
artificially to the overall polysemy figure.

In the future we would like to study whether it is
possible to make our algorithm more robust to this
tendency to join frequent senses, perhaps discount-
ing frequency from confusion measures.

7 Comparison to Supersenses

We also perform a qualitative study comparing our
coarse grained senses to WN Supersenses. Super-
senses are based on the lexicographer file names for
WordNet, where all senses of the word that belong to
the same lexicographer file (e.g. the artifact file) are
joined together. They include 15 sense for verbs and
26 for nouns. Although WordNet also provide su-
persenses for adjective and adverbs, these are not se-
mantically motivated and do not provide any higher
abstraction (Johannsen et al., 2014).

Table 2 show the results for the target 45 words
(adjectives included). The average polysemy of
the supersenses is lower for all parts of speech
with respect to our clustered senses and OntoNotes.
Note that, word-wise, polysemy varies significantly:
many words keep one or two senses, while others
maintain high polysemy level (roughly similar to
fine-grained senses). IMS and MFS performances
are similar to OntoNotes.

Tables 6 to 8 show the differences in clustering
for the same set of words (add-v, level-n, and help-
n). In the case of add-v (Table 6), we produce two
coarse grained sense against the 5 supersenses. The

only coarse sense in Supersenses groups the arith-
metic operation with state or say further, begin both
communication senses, while our algorithm keeps
groups them in separate sense clusters.

For level-n (Table 7) our algorithm produces more
senses than the number of supersenses (6 vs 4). Su-
persenses of state and attribute are distributed be-
tween our clusters #1 and #2. Our clusters #3, #4
and #6 are lumped together as an artifact, although
it would make sense to keep them separated. Finally,
in the case of help-n (Table 8), we obtain the same
amount of senses, but grouping differs considerably.
For example, WordNet senses #3 and #4 are grouped
under the stative supersense, although the definition
and use of the two senses are completely different.
On the other hand, our cluster #1 comprises the most
frequent 4 senses.

Overall, the comparison of supersenses and our
confusion-based coarse grained senses show com-
plicated overlaps, contrary to OntoNotes, in which
most of the clusters in one are subsumed in the other.
Each of the sense groupings represent very different
sense inventories. This shows the difficulty of hav-
ing a universal sense representation that is useful for
any application at hands. Actually, the choice of the
inventory will depend on the angle of the meanings
required by the application.

8 Conclusions and Future Work

This work explores the use of crowdsourced an-
notations to cluster senses that are often confused
by non-expert annotators. Our method can provide
clusters at different levels of granularity. We show
that, for instance, we can construct clusters yielding
around 90% accuracy for 45 words, with higher er-
ror reduction with respect to MFS than fine-grained
senses. By construction, we merge senses which
are often confused by annotators, yielding sensible
sense clusters, as corroborated by manual inspec-
tion. The comparison to OntoNotes groupings fares
well, with similar groupings, while the comparison
to Supersenses shows that Supersenses follow a dif-
ferent grouping criterion, with overlapping clusters.
The main weakness of our method seems to be the
tendency to cluster together frequent senses.

This work is a small contribution towards the
design of an ambitious annotation effort enabling
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Conf SS WN # Gloss
1 change 1 421 make an addition (to); join or combine or unite with others; increase the qual-

ity, quantity, size or scope of
1 stative 6 94 constitute an addition
1 possession 3 92 bestow a quality on
1 communication 2 115 state or say further
2 communication 5 44 determine the sum of
2 cognition 4 47 make an addition by combining numbers

Table 6: Senses for add-v in WN, Supersenses (SS) and our clusters (Conf), including frequencies in train and glosses.

Conf SS WN # Gloss
1 state 2 197 a relative position or degree of value in a graded group
1 state 3 143 a specific identifiable position in a continuum or series or especially in a process
1 attribute 1 449 a position on a scale of intensity or amount or quality
2 attribute 4 11 height above ground
5 cognition 7 18 an abstract place usually conceived as having depth
6 artifact 8 13 a structure consisting of a room or set of rooms at a single position along a vert.

scale
4 artifact 6 3 a flat surface at right angles to a plumb line
3 artifact 5 2 indicator that establishes the horizontal when a bubble is centered in a tube of liq.

Table 7: Senses for level-n in WN, Supersenses (SS) and our clusters (Conf), including frequencies in train and glosses.

Conf SS WN # Gloss
1 social 1 285 give help or assistance; be of service
1 social 6 194 contribute to the furtherance of
1 body 2 80 improve the condition of
1 stative 3 217 be of use
2 stative 4 21 abstain from doing; always used with a negative
5 change 8 4 improve; change for the better
3 consumption 5 0 help to some food; help with food or drink
4 consumption 7 0 take or use

Table 8: Senses for help-n in WN, Supersenses (SS) and our clusters (Conf), including freq. in train and glosses.

widespread use of high accuracy WSD. For the near
future we would like to improve the error reduction
with respect to the MFS trying to factor out sense
frequency from clustering decisions. We would also
like to check out-of-domain corpora, and to contrast
the results of our confusion-based clusters with re-
spect to other sense-clustering methods. Finally, we
are aware that the final validity our technique needs
to be shown in a downstream application.
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Abstract

We propose a novel method to learn negation
expressions in a specialized (medical) domain.
In our corpus, negations are annotated as ‘flat’
text spans. This allows for some infelicities
in the mark-up of the ground truth, making it
less than perfectly aligned with the underly-
ing syntactic structure. Nonetheless, the nega-
tions thus captured are correct in intent, and
thus potentially valuable. We succeed in train-
ing a model for detecting the negated pred-
icates corresponding to the annotated nega-
tions, by re-mapping the corpus to anchor its
‘flat’ annotation spans into the predicate argu-
ment structure. Our key idea—re-mapping the
negation instance spans to more uniform syn-
tactic nodes—makes it possible to re-frame
the learning task as a simpler one, and to lever-
age an imperfect resource in a way which en-
ables us to learn a high performance model.
We achieve high accuracy for negation detec-
tion overall, 87%. Our re-mapping scheme
can be constructively applied to existing flatly
annotated resources for other tasks where syn-
tactic context is vital.

1 Introduction

Accounting for extra-propositional aspects of mean-
ing in text is a very active NLP research area in
recent years, exploring different aspects of mean-
ing such as factivity (Saurı́ and Pustejovsky, 2009),
uncertainty/hedging (Farkas et al., 2010), commit-
ted belief (Prabhakaran et al., 2010), and modalities
(Prabhakaran et al., 2012a). Among these, negation
detection has generated special interest because of
demonstrated needs for negation detection capabil-

ity in practical applications such as information re-
trieval (Averbuch et al., 2004), information extrac-
tion (Meystre et al., 2008), sentiment analysis (Wie-
gand et al., 2010; Councill et al., 2010), and relation
detection (Chowdhury and Lavelli, 2013).

Accurately detecting negations is especially im-
portant in systems processing medical/clinical text.
Consider the segment “Mild hyperinflation without
focal pneumonia”, taken from a patient’s clinical
record. It indicates the absence of focal pneumonia
in the patient. Not capturing this extra-propositional
aspect of negation concerning focal pneumonia will
lead to wrong—and harmful—inferences in down-
stream processing, e.g. by a clinical decision sup-
port system. The need for sophisticated negation de-
tection capabilities in clinical text is even more ur-
gent given the broadening spectrum of applications
in this domain: clinical question answering (Lee
et al., 2006), clinical decision support (Demner-
Fushman et al., 2009), medical information extrac-
tion (Uzuner et al., 2010), medical entity relation
mining (Tymoshenko et al., 2012), patient history
tracking (Raghavan et al., 2012), etc. Our moti-
vation for detecting negations in medical texts also
stems from practical concerns of an operational
medical question answering (QA) system (Ferrucci
et al., 2013).

Most recent approaches to negation detection
adopt supervised machine learning techniques to
learn the phraseology of negation-containing ex-
pressions. They often follow a two step process—
detection of negation cues (“no”, “without”, . . .),
followed by detection of their associated scopes.
Cue detection is a relatively simple task, since the set
of cue words is not large. Determining the scope of
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a negation cue, on the other hand, is more challeng-
ing. Negation constructs do not necessarily apply
to entire sentences: in the earlier example, Mild hy-
perinflation is not negated. The scope detection task
is to identify the part(s) of the sentence that come
under the scope of a negation cue. Scope detection
is crucial for interpreting negations, and to that end,
the BioScope corpus (Vincze et al., 2008) was re-
leased, with annotations of both negation cues and
their associated scopes.

The fact that these scopes are represented only as
text-spans is a drawback of BioScope. Without be-
ing anchored to a syntactic analysis of the sentences
in which they occur, BioScope’s scope annotations
suffer from a variety of inconsistencies of mark-up.
They also may, and occasionally do, fail to align
with the underlying syntactic structures (Vincze et
al., 2011; Stenetorp et al., 2012). Such inconsisten-
cies make it hard for a system to learn the actual
syntactic patterns connecting negation cues and their
scopes—which are, after all, the real object of nega-
tion interpretation.

The insight that we develop in this paper is that
a scope span can be associated with one or more
nodes in the syntactic analysis of a negated expres-
sion, and that these will be further connected—in a
systematic way—to the negation cue node. Map-
ping loosely and/or inconsistently bounded spans to
unique syntactic nodes (and configurations thereof)
reduces the noise inherent in BioScope. The learn-
ing task for scope detection would now be the easier
one of learning negation scoping patterns from syn-
tactic representations.

To elaborate on this, we look at BioScope’s is-
sues in some detail (Section 3.1). Our intent here,
however, is not to offer a review or criticism of the
corpus, nor to suggest how to correct those issues.
Given that we do want to use BioScope (we moti-
vate our choice of BioScope separately in Section 2),
we propose a new method for learning how to de-
tect negated constructs which are rooted in syntac-
tic structure elements, and therefore directly usable
by downstream components, many of which typi-
cally assume awareness of syntax. Our method is
to re-map BioScope’s scope span annotations onto
the syntactic space and then to use those annota-
tions’ corresponding node structure(s) to train a sys-
tem to automatically detect negated syntactic nodes.

As outlined earlier, due to the re-mapping, many
syntactic inconsistencies would not be seen by the
learner, which now is trained on cleaner data and
consequently, faces a simpler learning problem.

We verify that our re-mapping process identifies
the correct negated syntactic node with high accu-
racy (93%); this validates the approach we propose
here. Our supervised learning system, trained us-
ing re-mapped scope nodes to detect them automat-
ically, obtains an overall accuracy of 87%, using
automatically tagged cues. In the light of state-of-
the-art performance figures, ours is a novel, con-
structive and pragmatic approach which allows us to
leverage effectively an important resource, despite
its representational imperfections, and to utilize the
essential ‘nuggets’ it captures and exposes—namely
the expressions of negated predicates. This strategy
can also be applied to other tasks where syntactic
context is important but resources are annotated by
text spans only (e.g. hedge detection (Farkas et al.,
2010)).

The rest of the paper is grounded in discussion
of related work, and of BioScope and its annotations
(Section 2), highlighting some relevant details of the
issues with these (Section 3). We then outline the
syntactic framework we use in Section 4. Section 5
presents our re-mapping of BioScope, and Section 6
offers experiments and results. In Section 7, we
compare our performance with previously published
studies. Section 8 concludes the paper.

2 Background

Early approaches in negation detection were lim-
ited in the nature of negation they were concerned
with. The prime example here, NegEx (Chapman et
al., 2001), took a view of negation interpretation to
be “determining whether a finding or disease ... is
present or absent”. From such a standpoint, the no-
tion of scope is limited, since the scope is always the
finding or disease that follows a negation cue. While
this works well for simpler expressions of negations,
it tends to fail for more complex negation constructs.
More recent approaches attempt to tackle the vari-
ability in scopes encountered in broader data by us-
ing statistical learning methods grounded in publicly
available corpora with cue and scope annotations.

The first such corpus was BioScope (Vincze et
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al., 2008), which annotates negation cues and asso-
ciated scopes in 3 genres—medical abstracts, sci-
entific papers and clinical records. The BioNLP
Event Extraction (EE) shared task corpus (Kim et
al., 2009) also marks negation in the event annota-
tions on sentences from molecular biology literature.
Most recently, the *SEM 2012 shared task corpus
(Morante and Blanco, 2012) marks negations, their
foci, and scopes in sentences from Conan Doyle sto-
ries in an attempt to extend the research on negation
to the general domain. Both the BioNLP-EE and
*SEM corpora capture negations within—and there-
fore aligned with—syntactic analyses. Thus they de-
ploy annotation schemes which assume downstream
consumers of some granular negation representa-
tion, learnable from the annotated resource(s). How-
ever, the language in both of them differs greatly
from the language encountered in clinical text, mak-
ing them unsuitable for our QA system require-
ments. In contrast, BioScope matches our genre of
clinical text. As an additional plus, it captures nega-
tion in a task-independent, linguistically motivated
framework, which enables the building of systems
applicable to a wider range of domains.

BioScope’s negation-scope-as-span annotation
framework, however, limits th corpus utility. Vari-
ous approaches have used it to train negation scope
span detection systems, and many have shown the
importance of deep syntactic features in that task
(e.g., (Ballesteros et al., 2012; Velldal et al., 2012;
Zou et al., 2013)). They share a drawback: they are
optimized for predicting the spans as they are anno-
tated in BioScope—despite its various syntactic in-
consistencies. For example, Ballesteros et al. (2012)
use manual rules to detect the voice (passive or ac-
tive) of a verb phrase; this is motivated by an an-
notation guideline for whether to include verb sub-
jects in the span or not. In reality, what matters in
the end is whether a detection system can capture
the underlying phenomenon of negation that the an-
notations stand to represent, and not whether it can
accurately replicate the representational choices the
annotations follow. In light of this, our approach dif-
fers from the conventional ones, in that it mitigates
the effects of inconsistencies in BioScope’s original
annotations by re-mapping it, as we explain in Sec-
tion 5 below.

3 BioScope Corpus

The BioScope corpus (Vincze et al., 2008) is an-
notated for hedges and negations in sentences from
biomedical domain; in this work, we use only the
negation annotations. A negation (or hedge) annota-
tion comprises a cue and a corresponding scope. The
scope (hereafter BioScopeScopeSpan) is marked as
a contiguous text-span including the associated cue
annotation (BioScopeCue). BioScope contains sen-
tences from three sub-genres—abstracts, full papers,
and clinical records. We use all three sub-corpora.
We divide each sub-corpus into ‘Train’ (70%), ‘Dev’
(15%) and ‘Test’ (15%) sets through random sam-
pling. We use sentences in the Train and Dev sets
to build and select best models and report the results
obtained by our best models on Dev and Test sets.

3.1 Issues Challenging the Use of BioScope

BioScope is an important resource that has helped
deeper understanding of various linguistic aspects
of negation in a task independent manner. But, as
we saw in the preceding sections, while demonstrat-
ing the importance of syntactic context for negation
detection, recent efforts share the frustration aris-
ing from the fact that BioScopeScopeSpan annota-
tions do not align with underlying syntactic struc-
ture. This problem is further exacerbated by in-
consistencies in the corpus annotation. From a
performance-driven point of view alone, negation
detection systems trained over BioScope annota-
tions are optimized to match the annotated spans in
the corpus (as discussed in Section 2). However,
for a negation detection system followed by down-
stream components implementing negation-driven
inference, spans alone are not sufficient—especially
spans which do not align with syntax. Negated ex-
pressions need to be captured within their syntactic
context, and for this, we need the uniformity of syn-
tax structures.

The misalignment issues of BioScopeScopeSpan
annotations with respect to the underlying syntac-
tic structures have already been extensively studied
(Vincze et al., 2011; Stenetorp et al., 2012). Vincze
et al. (2011) point out infelicities and mismatches,
comparing BioScope annotations with the more syn-
tactically oriented negated event annotations in the
BioNLP-EE corpus (Kim et al., 2009). Inconsis-
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tencies are largely due to ‘loose’ annotation guide-
lines for BioScope, which are not rigorous enough in
ensuring that annotation spans align with syntactic
analyses. Given our position in this work—utilize
BioScope, despite its shortcomings, in an alterna-
tive framework of analysis and training (see Sec-
tion 2)—we explain some of the commonly occur-
ring inconsistencies in this section. For this pur-
pose, we use example annotations e1-e5 from Bio-
Scope. (Boldface denotes BioScopeCue annotations
and italics denotes corresponding BioScopeScopeS-
pan annotations as present in the BioScope corpus.)

One of the main source of inconsistencies within
the syntactic space is with regard to the inclusion
or exclusion of subjects of propositions. For exam-
ple, in e1, the annotations identify the negation span
to be the entire clause following the word but, in-
cluding its subject and object. However, in e2, only
the object of the predicate is marked as the negation
scope (Figure 1). Vincze et al. (2011) state that “the
treatment of subjects [in BioScope] remains prob-
lematic since in BioScope it is only the complements
that are usually included within the scope of a key-
word (that is, subjects are not with the exception of
passive constructions and raising verbs)”. Leaving
aside the rationale for such a guideline, we note that
such an inconsistency is harmful: proper interpreta-
tion of negated propositions does require a subject,
and making annotations consistent by ignoring sub-
jects, if present, does not help downstream compo-
nents. Additionally, it makes the learning of con-
texts of negated propositions difficult.

e1: The cDNA hybridized to multiple transcripts in
pre-B and B-cell lines, but transcripts were not
detected at significant levels in plasmacytoma,
T-cell, and nonlymphoid cell lines.

e2: Moreover, cAMP activators did not activate
NF-kappa B in Jurkat cells.

Another problem with BioScopeScopeSpan anno-
tations stems from the requirement that such anno-
tations should have contiguous spans. For exam-
ple, since sentence e3 is a passive construction, the
corresponding BioScopeScopeSpan annotation cap-
tures the subject (mechanism) as well. The conti-
guity requirement then forces the proposition IFNs
mediate this inhibition—which modifies the subject
but is itself not negated (Figure 2)—to be included

within the BioScopeScopeSpan and therefore to be
interpretable as negated. Clearly, there may be arbi-
trary intervening text in such, and similar, construc-
tions, again making the learning task difficult.

e3: However, the mechanism by which IFNs mediate
this inhibition has not been defined.

Sometimes, the BioScopeScopeSpan annotation
boundaries do not align with syntactic constituents.
For example, in e4, the BioScopeScopeSpan anno-
tation excludes the determiner the from the scope
while in e5, the determiner the is part of the scope.
This might be due to the guideline that the scope
should include the cue as well, causing to extend
the scope annotation leftward until it covers the cue
word (absence). Still, we are left with a span bound-
ary which crosses, partially, a noun phrase boundary.

e4: Tal-1 transcription was shown to be monoallelic in
Jurkat, a T-cell line that expresses tal-1 in the
absence of apparent genomic alteration of the locus.

e5: The effects of selenium were specific for NF-kappa
B, since the activity of the transcription factor AP-1
was not suppressed.

A system trained and optimized on how well it
predicts the BioScopeScopeSpan boundaries suffers
from also being forced to learn such syntactic in-
consistencies along with the syntactic patterns that
truly capture negation. In addition to learning the
actual negation patterns, such a system is also forced
to learn artifacts of annotation guidelines like: when
to include or exclude subjects and when to include or
exclude determiners. In order to circumvent this, we
propose an approach in which we first re-map Bio-
Scope annotations onto nodes in the syntactic tree,
and then train a system using features derived from
the nodes, and node configurations, providing the
context for the negation cue and scope nodes. We
next describe the syntactic framework we use and
then explain our approach in detail.

4 Syntactic Framework

Negation, as a language device, is naturally concep-
tualized as applying to fully instantiated predicate-
argument clusters. We therefore use predicate ar-
gument graphs as structural abstractions of syntax
trees. Additional advantages of these abstractions
include their affinity for having extra-propositional
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Figure 1: PAS for e2: “Moreover, cAMP activators did not activate NF-kappa B in Jurkat cells”

aspects of meaning ‘layered’ onto the representa-
tion (precedents in prior studies can be found in e.g.
(Saurı́ and Pustejovsky, 2009; Diab et al., 2009)),
and their pervasive use in a state-of-the-art QA
system—for question analysis, candidate genera-
tion, and analysis of passage evidence (Ferrucci et
al., 2010; Ferrucci, 2012)—which is at the heart of
our medical adaptation (Ferrucci et al., 2013).

We use predicate-argument structure (PAS) (Mc-
Cord et al., 2012) derived from dependency parses
produced by the English Slot Grammar parser (Mc-
Cord, 1990). In addition to normalizing across dif-
ferent tree structures expressing essentially the same
meaning, PAS provides a simplified view over ‘raw’
syntactic trees, gathering all arguments to a predi-

cate from local, and distant, parse tree nodes (see
(McCord et al., 2012) for details). Figures 1 and 2
show the PASes for examples e2 and e3. By localiz-
ing the logical arguments to a proposition, predicate-
based representation provides direct access to all ar-
guments of e.g. a verb frame: an important require-
ment for extracting context-denoting syntactic fea-
tures.

PAS-based view into sentences offers unambigu-
ously uniform treatment of some of the issues high-
lighted in the previous section. For example, going
back to e2, and the rationale for including or exclud-
ing subjects in the scope of a negation, we observe
that verb nodes in the PAS always have fully instan-
tiated frames, with subject arguments bound to the

Figure 2: PAS for e3: “However, the mechanism by which IFNs mediate this inhibition has not been defined.”
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predicate nodes corresponding to the deep syntac-
tic subject: observe how activator is ‘subj’ both to
do and activate. Thus whether to include a subject
into a verb scope (e.g. not activate) becomes largely
irrelevant, and a PAS-based scope rendering can al-
ways include subjects. As another example, for the
PAS for e3, the granular analysis of the arguments to
the predicate for define can be leveraged to designate
the predicate node for mechanism as the scope of the
negation not (defined), while excluding the IFN me-
diate inhibition subtree from the same scope.

5 Learning Negations from Re-mapped
BioScope

Our goal is a system for automatic identification of
negations and their scopes within the PAS of a sen-
tence. Our resource for this is BioScope, with its
text-based span annotations. We propose a novel ap-
proach, realized as a two-step process:

(1) BioScope-to-PAS mapping: map BioScope’s
text-span cue and scope annotations to PAS
nodes (CuePredicate and NegatedPredicate) by
identifying the predicate nodes in the PAS of the
sentence that best capture the annotations.

(2) NegatedPredicate learning: train a statistical
model to automatically identify the scope predi-
cate using features from the PAS context of cue
and scope predicates.

5.1 BioScopeScopeSpan-to-NegatedPredicate
Mapping

Having obtained PASes for sentences in the corpus,
we mark the PAS node with the minimal span that
contains the entire BioScopeScopeSpan annotation
as the NegatedPredicate. We define the ‘span’ of a
PAS node to be the span of text covered by the sub-
tree rooted at that node, which includes the spans of
all of its descendants. Similarly, we mark the PAS
node with the minimal span that contains the Bio-
ScopeCue annotation as the CuePredicate.

For example, in Figure 1, the predicate labeled not
was marked as the CuePredicate and the predicate
labeled do was marked as the corresponding Negat-
edPredicate. In order to perform a sanity check
on our re-mapping, we judged whether the predi-
cate nodes that we mark as NegatedPredicate in sen-
tences from our Dev set are in fact the ones being

negated. Of the 470 sentences containing negations,
13 (2.8%) failed to parse, breaking the mapping. In
other words, our mapping strategy has coverage of
about 97.2%. Of the sentences where a Negated-
Predicate was obtained, our mapping achieved an
accuracy of 92.8% in finding the correct negated
predicate.

5.2 NegatedPredicate Learning
We now build a supervised learning system which,
given a CuePredicate in a sentence, will identify its
corresponding NegatedPredicate. For every predi-
cate p in a sentence PAS with a CuePredicate, we
create an instance <CuePredicate, p>. The instance
<CuePredicate, p> is assigned true if p is the cor-
responding NegatedPredicate. For all other p in the
PAS, <CuePredicate, p> is assigned false.

We extract three types of features for each in-
stance <CuePredicate, p>: 1) token features (word
lemma and POS tag) of CuePredicate and p, 2) syn-
tactic context features (token features of parent pred-
icates and all argument predicates) of CuePredicate
and p, and 3) predicate pair features (is CuePredi-
cate argument of p or vice versa?; distance between
CuePredicate and p; relative position of CuePredi-
cate and p).

We use the ClearTk (Ogren et al., 2008) frame-
work to build our system and perform experi-
ments. We use quadratic kernel SVMs in all our
experiments. The ClearTK wrapper for SVM-
Light (Joachims, 2006) internally shifts the predic-
tion threshold using sigmoid fitting to deal with the
highly skewed class imbalance (around 5% of posi-
tive cases) in our data. Prior studies (Prabhakaran et
al., 2012b) have shown this approach to be effective
in addressing the class imbalance problem.

During prediction, given an unseen sentence PAS
and a CuePredicate (either GOLD or automatically
predicted) in it, we need to find the correspond-
ing NegatedPredicate. We iterate over all candi-
date predicates c in the sentence PAS and apply
our trained model to assign a true or false value
to <CuePredicate, c>. For any CuePredicate in a
sentence there must be one and only one Negat-
edPredicate, since BioScope corpus marks a single
BioScopeScopeSpan for every BioScopeCue. We
choose the c for which <CuePredicate, c> is as-
signed a true value with the highest confidence as
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On Dev On Test
Precision Recall F-measure Precision Recall F-measure

Clinical 95.68 95.68 95.68 96.15 96.9 96.53
Abstracts 94.4 94.4 94.4 95.42 96.9 96.15

Papers 79.22 96.83 87.14 85.29 98.31 91.34
Overall 92.36 95.11 93.71 94.13 97.09 95.58

Table 1: Performance of our CuePredicate detection on Dev and Test sets

the NegatedPredicate. If <CuePredicate, c> is as-
signed a false value for all c, we choose the c with
the least confident false assignment as the Negated-
Predicate.

6 Experiments and Results

The most commonly used metric to evaluate nega-
tion scope span detection is Percentage of Correct
Scopes (PCS). PCS measures the percentage of ex-
act matches between predicted and actual scope
spans. Since our task is different—negated predicate
detection as opposed to negated span detection—
we report the Percentage of Correct Scope Predi-
cates (PCSP) obtained in our experiments. Mod-
els built from the composite training corpus com-
prising training corpora of all three genres (see Sec-
tion 3) perform better than models built separately
over each sub-corpus. We report results separately
for each sub-corpus, as well as for the entire corpus,
and compare them with a strong baseline.

6.1 Gold vs. Predicted CuePredicates

We report results for the NegatedPredicate detection
task obtained using GOLD CuePredicates as well as
predicted CuePredicates. In order to measure the
performance on predicted CuePredicates, we built a
CuePredicate detector using linear kernel SVM to
detect whether a predicate is a negation cue or not.
We use three types of features: 1) token features
(lemma and POS) of the predicate, 2) linear con-
text (token features of the token after the predicate in
the sentence; features of tokens before the predicate
turned out to be not useful), and 3) syntactic context
(token features of parent and argument predicates).
As shown in Table 1, our CuePredicate tagger ob-
tained F-measures in the range of state-of-the-art re-
sults on negation cue detection using the BioScope
(90-96% F-measure (Velldal et al., 2012)).

6.2 Baseline NegatedPredicate Predictor

Since this formulation of the task is new, we built
a strong baseline system appropriate for it. In our
baseline, we predict the NegatedPredicate to be the
parent predicate of the CuePredicate, if the CuePred-
icate is a terminal node in the PAS (this will cover
the most common cues such as no and not). If the
CuePredicate is not a terminal node (which covers
the cases of verbal negation cues such as failed),
we choose the CuePredicate itself as the Negated-
Predicate. Columns 1 and 3 of Table 2 show PCSP
obtained by the baseline algorithm on our Dev and
Test sets respectively using GOLD CuePredicates.
Columns 5 and 7 show corresponding results using
predicted CuePredicates.

6.3 Our NegatedPredicate Predictor

The results obtained by our NegatedPredicate de-
tection system (Section 5.2) on Dev and Test sets
using GOLD CuePredicates is shown in Columns
2 and 4 of Table 2. Our system outperforms the
baseline by a large margin in all cases, with espe-
cially high performance in clinical records. We ob-
tain an overall PCSP of 90.2% and 89.2% on Dev
and Test sets respectively. The results we obtain in
Test set are in the range of what we obtain using
Dev set, which shows that our system does not over-
fit to our Dev set. On applying our system on pre-
dicted CuePredicates, the overall results (columns 6
and 8) decrease by around 3-5% from using GOLD
CuePredicates. The overall PCSP value of 86.8%
obtained on the Test set reflects the accuracy of our
end-to-end system on a blind test. Note that this is a
conservative estimate since we penalize our system
for failed parses where the mapping step could not
find a GOLD NegatedPredicate to compare against.
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Gold Cues (On Dev) Gold Cues (On Test) Predicted Cues (On Dev) Predicted Cues (On Test)
Baseline System Baseline System Baseline System Baseline System

(1) (2) (3) (4) (5) (6) (7) (8)

Clinical 83.45 97.12 88.37 100.00 82.01 93.53 87.60 96.90
Abstracts 81.34 89.18 79.07 84.50 76.49 83.96 77.52 82.56

Papers 73.02 79.37 81.36 86.44 66.67 71.43 77.97 83.05
Overall 80.85 90.21 82.06 89.23 76.81 85.11 80.49 86.77

Table 2: Percentage of Correct NegatedPredicate (PCSP) on Dev and Test sets

7 Comparison with Previous Approaches

Comparing our system with previously published
approaches to negation scope detection is not
straightforward, essentially because our and their
tasks are different: negated predicate detection vs.
negated scope span detection. The resulting differ-
ence in evaluation metrics makes PCS numbers re-
ported elsewhere not directly comparable with our
PCSP results presented in Table 2. To make such
a comparison meaningful, we transform (reverse
map) the NegatedPredicates we identify back into
text spans and use those to derive PCS values better
aligned with previously published ones. (Note that
these PCS numbers are still not directly comparable,
due to differences in experiment setup, e.g. cross
validation vs. held out test set.

Transforming the NegatedPredicates back to Bio-
ScopeScopeSpan annotations is not trivial. As dis-
cussed in Section 5.1, we choose NegatedPredicate
to be the predicate node that minimally covers Bio-
ScopeScopeSpan. Hence, the span of a Negated-
Predicate may include text spans that were originally
not part of the corresponding BioScopeScopeSpan
annotation. Therefore, we built a statistically trained

system to predict whether the span of a descendant
node of a NegatedPredicate should, or should not,
be included in reverse mapping that NegatedPredi-
cate to the corresponding BioScopeScopeSpan.

We use the same set of features and learning con-
figuration as we used for NegatedPredicate learning
(Section 5.2). Our transformation obtained high ac-
curacy (94.9%) for the clinical records. However, it
was a harder task for abstracts (66.1%) and papers
(73.1%) which contain more complex sentences.

We applied this transform on the predicate nodes
identified by our end-to-end system (Section 6.3) in
order to derive PCS values. In Table 3, we com-
pare these PCS values against four previous studies
above (due to lack of space, we do not discuss their
techniques here), as well as with a baseline of our
own where we use the covered text of the predicate
node and all of its descendants as scopes used in the
comparison. Our system (with transform) obtains
higher PCS values than all other reported studies on
the clinical records. The PCS values obtained for the
abstracts and papers sub-corpora are lower, but still
in comparable range to the other studies. It is im-
portant to note that the main source of error here is
the NegatedPredicate-to-BioScopeScopeSpan trans-

Morante09 Ballestros12Velldal12 Ours (With Covered Text) Ours (With Transform) Zou13
On Dev On Test On Dev On Test

(1) (2) (3) (4) (5) (6) (7) (8)

Clinical 70.75 89.06 89.41 88.49 89.92 91.37 92.25 85.31
Abstracts 66.07 68.92 72.89 35.45 35.27 61.94 58.53 76.90

Papers 41.00 61.43 68.09 33.33 23.73 53.97 47.46 61.19
Overall - - - 50.85 49.55 69.57 66.82 -

Table 3: PCS measures from previous BioScope span detection approaches and our end-to-end system.
Col. 1-3: end-to-end systems (Morante and Daelemans, 2009), (Ballesteros et al., 2012), and (Velldal et al., 2012);

Col. 4-7: our end-to-end system with different ways of obtaining the spans in our Dev and Test sets;
Col. 8: (Zou et al., 2013) system using GOLD cues (often 5-10% higher than using predicted cues)
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form step, with its inherent lower accuracies for
these two corpora, as reported above. We emphasize
that for practical applications this transformation is
of little use: what matters more, certainly for a nega-
tion detection system feeding downstream compo-
nents, are the PCSP values presented in Section 6.

8 Discussion and Conclusion

The results for our system, with reverse map-
ping, offer indirect evidence for our observation
in Section 3.1: training a system to predict Bio-
ScopeScopeSpan boundaries would require it also
to learn inconsistencies in BioScope annotations.
This is a hard learning task, given the noise dis-
cussed in Section 3.1. Indeed, our results for learn-
ing the reverse-mapping transformation show that it
is harder to learn the specific annotation criteria in
BioScope than to learn the structural patterns ex-
pressing negations (which, as we saw in Section 6,
obtained close to 90% accuracy). While we had to
build a system to transform nodes back to spans for
the purposes of comparative analysis, such a system
has no role in our quest for practical negation detec-
tion and representation.

This substantiates our strategy of using BioScope,
as is, to learn not scope spans of negation expres-
sions, but negated predicates within the predicate-
argument structure (Section 5). The re-mapping
route takes us where we want to be, from the point
of view of a practical application of negation-based
inference: with access to negated predicate nodes.
The end-to-end accuracy (overall, across three dif-
ferent genres) of 87% on blind test validates the cre-
ative way we propose to make use of a valuable and
unique resource—despite its imperfections—by ex-
tracting the real value in it, while mitigating the ef-
fects of its various inconsistencies.

The results in Tables 2 and 3 show that we have
achieved our primary objective: using BioScope to
train a system which detects structured negation ex-
pressions in clinical text. Our approach to nega-
tion scope learning in the syntactic space is a two-
step one—first, re-mapping the text-span annota-
tions for negation scopes in BioScope to the syn-
tactic space and then training a scope predicate pre-
dictor. We show that our transformation introduces
only a small percentage of error and also that our

predicted nodes can be transformed back to original
span annotations with performance comparable to
other negation scope span prediction systems trained
on the same dataset. Notably, in clinical records, our
system outperforms reported state-of-the-art results
(column 8 of Table 3).

In a broader context, the work we report here indi-
rectly argues that the method we propose to circum-
vent certain limitations of a corpus like BioScope
can be applied to similar tasks (such as hedging, sen-
timent analysis, and variety of modalities, cf. Sec-
tion 1), for which current annotation resources offer
flat, and possibly inconsistent, annotations. In addi-
tion, we chose PAS as our syntactic framework for
the reasons listed in Section 4, but our approach is
not limited to PAS. Indeed, the claims, and methods,
are presented to be applicable, and workable, in a
more general syntactic framework.
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Özlem Uzuner, Imre Solti, and Eithon Cadag. 2010.
Extracting medication information from clinical text.
Journal of the American Medical Informatics Associa-
tion, 17(5):514–518.

Erik Velldal, Lilja Øvrelid, Jonathon Read, and Stephan
Oepen. 2012. Speculation and negation: Rules,
rankers, and the role of syntax. Computational lin-
guistics, 38(2):369–410.

Veronika Vincze, György Szarvas, Richárd Farkas,
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Abstract

The terms “belief” and “factuality” both re-
fer to the intention of the writer to present the
propositional content of an utterance as firmly
believed by the writer, not firmly believed, or
having some other status. This paper presents
an ongoing annotation effort and an associated
evaluation.

1 Introduction

This paper presents an ongoing project aimed at de-
veloping a community-wide evaluation of expressed
belief, also known as “factuality”. Belief and fac-
tuality are closely related to hedging, veridical-
ity, and modality. The project has grown out of
the DARPA DEFT project; participants include the
Linguistic Data Consortium (LDC) and three per-
former sites: Columbia University/George Wash-
ington University, the Florida Institute for Human
and Machine Cognition, and the University of Al-
bany. The goal of our research project is not lin-
guistic annotation, but the identification of meaning
which is expressed in a non-linguistic manner. Such
a meaning representation is useful for many applica-
tions; in our project we are specifically interested in

knowledge base population. A different part of the
DEFT program is concerned with the representation
of propositional meaning, following the tradition of
the ACE program in representing entities, relations
and events (ERE) (Doddington et al., 2004). The
work presented here is concerned with the attitude of
agents towards propositional content: do the agents
express a committed belief or a non-committed be-
lief in the propositional content? Our work has sev-
eral characteristics that set it apart from other work:
we are interested in annotation which can be done
fairly quickly; we are not interested in annotating
linguistic elements (such as trigger words); and we
are planning an integration with sentiment annota-
tion.

The structure of the paper is as follows: we start
out by situating our notion of “belief” with respect to
other notions of extra-propositional meaning (Sec-
tion 2); we then present our annotation in some de-
tail, with a special comparison to FactBank (Saurı́
and Pustejovsky, 2012). While the goal of this paper
is not to talk about computational systems that were
run as part of the evaluation (different publications
will be available for that purpose), we quickly sum-
marize their main characteristics so that the evalu-
ation results can be interpreted. We then turn to
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the pilot evaluation we have performed, presenting
first the evaluation with respect to propositions (Sec-
tion 5) and then a qualitative evaluation. We con-
clude with a discussion of plans for the upcoming
open evaluation, scheduled for December 2015.

2 Terminology and Related Work

In this section, we identify how we define differ-
ent terms. Different papers may have different and
conflicting definitions of these terms, but for lack of
space we do not provide an overview over all defini-
tions.

While at first the terms “belief” and “factuality”
appear to relate to rather different things (a subjec-
tive state versus truth), in the NLP community they
in fact refer to the same phenomenon, while having
rather different connotations. The phenomenon is
the communicative intention of a writer1 to present
propositional content as something that she firmly
believes is true, weakly believes is true, or has some
other attitude towards, namely a wish or a reported
belief. The term “belief” here describes the cogni-
tive state of the writer (Diab et al., 2009), and comes
from artificial intelligence and cognitive science,
as in the Belief-Desire-Intention model of Bratman
(1999 1987). The term “factuality” describes the
communicative intention of the writer (Saurı́ and
Pustejovsky, 2012, p. 263) (our emphasis):

The fact that an eventuality is depicted
as holding or not does not mean that this
is the case in the world, but that this is
how it is characterized by its informant.
Similarly, it does not mean that this is
the real knowledge that informant has (his
true cognitive state regarding that event)
but what he wants us to believe it is.

We would like to emphasize that the terms “be-
lief” and “factuality” do not refer to the underly-
ing truth of propositions, only to the intention of the
writer to present them as, in her view, true. Thus, we
as researchers cannot determine what is true from an
analysis of factuality (or of belief). The term “factu-
ality” is often misunderstood in this respect, which

1For brevity, we will assume a female writer as the source
of utterances in this paper. Everything we say applies equally
to spoken and written communication, and equally to male and
female communicators.

is one of the reasons we prefer not to use it. In order
to understand the relation between belief/factuality
and truth, we need to distinguish two assumptions.
First, we may assume that the writer is not lying (as-
sumption of truthfulness). In this paper, we make
this first assumption. Second, we could assume that
the writer knows what is true (assumption of truth).
In this paper, we do not make this second assump-
tion. We discuss these two assumptions in turn.

We start with the assumption of truthfulness. In
the quote above, Saurı́ and Pustejovsky (2012) (apart
from distinguishing factuality from truth) also make
the point that the writer’s communicative intention
of making the reader believe she has a specific belief
state does not mean that she actually has that cogni-
tive state, since she may be lying. Lying is clearly an
important phenomenon that researchers have looked
into (Mihalcea and Strapparava, 2009; Ott et al.,
2011).2 However, we (as linguists interested in un-
derstanding how language enables communication)
feel that assuming the writer is truthful is a standard
assumption about communication which we should
in general make. This is because if we do not make
this assumption, we cannot explain why communi-
cation is possible at all, since discourse participants
would have no motivation to ever adopt another dis-
course participant’s belief as their own. We there-
fore do claim that we can infer belief from utter-
ances, while assuming that the writer is not lying,
and knowing that this assumption may be false in
certain cases.

We now turn to the second assumption, the as-
sumption of truth. Even if we assume that the
writer is not lying, the assumption of truth is not
required for communication to succeed; this is be-
cause the writer may be wrong, and this has no ef-
fect on the communication. For example, Ptolemy
successfully made many people believe that the sun
rotates around the earth, as was his (presumably)
honest communicative intention. Therefore, to us
as researchers interested in describing how language

2Sarcasm and irony differ from lying in that the communica-
tive intention and the cognitive state are aligned, but they do not
align with the standard interpretation of the utterance. Here, the
intention is that the reader recognizes that the form of the ut-
terance does not literally express the cognitive state. We leave
aside sarcasm and irony in this paper; for current computational
work on sarcasm detection, see for example (González-Ibáñez
et al., 2011).
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is used to communicate, it does not matter that as-
tronomers now believe that Ptolemy was wrong, it
does not change our account of communication and
it does not change the communication that happened
two millennia ago. And since we do not need to
make the assumption that the writer knows what she
is talking about, we choose not to make this assump-
tion. In the case of Ptolemy, we leave this determi-
nation – what is actually true – to astronomers. In
other cases, we typically have models of trustwor-
thiness: if a writer sends her spouse a text message
saying she is hungry, the spouse has no reason to be-
lieve she is wrong. We leave this issue aside in this
paper.

The term “hedge” refers to words or phrases that
add ambiguity or uncertainty (Propositional Hedges)
or show the speakers lack of commitment to a propo-
sition (Relational Hedges). For example, The ball
is sort of blue contains a Relational Hedge (sort
of) and I think the ball is blue includes a proposi-
tional hedge (think). Propositional hedges indicate
non-committed belief. There has been a major effort
to annotate texts with hedging information (Farkas
et al., 2010), with an open evaluation. While be-
lief and hedging are closely related, we see the be-
lief/factuality annotation as more general than hedg-
ing (since it does not only include non-committed
belief), and also more semantic (since we are not
identifying language use but underlying meaning).

The term “modality” is used in formal seman-
tics as well as in descriptive linguistics. Many se-
manticists (e.g. (Kratzer, 1991; Kaufmann et al.,
2006)) define modality as quantification over pos-
sible worlds. Modality can be of two types: epis-
temic, which qualifies the speaker’s commitment,
and deontic, which concerns freedom to act. Be-
lief/factuality falls under epistemic modality. An-
other view of modality relates more to a speaker’s
attitude toward a proposition (e.g. (McShane et al.,
2004; Baker et al., 2010; Prabhakaran et al., 2012)),
which is closer to the way we model belief.

We interpret the term “veridical” as referring to
a property of certain words (usually verbs), namely
to mark the proposition expressed by their syntac-
tic complement clause as firmly believed (commit-
ted belief) by the writer (Kiparsky and Kiparsky,
1970). Veridicality as a property of lexical or
lexico-syntactic elements is thus a way of relating

belief/factuality to linguistic means of expressing
them, but we take the notion of belief/factuality as
being the underlying notion.

3 Annotation

3.1 Annotation Manual
The purpose of this annotation is to capture the com-
mitment of the writer’s belief in the propositions ex-
pressed in the text. The annotation for this project
marks beliefs held by the writer only. We exhaus-
tively annotate all (clausal) propositions in each doc-
ument with a four-way belief type distinction, with
the following categories.
Committed belief (CB) – the writer strongly be-
lieves that the proposition is true. Examples:

(1) a. The sun will rise tomorrow.
b. I know John and Katie went to Paris last

year.

Non-committed belief (NCB) – the writer believes
that the proposition is possibly or probably true, but
is not certain. Examples:

(2) a. It could rain tomorrow.
b. I think John and Katie went to Paris last

year.

Reported belief (ROB) – the writer attributes be-
lief (either committed or non-committed) to another
person or group. Note that this label is only applied
when the writer’s own belief in the proposition is
unclear. Examples:

(3) a. Channel 6 said it could rain tomorrow.
b. Sarah said that John and Katie went to Paris

last year.

Non-belief propositions (NA) – the writer ex-
pressed some other cognitive attitude toward the
proposition, such as desire or intention, or expressly
states that s/he has no belief about the proposition
(e.g., by asking a question). Examples:

(4) a. Is it going to rain tomorrow?
b. I hope John and Katie went to Paris last

year.

We do not make any effort to evaluate the truth
value of the propositions, only the expressed level
of belief in them held by the writer. Thus a strongly
held false belief would not appear any different from
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a strongly held true belief. Similarly, lying, sarcasm,
irony, and other cases where the writer’s internal be-
lief may differ from the expressed belief are not cap-
tured. That is, we take all expressed beliefs at “face
value”. We also do not capture any cognitive atti-
tudes expressed about a proposition other than be-
lief. An NA tag signifies just that there is no be-
lief expressed about the proposition; it does not sig-
nify that there is another cognitive attitude expressed
(e.g., 4a). Similarly, a proposition tagged as CB
may also have other cognitive attitudes expressed
about them (e.g., in “John managed to go to Paris
last week”, the author is expressing CB towards the
proposition go, but also the success modality (Prab-
hakaran et al., 2012)); we do not capture them.

Annotators are not required to identify the full
text span of the proposition. Instead, we take ad-
vantage of the close relationship between the seman-
tics of the proposition and the syntactic structure of
the clause by marking only the head of the structural
unit containing the proposition (propositional head).
For each proposition, annotators mark a head word
and tag it with one of the four belief types. Note
that the syntactic head word (perhaps lemmatized)
can serve as a convenient name for the proposition,
so for the examples above, we can talk about the be-
lief in the ‘rain’ proposition and in the ‘go’ propo-
sition. When a sentence has a single clause con-
taining only one proposition, there will be only one
head word to identify (usually a verb, but see details
below on identifying heads of propositions). Many
sentences contain multiple propositions, and the an-
notation guidelines provide detailed instructions on
identifying head words. Note that the (b) examples
above contain an additional proposition which is not
marked; a full markup for example (3b) is below.

(5) Sarah said/CB that John and Katie went/ROB
to Paris last year.

This is equivalent to the following span-based anno-
tation:

(6) [CB Sarah said [ROB that John and Katie went
to Paris last year.]]

The general principles of head word selection for
each proposition can be summarized as follows:

1. Annotate the lexical verb of the clause express-
ing the proposition, if there is one.

2. If the verb of the clause is a copula, annotate
the head of the predicate that follows the copula
(noun for NP, preposition for PP, etc.).

3. Deontic modal auxiliaries, which signal a com-
plex proposition, are annotated in addition to
the lexical verb, as a separate belief.

All annotations are applied to a single whitespace-
delimited word. In cases where the head of a propo-
sition is a multiword expression (MWE), the head
of the MWE is selected. In cases of noun phrases
where no head is apparent (e.g. bok choy), the last
word of the MWE is selected.

3.2 Comparison with FactBank
As already explained (Section 2), we take the terms
“belief” and “factuality” to refer to the same phe-
nomenon underlyingly (with perhaps different em-
phases). Therefore, the FactBank annotation is basi-
cally compatible with ours. Our annotation is much
simpler than that of FactBank in order to allow for a
quicker annotation. We summarize the main points
of simplification here.

• We have taken the source always to be the
writer. As we will discuss in Section 7.1, we
will adopt the FactBank annotation in the next
iteration of our annotation.

• We do not distinguish between possible and
probable; this distinction may be hard to anno-
tate and not too valuable.

• We ignore negation. If present, we simply as-
sume it is part of the proposition which is the
target.

Werner et al. (2015) study the relation between
belief and factuality in more detail. They provide an
automatic way of mapping the annotations in Fact-
Bank to the 4-way distinction of speaker/writer’s be-
lief that we present in this paper.

3.3 Corpus and Annotation Results
The annotation effort for this phase of belief annota-
tion for DEFT produced a training corpus of 852,836
words and an evaluation corpus of 100,037 words.
All annotated data consisted of English text from
discussion forum threads. The discussion forum
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threads were originally collected for the DARPA
BOLT program, and were harvested from a wide va-
riety of sites. Discussion forum sites were chosen
for harvesting in BOLT based on human judgement
that the site was likely to contain many threads dis-
cussing either current events or personal anecdotes.
For details on the BOLT collection, see Garland et
al. (2012). Threads longer than 1000 words were
truncated to produce documents consisting of one or
more consecutive posts from a single thread. Long
threads may generate multiple documents consisting
of non-overlapping sections of the same thread (e.g.,
document 1 contains posts 1-5, while document 2
contains posts 6-12, etc.). The distribution of the
four belief types in the training and evaluation cor-
pora can be seen in Table 1.

Annotations CB NCB ROB NA

Training Corpus

143240
79995 3890 7150 52205
(56%) (3%) (5%) (36%)

Evaluation Corpus

17553
8730 583 941 7299
(50%) (3%) (5%) (42%)

Table 1: Annotation Statistics

The source data pool, annotation procedures, and
annotators were the same for both the training and
evaluation datasets, with the exception of the fact
that the evaluation annotations received a full second
pass over the annotation by a senior annotator (not
the same as the first pass annotator) to increase con-
sistency and reduce annotator errors. The training
annotations were produced with a single annotation
pass, and quality control was conducted through a
second pass by a senior annotator on a sample of ap-
proximately 15% of the data. Inter-annotator agree-
ment on headword selection was 93% and agree-
ment on belief type labeling was 84%. Overall
observed agreement, combining headword selection
and belief type label, was 78% (Kappa score .60).
Agreement on belief type was least reliable on the
categories of ROB and NCB, both of which were
sometime erroneously marked as CB. Both of these
categories, in addition to being less frequent in the
corpus, have difficult edge cases in which the an-

notator must make a judgment based on the context
of the document (for example, deciding whether the
writer clearly shares a belief attributed to another
person for ROB).

4 Evaluation Systems

We conducted a multi-site pilot evaluation for the
task of identifying beliefs expressed in text. Three
performer sites took part in this evaluation. In this
section, we briefly describe the systems built at these
performer sites. The first two systems are rule-based
systems, whereas the third system is a supervised
learning system. We limit the discussion of these
systems to a high level, postponing the detailed sys-
tem descriptions to separate future publications.

4.1 System A
System A is adapted from a Sentiment Slot Filling
system which participated in the 2014 TAC KBP
SSF Evaluation (Shaikh et al., 2014). This system
uses the Stanford Parser to create a syntactic depen-
dency structure for every sentence in a given doc-
ument. Using the dependency tree, it extracts the
belief targets, which are usually the subjects of the
sentence. In addition, the system extracts belief re-
lations – a unary or binary predicate – typically a
verb, an adjective or a noun. The focus of this ver-
sion of System A is to identify propositional heads
that express belief of any type. Each relation so ex-
tracted was initially marked as CB. A few heuristics
were then applied to distinguish CBs from NCBs -
such as presence of hedge words (maybe, guess). In
addition, a few heuristics were added to tag relations
as NAs, for example when the predicates appear in a
question. The current version of System A does not
account for ROB tags.

4.2 System B
System B uses the dependency tree and part-of-
speech tags from the Stanford NLP tools, together
with a custom verb lexicon to recognize belief ex-
pressions. The tree is processed to convert ob-
jects and complements to a single format, and then
transformed into one or more belief triples (subject,
verb, object). The system maintains a database of
nested belief context, as in ‘X believes Y believes
Z’, but we did not notice many instances of this phe-
nomenon in the data. Partly because our System B
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System A System B System C

Prec. Rec. F-meas. Prec. Rec. F-meas. Prec. Rec. F-meas.

CB 35.9 39.9 37.8 42.1 36.8 39.3 68.9 77.9 73.1
NCB 13.3 8.8 10.6 4.6 7.4 5.7 52.9 29.7 38.0
ROB 0.0 0.0 0.0 1.3 0.9 1.0 43.8 15.6 23.0
NA 40.3 5.9 10.2 35.8 4.8 8.4 80.1 62.0 69.9

Overall 35.5 22.5 27.6 34.4 20.6 25.8 72.0 66.4 69.1

Table 2: Results obtained for System A, System B, and System C on the final Evaluation dataset.

recognizes reported beliefs (ROB) independently of
the distinction between committed/non-committed
belief in the annotations, the heuristic rules (mainly
based on the presence of modal auxiliaries) that we
added for the purpose of classifying the beliefs (CB,
NCB, ROB, NA) did not work reliably in all cases.

4.3 System C

System C uses a supervised learning approach to
identify tokens denoting the heads of propositions
that denote author’s expressed beliefs. It approaches
this problem as a 5-way (CB, NCB, ROB, NA, nil)
multi-class classification task at the word level. Sys-
tem C is adapted from a previous system which uses
an earlier, simpler definition and annotation of be-
lief (Prabhakaran et al., 2010). The system uses lex-
ical and syntactic features for this task, which are
extracted using the part-of-speech tags and depen-
dency parses obtained from the Stanford CoreNLP
system. In addition to the features described in
(Prabhakaran et al., 2010), System C uses a set of
new features including features based on a dictio-
nary of hedge-words (Prokofieva and Hirschberg,
2014). The hedge features improved the NCB F-
measure by around 2.2 percentage points (an overall
F-measure improvement of 0.25 percentage points)
in experiments conducted on a separate development
set. It uses a quadratic kernel SVM to build the
model, which outperformed the linear kernel in ex-
periments conducted on the development set.

5 Proposition-Oriented Evaluation

We now describe the results obtained on a
proposition-oriented quantitative evaluation of these
systems. We focus on a system’s ability to correctly
identify the propositional heads of each type of be-

lief (CB, NCB, ROB, NA). Only the words denoting
heads of propositions will get one of these tags, and
hence the majority of words in our data will not have
any tags. We expect the system to find the proposi-
tional heads and to correctly assign their belief tags.

We use the entire Evaluation dataset described in
Section 3 for this evaluation (entirely unseen during
the development of the systems). We report preci-
sion, recall and F-measure for each belief type. We
also report their micro-averages as the overall result.
We compute F-measure as the harmonic mean be-
tween precision and recall. The best results obtained
by each system described in Section 4 are presented
in Table 2.

For System A, four different configurations were
run for the evaluation, in which the NCB and NA
tagging was either enabled or disabled. (The cur-
rent version does not account for ROB tags.) In Ta-
ble 2, Columns 2-4, we show the performance of
System A while all 3 tags (CB, NCB and NA) are
enabled. The results of other three configurations
are comparable. Any sentence where the belief tar-
get could not be located, either due to parsing error
or due to missing coreference (as supplied by ERE),
was discarded. This resulted in a relatively lower re-
call in the evaluation, but produced high precision
in a target-driven pilot evaluation (Section 6). The
results obtained by System B in the evaluation are
shown in Table 2: Columns 5-7. The results of Sys-
tem B, when ignoring the belief categories (i.e., on
identifying heads of propositions), were 83.6% pre-
cision and 50% recall. Table 2: Columns 8-10 shows
results obtained by System C trained on 80% of the
training dataset (the rest of the corpus was used as a
development set).

The supervised learning approach obtained over-
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all better performance than rule based approach in
our evaluation. ROB and NCB were the most dif-
ficult classes to predict for all three systems (e.g.,
highest recall posted for ROB is only 15.6%). CB
was relatively easier to predict. NA was difficult to
predict using the rule based approach, but supervised
learning approach obtained reasonable performance
of 69.9 F-measure.

6 An Entity-Focused Evaluation:
Preliminary Investigation

In this section, we describe an initial investigation
towards an entity-focused evaluation. An entity-
focused evaluation tests a different kind of question
about beliefs: given an entity e, what beliefs does the
writer have about e? This entity-focused evaluation
draws its parallels from TAC KBP Sentiment Slot
Filling Evaluation (SSF) task. In the SSF, the task is
to determine a target entity given a source entity and
a sentiment between them. The goal is to populate
a knowledge base with information regarding enti-
ties and the sentiment relations between them. In
the same vein, an entity-focused belief task would
provide knowledge about the salient belief relations
between entities. For this purpose, we needed to de-
fine what is meant by “having a belief about an en-
tity” and agreed on the following preliminary rules.
The rules are entirely syntactic. In the following ex-
amples, the target entity is Mary, and the statement
after the arrow shows what the beliefs are about her
(and what the level of commitment by the writer is).

Adjunct clause case 1. If the target entity is con-
tained in a clause (lets call it the “core clause”) but
NOT in an adjunct clause which modifies the core
clause, we omit the adjunct clause (even though the
adjunct clause in some sense pertains to the core
clause but by virtue of being an adjunct, it is omiss-
able).

(7) While John was in/CB Paris, Mary left/CB Paul
−→ CB: Mary left Paul

Adjunct clause case 2. If the target is in an ad-
junct clause to a core clause where the target is not
mentioned, we retain both the adjunct clause as a
standalone belief, and the combination of the ad-
junct and core (i.e., we have two beliefs about the
entity).

(8) John was happy/CB when Mary left/CB Paul
−→ CB: John was happy when Mary left Paul
; CB: Mary left Paul

We devised similar rules for complement clauses,
we omit them here.

For the actual evaluation, we used files which also
had been hand-annotated for ACE entities. How-
ever, we did not have a gold annotation for entity-
focused belief, as this study is still contributing to-
wards a definition of this notion. Only two systems
participated, System A and System C. System A as
described in Section 4.1 already takes the notion of
entity into account. For System C, we used the parse
to determine the span associated with the annotated
headword, and counted a proposition whose span in-
cluded an entity to be about that entity. In order
to understand how these two ways of determining
entity-focused belief relate to each other, we com-
pared the two systems to each other. We obtained
an F-measure of 52%. We also hand evaluated the
positive claims of System C, obtaining an accuracy
of 48% on the positive claims. The errors are due
to parse errors, the presence of the entity in adjuncts
which do not appear germane (contradicting adjunct
clause case 2), the presence of irrelevant adjunct
clauses (counter to adjunct clause case 1), and to a
lack of clarity in the annotation standard. As an ex-
ample of the lack of clarity, consider the following
sentence from our evaluation corpus, with two kids
as target entity:

(9) I didn’t see these two kids (sic) names on the
news

two kids is a possessor of the direct object, and fell
into the span of the annotated see for System C, but
System A deemed the ‘see’ belief not to be about it.
We conclude that this purely syntactic definition of
“belief about an entity” is not satisfactory. The def-
inition of “belief about an entity” remains an open
question and we return to it in Section 7.3.

7 Plans for Next Round

7.1 Adding the Source
Currently, we are only annotating and evaluating the
writer’s beliefs. Beliefs attributed by the writer to
other sources are marked ROB. We intend to anno-
tate the source for all beliefs, using the method of
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nested attribution pioneered by MPQA (Wiebe et al.,
2005) and adopted by FactBank (Saurı́ and Puste-
jovsky, 2012). Consider the following sentence.

(10) John believes Mary knows that the clock was
stolen

In the nested attribution approach, according to
the writer, according to John, Mary firmly believes
(CB) the ‘steal’ proposition. According to the writer,
John firmly believes the ‘know’ proposition and the
‘steal’ proposition (as indicated by the veridical verb
know). The writer herself firmly believes (CB) the
‘believe’ proposition, does not express an opinion on
the ‘know’ proposition (ROB), and also firmly be-
lieves (CB) the ‘steal’ proposition (again, the reader
infers this from the use of know). We intend to an-
notate all these levels of belief.

7.2 Defining the Target Proposition

In our work to date, we have assumed that the tar-
get of a belief is a proposition, and we have repre-
sented the proposition by the syntactic head word of
the clause which describes the proposition (which
is equivalent to a text span under syntactic projec-
tion). We are investigating extending this in sev-
eral manners. First, we are considering including
the heads of event noun phrases (the sudden collapse
of the building). Second, we are looking at using a
semantic representation for the proposition (as op-
posed the syntactic head of the text passage describ-
ing the proposition). We do not propose to develop
our own semantic representation, but instead we will
look to using existing relation and event representa-
tions based on the ACE program (Doddington et al.,
2004). These have the advantage that there are off-
the-shelf computational tools available for detecting
ACE relations and events; they have the disadvan-
tage that they do not cover all propositions we may
be interested in. An alternative would be the use of
a shallower semantic representation such as Prop-
Bank (Kingsbury et al., 2002), FrameNet (Baker et
al., 1998), or AMR (Banarescu et al., 2013).

7.3 Entities as Targets

In Section 6, we discussed an initial evaluation of a
belief being about an entity. In this section we dis-
cuss further guidelines for identifying belief targets,
i.e., when one can say that someone’s belief is about

a certain entity.
In general, the notion of belief “aboutness” is

fairly fuzzy and it may be difficult to circumscribe
precisely without some additional constraints. Sup-
pose then that one of the ultimate objectives of belief
extraction is to populate a knowledge base with be-
liefs held about specific entities: individuals, groups,
artifacts, etc., which adds this constraint that the
extracted belief is knowledge-base-worthy, or re-
portable. Some initial guidelines may go as sug-
gested below. The objective is to provide guidance
for a human assessor — not to propose a solution.
We should note that these guidelines generally tran-
scend any syntactic or structural considerations and
appeal directly to the annotators’ judgment. Further-
more, we note that these guidelines are not about ef-
fects relating to information structure – in one sense
of “being about”, the same sentence may be referred
to as being “about” different things in different con-
texts. We are aiming for a lexical-semantic, not a
pragmatic notion of aboutness.

A belief whose target is proposition p is about an
entity T if one of the following clauses holds:

1. p describes a property of T , where the prop-
erty is considered semi-permanent but not nec-
essarily limited to physical or mental charac-
teristics (e.g., red, long, brainy) and may also
include behavioral properties (smart, slow) as
well as characteristics bestowed on by others
(beloved).

2. T is an agent of p, i.e., T is said to be perform-
ing some activity, physical or mental: drive a
car, send a letter, etc.

3. T is directly involved in (or affected by) p but is
not an agent: this includes situations where T ’s
involvement may be passive but is nonetheless
required for p to be performed, e.g., receive a
letter, win a prize, etc.

We make no claim that the above list is exhaustive
or that there would not be exceptions to these rules.
For this reason we may also attempt to describe con-
ditions under which a belief is not about T . For ex-
ample: a belief target p is not about entity T even
though T may be mentioned within the scope of p
if:
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4. T appears uninvolved in p and is apparently un-
affected by its execution, e.g., reading about,
waiting for, etc.

We intend to explore whether we can define this
notion of belief aboutness sufficiently well to obtain
good inter-annotator agreement.

7.4 Combining with Sentiment
We are planning on working on an annotation and an
evaluation that combines belief with sentiment. The
motivation for this is that belief and sentiment are
similar types of meaning: they are attitudes towards
propositions or entities which are expressed directly
or indirectly. The similarity can also be seen in the
fact that FactBank took the notion of nested source
from MPQA, which is a sentiment-annotated cor-
pus. Furthermore, many lexical items express both a
belief and a sentiment at once:

(11) I hope Bertha enjoys the oysters

Here, the writer expresses a positive sentiment to-
wards the ‘enjoy’ proposition, and at the same time
she is expressing a lack of certainty (NCB) in the
‘enjoy’ proposition.

7.5 Adding Spanish and Chinese
We will be extending our annotation (including
some of the extensions mentioned above) to Span-
ish and Chinese.

8 Conclusion

We have presented an ongoing annotation effort re-
lated to belief/factuality and an initial evaluation
based on that annotation effort. To our knowledge,
the annotated corpus is by far the largest corpus an-
notated in terms of belief/factuality. We have pre-
sented several proposed extensions to the annota-
tion. The linguistic resources described in this paper
will be published in the LDC catalog, making them
available to the broader research community. The
materials will be used in an open evaluation in late
2015 or early 2016. The evaluation will cover both
belief/factuality and sentiment.
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Abstract

Explicit Semantic Analysis (ESA) utilizes the
Wikipedia knowledge base to represent the se-
mantics of a word by a vector where every
dimension refers to an explicitly defined con-
cept like a Wikipedia article. ESA inherently
assumes that Wikipedia concepts are orthog-
onal to each other, therefore, it considers that
two words are related only if they co-occur in
the same articles. However, two words can
be related to each other even if they appear
separately in related articles rather than co-
occurring in the same articles. This leads to
a need for extending the ESA model to con-
sider the relatedness between the explicit con-
cepts (i.e. Wikipedia articles in Wikipedia
based implementation) for computing textual
relatedness. In this paper, we present Non-
Orthogonal ESA (NESA) which represents
more fine grained semantics of a word as a
vector of explicit concept dimensions, where
every such concept dimension further consti-
tutes a semantic vector built in another vec-
tor space. Thus, NESA considers the concept
correlations in computing the relatedness be-
tween two words. We explore different ap-
proaches to compute the concept correlation
weights, and compare these approaches with
other existing methods. Furthermore, we eval-
uate our model NESA on several word related-
ness benchmarks showing that it outperforms
the state of the art methods.

1 Introduction

Significance of quantifying relatedness between two
natural language texts has been shown in various

tasks which deal with information retrieval (IR),
natural language processing (NLP), or other related
fields. The semantics of a word can be obtained
from existing lexical resources like WordNet and
FrameNet. However, such lexical resources require
domain expertise for defining the hierarchical
structure, which makes their creation very expen-
sive. Therefore, distributional semantic models
(DSMs) have achieved much attention as they uti-
lize available document collections like Wikipedia,
and do not depend upon human expertise (Harris,
1954). DSMs represent the semantics of a word by
transforming it to a high dimensional distributional
vector in a predefined concept space. Many models
have been proposed that derive this concept space
by using explicit concepts or implicit concepts.
Explicit Semantic Analysis (ESA) (Gabrilovich
and Markovitch, 2007) utilizes the concepts which
are explicitly derived under human cognition like
Wikipedia concepts (articles). However, Latent
Semantic Analysis (LSA) derives a latent concept
space by performing dimensionality reduction
(Landauer et al., 1998).

Gabrilovich and Markovitch (2007) introduced
ESA model in which Wikipedia and Open Directory
Project were used to obtain the explicit concepts,
however, Wikipedia has been a popular choice in
further ESA implementations (Polajnar et al., 2013;
Gottron et al., 2011; Aggarwal et al., 2014). ESA
represents the semantics of a word with a high di-
mensional vector over the Wikipedia concepts. The
tf-idf weight of the word with the textual content
under a Wikipedia concept reflects the magnitude
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Table 1: Top 5 Wikipedia concepts for “football” and “soccer” in the ESA vector
# football soccer
1 FIFA History of soccer in the United States
2 Football Soccer in the United States
3 History of association football United States Soccer Federation
4 Football in England North American Soccer League (196884)
5 Association football United Soccer Leagues

of the corresponding vector dimension. To obtain
the semantic relatedness between two words, it
computes the vector dot product between their vec-
tors. ESA considers the dimensions as orthogonal
to each other. For instance, the synonyms like
“soccer” and “football” are highly related, however,
they may not co-occur together in many Wikipedia
articles. Table 1 shows that the top 5 Wikipedia
concepts retrieved for “football” and “soccer” do
not share any concept, however, the concepts may
exhibit relatedness to each other. Consequently,
ESA model assumes that words can be related only
if they co-occur in the same articles. However,
two words can also be related even if they do not
share the same articles at all, but appear in the
related ones. LSA resolves the orthogonality issue
to some extent by building latent concept space
in an unsupervised way (Landauer et al., 1998).
However, the resulting latent concepts are not as
clearly interpretable as the human-labeled concepts
in the ESA model. Previous studies (Gabrilovich
and Markovitch, 2007; Cimiano et al., 2009; Hassan
and Mihalcea, 2011) show that ESA performs better
than LSA for computing text relatedness. Therefore,
it is important to consider the relatedness between
dimensions in the ESA model, rather than con-
sidering them orthogonal, and also without losing
the explicit property of ESA model at the same time.

In this paper, we present Non-Orthogonal ESA
(NESA) model, an extension to ESA, which also
uses relatedness between the explicit concepts for
computing semantic relatedness between texts. The
concepts in ESA model are clearly interpretable and
they refer to the title of Wikipedia articles. This
characteristic provides an opportunity to investigate
different concept relatedness measures, such as
relatedness between articles’ content (document

relatedness) or relatedness between corresponding
Wikipedia titles. In order to investigate the perfor-
mance of these concept relatedness measures, we
evaluate them on an entity relatedness benchmark
called KORE (Hoffart et al., 2012) as Wikipedia
article title generally refers to an entity.

We then apply the different approaches for
computing concept relatedness in our model NESA
to compute text relatedness. We evaluate NESA
on several word relatedness benchmarks to verify
whether considering non-orthogonality in ESA
model improves its performance.

2 Related Work

2.1 Text Relatedness

In recent years, there have been a variety of efforts
to develop semantic relatedness measures. Classical
approaches assess the relatedness scores by using
existing knowledge bases or corpus statistics.
Lexical resources such as WordNet or Roget the-
saurus (Jarmasz and Szpakowicz, 2004) are used as
knowledge bases to compute the relatedness scores
between two words. Most of these approaches
make use of the hierarchical structure present in the
lexical resources. For instance, Hirst and St-Onge
(1998), Leacock and Chodorow (1998), and Wu
and Palmer (1994) utilize the edges that define
taxonomic relations between words; Banerjee and
Pedersen (2002) computes the scores by obtaining
the overlap between glosses associated with the
words; and some of the other approaches (Resnik,
1995; Lin, 1998) use corpus evidence with the
taxonomic structure of WordNet. These approaches
are limited to perform only for the lexical entries
and thus do not work with non-dictionary words.
Moreover, these measures rely on the manually
constructed lexical resources and they are not
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portable to multiple languages due to unavailability
of lexical resources in multiple languages.

Corpus-based methods such as LSA (Landauer
et al., 1998), Latent Dirichlet Allocation (LDA)
(Blei et al., 2003), and ESA (Gabrilovich and
Markovitch, 2007) employ statistical models to
build the semantic profile of a word. LSA and
LDA generate unsupervised topics from a textual
corpus, and represent the semantics of a word by
its distribution over these topics. LSA performs
singular value decomposition (SVD) to obtain a
latent concept space. On the contrary, ESA directly
uses supervised topics such as Wikipedia concepts
that are built manually, and considers that every
concept is orthogonal to each other. Polajnar at
el. (2013) proposed an approach to improve ESA
by considering the concept relatedness using word
overlap in Wikipedia articles’ content. Radinsky at
el. (2011) introduced Temporal Semantic Analysis
(TSA) also considers the concept relatedness in
ESA model, which is computed by using their
temporal distribution over the NewYork Times news
archives from the last 100 years. Although, these
approaches consider relatedness between explicit
concepts (Polajnar et al., 2013; Radinsky et al.,
2011) and improve the accuracy, however, either
they define a weak concept relatedness measure or
require an external corpus statistics. Our approach
takes inspiration from them and uses more advanced
concept relatedness measures that rely on the same
corpus statistics, which is used to build the ESA
model.

2.2 Concept Relatedness
As NESA model requires a concept relatedness mea-
sure to overcome orthogonality, we address here
the existing methods of computing it (Strube and
Ponzetto, 2006; Witten and Milne, 2008; Polajnar
et al., 2013). Most of these approaches rely on
Wikipedia and its derived knowledge bases such as
DBpedia1, YAGO2 and FreeBase3. These knowl-
edge bases provide immense amount of informa-
tion about millions of concepts or entities which
can be utilized for computing concept relatedness.

1http://dbpedia.org/About
2http://yago-knowledge.org/
3https://www.freebase.com/

Strube and Ponzetto (2006) proposed WikiRelate
that counts the edges between two concepts in
Wikipedia link structure, and also considers the
depth of a concept in the Wikipedia category struc-
ture. Witten and Milne (2008) applied Google dis-
tance metric (Cilibrasi and Vitanyi, 2007) on incom-
ing links in Wikipedia. Hoffart at el. (2012) utilized
the textual content associated with the Wikipedia
concepts. It observes the partial overlap between the
concepts (key-phrases) appearing in the article con-
tent. The above mentioned approaches mainly ex-
ploit the article content or Wikipedia link structure
for computing concept relatedness. In this paper, we
also utilize the distributional information of the title
and hyperlinks for computing concept relatedness.

3 Non-Orthogonal Explicit Semantic
Analysis

To compute text relatedness, NESA uses relatedness
between the dimensions of the distributional vec-
tors to overcome the orthogonality in ESA model.
In addition to represent the words as distributional
vectors, where each dimension is associated with a
Wikipedia concept as in ESA model, NESA also uti-
lizes a square matrix Cn,n (n is the total number of
dimensions) containing the correlation weights be-
tween the dimensions. Thus, to obtain the related-
ness score between the words w1 and w2, NESA
formulates the measure as follows:

relNESA(w1,w2) = w1T1,n.Cn,n.w2n,1 (1)

where w1n,1 and w2n,1 are the corresponding distri-
butional vectors consisting of n dimensions. Every
concept dimension can be further semantically inter-
preted as a distributional vector in some other vector
space of m dimensions. This transformation allows
the computation of the correlation weights between
the concept dimensions. Thus, a transformation ma-
trix Em,n can be built, where each column corre-
sponds to a transformation vector for each concept
dimension. Using the matrix Em,n, we can com-
pute the matrix Cn,n by multiplying Em,n with its
transpose as in equation 2. In the next section, we
discuss the different approaches used for computing
Cn,n containing the relatedness between the concept
dimensions .

Cn,n = ETn,m.Em,n (2)
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4 Computing Concept Relatedness

NESA requires the relatedness scores between
Wikipedia concepts (articles), therefore we present
the different approaches for computing Cn,n ma-
trix using Em,n. Every Wikipedia article consists
of different fields to represent the semantics of the
concept dimensions, such as Wikipedia title, textual
description and hyperlinks. We utilize this infor-
mation to implement four different concept related-
ness measures: VSM-Text, VSM-Hyperlinks, ESA-
WikiTitle, and DiSER. These approaches represent
the semantics of a concept with a distributional vec-
tor of m dimensions. All such vectors combined as
column vectors for n concept dimensions form the
matrix Em,n.

4.1 VSM-Text

This approach is based on plain Vector Space Model
(VSM) for text. It calculates the relatedness scores
between concepts by taking word overlap between
their corresponding Wikipedia article content. The
concept is transformed to a column vector mx1,
where m is the total number of unique words in the
Wikipedia corpus. The magnitude of each dimen-
sion is calculated on the basis of the number of oc-
currences of the different words in the associated
Wikipedia article content.

4.2 VSM-Hyperlink

Similar to the VSM-Text, this approach calculates
the concept relatedness by taking the overlap be-
tween the hyperlinks present in their corresponding
Wikipedia articles’ content. The concept is trans-
formed to a column vector mx1, where m is the total
number of hyperlinks in the whole Wikipedia. The
magnitude of each dimension is calculated on the
basis of the number of occurrences of the different
hyperlinks in the associated Wikipedia article con-
tent.

4.3 ESA-WikiTitle

One intuitive way of obtaining concept relatedness
scores is by using ESA itself for calculating the re-
latedness between the concepts. We use the associ-
ated Wikipedia article title for this purpose. ESA
represents the semantics of a word with a high
dimensional vector over the Wikipedia concepts.

Therefore, each concept dimension is transformed
into a column vector of mx1, where m is the to-
tal number of Wikipedia concepts. The magni-
tude of each dimension is computed by using the
term frequency (tf) and inverse document frequency
(idf) for the terms appearing in the Wikipedia arti-
cle title over the Wikipedia corpus (Gabrilovich and
Markovitch, 2007).

4.4 DiSER

Distributional Semantics for Entity Relatedness
(DiSER) (Aggarwal and Buitelaar, 2014) is a model
for computing relatedness scores between entities.
DiSER considers every Wikipedia concept as an en-
tity. Therefore, it can be used for computing concept
relatedness matrix Cn,n, as required by the NESA
model. In contrast to text relatedness measures
based on DSMs such as ESA, which do not distin-
guish between entity and text, DiSER differentiate
between entity and its surface forms by using unique
hyperlinks referring to entities in Wikipedia for en-
coding entities while building DSMs. It uses the
distributional information of such hyperlinks only
over the whole Wikipedia corpus for representing a
concept by a high dimensional distributional vector.
Therefore, each concept dimension is transformed
into a column vector of mx1, where m is the total
number of Wikipedia concepts. The magnitude of
each dimension is computed by using the concept
frequency (ef) and inverse document frequency (idf)
for an concept in the Wikipedia corpus. The concept
frequency (cf) is a slight variation of term frequency.
It computes the frequency of a concept appearing as
hyperlink in the Wikipedia articles. To obtain the
DiSER based relatedness scores between Wikipedia
concepts, we use Entity Relatedness Graph (EnRG)4

(Aggarwal et al., 2015), which is a focused related
entities explorer based on DiSER scores.

5 Evaluation of Concept Relatedness
Measures

In this section, we evaluate the different approaches
defined for computing concept relatedness measures
in the previous section. For our evaluation, we use
the snapshot of English Wikipedia from 1st October,
2013. This snapshot consists of 13,872,614 articles,

4EnRG demo: http://enrg.insight-centre.org
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in which 5,934,022 are Wikipedia redirects. We
filtered out all the namespace5 pages by using the
articles’ titles as they have specific namespace
patterns. There are 3,571,206 namespace pages in
this snapshot. We remove all those articles which
contain less than 100 unique words or less than
5 hyperlinks; such articles are too specific and
may generate some noise. We perform further
filtering by removing all the articles if their titles
are numbers like “19”, dates like “June 1”, or if the
title starts with “list”. We finally obtain a total of
3,635,833 Wikipedia articles for our experiment.
We implement all the concept relatedness measures
by using these obtained Wikipedia articles.

VSM-Text represents the semantics of a con-
cept with a column vector of mx1, where m is the
total number of unique words appear in Wikipedia.
Wikipedia contains more than 2.5 billion unique
words, therefore, to reduce the matrix size, we use
only 5 million most frequent words. ESA-WikiTitle
represents the semantics of a concept with a col-
umn vector of mx1, where m is 3,635,833 in our
implementation. In order to obtain the hyperlinks
for VSM-Hyperlink and DiSER, we retain only
those text segments which have manually defined
links provided by Wikipedia volunteers. However,
the volunteers may not create the link for every
surface form appearing in the article content. For
instance, “Apple” occurs 213 times in “Steve Jobs”
Wikipedia page in our corpus, but only 7 out of
these 213 are linked to the “Apple Inc.” Wikipedia
page. The term frequency of “Apple” is calculated
without considering the partial string matches,
for example, we do not count if “apple” appears
as a substring of any annotated text segment like
“Apple Store” or “Apple Lisa”. To obtain the actual
frequency of every hyperlink for computing the
magnitude of the dimension, we apply “one sense
per discourse” heuristic (Gale et al., 1992), which
assumes that a term tends to have the same meaning
in the same discourse. We link every additional
un-linked occurrence of the text segment with the
same hyperlink appearing most of the times for
the same segment in the article. The total number
of hyperlinks possible in our corpus would be

5http://en.wikipedia.org/wiki/Wikipedia:Namespace

equal to the total number of Wikipedia articles i.e.
3,635,833.

5.1 Dataset
In order to evaluate the concept relatedness mea-
sures, we performed our experiments on the gold
standard benchmark dataset KORE (Hoffart et al.,
2012). The KORE dataset consists of 21 seed
Wikipedia concepts selected from the YAGO knowl-
edge base6. Every seed concept has a ranked list
of 20 related Wikipedia concepts. In order to
build this dataset, 20 concept candidates are se-
lected and ranked by human evaluators on crowd-
sourcing platforms to give the relative comparison
between two candidates against the corresponding
seed Wikipedia concept. For instance, human evalu-
ators provide their judgement if “Mark Zuckerberg”
is more related to “Facebook” than “Sean Parker”.
With the answers for such binary questions, a ranked
list is prepared for every seed Wikipedia concept.
The KORE dataset7 consists of 21 seed candidates,
thus forming 420 concept pairs with their related-
ness scores assigned by 15 human evaluators.

5.2 Experiment
We compare the concept relatedness measures de-
scribed in section 4 against other existing methods.
Hoffart at el. (2012) proposed KORE and KPCS
which use the article content to compute the con-
cept relatedness. They use Mutual Information (MI-
weight) to capture the importance of the hyperlink
for a Wikipedia concept. To evaluate the concept
relatedness measures using KORE dataset, we com-
pute the concept relatedness scores for all the con-
cept pairs and rank the list of 20 candidates for each
seed Wikipedia concept. We calculated Spearman
Rank correlation between the gold standard dataset
and the results obtained from VSM-Text, VSM-
Hyperlink, ESA-WikiTitle and DiSER.

5.3 Results and Discussion
Experimental results are shown in Table 2. We
compare our results with the other existing methods
of computing concept relatedness: WLM, KORE,
and KPCS. WLM is the Wikipedia Link-based ap-
proach by Witten and Milne (2008). KPCS and

6http://datahub.io/dataset/yago
7http://www.mpi-inf.mpg.de/yago-naga/aida
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Table 2: Spearman rank correlation of concept related-
ness measures with gold standard
Concept Relatedness Spearman Rank

Measures Correlation with human
VSM-Text 0.510

VSM-Hyperlink 0.637
ESA 0.661

DiSER 0.781
WLM 0.610
KPCS 0.698
KORE 0.673

KORE are the approaches proposed in (Hoffart et
al., 2012), where KPCS is the cosine similarity on
MI-weighted keyphrases while KORE represents the
keyphrase overlap relatedness. These keyphrases
can be the text segment with hyperlinks in the article
content. Therefore, KPCS is a similar approach to
VSM-Hyperlink, besides KPCS assigns MI-weights
to capture the generality and specificity of concept
in the Wikipedia article. Many concepts in the gold
standard dataset are defined by ambiguous surface
forms such as “NeXT” and “Nice”, or they have
ambiguous text segments in their surface forms like
“Jobs” in “Steve Jobs” and “Guitar” in the “Guitar
Hero” video game. Therefore, the effect of using
only hyperlinks can be observed with the remarkable
difference between the results obtained by ESA and
DiSER. DiSER improves the accuracy over ESA by
20%. These scores illustrate that ESA fails in gen-
erating the appropriate semantic profiles for ambigu-
ous terms. VSM-Text does not capture the semantics
of Wikipedia concepts as the textual description in
Wikipedia article also contains generic terms which
are not enough to specify the precisely semantics
of Wikipedia concepts. Therefore, VSM-Hyperlink
achieved noticeable improvement over VSM-Text as
VSM-Hyperlink builds the semantic profile by us-
ing hyperlinks in the article content. These hyper-
links are created by Wikipedia volunteers, therefore,
it can be assumed that the text segments which are
linked to other Wikipedia article, are more important
than un-linked ones. However, KPCS and KORE
achieved significantly higher accuracy in compari-
son to VSM-Hyperlink, which indicates that gener-
ality and specificity of hyperlinks in the article con-

tent are very influential features for concept related-
ness measures.

6 Evaluation of NESA for Word
Relatedness

In this section, we evaluate NESA for word relat-
edness. We experiment by using different concept
relatedness measures as explained in section 4 for
building the Cn,n in NESA model as shown in equa-
tions 1 and 2. We use the same filtered Wikipedia
articles as used for evaluating the concept related-
ness measures in the previous section.

6.1 Dataset

We use 6 different word relatedness benchmarks to
evaluate NESA.

WN353 consists of 353 word pairs annotated
by 13-15 human experts on a scale of 0-10. 0 refers
to un-related and 10 stands for highly related or
identical. This dataset mainly contains generic
words like “money”, “drink”, “movie”, etc.. It
also contains named entities such as “Jerusalem”,
“Palestinian” and “Israel”, which makes this dataset
more challenging for approaches that use only the
lexical resources.

WN353Rel and WN353Sim datasets are the
subsets of WN353. As WN353 contains similar and
related word pairs, Agirre at el. (2009) refine the
WN353 gold standard by splitting it in two parts:
related word pairs and similar word pairs. The
notion of similarity and relatedness are defined as
follow: two words are similar if they are connected
through the taxonomic relations like synonym or
hyponym in lexical resources, while two words can
be considered related if they are connected through
other relations such as meronym and holonym.
For instance, “football” and “soccer” are two
similar words while “computer” and “software”
can be considered as related. Finally, WN353Rel
and WN353Sim contain 252 and 203 word pairs
respectively.

MC30 is the dataset build by Miller and Charles
(1991) that contains the selected word pairs of
WN353. The relatedness scores of these words are
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Table 3: Spearman rank correlation of relatedness measures with gold standard datasets
# WN353 WN353Rel WN353Sim MC30 RG65 MT287

H&S 0.347 0.142 0.497 0.811 0.813 0.278
L&C 0.302 0.172 0.412 0.793 0.823 0.284
Lesk 0.337 0.125 0.511 0.583 0.5466 0.271
W&P 0.316 0.131 0.461 0.784 0.807 0.331
Resnik 0.353 0.184 0.535 0.693 0.731 0.234
J&C 0.317 0.089 0.442 0.820 0.804 0.296
Lin 0.348 0.154 0.483 0.750 0.788 0.286

Roget 0.415 - - - - 0.856 0.804 - -
SSA 0.629 - - - - 0.810 0.830 - -

Polajnar et al. 0.664 - - - - - - - - - -
ESA 0.660 0.643 0.663 0.765 0.826 0.507

NESA (VSM-Text) 0.666 0.648 0.669 0.768 0.827 0.509
NESA (VSM-Hyperlink) 0.670 0.649 0.672 0.768 0.828 0.516
NESA (ESA-WikiTitle) 0.681 0.652 0.684 0.774 0.830 0.541

NESA (DiSER) 0.696 0.663 0.719 0.784 0.839 0.572

provided by 38 human experts on a scale of 0-4.

RG65 is a collection of 65 non-technical word
pairs. These word pairs are annotated by 51 human
experts (see for more detail (Rubenstein and Good-
enough, 1965)).

MT287 is a relatively newer dataset that con-
tains 287 word pairs. This dataset is prepared
mainly to study the effect of temporal distribution
(Radinsky et al., 2011) of a word over several
years. The relatedness scores of the word pairs are
obtained from 15-20 mechanical turkers.

6.2 Experiment

We compare the NESA model with other state of
the art methods of calculating word relatedness: Ex-
plicit Semantic Analysis (ESA), Salient Semantic
Analysis (SSA), and several WordNet-based simi-
larity measures. Hassan and Mihalcea (2011) re-
ported SSA performance on WN353, MC30 and
RG65 datasets as shown in table 3. The WordNet-
based similarity measures are implemented using
WS4J (WordNet Similarity for Java)8 library built
on WordNet 3.0.

8https://code.google.com/p/ws4j/

6.3 Results and Discussion

Table 3 shows the results of the NESA model
with different concept relatedness approaches and
other state of the art methods of calculating word
relatedness. The knowledge-based methods that use
lexical resources like WordNet or Roget thesaurus
(Jarmasz and Szpakowicz, 2004), achieve higher
accuracy if the words in benchmark datasets are
available in the knowledge bases. For instance,
WordNet-based measures (H&S (Hirst and St-Onge,
1998), L&C (Leacock and Chodorow, 1998), Lesk
(Banerjee and Pedersen, 2002), W&P (Wu and
Palmer, 1994), Resnik (Resnik, 1995) J&C (Jiang
and Conrath, 1997), Lin (Lin, 1998)) and Roget
thesaurus-based measure (Jarmasz and Szpakowicz,
2004) achieved higher accuracy on MC30 and
RG65 datasets. However, these approaches may not
fit well for the datasets that contain non-dictionary
words, therefore, the accuracy of knowledge-based
measures decrease significantly on other datasets.
Corpus-based measures ESA and SSA achieved
higher scores than knowledge-based methods on
WN353, WN353Rel, WN353Sim and MT287
datasets. Moreover, corpus-based methods per-
formed comparable to knowledge-based methods
on MC30 and RG65. Most of the knowledge-based
measures use the taxonomic relations for comput-
ing word relatedness. Therefore, these measures
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obtained poor results on WN353Rel in contrast
to WN353Sim dataset. However, corpus-based
measures performed well for both type of relations
i.e. similarity and relatedness.

The NESA model combined with any concept
relatedness measure outperforms ESA for all the
word relatedness benchmark datasets. It shows
that considering non-orthogonality between explicit
concepts in ESA model improves the accuracy.
NESA-VSM-Hyperlink performs better than
NESA-VSM-Text implying that considering only
the hyperlinks from the article content works better
than taking the overlap of whole content. NESA-
ESA-WikiTitle and NESA-DiSER achieved higher
scores than both NESA-VSM-Text and NESA-
VSM-Hyperlink. It shows that the distributional
representation of the article title captures the se-
mantic information better than considering only the
corresponding article content. Another interesting
thing to note is that the correlation scores obtained
by NESA model with the four concept relatedness
measures follow the same order in table 3 as of the
correlation scores obtained in evaluating concept
relatedness shown in table 2. It represents the con-
sistency of proposed concept relatedness measures
in two different experiment settings. NESA-DiSER
achieved the highest correlation scores in all the
word relatedness benchmark datasets.

7 Conclusion

We presented Non-Orthogonal ESA which intro-
duces the relatedness between the explicit concepts
in the ESA model for computing semantic related-
ness, without compromising with the explicit prop-
erty of the ESA concept space. We showed that the
word relatedness results vary with the different con-
cept relatedness measures. NESA outperformed all
state of the art methods, in particular, NESA-DiSER
achieved the highest correlation with the gold stan-
dard. We also evaluated the different concept relat-
edness measures using benchmark dataset KORE, in
which DiSER outperformed all others.
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Abstract

Named entity disambiguation is the task of
linking entity mentions to their intended ref-
erent, as represented in a Knowledge Base,
usually derived from Wikipedia. In this paper,
we combine local mention context and global
hyperlink structure from Wikipedia in a prob-
abilistic framework. We test our method in
eight datasets, improving the state-of-the-art
results in five. Our results show that the two
models of context, namely, words in the con-
text and hyperlink pathways to other entities
in the context, are complementary. Our results
are not tuned to any of the datasets, showing
that it is robust to out-of-domain scenarios,
and that further improvements are possible.

1 Introduction

Linking mentions occurring in documents to a
knowledge base is the main goal of Entity Link-
ing or Named Entity Disambiguation (NED). This
problem has attracted a great number of papers in
the NLP and IR communities, and a large number
of techniques, including local context and global in-
ference (Ratinov et al., 2011). We propose to use
a probabilistic framework that combines entity pop-
ularity, name popularity, local mention context and
global hyperlink structure, relying on information in
Wikipedia alone. Entity and name popularity are
useful disambiguation clues in the absence of any
context. The local mention context provides di-
rect clues (in the form of words in context) to dis-
ambiguate each mention separately. The hyperlink
structure of Wikipedia provides a global coherence
measure for all entities mentioned in the same con-
text.

The advantages of our method with respect to
other alternatives are as follows: (1) It does not in-
volve a large number of methods and classifier com-
bination. (2) The method learns the parameters di-
rectly from Wikipedia so no additional hand-labeled
data and training is needed. (3) We combine the
global hyperlink structure of Wikipedia with a lo-
cal bag-of-words probabilistic model in an intuitive
and complementary way. (4) The absence of training
allows for robust results in out-of-domain scenarios.

The evaluation of NED is fragmented, with sev-
eral popular shared tasks, such as TAC-KBP1, ERD2

or NEEL3. Other evaluation datasets include AIDA
and KORE504, which are very common in NED
evaluation. Note that each dataset poses differ-
ent problems. For instance AIDA is composed of
news, and systems need to disambiguate all occur-
ring mentions. TAC includes news and discussion
forums, and focuses on a large number of mentions
for a handful of challenging strings. KORE includes
short sentences with very ambiguous mentions. Un-
fortunately, there is no standard dataset, and many
contributions in this area report results in just one or
two datasets. We report our results on eight datasets,
improving the state-of-the-art results on five.

2 Resources

The knowledge used by our Bayesian network
comes from Wikipedia. We extract three informa-

1http://www.nist.gov/tac/2014/KBP/
2http://web-ngram.research.microsoft.

com/erd2014/
3http://www.scc.lancs.ac.uk/

microposts2015/challenge/index.html
4http://www.mpi-inf.mpg.de/departments/

databases-and-information-systems/
research/yago-naga/aida/downloads/

101



tion resources to perform the disambiguation: a dic-
tionary, textual contexts and a graph.

The dictionary is an association between strings
and Wikipedia articles. We construct the dictio-
nary using article titles, redirections, disambiguation
pages, and anchor text. If the mention links to a
disambiguation page, it is associated with all possi-
ble articles the disambiguation page points to. Each
association between a string and article is scored
with the prior probability, estimated as the number
of times that the mention occurs in the anchor text
of an article divided by the total number of occur-
rences of the mention. We choose candidate enti-
ties for disambiguation by just assigning all entities
linked to the mention in the dictionary.

In addition we build a graph using the Wikipedia
link structure, where entities are nodes and edges
are anchor links among entities from Wikipedia. We
used the third-party dictionary and graph described
in (Agirre et al., 2015), which is publicly available5.

Finally, we extract textual contexts for all the pos-
sible candidate entities from a Wikipedia dump. We
collect all the anchors including a link to each en-
tity in Wikipedia, and extract a context of 50 words
around the anchor link.

3 A Generative Bayesian Network

Given a mention s occurring in context c, our sys-
tem ranks each of the candidate entities e. Figure
1 shows the dependencies among the different vari-
ables. Note that context probability is given by two
different resources.

Candidate entities are ranked combining evi-
dences from 4 different probability distributions,
which we call entity knowledge P (e), name knowl-
edge P (s|e), context knowledge P (cbow|e) and
graph knowledge P (cgrf|e) respectively.

Entity knowledge P (e) represents the probability
of generating entity e, and is estimated as follows:

P (e) =
Count(e) + 1
|M |+N

where Count(e) describes the entity popularity,
e.g., the number of times the entity e is refer-
enced within Wikipedia, |M | is the number of en-
tity mentions and N is the total number of entities

5http://ixa2.si.ehu.eus/ukb/ukb-wiki.
tar.bz2

Figure 1: Dependencies among variables in a Bayesian
network. The network gives as a result this formula:
P (s, cbow, cgrf, e) = P (e)P (s|e)P (cbow|e)P (cgrf|e).

in Wikipedia. As can be seen, the estimation is
smoothed using the add-one method.

Name knowledge P (s|e) represents the probabil-
ity of generating a particular string s given the entity
e, and is estimated as follows:

P (s|e) =
Count(e, s) + 1
Count(e) + S

where Count(e, s) is the number of times mention
s is used to refer entity e and S is the number of
different possible names used to refer to e.

The context knowledge is modeled in two differ-
ent ways. In the bag-of-words model, P (cbow|e)
represents the probability of generating context c =
{w1, w2, . . . , wn} given the entity e, and is esti-
mated as follows:

P (cbow|e) = Pe(w1)Pe(w2)...Pe(wn)

where Pe(w) is estimated as:

Pe(w) = λP ′e(w) + (1− λ)Pw(w)

P ′e(w) is the maximum likelihood estimation of each
word w in the context of e entity. Context words are
smoothed by Pw(w) that is the likelihood of words
in the whole Wikipedia. λ parameter is set to 0.9
according to development experiments done in Aida
development set (also known as Aida test-a).

The graph knowledge is estimated using person-
alized Pagerank. We used the probabilities returned
by UKB6 (Agirre et al., 2015). This software re-
turns P (e|cgrf)7 the probability of visiting a candi-
date entity when performing a random walk on the

6http://ixa2.si.ehu.es/ukb/
7Note that, contrary to us, the results in (Agirre et al., 2015)

multiply the Pagerank probability with the prior.
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Wikipedia graph starting in the entity mentions in
the context. In order to introduce it in the generative
model, we must first convert it to P (cgrf|e). We use
Bayes’ formula to estimate the probability:

P (cgrf|e) = P (e|cgrf)P (cgrf)/P (e)

Finally, the Full Model combines all evidences to
find the entity that maximizes the following formula:

e = arg max
e

P (s, cbow, cgrf, e) =

arg max
e

P (e)P (s|e)P (cbow|e)P (cgrf|e)

4 Experiments

We tested our algorithms on a wide range of
datasets: AIDA CoNLL-YAGO test-b (Hoffart et
al., 2011), KORE50 (Hoffart et al., 2012) and six
TAC-KBP8 datasets corresponding to six years of
the competition (Aida, Kore and Tac hereafter). No
corpus was used for training the parameters of the
system, apart from Wikipedia, as explained in the
previous sections.

We used gold-standard mentions and we evalu-
ated only those mentions linked to a Wikipedia en-
tity (ignoring so-called NIL cases). Depending on
the dataset, we used the customary evaluation mea-
sure: micro-accuracy (Aida, Kore, Tac09 and Tac10)
or Bcubed+ (Tac11, Tac12, Tac13 and Tac14)9.

Each gold standard uses a different Wikipedia ver-
sion: 2010 for Aida and Kore, 2008 for Tac. We
use the Wikipedia dump from 25-5-2011 to build
our resources, as this is close to the versions used at
the time. We mapped gold-standard entities to 2011
Wikipedia automatically, using redirects in the 2011
Wikipedia. This mapping could cause a small degra-
dation of our results.

4.1 Results

The top 4 rows in table 1 show the performance
of the different combinations among probabilities.
The remaining row shows the best results reported
to date on those datasets (see caption for details).

The results suggest that each probability con-
tributes to the final score of the Full Model, shown

8http://www.nist.gov/tac/publications/
index.html

9Note that Tac14 results correspond to the so-called Diag-
nostic Entity Linking task.

on row 4, showing that both context models are com-
plementary between each other10. The only excep-
tion is Tac13, where the bow model is best.

Our system obtains very good results in all
datasets, excelling in Tac09-10-11-12-13, where it
beats the state-of-the-art. The figures obtained by
the Full Model on Aida, Kore and Tac14 are close
to the best results. Note that the table shows the re-
sults of the system reporting the best values for each
dataset, that is, our system is compared not to one
single system but to all those systems. For exam-
ple, (Hoffart et al., 2012) reported lower figures for
Kore, 64.58. Regarding the results for TAC-KBP,
the full task includes linking to the Knowledge Base
and detecting and clustering NIL mentions. In or-
der to make results comparable to those for in Aida
and Kore, the table reports the results for mentions
which are linked to the Knowledge Base, that is, re-
sults where NIL mentions are discarded.

5 Adjusting the model to the data

We experimented with weighting the probabilities to
adapt the Full Model mentioned above to a specific
scenario. For the Weighted Full Model, we introduce
the α, β, γ and δ parameters11 as follows:

e = arg max
e

P (s, cbow, cgrf, e) =

arg max
e

P (e)αP (s|e)βP (cbow|e)γP (cgrf|e)δ

Weighting may change the optimal configuration
for λ, we thus optimized all parameters on the de-
velopment set of Aida, yielding λ = 0.8, α = 0.2,
β = 0.1, γ = 0.6 and δ = 0.1 performing a exhaus-
tive grid search. The step size used in this experi-
ment is 0.1. The parameters yielded high results for
development, up to 82.88.

Table 2 summarizes the results of the Weighted
Full Model for Aida, showing that model reaches
83.61 points, close to the best micro accuracy re-
ported by (Houlsby and Ciaramita, 2014) and above
those reported by (Hoffart et al., 2011; Moro et
al., 2014). The values of (Hoffart et al., 2011)
and (Moro et al., 2014) for Aida are, respectively,

10The results of our combination involving the UKB software
are not comparable to those reported by (Agirre et al., 2015),
due to the different formulation of the probability distribution
which involves the prior.

11α + β + γ + δ = 1
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Test Aida Kore Tac09 Tac10 Tac11 Tac12 Tac13 Tac14
P (e)P (s|e) 67.51 36.11 67.46 76.76 68.09 46.34 68.20 62.51
P (e)P (s|e)P (cbow|e) 75.41 60.42 78.39 85.29* 76.24 57.80 76.34* 71.62
P (e)P (s|e)P (cgrf|e) 76.97 54.86 79.64* 83.63* 79.55 69.93* 71.67 71.56
P (e)P (s|e)P (cbow|e)P (cgrf|e) 82.45 70.14 82.15* 85.49* 81.53* 71.94* 74.92* 76.34
Best (state-of-the-art) 84.89 71.50 79.00 80.60 80.10 68.50 71.80 79.60

Table 1: Bold marks the best value among probability combinations, and * those results that overcome the best value
reported in the state-of-the-art: (Houlsby and Ciaramita, 2014) for Aida, (Moro et al., 2014) for Kore, (Han and Sun,
2011) for Tac09 and see TAC-KBP proceedings for the rest8.

Test Aida
P (e)P (s|e)P (cbow|e)P (cgrf|e) 82.45
P (e)αP (s|e)βP (cbow|e)γP (cgrf|e)δ 83.61
(Hoffart et al., 2011) 82.54
(Houlsby and Ciaramita, 2014) 84.89
(Moro et al., 2014) 82.10

Table 2: Micro accuracy results for Aida introducing the
Weighted Full Model in row 2.

82.5412 and 82.10. Unfortunately the parameter dis-
tribution seems to depend on the test dataset, as the
same parameters failed to improve the results on the
other datasets.

6 Related Work

The use of Wikipedia for named entity disambigua-
tion is a common approach in this area. In the re-
lated field of Wikification, (Ratinov et al., 2011) in-
troduced the supervised combination of a large num-
ber of global and local similarity measures. They
learn weights for each of those measures training a
supervised classifier on Wikipedia. Our approach is
different in that we just combine four intuitive meth-
ods, without having to learn weights for them. Un-
fortunately they don’t report results for NED.

(Moro et al., 2014) present a complex graph-
based approach for NED and Word Sense Disam-
biguation which works on BabelNet, a complex
combination of several resources including, among

12Note that values by (Hoffart et al., 2011) were reported on a
subset of Aida. The micro accuracy results reported in our table
correspond to the latest best model from the Aida web site:
http://www.mpi-inf.mpg.de/departments/
databases-and-information-systems/
research/yago-naga/aida/.

others, Wikipedia, WordNet and Wiktionary. Our
results are stronger over Aida, but not on the smaller
Kore.

(Hoffart et al., 2011) presents a robust method
based on entity popularity and similarity measures,
which are used to build a mention/entity graph. They
include external knowledge from Yago, and train a
classifier on the train part of Aida, obtaining results
comparable to ours. Given that we do not train on
in-domain training corpora, we think our system is
more robust.

The use of probabilistic models using Wikipedia
for NED was introduced in (Han and Sun, 2011). In
this paper, we extend the model with a global model
which takes the hyperlink structure of Wikipedia
into account.

(Houlsby and Ciaramita, 2014) presents a prob-
abilistic method using topic models, where topics
are associated to Wikipedia articles. They present
strong results, but they need to initialize the sam-
pler on another NED system, Tagme (Ferragina and
Scaiella, 2012). In some sense they also combine
the knowledge in the graph with that of a local al-
gorithm (Tagme), so their work is complementary to
ours. They only provide results on AIDA, and it is
thus not possible to see whether they are as robust as
our algorithm.

7 Conclusions and future work

Bayesian networks provide a principled method to
combine knowledge sources. In this paper we com-
bine popularity, name knowledge and two methods
to model context: bag-of-words context, and hy-
perlink graph. The combination outperforms the
state-of-the-art in five out of eight datasets, show-
ing the robustness of the system in different domain
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and dataset types. Our results also show that in all
but one dataset the combination outperforms indi-
vidual models, indicating that bag-or-word context
and graph context are complementary. We show
that results can be further improved when tuning the
weights on in-domain development corpora.

Given that Bayesian networks can be further ex-
tended, we are exploring to introduce additional
models of context into a Markov Random Field al-
gorithm. Our current model assumes that the two
models of context (bag or words and graph) are in-
dependent given e, and we would like to explore al-
ternatives to relax this assumption. We would also
like to explore whether more sophisticated smooth-
ing techniques could improve our probability esti-
mates.
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Abstract

This paper addresses the question of how doc-
ument classifiers can exploit implicit infor-
mation about document similarity to improve
document classifier accuracy. We infer doc-
ument similarity using simple n-gram over-
lap, and demonstrate that this improves over-
all document classification performance over
two datasets. As part of this, we find that
collective classification based on simple itera-
tive classifiers outperforms the more complex
and computationally-intensive dual classifier
approach.

1 Introduction

In machine learning, there is a rich tradition of re-
search into the two tasks of: (1) “point-wise” clas-
sification, where each instance is represented as an
independent instance, and the predictive model at-
tempts to learn a decision boundary to capture in-
stances of a given class; and (2) graphical learn-
ing and inference, where instances are connected in
a graph, and learning/inference take place relative
to the graph structure connecting those instances,
based primarily on either conditional dependence
(i.e. one event is dependent on the outcome of an-
other) or “homophily” (i.e. the tendency for con-
nected instances to share various properties).1 Var-
ious joint models that combine the two have also
been proposed, although in natural language pro-
cessing at least, these have focused largely on con-
ditional dependence, in the form of models such as

1In some tasks, it can also indicate heterophily, i.e. the ten-
dency for connected instances to have contrasting properties, as
we shall see for one of our two dataset.

hidden Markov models (Rabiner and Juang, 1986)
and conditional random fields (Lafferty et al., 2001),
where independent properties of words, e.g., are
combined with conditional dependencies based on
their context of use to jointly predict the senses of
all words in a given sentence (Ciaramita and John-
son, 2003; Johannsen et al., 2014).

This paper explores the utility of homophily
within joint models for document-level semantic
classification, focusing specifically on tasks which
are not associated with any explicit graph structure.
That is, we examine whether implicit semantic doc-
ument links can improve the results of a point-wise
(content-based) classification approach.

Explicit inter-document links have been variously
shown to improve document classifier performance,
based on information sources including hyperlinks
in web documents (Slattery and Craven, 1998; Oh et
al., 2000; Yang et al., 2002), direct name-references
in congressional debates (Thomas et al., 2006; Bur-
foot et al., 2011; Stoyanov and Eisner, 2012), ci-
tations in scientific papers (Giles et al., 1998; Lu
and Getoor, 2003; McDowell et al., 2007), and user
mentions or retweets in social media (Jiang et al.,
2011; Tan et al., 2011). However, document col-
lections often don’t contain explicit inter-document
links, limiting the practical usefulness of such meth-
ods. In this paper, we seek to expand the reach of
research which incorporates linking information, in
inducing implicit linking information between doc-
uments, and demonstrating that the resultant (noisy)
network structure improves document classification
accuracy.

The intuition underlying this work is that some
types of documents have features which are either
absent or ambiguous in training data, but which have
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the special characteristic of indicating relationships
between the labels of documents. Most often, an
inter-document relationship indicates that two doc-
uments have the same label, but depending of the
task, it may also indicate that they have different la-
bels. In either case, classifiers gain an advantage if
they can consider these features as well as conven-
tional content-based features.

The major contribution of this paper is in show-
ing that document classification accuracy can be im-
proved over a range of datasets using automatically-
induced implicit semantic inter-document links, us-
ing collective classification. We are the first to
achieve this using a general-purpose setup, as ap-
plied to a range of datasets. Our results are achieved
using n-gram overlap features for both the CON-
VOTE and BITTERLEMONS corpora, without the use
of annotations for explicit semantic inter-document
relationships. A second contribution of this work
is the finding that simple iterative classifiers outper-
form more complex dual classifiers when using im-
plicit inter-document links. This finding contradicts
earlier work using explicit document links, where
the dual classifier approach has generally been found
to perform best (Thomas et al., 2006; Burfoot et al.,
2011). While the work presented here is concep-
tually quite simple, the findings are significant and
potentially open the door to accuracy improvements
on a range of document-level semantic tasks.

2 Related Work

Previous work has dealt with the question of col-
lective document classification using implicit inter-
document relationships in two basic ways:

1. proximity: use a spatial or temporal dimension
of the domain to relate documents (Agrawal et
al., 2003; Goldberg et al., 2007; McDowell et
al., 2009; Somasundaran et al., 2009).

2. similarity: relate documents via some notion
of their content-based similarity (Blum and
Chawla, 2001; Joachims, 2003; Takamura et
al., 2007; Sindhwani and Melville, 2008; Jur-
gens, 2013)

The work using similarity-based links is the clos-
est to ours but is also strongly differentiated because

it focuses on transductive semi-supervised classifi-
cation. That task begins with the premise that only
a small amount of labelled training data is avail-
able, so content-only classification is likely to be
inaccurate. By contrast, the supervised techniques
in this paper deal with large amounts of labelled
training data and relatively high content-only perfor-
mance – 76% for CONVOTE and 87% for BITTER-
LEMONS. It is reasonable to assume that the types of
similarity-based relationships derived for transduc-
tive semi-supervised classification would be ineffec-
tive in a supervised context.

This conclusion is supported by an experiment
that shows that the vocabularies of document pairs
tend to overlap to similar degrees regardless of doc-
ument class (Pang and Lee, 2005).

3 Corpora

We experiment with two corpora in this research:
CONVOTE and BITTERLEMONS. These two are se-
lected on the grounds that they satisfy two intuitive
criteria about types of text collections that may con-
tain features that are not useful for content-only clas-
sification, but which may indicate relationships be-
tween pairs of documents: (1) the corpora both use
an unconstrained prose vocabulary, which increases
the likelihood that authors will use distinctive words
or sequences of words that are not frequent enough
to be useful in training, but which can be used to se-
mantically relate pairs of documents (c.f. newswire
articles); and (2) the majority of the text content in
both corpora is clearly relevant to the dimension of
classification, i.e. there is minimal use of “boiler-
plate” or “background” material, so the pool from
which to select task-relevant content to form inter-
document semantic relationships is larger.

3.1 CONVOTE

CONVOTE (Thomas et al., 2006) consists of US
congressional speeches relating to a specific bill or
resolution, and the ultimate vote of each speaker
(“for” or “against”). The document classifier uses
the text of each speech to predict the vote of the
speaker. Three modifications are made to the cor-
pus: (1) speeches by the same speaker are concate-
nated, to more naturally represent the requirement
that each speaker only has one vote; (2) we drop

107



Total
Tokens 1.2M
Speeches 1699
Debates 53
Average speakers/speeches per debate 32
Average tokens per speech 735
Proportion of FOR speeches 49%

Table 1: Corpus statistics for CONVOTE.

the fixed train, test, development set assignments
from the original dataset, and instead evaluate using
leave-one-out cross-validation over the 53 debates
contained in the dataset, to allow for a more statisti-
cally robust evaluation; and (3) we discard the man-
ually annotated inter-document relationships based
on references to speaker names, because implicit re-
lationships are the focus of this work.

Table 1 gives statistics for our rendering of CON-
VOTE. The identical figures for the average number
of speeches and speakers per debate reflect the fact
that each speaker now contributes only one unified
speech.

3.2 BITTERLEMONS

BITTERLEMONS (Lin et al., 2006) is a collection of
articles on the Israeli–Arab conflict harvested from
the Bitterlemons website.2 In each weekly issue, the
editors contribute an article giving their perspectives
on some aspect of the conflict, and two guest authors
contribute articles, one from an Israeli perspective
and the other from a Palestinian perspective. Some-
times these guest contributions take the form of an
interview, in which case we remove the questions
(from the editors) and retain only the answers.

The statistics in Table 2 give a picture of the size
and structure of BITTERLEMONS.

In accordance with Lin et al. (2006), we experi-
ment with heldout evaluation, with all articles con-
tributed by the editors placed in the training set and
those contributed by the guests in the test set. This
allows the task to be framed as “perspective” classi-
fication, rather than author attribution, i.e. we are fo-

2http:/www.bitterlemons.org/

Total
Tokens 0.5M
Articles 594
Topics 149
Average articles per topic 4
Average tokens per article 843
Percentage of ISRAELI speeches 50%

Table 2: Corpus statistics for BITTERLEMONS.

cused on the content of the contributions rather than
stylistic or biographical features that may identify
one editor or the other.

4 Implicit Inter-document Similarity

To implement the hypothesis that documents that
use the same rare word or sequence of words are
more likely to carry the same label, we calculate
a cosine similarity metric between every pairing of
documents in a given corpus, using an idf-weighted
term vector used to represent document di. The idf
weighting serves to emphasise terms that are rare
within the corpus, and de-emphasise terms that are
common. To further enhance this effect, we repre-
sent terms by existence-based rather than frequency-
based features.

An example of a (tokenised) high-idf sentence
pair from CONVOTE is (with the speaker, party affil-
iation and vote shown in each case, and the high-idf
token underlined):

(1) the president s top counselor dan bartlett said
this week that there is no magic wand to
reduce gas prices . [CROWLEY, JOE (D);
AGAINST]

(2) mr. chairman , yesterday the president said , i
wish i could simply wave a magic wand and
lower gas prices tomorrow. [EMANUEL,
RAHM (D); AGAINST]

An example for BITTERLEMONS is:

(3) Even if we /wanted/ to succumb to Israeli
pressure, it is impossible to make a Palestinian
teach his child that Jaffa or Haifa or Palestine
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Figure 1: Dual classifier with similarity-based links.

before 1948 was not his land. [AHMAD HARB

(GUEST); PALESTINIAN]

(4) This is being neglected and Sharon is having
his way in brutalizing the Palestinian people in
the hope that they will succumb and abandon
their rights. [HAIDAR ABDEL SHAFI

(GUEST); PALESTINIAN]

For other examples and more justification of this
methodology, see Burford (2013).

5 Collective Classification

Two standard approaches to collective classification
are: (1) the dual classifier approach; and (2) the it-
erative classifier approach. We briefly review these
approaches below, but refer the reader to Sen et al.
(2008), McDowell et al. (2009) and Burford (2013)
for a more detailed methodological discussion.

5.1 Dual Classifier Approach
The dual classifier approach is made up of three
steps, as depicted in Figure 1:

1. Base classification: Produce base classifica-
tions using (1) a content-only classifier; and
(2) a relationship classifier. The content-
only classifier makes a binary prediction: FOR

and AGAINST for CONVOTE, and ISRAELI or
PALESTINIAN for BITTERLEMONS. The rela-
tionship classifier indicates the preference that
each document pair be SAME or not (SAME).

2. Normalisation: Normalise the scores, pro-
ducing values for the classification preference
functions, ψi, which can be input into a collec-
tive classification algorithm.

3. Decoding: Produce final classifications by op-
timally decoding the content-only and relation-
ship level preferences using a collective classi-
fication algorithm.

5.1.1 Base classification
For our content-only base classifier, we use the

same bag-of-words SVM with binary (existence-
based) unigram features as (Thomas et al., 2006).
This classifier has been shown to be the best bag-
of-words model for BITTERLEMONS (Beigman Kle-
banov et al., 2010). As our relationship base classi-
fier, we use the cosine similarity scores described
above, calculated using n-grams of several different
lengths.

5.1.2 Normalisation
We use probabilistic SVM normalisation to con-

vert the signed decision-plane distance output by the
content-only classifier into the probability that the
instance is in the positive class (Platt, 1999).

For the relationship classifier, the technique used
to convert the cosine similarity score into a clas-
sification preference needs to fit complex criteria.
Preliminary experiments suggested that while the
very highest similarity scores are good indicators
of SAME relationships, classifier precision drops
quickly as recall increases. To avoid polluting
the classification graph with large numbers of low-
quality links, the normalisation method should in-
corporate a threshold that discards a significant pro-
portion of the test set pairs. We adopt the follow-
ing binning technique to convert the cosine similar-
ity score into a probability that the two instances are
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SAME:

ψij(l, l) =


0.9 s(i, j) ≥ b1;
0.8 b2 ≤ s(i, j) < b1;
0.7 b3 ≤ s(i, j) < b2;
0.6 b4 ≤ s(i, j) < b3;
0.5 s(i, j) < b4;

where ψij(l, l) represents the SAME preference (i.e.
the probability of i and j having the same label);
the values for b1, b2, b3, and b4 are derived by sort-
ing the relationships in the training data by similar-
ity score, and separating them into intervals holding
a proportion of SAME pairs equivalent to the nomi-
nated probability. This approach is similar to unsu-
pervised discretisation (Kotsiantis and Kanellopou-
los, 2006), except the intervals are arranged so that
the output categories have a probabilistic interpreta-
tion.

5.1.3 Decoding
Decoding is carried out using three techniques:

(1) loopy belief propagation (McDowell et al.,
2009); (2) mean-field; and (3) minimum-cut.

Loopy Belief Propagation
Loopy belief propagation is a message passing al-

gorithm that can be expressed as:

mi→j(l) =

α
∑
l′∈L

ψi(l′)ψij(l′, l) ∏
k∈Ni∩DU\{j}

mk→i(l′)


bi(l) = αψi(l)

∏
k∈Ni∩DU

mk→i(l)

where mi→j is a message sent by document di to
document dj , and α is a normalization constant that
ensures that each message and each set of marginal
probabilities sum to 1. The message flow from di
to dj communicates the belief of di about the label
of dj . The algorithm proceeds by making each node
communicate with its neighbours until the messages
stabilise. The marginal probability is then derived
by calculating bi(l).

Loopy belief propagation was used in early col-
lective classification work (Taskar et al., 2002) and
has remained popular since (Sen et al., 2008; Mc-
Dowell et al., 2009; Stoyanov and Eisner, 2012).

Mean-field
Mean-field is an alternative message passing al-

gorithm, that can be expressed as:

bi(l) = αψi(l)
∏

j∈Ni∩D

∏
l′∈L

ψ
bi(l

′)
ij (l′, l)

and is re-computed for each document until the
marginal probabilities stabilise.

Loopy belief propagation and mean-field have
both been justified as variational methods for
Markov random fields (Jordan et al., 1999; Weiss,
2001; Yedidia et al., 2005).

Minimum Cut
The minimum-cut technique involves formulating

a binary collective classification task as a flow graph
and finding solutions using standard methods for
solving minimum-cut (maximum-flow) problems.

We use the method described by Blum and
Chawla (2001) in an in-sample setting, which is
equivalent to finding the optimal solution for the cost
function for labellings:

cost(Y ) =
∑
di∈D

wi(Yi) +
∑

(di,dj)∈E:Yi 6=Yj

wr(di, dj)

5.1.4 Tuning
The relative weights given to the content-only and

relational classifiers can be tuned as follows (for
CONVOTE, without loss of generality):

ψ′i(FOR) = ψi(FOR)+
min(0,γ)(ψi(FOR)−ψi(AGAINST))

2

ψ′ij(FOR, FOR) = ψij(FOR, FOR)−
max(0,γ)(ψij(FOR,FOR)−ψij(FOR,AGAINST))

2

where ψ′i and ψ′ij refer to the dampened versions of
the content-only and relationship preference func-
tions, respectively, γ is the dampening parameter
∈ [−1, 1], ψ′i(AGAINST) = 1− ψ′i(FOR),
ψ′ij(AGAINST,AGAINST) = ψ′ij(FOR, FOR), and
ψ′ij(FOR,AGAINST) = ψ′ij(AGAINST, FOR) = 1−
ψ′ij(FOR, FOR).

This approach works by reducing the difference
between the preferences for the two classes (FOR or
AGAINST) by an amount that is proportional to the
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content
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Content-only
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Local
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Local
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Overall
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Base classification: linear kernel SVMs

Addition of relational features:
average similarity score features

Iterative re-classification: linear kernel SVMs

[terminate iteration]

Figure 2: Iterative classifier approach with
similarity-based relational features.

absolute value of the dampening parameter. If the
dampening parameter is < 0, only the content-only
preferences will be dampened (giving more relative
weight to relationship preferences). If the dampen-
ing parameter is > 0, only the relationship prefer-
ences will be dampened (giving more relative weight
to the content-only preferences).

For CONVOTE, the training fold is adapted for
tuning by use of 52-fold cross-validation, where
each of the 52 debates in the training fold is classi-
fied using all of the other debates as training data.
BITTERLEMONS does not have internal structure
within the training set, so it cannot be adapted in this
way. Instead, we use leave-one-out cross-validation
over the training set. Unfortunately this approach
carries the risk of producing base classifications that
are unrealistically accurate, because the training set
is composed of articles by only two authors.

5.2 Iterative Classifier Approach
The iterative classifier approach has three major
components, as depicted in Figure 2:

1. Base classification. Produce base classifica-
tions using a content-only classifier. As with
the dual classifier approach, the content-only
classifier will give the preference that each in-
stance be classified with FOR or AGAINST for
CONVOTE, and ISRAELI or PALESTINIAN for
BITTERLEMONS.

2. Addition of relational features. Produce lo-
cal vectors by adding relational features to the
vectors previously used for content-only classi-
fication.

3. Iterative re-classification. Use a local classi-
fier to classify the new feature vectors. Update
the relational features after each iteration to re-
flect new class assignments. Repeat until class
assignments stabilise or a threshold number of
iterations is met.

5.2.1 Base Classification
Once again, content-only classification for the it-

erative classifier is performed using a bag-of-words
SVM with binary unigram features.

5.2.2 Relational Features
Let, fs be an average similarity score:

fs(i, l) =

∑
dj∈D\{di} s(i, j)δYj ,l∑

dj∈D\{di} δYj ,l
(5)

where δ is the Kronecker delta. Put in words, fs is
the average of the similarity scores for the pairings
of the given instance with each of the instances that
have the label l.

We derive relational features for the iterative clas-
sifier from the average similarity score as follows:

fas(i, l) =
{

1 fs(i, l) > fs(i, l′);
0 otherwise.

This means that the feature fas(i, l) is set to 1 iff
the average similarity of document di to instances
with label l is greater than its average similarity to
instances with label l′. In training, document la-
bels are used when counting negative and positive
instances to determine the values for fas. In evalu-
ation, the classes assigned in the previous iteration
are used.

6 Experiments

We assess the accuracy of the dual classifier and it-
erative classifier approaches described above over
CONVOTE and BITTERLEMONS in terms of classifi-
cation accuracy, micro-averaging across the 53 folds
of cross-validation in the case of CONVOTE. When
quoted, statistical significance has been determined
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Type Description
n-gram size

1 2 3 4 5
Baseline Majority 51.44 51.44 51.44 51.44 51.44
Baseline Content-only 76.40 76.40 76.40 76.40 76.40
Dual Cosine similarity, min-cut 75.22 77.22? 76.52 77.28? 77.46?
Dual Cosine similarity, loopy belief 75.10 74.99 75.10 75.46 76.16
Dual Cosine similarity, mean-field 75.10 74.99 75.10 75.46 76.63
Iterative Average similarity score 77.99? 78.10? 78.81? 79.05? 78.16?

Table 3: Collective classification performance on CONVOTE (? signifies a statistically significant improve-
ment over the content-only baseline, p < 0.05).

Type Description
n-gram size

1 2 3 4 5
Baseline Majority 49.83 49.83 49.83 49.83 49.83
Baseline Content-only 86.53 86.53 86.53 86.53 86.53
Dual Cosine similarity, min-cut 87.88 88.55? 88.89? 89.90? 90.57?
Dual Cosine similarity, loopy belief 87.54 86.87 87.88 87.88 88.55
Dual Cosine similarity, mean-field 87.54 86.87 87.88 87.88 88.55
Iterative Average similarity score 87.54 89.90? 90.91? 90.91? 89.90?

Table 4: Collective classification performance on BITTERLEMONS (? signifies a statistically significant
improvement over the content-only baseline, p < 0.05).

using approximate randomisation with p < 0.05
(Nooreen, 1989).

Two baseline scores are shown in the tables for
collective classification results: (1) “Majority” gives
the performance of the simplest possible classifier,
which classifies every instance with the label that
is most frequent in training data; and (2) “Content-
only” gives the performance of the bag-of-words
linear-kernel SVM used to perform base classifica-
tion.

6.1 Collective Classifier Performance
Table 3 shows the overall collective classifier per-
formance on CONVOTE. The best performer is the
iterative classifier with 4-grams, with an accuracy
of 79.05%. This is a statistically significant 2.65%
absolute gain over the content-only baseline. The
iterative classifier is the best performer in general,
obtaining the next four best results with statistically
significant absolute gains of 2.41%, 1.76%, 1.70%
and 1.59% for 3-grams, 5-grams, 2-grams and 1-
grams respectively.

The dual classifier with minimum-cut is the next

best performer, with a best score of 77.45% for
5-grams, a statistically significant absolute gain of
1.06%. 4-grams and 2-grams also provide statisti-
cally significant gains, but 3-grams and 1-grams do
not.

For loopy-belief and mean-field the story is less
positive. None of the variations gives a statistically
significant improvement over the content-only base-
line. The best performer is mean-field with 5-grams,
with a score of 76.63, a 0.23% absolute improve-
ment over the baseline.

Table 4 shows overall collective classifier perfor-
mance on BITTERLEMONS. As with CONVOTE, the
best performer is the iterative classifier. 4-grams and
3-grams are the top-performing variants, obtaining a
score of 90.91%, a statistically significant 4.38% ab-
solute gain over the content-only baseline. 2-grams
and 5-grams are the next best, with a statistically sig-
nificant 3.37% absolute gain over the content-only
baseline. 1-grams are the only iterative classifier
variant that do not yield a statistically significant im-
provement over the content-only baseline.

The dual classifier results for BITTERLEMONS
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warrant special comment. As mentioned in Sec-
tion 5.1.4, leave-one-out tuning with the BITTER-
LEMONS training corpus is compromised. The aim
of cross-validation on the training set is to gain a
picture of likely performance on the test set. Un-
fortunately, BITTERLEMONS is not homogeneous:
articles in each class in the training set are con-
tributed by just one author, whereas articles in the
test set are contributed by different authors. Tuning
on BITTERLEMONS failed because leave-one-out on
the training set produced 100% accuracy, presum-
ably because there are features specific to the two
authors that make classification easy. This meant
that the ideal dampening parameter was found to be
exactly 1, i.e. collective classification was unneces-
sary, because the expected performance on the test
set was 100%.

As with CONVOTE, none of the loopy belief or
mean-field variants provide statistically significant
improvements over the content-only baseline. The
best performers are mean-field and loopy belief with
5-grams, with a score of 88.55%, a 2.02% absolute
improvement over the baseline.

6.2 Dual Classifier Dampening Response
We next examine the dampening response of the
dual classifier methods, by presenting six graphs
showing the performance of the three different de-
coding algorithms on the two test corpora. This
analysis helps to establish a picture of the limita-
tions of the dual classifier approach in comparison
with the iterative classifier approach.

Each of the graphs in this section shows the ef-
fect of a varying dampening factor on classification
accuracy. In each graph only a small portion of the
[−1, 1] range supported by the dampening parameter
is shown. The reason for this is visible on many of
the graphs: performance is fixed at or near 50% un-
til the dampening parameter is close to 1. This indi-
cates that the probabilities of the content-only classi-
fier and relationship classifier are badly mismatched:
performance only becomes reasonable after the rela-
tionship preferences have been massively reduced in
strength relative to the content-only preferences.

Figure 3 shows performance on CONVOTE for
minimum-cut, loopy belief, and mean-field respec-
tively. The trend is the same in each: performance
is flat until a sudden jump-up, leading to steady im-
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Figure 3: The impact of the dampening factor on
dual classifier performance for CONVOTE.

provement up to a peak, shortly before the maximum
dampening value of 1. At 1, the relationship prefer-
ences are entirely dampened and performance is the
same as the content-only baseline.

For minimum-cut, 1-grams provide the highest
peak accuracy with close to 78% at dampening fac-
tor 0.93. Each of the other n-gram orders jumps
above the 76.40% baseline at close to this point, with
5-grams providing the most sustained period of high
performance from dampening factor 0.85 through to
almost 1.

Performance is worse for loopy belief and mean-
field. Only 5-grams do better than the baseline, be-
tween approximately 0.92 and 0.95 dampening fac-
tor for both algorithms.

Figure 4 shows performance on BITTERLEMONS
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Figure 4: The impact of the dampening factor on
dual classifier performance for BITTERLEMONS.

for minimum-cut, loopy belief, and mean-field re-
spectively. The trend is the same: after a pe-
riod of flat performance, scores steadily improve as
the dampening factor is increased, reaching a peak
shortly before the maximum dampening value of 1.

For minimum-cut, 5-grams give the best perfor-
mance with a peak of 90.57% accuracy at damp-
ening factor 0.95. 4-grams do the next best, fol-
lowed by 3-grams, 2-grams and 1-grams. Each al-
gorithm rises to a sudden peak and then trails off as
it approaches maximum dampening. Loopy belief
and mean-field give almost identical performance.
Both show the same peak-and-trail-off shape as with
minimum-cut but the performance gain is smaller,
with 5-grams obtaining a best score of 88.55%.

7 Conclusion and Future Work

The collective classification experiments in this pa-
per demonstrate that useful inter-document seman-
tic relationships can be accurately predicted using
features based on matching sequences of words, i.e.
semantic relationships between pairs of documents
that can be detected based on the mutual use of par-
ticular n-grams. These semantic relationships can
be used to build collective classifiers that outperform
standard content-based classifiers.

Iterative classifiers do better than dual classifiers
at collective classification using similarity-based re-
lationships. Their superiority goes beyond measures
of performance: iterative classifiers are simpler to
implement, and more efficient. The key advantage
of the iterative classifier seems to lie in its ability to
sum up relationship information in a single average
similarity score.

Future work should consider the combination of
the methods investigated in this paper with more
advanced content-only approaches. For dual clas-
sifiers and iterative classifiers, it would be also in-
teresting to explore whether alternative base clas-
sifiers can provide better performance. For exam-
ple, confidence-weighted linear classification has
been shown to be highly effective on non-collective
document classification tasks, and could be easily
adapted for use in a dual classifier or iterative classi-
fier (Dredze et al., 2008). Finally, there is significant
scope to apply the techniques in this paper to other
collective classification tasks and to unambiguously
define the types of content for which collective doc-
ument classification with implicit inter-document re-
lationships can be expected to provide performance
gains.
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Barbara Plank, and Anders Søgaard. 2014. More or
less supervised supersense tagging of twitter. In Pro-
ceedings of the Third Joint Conference on Lexical and
Computational Semantics (*SEM 2014), pages 1–11,
Dublin, Ireland.

Michael Jordan, Zoubin Ghahramani, Tommi Jaakkola,
Lawrence Saul, and David Heckerman. 1999. An in-

troduction to variational methods for graphical mod-
els. Machine Learning, 37:183–233.

David Jurgens. 2013. That’s what friends are for: In-
ferring location in online social media platforms based
on social relationships. In Proceedings of the 7th In-
ternational Conference on Weblogs and Social Media
(ICWSM 2013), pages 273–282, Dublin, Ireland.

Sotiris Kotsiantis and Dimitris Kanellopoulos. 2006.
Discretization techniques: A recent survey. In GESTS
International Transactions on Computer Science and
Engineering, volume 32, pages 47–58.

John D. Lafferty, Andrew McCallum, and Fernando C. N.
Pereira. 2001. Conditional random fields: Probabilis-
tic models for segmenting and labeling sequence data.
In Proceedings of the 18th International Conference
on Machine Learning, pages 282–289, Williamstown,
USA.

Wei-Hao Lin, Theresa Wilson, Janyce Wiebe, and
Alexander Hauptmann. 2006. Which side are you
on? Identifying perspectives at the document and sen-
tence levels. In Proceedings of the 10th Conference
on Computational Natural Language Learning, pages
109–116, New York, USA.

Qing Lu and Lise Getoor. 2003. Link-based classifica-
tion. In Proceedings of the 20th International Confer-
ence on Machine Learning, pages 496–503, Washing-
ton, USA.

Luke McDowell, Kalyan Moy Gupta, and David W. Aha.
2007. Case-based collective classification. In Pro-
ceedings of the 20th International Florida Artificial
Intelligence Research Society Conference, pages 399–
404, Key West, USA.

Luke K McDowell, Kalyan Moy Gupta, and David W
Aha. 2009. Cautious collective classification. Journal
of Machine Learning Research, 10:2777–2836.

Eric W. Nooreen. 1989. Computer Intensive Methods for
Testing Hypothesis. Wiley and Sons Inc., New York,
USA.

Hyo-Jung Oh, Sung Hyon Myaeng, and Mann-Ho Lee.
2000. A practical hypertext categorization method
using links and incrementally available class infor-
mation. In Proceedings of the 23rd Annual Interna-
tional ACM SIGIR Conference on Research and De-
velopment in Information Retrieval, pages 264–271,
Athens, Greece.

Bo Pang and Lillian Lee. 2005. Seeing stars: Exploiting
class relationships for sentiment categorization with
respect to rating scales. In Proceedings of the 43rd
Annual Meeting of the Association for Computational
Linguistics, pages 115–124, Ann Arbor, USA.

John C. Platt. 1999. Probabilistic outputs for support
vector machines and comparisons to regularized like-
lihood methods. In Alexander Smola, Peter Bartlett,

115



and Bernhard Schölkopf, editors, Advances in Large
Margin Classifiers, pages 61–74. MIT Press, Cam-
bridge, USA.

Lawrence R. Rabiner and Biing-Hwang Juang. 1986. An
introduction to hidden markov models. ASSP Maga-
zine, IEEE, 3(1):4–16.

Prithviraj Sen, Galileo Mark Namata, Mustafa Bilgic,
Lise Getoor, Brian Gallagher, and Tina Eliassi-Rad.
2008. Collective classification in network data. AI
Magazine, 29(3):93–106.

Vikas Sindhwani and Prem Melville. 2008. Document-
word co-regularization for semi-supervised sentiment
analysis. In Proceedings of the 2008 IEEE Interna-
tional Conference on Data Mining, pages 1025–1030,
Washington, USA.

Seán Slattery and Mark Craven. 1998. Combining sta-
tistical and relational methods for learning in hyper-
text domains. In Proceedings of Inductive Logic Pro-
gramming, 8th International Workshop, pages 38–52,
Madison, USA.

Swapna Somasundaran, Galileo Namata, Lise Getoor,
and Janyce Wiebe. 2009. Opinion graphs for polar-
ity and discourse classification. In Proceedings of the
2009 Workshop on Graph-based Methods for Natural
Language Processing, pages 66–74, Singapore.

Veselin Stoyanov and Jason Eisner. 2012. Minimum-
risk training of approximate CRF-based NLP systems.
In Proceedings of the 2012 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 120–130, Montréal, Canada.
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Abstract 

Keyphrase extraction is a fundamental 
technique in natural language processing. It 
enables documents to be mapped to a concise 
set of phrases that can be used for indexing, 
clustering, ontology building, auto-tagging 
and other information organization schemes. 
Two major families of unsupervised 
keyphrase extraction algorithms may be 
characterized as statistical and graph-based. 
We present a hybrid statistical-graphical 
algorithm that capitalizes on the heuristics of 
both families of algorithms and is able to 
outperform the state of the art in 
unsupervised keyphrase extraction on several 
datasets. 

1 Introduction 

Keyphrase extraction algorithms aim to extract, 
from within the document phrases and words that 
best represent the document’s main topics. Being 
able to accurately determine what a document is 
about allows computers to cluster together 
documents that share topics (Hammouda et al., 
2005), better answer search queries (Qiu et al., 
2012), and generate short document summaries 
(D’Avanzo et al., 2004).  Furthermore, keyphrase 
extraction can be used to facilitate the automatic 
construction of concept maps (Leake et al., 2003) 
or ontologies (Fortuna et al., 2006) which enable 
better understanding of the interconnections and 
relations between different topics. Keyphrase 
extraction is also used in content-based 
recommender systems which help users in 
discovering information relevant to their 

previously expressed interests (Lops et al., 2011). 
The aforementioned techniques are all important 
tools in the organization and understanding of the 
ever expanding repositories of textual information 
available online in the form of research papers, 
news articles, blog posts, etc. and keyphrase 
extraction is central to all of them. Therefore it 
could be said that keyphrase extraction is a 
fundamental NLP task, improvements in which 
could cascade into improvements in higher-level 
applications that build upon it.  

In this work we have focused on unsupervised 
keyphrase extraction approaches as not only they 
are useful in domains where training data is hard to 
procure but even in the presence of ample training 
data word weights calculated using unsupervised 
methods can be used as one of several features in 
supervised keyphrase extraction algorithms. 
Therefore increases in the accuracy of 
unsupervised methods can propagate into the 
results of supervised algorithms as well. 

There are two prominent families of 
unsupervised keyphrase extraction algorithms. The 
older of these two is clustered around the tf-idf 
term weighting metric where word statistics such 
as frequency of occurrence in the document or 
rareness in the corpus are used to distinguish 
potential keyphrases. The more recently developed 
of the two families has been built on the 
foundation of the TextRank algorithm (Mihalcea & 
Tarau, 2004). In algorithms of this family a 
graphical representation of the text is constructed 
with words as nodes and edges reflecting co-
occurrence relations. This graph is then used to run 
node ranking algorithms such as PageRank (Page 
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et al., 1999) that assign weights to the node-words 
reflecting their semantic importance to the text.  

Although some overlap between these two 
families of algorithms has occurred in works that 
incorporate statistical heuristics into graph-based 
methods this overlap is small and most methods do 
not utilize the full set of statistical heuristics. Our 
aim has been to 1) Construct a keyphrase 
extraction algorithm based on optimal statistical 
features and 2) Combine it with a graph-based 
algorithm for further improvements. The advantage 
of graph-based methods is that they take into 
account term co-occurrence patterns that are not 
generally utilized by statistical methods which take 
a bag of n-grams approach to document 
representation.  

2 Related Works 

In this section we focus mainly on related 
unsupervised keyphrase extraction algorithms. One 
of the most prominent of these algorithms has been 
the term frequency-inverse document frequency 
(tf-idf) term weighting function (Salton et al, 
1975). Given a corpus of documents the tf-idf 
weight of term t in document d is mathematically 
expressed as tf-idf(t,d)=tf(t,d)*idf(t) where tf(t,d) is 
the frequency of term t in document d and 
idf(t)=log(N/df(t)) where N is the total number of 
documents in the corpus and df(t) is the number of 
documents in the corpus that contain term t (Jones, 
1972). The term frequency heuristic is based on the 
intuition that terms which occur more often in a 
document are more likely to be important to its 
meaning. The idf function captures the rareness 
heuristic, that is, words which occur in many 
documents in the corpus are unlikely to be 
important to the meaning of any specific one.  

Tf-idf is simple yet relatively accurate therefore 
many variations of it have been used by other 
algorithms. One of the most successful of these is 
KP-Miner (El-Beltagy  & Rafea , 2010) which to 
the best of our knowledge represents the state of 
the art in unsupervised keyphrase extraction. KP-
Miner operates on n-grams and uses a modified 
version of tf-idf where the document frequency for 
n-grams with n greater than one is assumed to be 
one. We will explain the intuition behind this 
modification later as we have adopted it in our 
algorithm as well. KP-Miner’s initial candidates 
are comprised of the longest n-grams that do not 

contain a stop word or punctuation mark, occur for 
the first time within the first 400 words of the 
document and have a term frequency above a 
minimum threshold determined by document 
length. KP-Miner also boosts the weights of multi-
word candidates in proportion to the ratio of the 
frequencies of single word candidates to all 
candidates. In a reranking step, the tf-idf of each 
term is recalculated based on the number of times 
it is subsumed by other candidates in the top 15 
candidates list. Another tf-idf based unsupervised 
system is KX-FBK (Pianta & Tonelli, 2010) which 
uses some of the same heuristics as KP-Miner but 
with different formulations and was shown to 
underperform in comparison in the Semeval 2010 
keyphrase extraction task. 

An approach fundamentally different from tf-idf 
and its family of algorithms is TextRank. It is 
based on the intuition that 1) keywords in a 
document are more semantically interrelated as 
they are generally about related topics and 2) that 
semantic relatedness can be estimated using co-
occurrence relations. Therefore in TextRank a 
graphical representation of the text is constructed 
in which edges connect words co-occurring in a 
window of a certain length. The PageRank 
algorithm is then applied to this network of words 
to distinguish the important ones which are then 
reassembled into phrases wherever they occur next 
to each other in the text.  

TopicRank (Bougouin et al., 2013) which to the 
best of our knowledge is the state of the art in 
graph-based keyphrase extraction, is an 
enhancement of TextRank. Here, nodes represent 
topics which consist of sets of candidate terms 
clustered around shared sub-terms. In (Liang et al., 
2009) Chinese search engine query logs are used to 
extract candidate terms which are used as nodes in 
the graph. Edges are weighted based on co-
occurrence count. Also candidate terms which are 
longer or whose first occurrence is in the title or 
first paragraph have boosted edge weights. 
SingleRank (Wan & Xiao, 2008) also uses co-
occurrence counts as edge weights. It ranks noun 
phrases in the text based on the sum of their word 
weights. ExpandRank (Wan & Xiao, 2008) builds 
upon SingleRank by incorporating neighboring 
documents but without significant performance 
improvements (Hasan & NG, 2010). 
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3 Method  

Our algorithm processes an input document in four 
stages. In the first stage we extract all possible n-
grams from the input text and eliminate those that 
are highly unlikely to be keyphrases, for instance 
n-grams containing punctuation marks. In the 
second stage the remaining n-grams are ranked 
based on a modified version of tf-idf. In the third 
stage the top ranking candidates from stage two are 
reranked based on additional statistical heuristics 
such as position of first occurrence and term 
length. In the fourth and final stage the ranking 
produced in stage three is incorporated into a 
graph-based algorithm which produces the final 
ranking of keyphrase candidates.  

3.1  Eliminating Unlikely Candidates 

In the first stage all possible n-grams in the text for 
n from 1 to 6 are produced. Those n-grams 
considered highly unlikely to be keyphrases are 
eliminated from the candidates list. These include 
n-grams containing stop words, punctuation marks 
or words whose part of speech tag is anything 
different than noun, adjective or verb. Furthermore 
n-grams whose frequency of occurrence in the text 
falls below a minimum threshold are also 
eliminated. In the current work this threshold is 
determined based on document length and is 0 for 
short documents, 2 for medium-length documents 
and 3 for long documents where short is defined as 
containing less than 1500 words, medium as 
between 1500 to 4000 and long as any document 
with more than 4000 words. 

3.2 Initial Ranking of All Candidates 

In the second stage n-grams not eliminated in the 
first stage are ranked based on a modified version 
of tf-idf as used in KP-Miner. The modification 
involves changing the document frequency count 
in idf calculation such that for n-grams with n > 1 
document frequency is always considered to be 
one. In other words we assume that all multi-word 
candidates occur in one document only. This is 
because while rareness is a reliable indication of 
semantic importance in the case of single words, it 
does not offer the same accuracy when it comes to 
multi-words. In many cases relatively common 
single words can combine into rare multi-words 
without much semantic importance. For example, 

in the Semeval test dataset of 100 full-length 
academic papers, to be described later in the 
evaluation section, the n-grams control has, rule 
satisfies and become known all have a document 
frequency of 1. On the other hand phrases chosen 
by humans as keyphrases such as Query expansion 
which occurs in 9 documents and as a keyphrase in 
4 or language models which occurs in 12 
document and again in 4 of them as key, have 
relatively high document frequency counts. These 
examples demonstrate how including the actual 
document frequency counts in idf calculation could 
be disadvantageous for distinguishing multi-word 
keyphrases. 

3.3 Reranking Top Candidates 

At the end of stage two we have an initial 
ranking of our candidates based on their tf-idf 
scores. In the third stage we rerank the top T 
candidates from stage two based on additional 
heuristics. These heuristics are position of first 
occurrence, term length and subsumption count. In 
the current work T is set to 100 based on 
experiments on a small development set of 40 
documents from the Semeval trial set. 

The position of first occurrence heuristic has 
performed consistently well in previous keyphrase 
extraction experiments. Medelyan and Witten 
(2008) use a linear decay function of the position 
of first occurrence as a feature in their supervised 
algorithm. It has also been utilized in unsupervised 
methods. In KP-Miner a constant position 
threshold is used where n-grams whose first 
occurrence is beyond it are eliminated from the 
candidate list. KX-FBK uses the linear decay 
function raised to the power of two. We introduce 
a novel encoding of this heuristic in the form of a 
logarithmic decay function, which as we will show 
in the discussion section outperforms all 
aforementioned variations.  We define the Position 
of First Occurrence factor (PFO) according to the 
following formula: 

𝑃𝐹𝑂 𝑡,𝑑 = log
𝑐𝑢𝑡𝑜𝑓𝑓𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛

𝑝 𝑡,𝑑
  (1)       

where p(t,d) is the position of term t’s first 
occurrence in document d. In the current work 
cutoffPosition is set to 3000 as it performed best in 
experiments on the development set. 

Regarding term length, we hypothesize that 
among words with a high likelihood of being a 
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keyphrase, in this case the top 100 candidates from 
stage two, the addition of a word to an n-gram is 
likely to construct a more semantically specific 
phrase geared towards signifying a specific topic 
or subject e.g. web versus semantic web. Therefore 
longer n-grams are generally more likely to be 
keyphrases. Accordingly, we boost term t’s weight 
by its term length, TL(t) where length is the 
number of space separated words in t.  

Finally, we recalculate a term’s tf-idf weight by 
reducing its term frequency by its subsumption 
count among the top 100 candidates. Term t is said 
to be subsumed by term ts when ts contains t.  

The following formula shows how the statistical 
weight for term t in document d is calculated: 

𝑤! 𝑡,𝑑 = 
𝑡𝑓 𝑡,𝑑 − 𝑠𝑢𝑏𝑆𝑢𝑚𝐶𝑜𝑢𝑛𝑡 𝑡,𝑑 ∗ 𝑖𝑑𝑓 𝑡 ∗

𝑃𝐹𝑂 𝑡,𝑑 ∗ 𝑇𝐿 𝑡    (2) 
Where subSumCount(t,d) is the sum of term 
frequencies of all terms included in the top T list 
that subsume t. 

3.4 Graph-based Ranking 

In the fourth and final stage of our algorithm we 
use terms with positive weights after stage three as 
nodes in a graphical representation of the text. An 
edge is placed between two nodes if they co-occur 
within a window of width d. Whereas d is usually 
small, generally less than 20 words in most graph-
based algorithms, we have chosen a large window 
of 1500 and instead attenuate the edge weight 
based on the average log decayed distance between 
all co-occurrences of the term pair as show in 
equation 3 below 

𝑤! 𝑡! , 𝑡! =
  

!" !!
!!!   !" !!

!!! !"# !"#$"%&
!"#!!!"#!

!"#$%!!""#$$%&"%'(!!,!!)
       (3) 

where winSize is the co-occurrence window size 
set to 1500 in the current work based on F-measure 
performance on the development set, posi and posj 
are the respective positions of occurrences of terms 
ti and tj and numCo-occurrences(ti,tj) is the number 
of co-occurrences of the terms within the window 
of 1500.  

Furthermore, we incorporate term weights 
calculated using statistical features in the previous 
stages into the graphical representation of the text. 
We hypothesize that term weights calculated using 
statistical features may serve as a first estimate of a 
term’s keyphraseness, i.e. likelihood of being a 

keyphrase. The PageRank algorithm simulates a 
random walker on the graph. Each node’s eventual 
PageRank score reflects the portion of time the 
walker spends on that node (Langville & Meyer, 
2011). To make sure terms with higher statistical 
weights are visited more often we would want 
higher transition probabilities between them but 
lower transition probabilities between terms with 
lower weights. Therefore we use the product of the 
term pair’s weights as a factor into the weight of 
the edge between them in the graph. The weight of 
the edge between terms ti and tj is calculated using 
the following equation: 
𝑤! 𝑡! , 𝑡! = 𝑤! 𝑡! , 𝑡! ∗ 𝑤! 𝑡! ∗ 𝑤!(𝑡!)   (4) 

where, as previously defined in equation 3, wd is 
the distance based portion of the edge weight while 
ws(ti)*ws(tj) takes the terms’ statistical properties 
into account. 

For each node we normalize edge weights by 
dividing each outgoing edge weight by sum of 
outgoing edge weights for that node. This results in 
a slightly modified formula for PageRank 
compared to the one used in TextRank, where 
edges are uniform weight, as shown below. 
𝑆 𝑉! = 1 − 𝑑 + 𝑑 ∗ !! !,! ∗!(!!)

!! !,!!"#$%(!!)
!"#$(!!)  (5) 

where S(Vi) is the PageRank score of node Vi, d is 
the damping factor usually set to 0.15 and In(Vi) 
and Out(Vi) are the sets of edges where node Vi is 
the destination or the source respectively. 
PageRank consists of iteratively calculating the 
scores for each node until convergence where 
scores do not change significantly between 
iterations. The converged-on PageRank score for 
each node is our algorithm’s final output and 
determines the rankings of the candidate terms. 

4 Evaluation 

We evaluate our keyphrase extraction algorithm by 
comparing it to two state-of-the-art algorithms, 
KP-Miner and TextRank, on three datasets: The 
Semeval 2010 keyphrase extraction shared task 
dataset, the Inspec dataset of ACM abstracts and 
the Krapivin dataset of full length papers. To 
obtain results for KP-Miner we have used an 
executable kindly shared with us by the system’s 
author. For TextRank we have built on an existing 
open source implementation. The comparisons 
between the algorithms are done using the 
precision and recall at k metric where the top k 
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terms returned by each algorithm are used to 
measure precision and recall. Here k ranges from 1 
to 15. We also calculate the F-measure for k = 5, 
10 and 15. In the following section we describe 
each dataset in detail and report the results 
achieved by each algorithm on each dataset. 

The Semeval and Inspec datasets have also been 
used by Bougouin et al. (2013) for evaluating their 
implementation of TextRank along with more 
advanced graph-based algorithms SingleRank and 
TopicRank. We have used these results for further 
comparisons between our method and advanced 
graph-based algorithms as reported in section 4.4. 

4.1 Semeval Dataset 

The Semeval dataset was used in the Semeval 2010 
keyphrase extraction shared task (Kim et al., 
2010). To the best of our knowledge this shared 
task is the largest recent comparison of keyphrase 
extraction algorithms and an algorithm’s 
performance on this dataset is a relatively good 
indication of where it stands compared to others in 
the field. The Semeval dataset consists of 284 full 
length ACM articles divided into a test set of size 
100, training set of size 144 and trial set of size 40 
which we used as the development set for 
parameter tuning. Each article has two sets of 
human assigned keyphrases: the author-assigned 
and reader-assigned ones. The gold standard used 
in our experiments is the combined set of author 
and reader assigned keyphrases which is the same 
as was done in the Semeval shared task. The table 
below provides a statistical overview of this 
dataset’s documents. 
 

100 
docs 

Document 
Length 

Number of 
Keyphrases 

Keyphrase 
Length 

Max. 14171 29 8 
Avg. 7979 15.13 2.14 
Min. 4060 9 1 

Table 1.  Semeval test set statistics. 

We have compared our algorithm with KP-
Miner and TextRank using only the 100 documents 
in the test set. The following diagram shows the 
average precision and recall achieved by each 
algorithm. As was done in the Semeval task, 
comparisons are done between once stemmed 
human assigned keyphrases and ranked candidates 
returned by each algorithm. 

 
Figure 1. Semeval precision(y), recall(x) k < 16 

 
The following table shows the achieved F-

measure for each algorithm at k=5, 10 and 15. It 
also contains the corresponding percentage 
improvement at each k. The statistical significance 
of each improvement is measured using a 2-sided 
paired t-test. Improvements are in bold font where 
they are statistically significant at p < 0.05. 

 
K = 5 10 15 

SGRank 20.25 26.07 27.20 

KPMiner 
Improvement 

19.01 
6.5% 

24.06 
8.3% 

25.54 
6.4% 

Textrank 
Improvement 

1.25 
1509% 

2.46 
960% 

3.47 
683% 

Table 2. Semeval F-measures and improvements. 

As can be seen from the above results our 
method outperforms KP-Miner in both precision 
and recall for all k and achieves statistically 
significant improvements in the F-measure over 
KP-Miner for k=10 and 15. These results are 
noteworthy considering that in the Semeval 
keyphrase extraction shared task KP-Miner was the 
best performing unsupervised algorithm, and the 
second best overall out of 19 systems, 
outperforming prominent supervised algorithms 
such as Maui (Medelyan et al., 2009). TextRank 
seems to generally underperform on longer 
documents and has performed poorly on the 
Semeval dataset. 

4.2 Inspec Dataset 

The Inspec dataset is comprised of 2000 ACM 
abstracts divided into test, training and validation 
sets containing 500, 1000 and 500 abstracts 
respectively. We follow the same approach as 
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taken by Mihalcea and Tarau (2004). We use only 
the 500 documents in the test set. The following 
table provides a statistical overview of this 
document set. 
 

500 
docs 

Document 
Length 

Number of  
Keyphrases 

Keyphrase 
Length 

Max. 338 31 9 
Avg. 121.8 9.8 2.3 
Min. 23 2 1 

Table 3.  Inspec dataset statistics. 

Figure 2 shows the average precision and recall 
for all three algorithms for k from 1 to 15. Table 4 
shows the F-measure improvements made by our 
method over the two other algorithms for k=5, 10 
and 15. As these results show, on this dataset of 
relatively short documents, TextRank outperforms 
KP-Miner for k>2. Our algorithm achieves higher 
precision and recall than both KP-Miner and 
TextRank for all k with statistically significant 
gains in the F-measure for k=5, 10 and 15. 

 

 
Figure 2. Inspec precision(y), recall(x) k < 16 

 
K = 5 10 15 

SGRank 29.16 33.95 33.66 
KPMiner 

Improvement 
18.45 

59.7% 
15.89 
118% 

12.73 
175% 

TextRank 
Improvement 

25.53 
15.4% 

30.6 
13.3% 

29.7 
17.7% 

Table 4. Inspec F-measures and improvements. 

4.3 Krapivin Dataset 

The Krapivin dataset consists of 2000 full length 
ACM papers. This dataset has been prepared by 
Krapivin et al. (2009). Each article has author-

assigned and editor-corrected keyphrases that we 
use as the gold standard in our evaluation. Our 
experiments are done on a 400-document subset of 
this dataset. The table below provides a statistical 
characterization of these 400 documents. 
 

400 
docs 

Document 
Length 

Number of 
Keyphrases 

Keyphrase 
Length 

Max. 16721 24 6 
Avg. 7934 6.38 2.1 
Min. 3892 1 1 

Table 5.  Krapivin dataset statistics. 

On this dataset keyphrases and candidate terms 
have been stemmed once before comparison. 
Similar to the previously mentioned experiments 
we have measured the precision and recall of all 
three algorithms for k from 1 to 15 as shown in 
figure 3. Table 6 contains the F-measures for all 
three algorithms at k=5, 10 and 15 along with the 
improvements made by our algorithm. Similar to 
the Semeval dataset TextRank performs very 
poorly on this dataset of longer documents. KP-
Miner performs much better but both methods are 
outperformed by our method on all k with 
statistical significance as shown in Table 6. 

 

 
Figure 3. Krapivin precision(y), recall(x) k < 16 

 
K = 5 10 15 

SGRank 21.2 21.6 19.4 

KPMiner 
Improvement 

18.43 
15.% 

18.65  
16.1% 

17.4 
11.7% 

Textrank 
Improvement 

1.02 
1974% 

1.61 
1240% 

2.1 
823% 

Table 6. Krapivin F-measures and improvements. 
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4.4 Advanced Graph-based Methods 

As mentioned previously Bougouin et al. (2013) 
introduce TopicRank and use F-measure at k=10 to 
compare against TextRank and another advanced 
graph-ranking method SingleRank. They use the 
Semeval and Inspec datasets for comparison 
providing us with an opportunity to compare our 
performance with those of TextRank and the two 
more advanced graph-based algorithms. Table 7 
contains the F-measures at k=10 for our algorithm, 
SGRank, and all aforementioned algorithms. Note 
that the particular implementation of TextRank 
used in this paper performs worse than ours on the 
Inspec dataset but better for the Semeval dataset. 

Table 7. Comparison with Advanced Graph-based 
methods F-measures at K=10. 

 
As seen in Table 7 our algorithm’s average 
performance is considerably better than all of the 
advanced graph-based algorithms.  

5 Discussion 

 As shown in the preceding results our algorithm 
outperforms all other methods in all the used 
datasets. The only exception is SingleRank which 
marginally outperforms our method on the Inspec 
dataset but performs very poorly on the Semeval 
dataset, as seen in Table 7. Also worth noting is 
KP-Miner’s relatively poor performance on the 
shorter documents of the Inspec dataset. This could 
potentially be due to the fact that KP-Miner only 
considers terms as candidates which occur on their 
own in the text i.e. surrounded by punctuation 
marks or stop words. In shorter documents it is 
more likely that fewer keyphrases would occur in 
such conditions in the text, causing them to be 
eliminated early on by KP-Miner. Our algorithm 
however considers all n-grams without requiring 
that they occur on their own. This allows us to 
consider more candidates and avoid a performance 
reduction in shorter documents.  However, there is 
an advantage to eliminating terms that never occur 
on their own. Many keyphrases are multi-words. In 
some cases smaller parts of keyphrases tend to 

occur in high frequencies, as they are related to the 
topic of the document and are sometimes used in 
place of the keyphrase, and therefore achieve high 
rankings. We call such frequent sub-phrases 
keyphrase fragments. For example document C-1 
in the Semeval test set includes two keyphrases 
grid service discovery and web service leading to a 
highly ranked keyphrase fragment service. High 
ranking keyphrase fragments are detrimental to the 
algorithm’s performance. One way to counteract 
them is based on the observation that they rarely 
occur on their own as they usually appear as part of 
larger phrases. This is the motivation behind KP-
Miner’s elimination of candidates that do not occur 
on their own. Therefore, to consider all candidates, 
while countering the keyphrase fragments problem, 
we calculate the subsumption count over a much 
larger portion of the ranked terms compared to KP-
Miner. This larger list will include more terms 
which keyphrase fragments are a part of, causing 
greater reductions in the fragments’ rankings. The 
number of top candidates used in KP-Miner to 
calculated subsumption is set equal to an input 
parameter that determines the number of 
keyphrases to be returned to the user. In the current 
work and the Semeval shared task this parameter is 
15. In other words KP-Miner calculates the 
subsumption count over the top 15 terms whereas 
we calculate it over the top 100 terms. To test the 
effectiveness of this strategy we reduced our 
subsumption threshold to 15. This change led to a 
9% decrease in the F-Measure at k=15 on the 
Semeval dataset, 4.7% decrease on the Inspec and 
1.5% decrease in the Krapivin dataset. Note that 
for the rest of the Discussion section percentage 
changes are those of the F-measure at k=15. Our 
algorithm’s high performance on both short and 
long documents indicates the viability of 
considering all n-grams as candidates and 
mitigating the effect of keyphrase fragments by 
counting subsumption over more top ranking 
terms. 

Another novel aspect of our algorithm is its 
formulation of the position of first occurrence 
heuristic as described by the PFO function in 
equation 1. We compare our approach with two 
other unsupervised algorithms that utilize this 
heuristic: KP-Miner and KX-FBK. The method 
used in KP-Miner is a hard cutoff threshold where 
candidates whose first occurrence is beyond 400 

F at k=10 Inspec Semeval Average 
SGRank 33.95 26.4 30.1 

TextRank 12.7 5.6 9.1 
SingleRank 35.2 3.7 19.4 
TopicRank 27.9 12.1 20 
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words into the document are eliminated. KX-FBK 
uses the following decay function: 

𝑃𝐹𝑂!" 𝑡,𝑑 =
𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡  𝑙𝑒𝑛𝑔𝑡ℎ − 𝑝 𝑡,𝑑

𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡  𝑙𝑒𝑛𝑔𝑡ℎ

!

6  

We tested our system with our PFO function 
replaced by those of KP-Miner and KX-FBK on 
the Semeval, Inspec and Krapivin datasets. 
Replacement with KX-FBK’s PFO led to 
respective reductions in the F-Measure at k=15 of 
6.5%, 9.5% and 15.1%. Replacement with KP-
Miner’s PFO led to a 10.9% reduction in Semeval 
but no reduction in Inspeq and a 2.9% 
improvement in Krapivin. We also replaced our 
PFO function with the linear decay function used 
by Medelyan and Witten (2008). This function is 
the same as equation 9 but without the exponent. 
This led to a 1.4% reduction in Semeval, 0.7% 
reduction in Inspec and a 2.9% reduction in 
Krapivin. These results show that our encoding of 
the PFO heuristic as a logarithmic decay function 
leads to overall gains in accuracy although it 
underperforms slightly compared to KP-Miner’s 
PFO on the Krapivin dataset which points to 
further room for improvement. One possible future 
direction would be to design functions that adjust 
the cutoffPosition in equation 1 based on document 
length as some sensitivity to this was observed in 
our experimentations. We also replaced our term 
length factor, TL in equation 2, with KP-miner’s 
boosting function for multi-words. This caused a 
3.2% reduction in Semeval, 5.1% reduction in 
Inspec and 2.3% reduction in Krapivin. 

Our algorithm uses graph-based methods on top 
of statistical features to capture keyphrases not 
distinguishable using statistical heuristics. To test 
the effectiveness of this addition we eliminated the 
graph-based reranking stage. This caused a 1.1% 
reduction in Semeval, 4% reduction in Inspec and 
a 4.3% reduction in Krapivin which demonstrates 
that our approach of combining statistical and 
graph-based features leads to overall 
improvements in performance. Our method also 
introduces a novel distance-based edge weighting 
formula to the graph-based family of algorithms. 
Most graph-based algorithms place edges where 
terms co-occur within a window of a few words. 
This is equivalent to a sudden drop in the 
estimation of semantic relatedness at the edge of 
the window. We however choose a much larger 
window of 1500 and gradually reduce the edge 

weight with increasing distance between the terms 
according to equation 3. To measure the 
effectiveness of this approach we compared it with 
a window of 100 words with no positional decay, 
i.e. wd in equation 4 is set to one for terms 
occurring within the window of 100 and zero 
otherwise. This caused a 2.2% drop in the Semeval 
dataset i.e. it performed lower than with no 
graphical reranking at all. In Krapivin it caused a 
2.4% drop in performance and a 0.4% drop in the 
Inspec dataset. For further comparison we replaced 
wd with the dist function used in TopicRank which 
is the sum of inverse distances between all 
occurrences of a term pair. This caused a 1.4% 
reduction in Semeval, no difference in Krapivin 
and a 0.3% reduction in Inspec. These results 
demonstrate the effectiveness of our novel distance 
based edge weighting function.  

An interesting point is that both our positional 
functions, PFO and wd are logarithmic decays. This 
hints at a logarithmic decrease in semantic 
importance or relatedness with increased distance 
which is the same as how the idf function relates a 
word’s semantic importance to its document 
frequency. Our initial hypothesis for the success of 
logarithmic decay functions is that both positional 
and document frequency heuristics are governed 
by the law of diminishing returns. That is, the 
distinguishing power of each heuristic decreases as 
the inputs increase. Taking the document 
frequency heuristic (df) as an example, we know 
that rareness, i.e. small dfs, indicate higher 
semantic importance. Therefore, in a corpus of 
1000 documents, a word with a df of 1 is much 
more likely to be a keyphrase than a word with a df 
of 20, as reflected in their idf scores. However as 
the df increases the same difference in df’s does 
not imply the same difference in probability of 
being a keyphrase e.g. we intuitively know that 
based on rareness alone, our estimate of the 
difference in the probability of being a keyphrase 
for a pair of terms with df’s 980 and 1000 would 
be much less reliable compared to a pair with df’s 
1 and 20, even though the difference in the df pairs 
are the same. The same logic applies to the 
position of first occurrence and distance based 
semantic relatedness heuristics. Incorporating this 
diminishing returns property into the mathematical 
formulation of the heuristic calls for a function 
with a decreasing absolute value slope i.e. with a 
second derivative with the opposite sign of the 
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first, to reflect our decreasing confidence in the 
heuristic as values increase. This rules out linear 
functions. Although other functions such as 
reciprocals fulfill this property, judging based on 
the success of idf and our positional decay 
functions it seems that logarithmic decay does 
better at modeling the intrinsic rate of this 
diminishing distinguishing power of the heuristic, 
perhaps due to its slower decline. Why this is and 
whether better decay functions can be designed or 
tuned to specific domains is a future direction we 
plan to explore. It is also worth noting that unlike 
most graph-based algorithms whose performances  
are completely dependent on a POS tag filter, 
SGRank suffers relatively slight reductions in F-
measure at 15 without the POS tag filter: 3.6% on 
Semeval, and 2.6% in Krapivin and 24.5% on 
Inspec. 

 

Table 8. Effects of individual features on performance. 
Columns S., I. and K. contain F-measures (k=15) for the 

Semeval, Inspec and Krapivin datasets respectively. 
 

Table 8 contains a summary of how the 
elimination or replacement of different features 

affects the performance of our algorithm, as 
discussed previously. It contains the F-measure at 
k = 15, averaged across all datasets, for the full 
algorithm along with variations of it produced by 
changing different features. 

6 Conclusion and Future Directions 

 We introduce an unsupervised keyphrase 
extraction algorithm that combines statistical and 
graph-based heuristics and is able to improve upon 
the state of the art, with statistical significance, on 
several datasets. Among other features, our 
algorithm uses a novel variation of the 
subsumption heuristic. We also demonstrate the 
suitability of log decay functions for 
mathematically expressing heuristics that are based 
on phrase distance such as the position of first 
occurrence and the weighting of graph edges based 
on the average distance of phrase occurrences. 
Another way of looking at the presented algorithm 
is as a term weighting scheme. Therefore an 
interesting future direction would be to investigate 
whether replacing traditional term weighting 
schemes, e.g. tf-idf, in areas such as information 
retrieval, document clustering and supervised 
algorithms where tf-idf is used as a feature would 
cause any improvements in performance. 
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Abstract

We induce semantic association networks
from translation relations in parallel corpora.
The resulting semantic spaces are encoded in
a single reference language, which ensures
cross-language comparability. As our main
contribution, we cluster the obtained (cross-
lingually comparable) lexical semantic spaces.
We find that, in our sample of languages,
lexical semantic spaces largely coincide with
genealogical relations. To our knowledge,
this constitutes the first large-scale quantita-
tive lexical semantic typology that is com-
pletely unsupervised, bottom-up, and data-
driven. Our results may be important for the
decision which multilingual resources to inte-
grate in a semantic evaluation task.

1 Introduction

There has been a recent surge of interest in integrat-
ing multilingual resources in natural language pro-
cessing (NLP). For example, Snyder et al. (2008)
show that jointly considering morphological seg-
mentations across languages improves performance
compared to the monolingual baseline. Bhargava
and Kondrak (2011) and Bhargava and Kondrak
(2012) demonstrate that string transduction can ben-
efit from supplemental information provided in other
languages. Analogously, in lexical semantics, Nav-
igli and Ponzetto (2012) explore semantic relations
from Wikipedia in different languages to induce a
huge integrated lexical semantic network.

In this paper, we also focus on multilingual re-
sources in lexical semantics. But rather than inte-
grating them, we investigate their (dis-)similarities.

More precisely, we cluster (classify) languages
based on their semantic relations between lexical
units. The outcome of our classification may have
direct consequences for approaches that integrate di-
verse multilingual resources. For example, from a
linguistic point of view, it might be argued that in-
tegrating very heterogeneous/dissimilar semantic re-
sources is harmful, e.g., in a monolingual semantic
similarity task, because semantically unrelated lan-
guages might contribute semantic relations unavail-
able in the language for which semantic similarity is
computed. Alternatively, from a statistical point of
view, it might be argued that integrating heteroge-
neous/dissimilar resources is beneficial due to their
higher degree of uncorrelatedness. In any case, ei-
ther of these implications necessitates knowledge of
a typology of lexical semantics.

In order to address this question, we provide a
translation-based model of lexical semantic spaces.
Our approach is to generate association networks in
which the weight of a link between two words de-
pends on their degree of partial synonymy. To mea-
sure synonymy, we rely on translation data that is
input to a statistical alignment toolkit. We define the
degree of synonymy of two words to be proportional
to the number of common translations in a reference
language, weighted by the probability of translation.
By pivoting on the reference language, we represent
semantic associations among words in different lan-
guages by means of the synonymy relations of their
translations in the same target language. This ap-
proach ensures cross-language comparability of se-
mantic spaces: Greek and Bulgarian are compared,
for example, by means of the synonymy relations
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that are retained when translating them into the same
pivot language (e.g., English).

This approach does not only address proximities
of pairs of words shared among languages (e.g.,
MEAT and BEEF, MOUTH and DOOR, CHILD and
FRUIT – cf. Vanhove et al. (2008)). By averaging
over word pairs, it also allows for calculating seman-
tic distances between pairs of languages.

The Sapir-Whorf Hypothesis (SWH) (Whorf,
1956) already predicts that semantic relations are
not universal. Though we are agnostic about
the assumptions underlying the SWH, it neverthe-
less gives an evaluation criterion for our experi-
ment: if the SWH is true, we expect a clustering
of translation-based semantic spaces along the ge-
nealogical relationships of the languages involved.
However, genealogy is certainly not the sole prin-
ciple potentially underlying a typology of lexical
semantics. For example, Cooper (2008) finds that
French is semantically closer to Basque, a putatively
non-Indoeuropean language, than to German. To
the best of our knowledge, a large-scale quantitative
typological analysis of lexical semantics is lacking
thus far and we intend to make first steps towards
this target.

The paper is structured as follows. Section 2 out-
lines related work. Section 3 presents our formal
model and Section 4 details our experiments on clus-
tering semantic spaces across selected languages of
the European Union. We conclude in Section 5.

2 Related work

A field related to our research is semantic related-
ness, in which the task is to determine the degree
of semantic similarity between pairs of words, such
as tiger and cat, sex and love, etc. Classically, se-
mantic word networks such as WordNet (Fellbaum,
1998) or EuroWordNet (Vossen, 1998) have been
used to address this problem (Jiang and Conrath,
1997), and, more recently, taxonomies and knowl-
edge bases such as Wikipedia (Strube and Ponzetto,
2006). Hassan and Mihalcea (2009) define the
task of cross-lingual semantic relatedness, in which
the goal is to determine the semantic similarity be-
tween words from different languages, and Navigli
and Ponzetto (2012) have combined WordNet with
Wikipedia to construct a multi-layer semantic net-

work in which computation of cross-lingual seman-
tic relatedness may be performed. Most recently,
neural network-based distributed semantic represen-
tations focusing on cross-language similarities be-
tween words and larger textual units have become
popular (Chandar A P et al. (2014), Hermann and
Blunsom (2014), Mikolov et al. (2013)).

There have been (a) few different computa-
tional approaches to semantic language classifica-
tion. Mehler et al. (2011) test whether languages
are genealogically separable via topological prop-
erties of semantic (concept) graphs derived from
Wikipedia. This approach is top-down in that it as-
sumes that the genealogical tree is the desired out-
put of the classification. Cooper (2008) computes
semantic distances between languages based on the
curvature of translation histograms in bilingual dic-
tionaries. While this results in some interesting find-
ings as indicated, the approach is not applied to lan-
guage classification, but focuses on computing se-
mantically similar languages for a given query lan-
guage. Vanhove et al. (2008) construct so-called
semantic proximity networks based on monolingual
dictionaries, and envision to use them for semantic
typologies. They do not apply their methodology to
the multilingual setup, however, which a typology
necessitates.

Orthographic, phonetic and syntactic similar-
ity of languages have received considerably more
attention than semantic similarity, as we focus
on. Classical approaches in determining ortho-
graphic/phonetic relatedness of languages are based
on lexico-statistical comparisons of items in stan-
dardized word lists (Campbell, 2003; Rama and
Borin, 2015), such as the Swadesh lists (Swadesh,
1955). Rama and Borin (2015) study the impact of
different string similarity measures on orthographic
language classification. Ciobanu and Dinu (2014)
measure orthographic similarity between Romanian
and related languages. They also indicate applica-
tions of (knowledge of) similarity values between
languages, such as serving as a guide for machine
translation (Scannell, 2006). Koehn (2005) pro-
duces a genealogical clustering of the languages in
Europarl based on ease of translation, as measured in
BLEU scores, between any two languages (which,
putatively, yields a syntactic similarity indication).
This results in an imperfect reproduction of the ge-
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(a) English-Latin
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(b) English-German

Figure 1: Excerpts of bilingual dictionaries as bi-
partite graphs with links between words if and only
if one is a translation of the other. Data from
www.latin-dictionary.net and dict.leo.org.

nealogical language tree for the languages involved.

3 Model

We start with motivating our approach by example
of bilingual dictionaries before we formally gener-
alize it in terms of probabilistic translation relations.
Bilingual dictionaries, or the bipartite graphs that
represent them (cf. Figure 1), induce lexical seman-
tic association networks in any of the languages in-
volved by placing a link between two words of the
same language if and only if they share a common
translation in the other language (cf. Figure 2).

Since translations provide partially synonymous
expression in the target language, the latter links can
be seen to denote semantic relatedness (in terms of
synonymy) of the interlinked words. Further, the
more distant two words in such a lexical semantic
association network, the lower the degree of their
partial synonymy: the longer the path from one word
to another, the higher the loss of relatedness among
them (cf. Eger and Sejane (2010)).

Note that association networks derived from bilin-
gual dictionaries represent semantic similarities of
words of the source language R subject to semantic
relations of their translations in the target language
L. The reason is that whether or not a link is es-
tablished between two words α and β in R depends
on associations of their translations present in L. To
illustrate this, consider the association networks out-
lined in Figure 2, induced from the bilingual dictio-

naries outlined in Figure 1, which match between
R = English and L = Latin and L = German, re-
spectively. When L is classical Latin, the semantic
field centered around (the English word) MAN is par-
tially different from the semantic field around MAN

when L is German. For example, under L = Latin,
MAN is directly linked with HERO and WARRIOR (in-
directly with DEMIGOD) – these semantic associa-
tions are not present when German is the language
L.

By fixingR and varyingL, we can create different
lexical semantic association networks, each encoded
in language R, and each representing the semantic
relations of L.1 Analyzing and contrasting such net-
works may then allow for clustering languages due
to shared lexical semantic associations.

As mentioned above, we generalize the model
outlined so far to the situation of probabilistic trans-
lation relationships derived from corpus data, rather
than from bilingual dictionaries. Working on corpus
data has both advantages and disadvantages com-
pared to using human compiled and edited dictio-
naries. On the one hand,
• the translation relations induced from corpus

data are noisy since their estimation is par-
tially inaccurate due to limitations of alignment
toolkits such as GIZA++ (Och and Ney, 2003)
as employed by us. Implications of this inaccu-
racy are outlined below.
• By using unannotated corpora, we cannot

straightforwardly distinguish between cases
of polysemy and homonymy. The problem
is that homonymy should (ideally) not con-
tribute to generating lexical semantic associa-
tion networks as considered here. However,
homonymy is apparently a rather rare phe-
nomenon, while polysemy, which we expect to
underlie the structure of our networks, is abun-
dant (cf. Löbner (2002)).

On the other hand,
• classical dictionaries can be very heteroge-

neous in their scope and denomination of trans-
lation links between words (see, e.g., Cooper
(2008)), making the respective editors of the
bilingual dictionaries distorting variables.

1Each network represents the semantic relations of both lan-
guages R and L, but since we keep R fixed and vary L, each
association network inherits the same properties from R.
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• Corpus data allows for inducing probabilities of
translation relations of words, which indicate
weighted links more accurately than ranked as-
signments provided by classical dictionaries.
• Corpus data allows for dealing with real lan-

guage use by means of comparable excerpts of
natural language data.

Network generation Assume that we are given
different natural languages L1, . . . , LM , R and
bilingual translation relations that map from lan-
guage Lk to language R, for all 1 ≤ k ≤ M . We
call the language R reference language.2 In our
work, we assume that the translation relations are
probabilistic. That is, we assume that there exist
probabilistic ‘operators’ Pk that indicate the prob-
abilities – denoted by Pk[α|z] – by which a word
z of language Lk translates into a word α of lan-
guage R. Our motivation is to induce M differ-
ent lexical semantic networks that represent the lex-
ical semantic spaces of the languages L1, . . . , LM ,
each encoded in language R, which finally allows
for comparing the semantic spaces of the M differ-
ent source languages. To this end, we define the
weighted graphs Gk = (Vk,Wk), where the nodes
Vk of Gk are given by the vocabulary Rvoc of lan-
guage R, i.e. Vk = Rvoc. We define the weight of an
edge (α, β) ∈ (Rvoc

)2 as

Wk(α, β) =
∑
z∈Lvoc

k

Pk[α|z]Pk[β|z]p[z], (1)

where p[z] denotes the (corpus) probability of word
z ∈ Lvoc

k . Since each Gk is spanned using the same
subset of the vocabulary of the reference language
R, we call it the Lk(-based) network version of R.

Eq. (1) can be motivated by postulating that Wk
is a joint probability. In this case we can write

Wk(α, β) =
∑

z∈Lvoc
k

Wk(α, β, z) =
∑

z∈Lvoc
k

Wk(α, β|z)Wk(z)

≈
∑

z∈Lvoc
k

Wk(α|z)Wk(β|z)Wk(z),

(2)

where the first equality is marginalization (‘sum-
ming out over the possible states of the world’),
and the third step is an approximation which would

2Alternative names for the concept we have in mind might,
e.g., be pivot language, tertium comparationis or interlingua.

be accurate if α and β were conditionally indepen-
dent given z. By inserting the conditional probabil-
ities Pk[α|z], Pk[β|z] (whose existence we assumed
above) and the corpus probability p[z] into Eq. (2),
we obtain Eq. (1). Note that in the special case of
a bilingual dictionary of Lk and R, where Pk[α|z]
can be defined as 1 or 0 depending on whether α is
a translation of z or not,3 Wk(α, β) is proportional
to the number of words z (in language Lk) whose
translation is both α and β; i.e., assuming that p[z]
is a constant in this setup, Eq. (1) simplifies to:

Wk(α, β) ∝
∑

z∈Lvoc
k :z translates into α and β

1.

Clearly, the more common translations two words
have in the target language, the closer their seman-
tic similarity should be, all else being equal.4 Eq.
(1) generalizes this interpretation by non-uniformly
‘prioritizing’ the translations of z.

Network analysis In order to compare the net-
work versions G1, . . . , GM of language R that
are output by network generation, we first de-
fine the vector representation of node vk in graph
Gk = (Vk,Wk) as the probability vector of end-
ing up in any of the nodes of Gk when a ran-
dom surfer starts from vk and surfs on the graph
Gk according to the normalized weight matrix
Wk = [Wk(α, β)](α,β)∈Vk×Vk

. Note that the higher
Wk(α, β), the higher the likelihood that the surfer
takes the transition from α to β. More precisely, we
let the meaning [[vk]] of node vk in graph Gk be the
vector vk that results as the limit of the iterative pro-
cess (see, e.g., Brin and Page (1998), Gaume and
Mathieu (2008), Kok and Brockett (2010)),

vkN+1 = dvkNA(k) + (1− d)vk0 ,

where each vkN , for N ≥ 0, is a 1 × |Rvoc| vector,
A(k) is obtained from Wk by normalizing all rows
such that A(k) is row-stochastic, and d is a damping
factor that describes preference for the starting vec-
tor vk0 , which is a vector of zeros except for index

3More correctly, one could define Pk[α|z] = 1
fz

, whenever
α is a translation of z, and Pk[α|z] = 0, otherwise, where fz

is the number of translations of word z. This would lead to an
analogous interpretation as the given one.

4This reasoning ignores cases of homonymy, which weaken
the semantic argument. See our discussion above.
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Figure 2: Lexical semantic association networks derived from bilingual dictionaries, given in Figure 1, by
linking two English words if and only if they have a common translation in Latin (left) or German (right).
The node for MAN is highlighted in both networks.

position of word vk, where vk0 has value 1.5 Subse-
quently, we can contrast words v and w (or, rather,
their meanings) in the same network version of ref-
erence language R, by considering, for instance, the
cosine similarity or vector distance of their associ-
ated vectors. More generally, we can contrast the
lexical semantic meanings vk and wj of any two
language R words v and w, across two languages
Lk and Lj , by, e.g., evaluating,

vk·wj (scalar product, cosine similarity)

or

||vk −wj || (vector distance).

Finally, the lexical semantic distance or similarity
between two languages Lk and Lj can be deter-
mined by simple averaging,

D(Lk, Lj) =
1
|Rvoc|

∑
v∈Rvoc

S(vk,vj), (3)

where S is a distance or similarity function.
Discussion We mentioned above that toolkits

like GIZA++ cannot perfectly estimate transla-
tion relationships between words in different lan-
guages. Thus, we have to face situations of ‘noisily’
weighted links between words in the same network
version of reference language R. Typically, a higher
chance of mismatch occurs in the case of bigrams.
To illustrate, consider the French phrase êtres chers
(‘beings loved’/‘loved ones’). Here, GIZA++ typi-
cally assigns positive weight mass to Pfr[LOVE|être]

5We always set d to 0.8 in our experiments.

although, from a point of view of a classical dic-
tionary, translating être into love is clearly problem-
atic. Since it is likely that, e.g., Pfr[HUMAN|être] and
Pfr[BEING|être] will also be positive, we can expect
weighted links in the French network version of En-
glish between HUMAN and LOVE as well as between
BEING and LOVE. Thus, besides ‘true’ semantic re-
lations, our approach also captures, though uninten-
tionally, co-occurrence relations.

4 Experiments

We evaluate our method by means of the Europarl
corpus (Koehn, 2005). Europarl documents the pro-
ceedings of the European parliament in the 21 offi-
cial languages of the European Union. This provides
us with sentence-aligned multi-texts in which each
tuple of sentences expresses the same underlying
meaning.6 Using GIZA++, this allows us to estimate
the conditional translation probabilities P [A|B] for
any two words A, B from any two languages in the
Europarl corpus. In our experiment, we focus on the
approx. 400,000 sentences for which translations in
all 21 languages are available. To process this data,
we set all words of all sentences to lower-case. Ide-
ally, we would have lemmatized all texts, but did not
do so because of the unavailability of lemmatizers
for some of the languages. Therefore, we decided to
lemmatize only words in the reference language and
kept full-forms for all source languages.7 We choose

6In a tuple of sentences, one sentence is the source of which
all the other sentences are translations.

7Lemmatization tools and models are taken from
the TreeTagger (Schmid, 1994) home page www.cis.
uni-muenchen.de/˜schmid/tools/TreeTagger
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English as the reference language.8 In all languages,
we omitted all words whose corpus frequency is less
than 50 and excluded the 100 most frequent (mostly
function) words.9 In the reference language, we also
ignored all words whose characters do not belong to
the standard English character set.

Figure 3 shows subgraphs centered around the
seed word WOMAN in five network versions of En-
glish. All subgraphs are constructed using the Eu-
roparl data. Apparently, the network versions of En-
glish diverge from each other. For instance, the se-
mantic association between WOMAN and WIFE ap-
pears to be strongest in the French and in the Spanish
version of English, while in the Finnish version there
does not even exist a link between these nodes. In
contrast, the weight of the link between WOMAN and
LESBIAN is highest in the Czech version of English,
while that between WOMAN and GIRL is strongest
in the Finnish version. All in all, the wiring and the
thickness of links clearly differ across language net-
works, indicating that the languages differ in terms
of semantic relations of their translations.

Table 1 shows network statistics of the graphsGk.
All network versions of English consist of exactly
5,021 English (lemmatized) words. The networks
show a high cluster value, indicating that neighbors
of a word are probably interlinked (i.e., semantically
related) (cf. Watts and Strogatz (1998)). Average
path lengths and diameters are low, that is, distances
between words are short, as is typically observed
for semantic networks (cf. Steyvers and Tenenbaum
(2005)). The density of the networks (measured by
the ratio of existing links and the upper bound of the-
oretically possible links) varies substantially for the
language networks. For instance, in the Hungarian
network version of English, only 2.56% of the pos-
sible links are realized, while in the Dutch version,
8.45% are present. This observation may hint at the
‘degree of analyticity’ of a language: the more word
forms per lemma there are in a language, the less
likely they are linked by means of Eq. (1).

8Due to the limited availability of lemmatizers, not all lan-
guages could have served as a reference language. Although we
posit that the choice of reference language has no (or minimal)
impact upon the resulting language classification as outlined be-
low, this would need to be experimentally verified in follow-up
work.

9The threshold of 50 serves to reduce computational effort.

# nodes CV GD D density (%)
cs 5,021 0.39 1.96 4 4.51
da 5,021 0.43 1.95 5 5.35
nl 5,021 0.50 1.85 4 8.45 (9.22)
et 5,021 0.37 1.98 5 3.81 (4.57)
fi 5,021 0.35 1.99 4 3.28 (6.63)
fr 5,021 0.44 1.91 4 6.37 (8.23)
de 5,021 0.43 1.96 5 5.03 (5.81)
el 5,021 0.36 2.00 5 3.79
hu 5,021 0.33 2.07 5 2.56
it 5,021 0.45 1.87 4 7.41 (9.53)
lv 5,021 0.41 1.94 4 5.29
lt 5,021 0.41 1.94 4 5.08
pl 5,021 0.39 1.94 4 4.84 (6.56)
pt 5,021 0.40 1.97 4 4.74
ro 5,021 0.39 2.00 5 4.22
sk 5,021 0.36 1.99 5 3.73 (5.23)
sl 5,021 0.38 1.97 4 4.13
es 5,021 0.40 1.98 5 4.67 (5.80)
sv 5,021 0.43 1.94 5 5.69

Table 1: Number of nodes, cluster value (CV), geodesic
distance (GD), diameter (D) and density of different net-
work versions of English. Links are binarized depending
on whether their weights are positive or not. In brackets:
values of lemmatized versions of Lk.

Note that since the density of a network may have
substantial impact on random surfer processes as ap-
plied by us, and since analyticity is a morphologi-
cal rather than a semantic phenomenon, it may be
possible that the classification results reported below
are in fact due to syntagmatic relations – in contrast
to our hypothesis about their semantic, paradigmatic
nature. We address this issue below.

Semantic similarity Before proceeding to our
main task, the clustering of semantic spaces, we
measure how strongly our semantic association net-
works capture semantics. To this end, we com-
pute the correlation coefficient between the se-
mantic similarity scores of the word pairs in the
WordSimilarity-353 (Finkelstein et al., 2001) En-
glish word relatedness dataset and the similarity
scores, for the same word pairs, obtained by our
method. The WordSimilarity-353 dataset consists
of 353 word pairs annotated by the average of 13
human experts, each on a scale from 0 (unrelated) to
10 (very closely related or identical). We evaluated
only on those word pairs for which each word in the
pair is contained in our set of 5,021 English words,
which amounted to 172 word pairs. To be more
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Figure 3: From left to right: Czech, Finnish, French, German, and Spanish networks. Thickness of edges indicates
weights of links. Links with weights below a fixed threshold are ignored for better graphical presentation.

precise on the computation of semantic relatedness,
for each word pair (u, v) in the WordSimilarity-353
dataset, we computed the semantic similarity of the
word pair in the language Lk version of English by
considering the cosine similarity of uk and vk, that
is, by means of the semantic meanings of u and v
generated by the random surfer process on network
Gk. Doing so for each language Lk gives 20 dif-
ferent correlation coefficients, one for each network
version of English, shown in Table 2.

it 0.34678
...

...
pt 0.32249 sl 0.25720
es 0.31990 bg 0.25372
ro 0.31204 hu 0.24910
nl 0.30885 et 0.24212
da 0.30715 lt 0.24207

Table 2: Sample Pearson correlation coefficients be-
tween human gold standard and our approach for
different network versions of English.

We first note that the correlation coefficients dif-
fer between network versions of English, where the
Italian version exhibits the highest correlation with
the (English) human reference, and the Lithuanian
version the lowest. Note that Hassan and Mihal-
cea (2009) obtain a correlation coefficient of 0.55 on
the whole WordSimilarity-353 dataset, which is con-
siderably higher than our best score of 0.34. How-
ever, first note that our networks, which consist of
5,021 lexical units, are quite small compared to the
data sizes that other studies rely on, which makes
a comparison highly unfair. Secondly, one has to
see that we compute the semantic relatedness of En-
glish words from the semantic point of view of two
languages: the reference language and the respec-

tive source language (e.g., the Italian version of En-
glish), which, by our very postulate, differs from the
semantics of the reference language. According to
Table 2, the semantics of English is apparently better
represented by the semantics of Italian, Portuguese,
Spanish, Romanian, and Dutch, than, e.g., by the
one of Bulgarian, Hungarian, Estonian, and Lithua-
nian – at least subject to the translations provided by
the Europarl corpus.10

Clustering of semantic spaces Finally, we clus-
ter semantic spaces by comparing the network ver-
sions of the English reference language. To deter-
mine the semantic distance between two languages
Lk and Lj , we plug in each pair of languages in Eq.
(3) – with S(vk,vj) as vector distance – thus ob-
taining a symmetric 20 × 20 distance matrix. Fig-
ures 4 and 5 show the results when feeding this
distance matrix as input to k-means clustering (a
centroid based clustering approach) and to hierar-
chical clustering using default parameters. As can
be seen, both clustering methods arrange the lan-
guages on the basis of their semantic spaces along
genealogical relationships. For instance, both clus-
tering algorithms group Danish, Swedish, Dutch and
German (Germanic), Portuguese, Spanish, French,
Italian, Romanian (Romance), Bulgarian, Czech,
Polish, Slovak, Slovene (Slavic), Finnish, Hungar-
ian, Estonian (Finno-Ugric), and Latvian, Lithua-
nian (Baltic). Greek, which is genealogically iso-
lated in our selection of languages, is in our classi-
fication associated with the Romance languages, but
constitutes an outlier in this group. All in all, the
clustering appears highly non-random and almost a

10Table 2 also suggests that the Romance languages are se-
mantically closer to English in our data than, e.g., the Germanic,
which may be considered a deviation from, e.g., genealogical
language similarity.
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Figure 4: k-means cluster analysis of the 20 Eu-
roparl languages. Optimal number of clusters k = 5
determined by sum of squared error analysis.

hu
et fi

lv lt sl
cs sk

bg pl
da sv

nl de
el

ro
pt es
fr it0.

10
0.

16
0.

22

Figure 5: Dendrogram of hierarchical clustering of
the 20 non-lemmatized Europarl languages.

perfect match of what is genealogically expected.
To address the question of whether morphological

principles are the driving force behind the clustering
of the semantic spaces generated here, we lemma-
tized the reference language English and all source
languages Lk for which lemmatizers were freely
available in order to conduct the same classification
procedure. This included 10 languages: Bulgarian,
Dutch, Estonian, Finnish, French, German, Italian,
Polish, Slovak, and Spanish. This procedure leads to
an assimilation of density values in the graphsGk as
shown in Table 1: for the 10 languages, the relative
standard deviation in network density decreases by
about 23%. However, the optimal groupings of the
languages do not change in that k-means clustering
determines the five groups Spanish, French, Italian;
Bulgarian, Slovak, Polish; German, Dutch; Finnish;
Estonian, irrespective of whether the named ten lan-
guages are lemmatized or not.11

Integrated networks Lastly, we address the
derivative question raised in the introduction, viz.,

11The clustering based on 10 languages slightly differs in that
Finnish and Estonian are assigned to distinct clusters.

whether the integration of heterogeneous/dissimilar
multilingual resources may be harmful or beneficial.
To this end, we consider integrated networksG(S) in
which the weight of a link (α, β) ∈ E(S) is given as
the average (arithmetic mean) link weight of all link
weights in the networks for a selection of languages
S. Using our optimal number of k = 5 clusters (and
the clusters themselves) derived above, we thus let S
range over the union of all the languages in the 2k−1
possible subsets of clusters.12 For each so resulting
network G(S), we determine semantic similarity be-
tween any pair of words exactly as above and then
compute correlation with the WordSimilarity-353
dataset. Results are given in Table 3. The numbers
appear to support the hypothesis that, in the given
monolingual semantic similarity task for English,
integrating semantically similar languages (and, pu-
tatively, languages whose semantic similarity to En-
glish itself is closer) leads to better results than in-
tegrating heterogeneous languages. For example,
the average network consisting of the Romance lan-
guages has a roughly 2% higher correlation than
the network consisting of all languages. Interest-
ingly, however, the very best combination result is
achieved when we integrate the Romance, Germanic
and the three non-Indoeuropean languages Finnish,
Hungarian and Estonian.

R+G+F 0.34402
...

...
R+G 0.34376 S+B 0.27496
R+F 0.33743 S 0.27462

R 0.33719 B+F 0.27424
...

... F 0.26074
R+G+F+B+S 0.31670 B 0.25904

Table 3: Sample Pearson correlation coefficients be-
tween human gold standard and our approach for
different integrated network versions. Language
cluster abbreviations: Romance (it, fr, pt, es, ro, el),
Germanic (sv, nl, de, da), Slavic (bg, cz, pl, sk, sl),
Baltic (lv, lt), Finno-Ugric (fi, hu, et).

12Ideally, we would have let S range over all possible 2n− 1
nonempty subsets of n languages, but this would have required
220 − 1 > 1 million comparisons.
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5 Conclusion

We have encoded lexical semantic spaces of differ-
ent languages by means of the same pivot language
in order to make the languages comparable. To this
end, we introduced association networks in which
links between words in the reference language de-
pend on translations from the respective source lan-
guage, weighted by probability of translation. Our
methodology is closely related to analogous ap-
proaches in the paraphrasing community which in-
terlink paraphrases by means of their translations in
other languages (e.g., Bannard and Callison-Burch
(2005), Kok and Brockett (2010)), but our appli-
cation scenario is different and we also describe a
principled manner to generate weighted links be-
tween lexical units from multilingual data. Using
random walks to represent similarities among words
in the association networks, we finally derived sim-
ilarity values for pairs of languages. This allowed
us to perform several cluster analyses to group the
20 source languages. Interestingly, in our data sam-
ple, semantic language classification appears to be
almost perfectly correlated with genealogical rela-
tionships between languages. To the best of our
knowledge, our translation-based lexical semantic
classification is the first large-scale quantitative ap-
proach to establishing a lexical semantic typology
that is completely unsupervised, ‘bottom-up’, and
data-driven.13

In future work, we intend to delineate specific lex-
ical semantic fields in which particular languages
differ, which can easily be accomplished within our
approach. Also, it must be investigated whether our
association networks can capture semantic similar-
ity in a competitive manner once they are scaled up
appropriately. Finally, applying our methodology to
a much larger set of languages is highly desirable.
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Abstract

In this paper, we propose the use of word sense
disambiguation and latent semantic features to
automatically identify a person’s perspective
from his/her written text. We run an Ama-
zon Mechanical Turk experiment where we
ask Turkers to answer a set of constrained and
open-ended political questions drawn from the
American National Election Studies (ANES).
We then extract the proposed features from
the answers to the open-ended questions and
use them to predict the answer to one of
the constrained questions, namely, their pre-
ferred Presidential Candidate. In addition to
this newly created dataset, we also evaluate
our proposed approach on a second standard
dataset of “Ideological-Debates”. This lat-
ter dataset contains topics from four domains:
Abortion, Creationism, Gun Rights and Gay-
Rights. Experimental results show that us-
ing word sense disambiguation and latent-
semantics, whether separately or combined,
beats the majority and random baselines on the
cross-validation and held-out-test sets for both
the ANES and the four domains of the “Ideo-
logical Debates” datasets. Moreover combin-
ing both feature sets outperforms a stronger
unigram-only classification system.

1 Introduction

With the pervasiveness of social media and online
discussion fora, there has been a significant increase
in documented political and ideological discussions.
Automatically predicting the perspective or stance
of users in such media is a challenging research

problem that has a wide variety of applications in-
cluding recommendation systems, targeted advertis-
ing, political polling, product reviews and even pre-
dicting possible future events. Ideology refers to
the beliefs that influence an individual’s goals, ex-
pectations and views of the world (Van Dijk, 1998;
Ahmed and Xing, 2010). The ideological perspec-
tive of a person is often expressed in his/her choice
of discussed topics. People with opposing per-
spectives will choose to make different topics more
salient. (Entman, 1993).

From a social-science viewpoint, the notion of
“perspective” is related to the concept of “framing”.
Framing involves making some topics (or some as-
pects of the discussed topics) more prominent in or-
der to promote the views and interpretations of the
writer (communicator). The communicator makes
these framing decisions either consciously or uncon-
sciously (Entman, 1993). These decisions are often
expressed in the lexical choice. For example, a per-
son who holds anti-abortion views, is more likely to
use the terms “life” and “kill” whereas a person who
is pro a woman having an option to go for an abor-
tion will often stress on “choice”.

From a computational viewpoint, work on
perspective-detection is closely related to subjectiv-
ity and sentiment analysis. One’s perspective nor-
mally influences his/her sentiment towards different
topics or targets. Conversely identifying the senti-
ment of a person towards multiple targets can serve
as a cue for identifying his/her perspective. The
main difference between perspective and sentiment
is that unlike sentiment that is more transient, per-
spective is often more deeply seated and less likely
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to change. Most of the current perspective-detection
work focuses on “Ideological Perspective” by try-
ing to predict a person’s stance on controversial top-
ics such as the Palestinian-Israeli conflict, abortion,
gay-rights, gun-rights, etc.

In this paper, we are interested in identifying the
“Ideological Perspective” of a person using seman-
tic features derived from his/her written text. We use
two different sets of semantic features to train sev-
eral supervised systems that predict different aspects
of a person’s ideological stance toward specific top-
ics.

We explore the use of Word Sense Disambigua-
tion from the high dimensional space and Latent Se-
mantic models from the low dimensional space on
two datasets. We find that explicitly modeling the
lexical and contextual semantics to predict a per-
son’s perspective outperforms a strong-baseline sys-
tem trained on standard unigram features.

2 Related Work

Current computational linguistics research on auto-
matic perspective detection uses both supervised and
unsupervised techniques. The main task handled
by supervised approaches is to perform document
(or post) level perspective (or stance) classification,
whether binary or multiclass labeling. Unsupervised
approaches on the other hand, mainly try to cluster
users in a discussion. One of the early works on
binary perspective identification is that of Lin et al.
(2006) which uses articles from the Bitter-Lemons
website –a website that discusses the Palestinian-
Israeli conflict from each side’s point of view– to
train a system for performing automatic perspective
detection on the sentence and document levels. On
the website, an Israeli editor and a Palestinian edi-
tor, together with invited guests, contribute articles
to the website on a weekly basis. Lin et al. (2006)
use bag-of-words features. They run different ex-
periments where they vary the training and test sets
between: (a) editors’ articles and (b) guests’ arti-
cles. The accuracies of the different experimental
conditions vary between 86% and 99%. As one
might expect the highest accuracy (99%) is that of
the system that is trained and tested on the editors’
articles. For this system, the classifier is not only
capturing the perspective but also the editors’ writ-

ing styles. In Klebanov et al. (2010), the authors
tackle the same problem of binary-perspective de-
tection and experiment with four corpora; Bitter-
Lemons, Bitter-Lemons-International, Partial-Birth-
Abortion and Death-Penalty. They show that using
term-frequencies does not improve over using bi-
nary bag-of-words features and that using only the
best 1-4.9% features is sufficient to achieve high ac-
curacy. They achieve the highest accuracy (97%) on
the Partial-Birth-Abortion dataset and the lowest ac-
curacy (73%) on the Death-Penalty dataset.

Hasan and Ng (2012) also tackle the problem of
binary perspective detection but using Integer Linear
Programming (ILP) to perform joint inference over
the predictions made by a post-stance classifier and
several topic-stance classifiers. The authors use n-
grams, sentence-type and opinion-dependencies as
features to train their classifiers. They collect de-
bate posts discussing Abortion and Gun-Rights and
achieve an Fβ=1 score of 61.1% on the Abortion
dataset and 57.8% on the Gun-Rights dataset. In
Hasan and Ng (2013), they extend their previous
work by incorporating two soft-constraints that treat
the task of post-stance classification as a sequence-
labeling problem and ensure that the topic-stance of
each author is consistent across all posts.

Somasundaran and Wiebe (2010) employ the no-
tion of “arguing” to identify a person’s stance (sup-
porting or opposing) towards a topic. Arguing can
be indicated by using either positive lexical cues
such as “actually” or negative ones such as “cer-
tainly not”. They construct an arguing lexicon and
use it to derive features for their classifier. They ex-
periment with both arguing and sentiment features
on four datasets; Abortion, Creationism, Gun-Rights
and Gay-Rights. They show that combining argu-
ing and sentiment features outperforms a unigram
baseline on Abortion, Gay-Rights and Gun-Rights
datasets while the unigram system performs best on
the Creationism dataset.

A closely related work is that of Al Khatib et al.
(2012). In this work, the authors use a set of Ara-
bic and English Wikipedia articles about Arab and
Israeli public figures to explore the differences in
point of view between the Arabic and English arti-
cles about each figure. They assign a point-of-view
score to each article in each language, and use these
scores to train a classifier to predict the difference in
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PCC

Obama Romney Neither
Train 62.9 25.3 11.8
Test 67.6 18.5 13.9

Table 1: Class Distribution of Presidential Candi-
date Choice (PCC) in the ANES dataset

point of view between each article-pair.
For unsupervised approaches, two of the most re-

cent works are those of Abu-Jbara et al. (2012) and
Dasigi et al. (2012). In Abu-Jbara et al. (2012),
the authors perform subgroup detection by cluster-
ing authors according to their sentiment towards top-
ics, Named-Entities as well as other discussants.
Dasigi et al. (2012) extend the previous work by in-
troducing the notion of implicit attitude which mod-
els the similarity between the topics discussed by a
pair of people. They note that people that share the
same opinion tend to discuss similar topics, thereby
their texts tend to have a high semantic similarity.
By adding implicit attitude, namely by explicitly
modeling latent sentential semantics, they achieve
an Fβ=1 score improvement of 3.83% and 2.12%
on “Wikipedia-Discussions” and “Online-Debates”
datasets, respectively.

Yano et al. (2010) study the linguistic cues for
bias in political blogs. The authors draw sentences
from American political blogs and annotate them for
bias on Amazon Mechanical Turk. They explore
whether the Turkers’ decisions are influenced by
their perspectives, for example whether a self pro-
claimed liberal Turker is more likely to view sen-
tences written by a conservative as biased and vice
versa.

3 Datasets

We use two datasets to evaluate our approach.

3.1 ANES Dataset

We create this dataset by drawing a set of questions
from the American National Election Studies
(ANES) survey questions.1 ANES conducts various
surveys in order to provide better explanations
and analysis of the outcomes of USA Presidential
elections. While the officially administered ANES
survey contains both constrained multiple choice

1electionstudies.org/studypages/2010_2012EGSS/2010_2012EGSS

Pro Against

Train

Abortion 55.3 44.7
Creationism 35.8 64.2
Gay-Rights 64 36
Gun-Rights 74 26

Test

Abortion 50.4 49.6
Creationism 27.9 72.1
Gay-Rights 63.6 36.4
Gun-Rights 57.5 42.5

Table 2: Class Distribution across the four domains
of the Online Debates Dataset

questions and open-ended (free form essay style)
questions, the answers to the open-ended questions,
which are more interesting from an NLP perspec-
tive, are not made publicly available in order to
protect the privacy of respondents. In this work,
we run an Amazon Mechanical Turk annotation
experiment where we ask Amazon Mechanical
Turk annotators (aka Turkers) to answer a large
set of constrained and open-ended questions drawn
from ANES.2 The constrained questions may be
considered a form of self labeling indicating the
respondent/Turker’s background or perspective
on specific issues. All Turkers participating in
the experiment were required to be from the US.
Moreover, we added seven quality-control questions
with a correct (and obvious) answer in order to
identify spam Turkers. All submissions that ren-
dered more than one of these questions wrong were
automatically rejected.

The first set of questions that required constrained
answers, such as multiple choice or binary responses
as true or false can be binned into the following cat-
egories:

• Background Questions: A person’s age, gender,
educational level, income, marital-status, social-
status, how often he/she follows the news, what
news sources he/she follows, etc.;

• Opinion of Political Parties: Democratic and Re-
publican parties and their respective public figure
representatives;

• Opinion on major economic and political prob-
lems facing the USA;

2Please contact the authors to obtain the dataset
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Q1
I approve of Obama’s and the Democrats’ position on abortion and gay marriage and their tendency to
favor programs that help the poor and working class. They seem more compassionate and more socially
progressive.

Q2
Neither Obama nor the Democrats seems able to get a hold on spending, the deficit or help the economy
and unemployment. They seem to spend too much time criticizing their opponents rather than work toward
viable solutions and seem to distort facts against the other party more.

Q3
I think Mitt Romney and the republicans in general would do a better job at lowering the deficit and stim-
ulating the economy and reducing unemployment. I also agree with their position of less government
involvement in some areas.

Q4
I dislike Mitt Romney’s plans to eliminate funding for Planned Parenthood and the republicans stand on
social issues such as abortion and gay rights, especially gay marriage. I feel Republicans have been taken
over by the religious right and are socially regressive.

Table 3: Sample answers provided by one Turker to the first four essay questions in the ANES dataset.

• Ideology Questions: Importance of religion,
political-party-affiliation, presidential candidate
choice, etc.;

• Opinion on contentious issues: Such as Race
(White, Black, Asian and Hispanic Americans),
same-sex marriage, gun-control, universal health-
care, etc.

The second set of questions ask about a person’s
opinion of certain ideological topics. The responses
are not constrained in any manner.

Since our main objective is to study whether a per-
son’s perspective can be automatically identified us-
ing NLP techniques applied to his/her written text,
we choose to predict the answer to one of the con-
strained ideological questions, “Presidential Candi-
date Choice” (PCC), based on the answers to the fol-
lowing open ended questions: (Table 1 shows the
distribution of PCC in the training and test sets)

• Q1: Is there something that would make you vote
for a Democratic presidential candidate?

• Q2: Is there something that would make you vote
against a Democratic presidential candidate?

• Q3: Is there something that would make you vote
for a Republican presidential candidate?

• Q4: Is there something that would make you vote
against a Republican presidential candidate?

• Q5: If you said there is something you like about
the Democratic Party: What is that?

• Q6: If you said there is something you dislike
about the Democratic Party: What is that?

• Q7: If you said there is something you like about
the Republican Party: What is that?

• Q8: If you said there is something you dislike
about the Republican Party: What is that?

• Q9: What has been the most important issue to
you personally in this election?

• Q10: What has been the second most important
issue to you personally in this election?

• Q11: What do you think is the most important
political problem facing the United States today?

• Q12: What do you think is the second most im-
portant political problem facing the United States
today?

• Q13: What do you think the terrorists were trying
to accomplish by September 11th attacks?

Table 3 shows the answers provided by a Turker
to the first four of these questions.

In order to simulate user generated content where
people are not providing answers to a predefined set
of questions but are rather discussing current events
or topics, we decide to combine the answers to all of
these questions in one document per Turker and use
this combined resulting document to derive features
(as opposed to deriving features from the answer to
each question separately). In order to reduce am-
biguity, we perform a quasi co-reference resolution
step on pronouns. Prior to combining the answers to
all 13 questions, we perform a “pronoun-rewriting”
step where we replace the sentence initial pronouns
with the topic the question is about. For example, for
Q3, “Is there something that would make you vote
for a Republican presidential candidate?”, and the
answer provided is “They are against voting rights
for illegal immigrants. They want to balance the
budget and find a way to slowly reduce the national
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Domain Stance Post
Abortion Pro So abortion is okay in areas where more people like it than don’t?

Abortion Against
your exact words “But successful abortion carries a 100% rate of risk of death to the child”
no duh, that’s the whole point of abortion, is to KILL THE BABY. well actually that’s
MURDER

Creationism Pro You cant make nothing out of nothing!!!
Creationism Against It is only belief. No one has any real evidence.

Gay-Rights Pro This post is almost insulting in its complete lack of evidence or even a reasoned argument.
Merely dismissing the other side is not an argument

Gay-Rights Against
Compared to children with a father and a mother married to each other and getting along
with each other, the answer is yes. Compared to children living in an orphanage, it’s hard
to say.

Gun-Rights Pro An assault weapon ban violates the second amendment
Gun-Rights Against Dude. Are you home all the time? Is this secured? Do you have a lot of fire extinguishers?

Table 4: Sample posts from “Ideological Debates” dataset.

Train Test
Posts Tokens Token/Post Types Types/Post Posts Tokens Tokens/Post Types Types/Post

ANES 965 437,080 453 14,410 15 108 61,414 569 5,487 51

Abortion 1,036 154,929 150 10,192 10 115 18,299 159 2,734 24
Creationism 1,108 217,262 196 13,466 12 122 10,756 88 2,160 18
Gay-Rights 1,858 312,900 168 16,742 9 206 17,400 84 2,842 14
Gun-Rights 963 146,886 153 10,969 11 106 7,142 67 1,588 15

Table 5: Statistics of the training and test sets for both the ANES and the four domains of the Ideological-
Debates datasets.

debt.”, we replace “They” with “Republicans”.

3.2 Ideological Debates Dataset

This dataset was collected by Somasundaran and
Wiebe (2010) . It contains debate posts from six
domains; (a) Abortion, (b) Creationism, (c) Gay-
Rights, (d) Gun-Rights, (e) Healthcare and (f) Ex-
istence of God. Each domain represents an ideo-
logical topic with two possible perspectives, pro and
against. Similar to the work of (Somasundaran and
Wiebe, 2010), we use the first four domains to eval-
uate our approach. Table 2 shows the class distri-
bution in each of these four domains while table
4 lists some sample posts. It should be noted that
our results are not comparable to those obtained by
(Somasundaran and Wiebe, 2010), since they used a
subset of the posts in each domain and the split was
not publicized.

Table 5 shows the size of the training and test data
in the ANES and Ideological-Debates datasets.

4 Approach

Our goal is to determine whether semantic features
help in identifying a person’s ideological perspec-
tive as determined by his/her answer to the PCC con-
strained question in the “ANES” dataset and his/her
stance towards the ideological-topics discussed in
the “Ideological-Debates” dataset independently.

4.1 Preprocessing

We apply basic preprocessing to the text by separat-
ing punctuation and numbers from words. All punc-
tuation and numbers are then ignored when training
the classifier for all of our systems including the uni-
gram baseline. The intuition behind this is that punc-
tuation and numbers do not capture the perspective
of a person but rather the writing style. Moreover,
by ignoring them, we avoid overfitting the training
data.
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4.2 Word Sense Disambiguation (WSD)

We use WN-Sense-Relate (Patwardhan et al., 2005)
to perform word sense disambiguation. Sense-
Relate uses WordNet (Miller, 1995) to tag each word
with the part-of-speech and sense-id. The only parts
of speech that are handled by WN-Sense-Relate are
adjectives (a), adverbs (r), verbs (v) and nouns (n).
In addition to the part-of-speech and sense-id, WN-
Sense-Relate also identifies and tags compounds.
The word sense tagging process can be either con-
textual or can rely on the most frequent sense. We
experiment with both variants.

4.2.1 Contextual WSD (WSD-CXT)
In this variant of WSD, in addition to tagging

compounds, we contextually disambiguate each
word and tag it with its sense-id and part-of-speech.
We use the default setting of SenseRelate which
employs a modified version of the Lesk algorithm
(Banerjee and Pedersen, 2002) to perform the
disambiguation. This version of the Lesk algorithm
measures the similarity between the WordNet gloss
of each sense of the target word and those of its
surrounding context words in the text. It then
chooses the sense whose gloss is most similar to the
surrounding words. We use a window of size three
which uses one word before and one word after the
target word.

ex.
“The Democratic Party supports women ’s equality
, including equal pay , access to health care and
other issues .”
becomes:
“the#ND democratic_party#n#1 supports#n#10
women#n#1 ’s#ND equality#n#1 includ-
ing#v#3 equal#a#1 pay#v#1 access#n#2 to#ND
health_care#n#1 and#ND other#a#1 issues#n#7”3

We then use the tagged-words to retrieve the
Synonym-Set (Synset) of this sense of the word us-
ing WN-QueryData (Pedersen et al., 2004). We as-
sign each Synset an ID and whenever any of the
words in the retrieved Synset is seen in the input text,
we replace it with this Synset-ID.

For example, the Synset of “issues#n#7” is iden-
tified as “issue#n#7, consequence#n#1, effect#n#1,

3#ND indicates a non-defined word

outcome#n#2, result#n#1, event#n#4, issue#n#7,
upshot#n#1”. We assign this Synset a unique ID, for
example “Synset-100”, and any occurrence of any
of “issue#n#7, consequence#n#1, effect#n#1, out-
come#n#2, result#n#1, event#n#4, issue#n#7, and
upshot#n#1” is replaced by “Synset-100”.

4.2.2 Most Frequent Sense WSD (WSD-MFS)

In this variant of WSD, instead of perform-
ing the disambiguation contextually, we rely on
the most frequent sense. Using this scheme,
“issues” is tagged as “issues#n#1” whose Synset
is “issue#n#1”, while “support” is tagged as
“support#v#1” whose Synset is support#v#1’,
back_up#v#1.

4.3 Latent Semantics

The next set of features relies on “Latent Semantics”
which maps text from a high-dimensional space
such as unigrams to a low-dimensional one such as
topics. Most of these models assign a semantic pro-
file to each given sentence (or document) by con-
sidering the observed words and assuming that each
given document has a distribution over “K” top-
ics. We apply (1) Latent Dirichlet Allocation (LDA)
(Blei et al., 2003) as implemented in MALLET
toolkit (McCallum, 2002), and (2) Weighted Tex-
tual Matrix Factorization (WTMF) (Guo and Diab,
2012) to each post. In addition to observed words,
WTMF also models missing ones namely explicitly
modeling what the post is not about. WTMF de-
fines missing words as the whole vocabulary of the
training data minus the ones observed in the given
document.

4.3.1 Number of Topics

We vary the number of topics (K) between 100
and 500 (with a step-size of 100) and use the best
“K” for each dataset. We define the best K, for each
of LDA and WTMF, as the one that yields the best
cross-validation results when combined with uni-
gram features. The best K value for LDA is 400
for PCC and Abortion, 500 for Creationism, 300 for
Gay-Rights and 100 for Gun-Rights. For WTMF,
the best K is 500 for PCC, and Gun-Rights and 100
for Abortion, Creationism and Gay-Rights.
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PCC Fβ=1 score
Train 74.65
Test 74.81
All 74.69

Table 6: Performance of human annotators in pre-
dicting “PCC” of a person from his/her responses to
ANES essay questions.

4.3.2 Training Data
We collected our training data for topic model-

ing from Facebook comments of renowned Amer-
ican politicians such as Joe-Biden, Chris-Christie,
George W. Bush, Michelle-Obama, etc. We trained
LDA and WTMF using a subset of 100,000 com-
ments (corresponding to ~5,000,000 tokens and
~265,000 types.

4.4 Classifier Training

Using WEKA toolkit (Hall et al., 2009) and the
derived features, we train Sequential Minimal Op-
timization (SMO) SVM classifiers (Platt, 1998)
for each of “ANES” and the four domains of
“Ideological-Debates” datasets. We use a normal-
ized quadratic kernel, set the parameter C to 100 and
apply a 10-fold cross validation on the training sets.

5 Experiments

5.1 Baselines

We compare our approach to three baselines;

• Majority Baseline (MAJ-BL): which assigns all
posts to the most frequent class-label;

• Random Baseline (RAND-BL): which randomly
chooses the class-label;

• Unigram Baseline (UNI-BL): a strong baseline
that uses standard unigram features.

In addition to these three baselines, we do a
human-evaluation for the ANES dataset in order to
assess the difficulty of the task and in order to get
an upper-bound on how well we can do in predict-
ing PCC. We run an Amazon Mechanical Turk ex-
periment where we ask Turkers to read each post
(constructed by combining the answers to the open-
ended questions of each record) and ask them to
guess the PCC of the person who wrote that text
along with the reason for their answer. We found

Figure 1: Fβ=1 score of human judgments in pre-
dicting “PCC” from the answers to the essay ques-
tions in the ANES dataset across different post-sizes

that Turkers were able to predict the PCC with an
average Fβ=1 score of ~75% on both the cross-
validation and test-sets. We also found that the task
is particularly difficult for very short (< 100 words)
documents. Table 6 and Figure 1 show the results of
this qualitative assessment.

5.2 Experimental Setup
We first evaluate each variant of the proposed fea-
tures separately and then we combine the latent-
semantics features with unigram-features and the
two variants of WSD.

Tables 7 and 8 show the cross-validation results
on the training data and the results on the held-out
test sets respectively.

6 Discussion

6.1 Cross Validation Results
For the cross-validation results, all configurations of
the proposed features outperform the majority and
random baselines. Moreover using WSD-MFS, ei-
ther separately or combined with LDA or WTMF,
outperforms the unigram-baseline. Overall WSD-
MFS performs better than WSD-CXT, except on the
Abortion dataset.

For Latent-Semantics, even though using either
of LDA or WTMF separately, without unigram-
features, does not outperform the unigram baseline,
combining each of them with unigrams outperforms
the unigram-only setup. When combined with uni-
gram or WSD features, WTMF outperforms LDA on
PCC, Creationism and Gun-Rights while LDA out-
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PCC Abortion Creationism Gay-Rights Gun-Rights
MAJ-BL 48.6 39.4 50.2 50 63
RAND-BL 36.7 47.6 50 52.9 52.6
UNI-BL 66.3 63.1 58.7 67.1 72.7

WTMF 62.9 56.9 57.1 57.1 72.6
LDA 62.4 57.4 58.7 63.6 71

Unigram+WTMF 68.8 62.7 62 67.2 75.7
Unigram+LDA 66.6 64.5 60 67.4 72.9

WSD-CXT 65.8 64.8 59.4 69.6 73.8
WSD-MFS 67.5 64 61.1 69.7 75

WSD-CXT + WTMF 68 64.1 61.6 68.1 74.8
WSD-CXT + LDA 65 64.3 59.3 69.1 73.8

WSD-MFS + WTMF 69.2 64.7 62.7 67.6 75.7
WSD-MFS + LDA 67.3 65.1 62.1 69.5 75

Table 7: 10-fold cross-validation results (measured in Fβ=1 score) of using WSD and Latent-Semantics
against the baselines.

PCC Abortion Creationism Gay-Rights Gun-Rights
MAJ-BL 54.5 33.8 60.5 49.4 42
RAND-BL 46.6 47.3 54.9 41.9 45.5
UNI-BL 68 54.3 67.1 52.4 48.1

WTMF 69.1 58.1 60.1 49.2 43.7
LDA 60.4 55.3 58.7 58.1 62.4
Unigram+WTMF 68.9 54.2 71.2 56.8 58.7
Unigram+LDA 68 58.9 70.7 56.4 48.1

WSD-CXT 66.8 52.8 66.2 53.4 44.1
WSD-MFS 64.2 54.6 69.8 56.3 46.2

WSD-CXT + WTMF 66.1 52.9 71 55.1 53.7
WSD-CXT + LDA 67.6 57 68.5 55.6 46.2

WSD-MFS + WTMF 71.6 55.7 69.1 56.7 52.7
WSD-MFS + LDA 65.3 62.6 69.6 56.4 44.1

Table 8: Held-out test-set results (measured in Fβ=1 score) of using WSD and Latent-Semantics against the
baselines.

performs WTMF on the other two datasets. Com-
bining WSD-MFS with LDA for Abortion and Gay-
Rights and with WTMF for PCC, Creationism and
Gun-Rights yields the best (or close to the best) re-
sults.

6.2 Held-out Test-Sets Results

Unlike the cross-validation results, using latent-
semantics features separately improves over the un-
igram baseline for four out of the five datasets and
in some cases adding unigrams to latent-semantics

features actually hurts the performance. This sug-
gests that latent-semantics are less likely to overfit
the training data.

Table 9 shows examples of the posts that were
misclassified by the majority and unigram baselines
and correctly classified by the best semantic model
for each dataset.

6.3 General Observations

We investigated the data to identify the different
challenges faced when trying to identify a person’s
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Domain Stance Post

Abortion Against Yes, all innocent life. But that depends on how you define innocent life.

Creationism Pro

There’s a definite difference between micro-evolution and macro-evolution in the sense
that with the moths and the finches, there are minor changes that happen. It’s kind of like
a pendulum. It swings far to the right and to the left, but in the end, it’s right in the center
again, if you understand me correctly.

Gay-Rights Against

Not necessarily the question of whether or not same-sex couples’ marriages specifically
are recognized by the government. As for my personal views on the issue I honestly
think the best solution is for the government to simply call all civil unions precisely what
they are: civil unions. Leave it to individuals and churches to determine the definition of
“marriage.”

Gun-Rights Against I agree that gun ownership should be strictly controlled. Put a gun in the hands of a
crackpot and there’s going to be a problem.

Table 9: Examples of the posts that were misclassified by the unigram baseline and were correctly classified
by the right semantic model.

perspective and found the following:

1. In ANES dataset, due to the structure of the ques-
tions, some Turkers were trying to be objective
which makes it difficult even for a human evalu-
ator to identify the political leaning of the person
who wrote the text. The example in Table 3 illus-
trates such a case where it is not easy to detect the
PCC of the Turker from the provided answers.

2. The use of sarcasm, which can be easily detected
by human evaluators but not by an automated sys-
tem. For example, in Abortion dataset, a partici-
pant who does not oppose abortion wrote “Why
should people use reason and logic to discover
right and wrong when a priest can decide for
them?”

3. Misspelled words such as writing “Romeny” in-
stead of “Romney”

4. In each domain of the Ideological Debates dataset,
the posts were collected from different discus-
sion fora pertaining to the domain of interest.
For example, in the Abortion dataset, posts were
collected from “Can Catholics Vote For Pro-
Choice Politicians”, “Should South Dakota pass
the Abortion Ban”, “Should abortion be legal”
and other fora. For some of the posts, the partici-
pants provided very short answers such as “Once
they take the booth who they vote for is supposed
to be secret.” which makes it almost impossible
to identify their stance without knowing the exact
question the forum posed.

7 Conclusion

In this paper, we explore the use of semantic fea-
tures to perform automatic detection of ideological-
perspective from written text. Using Word Sense
Disambiguation and Latent Semantics features, we
trained several SVM classifiers that predict differ-
ent aspects of the ideological-perspective of a per-
son. We evaluated the presented approach on two
datasets. The first of which comprises answers to
questions about American politics collected from
an Amazon Mechanical Turk experiment while the
second one consists of four subsets of a standard
dataset, discussing Abortion, Creationism, Gay-
Rights and Gun-Rights. Results show that using the
proposed features outperforms a system that relies
on standard unigram features on all datasets. On the
cross-validation sets, combining word sense disam-
biguation with latent semantics performs best while
on the held-out test sets, the best configuration vari-
ous across the different domains.

We plan to explore other methods for perform-
ing word sense disambiguation in addition to using
semantic-role-labeling and modeling sarcasm.
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Abstract

Annotation efforts have resulted in the avail-
ability of a number of corpora with rhetori-
cal relation information. The corpora, unfor-
tunately, are annotated under different theoret-
ical approaches and have different hierarchies
of relations. In addition, new sets of rhetor-
ical relations have been proposed to account
for language variation. The types of relations,
however, tend to overlap or be related in spe-
cific ways. We believe that differences across
approaches are minimal, and a unified set of
relations that works across languages is possi-
ble. This paper details a new taxonomy of re-
lations organized in four top level-classes with
a total of 26 relations. We propose a map-
ping between existing annotations and show
that our taxonomy is robust across theories,
and can be applied to multiple languages.

1 Motivation

The annotation of discourse relations in language
can be broadly characterized as falling under two
main approaches: the lexically grounded approach
and an approach that aims at complete discourse
coverage. Perhaps the best example of the first ap-
proach is the Penn Discourse Treebank (Prasad et
al., 2008). The annotation starts with specific lexical
items, most of them conjunctions, and includes two
arguments for each conjunction. This leads to par-
tial discourse coverage, as there is no guarantee that
the entire text is annotated, since parts of the text not
related through a conjunction are excluded. On the
positive side, such annotations tend to be reliable.
PDTB-style annotations have been carried out in a

variety of languages (Arabic, Chinese, Czech, Dan-
ish, Dutch, French, Hindi and Turkish), and in some
cases the taxonomy of relations had to be modified,
by adding or merging relations (Prasad et al., 2014).

Complete discourse coverage requires annotation
of the entire text, with most of the propositions in
the text integrated in a structure. It includes work
from two theoretical perspectives, either intention-
ally driven, such as RST (Mann and Thompson,
1988) or semantically driven, such as SDRT (Asher
and Lascarides, 2003). RST proposes a tree-based
representation, with relations between adjacent seg-
ments, and emphasizes a differential status for dis-
course components (the nucleus vs. satellite distinc-
tion). Annotated resources exist in Basque, Dutch,
German, English, Portuguese and Spanish. Cap-
tured in a graph-based representation, with long-
distance attachments, SDRT proposes relations be-
tween abstract objects using a relatively small set of
relations. Corpora following SDRT exist in Arabic,
French and English.

Manually annotated resources have contributed to
a number of applications, most notably discourse
segmentation into elementary discourse units, iden-
tification of explicit and implicit relations for the
purpose of discourse parsing, and development of
end-to-end discourse parsers (Hernault et al., 2010;
Feng and Hirst, 2014; Joty et al., 2015). These
parsers have been successfully deployed in NLP ap-
plications including machine translation, sentiment
analysis and automatic summarization (Thione et
al., 2004; Heerschop et al., 2011; Hardmeier, 2013).

Each approach has its own hierarchy of discourse
relations, but relations tend to overlap or be re-
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lated in a few specific ways. We suggest there are
four general ways of mapping relations across ap-
proaches: (1) Specialization, where a relation R in
one approach can correspond to several relations in
another approach, (2) Generalization, in which sev-
eral relations in one approach correspond to one re-
lation in another approach, (3) Omission involves a
relation defined in one approach, but not taken into
account in another. Finally, in (4), Definition, rela-
tions have similar names, but different definitions.

We propose here a unified hierarchy of discourse
relations. Our proposal has several motivations.
First of all, with the wide availability of annotated
corpora, it would be beneficial to have a system for
mapping relations across approaches. In particular
for classification tasks such as discourse parsing, ac-
cess to larger amounts of data is likely to yield bet-
ter results. Secondly, and from a more theoretical
point of view, we would like to propose that differ-
ences across approaches are minimal, and a unified
set of relations is possible. This would facilitate the
work of discourse analysts and would also result in
better annotation efforts. Third, a unified set of dis-
course relations would allow us to compile a list of
discourse markers and other signals for those rela-
tions, which would also benefit discourse annota-
tion. Finally, this is a first step towards multilingual
discourse analysis. Many studies have compared the
use of discourse markers across languages, and how
they differ in translation (Degand, 2009; Zufferey
and Degand, 2014). We would like to contribute
to that area of study by unifying and integrating the
types of relations that markers can signal.

Merging different discourse relation taxonomies
involves, in our view, different steps, having to do
with: (1) segmentation, (2) unifying the set of re-
lations, (3) proposing possible signals, (4) unifying
discourse structures, and (5) providing a language
for merging annotations. We focus here on step (2).
For proposals for steps (4) and (5), see Venant et
al. (2013), and Chiarcos (2014), respectively.

2 Methodology

Our first focus are the two theories that we are most
familiar with, RST and SDRT. We next plan to find
correspondences between our unified RST-SDRT hi-
erarchy and the PDTB taxonomy.

The first step consists of grouping relations in top-
level classes. Our goal is to minimize the number of
top-level classes and, at the same time, reduce the
number at the fine-grained level, avoiding the prolif-
eration of relations seen in the RST Discourse Tree-
Bank (Carlson et al., 2003).

Two main criteria were used in creating the hi-
erarchy. First of all, the proposed hierarchy should
be stable enough for language variation. By this we
mean that the main classes at the top level should
remain constant. We believe that there is little cross-
linguistic variation when it comes to the higher-level
classification of discourse relations. The second, re-
lated criterion in our organization, is that the hierar-
chy has to be open to modification at the low level.
This is where previous research has observed varia-
tion due to language and genre.

Definitions of relations are based on three further
criteria. First of all, we do not define relations on the
basis of the status of their arguments. The nucleus-
satellite distinction in RST is not relevant for our ba-
sic definition of relations. Secondly, we focus on the
effect that a relation has on meaning, and not on how
it is lexically triggered by a discourse marker or lex-
ical device. Finally, we provide intentional effects
when needed. Our taxonomy is both intentionally
and semantically driven, motivated by our desire to
find a balance between RST and SDRT.

Our starting points are the set of RST defini-
tions from the RST website1 and the definitions pro-
vided within the RST-DT (Carlson et al., 2003). For
SDRT, we considered the relations defined in the
SDRT literature (Asher and Lascarides, 2003), plus
the adaptations created when annotating data in dif-
ferent projects: Discor (Reese et al., 2007), Annodis
(Afantenos et al., 2012), plus the classification pro-
posed for Arabic (Keskes et al., 2014).

3 Towards a unified hierarchy

We built a hierarchy with four top-level classes:
TEMPORAL, STRUCTURAL, THEMATIC and
CAUSAL-ARGUMENTATIVE, organized in three
levels with a total of 26 relations. We have taken
into account all SDRT, PDTB, RST-DT and RST
relations, with the exception of the following rela-
tions from the RST-DT: Topic Change (topic-shift,

1http://www.sfu.ca/rst/
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topic-drift), Textual Organization and Topic-
Comment (problem-solution, question-answer,
statement-response, topic-comment, comment-
topic, rhetorical-question). We believe that some
of those relations structure topics, but are not
necessarily discourse relations. Table 1 summarizes
the inventory of the proposed relations at each level.

3.1 Temporal class
A class of relations indicating relations which set
events in terms of time or a similar frame is a com-
ponent of most hierarchies. In some classifications,
this group includes relations of background or fram-
ing, but we prefer an exclusively temporal class.

Arguments in the temporal class need to share
the same topic, and the relations always express
co-temporal constraints, i.e., temporal ordering be-
tween the main eventualities e1 and e2 introduced
respectively in their arguments. The class includes
three relations: SEQUENCE, INVERTED SEQUENCE

and SYNCHRONOUS.

3.2 Thematic class
Thematic is a broad class which includes relations
among the content of the propositions. They struc-
ture and organize information in the discourse, and
can be divided into three different subclasses:

(1) ELABORATION. A group of discourse rela-
tions that connect utterances describing the same
state of affairs. Further classified into: PARTI-
TIVE, GENERALITY, OBJECT, SUMMARY, RE-
STATEMENT, and MEANS. For most purposes, the
further specificity is not necessary, and in some
cases it may be difficult to distinguish among the
subclasses. We believe, however, that these more
specific relations may be useful when analyzing cer-
tain genres, or for particular applications.

(2) FRAMING. This class includes relations that
provide a framework for understanding the con-
tent of the situation described in the discourse seg-
ment. It includes two relations: FRAME and BACK-
GROUND. FRAME holds when a is a frame and b is
in the scope of that frame, generally when a is at the
beginning of a sentence. Several cases are possible:
temporal, spatial or domain frames. This relation
has no direct equivalence in RST. BACKGROUND

is equivalent to the RST relations Background and
Circumstance. It is used to capture a specific spatio-

temporal structure, to accommodate presuppositions
in discourse, or to set the stage of a story.

(3) ATTRIBUTION. Attribution relates a commu-
nicative agent in the first argument and the content
of a communicative act introduced in the second.
Both the RST-DT and SDRT take Attribution as a
discourse relation. PDTB, on the other hand, treats
it as orthogonal to discourse annotation. In our case,
we follow Asher et al.’s (2006) position on repor-
tative constructions in discourse, who consider that
the treatment of these verbs is necessary for a correct
analysis of the semantics and discourse structure of
stories in news corpora. We agree, however, with
the PDTB, that it is not a fully-fledged relation, with
the same intentional effects, but we do believe that it
should be annotated.

3.3 Structuring class

This class contains relations of textual organization
at a high level, which organize the structure of the
information in terms of themes or topics (but are
rhetorical, not relations of topic management). AL-
TERNATION holds when there is a disjunction be-
tween a and b. PARALLEL occurs when a and b have
similar semantic and syntactic structures, and it re-
quires a and b to share a common theme. It has the
same semantics as List in RST-DT. CONTINUATION

holds between two segments when they both elabo-
rate or provide background to the same segment. It
also occurs in cases where there is no clear rhetori-
cal relation between the segments. Equivalent to the
RST-DT relation Elaboration-additional and to Con-
tinuation in SDRT.

3.4 Causal-argumentative class

This class contains two broad classes, one causal and
one argumentative. We see them as related to each
other, as conjunctions and other discourse markers
can be present to indicate a causal relation or be
more abstract in an argumentative use (e.g., I’m only
saying this because I care.).

3.4.1 Causal
We distinguish between CAUSE/RESULT and

PURPOSE. Within the first sub-class, REASON holds
when the main eventuality of the second argument is
understood as the cause of the eventuality in the first
argument. RESULT relates a cause to its effect: the
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TEMPORAL SEQUENCE, INVERTED SEQUENCE, SYNCHRONOUS

THEMATIC
ELABORATION → Partitive, Generality, Object, Summary, Restatement, Means
FRAMING → Frame, Background
ATTRIBUTION

STRUCTURING ALTERNATION, PARALLEL, CONTINUATION

CAUSAL-ARGUMENTATIVE

CAUSAL

Cause/Result → Reason, Result, General Condition
Purpose

ARGUMENTATIVE

Support → Motivation, Evidence/Justification, Evaluation/Interpretation
Opposition → Contrast, Concession, Antithesis

Table 1: Inventory of proposed relations in the unified hierarchy

main eventuality of a caused the eventuality given
by b. GENERAL CONDITION holds when the first
segment is a hypothesis and the second the conse-
quence. PURPOSE holds when the second segment
(b) describes the aim, the goal or the purpose of the
event described in the first segment (a). Most often,
it can be paraphrased as “a in order to b.”

3.4.2 Argumentative
This class includes the SUPPORT and OPPOSI-

TION sub-classes, which are used to advance an ar-
gument. SUPPORT mainly captures justification, ex-
planation (not causal), evaluation and evidence. OP-
POSITION groups relations where the segments have
similar semantic structures, but contrasting themes,
i.e., sentence topics, or when one constituent negates
a default consequence of the other.

4 Mapping RST and SDRT annotations

To test the stability of our proposed hierarchy across
both theoretical and language variations, we mapped
it to annotations in three corpora: the RST-DT En-
glish corpus (Carlson et al., 2003), the SDRT Ann-
odis French corpus (Afantenos et al., 2012), and the
RST Spanish Treebank (RST-ST) (da Cunha et al.,
2011). The taxonomies in these corpora respectively
contain 78, 17 and 28 relations. The total number of
annotated information in terms of frequency of rela-
tions is 18,255 for RST-DT, 3,345 for Annodis, and
3,115 for RST-ST. Tables 2, 3, 4, and 5 provide fre-
quency of our relations in each of the three corpora
above in the four main classes. The distribution of
our four classes across the corpora is respectively
3.61%, 25.55%, 47.80%, and 23.08%. The propor-
tions are quite similar to the original distribution in

each corpus, taking into account the slightly differ-
ent structures of each taxonomy.

RST-DT Annodis RST-ST
Seq. 224

350
74Sync. 160

Inv. Seq. 59 27
Total TEMPORAL: 894

Table 2: Temporal class mapping

RST-DT Annodis RST-ST Total
Alter. 21 18 9 48
Paral. 1,211 59 1,270
Conti. 4,144 682 171 4,997

Total STRUCTURING: 6,315

Table 3: Structuring class mapping

Most mappings were relatively straightforward,
except for some relations that can be either miss-
ing or too specific. The first case concerns the re-
lations FRAME, PARALLEL and ATTRIBUTION that
were not annotated in the RST-ST, as well as the re-
lation FRAME for RST-DT. The second case is the
most frequent and occurs when at least two rela-
tions having specific semantics or intentional effects
need to be merged to find their corresponding in-
stances in a given corpus. For example, the Tem-
poral relations SEQUENCE and SYNCHRONOUS in
Annodis were annotated using the same Narration
relation. The SDRT Elaboration captures most of
our ELABORATION relations (except for OBJECT).
On the other hand, the RST-ST corpus considers
only one Temporal relation, namely Sequence, and
RST-ST Elaboration includes OBJECT, PARTITIVE,
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and GENERALITY. Another interesting case con-
cerns the Support relations MOTIVATION and EVI-
DENCE/JUSTIFICATION. SDRT does not distinguish
between the causal and the epistemic use of causal
relations and considers only two causal relations,
Explanation and Result. This is why we counted
SDRT causal relations only in the Causal/Result
sub-class (this is marked by (*) and (+) in Table 5).
Finally, the RST-DT multinuclear relations Cause-
result and Consequence are similar and can cor-
respond to either REASON or RESULT. We only
counted them in the total column (see † in Table 5).

RST-DT Annodis RST-ST Total
Obj. 2,698 525

1,444

6,995

Part. 176

614

Gen. 884
Sum. 83 8
Rest. 140 22
Means 226 175
Frame 225 225
Backg. 937 157 344 1,438
Attr. 3,070 74 3,144

Total THEMATIC: 11,802

Table 4: Thematic class mapping

RST-DT Annodis RST-ST Total
Reason 52 128 (+) 77

1245†
Result 159 162 (*) 193
Cond. 285

20
53

406
Excep. 43 5
Purp. 568 94 127 789
Motiv. 206 cf. (*) 28 234
Evid. 780 cf. (+) 98 878
Eval. 600 75 99 774
Cont. 352

143
58

1,378Conc. 293 50
Antith. 402 80

Total CAUS.ARG.: 5,704

Table 5: Causal-Argumentative class mapping

5 Discussion and conclusions

We have presented a unified taxonomy for discourse
relations which can be used to map existing annota-
tions, and to annotate new corpora. We believe our
taxonomy is robust across theoretical approaches,
and can be applied to multiple languages.

A number of issues are outstanding, the first with
regard to segmentation. Different corpora have fol-
lowed different segmentation methodologies, some-
times impacting the types of relations present in the
taxonomy, as is the case with the multiple subtypes
of Elaboration relations in the RST-DT corpus. Our
intention is to provide coarse and fine-grained seg-
mentation options, so that either can be adopted, de-
pending on the goals of the research.

More crucial to the task of unifying annotations
is the issue of the structure of the discourse. RST,
RST-DT and RST-ST all take trees as the funda-
mental structure. SDRT, however, postulates graphs
as the basic structure. On the other hand, map-
ping to a lexically-grounded approach, like that in
the PDTB, is certainly possible. We believe that
mapping and predicting relations can be a theory-
independent task, and that the rich annotations in
PDTB are useful for tasks such as discourse parsing.

Two further practical aspects remain unresolved.
First, relations with no correspondence across tax-
onomies need to be considered. One solution is to
ignore them and then predict a partial structure for
some texts. The second issue is the task of man-
ual annotation. As we have pointed out, in cases
where one original taxonomy is more detailed, map-
ping relations from that taxonomy onto an existing
corpus may require further annotation. If annotation
is undertaken, then that could solve our first practi-
cal problem, because then there is an opportunity to
annotate some of the relations with no mapping.

Finally, an excellent test of the usefulness of the
taxonomy would be to carry out experiments in dis-
course parsing. We would like to merge annotated
corpora, and test whether the larger size of the train-
ing data improves the results of a discourse parser.

Acknowledgments

We thank Nicholas Asher for his useful comments.
This work is conjointly supported by the Natu-
ral Sciences and Engineering Research Council of
Canada and the ERC grant 269427 (STAC).

References

Stergos Afantenos, Nicholas Asher, Farah Benamara,
Myriam Bras, Cecile Fabre, Mai Ho-Dac, Anne

151



Le Draoulec, Philippe Muller, Marie-Paule Pery-
Woodley, Laurent Prevot, Josette Rebeyrolles, Lu-
dovic Tanguy, Marianne Vergez-Couret, and Laure
Vieu. 2012. An empirical resource for discover-
ing cognitive principles of discourse organisation: The
ANNODIS corpus. In Proceedings of the Eighth In-
ternational Conference on Language Resources and
Evaluation (LREC 2012).

Nicholas Asher and Alex Lascarides. 2003. Logics of
Conversation. Cambridge University Press.

Nicholas Asher, Julie Hunter, Pascal Denis, and Brian
Reese. 2006. Evidentiality and intensionality: Two
uses of reportative constructions in discourse. In
Workshop on Constraints in Discourse.

Lynn Carlson, Daniel Marcu, and Mary Ellen Okurowski.
2003. Building a discourse-tagged corpus in the
framework of rhetorical structure theory. In Jan van
Kuppevelt and Ronnie Smith, editors, Current Di-
rections in Discourse and Dialogue, pages 85–112.
Kluwer.

Christian Chiarcos. 2014. Towards interoperable dis-
course annotation. discourse features in the ontologies
of linguistic annotation. In Proceedings of the Ninth
International Conference on Language Resources and
Evaluation (LREC’14).

Iria da Cunha, Juan-Manuel Torres-Moreno, and Gerardo
Sierra. 2011. On the Development of the RST Spanish
Treebank. In Proceedings of the 5th Linguistic Anno-
tation Workshop, pages 1–10.

Liesbeth Degand. 2009. Describing polysemous dis-
course markers: What does translation add to the pic-
ture? In Stef Slembrouch, Miriam Taverniers, and
Mieke Van Herreweghe, editors, From will to well.
Studies in Linguistics offered to Anne-Marie Simon-
Vandenbergen. Academia Press, Gent.

Vanessa Wei Feng and Graeme Hirst. 2014. A linear-
time bottom-up discourse parser with constraints and
post-editing. In Proceedings of the 52nd Annual Meet-
ing of the Association for Computational Linguistics,
pages 511–521.

Christian Hardmeier. 2013. Discourse in statistical ma-
chine translation: A survey and a case study. Discours,
11.

Bas Heerschop, Frank Goossen, Alexander Hogen-
boom, Flavius Frasincar, Uzay Kaymak, and Franciska
de Jong. 2011. Polarity analysis of texts using dis-
course structure. In Proceedings of the 20th ACM in-
ternational conference on Information and knowledge
management, pages 1061–1070.

Hugo Hernault, Helmut Prendinger, David A. duVerle,
and Mitsuru Ishizuka. 2010. HILDA: A discourse
parser using Support Vector Machine classification.
Dialogue and Discourse, 1(3).

Shafiq Joty, Giuseppe Carenini, and Raymond Ng.
2015. CODRA: A novel discriminative framework for
rhetorical analysis. Computational Linguistics, page
in press.

Iskandar Keskes, Farah Benamara, and Lamia Bel-
guith Hadrich. 2014. Learning Explicit and Implicit
Arabic Discourse Relations. Journal of King Saud
University Computer and Information Sciences: Spe-
cial Issue on Arabic NLP: Current State and Future
Challenges.

William C. Mann and Sandra A. Thompson. 1988.
Rhetorical structure theory: Toward a functional the-
ory of text organization. Text, 8(3):243–281.

Rashmi Prasad, Nikhil Dinesh, Alan Lee, Eleni Milt-
sakaki, Livio Robaldo, Aravind Joshi, and Bonnie
Webber. 2008. The Penn Discourse Treebank 2.0. In
6th International Conference on Language Resources
and Evaluation (LREC).

Rashmi Prasad, Bonnie Webber, and Aravind Joshi.
2014. Reflections on the penn discourse treebank,
comparable corpora, and complementary annotation.
Computational Linguistics, 40(4):921–950.

B. Reese, J. Hunter, P. Denis, N. Asher, and J. Baldridge.
2007. Reference manual for the analysis and annota-
tion of rhetorical structure. Technical report, Depart-
ment of Linguistics, The University of Texas, Austin.

Gian Lorenzo Thione, Martin Van den Berg, Livia
Polanyi, and Chris Culy. 2004. Hybrid text sum-
marization: Combining external relevance measures
with structural analysis. In Stan Szpakowicz Marie-
Francine Moens, editor, Text Summarization Branches
Out: Proceedings of the ACL-04 Workshop.

Antoine Venant, Nicholas Asher, Philippe Muller, Pas-
cal Denis, and Stergos Afantenos. 2013. Expressivity
and comparison of models of discourse structure. In
Proceedings of the SIGDIAL 2013 Conference, Metz,
France, August.

Sandrine Zufferey and Liesbeth Degand. 2014. Anno-
tating the meaning of discourse connectives in mul-
tilingual corpora. Corpus Linguistics and Linguistic
Theory, page in press.

152



Proceedings of the Fourth Joint Conference on Lexical and Computational Semantics (*SEM 2015), pages 153–158,
Denver, Colorado, June 4–5, 2015.

Dissecting the Practical Lexical Function Model for
Compositional Distributional Semantics

Abhijeet Gupta, Jason Utt and Sebastian Padó
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Abstract

The Practical Lexical Function model (PLF)
is a recently proposed compositional distribu-
tional semantic model which provides an el-
egant account of composition, striking a bal-
ance between expressiveness and robustness
and performing at the state-of-the-art. In this
paper, we identify an inconsistency in PLF be-
tween the objective function at training and the
prediction at testing which leads to an over-
counting of the predicate’s contribution to the
meaning of the phrase. We investigate two pos-
sible solutions of which one (the exclusion of
simple lexical vector at test time) improves per-
formance significantly on two out of the three
composition datasets.

1 Introduction

Compositional distributional semantic models
(CDSMs) make an important theoretical contribution,
explaining the meaning of a phrase by the meanings
of its parts. They have also found application
in psycholinguistics (Lenci, 2011), in sentiment
analysis (Socher et al., 2012), and in machine
translation (Kalchbrenner and Blunsom, 2013).

A first generation of CDSMs represented all words
as vectors and combined them by component-wise
operations (Mitchell and Lapata, 2010). Given the
conceptual limitations of this simple approach, nu-
merous models were subsequently proposed which
represent the meaning of predicates as higher-order
algebraic objects such as matrices and tensors (Ba-
roni and Zamparelli, 2010; Guevara, 2010; Coecke
et al., 2010). For example, one-place predicates such

as adjectives or intransitive verbs can be modeled as
matrices (order-2 tensors), and two-place predicates,
e.g., transitive verbs, as order-3 tensors, and so forth.
While such tensors enable mathematically elegant ac-
counts of composition, their large degrees of freedom
lead to severe sparsity issues when they are learned
from corpora.

The recently proposed Practical Lexical Function
model (PLF; Paperno et al., 2014) represents a com-
promise between these two extremes by restricting
itself to vectors and matrices, effectively reducing
sparsity while retaining state-of-the-art performance
across multiple datasets. It does away with tensors by
ignoring interactions among the arguments of predi-
cates p. Instead, each argument position arg is mod-

eled as a matrix
�arg
p that is applied to a vector for the

argument’s meaning, −→a . The meaning of the phrase
is then defined as the sum of the lexical meaning of
the predicate, −→p , and the contributions of each ar-
gument (see Fig. 1). The matrices can be learned in
a supervised manner with regression from pairs of
corpus-extracted vectors for arguments and phrases.

In this paper, we identify an inconsistency between
the training and testing phases of the PLF. More
specifically, we show that its composition procedure
leads to over-counting of the contribution of the pred-
icate. We propose two remedies to harmonize the
training and prediction phases – by excluding the
predicate meaning from either training or testing. In
an evaluation of the standard PLF and our variants
on three datasets, we find that modifying the training
phase fails, but that modifying testing phase improves
performance on two out of three datasets. We analyze
this effect in terms of a bias-variance tradeoff.
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write ×−−→user +
�O

write ×−−−−−→software +
−−→
write

{
�S

write ×−−→user +
−−→
write,

�O

write}

−−→user {−−→write,
�S

write,
�O

write}

−−−−−→
software

Figure 1: Practical Lexical Function model derivation for
the noun-verb-noun phrase “user writes software”.

2 Debugging the PLF model

2.1 An Inconsistency

We have identified an inconsistency in the PLF model
as a result of which the predicted vector for a phrase
systematically differs from the corpus-observed vec-
tor of the phrase. We will illustrate it on a minimal
example, the phrase “dogs sleep”.

Training Phase. The training of PLF creates three
representations: (1), a lexical vector for the noun
(−→n ); (2), the lexical vector for the verb (−→v ); and
(3), a matrix for the subject argument position of the

verb (
�Sv ). While (1) and (2) can be acquired directly

from the corpus, (3) involves optimization, since the
matrix (3) is supposed to account for the verb’s dis-
ambiguating effect on all its subjects. PLF proposes
to learn matrices via regression problems such as the
following (Guevara, 2010), where subj(v) comprises
the subjects seen with the verb v:1

�Sv := argmin
M

∑
n∈subj(v)

‖M ×−→n −−→n v‖2 (1)

That is, the verb’s subject matrix is learned as the
matrix which, multiplied with a subject noun vector,
best predicts the noun-verb phrase vector. If we as-
sume that the verb of our example (sleep) is only seen
with a single noun in the corpus, namely its subject
dog, Eq. (1) has a particularly simple solution where
the matrix can perfectly predict the phrase vector:

�S
sleep ×−→dog =

−−−−−−→
dog sleep (2)

1All matrices are learned using least-squares regression and,
for the sake of simplicity, we ignore regularization. Adjective
matrices are obtained in the same fashion.

Testing Phase. PLF predicts the phrase meaning P
for our example as predicate plus argument meaning:

P(dog sleeps) =
−−→
sleep+

�S
sleep ×−→dog (3)

Intuitively, what we would expect as the result of
this computation to be

−−−−−−→
dog sleeps — the empirically

observed vector for the noun-verb phrase. However,
substituting Eq. (2) into Eq. (3), we instead obtain:

P(dog sleeps) =
−−→
sleep +

−−−−−−→
dog sleeps (4)

The predicted phrase meaning does not correspond
to the empirical phrase vector because in PLF, the
verb contributes twice to the phrase meaning.

Discussion. This issue remains pertinent beyond
the minimal example presented above. The reason
is a discrepancy between the training and test se-
tups: The argument matrices in PLF are learned so
as to predict the complete phrase vector when mul-
tiplied with an argument (compare Eq. (1)).2 This
objective is inconsistent with the way phrase vectors
are predicted at test time. The addition of the pred-
icate’s lexical vector thus amounts to a systematic
over-counting of the predicate’s lexical contribution.

2.2 Two Ways to Remedy the Inconsistency
The above description gives direct rise to two simple
strategies to harmonize training and test procedures.

Adapting the Training Phase. One strategy is to
adapt the training objective from Eq. (1). Recogniz-
ing that the predicate vector is added in by Eq. (3)
at test time, we can attempt to learn a matrix that
predicts not the phrase vector, but the difference be-
tween the phrase vector and the predicate vector. That
means, the matrices capture only the disambiguating
contribution of argument positions such as subject:

�Sv = argmin
M

∑
n∈subj(v)

‖M ×−→n − (−→n v−−→v )‖2 (5)

Adapting the Testing Phase. Another strategy is
to adapt the phrase meaning prediction at test time by
simply leaving out the predicate vector. For subject-

verb combinations, we predict P(n v) =
�Sv ×−→n .

2A formal, more general argument can be made based on the

error term ~ε =
�arg
v ×−→n −−→n v which is minimized in training.
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verb in context landmark in context similarity

private landlord charge annual rent private landlord accuse annual rent low
private landlord charge annual rent private landlord bill annual rent high

armed police charge unemployed person armed police accuse unemployed person high
armed police charge unemployed person armed police bill unemployed person low

Table 1: Example of experimental items in the ANVAN data sets (target verb: charge).

For transitive sentences (cf. Figure 1), we predict

P(n v n) =
�Sv ×−→n +

�Ov ×−→n (the sum of the subject
and the object contributions), and analogously for
other constructions.

3 Experimental Setup

Evaluation Datasets. We evaluate the modifica-
tions from the last section on three standard bench-
marks for CDSMs: ANVAN-1 (Kartsaklis et al.,
2013), ANVAN-2 (Grefenstette, 2013) (Paperno et
al.’s term) and NVN (Grefenstette and Sadrzadeh,
2011) (our term).

As the abbreviations indicate, the two ANVAN
datasets contain transitive verbs whose NP arguments
are modified by arguments; the NVN dataset con-
tains only bare noun arguments. All three datasets
are built around ambiguous target verbs that are com-
bined with two disambiguating contexts (subjects
plus objects) and two landmark verbs in a balanced
design (cf. Table 1). Each context matches one of the
landmark verbs, but not the other. Annotators were
asked to rate the similarity between the target verb in
context and the landmark on a Likert scale.

Corpus and Co-Occurrences. We followed the
specifications by Paperno et al. (2014) as closely
as possible to replicate the original PLF results. As
corpora, we used ukWAC, English Wikipedia, and
the BNC. We extracted a square co-occurrence ma-
trix for the 30K most frequent content words using
a 3-word window and applied the PPMI transforma-
tion. Subsequently, the matrix was reduced to 300
dimensions with SVD. In the same manner, we built
a co-occurrence matrix for all corpus bigrams for
relevant adjectives and verbs from the experimental
materials, applying a frequency threshold of 5.

Composition Models and Evaluation. We build
matrix representations for adjectives and subject and

−−−→
charge +

�S
charge ×−→np subj+

�O
charge ×−→np obj

{ −−−→charge +
�S

charge ×−→np subj,
�O

charge}

−→np subj:=
−−−→
private +

� N
private ×−−−−−→landlord

{ −−−→charge,
�S

charge,
�O

charge}

−→np obj:=
−−−→
annual +

� N
annual ×−−→rent

Figure 2: PLF Derivation for ANVAN phrase “private
landlord charge yearly rent”.

object positions of verbs using the DISSECT toolkit
(Dinu et al., 2013). In addition to the standard
PLF model, which we see as a baseline, we imple-
ment both proposals from Section 2.2. On the NVN
dataset, both training and test modification can ap-
ply only to the verb (cf. Figure 1), which gives us
two conditions. On the ANVAN datasets (cf. Fig-
ure 2), the changes can be applied to the verb, to the
adjectives, or to both, for a total of six conditions.

Our evaluation measure is the nonparametric
Spearman correlations between each annotator’s sim-
ilarity rating and the cosine between the predicted
sentence vectors containing the ambiguous and land-
mark verb, respectively.

4 Evaluation

Main Results. The main results are shown in Ta-
ble 2. Our PLF re-implementation in the first column
almost replicates the results reported by Paperno et
al. (2014) for ANVAN1 and ANVAN2 (20 and 36,
respectively). On NVN, no results for the PLF were
previously reported. Our result (35.4) is substantially
above the result of 21.0 reported by Greffenstette and
Sadrzadeh (2011) for their categorial model. This
supports our general focus on the PLF as an interest-
ing target for analysis.
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Training phase modifications Test phase modifications

Dataset PLF Sub Adj Sub Verb Sub Both No Adj No Verb No Both

ANVAN1 20.6 18.7 -0.3 3.8 19.2 20.7 22.1∗
ANVAN2 35.2 32.8 13.8 17.0 33.8 35.7 35.4
NVN 35.4 – 25.5 – – 40.6∗∗ –

Table 2: Experimental results (Spearman’s ρ) on three dataset. Significant improvements over the PLF results are
indicated with stars (∗: p<0.05, ∗∗: p<0.01 ), – denotes non-applicability of parameter.

The results for the training phase modification are
overwhelmingly negative. There is a minor degrada-
tion when the adjective is subtracted at training time,
and major degradation when the verb is subtracted.
We will come back to this result below.

In contrast, we obtain improvements when we
modify the test phase, when we either leave out the
verb or both the verb and the adjective in the composi-
tion. For two out of the three datasets, the respective
best models perform statistically significantly better
than the PLF as determined by a bootstrap resampling
test (Efron and Tibshirani, 1993): ANVAN1 (+1.5%,
p<0.05) and NVN (+5.2%, p<0.01). The improve-
ment for ANVAN2 (+0.5%) is not large enough to
reach significance.

Discussion. These results leave us with two main
questions: (a), why does the modification at training
time fail so completely; and (b), can we develop a
better understanding of the kind of improvement that
the modification at test time introduces?

Regarding question (a), we believe that the dif-
ference between the phrase vector and the predicate
vector that we are training the matrix to predict in
Eq. (5) is, in practice, a very brittle representation.
The reason is that typically the phrase nv is much
less frequent than v, and therefore −→n v−−→v ≈ −−→v
(cf. Figure 3). Consequently, the matrix attempts to
predict the verb vector from the noun – not only a
very hard problem, but one that does not help solve
the task at hand.

To answer question (b), we perform a mixed ef-
fects linear regression analysis (Hedeker, 2005) on
the three datasets, concentrating on a comparison of
the standard PLF and the best respective test phase
modification. We follow the intuition that the fre-
quency and ambiguity of the target verbs should in-
fluence the quality of the prediction both in the PLF

ANVAN1 ANVAN2 NVN

logf -359∗∗∗ -182 n.s. -96∗∗∗

ambig 118∗∗∗ 8 n.s. 6∗∗∗

ModTest 438∗∗∗ -2606∗∗∗ -1413∗∗∗

ModTest:logf -53∗∗ 165∗∗∗ 94∗∗∗

ModTest:ambig 20∗ 32∗∗∗ 8∗∗∗

Table 3: Coefficients of Linear Mixed Effects Model.
∗: p<0.05; ∗∗: p<0.01; ∗∗∗: p<0.001. See text for details.

and in the modified model, and that it might be in-
formative to look at differences in these effects. To
this effect, we construct a mixed-effects model which
predicts, for each experimental item (cf. Table 1), the
absolute rank difference between the item’s rank in
the gold standard ratings and the item’s rank in the
model prediction. Thus, high values of the output
variable denote items which are difficult to predict,
while low values of the output variable denote items
which are easy to predict. As fixed effects, we include
the target verbs’ logarithmized corpus frequencies
(logf ), their ambiguities, measured as the number of
WordNet top nodes subsuming their synsets (ambig),
the presence of the test phase modification (NoVerb
for ANVAN2 and NVN, NoBoth for ANVAN1; Mod-
Test) as well as interaction terms between ModTest
and the two other predictors. We also include the
identity of the target verb as random effect.

The results are shown in Table 3. There are consid-
erable differences between the datasets, but the over-
all patterns are nevertheless comparable. Notably,
frequency has a negative effect on rank difference. In
other words, more frequent verbs are easier to pre-
dict. Conversely, the ambiguity of the target verb has
a positive effect on rank difference, that is, higher
ambiguity makes predictions more difficult. Both of
these effects are very strong on ANVAN1 and NVN
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Figure 3: Similarities between the training-time modified
phrase vector (subject-verb & verb-object) and the respec-
tive word vectors in the NVN dataset. The low values and
smaller variance in verb similarities shows the informa-
tion encoded by the modified phrase vector aligns better
with the verb’s (or predicate’s) information than that of
the noun (argument).

and not significant on ANVAN2, which appears to be
a more controlled dataset. Taken together, the models
still seem to struggle with ambiguous and infrequent
target verbs.

The coefficients that we obtain for ModTest look
puzzling at first glance: we obtain a negative coeffi-
cient (i.e., an overall improvement) only for AN-
VAN2 and NVN while the coefficient is positive
for ANVAN1. For ANVAN1, the improvement is
brought about by the interaction with the frequency
variable: when the test phase is modified, the (ben-
eficial) effect of frequency becomes much stronger,
that is, the predictions for high-frequency verbs im-
prove. In contrast, the effect of frequency becomes
weaker for the test phase modification on ANVAN2
and NVN. What is true for all three datasets is that the
effect of ambiguity gets stronger when the test phase
is modified: ambiguous verbs become significantly
more difficult to model.

On the basis of this analysis, we believe that this
difference between the standard PLF and our test
phase modification can be understood as a classical

bias-variance tradeoff: the addition of the predicate
meaning in the standard PLF reduces variance, ensur-
ing that the phrase meaning stays close to the predi-
cate meaning prior even for matrices that are difficult
to learn, e.g., due to sparse data or high ambiguity. At
the same time, this dilutes the disambiguating effect
of composition. In our modified scheme, the situa-
tion is reversed: the composed representations vary
more freely, which benefits well-learned matrices but
leads to worse predictions for poorly learned ones.

5 Conclusion

In this paper, we have presented an analysis of the re-
cent Practical Lexical Function (PLF) model in com-
positional distributional semantics. We have shown
that the PLF contains an inconsistency between the
objective function at training time and the definition
of compositional phase construction at testing time.
We have argued that either training or testing needs
to be modified to harmonize the two. Our empiri-
cal evaluation found that testing phase modification
is indeed effective (by reducing bias in the predic-
tions), while the training phase modification is not
(by relying on brittle representations). In the spirit of
the bias-variance analysis, future work is to experi-
ment with weighting schemes to optimize the relative
contributions of predicate and arguments.
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Abstract

Based on the hypothesis that frame-semantic
parsing and event extraction are structurally
identical tasks, we retrain SEMAFOR, a state-
of-the-art frame-semantic parsing system to
predict event triggers and arguments. We de-
scribe how we change SEMAFOR to be better
suited for the new task and show that it per-
forms comparable to one of the best systems
in event extraction. We also describe a bias in
one of its models and propose a feature factor-
ization which is better suited for this model.

1 Introduction

Event Extraction is a task in information extraction
where mentions of predefined events are extracted
from texts. We follow the task definition of the Au-
tomatic Content Extraction (ACE) program of 2005.
It defines 33 event types, organized in eight cate-
gories. Each event type has associated roles, e.g.,
ATTACK has the roles attacker, target, and instru-
ment, whereas DIE has the roles agent, victim, and
instrument. The roles place and time are shared by
all event types.

ACE events occur only within sentences. Each
event is indicated by a word, the trigger. The roles
associated with the respective event type are filled
by zero or more arguments. Most arguments are
mentions of entities, e.g. persons, locations, or or-
ganizations. Some arguments are mentions of points
in time, amounts of money, etc. Arguments may
be shared by multiple events and may play different
roles in each of them.

Figure 1 illustrates an example. The sentence
contains two events, DIE and ATTACK, triggered by
“died” and “fired”, respectively. For DIE, the roles
victim, instrument, and place are filled with the argu-
ments “cameraman”, “American tank”, and “Bagh-
dad”, respectively. For ATTACK, the role target has
two arguments, namely “cameraman” and “Palestine
hotel”, the roles instrument, and place have the ar-
guments, “American tank”, and “Baghdad”, respec-
tively. Three arguments are shared. One of them,
“cameraman”, plays different roles in the events,
namely victim of DIE and target of ATTACK.

Frame-semantic parsing is the task of extracting
semantic predicate-argument structures from texts.
It is built on the theory of frame semantics and
FrameNet (Fillmore et al., 2003; Das et al., 2014).
As in event extraction, frames occur within sen-
tences and have triggers and roles (called lexical
units and frame elements).

Our hypothesis is that the two tasks are struc-
turally identical. From a computational point of
view, they differ only in feature types. We can
use the same approach and infrastructure to tackle
both. Based on this hypothesis, we retrain a frame-
semantic parsing system, SEMAFOR, for event ex-
traction.

We describe differences between frame-semantic
parsing and event extraction and the adaptions
needed to better prepare SEMAFOR for the new
task. We also describe a bias in the trigger classifi-
cation model which affects frame-semantic parsing
as well as event extraction and propose a new fac-
torization of features which is better suited for this
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In Baghdad, a cameraman died when an American tank fired on the Palestine Hotel.

place

victim
instrument

instrument

target

place

target

DIE ATTACK

Figure 1: A sentence with two event instances, a DIE event triggered by the word “died”, and an ATTACK event
triggered by “fired”. Three arguments are shared by both events.

model. Finally, we evaluate the retrained system on
the ACE 2005 data (Walker et al., 2006).

2 Related Work

Many approaches to event extraction do not cross
sentence boundaries, e.g. Grishman et al. (2005),
Ahn (2006), Lu and Roth (2012), Li et al. (2013)
and Li et al. (2014). Only few approaches, like Ji
and Grishman (2008) and Liao and Grishman (2010)
go beyond sentences and even beyond documents in
order to exploit richer context for the extraction of
events.

While early systems usually predict triggers and
arguments independently, more recent work em-
ploys joint inference, i.e., predicts triggers and argu-
ments (or only arguments) jointly, e.g., Lu and Roth
(2012), Li et al. (2013), and Li et al. (2014).

3 Approach

We make use of SEMAFOR, a state-of-the-art
frame-semantic parsing system (Das et al., 2010)1.
We retrain it to predict ACE events, i.e., triggers
with event types and arguments for their roles, and
make adaptions to better prepare it for event extrac-
tion. We call the new system SEMAFORE.

3.1 Trigger Classification
In order to classify triggers (single or multiple to-
kens), the original SEMAFOR uses a log-linear
model. To cope with unknown triggers the model
includes a latent variable iterating over triggers seen
in training (called hidden units). At inference time,
hidden units serve as prototypes for unknown words.
The model is defined as

ei = argmax
e∈Ei

∑
l∈Le

pθ(e, l | ti, x). (1)

ei is the best event type for trigger ti according to
the model. Ei is the set of observed event types for

1http://www.ark.cs.cmu.edu/SEMAFOR/; we
use version 2.1, without semi-supervised extensions or dual
decomposition.

ti. Le is the set of triggers observed during train-
ing for event e. All l ∈ Le are called hidden units.
pθ(e, l | ti, x) gives the probability of e and a hid-
den unit l given the trigger ti and a sentence x. This
probability is modeled as

pθ(e, l | ti, x) =
1
Z

exp θ>g(e, l, ti, x). (2)

This is a conditional log-linear model with a normal-
ization constant Z, weights θ, and a vector-valued
feature function g.

The model is biased towards classes with many
hidden units. In order to illustrate this, imagine there
is only one feature which does not depend on hid-
den units, e.g., if there is a named entity in the sen-
tence. During inference, the sum in Equation 1 is
computed. As a constant, Z is ignored during infer-
ence. The named entity feature would be active for
every hidden unit, having the same weight in every
iteration, because features are always evaluated in-
side the sum. Then, the sum is not meaningful any-
more, because the event with the most hidden units
wins. This bias affects both, frame-semantic parsing
and event extraction.

In order to weaken the bias we propose to separate
features which actually depend on hidden units, e.g.,
because they capture lexical similarity to some of
them, from features which do not, like the named
entity feature. Then, inference is performed as

ei = argmax
e∈Ei

∑
l∈Le

exp θ>g′(e, l, ti, x)

+ exp θ>g?(e, ti, x).
(3)

g′ is a function for features depending on hidden
units, g? is a function for the remaining features.
In this way, activation frequencies of features be-
come meaningful. However, the model is still bi-
ased towards events with many hidden units. This
is problematic, because the distribution of triggers
over events is diverse and arbitrary. The number
of hidden units does not necessarily correlate with
occurrence probabilities of events. On the other
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hand, the idea of known triggers being prototypes
for events is appealing, therefore we did not change
this part of the model.

3.2 Argument Classification
The argument model predicts the best argument Ai
for every role rk of an event ei given a set of spans S.
In our experiments, spans are extents of gold men-
tions, including the empty span. The argument-role
mapping is defined as

Ai(rk) = argmax
s∈S

pψ(s | rk, ei, ti, x). (4)

Again, a conditional log-linear model with weights
ψ, a normalization constant Z, and a feature func-
tion h is used to model pψ:

pψ =
1
Z

expψ>h(s, rk, ei, ti, x). (5)

3.3 Adaptions
Based on our hypothesis that event extraction is
structurally identical to frame-semantic parsing, we
retrain SEMAFOR to predict ACE events. While the
structure of the tasks may be identical, their behav-
ior is not. It does not suffice to convert the ACE data
to the right format and retrain the model.

There are two important differences between
frame-semantic parsing and event extraction. First,
in frame-semantic parsing, there is no ‘null class’
for triggers. A trigger may indicate multiple frames,
but it always invokes one of them. In event extrac-
tion, we have potential triggers, which may or may
not invoke events. Second, most event arguments are
defined based on entity types. ACE distinguishes be-
tween the entity types person, organization, geopo-
litical entity, location, facility, vehicle, and weapon.
For frame-semantic parsing, no such restriction in
entity type exists. Thus, we need to introduce en-
tity type features to tackle argument classification
for event extraction. Such features are also useful
for the trigger model.

One way to allow potential triggers to be classi-
fied as non-triggers is to introduce a null class to the
event types. Each trigger in the training data also be-
comes a trigger of the null class (or null event). If a
null event is triggered, we filter it out. Note that hav-
ing a class with so many triggers biases our model
towards it (Section 3.1). A less biased way would

be to introduce a ‘null version’ of every event type,
having the same triggers. However, we would have
to predict twice as much classes (66 instead of 33).
Having only one null class better exploits the limited
training data. Furthermore, biasing SEMAFORE to-
wards null events is acceptable because there are
considerably more null events than events.

Allowing all triggers from the training data in
prediction hurts performance, mainly due to trig-
gers which coincide with high-frequency words like
“be”. In order to prune the trigger set we com-
pute a score for each trigger, catching its distribution
among events and non-events: s(t) = fe/(fe+fn)d.
fe is the frequency of t as an event trigger, fn is the
frequency of t in non-events, and d is the number of
events t is a trigger of. The measure prefers triggers
which are frequently triggers for only a few events.
We filter all triggers with s < 0.012.

Finally, we changed the learning algorithm from
the maximum entropy to the perceptron framework.
This was done because the perceptron gives better
performance for SEMAFORE and is considerably
faster, e.g., the argument model can be trained in
a few seconds instead of several hours. The new
models have a simpler form because we do not have
to compute probabilities anymore. The new trigger
model is defined as

ei = argmax
e∈Ei

∑
l∈Le

θ>g′(e, l, ti, x)

+ θ>g?(e, ti, x).
(6)

The new argument model is defined as

Ai(rk) = argmax
s∈S

ψ>h(s, rk, ei, ti, x). (7)

Weights θ and ψ are learned using a variant of
the averaged perceptron (Collins, 2002), where we
store feature vectors only after each pass through the
training data.

3.4 Features

For the trigger model, SEMAFOR’s features include
lemmas (of trigger tokens and of the head governor),
dependencies of the head, if the head is equal to or
has semantic relations with any hidden unit, as well

2The threshold was determined on development data.
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as the type of these relations3. Additionally, we in-
clude unigrams and bigrams around the trigger in a
window of two. Following Li et al. (2013), we also
look at the mention nearest to the trigger. We in-
clude its entity type and its string representation as
features.

Potential triggers are compared to hidden units by
semantic relations. We extend this by incorporating
measures of semantic similarity. We compare tokens
in the actual sentence with tokens of all sentences
the actual hidden unit appeared in (in the training
data) and with tokens of all sentences all hidden
units of the actual frame appeared in. The compari-
son is made in terms of cosine similarity.

SEMAFOR’s features for the argument model
characterize the actual span (its length, tokens, and
head dependencies), the voice and string represen-
tation of the trigger, and the dependency path be-
tween span and trigger heads. Additionally, we in-
clude the token before the argument and its part-of-
speech, and all tokens and parts-of-speech between
argument and trigger as features. Following Li et al.
(2013), we also use as features the type of the entity
the actual span represents, if it is the only mention
of its entity type, or the nearest to the trigger.

4 Experiments

We trained SEMAFORE on the English ACE 2005
data. We followed Li et al. (2014) and removed
the two smallest and most informal parts of the
data, namely ‘conversational telephone speech’ and
‘Usenet newsgroups’. From the remaining 511 doc-
uments, 351 are used for training, 80 for develop-
ment, and 80 for testing.

We follow standard evaluation procedures for
triggers and events (Ji and Grishman, 2008). A trig-
ger is correct, if its span and event type match a ref-
erence trigger. An argument is correct, if its span,
event type, and role match a reference argument.

Table 1 summarizes results for SEMAFORE and
a state-of-the-art system for event extraction (Li et
al., 2013). To make a fair comparison, we report
the numbers of their pipeline version, i.e., predicting
trigger and arguments sequentially, as we do. Both
systems use gold mentions and gold entity types.
For SEMAFORE, we excluded all nested mentions

3Semantic relations come from WordNet (Fellbaum, 1998)

of the same type: From “said [president [Obama]]”,
the inner span would be excluded.

SEMAFORE’s recall is comparable to Li et al.
(2013). However, their system gives a higher pre-
cision for both subtasks. We believe that the higher
precision of their argument model comes from the
higher precision of their trigger model. Simi-
larly, the lower precision of SEMAFORE’s argument
model is due to the lower precision of its trigger
model. Because of this, SEMAFORE is a few F1

points below Li et al. (2013).
We note that there is only a minor drop in per-

formance when comparing numbers for the develop-
ment and test sets. This indicates that SEMAFORE’s
performance is robust.

The biggest error source for trigger classification
is missing triggers. The second biggest error source
is confusion of events with null events. Consider
the following example: “Saba hasn’t delivered yet”.
SEMAFORE predicted a null event for the trigger
“delivered” instead of the right BE-BORN event. The
context it had to analyze did not suffice to overcome
its bias towards null events. Even for humans it
seems hard to infer the right event type here. One
would need to know that “Saba” refers to a preg-
nant woman, which could be inferred from the docu-
ment. However, the sentence alone does not provide
enough information.

The biggest error source for argument classifica-
tion is error propagation from the trigger model. The
second major error source is the local prediction of
arguments. It seems better to predict triggers and
arguments jointly in order to weaken error propaga-
tion (Li et al., 2013; Li et al., 2014). For example,
SEMAFORE finds a START-ORG event for the trig-
ger “set up” in the following sentence: “At the site,
equipment has been set up to test conventional ex-
plosives [. . . ]”. In such cases, the model would need
to know that the argument “equipment” cannot fill
the org role of START-ORG because it is no organiza-
tion. Inferring triggers and arguments jointly would
enable SEMAFORE to better prevent such errors.

5 Conclusions and Future Work

Based on the hypothesis that frame-semantic pars-
ing and event extraction are structurally identical,
we retrained a state-of-the-art frame-semantic pars-
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Triggers Arguments
P R F1 P R F1

SEMAFORE dev 65.8 57.8 61.6 57.0 32.4 41.3
SEMAFORE test 62.6 56.8 60.0 53.5 33.3 41.0
Li et al. (2013) 74.5 59.1 65.9 65.4 33.1 43.9

Table 1: Evaluation results for SEMAFORE on the development and test sets compared to a state-of-the-art
system.

ing system for event extraction. We presented the
adaptions in prediction classes and features needed
to make the system better suited for the more restric-
tive task of event extraction. We also described a
bias in the trigger classification model and proposed
a feature factorization which is better suited for this
model. As the evaluation shows, the retrained sys-
tem can rival the state-of-the-art in event extraction.

For future work, we plan to incorporate men-
tion detection into SEMAFORE . SEMAFOR’s seg-
mentation approach is not suited for event extrac-
tion because it produces too many argument candi-
dates. Furthermore, error analysis and evaluation
suggest that we need to predict triggers and argu-
ments jointly. We also plan to go beyond sentences
and search for larger contexts which may be rele-
vant for event extraction. These changes may also
be beneficial for frame-semantic parsing.
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Abstract

We investigate from the competence stand-
point two recent models of lexical semantics,
algebraic conceptual representations and con-
tinuous vector models.

Characterizing what it means for a speaker to be
competent in lexical semantics remains perhaps the
most significant stumbling block in reconciling the
two main threads of semantics, Chomsky’s cogni-
tivism and Montague’s formalism. As Partee (1979)
already notes (see also Partee 2013), linguists as-
sume that people know their language and that their
brain is finite, while Montague assumed that words
are characterized by intensions, formal objects that
require an infinite amount of information to specify.

In this paper we investigate two recent models of
lexical semantics that rely exclusively on finite in-
formation objects: algebraic conceptual representa-
tions (ACR) (Wierzbicka, 1985; Kornai, 2010; Gor-
don et al., 2011), and continuous vector space (CVS)
models which assign to each word a point in finite-
dimensional Euclidean space (Bengio et al., 2003;
Turian et al., 2010; Pennington et al., 2014). After a
brief introduction to the philosophical background
of these and similar models, we address the hard
questions of competence, starting with learnability
in Section 2; the ability of finite networks or vectors
to replicate traditional notions of lexical relatedness
such as synonymy, antonymy, ambiguity, polysemy,
etc. in Section 3; the interface to compositional se-
mantics in Section 4; and language-specificity and

universality in Section 5. Our survey of the litera-
ture is far from exhaustive: both ACR and CVS have
deep roots, with significant precursors going back at
least to Quillian (1968) and Osgood et al. (1975) re-
spectively, but we put the emphasis on the compu-
tational experiments we ran (source code and lexica
available at github.com/kornai/4lang).

1 Background

In the eyes of many, Quine (1951) has demolished
the traditional analytic/synthetic distinction, relegat-
ing nearly all pre-Fregean accounts of word mean-
ing from Aristotle to Locke to the dustbin of his-
tory. The opposing view, articulated clearly in Grice
and Strawson (1956), is based on the empirical ob-
servation that people make the call rather uniformly
over novel examples, an argument whose import is
evident from the (at the time, still nascent) cogni-
tive perspective. Today, we may agree with Putnam
(1976):

‘Bachelor’ may be synonymous with ‘un-
married man’ but that cuts no philosophic
ice. ‘Chair’ may be synonymous with
‘moveable seat for one with back’ but that
bakes no philosophic bread and washes no
philosophic windows. It is the belief that
there are synonymies and analyticities of a
deeper nature - synonymies and analytici-
ties that cannot be discovered by the lex-
icographer or the linguist but only by the
philosopher - that is incorrect.
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Fortunately, one philosopher’s trash may just turn
out to be another linguist’s treasure. What Putnam
has demonstrated is that “a speaker can, by all rea-
sonable standards, be in command of a word like
water without being able to command the intension
that would represent the word in possible worlds se-
mantics” (Partee, 1979). Computational systems of
Knowledge Representation, starting with the Teach-
able Word Comprehender of Quillian (1968), and
culminating in the Deep Lexical Semantics of Hobbs
(2008), carried on this tradition of analyzing word
meaning in terms of ‘essential’ or ‘analytic’ compo-
nents.

A particularly important step in this direction
is the emergence of modern, computationally ori-
ented lexicographic work beginning with Collins-
COBUILD (Sinclair, 1987), the Longman Dictio-
nary of Contemporary English (LDOCE) (Bogu-
raev and Briscoe, 1989), WordNet (Miller, 1995),
FrameNet (Fillmore and Atkins, 1998), and Verb-
Net (Kipper et al., 2000). Both the network- and
the vector-based approach build on these efforts, but
through very different routes.

Traditional network theories of Knowledge Rep-
resentation tend to concentrate on nominal features
such as the IS A links (called hypernyms in Word-
Net) and treat the representation of verbs somewhat
haphazardly. The first systems with a well-defined
model of predication are the Conceptual Depen-
dency model of Schank (1972), the Natural Syntax
Metalanguage (NSM) of Wierzbicka (1985), and a
more elaborate deep lexical semantics system that is
still under construction by Hobbs and his coworkers
(Hobbs, 2008; Gordon et al., 2011). What we call al-
gebraic conceptual representation (ACR) is any such
theory encoded with colored directed edges between
the basic conceptual units. The algebraic approach
provides a better fit with functional programming
than the more declarative, automata-theoretic ap-
proach (Huet and Razet, 2008), and makes it possi-
ble to encode verbal subcategorization (case frame)
information that is at the heart of FrameNet and
VerbNet in addition to the standardly used nominal
features (Kornai, 2010).

Continuous vector space (CVS) is also not a sin-
gle model but a rich family of models, generally
based on what Baroni (2013) calls the distributional
hypothesis, that semantically similar items have sim-

ilar distribution. This idea, going back at least to
Firth (1957) is not at all trivial to defend, and not just
because defining ‘semantically similar’ is a chal-
lenging task: as we shall see, there are significant de-
sign choices involved in defining similarity of vec-
tors as well. To the extent CVS representations are
primarily used in artificial neural net models, it may
be helpful to consider the state of a network being
described by the vector whose nth coordinate gives
the activation level of the nth neuron. Under this
conception, the meaning of a word is simply the ac-
tivation pattern of the brain when the word is pro-
duced or perceived. Such vectors have very large
(1010) dimension so dimension reduction is called
for, but direct correlation between brain activation
patterns and the distribution of words has actually
been detected (Mitchell et al., 2008).

2 Learnability

The key distinguishing feature between ‘explana-
tory’ or competence models and ‘descriptive’ or per-
formance models is that the former, but not the latter,
come complete with a learning algorithm (Chomsky,
1965). Although there is a wealth of data on chil-
dren’s acquisition of lexical entries (McKeown and
Curtis, 1987), neither cognitive nor formal seman-
tics have come close to formulating a robust theory
of acquisition, and for intensions, infinite informa-
tion objects encoding the meaning in the formal the-
ory, it is not at all clear whether such a learning al-
gorithm is even possible.

2.1 The basic vocabulary

The idea that there is a small set of conceptual prim-
itives for building semantic representations has a
long history both in linguistics and AI as well as in
language teaching. The more theory-oriented sys-
tems, such as Conceptual Dependency and NSM as-
sume only a few dozen primitives, but have a disqui-
eting tendency to add new elements as time goes by
(Andrews, 2015). In contrast, the systems intended
for teaching and communication, such as Basic En-
glish (Ogden, 1944) start with at least a thousand
primitives, and assume that these need to be further
supplemented by technical terms from various do-
mains. Since the obvious learning algorithm based
on any such reductive system is one where the primi-
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tives are assumed universal (and possibly innate, see
Section 5), and the rest is learned by reduction to the
primitives, we performed a series of ‘ceiling’ exper-
iments aiming at a determination of how big the uni-
versal/innate component of the lexicon must be. A
trivial lower bound is given by the current size of the
NSM inventory, 65 (Andrews, 2015), but as long as
we don’t have the complete lexicon of at least one
language defined in NSM terms the reductivity of
the system remains in doubt.

For English, a Germanic language, the first prov-
ably reductive system is the Longman Defining Vo-
cabulary (LDV), some 2,200 items, which provide
a sufficient basis for defining all entries in LDOCE
(using English syntax in the definitions). Our work
started with a superset of the LDV that was obtained
by adding the most frequent words according to
the Google unigram count (Brants and Franz, 2006)
and the BNC, as well as the most frequent words
from a Slavic, a Finnougric, and a Romance lan-
guage (Polish, Hungarian, and Latin), and Whitney
(1885) to form the 4lang conceptual dictionary,
with the long-term design goal of eventually provid-
ing reductive definitions for the vocabularies of all
Old World languages. Ács et al. (2013) describes
how bindings in other languages can be created au-
tomatically and compares the reductive method to
the familiar term- and document-frequency based
searches for core vocabulary.

This superset of LDV, called ‘4lang’ in Table 1
below, can be considered a directed graph whose
nodes are the disambiguated concepts (with expo-
nents in four languages) and whose edges run from
each definiendum to every concept that appears in its
definition. Such a graph can have many cycles. Our
main interest is with selecting a defining set which
has the property that each word, including those that
appear in the definitions, can be defined in terms of
members of this set. Every word that is a true prim-
itive (has no definition, e.g. the basic terms of the
Schank and NSM systems) must be included in the
defining set, and to these we must add at least one
vertex from every directed cycle. Thus, the prob-
lem of finding a defining set is equivalent to find-
ing a feedback vertex set, (FVS) a problem already
proven NP-complete in Karp (1972). Since we can-
not run an exhaustive search, we use a heuristic al-
gorithm which searches for a defining set by gradu-

ally eliminating low-frequency nodes whose outgo-
ing arcs lead to not yet eliminated nodes, and make
no claim that the results in Table 1 are optimal, just
that they are typical of the reduction that can be ob-
tained by modest computation. We defer discussion
of the last line to Section 4, but note that the first line
already implies that a defining set of 1,008 concepts
will cover all senses of the high frequency items in
the major Western branches of IE, and to cover the
first (primary) sense of each word in LDOCE 361
words suffice.

Dictionary #words FVS
4lang (all senses) 31,192 1,008
4lang (first senses) 3,127 361
LDOCE (all senses) 79,414 1,061
LDOCE (first senses) 34,284 376
CED (all senses) 154,061 6,490
CED (first senses) 80,495 3,435
en.wiktionary (all senses) 369,281 2,504
en.wiktionary (first senses) 304,029 1,845
formal 2,754 129

Table 1: Properties of four different dictionaries

While a feedback vertex set is guaranteed to ex-
ist for any digraph (if all else fails, the entire set of
vertices will do), it is not guaranteed that there ex-
ists one that is considerably smaller than the entire
graph. (For random digraphs in general see Dutta
and Subramanian 2010, for highly symmetrical lat-
tices see Zhou 2013 ms.) In random digraphs under
relatively mild conditions on the proportion of edges
relative to nodes, Łuczak and Seierstad (2009) show
that a strong component essentially the size of the
entire graph will exist. Fortunately, digraphs built
on definitions are not at all behaving in a random
fashion, the strongly connected components are rel-
atively small, as Table 1 makes evident. For ex-
ample, in the English Wiktionary, 369,281 defini-
tions can be reduced to a core set of 2,504 defin-
ing words, and in CED we can find a defining set of
6,490 words, even though these dictionaries, unlike
LDOCE, were not built using an explicit defining
set. Since LDOCE pioneered the idea of actively
limiting the defining vocabulary, it is no great sur-
prise that it has a small feedback vertex set, though
everyday users of the LDV may be somewhat sur-
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prised that less than half (1,061 items) of the full
defining set (over 2,200 items) are needed.

We also experimented with an early (pre-
COBUILD) version of the Collins English Dictio-
nary (CED), as this is more representative of the tra-
ditional type of dictionaries which didn’t rely on a
defining vocabulary. In 154,061 definitions, 65,891
words are used, but only 15,464 of these are not
headwords in LDOCE. These words appear in less
than 10% of Collins definitions, meaning that using
LDOCE as an intermediary the LDV is already suffi-
cient for defining over 90% of the CED word senses.
An example of a CED defining word missing not just
from LDV but the entire LDOCE would be aigrette
‘a long plume worn on hats or as a headdress, esp.
one of long egret feathers’.

This number could be improved to about 93%
by detail parsing of the CED definitions. For ex-
ample, aigrette actually appears as crossreference
in the definition of egret, and deleting the cross-
reference would not alter the sense of egret being
defined. The remaining cases would require bet-
ter morphological parsing of latinate terms than we
currently have access to: for now, many definitions
cannot be automatically simplified because the sys-
tem is unaware that e.g. nitrobacterium is the singu-
lar of nitrobacteria. Manually spot-checking 2% of
the remaining CED words used in definitions found
over 75% latinate technical terms, but no instances
of undefinable non-technical senses that would re-
quire extending the LDV. This is not that every sense
of every nontechnical word of English is listed in
LDOCE, but inspecting even more comprehensive
dictionaries such as the Concise Oxford Dictionary
or Webster’s 3rd makes it clear that their definitions
use largely words which are themselves covered by
LDOCE. Thus, if we see a definition such as naph-
tha ‘kinds of inflammable oil got by dry distillation
of organic substances as coal, shale, or petroleum’
we can be nearly certain that words like inflammable
which are not part of the LDV will nevertheless be
definable in terms of it, in this case as ‘materials or
substances that will start to burn very easily’.
The reduction itself is not a trivial task, in that a sim-
plified definition of naphtha such as ‘kinds of oils
that will start to burn very easily and are produced by
dry distillation . . . ’ can eliminate inflammable only
if we notice that the ‘oil’ in the definition of naph-

Figure 1: Original definition of naphtha

Figure 2: Reduced definition of naphtha

tha is the ‘material or substance’ in the definition of
inflammable. Similarly, we have to understand that
‘got’ was used in the sense obtained or produced,
that dry distillation is a single concept ‘the heating
of solid materials to produce gaseous products’ that
is not built compositionally from dry and distilla-
tion in spite of being written as two separate words,
and so forth. Automated detection and resolution
of these and similar issues remain challenging NLP
tasks, but from a competence perspective it is suffi-
cient to note that manual substitution is performed
effortlessly and near-uniformly by native speakers.

2.2 Learnability in CVS semantics
The reductive theory of vocabulary acquisition is a
highly idealized one, for surely children don’t learn
the meaning of sharp by their parents telling them
it means ‘having a thin cutting edge or point’. Yet
it is clear that computers that lack a sensory sys-
tem that would deliver intense signals upon encoun-
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tering sharp objects can nevertheless acquire some-
thing of the meaning by pure deduction (assuming
also that they are programmed to know that cutting
one’s body will CAUSE PAIN) and further, the domi-
nant portion of the vocabulary is not connected to di-
rect sensory signals but is learned from context (see
Chapter 6 of McKeown and Curtis 1987).

This brings us to CVS semantics, where learning
theory is idealized in a very different way, by assum-
ing that the learner has access to very large corpora,
gigaword and beyond. We must agree with Miller
and Chomsky (1963) that in real life a child exposed
to a word every second would require over 30 years
to hear gigaword amounts, but we take this to be a
reflection of the weak inferencing ability of current
statistical models, for there is nothing in the argu-
ment that says that models that are more efficient in
extracting regularities can’t learn these from orders
of magnitude less data, especially as children are
known to acquire words based on a single exposure.
For now, such one shot learning remains something
of an ideal, in that CVS systems prune infrequent
words (Collobert et al., 2011; Mikolov et al., 2013a;
Luong et al., 2013), but it is clear that both CVS
and ACR have the beginnings of a feasible theory of
learning, while the classical theory of meaning pos-
tulates offers nothing of the sort, not even for the
handful of lexical items (tense and aspect markers
in particular, see Dowty 1979) where the underlying
logic has the resources to express these.

3 Lexical relatedness

Ordinary dictionary definitions can be mined to re-
cover the conceptual entailments that are at the heart
of lexical semantic competence. Whatever naphtha
is, knowing that it is inflammable is sufficient for
knowing that it will start to burn easily. It is a major
NLP challenge to make this deduction (Dagan et al.
2006), but ACR can store the information trivially
and make the inference by spreading activation.

We implemented one variant of the ACR theory of
word meaning by a network of Eilenberg machines
(Eilenberg, 1974) corresponding to elements of the
reduced vocabulary. Eilenberg machines are a sim-
ple generalization of the better known finite state au-
tomata (FSA) and transducers (FSTs) that have be-
come standard since Koskenniemi (1983) in describ-

ing the rule-governed aspects of the lexicon, mor-
photactics and morphophonology (Huet and Razet,
2008; Kornai, 2010). The methods we use for defin-
ing word senses (concepts) are long familiar from
Knowledge Representation. We assume the reader is
familiar with the knowledge representation literature
(for a summary, see Brachman and Levesque 2004),
and describe only those parts of the system that dif-
fer from the mainstream assumptions. In particular,
we collapse attribution, unary predication, and IS A
links in a single link type ‘0’ (as in Figs. 1-2 above)
and have only two other kinds of links to distinguish
the arguments of transitive verbs, ‘1’ corresponding
to subject/agent; and ‘2’ to object/patient. The treat-
ment of other link types, be they construed as gram-
matical functions or as deep cases or even thematic
slots, is deferred to Section 4.

By creating graphs for all LDOCE headwords
based on dependency parses of their definitions (the
‘literal’ network of Table 1) using the unlexicalized
version of the Stanford Dependency Parser (Klein
and Manning, 2003), we obtained measures of lex-
ical relatedness by defining various similarity met-
rics over pairs of such graphs. The intuition under-
lying all these metrics is that two words are seman-
tically similar if their definitions overlap in (i) the
concepts present in their definitions (e.g. the def-
inition of both train and car will make reference
to the concept vehicle) and (ii) the binary relations
they take part in (e.g. both street and park are IN
town). While such a measure of semantic similar-
ity builds more on manual labor (already performed
by the lexicographers) than those gained from state-
of-the-art CVS systems, recently the results from
the ‘literal’ network have been used in a competi-
tive system for measuring semantic textual similar-
ity (Recski and Ács, 2015). In Section 4 we dis-
cuss the ‘formal’ network of Table 1 built directly
on the concept formulae. By spectral dimension re-
duction of the incidence matrix of this network we
can create an embedding that yields results on world
similarity tasks comparable to those obtained from
corpus-based embeddings (Makrai et al., 2013).

CVS models can be explicitly tested on their abil-
ity to recover synonymy by searching for the near-
est word in the sample (Mikolov et al., 2013b);
antonymy by reversing the sign of the vector (Zweig,
2014); and in general for all kinds of analogical
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statements such as king is to queen as man is to
woman by vector addition and subtraction (Mikolov
et al., 2013c); not to speak of cross-language
paraphrase/translation (Schwenk et al., 2012), long
viewed a key intermediary step toward explaining
competence in a foreign language.

Currently, CVS systems are clearly in the lead on
such tasks, and it is not clear what, if anything, can
be salvaged from the truth-conditional approach to
these matters. At the same time, the CVS approach
to quantifiers is not mature, and ACR theories sup-
port generics only. These may look like backward
steps, but keep in mind that our goal in compe-
tence modeling is to characterize everyday knowl-
edge, shared by all competent speakers of the lan-
guage, while quantifier and modal scope ambiguities
are something that ordinary speakers begin to appre-
ciate only after considerable schooling in these mat-
ters, with significant differences between the naive
(preschool) and the learned adult systems (É. Kiss
et al., 2013). On the traditional account, only sub-
sumption (IS A or ‘0’) links can be easily recovered
from the meaning postulates, the cognitively central
similarity (as opposed to exact synonymy) relations
receive no treatment whatsoever, since similarity of
meaning postulates is undefined.

4 Lexical lookup

The interaction with compositional semantics is a
key issue for any competence theory of lexical se-
mantics. In the classical formal system, this is han-
dled by a mechanism of lexical lookup that substi-
tutes the meaning postulates at the terminal nodes of
the derivation tree, at the price of introducing some
lexical redundancy rule that creates the intensional
meaning of each word, including the evidently non-
intensional ones, based on the meaning postulates
that encode the extensional meaning. (Ch. 19.2 of
Jacobson (2014) sketches an alternative treatment,
which keeps intensionality for the intended set of
cases.) While there are considerable technical diffi-
culties of formula manipulation involved, this is re-
ally one area where the classical theory shines as a
competence theory – we cannot even imagine to cre-
ate a learning algorithm that would cover the mean-
ing of infinitely many complex expressions unless
we had some means of combining the meanings of

the lexical entries.
CVS semantics offers several ways of combining

lexical entries, the simplest being simply adding the
vectors together (Mitchell and Lapata, 2008), but
the use of linear transformations (Lazaridou et al.,
2013) and tensor products (Smolensky, 1990) has
also been contemplated. Currently, an approach that
combines the vectors of the parts to form the vec-
tor of the whole by recurrent neural nets appears to
work best (Socher et al., 2013), but this is still an
area of intense research and it would be premature
to declare this method the winner. Here we concen-
trate on ACR, investigating the issue of the inventory
of graph edge colors on the same core vocabulary as
discussed above. The key technical problem is to
bring the variety of links between verbs and their
arguments under control: as Woods (1975) already
notes, the naive ACR theories are characterized by a
profusion of link types (graph edge colors).

We created a version of ACR that is limited to
three link types. Both the usual network represen-
tations (digraphs, as in Figs. 1 and 2 above) and
a more algebraic model composed of extended fi-
nite state automata (Eilenberg machines) are pro-
duced by parsing formulas defined by a formal
grammar summarized in Figure 3. For ease of read-
ing, in unary predication (e.g. mouse 0−→ rodent)
we permit both prefix and suffix order, but with
different kinds of parens mouse[rodent] and
rodent(mouse); and we use infix notation (cow
MAKE milk) for transitives (cow 1←− MAKE

2−→
milk, link types ‘1’ and ‘2’).

The right column of Figure 3 shows the digraph
obtained from parsing the formula on the right hand
hand side of the grammar rules. There are no ‘3’
or higher links, as ditransitives like x give y to z are
decomposed at the semantic level into unary and bi-
nary atoms, in this case CAUSE and HAVE, ‘x cause
(z have y)’, see Kornai (2012) for further details. A
digraph representing the whole lexicon was built in
two steps: first, every clause in definitions was man-
ually translated to a formula (which in turns is au-
tomatically translated into a digraph), then the di-
graphs were connected by unifying nodes that have
the same label and no outgoing edges.

The amount of manual labor involved was con-
siderably lessened by the method of Section 3 that
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Figure 3: The syntax of the definitions

finds the feedback vertex set, in that once such a
set is given, the rest could be built automatically.
This gives us a means of investigating the prevalence
of what would become different deep cases (colors,
link types) in other KR systems. Deep cases are dis-
tinguishers that mediate between the purely seman-
tic (theta) link types and the surface case/adposition
system. We have kept our system of deep cases
rather standard, both in the sense of representing a
common core among the many proposals starting
with Gruber (1965) and Fillmore (1968) and in the
sense of aiming at universality, a subject we defer to
the next section. The names and frequency of use in
the core vocabulary are given in Table 2. The results
are indicative of a primary (agent/patient, what we
denote ‘1’/‘2’), a secondary (DAT/REL/POSS), and
a tertiary (locative) layer in deep cases – how these
are mapped on language-specific (surface) cases will
be discussed in Section 5.

freq abbreviation comment
487 AGT agent
388 PAT patient
34 DAT dative
82 REL root or adpositional object
70 POSS default for relational nouns
20 TO target of action
15 FROM source of action
3 AT location of action

Table 2: Deep cases

To avoid problems with multiple word senses
and with constructional meaning (as in dry dis-
tillation or dry martini) we defined each entry in
this formal language (keeping different word senses
such as light/739 ‘the opposite of dark’ and
light/1381 ‘the opposite of heavy’ distinct by
disambiguation indexes) and built a graph directly
on the resulting conceptual network rather than the
original LDOCE definitions. The feedback ver-
tex set algorithm uroboros.py determined that
a core set of 129 concepts are sufficient to define
the others in the entire concept dictionary, and thus
for the entire LDOCE or similar dictionaries such as
CED or Webster’s 3rd. This upper bound is so close
to the NSM lower bound of 65 that a blow-by-blow
comparison would be justified.
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5 Universality

The final issue one needs to investigate in assess-
ing the potential of any purported competence the-
ory is that of universality versus language particu-
larity. For CVS theories, this is rather easy: we have
one system of representation, finite dimensional vec-
tor spaces, which admits no typological variation,
let alone language-specific mechanisms – one size
fits all. As linguists, we see considerable variation
among the surface, and possibly even among the
deeper aspects of case linking (Smith, 1996), but as
computational modelers we lack, as of yet, a better
understanding of what corresponds to such mecha-
nisms within CVS semantics.

ACR systems are considerably more transparent
in this regard, and the kind of questions that we
would want to pose as linguists have direct re-
flexes in the formal system. Many of the original
theories of conceptual representation were English-
particular, sometimes to the point of being as naive
as the medieval theories of universal language (Eco,
1995). The most notable exception is NSM, clearly
developed with the native languages of Australia in
mind, and often exercised on Russian, Polish, and
other IE examples as well. Here we follow the spirit
of GFRG (Ranta, 2011) in assuming a common ab-
stract syntax for all languages. For case grammar
this requires some abstraction, for example English
NPs must also get case marked (an idea also present
in the ‘Case Theory’ of Government-Binding and re-
lated theories of transformational grammar). The
main difference between English and the overtly
case-marking languages such as Russian or Latin is
that in English we compute the cases from preposi-
tions and word order (position relative to the verb)
rather than from overt morphological marking as
standard. This way, the lexical entries can be kept
highly abstract, and for the most part, universal.
Thus the verb go will have a source and a goal.
For every language there is a langspec compo-
nent of the lexicon which stores e.g. for English the
information that source is expressed by the preposi-
tion from and destination by to. For Hungarian the
langspec file stores the information that source
can be linked by delative, elative, and ablative; goal
by illative, sublative, or terminative. Once this
kind of language-specific variation is factored out,

the go entry becomes before AT src, after
AT goal. The same technique is used to encode
both lexical entries and constructions in the sense
of Berkeley Construction Grammar (CxG, see Gold-
berg 1995).

Whether two constructions (in the same language
or two different languages) have to be coded by dif-
ferent deep cases is measured very badly, if at all,
by the standard test suits used e.g. in paraphrase de-
tection or question answering, and we would need
to invest serious effort in building new test suites.
For example, the system sketched above uses the
same deep case, REL, for linking objects that are
surface marked by quirky case and for arguments
of predicate nominals. Another example is the da-
tive/experiencer/beneficent family. Whether the ex-
periencer cases familiar from Korean and elsewhere
can be subsumed under the standard dative role (Fill-
more, 1968) is an open question, but one that can
at least be formulated in ACR. Currently we dis-
tinguish the dative DAT from possessive marking
POSS, generally not considered a true case but quite
prevalent in this function language after language:
consider English (the) root of a tree, or Polish ko-
rzen drzewa. This is in contrast to the less fre-
quent cases like (an excellent) occasion for mar-
tyrdom marked by obliques (here the preposition
for). What these nouns (occasion, condition, rea-
son, need) have in common is that the related word
is goal of the definiendum in some sense. In these
cases we use TO rather than POSS, a decision with
interesting ramifications elsewhere in the system,
but currently below the sensitivity of the standard
test sets.

6 Conclusion

It is not particularly surprising that both CVS and
ACR, originally designed as performance theories,
fare considerably better in the performance realm
than Montagovian semantics, especially as detailed
intensional lexica have never been crafted, and
Dowty (1979) remains, to this day, the path not taken
in formal semantics. It is only on the subdomain
of the logic puzzles involving Booleans and quan-
tification that Montagovian solutions showed any
promise, and these, with the exception of elemen-
tary negation, do not even appear in more down to
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earth evaluation sets such as (Weston et al., 2015).
The surprising conclusion of our work is that stan-
dard Montagovian semantics also falls short in the
competence realm, where the formal theory has long
been promoted as offering psychological reality.

We have compared CVS and ACR theories of lex-
ical semantics to the classical approach based on
meaning postulates by the usual criteria for compe-
tence theories. In Section 2 we have seen that both
ACR and CVS are better in terms of learnability than
the standard formal theory, and it is worth noting that
the number of ACR primitives, 129 in the version
implemented here, is less than the dimensions of
the best performing CVS embeddings, 150-300 af-
ter data compression by PCA or similar methods. In
Section 3 we have seen that lexical relatedness tasks
also favor ACR and CVS over the meaning postulate
approach (for a critical overview of meaning postu-
lates in model-theoretic semantics see Zimmermann
1999), and in Section 4 we have seen that composi-
tionality poses no problems for ACR. How compo-
sitional semantics is handled in CVS semantics re-
mains to be seen, but the problem is not a dearth of
plausible mechanisms, but rather an overabundance
of these.
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Márton Makrai, Dávid Márk Nemeskey, and András Ko-
rnai. 2013. Applicative structure in vector space
models. In Proceedings of the Workshop on Contin-
uous Vector Space Models and their Compositionality,
pages 59–63, Sofia, Bulgaria, August. ACL.

Márton Makrai. 2015. Deep cases in the �4lang
conceptlexicon. In Attila Tancs, Viktor Varga,
and Veronika Vincze, editors, X. Magyar Szmtgpes
Nyelvszeti Konferencia (MSZNY 2014), pages 50–57
(in Hungarian), 387 (English abstract).

Margaret G. McKeown and Mary E. Curtis. 1987. The
nature of vocabulary acquisition. Lawrence Erlbaum
Associates.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013a. Efficient estimation of word represen-
tations in vector space. In Y. Bengio and Y. LeCun,
editors, Proc. ICLR 2013.

174



Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013b. Distributed representa-
tions of words and phrases and their compositionality.
In C.J.C. Burges, L. Bottou, M. Welling, Z. Ghahra-
mani, and K.Q. Weinberger, editors, Advances in Neu-
ral Information Processing Systems 26, pages 3111–
3119. Curran Associates, Inc.

Tomas Mikolov, Wen-tau Yih, and Zweig Geoffrey.
2013c. Linguistic regularities in continuous space
word representations. In Proceedings of NAACL-HLT-
2013, pages 746–751.

George A. Miller and Noam Chomsky. 1963. Finitary
models of language users. In R.D. Luce, R.R. Bush,
and E. Galanter, editors, Handbook of Mathematical
Psychology, pages 419–491. Wiley.

George A. Miller. 1995. Wordnet: a lexical database for
English. Communications of the ACM, 38(11):39–41.

Jeff Mitchell and Mirella Lapata. 2008. Vector-based
models of semantic composition. In Proceedings of
ACL-08: HLT, pages 236–244, Columbus, Ohio. As-
sociation for Computational Linguistics.

T. M. Mitchell, S.V. Shinkareva, A. Carlson, K.M.
Chang, V.L. Malave, R.A. Mason, and M.A. Just.
2008. Predicting human brain activity associated with
the meanings of nouns. Science, 320(5880):1191.

C.K. Ogden. 1944. Basic English: A General Intro-
duction with Rules and Grammar. Psyche miniatures:
General Series. Kegan Paul, Trench, Trubner.

Charles E. Osgood, William S. May, and Murray S.
Miron. 1975. Cross Cultural Universals of Affective
Meaning. University of Illinois Press.

Barbara H. Partee. 1979. Semantics - mathematics or
psychology? In R. Bauerl, U. Egli, and A. von Ste-
chow, editors, Semantics from Different Points of View,
pages 1–14. Springer-Verlag, Berlin.

Barbara Partee. 2013. Changing perspectives on the
‘mathematics or psychology’ question. In Philosophy
Wkshp on “Semantics Mathematics or Psychology?”.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Conference on Empirical Methods in
Natural Language Processing (EMNLP 2014).

H. Putnam. 1976. Two dogmas revisited. printed in his
(1983) Realism and Reason, Philosophical Papers, 3.

M. Ross Quillian. 1968. Word concepts: A theory and
simulation of some basic semantic capabilities. Be-
havioral Science, 12:410–430.

Willard van Orman Quine. 1951. Two dogmas of em-
piricism. The Philosophical Review, 60:20–43.

Aarne Ranta. 2011. Grammatical Framework: Pro-
gramming with Multilingual Grammars. CSLI Pub-
lications, Stanford.
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Abstract

The increasing amount of online content mo-
tivated the development of multi-document
summarization methods. In this work, we
explore straightforward approaches to extend
single-document summarization methods to
multi-document summarization. The pro-
posed methods are based on the hierarchical
combination of single-document summaries,
and achieves state of the art results.

1 Introduction

The use of the Internet to fulfill generic informa-
tion needs motivated pioneer multi-document sum-
marization efforts as NewsInEssence (Radev et al.,
2005) or Newsblaster (McKeown et al., 2002), on-
line since 2001. In general, multi-document sum-
marization approaches have to address two differ-
ent problems: passage selection and information or-
dering. Current multi-document systems adopt, for
passage selection, approaches similar to the ones
used in single-document summarization, and use the
chronological order of the documents for informa-
tion ordering (Christensen et al., 2013). The prob-
lem is that most approaches fail to generate sum-
maries that cover generic topics which comprehend
different, equally important, subtopics.

We propose to extend a state-of-the-art
single-document summarization method, KP-
CENTRALITY (Ribeiro et al., 2013), capable of
focusing on diverse important topics while ignoring
unimportant ones, to perform multi-document sum-
marization. We explore two hierarchical strategies
to perform this extension.

This document is organized as follows: Sect. 2 ad-
dresses the related work; Sect. 3 presents our multi-
document summarization appproach; experimental
results close the paper.

2 Related Work

Most of the current work in automatic summariza-
tion focuses on extractive summarization. The most
popular baselines for multi-document summariza-
tion fall into one of the following general mod-
els: Centrality-based (Radev et al., 2004; Erkan
and Radev, 2004; Wang et al., 2008; Ribeiro and
de Matos, 2011), Maximal Marginal Relevance
(MMR) (Carbonell and Goldstein, 1998; Guo and
Sanner, 2010; Sanner et al., 2011; Lim et al., 2012),
and Coverage-base methods (Lin and Hovy, 2000;
Sipos et al., 2012). Additionally, methods such as
KP-CENTRALITY (Ribeiro et al., 2013), which is
centrality and coverage-based, follow more than one
paradigm. In general, Centrality-based models are
used to produce generic summaries, while the MMR
family generates query-oriented ones. Coverage-
base models produce summaries driven by words,
topics or events.

Centrality-as-relevance methods base the detec-
tion of the most salient passages on the identification
of the central passages of the input source(s). One of
the main representatives of this family is Passage-
to-Centroid Similarity-based Centrality. Centroid-
based methods build on the idea of a pseudo-passage
that represents the central topic of the input source—
the centroid—selecting as passages to be included in
the summary the ones that are close to the centroid.
Another approach to centrality estimation is to com-
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pare each candidate passage to every other passage
and select the ones with higher scores (the ones that
are closer to every other passage): the Pair-wise Pas-
sage Similarity-based Centrality.

MMR (Carbonell and Goldstein, 1998) is a query
driven relevance model based on the following
mathematical model:

arg max
Si

[
λ(Sim1(Si, Q))−(1−λ)(max

Sj

Sim2(Si, Sj))
]

where Sim1 and Sim2 are similarity metrics that
do not have to be different; Si are the yet unselected
passages and Sj are the previously selected ones; Q
is the required query to apply the model; and, λ is
a parameter that allows to configure the result to be
from a standard relevance-ranked list (λ = 1) to a
maximal diversity ranking (λ = 0).

Coverage-based summarization defines a set of
concepts that need to occur in the sentences selected
for the summaries. The concepts are events (Filatova
and Hatzivassiloglou, 2004), topics (Lin and Hovy,
2000), salient words (Lin and Bilmes, 2010; Sipos
et al., 2012), and word n-grams (Gillick et al., 2008;
Almeida and Martins, 2013).

3 Multi-Document Summarization

Our multi-document approach is built upon a cen-
trality and coverage-based single-document summa-
rization method, KP-CENTRALITY (Ribeiro et al.,
2013). This method, through the use of key phrases,
is easily adaptable and has been shown to be robust
in the presence of noisy input. This is an important
aspect considering that using as input several docu-
ments frequently increases the amount of unimpor-
tant content).

When adapting a single-document summarization
method to perform multi-document summarization,
a possible strategy is to combine the summaries of
each document. To iteratively combine the sum-
maries, we explore two different approaches: single-
layer hierarchical and waterfall. Given that the sum-
marization method also uses as input a set of key
phrases, we extract from each input document the
required set of key phrases, join the extracted sets,
and rank the key phrases using their frequency. To
generate each summary, we use the top key phrases,
excluding the ones that do not occur in the input doc-
ument.

3.1 Single-Document Summarization Method
To retrieve the most important sentences of an in-
formation source, we used the KP-CENTRALITY

method (Ribeiro et al., 2013). We chose this model
for its adaptability to different types of information
sources (e.g., text, audio and video), while support-
ing privacy (Marujo et al., 2014), and offering state-
of-art performance. It is based on the notion of com-
bining key phrases with support sets. A support set
is a group of the most semantically related passages.
These semantic passages are chosen using heuristics
based on the passage order method (Ribeiro and de
Matos, 2011). This type of heuristics uses the struc-
ture of the input document (source) to partition the
candidate passages to be included in the support set
in two subsets: the ones closer to the passage asso-
ciated with the support set under construction and
the ones further apart. These heuristics use a per-
mutation, di1, d

i
2, · · · , diN−1, of the distances of the

passages sk to the passage pi, related to the support
set under construction, with dik = dist(sk, pi), 1 ≤
k ≤ N−1, whereN is the number of passages, cor-
responding to the order of occurrence of passages sk
in the input source. The metric that is normally used
is the cosine distance.

The KP-Centrality method consists of two steps.
First, it extracts key phrases using a supervised ap-
proach (Marujo et al., 2012) and combines them
with a bag-of-words model in a compact matrix rep-
resentation, given by:w(t1, p1) . . . w(t1, pN ) w(t1, k1) . . . w(t1, kM )

...
...

w(tT , p1) . . . w(tT , pN )w(tT , k1) . . . w(tT , kM )

 ,
(1)

where w is a function of the number of occur-
rences of term ti in passage pj or key phrase kl,
T is the number of terms and M is the number of
key phrases. Then, using a segmented information
source I , p1, p2, . . . , pN , a support set Si is com-
puted for each passage pi using:

Si , {s ∈ I ∪K : sim(s, qi) > εi ∧ s 6= qi}, (2)

for i = 1, . . . , N +M . Passages are ranked exclud-
ing the key phrases K (artificial passages) accord-
ing to:

arg max
s∈(∪n

i=1Si)−K

∣∣{Si : s ∈ Si}
∣∣. (3)
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3.2 Single-Layer Hierarchical
In this model, we use KP-CENTRALITY to generate,
for each news document, an intermediate summary
with the same size of the output summary for the in-
put documents. An aggregated summary is obtained
by concatenating the chronologically ordered inter-
mediate summaries. The output summary is again
generated by applying KP-CENTRALITY to the ag-
gregated summary as Figure 1 shows.

Figure 1: Single-layer architecture.

3.3 Waterfall
This model differs from the previous one in the
merging process. The underlying merging of the
documents follows a cascaded process: it starts by
merging the intermediate summaries, with the same
size of the output summary, of the first two docu-
ments, according to their chronological order. This
document is then summarized and merged with the
summary of following document. We iterate this
process through all the documents until the most re-
cent one as Figure 2 illustrates.

Figure 2: Waterfall architecture.

4 Experimental Results

We compare the performance of our methods against
other representative models, namely MEAD, MMR,
Expected n-call@k (Lim et al., 2012), and the Port-
folio Theory (Wang and Zhu, 2009). MEAD is a
centroid-based method and one of the most popu-
lar centrality-based methods. MMR is one of the
most used query-based methods. Expected n-call@k
adapts and extends MMR as a probabilistic model
(Probabilistic Latent MMR). The Portfolio Theory
also extends MMR based on the idea of ranking un-
der uncertainty. As baseline, we used the straight-
forward idea of combining all input documents into
a single one, and then submit the document to the
single-document summarization method. Consider-
ing that most coverage-based systems explore event
information, we opted for not including them in this
comparative analysis.

To assess the informativeness of the summaries
generated by our methods, we used ROUGE-1 and
ROUGE-2 (Lin, 2004) on DUC 2007 and TAC 2009
datasets. The main summarization task in DUC
20071 is the generation of 250-word summaries of
45 clusters of 25 newswire documents (from the
AQUAINT corpus) and 4 human reference sum-
maries. The TAC 2009 Summarization task2 has 44
topic clusters. Each topic has 2 sets of 10 news docu-
ments obtained from the AQUAINT 2 corpus.There
are 4 human 100-word reference summaries for each
set, where the reference summaries for the first set
are query-oriented, and for the second set are update
summaries. In this work, we used the first set of ref-
erence summaries. We evaluate the different models
by generating summaries with 250 words. We only
present the best results.

The used features include the bag-of-words model
representation of the sentences (TF-IDF), the key
phrases and the query (obtained from the topics de-
scriptions). Including the query is a new exten-
sion to the KP-CENTRALITY method, which, in
general, improved the results. We experimented
with different numbers of key phrases, obtaining
the best results with 40 key phrases. To compare
and rank the sentences, we use several distance met-
rics, namely: Frac133 (generic Minkowski distance,

1http://www-nlpir.nist.gov/projects/duc/duc2007/tasks.html
2http://www.nist.gov/tac/2009/Summarization/
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DUC 2007 TAC 2009
Distance Model R1 R2 R1 R2
frac133

baseline
0.3565 0.0744 0.4706 0.1268

cosine 0.3406 0.0670 0.4746 0.1391
frac133 waterfall 0.3569 0.0765 0.4943 0.1441
frac133 single-layer 0.3775 0.0882 0.4983 0.1526
cosine waterfall 0.3701 0.0904 0.5137 0.1693
cosine single-layer 0.3707 0.0822 0.4993 0.1590
frac133 single-layer (shuffle) 0.3689 0.0807 0.5060 0.1483
cosine waterfall (shuffle) 0.3626 0.0844 0.5107 0.1630

MEAD 0.3282 0.0765 0.4153 0.0845
MMR 0.3269 0.0780 0.3917 0.0801

E.n-call@k 0.3209 0.0701 0.3873 0.0699
Portfolio 0.3595 0.0792 0.4292 0.0758
LexRank 0.2881 0.0534 0.3845 0.0623

Table 1: ROUGE-1 (R1) and ROUGE-2 (R2) scores.

with N = 1.(3)), Euclidean, Chebyshev, Manhat-
tan, Minkowski, the Jensen-Shannon Divergence,
and the cosine similarity. Table 1 shows that the
best results were obtained by the proposed hierar-
chical models, in both datasets. Overal, the best
performing distance metric for our centrality-based
method was the cosine similarity and the best strat-
egy for combining the information was the water-
fall approach, namely, in terms of ROUGE-2. In
DUC 2007, frac133 using the single-layer method
achieved the best ROUGE-1 score, although the dif-
ference for cosine is hardly noticeable. Single-layer
with frac133 shows a performance improvement
of 0.0180 ROUGE-1 points (relative performance
improvement of 5.0%) over the best of the other
systems, Portfolio, in DUC 2007, and of 0.0845
ROUGE-1 points (19.7% relative performance im-
provement) in TAC 2009. In terms of ROUGE-
2, the waterfall method using cosine achieved an
improvement of 0.0112 (relative performance im-
provement of 14.1%) over Portfolio, in DUC 2007,
and of 0.0848 (relative performance improvement
of 100.4%) over MEAD, the best performing of the
reference systems using this metric, in TAC 2009.
Note that our baseline obtained results similar to the
best reference system in DUC 2007 and better re-
sults than all reference systems in TAC 2009 (0.0454
ROUGE-1 points corresponding to a 10.6% rela-
tive performance improvement; 0.0546 ROUGE-2

points corresponding to a 64.6% relative perfor-
mance improvement). The better results obtained on
the TAC 2009 dataset are due to the small size of
the reference summaries and to the fact that the doc-
uments sets to be summarized contain topics with
higher diversity of subtopics.

The shuffle results included in Table 1 are aver-
ages of 10 trials. They are lower than the other ob-
tained using the documents organized in chronolog-
ical order. This suggests that the order of the input
documents is important to the summarization meth-
ods.

Figure 3 shows an example of summary produced
by our multi-document method. The figure also in-
cludes the respective reference summary for com-
parison.

5 Conclusions and Future Work

In this work, we explore two different approaches to
extend a single-document summarization method to
multi-document summarization: single-layer hierar-
chical and waterfall.

Experimental results show that the proposed ap-
proaches perform better than previous state-of-the-
art methods on standard datasets used to evaluate
this task. In general, the best performing approach is
the waterfall approach using the cosine similarity. In
fact, this configuration achieves the best results on
the TAC 2009 dataset, considering both ROUGE-1
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Generated Summary:

President Bill Clinton said Friday he will appeal a fed-
eral judge’s ruling that struck down a law giving the pres-
ident the power to veto specific items in bills passed by
Congress. The law, passed by Congress last year, allowed
the president for the first time to veto particular items in
spending bills and certain limited tax provisions passed
by Congress. Clinton said the funding that Congress
has added to the bill is excessive and threatened to veto
some items by using the line-item veto power. The White
House said that the president used his authority to can-
cel projects that were not requested in the budget and
would not substantially improve the quality of life of mil-
itary service members. Judge Thomas Hogan ruled that
the law – which gives the president the power to strike
items from tax and spending measures without vetoing
the entire bill – violates the traditional balance of pow-
ers between the various branches of government ”The
Line-Item Veto Act is unconstitutional because it imper-
missibly disrupts the balance of powers among the three
branches of government,” said Thomas Hogan.” In its ap-
peal, the Justice Department argues that the new chal-
lengers also do not have standing to challenge the law,
and that in any case the law is in line with the historic
relationship between Congress and the president.

Reference summary:

Congress passed a law authorizing the line item veto
(LIV) in 1996 accepting arguments that the measure
would help preserve the integrity of federal spending by
allowing the president to strike unnecessary spending and
tax items from legislation thus encouraging the govern-
ment to live within its means. It was considered in line
with the historic relationship between Congress and the
president and would provide a tool for eliminating waste-
ful pork barrel spending while enlivening debate over the
best use of funds. It was argued that the LIV would rep-
resent presidential exercise of spending authority dele-
gated by Congress. President Clinton exercised the LIV
on 82 items in 1997 saving $1.9 billion in spending pro-
jected over five years. The affected items were projects
for specific localities, many in the area of military con-
struction, which had been added to the president’s budget
by Congress. The first court ruling on the LIV act was in
U.S. District Court when in February 1998 it was ruled
unconstitutional on the grounds that it violated the sep-
aration of powers. The Department of Justice appealed
that decision and in June 1998 the Supreme Court ruled
the LIV act unconstitutional but on the grounds that it vi-
olated Article I, 7, Clause 2 (The ”presentment clause”)
of the Constitution that establishes the process by which
a bill becomes law. President Clinton expressed his deep
disappointment.

Figure 3: Example of summary produced by our summa-
rizer and the reference summary Topic D0730G of DUC
2007

and ROUGE-2 metrics, and, although not achieving
the best results in the DUC 2007 dataset, in terms of
ROUGE-1, it also achieves a performance improve-
ment over Portfolio of 0.0106 ROUGE-1 points (rel-
ative performance improvement of 3%).

In future work, we aim to adapt the proposed
multi-document summarization method to perform
abstractive summarization.
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Abstract

The lexical semantic relationships between
word pairs are key features for many NLP
tasks. Most approaches for automatically clas-
sifying related word pairs are hindered by data
sparsity because of their need to observe two
words co-occurring in order to detect the lexi-
cal relation holding between them. Even when
mining very large corpora, not every related
word pair co-occurs. Using novel representa-
tions based on graphs and word embeddings,
we present two systems that are able to predict
relations between words, even when these are
never found in the same sentence in a given
corpus. In two experiments, we demonstrate
superior performance of both approaches over
the state of the art, achieving significant gains
in recall.

1 Introduction

Resources containing lexical-semantic relations
such as hypernymy or meronymy have proven use-
ful in many NLP tasks. While resources such as
WordNet (Miller, 1995) contain many general rela-
tions and subsequently have seen widespread adop-
tion, developing this type of rich resource for new
languages or for new domains is prohibitively costly
and time-consuming. Therefore, automated ap-
proaches are needed and, in order to create such
a lexical-semantic database, a first step is to de-
velop accurate techniques for classifying the type of
lexical-semantic relationship between two words.

Approaches to classifying the relationship be-
tween a word pair have typically relied on the as-
sumption that contexts where word pairs co-occur

will yield information on the semantic relation (if
any) between them. Given a set of example word
pairs having some relation, relation-specific pat-
terns may be automatically acquired from the con-
texts in which these example pairs co-occur (Tur-
ney, 2008b; Mintz et al., 2009). Comparing these
relation-specific patterns with those seen with other
word pairs measures relational similarity, i.e., how
similar is the relation holding between two word
pairs. However, any classification system based on
patterns of co-occurrence is limited to only those
words co-occurring in the data considered; due to
the Zipfian distribution of words, even in a very large
corpus there are always semantically related word
pairs that do not co-occur. As a result, these pattern-
based approaches have a strict upper-bound limit
on the number of instances that they can classify.
As an alternative to requiring co-occurrence, other
works have classified the relation of a word pair us-
ing lexical similarity, i.e., the similarity of the con-
cepts themselves. Given two word pairs, (w1, w2)
and (w3, w4), if w1 is lexically similar to w3 and
w2 to w4 (i.e., are pair-wise similar) then the pairs
are said to have the same semantic relation. These
two sources of information are used as two indepen-
dent units: relational similarity is calculated using
co-occurrence information; lexical similarity is cal-
culated using distributional information (Snow et al.,
2004; Séaghdha and Copestake, 2009; Herdadelen
and Baroni, 2009), and ultimately these scores are
combined. Experimental evidence has shown that
relational similarity cannot necessarily be revealed
through lexical similarity (Turney, 2006b; Turney,
2008a), and therefore, the issue of how to collect in-

182



formation for word pairs that do not co-occur is still
an open problem.

We propose two new approaches to representing
word pairs in order to accurately classify them as
instances of lexical-semantic relations – even when
the pair members do not co-occur. The first ap-
proach creates a word pair representation based on
a graph representation of the corpus created with
dependency relations. The graph encodes the dis-
tributional behavior of each word in the pair and
consequently, patterns of co-occurrence expressing
each target relation are extracted from it as relational
information. The second approach uses word em-
beddings which have been shown to preserve linear
regularities among words and pairs of words, there-
fore, encoding lexical and relational similarities (Ba-
roni et al., 2014), a necessary property for our task.
In two experiments comparing with state-of-the-art
pattern-based and embedding-based classifiers (Tur-
ney, 2008b; Zhila et al., 2013), we demonstrate that
our approaches achieve higher accuracy with signif-
icantly increased recall.

2 Related work

Initial approaches to the extraction of lexical-
semantic relations have relied on hand-crafted
lexico-syntactic patterns to identify instances of
semantic relations (Hearst, 1992; Widdows and
Dorow, 2002; Berland and Charniak, 1999). These
manually designed patterns are explicit construc-
tions expressing a target semantic relation such as
the pattern X is a Y for the relation of hypernymy.
However, these approaches are limited because a re-
lation may be expressed in many ways, depending
on the domain, author, and writing style, which may
not match the originally identified patterns. More-
over, the identification of high-quality patterns is
costly and time-consuming, and must be repeated
for each new relation type, domain and language.
To overcome these limitations, techniques have been
developed for the automatic acquisition of meaning-
ful patterns of co-occurrence cueing a single target
relation (Snow et al., 2004; Girju et al., 2006; Davi-
dov and Rappoport, 2006).

More recent work focuses on methods for the
classification of word pairs as instances of several
relations at once, based on their relational similarity.
This similarity is calculated using a vectorial rep-

resentation for each pair, created by relying on co-
occurrence contexts (Turney, 2008b; Séaghdha and
Copestake, 2009; Mintz et al., 2009). These repre-
sentations are very sparse due to the scarce contexts
where the members of many word pairs co-occur.
Moreover, many semantically related word pairs do
not co-occur in corpus.

For overcoming these issues, relational similar-
ity was combined with lexical similarity calculated
based on the distributional information of words
(Cederberg and Widdows, 2003; Snow et al., 2004;
Turney, 2006a; Séaghdha and Copestake, 2009; Her-
dadelen and Baroni, 2009). However, (Turney,
2006b; Turney, 2008a) showed that relational sim-
ilarity cannot be improved using the distributional
similarity of words. In contrast with the previous ap-
proaches that took into account lexical and relational
information as a linear combination of lexical and
relational similarity scores, the present work focuses
on introducing word pair representations that merge
and jointly represent types of information: lexical
and relational. In this way, we aim to reduce vector
sparseness and to increase the classification recall.

As a first approach, we use a graph to model the
distributional behavior of words. Other researchers
used graph-based approaches to model corpus in-
formation for the extraction of co-hyponyms (Wid-
dows and Dorow, 2002), hypernyms (Navigli and
Velardi, 2010) or synonyms (Minkov and Cohen,
2012), or for inducing word senses (Di Marco and
Navigli, 2013). Navigli and Velardi (2010) have
the most similar representation to ours, creating a
graph that models only definitional sentences. In
contrast, our objective is to create a general repre-
sentation of the whole corpus that can be used for
classifying instances of several lexical semantic re-
lations. The second approach presented in this pa-
per, relies on word embeddings to create word pair
representations. Extensive experiments have lever-
aged word embeddings to find general semantic rela-
tions (Mikolov et al., 2013a; Mikolov et al., 2013b;
Mikolov et al., 2013c; Levy and Goldberg, 2014b).
Nevertheless, only one work has applied word em-
beddings for classifying instances of a lexical se-
mantic relation, specifically the relation hyponymy-
hypernymy (Fu et al., 2014). This relation is more
complex than other semantic relations tested and
therefore, it is reflected in more than one offset, de-
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pending on the domain of each instance. The present
work uses a machine learning approach to discover
meaningful information for the semantic relations
encoded in the dimensions of the embeddings.

3 Task description

The goal of this work is to classify word pairs as in-
stances of lexical-semantic relations. Given a set of
target semantic relations R = {r1, . . . , rn}, and a
set of word pairs W = {(x, y)1, . . . , (x, y)n}, the
task is to label each word pair (x, y)i with the rela-
tion rj ∈ R holding between its members and out-
putting a set of tuples ((x, y)i, rj). For this task, we
propose two novel representations of word pairs (de-
scribed next), which are each used to train a classi-
fier. Following, in Section 3.1 and Section 3.2 we
describe each representation and then, in Section
3.3, we describe the common classification setup
used with both representations.

3.1 Graph-based Representation Model

The present section introduces a novel word pair
representation model based on patterns of co-
occurrence contexts, and on a graph-based corpus
representation created with dependency relations. A
word pair is represented as a vector of features set
up with the most meaningful patterns of context and
filled in with information extracted from the graph
representation of the corpus. We refer to systems
trained with these graph-based representations as
Graph-based Classification systEm (GraCE).

The novelty of this system stands in the graph-
based representation. Its main advantage is that all
the dependency relations of a target word, extracted
from different sentences, are incident edges to its
corresponding node in the graph. Thus, words that
never co-occur in the same context in corpus, are
linked in the graph through bridging words: words
that appear in a dependency relation with each mem-
ber of the pair but in different sentences. With this
representation we address the data sparsity issue,
aiming to overcome the reported major bottleneck
of previous approaches: low recall because informa-
tion can only be gathered from co-occurrences in the
same sentence of two related words.

Word pair representations are created in three
steps:

(1). Corpus representation: the input corpus is
represented as a graph;

(2). Feature selection: the input corpus is used to
extract meaningful patterns of co-occurrence
for each semantic relation ri starting from an
initial set of examples E;

(3). Word pair representation: the information
acquired in (1) and (2) is used to create
vectorial representations of target word pairs.

Next, we present an example of how the graph repre-
sentation of the corpus addresses the sparsity prob-
lem in distributional data and formally introduce
each step of the GraCE algorithm.
Example To illustrate the benefit of acquiring in-
formation about a word pair from the graph instead
of using co-occurrence information, let us consider
that, given the sentences (S1) and (S2) below, we
want to classify the pair (chisel, tool) as an instance
of the relation of hypernymy.
(S1) The students learned how to handle screwdrivers,

hammers and other tools.
(S2) The carpenter handles the new chisel.
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Figure 1: Dependency multigraph built from a two
sentence corpus using GraCE. See text for details.

The word pair (chisel, tool) has a relation of hy-
pernymy but its members do not co-occur in the
same sentence. However, both words occur as ob-
jects of the verb to handle in different sentences,
just like other hypernym word pairs such as (ham-
mer, tool) and (screwdriver, tool) which do co-occur
in the same sentence. This shows that handle is one
of the contexts shared between these semantically
related words that provide information regarding a
possible semantic relatedness between them. Lever-
aging only the information provided by each sen-
tence, as existing pattern-based approaches do, no
evidence is acquired regarding the semantic relation
holding between chisel and tool. GraCE combines
the dependency relations seen in each sentence in
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the graph shown in Figure 1. In this graph, chisel
and tool are connected by a path passing through the
bridging word handle which shows that both chisel
and tool could co-occur in a sentence as objects of
the verb to handle, although they do not in the ex-
ample two-sentence corpus.

Corpus representation The goal of the first step
is to generate a graph connecting semantically asso-
ciated words using observed dependency relations.

Formally, the corpus is represented as a graph
G = (V,E), where V is a set of POS-tagged lem-
mas in a corpus and E is the set of dependency re-
lations connecting two lemmas from V in the cor-
pus. From each parsed sentence of the corpus, a
set of dependency relations linking the words in
it is produced: D = {d1 . . . , d|D|}, where d =
(wi, dep, wj) and wi, wj and dep denote POS-
tagged lemmas and a dependency relation, respec-
tively. The graph G is created using all the depen-
dency relations from D.

The output of this step is a multigraph, where two
words are connected by the set of edges containing
all the dependency relations holding between them
in the corpus.

Feature Selection The goal of the second step
is to collect features associated with each relation
r from the parsed input corpus. Similarly to the
work of Snow et al. (2004), our features are pat-
terns of co-occurrence contexts created with depen-
dency paths. For acquiring patterns of co-occurrence
contexts for each relation r, we use the set of la-
beled examples E, assuming that all the contexts in
which a word pair (x, y)i ∈ E co-occurs provide
information about the relation r holding between
its members. All the dependency paths between x
and y up to three edges are extracted from the de-
pendency graph of each sentence where (x, y)i co-
occur.1 For example, ((hammerN , toolN ), hyper)
is an instance of the relation of hypernymy. In
the dependency graph of sentence (S1), the words
hammerN (hyponym) and toolN (hypernym) are
connected by the dependency path hammerN obj←−−
handleV

obj−−→ toolN . This path is converted into
a pattern of co-occurrence contexts by replacing the
seeds in the path with their parts of speech as fol-

1Paths with more than three edges commonly connect
semantically-unrelated portions of a sentence and therefore are
not beneficial for the purposes of relation classification.

attribute XN
prep such as−1−−−−−−−−−→ toolN

mod−−−→ YJ
co-hyponymy XN

obj−1−−−−→ useV
obj−−→ YN

action XN
obj−1−−−−→ useV

conj−−−→ YV
hypernymy XN

prep such as−1−−−−−−−−−→ toolN
conj−−−→ YN

meronymy XN
nn−1−−−−→ bladeN

conj−−−→ YN

Table 1: Examples of relation features

lows: N obj←−− handleV obj−−→ N . Table 1 illustrates
several examples of pattern of co-occurrence con-
texts.

For the word pairs vectorial representation, the
top 5000 most meaningful patterns are considered in
the final set of patterns P to form a feature space.2

In order to rank the patterns, the tf-idf score is cal-
culated for each pattern with respect to each lexi-
cal semantic relation. Here, tf − idf is defined as
maxj(

log(uniq(pi,rj)+1)∗|R|
|Rp| ), where pi is a pattern of

co-occurrence, uniq(pi, rj) is the number of unique
instances of the relation rj occurring in the pattern
pi and |Rp| is the number of relations rj whose ex-
ample instances are seen occurring in the pattern pi.
Each pattern is then associated with the highest tf-idf
score obtained across all relations.
Word pair representations Using the graph
model G and the set of contextual patterns auto-
matically acquired P, each word pair (x, y) is rep-
resented as a binary distribution over each pattern
from P. Rather than using the input corpus to iden-
tify contexts of occurrence for the word pair (x, y)
and match those with the acquired patterns, GraCE
uses paths connecting x and y inG. All the paths be-
tween x and y up to three edges are extracted from
G. These paths are then matched against the fea-
ture patterns from P and the word pair (x, y) is rep-
resented as a binary vector encoding non-zero val-
ues for all the features matching the pair’s paths
extracted from G, and zero otherwise.3 Because
the graph contains combinations of multiple depen-
dency relations, extracted from various sentences,
paths not observed in the corpus can be found in the
graph.

2Initial experiments tested different amounts of patterns us-
ing held out data and the best results were obtained with the top
5000 patterns.

3Binary weights are used because the feature values are de-
rived observing paths in the graph, which is a generalization of
the corpus; because not all paths in the graph are observed in the
corpus, weighting based on path frequency would encounter the
same data sparsity issue that the graph is intended to overcome.
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3.2 Word Embeddings Representations

The present section introduces two word pair repre-
sentations based on word embeddings. We refer to a
system based on embeddings as Word Embeddings
Classification systEm (WECE). An embedding is a
low-dimensional vectorial representation of a word,
where the dimensions are latent continuous features
and vector components are set to maximize the prob-
ability of the contexts in which the target word tends
to appear. Since similar words occur in similar
contexts the word embeddings learn similar vec-
tors for similar words. Moreover, the vector offset
of two word embeddings reflect the relation hold-
ing between them. For instance, Mikolov et al.
(2013c) give the example that v(king)− v(man) ≈
v(queen) − v(women), where v(x) is the embed-
ding of the word x, indicating the vectors are encod-
ing information on the words’ semantic roles.

For learning word embeddings, we used the Skip-
gram model, improved with techniques of negative
sampling and subsampling of frequent words, which
achieved the best results for detecting semantically
similar words (Mikolov et al., 2013a; Mikolov et
al., 2013b). Moreover, for a fair comparison with
the GraCE system, developed with dependency re-
lations, we also tested the results obtained with
a dependency-based Skip-gram model (Levy and
Goldberg, 2014a). Words occurring only once in
corpus are filtered out and 200-dimensional vectors
are learned.

Two embedding-based representations are consid-
ered for a relation: WECEoffset leverages the offset
of the word embeddings, while WECEconcat concate-
nates the embeddings, both described next.

WECEoffset Representation Mikolov et al.
(2013c) shows that the vectorial representation
of words provided by word embeddings captures
syntactic and semantic regularities and that each
relationship is characterized by a relation specific
vector offset. Word pairs with similar offsets
can be interpreted as word pairs with the same
semantic relation. Therefore, given a target word
pair (x, y), the vectorial representation is calcu-
lated from the difference between its vectors, i.e.,
v((x, y)) = v(x) − v(y). Note that this operation
is dependent on the order of the arguments and is
therefore potentially able to capture asymmetric

relationships.

WECEconcat Representation A novel word pair
representation is proposed to test if the information
encoded directly in the embeddings reflects the se-
mantic relation of the word pair.

A word pair is represented by concatenating the
vectorial representation of its members. Formally,
given a word pair (x, y), whose members vecto-
rial representations are v(x) = (x1, x2, . . . , xn),
and v(y) = (y1, y2, . . . , yn) respectively, the vec-
torial representation of (x, y) is defined as the
concatenation of v(x) and v(y): v((x, y)) =
(x1, x2, . . . , xn, y1, y2, . . . , yn) Consequently the
length of v((x, y)) is 2n, where n is the dimension
of the embedding space.

3.3 Relation Classification
For both representations, a supervised classifier is
trained. Given a set of tuples E = ((x, y)i, ri)
of example instances for each relation ri ∈ R, a
support vector machine (SVM) multi-class classifier
with a radial basis function kernel (Platt, 1999) is
trained using WEKA (Hall et al., 2009) to classify
each word pair based on its representation provided
by a graph-based representation model (Section 3.1)
or a word embeddings representation model (Sec-
tion 3.2) for N different lexical relations. The SVM
classifier generates a distribution over relation labels
and the highest weighted label is selected as the rela-
tion holding between the members of the word pair.

4 Experiments

While several datasets have been created for detect-
ing semantic relations between two words in con-
text (Hendrickx et al., 2010; Segura-Bedmar et al.,
2013), in our work we focus on the classification of
word pairs as instances of lexical-semantic relations
out of context. The performance of the GraCE and
WECE systems is tested across two datasets, focus-
ing on their ability to classify instances of specific
lexical-semantic relations as well as to provide in-
sights into the systems’ generalization capabilities.

4.1 Experimental Setup
Corpora Many pattern-based systems increase the
size of the input corpus in an attempt to overcome
data sparsity and to achieve a better recall. There-
fore, in our experiments, we train our systems using
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two corpora of different sizes: the British National
Corpus (BNC), a 100 million-word corpus, and a
Wikipedia dump created from 5 million pages and
containing 1.5 billion words. The size difference al-
lows us to measure the potential impact of increased
word co-occurrence on recall. Both corpora were
initially parsed with the Stanford dependency parser
in the collapsed dependency format (Manning et al.,
2014).

Embbedings WECEoffset and WECEconcat are
implemented based on a bag-of-words (BoW)
(Mikolov et al., 2013a) and based on dependency
relations (Dep) (Levy and Goldberg, 2014a).

Evaluation We compare each system by reporting
precision (P), recall (R) and F1 measure (F).

4.2 Comparison Systems

The two proposed models are compared with two
state-of-the-art systems and one baseline system.

PAIRCLASS The PairClass algorithm (Turney,
2008b) provides a state-of-the-art pattern-based ap-
proach for extracting and classifying the relation-
ship between word pairs and has performed well for
many relation types. Using a set of seed pairs (x, y)
for each relation, PairClass acquires a set of lexical
patterns using the template [0 to 1 words] x [0 to 3
words] y [0 to 1 words]. Using the initial set of lex-
ical patterns extracted from a corpus, additional pat-
terns are generated by optionally generalizing each
word to its part of speech. ForN seed pairs, the most
frequent kN patterns are retained. We follow Tur-
ney (2008b) and set k = 20. The patterns retained
are then used as features to train an SVM classifier
over the set of possible relation types.

DSZhila & DSLevy Word embeddings have previ-
ously been shown to accurately measure relational
similarity; Zhila et al. (2013) demonstrate state-of-
the-art performance on SemEval-2012 Task 2 (Jur-
gens et al., 2012) which measures word pair similar-
ity within a particular semantic relation (i.e., which
pairs are most prototypical of a semantic relation).
This approach can easily be extended to the clas-
sification setting: Given a target word pair (x, y),
the similarity is computed between (x, y) and each
word pair (x, y)i of a target relation r. The av-
erage of these similarity measurements was taken

as the final score for each relation r.4 Finally, the
word pair is classified as an instance of the rela-
tion with the highest associated score. Two types
of embeddings are used, (a) the word embeddings
produced using the method of Mikolov et al. (2011),
which was originally used in Zhila et al. (2013) and
(b) the embeddings using the method of Levy and
Goldberg (2014a), which include dependency pars-
ing information. We refer to these as DSZhila and
DSLevy, respectively. The inclusion of this sys-
tem enables comparing the performance impact of
using an SVM classifier with our embedding-based
pair representations versus classifying instances by
comparing the embeddings themselves. We note a
DS system represents a minimally-supervised sys-
tem whose features are produced in an unsupervised
way (i.e., through the embedding process) and are
therefore not necessarily tuned for the task of rela-
tion classification; however, such embeddings have
previously been shown to yield state-of-the-art per-
formance in other semantic relation tasks (Baroni et
al., 2014) and therefore the DS systems are intended
to identify potential benefits when adding feature se-
lection by means of the SVM in WECE systems.

BASELINE The purported benefit of the GraCE
model is that the graph enables identifying syntac-
tic features between pair members that are never ob-
served in the corpus, which increases the number of
instances that can be classified without sacrificing
accuracy. Therefore, to quantify the effect of the
graph, we include a baseline system, denoted BL,
that uses an identical setup to GraCE but where the
feature vector for a word pair is created only from
the dependency path features that were observed in
the corpus (as opposed to the graph). Unlike the
GraCE model which has binary weighting (due to
the graph properties), the baseline model’s feature
values correspond to the frequencies with which pat-
terns occur; following common practice, the values
are log-normalized.

4.3 Experiment 1

Both of the proposed approaches rest on the hypoth-
esis that the graph or embeddings can enable accu-
rate pair classification, even when pairs never co-

4Additional experiments showed that using alternate ways
of measuring similarity, such as using the maximum similarity
for any instance of r, attained similar results.
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Domain #Co-hypo #Hyper #Mero
Animals 8038 (92.4%) 3039 (97.2%) 386 (89.1%)
Plants 18972 (95.5%) 1185 (97.4%) 330 (82.4%)
Vehicles 530 (82.6%) 189 (97.9%) 455 (100%)

Table 2: Distribution of K&H dataset, with the % of
instances which occur in the corpora.

BNC Wikipedia
P R F P R F

PairClass 76.9 4.6 8.7 77.0 11.7 20.4
BL 82.6 7.7 14.2 89.4 16.2 27.5
GraCE 90.7 43.8 59.0 94.0 75.5 83.7
DSZhila 31.6 15.7 21.0 32.8 22.6 26.8
DSLevy 18.7 11.4 14.2 27.7 15.6 20.0
WECEBoW

offset 96.0 59.1 73.1 96.8 87.7 92.0
WECEBoW

concat 97.4 60.0 74.2 97.6 89.3 93.2
WECEDep

offset 87.9 63.1 73.5 95.4 86.1 90.5
WECEDep

concat 93.1 64.7 76.4 96.7 88.4 92.4

Table 3: Aggregated results obtained for the in-
domain setup with the K&H dataset. Detailed results
are presented in the Appendix A.

occur in text. Therefore, in the first experiment,
we test whether the recall of classification systems
is improved when the word pair representation en-
codes information about lexical and relational sim-
ilarity. As an evaluation dataset, we expand on the
dataset of Kozareva and Hovy (2010) (K&H), which
was collected from hyponym-hypernym instances
from WordNet (Miller, 1995) spanning three topi-
cal domains: animals, plants and vehicles. Because
our systems are capable of classifying instances with
more than one relation at once, we enhance this
dataset with instances of two more relation types:
co-hyponymy and meronymy. Co-hyponyms are ex-
tracted directly from the K&H dataset: two words
are co-hyponyms if they have the same direct ances-
tor.5 To avoid including generic nouns, such as “mi-
grator” in the “animal” domain, only leaf nodes are
considered. The meronym instances are extracted
directly from WordNet. The final dataset excludes
multi-word expressions, which were not easily han-
dled by any of the tested systems. The total number
of instances considered in our experiments is pre-
sented in Table 2.
Results Table 3 presents the average of the results
obtained by the systems when tested in-domain in

5y is a direct ancestor of x if there is no other word z which
is hypernym of x and hyponym of y.

a 10-fold cross-validation setup. For the in-domain
setup, only instances from one domain are used for
training and testing.

As expected, all the systems gain recall with a
larger corpus, like Wikipedia, showing that the recall
depends on the size of that corpus when a system ac-
quires its distributional information directly from the
input corpus and thus is dependent on the word pairs
co-occurring. Indeed, in the BNC, only 19.4% of the
K&H instances never co-occur, while in Wikipedia
–a corpus 15 times larger than BNC– the number
of co-occurrences rises only to 30.7%, demonstrat-
ing the challenge of classifying such pairs. There-
fore, the real upper-bound limit for these types of
systems is the amount of word pairs co-occurring in
the same sentence in the corpus. The recall achieved
by GraCE overcomes this limitation of pattern-based
systems: 40% and 78.7% of the instances that never
co-occur in BNC and in Wikipedia, respectively, are
correctly classified by GraCE. This ability causes
GraCE to improve the BL performance by 8.1 points
in precision and 36.1 points in recall on BNC and 4.6
points in precision and 59.3 in recall on Wikipedia.
Given that the BL system is constructed identically
to GraCE but without using a graph, these results
demonstrate the performance benefit of joining the
distributional information of a corpus into a graph-
based corpus representation.

Analyzing the false negatives of the GraCE clas-
sifier, we observe that even relying on a graph-
based corpus representation to extract the distribu-
tional information of a word pair, many errors are
still caused by the sparsity of their vectorial repre-
sentation. For the word pairs that do not co-occur in
the same sentence, the GraCE vector representations
of correctly-classified pairs have a median of eight
non-zero features, indicating that the graph was ben-
eficial for still providing evidence of a relationship;
in contast, incorrectly-classified pairs had a median
of only three non-zero features, suggesting that data
sparisity is still major contributor to classification er-
ror.

By combining all the distributional information
into a denser vector, WECE systems are able to im-
prove upon GraCE’s results by an average of 2.9
points in precision and 17.9 points in recall. WECE
results see an increase by 62 points in precision and
46 in recall over DSZhila which used the same em-
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beddings, highlighting the importance of the SVM
classifier for learning which features of the embed-
dings reflect the lexical relation. Although embed-
dings have been argued to reflect the semantic or
syntactic relations between two words (Mikolov et
al., 2013c), our results suggest that additional ma-
chine learning (as done with WECEoffset) is needed
to identify which dimensions of the embeddings ac-
curately correspond to specific relationships. Be-
tween the WECE systems, WECEconcat achieves
slightly better results on the K&H dataset.

4.4 Experiment 2

In the first experiment, the proposed systems were
compared to test the importance of having a repre-
sentation that includes information about lexical and
relational similarities for the classifier to generalize
and to gain recall. Therefore, as further validation, a
second experiment is carried out, where the systems
have to classify word pairs from a different domain
than the domains in the training set. The objective is
to assess the importance of the domain-aware train-
ing instances for the classification.

The K&H dataset contains only instances from
three domains and is imbalanced between the num-
ber of instances across domains and relation types.
Therefore, our second experiment tests each method
on the BLESS dataset (Baroni and Lenci, 2011),
which spans 17 topical domains and includes five
relation types, the three in K&H and (a) attributes of
concepts, a relation holding between nouns and ad-
jectives, and (b) actions performed by/to concepts a
relation holding between nouns and verbs. In total,
the BLESS dataset contains 14400 positive instances
and an equal number of negative instances. This ex-
periment measures the generalizability of each sys-
tem and tests the capabilities of the systems for
lexical-semantic relation types other than taxonomic
relations.

Domain-aware training instances To show the
importance of the domain-aware training instances,
the average results of the systems obtained for the
in-domain setup across the BLESS dataset are com-
pared with the average results obtained when the
systems are trained out-of-domain. For the out-of-
domain setup, one domain is left out from the train-
ing set and used for testing. The experiment was
repeated for each domain and the average results are

In-domain Out-of-domain
P R F P R F

PairClass 66.8 35.6 46.4 78.9 43.2 55.8
BL 79.5 51.6 62.6 71.7 40.0 51.4
GraCE 87.7 85.0 86.3 66.2 36.3 46.9
DSZhila 62.1 47.4 53.7 50.7 46.9 48.7
DSLevy 53.0 49.2 51.0 51.1 47.5 49.2
WECEBoW

offset 90.0 90.9 90.4 68.0 66.9 67.5
WECEBoW

concat 89.9 91.0 90.4 83.8 57.0 67.8
WECEDep

offset 85.3 86.5 85.9 68.7 62.3 65.4
WECEDep

concat 85.9 87.0 86.5 78.2 63.8 70.3

Table 4: Aggregated results obtained when systems
are tested with the BLESS dataset over BNC.

Figure 2: F1 scores distribution across domains for
each proposed system and relation type over BNC
corpus.

presented in Table 4. In this experiment, the systems
are tested over the BNC corpus to show the capabil-
ities of the systems to classify out-of-domain in a
more reduced corpus.

Results When no examples from a domain are
provided, a general significant decrease in perfor-
mance is observed. The GraCE performance de-
creases 39.4 points in F1, while the WECE systems
decrease 20.55 points in average.

The results obtained show that when the instances
to be classified are less homogeneous, i.e. when
the instances belong to different domains, none of
the systems can achieve the level of performance
reported for the in-domain setup. These were the
expected results for the GraCE system due to the
lexical features that it uses and which are domain
dependent. However, the WECE systems are also
affected by this lack of domain-aware training in-
stances. WECEconcat results decrease because sim-
ilar embeddings are associated with similar words.
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When two words belong to two different topical do-
mains, their embeddings are less similar and, there-
fore, the SVM system cannot learn distinctive fea-
tures for each lexical-semantic relation.

In-domain results per relation type In this work
we are interested in creating a general approach for
the classification of any lexical semantic relation in-
stances. Figure 2 shows the box and whisker plot of
the results obtained per relation type across domains
in the in-domain setup over the BNC corpus.

Discussion The results confirm that the proposed
systems achieve satisfactory results across all the
relations, the median of the results being around
90 points in F1. The most accurate system is
WECEbow, which supports the assertion by Levy
and Goldberg (2014a) that bag-of-word embeddings
should offer superior performance to dependency-
based embeddings on task involving semantic rela-
tions. Carrying out an error analysis, the lowest re-
sults of the WECE systems are obtained in the do-
mains with the fewest training instances, making ap-
parent that word embedding systems are dependent
on the number of training instances. For these do-
mains, GraCE achieves better results.

5 Conclusions

In this paper we have presented two systems for clas-
sifying the lexical-semantic relation of a word pair.
Both are designed to address the challenge of data
sparsity, i.e., classifying word pairs whose mem-
bers never co-occur, in order to improve classifica-
tion recall. The two main contributions are the word
pair vectorial representations, one based on a graph-
based corpus representation and the other one based
on word embeddings. We have demonstrated that
by including information about lexical and relational
similarity in the word pair vectorial representation,
the recall of our systems increases, overcoming the
upper-bound limit of state-of-the-art systems. Fur-
thermore, we show that our systems are able to clas-
sify target word pairs into multiple lexical seman-
tic relation types, beyond the traditional taxonomic
types. In future work, we plan to analyze the prop-
erties of the instances that can be classified with the
GraCE system but not with the WECE systems.
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Appendix

A Full Classifier Results

BNC Wikipedia
P R F P R F

P
ai
rC

la
ss

C 84.1 3.6 6.9 92.4 9.3 16.8
H 79.7 10.1 17.9 75.6 26.1 38.8
M 38.6 8.5 14.0 23.9 15.5 18.8
* 76.9 4.6 8.7 77.0 11.7 20.4

B
L

C 84.4 5.6 10.4 88.8 13.8 23.9
H 82.4 20.1 32.3 92.7 31.9 47.5
M 69.4 12.8 21.6 77.3 14.5 24.4
* 82.6 7.7 14.2 89.4 16.2 27.5

G
ra

C
E

C 90.9 43.7 59.0 94.2 78.7 85.7
H 90.5 48.9 63.5 93.2 67.8 78.5
M 87.5 26.3 40.4 91.8 28.7 43.7
* 90.7 43.8 59.0 94.0 75.5 83.7

D
S

C 97.2 8.0 14.8 95.5 11.5 20.5
H 28.2 58.6 38.1 29.1 85.4 43.4
M 8.4 36.4 13.7 8.5 48.0 14.5
* 31.6 15.7 21.0 32.8 22.6 26.8

D
S
D

ep
C 82.0 2.6 5.0 84.0 5.2 9.8
H 20.7 62.7 31.1 21.8 80.7 34.4
M 5.1 26.1 8.6 11.3 43.6 17.9
* 18.7 11.4 14.2 27.7 15.6 20.0

W
E
C
E
B

ow

of
f
se

t C 95.9 60.4 74.1 96.6 89.7 93.0
H 98.1 56.5 71.7 98.9 85.3 91.6
M 88.6 38.3 53.5 90.8 51.2 65.4
* 96.0 59.1 73.1 96.8 87.7 92.0

W
E
C
E
B

ow

co
n
ca

t C 98.2 60.6 74.9 98.5 89.8 93.9
H 96.0 60.1 73.9 97.1 91.3 94.1
M 81.1 45.9 58.7 77.9 68.6 72.9
* 97.4 60.0 74.2 97.6 89.3 93.2

W
E
C
E
D

ep

of
f
se

t C 87.0 66.5 75.4 95.1 88.1 91.5
H 96.6 51.9 67.5 98.1 84.3 90.7
M 83.1 26.4 40.1 88.2 44.7 59.3
* 87.9 63.1 73.5 95.4 86.1 90.5

W
E
C
E
D

ep

co
n
ca

t C 94.0 66.7 78.0 98.0 89.2 93.4
H 93.1 60.2 73.1 95.5 90.3 92.8
M 67.0 35.8 46.7 69.5 62.0 65.6
* 93.1 64.7 76.4 96.7 88.4 92.4

Table 5: Detailed results for each relation tested, co-
ordination (C), hypernymy (H) and meronymy (M),
and the aggregated results (*) obtained with K&H
dataset over BNC and Wikipedia.
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Abstract

A major problem in research on Textual Entail-
ment (TE) is the high implementation effort for
TE systems. Recently, interoperable standards
for annotation and preprocessing have been
proposed. In contrast, the algorithmic level
remains unstandardized, which makes compo-
nent re-use in this area very difficult in prac-
tice. In this paper, we introduce multi-level
alignments as a central, powerful representa-
tion for TE algorithms that encourages modu-
lar, reusable, multilingual algorithm develop-
ment. We demonstrate that a pilot open-source
implementation of multi-level alignment with
minimal features competes with state-of-the-
art open-source TE engines in three languages.

1 Introduction

A key challenge of Natural Language Processing is
to determine what conclusions can be drawn from a
natural language text, a task known as Textual Entail-
ment (TE, Dagan and Glickman 2004). The ability to
recognize TE helps dealing with surface variability in
tasks like Question Answering (Harabagiu and Hickl,
2006), Intelligent Tutoring (Nielsen et al., 2009), or
Text Exploration (Berant et al., 2012). Open source
implementations a number of TE algorithms have be-
come available over the last years, including BIUTEE
(Stern and Dagan, 2012) and EDITS (Kouylekov and
Negri, 2010), which has made it much easier for end
users to utilize TE engines.

At the same time, the situation is still more difficult
for researchers and developers. Even though recently
a common platform for TE has been proposed (Padó

et al., 2015) that standardizes important aspects like
annotation types, preprocessing, and knowledge re-
sources, it largely ignores the algorithmic level. In
fact, TE algorithms themselves are generally not de-
signed to be extensible or interoperable. Therefore,
changes to the algorithms – like adding support for a
new language or for new analysis aspect – are often
very involved, if not impossible. This often forces
the next generation of TE researchers to develop and
implement their own core algorithms from scratch.

In this paper, we address this problem by propos-
ing a schema for TE algorithms that revolves around
a central representation layer called multi-level align-
ment geared towards encoding the relevant informa-
tion for deciding entailment. The use of multi-level
alignments encourages a modular, extensible devel-
opment of TE algorithms that can be partitioned into
“alignment producers” and “alignment consumers”.
This enables for future researchers and developers
to change analysis components or add new ones in a
straightforward manner.

We also present evaluation results for a very simple
TE algorithm based on multi-level alignments for
English, German and Italian. It utilizes a minimal
set of analyzers and four basic language-independent
features. It can thus be regarded as a baseline of
the performance achievable with this approach. The
results can already compete with the best open-source
engines available for each of the languages.

2 TE with Multi-Level Alignments

The quality of the word alignment between a Text (T)
and a Hypothesis (H) has been used very early as a
simple feature to decide about TE. When it was found
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Figure 1: Dataflow for TE algorithms based on multi level
alignment

that alignment strength can be misleading (MacCart-
ney et al., 2006), alignment was understood as an
intermediate step whose outcome is a set of corre-
spondences between parts of T and H that can be used
to define (mis-)match features. Alignments can be es-
tablished at the word level, phrase level (MacCartney
et al., 2008), or dependency level (Dinu and Wang,
2009). Dagan et al. (2013) generalized this practical
use to an architectural principle: They showed that
various TE algorithms can be mapped onto a uni-
versal alignment-based schema with six steps: pre-
processing, enrichment, candidate alignment genera-
tion, alignment selection, and classification.

Proposal. Our proposal is similar to, but simpler
than, Dagan et al.’s. Figure 1 shows the data flow.

First, the text and the hypothesis are linguistically
pre-processed. Then, the annotated T-H pair becomes

the input for various independent aligners, which
have access to knowledge resources and can compute
any evidence for or against entailment that can be
represented as a weighted alignment between any
linguistic levels of H and T. Note that this includes
many analyses not normally treated as alignment, e.g.
match or mismatch in negation or modality between
parts of T and H. The union of all alignments forms
the central data structure, the Multi-Level Alignments.

The next step is feature extraction. Features can
be extracted on the basis of individual alignments, or
from sets of alignments. We assume that the features
form a vector describing the T-H pair, and that the
last step is supervised entailment classification.

Discussion. The main difference to Dagan et al.’s
schema is that we intentionally leave out the step
of alignment selection which explicitly selects a sin-
gle alignment for each part of H or T, typically the
globally most probable one. Our decision to forgo
selection is grounded in our design of multi-level
alignments as a repository that supports coexistence
of information from different sources. This has the
following benefits: (a) aligners become decoupled
in that adding a new aligner does not have a direct
impact on other aligners; (b) alignments produced by
different aligners can have different semantics, e.g.
positive (match) or negative (mismatch); (c) inter-
actions between alignments can still be captured by
defining features in the feature extraction step.

In this manner, multi-level alignments serve as an
abstraction layer that encourages the development
of TE algorithms composed of small, self-contained
modules that solve specialized tasks in TE recogni-
tion. Each of these modules consists of two parts:
an aligner, and a set of feature extractors. A priori,
each module can be defined independently; to intro-
duce interactions with other modules, it should be
sufficient to extend the feature extractors.

The practical benefit for the developer is that even
relatively complex TE algorithms use a small set
of well-defined interfaces, which makes them easy
to manage, even at the implementation level. The
startup cost is getting acquainted with the common
data structure of multi-level alignments. We believe
that developers are willing to pay this cost, especially
when this provides them with a platform that supports
multilingual pre-processing and resources.
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3 Implementation and Evaluation

We describe an implementation of a pilot TE algo-
rithm based on the Multi-Level Alignment approach
and its evaluation in three languages (EN, DE, IT).
The system is available as open-source.1

3.1 Technical Foundations

We implement the algorithm within an open source
TE development platform (Padó et al., 2015).
The platform provides various multilingual pre-
processing pipelines and knowledge resources such
as WordNet, VerbOcean, etc., under a shared
API. For pre-processing, we use TreeTagger-based
pipelines for all three languages.

Another important service provided by the plat-
form is the ability of storing a wide range of linguistic
annotations in a common, language-independent data
representation. The platform uses UIMA CAS (Fer-
rucci and Lally, 2004) as the data container, adopts
the DKPro type system (de Castilho and Gurevych,
2014), and defines annotation types which can be
extended in a controlled manner. We used this capa-
bility to define a multilingual Multi-Level Alignment
layer with little implementation effort.

3.2 A Minimal Set of Aligners

The pilot algorithm restricts itself to three aligners.
All three are fully language-independent, even if two
use language-specific knowledge resources.

Lexical Aligner. The lexical aligner adds an align-
ment link for a pair of lemmas in T and H if it finds
some kind of semantic relationships between them
in a set of lexical resources. The link is directed,
labeled (by the semantic relation, e.g. “synonym”,
“antonym”) and weighted, with the weight indicating
the strength of the relationship. Note that this aligner
can on its own already produce alignment links with
inconsistent semantics (positive and negative). For
English, WordNet and VerbOcean were used as lexi-
cal resources. Italian WordNet was used for Italian,
and GermaNet and German DerivBase (Zeller et al.,
2013) were used as lexical resources for German.

1As a part of Excitement Open Platform for Textual En-
tailment. https://github.com/hltfbk/EOP-1.2.1/
wiki/AlignmentEDAP1

Paraphrase Aligner. The paraphrase aligner con-
centrates on surface forms rather than lemmas and
can align sequences of them rather than just individ-
ual tokens. It uses paraphrase tables, e.g. extracted
from parallel corpora (Bannard and Callison-Burch,
2005). The alignment process is similar to the lexical
aligner: any two sequences of tokens in T and H are
aligned if the pair is listed in the resource. The align-
ment links created by this aligner instantiate only
one relation (“paraphrase”) but report the strength of
the relation via the translation probability. We used
the paraphrase tables provided by the METEOR MT
evaluation package (Denkowski and Lavie, 2014),
which are available for numerous languages.

Lemma Identity Aligner. This aligner does not
use any resources. It simply aligns identical lem-
mas between T and H and plays an important role in
practice to deal with named entities.

3.3 A Minimal Feature Set

Similar to the aligners, we concentrate on a small set
of four features in the pilot algorithm. Again, the
features are completely language independent, even
at the implementation level. This is possible because
the linguistic annotations and the alignments, use a
language-independent type system (cf. Section 3.1).

All current features measure some form of cov-
erage on the Hypothesis, i.e. the percentage of H
that can be explained by T. The underlying hypoth-
esis is that a higher coverage of H corresponds to a
higher chance of entailment. Since parts-of-speech
arguably differ in the importance of being covered,
we compute coverage for four sets of words sepa-
rately: (a), for all words; (b), for content words; (c),
for verbs; (d), for proper names (according to the
POS tagger). The features are defined on the union
of all produced alignments: i.e., two words count as
aligned if they were aligned by any aligner. Clearly,
this is an overly simplistic (albeit surprisingly effec-
tive) strategy. It can be considered a baseline for our
approach that can be extended with many features
that suggest themselves from the literature.

4 Experimental Evaluation

Evaluation 1: RTE-3. RTE-3 was the third in-
stance of the yearly benchmarking workshops of the
Textual Entailment community (Giampiccolo et al.,
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English German Italian
MultiAlign 67.0 64.5 65.4
BIUTEE 67.0 - -
TIE 65.2 63.1 -
EDITS 63.6 - 62.6
RTE3 median 61.8

Table 1: Accuracy evaluation on the RTE3 dataset

2007). The English dataset created for RTE-3 con-
sists of 800 training and 800 testing T-H pairs. Later,
the RTE-3 dataset was translated into both German
and Italian (Magnini et al., 2014). It is the only Tex-
tual Entailment dataset in multiple languages with
the same content. The task is binary TE recognition,
with baseline of 50% accuracy (balanced classes).

We trained and tested our Multi-Level Alignment
approach (MultiAlign) on the RTE-3 dataset sepa-
rately for each language. We compare against the
other RTE systems from the platform by Padó et al.
(2015), namely BIUTEE (Stern and Dagan, 2012),
EDITS (Kouylekov and Negri, 2010), and TIE (Wang
and Zhang, 2009). Each system is configured with
its best known configurations. The pilot system sup-
ports all three languages, while others support one
(BIUTEE) or two languages (EDITS, TIE).

The results are shown in Table 1. The pilot system
performs well in all three languages. It ties with BIU-
TEE on English and it outperforms TIE and EDITS in
their respective results on German and Italian. This
is particularly notable since all three systems have
gone through several years of development, while
MultiAlign is only a pilot implementation.

Evaluation 2: T-H pairs from Application Data.
We perform the second evaluation on real-world ap-
plication data from two application datasets: an en-
tailment graph dataset (for English and Italian), and
an e-mail categorization dataset (for German). En-
tailment graph building is the task of constructing
graphs that hierarchically structure the statements
from a collection (Berant et al., 2012) for the ap-
plication of Text Exploration. In TE-based e-mail
categorization, the goal is to assign the right cate-
gory to an email with TE, using the email as T and a
category description as H. (Eichler et al., 2014).

Due to space constraints, we cannot evaluate these
applications end-to-end. Instead, we focus on the

English German Italian
MultiAlign 69.2 72.4 69.5
BIUTEE 71.3 - -
TIE 67.3 72.4 -
EDITS 66.6 - 65.6

Table 2: F1 evaluation on application data

respective first step, the binary decision of entailment
for individual T-H pairs. This task corresponds to
RTE-3, and the main difference to Evaluation 1 is
that these pairs come from real-world interactions
and were produced by native speakers. All T-H pairs
are sampled from application gold data which were
manually constructed on the basis of anonymized cus-
tomer interactions (Eichler et al. (2014) for German;
Kotlerman et al. (2015) for English and Italian2).
The sets are fairly large (5300 pairs for English, 1700
for Italian, 1274 for German), and were sampled to
be balanced. We report F1 for comparability with
non-balanced setups (our random baseline is F1=50).

Table 2 shows our evaluation results. MultiAlign
system beats EDITS for Italian (+4), and ties with
TIE for German. On English, BIUTEE still outper-
forms MultiAlign (-2). Thus, MultiAlign also per-
forms acceptably on real-world data.

In sum, we find that MultiAlign is already compet-
itive with state-of-the-art open-source TE engines on
three languages. MultiAlign is not only much less
complex, but it is also a single system covering all
three languages, without any language-specific opti-
mizations. We interpret this as a positive sign for the
future of the Multi-Level Alignment approach.

Visualization. The platform also supports visual-
ization of individual Text-Hypothesis pairs, showing
the alignments that were created by the system as
well as the features computed on the basis of the
alignments. The visualization was built on the basis
of the BRAT library.3

Figure 2 shows an example for the Text The judges
made an assessment of Peter’s credibility and the
Hypothesis The judges assessed if Peter was credible.
The top line shows the final prediction, Entailment,
and the confidence (75%). The main part shows the
Text and the Hypothesis below each other, connected

2Both datasets are publicly available.
3http://brat.nlplab.org/index.html
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Figure 2: Screenshot of the Multi-Level Alignment Visualizer

by alignment links that are labeled with their source
and their score. Note that the alignments can link
individual words (assessment and assess are aligned
through a derivational link from WordNet) but also
phrases (The two occurrences of The judges in Text
and Hypothesis are linked by virtue of being identical
lemmas).

The three features currently used by the English
system are are shown below. As can be seen, they
aggregate very simple statistics about the alignments:
5 of 7 tokens in the hypothesis are covered, 4 out
of 5 content words, and the one proper name is also
aligned. This situation motivates nicely the use of
those features: a relatively low alignment coverage
on all tokens is still compatible with entailment as
long as the crucial tokens are aligned.

This visualization enables end users to quickly
take in the justification behind the system’s decision.
Developers can inspect alignments and features for
plausibility and detect possible bugs and assess the
limitations of aligners and their underlying resources.
For example, the current example shows a wrong

link produced by the VerbOcean resource between
the noun judges in the Text and the verb assessed in
the Hypothesis. The reason is that the noun judges
is mistaken for an inflected form of the verb to judge
which indeed stands in a Stronger-than relationship
to to assess.

5 Conclusion

This paper proposed the use of multi-level alignments,
a rich data structure allowing multiple alignments to
co-exist. We argued that multi-level alignments are a
suitable basis for developing Textual Entailment algo-
rithms by virtue of providing a beneficial abstraction
layer that supports extensible and modular entailment
algorithms. A pilot TE algorithm developed in this
schema showed performance comparable to much
more sophisticated state-of-the-art open-source TE
engines and is available as open source software.
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rivBase: Inducing and evaluating a derivational mor-
phology resource for German. In Proceedings of ACL,
pages 1201–1211, Sofia, Bulgaria.

198



Proceedings of the Fourth Joint Conference on Lexical and Computational Semantics (*SEM 2015), pages 199–204,
Denver, Colorado, June 4–5, 2015.

Leveraging Preposition Ambiguity to Assess Compositional Distributional
Models of Semantics

Samuel Ritter∗
Princeton University

Cotie Long
Indiana University

Denis Paperno
University of Trento

Marco Baroni
University of Trento

Matthew Botvinick
Princeton University

Adele Goldberg
Princeton University

Abstract

Complex interactions among the meanings of
words are important factors in the function
that maps word meanings to phrase meanings.
Recently, compositional distributional seman-
tics models (CDSM) have been designed with
the goal of emulating these complex interac-
tions; however, experimental results on the ef-
fectiveness of CDSM have been difficult to in-
terpret because the current metrics for assess-
ing them do not control for the confound of
lexical information. We present a new method
for assessing the degree to which CDSM cap-
ture semantic interactions that dissociates the
influences of lexical and compositional infor-
mation. We then provide a dataset for per-
forming this type of assessment and use it
to evaluate six compositional models using
both co-occurrence based and neural language
model input vectors. Results show that neural
language input vectors are consistently supe-
rior to co-occurrence based vectors, that sev-
eral CDSM capture substantial compositional
information, and that, surprisingly, vector ad-
dition matches and is in many cases superior
to purpose-built paramaterized models.

1 Introduction

Consider the meanings of the following phrases:
“red apple,” “red hair,” and “red state.” The meaning
of the word “red” in each of these examples interacts
with the meaning of the noun it modifies, applying

∗Please address correspondence to the first author at swrit-
ter@princeton.edu

a different color to the first two and a political af-
filiation to the third. This is an example of a com-
mon phenomenon in natural language in which the
meaning of a whole expression is not derived from
a simple concatenation of its parts, but is composed
by interactions among their meanings.

Cognitive and computer scientists have pointed
out this complexity and proposed various models for
accommodating it (Kintsch, 2001; Mitchell and La-
pata, 2010; Socher et al., 2013). A dominant model-
ing approach seeks to learn functions that combine
word representations derived from the distributional
structure of large natural language corpora (Deer-
wester et al., 1990; Landauer and Dumais, 1997).
Because the word representations to be combined
and the compositional functions are generated based
on the distributions of words in corpora, these mod-
els have been dubbed compositional distributional
semantic models, or CDSM (Marelli et al., 2014).
CDSM produce fixed-dimensional vector represen-
tations of arbitrary sentences and phrases, and the
foundational principle of these models is, stated sim-
ply, that semantically similar phrases should have
vector representations that are close together in the
vector space.

1.1 CDSM Assessment

Past studies have tested how well CDSM adhere to
this principle by comparing the vector similarity of
pairs of sentences with similarity ratings given by
humans. Many of these studies used datasets in
which the amount of lexical overlap between the
sentence pairs is not carefully controlled, e.g., the
datasets of Dolan and Brockett (2005) and Agirre
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et al. (2014). One such study obtained the influen-
tial result that on such a dataset, simple composition
models such as vector addition perform compara-
bly to a state-of-the-art composition model (Blacoe
and Lapata, 2012). The success of these simplis-
tic models led to the conjecture that these data sets
fail to assess critical aspects of language (Baroni et
al., 2014a) and leaves open the question of whether
CDSM would outperform simplistic models in a set-
ting in which lexical cues are uninformative.

In the present study, we develop a method for re-
moving the confound of lexical cues from CDSM as-
sessment. The method is to create a set of sentences
where each sentence fits into a semantic category
and where a sentence’s semantic category cannot be
determined based on any individual word in the sen-
tence. CDSM are then challenged to create a vector
space in which the representations for sentences in a
given category cluster together, even though the in-
dividual word vectors do not cluster together. This
clustering can be tested by training a simple linear
classifier on the CDSM representations, then testing
it on representations for held out sentences.

Here, we build a suitable test set by leveraging
the lexical ambiguity inherent in locative expres-
sions. Locative expressions are phrases that describe
a spatial relationship between two objects using two
nouns joined by a preposition; for example, “The
magnet is on the refrigerator”, which describes the
relationship of adhesion to a vertical surface. Cru-
cially, the spatial relationship between the two nouns
in a locative expression is undetermined by the spa-
tial preposition, and can only be determined based
on semantic interactions among the prepositions and
the two nouns (Herskovits, 1985).

For example, while “The magnet is on the refrig-
erator” describes the spatial relationship of adhesion
to a vertical surface, “The apple is on the refrigera-
tor” describes support by a horizontal surface. In or-
der to classify a new sentence, e.g., “The magnet is
on the papers”, into the correct category of support
by a horizontal surface, the CDSM vectors for the
three sentences must encode the fact that “The mag-
net is on the papers” shares a common spatial rela-
tionship with “The apple is on the refrigerator” and
not with “The magnet is on the refrigerator”, even
though the latter pair of sentences share more words
than the former.

Given this dissociation between lexical overlap
and spatial relationship, we were able to construct
a dataset wherein lexical information is uninforma-
tive, and models must rely on compositionality to
score well in classification.

1.2 Relation to Past Work

This approach to CDSM assessment is similar to
a previous method wherein polysemous verbs are
paired with disambiguating nouns in transitive or
intransitive verb phrases. These phrases are then
matched with “landmark” verbs that are either sim-
ilar or not similar in meaning to the full phrase.
CDSM are then challenged to create representa-
tions of the phrases from which classifiers can de-
termine whether or not a phrase is similar to its
landmark verb (Kintsch, 2001; Mitchell and Lapata,
2008; Mitchell and Lapata, 2010; Grefenstette and
Sadrzadeh, 2011). Another notable CDSM assess-
ment task involves matching a phrase with a word
with a similar meaning, for example, matching a
short dictionary definition with the word it defines
(Kartsaklis et al., 2012; Turney, 2014).

While these methods are applicable only to simple
phrases that can be mapped reasonably to a single
word, the present method can, in principle, be ap-
plied to any type of phrase. This allowed us to build
a dataset that extends the current landmark word and
word matching datasets in at least two important
ways. First, it includes function words, specifically
prepositions. Second, it requires the characterization
of interactions among three words in each expres-
sion, whereas previous datasets had two words per
expression, or subsets of the words did not interact
in complex ways.

Other important approaches to CDSM assessment
include rating the similarity of sentence pairs, de-
termining whether two sentences are paraphrases
(Dolan and Brockett, 2005), classifying the entail-
ment relationship between two sentences (Marelli
et al., 2014), classifying the relationship between
two entities named in a sentence (Hendrickx et al.,
2009), and classifying the valence of the sentiment
expressed in a sentence (Socher et al., 2013). These
methods have primarily been aimed at assessing
CDSM on the full array of constructions inherent
in naturally generated language, while our method
aims to isolate a specific construction of interest.
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Category Example

Adhesion to Vertical Surface “There is a magnet on the refrigerator.”
Support by Horizontal Surface “There is an apple on the refrigerator.”
Support from Above “There is an apple on the branch.”
Full Containment “There is an apple in the refrigerator.”
Partial Containment “There is an apple in the water.”

Table 1: Categories and Example Sentences

2 The Dataset

A list of all of the spatial categories with examples
is given in Table 1. The authors chose the set of cat-
egories to produce the desired dissociation between
lexical meaning and phrase category, taking inspi-
ration from the observations of Herskovits (1985).
To produce a dataset of expressions fitting these cat-
egories, the first and second authors - both native
English speakers - generated a large set of locative
expressions, intending each expression for a specific
category. Then all of the expressions were indepen-
dently rated by the first two authors, and any expres-
sion for which the ratings disagreed were excluded
from the dataset. In order to achieve a balanced cat-
egory size, the second author then created additional
sentences intended for underrepresented categories.
All additional sentences were stripped of labels and
rated independently by the first author. If the first
and second authors’ categorizations did not match,
the sentence was not added to the dataset.

The dataset contains 500 sentences in total with
100 sentences per category. There is a large amount
of lexical variety in the set, with 242 distinct words
occurring in noun position one and 213 occurring in
noun position two. The dataset is publicly available
for download at www.princeton.edu/∼swritter.

3 Evaluation Setup

Classification among the five categories was per-
formed using a naive Bayes classifier. Two of the
categories contained “in” as the preposition in all
sentences while the other three contained “on” in all
sentences. To be certain that the held out sentences
on which the classifier was tested did not contain
even a single category-informative noun, we oper-
ationally defined informativeness and relegated all

sentences with an informative noun to the training
set. A noun was deemed informative if it both oc-
curred more than once in the entire data set and it
occurred more frequently in one category than in
any other. This criterion yielded a set of 80 sen-
tences with no informative nouns, and a set of 420
sentences with at least one informative noun. By this
method, we ensured that no component of the mod-
els’ classification accuracy on the test set is due to
the recognition of individual nouns.

In addition to the CDSM, we included two non-
distributional models for comparison. The first, re-
ferred to as word overlap, consists of a binary feature
vector containing one feature per vocabulary item.
This model’s performance provides an upper-bound
on the performance that a model can achieve given
only the distribution of word tokens in the train-
ing set. The second model, inspired by Srikumar
and Roth (2013), contains binary features for Word-
net hypernyms (up to 4 levels) of each sense of the
noun and a binary feature for each preposition. This
model’s score provides an indication of the amount
of task-relevant information contained in the taxo-
nomic features of individual words.

We compared CDSM to a further control that con-
sisted of the concatenation of the word vectors. The
concatenated vectors contain a complete representa-
tion of all of the individual word information, so that
any performance the CDSM can achieve above the
concatenation score can be attributed to semantic in-
teraction information contained in the parameters of
the CDSM.1

1One other experiment we considered was to test the models
on the dataset phrases with prepositions removed. However, LF
and PLF are undefined for such an input, and the element-wise
models trivially perform better with the preposition included be-
cause the preposition is the only word that is not stripped of in-
formativeness by design of the task. As such, we excluded this
experiment from this report.
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Figure 1: Naive Bayes accuracy scores for count and predict variants of several CDSM. Chance performance
on this task was 0.2. Overlap refers to the word overlap baseline. CW refers to the vectors from Collobert
and Weston (2008)
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3.1 Compositional Distributional Models

We compared six models that are currently promi-
nent in the CDSM literature: addition, multiplica-
tion (Mitchell and Lapata, 2008), lexical function
(LF) (Coecke et al., 2010), practical lexical func-
tion (PLF) (Paperno et al., 2014), full additive (FA)
(Guevara, 2010; Zanzotto et al., 2010), and the re-
cursive auto-encoder (RAE) (Socher et al., 2011).

The training data for LF, PLF, and FA was the
UKWAC+Wikipedia+BNC 2.8 billion word cor-
pus. In training LF, we followed Grefenstette et al.
(2013), employing a two-step training regime using
corpus-extracted vectors for noun–preposition–noun
combinations to estimate matrices of correspond-
ing prepositional phrases, which were in turn used
to estimate a three-way tensor of each preposition.
For PLF and FA, we learned separate matrices for
combining prepositions with each of the two nouns
in the construction, using corpus-based vectors of
prepositional phrases for training preposition–noun
combination. For training composition of the head
noun with the prepositional phrase, we used corpus-
extracted noun+preposition (for lexical matrices in
PLF) or attributive adjective+noun (for attributive
construction in FA) vectors. Phrase vectors for train-
ing were built as DISSECT ‘peripheral’ spaces from
phrase cooccurrence data in the count models. In the
predict models, phrase vectors were learned along
with word vectors in one pass, feeding all phrases of
the relevant type as single tokens.

The RAE vectors were computed using Socher et
al.’s implementation which is trained on a 150K sen-
tence subset of the NYT and AP sections of the Gi-
gaword corpus.

For all compositional models, we used as in-
put two varieties of word level representations: co-
occurrence based (Turney et al., 2010) and neural
language model (Mikolov et al., 2013). Following
Baroni et al. (2014b), we will refer to these variants
as count and predict models respectively. Both word
models were trained on the same corpus as those
used to train the compositional models. Count was
based on a 5 word window weighted with positive
PMI and was reduced to 300 dimensions via SVD,
while predict was based on a 5 word window using
Mikolov’s continuous bag of words approach with
negative sampling (Mikolov et al., 2013). These pa-
rameters were based on their strong performance in
the systematic evaluation by Baroni et al. (2014b).
Socher et al.’s RAE implementation composes neu-
ral language model vectors described by Collobert
and Weston (2008) and supplied by Turian et al.
(2010). For comparison with the RAE, we report re-
sults for addition, multiplication, and concatenation
of these same embeddings.

4 Results

The naive Bayes accuracy scores for all models are
displayed in Figure 1. Addition, PLF, and the RAE
each substantially outperformed concatenation, in-
dicating that these models’ vectors contain informa-

202



tion about the semantic interactions between phrase
constituents. Addition scored higher than PLF,
while the RAE achieved comparable performance
to its additive counterpart. In all cases except FA
in which predict and count vectors were compared,
predict achieved a higher score. This last result
shows that the superiority of predict vectors docu-
mented by Baroni et al. (2014b) extends to their use
in compositional models.

All of the models performed well above chance
accuracy of 0.2. The Wordnet based model achieved
accuracy substantially above word overlap using
hypernym information, indicating that although
each noun is uninformative, its membership in
higher level semantic categories is informative. All
of the distributional models outperform the non-
distributional models, except for LF and FA, which
also fail to outperform concatenations of their in-
put vectors. One explanation for the poor perfor-
mance of LF and FA is that the 2.8B word corpus
used to train them did not have sufficient relevant
information to specify their large sets of parameters.
This explanation is supported by the fact that PLF,
a model designed as a parameter-reduced version of
LF, performs well.

5 Discussion

The most important finding of this study is that, even
on a test painstakingly designed to exclusively as-
sess composition, vector addition matches or out-
performs sophisticated CDSM. This finding implies
that the structure of distributional vector spaces
admits the effective use of addition for modeling
complex interactions between meanings. This sug-
gests that future work should be concerned with un-
derstanding the properties of distributional vector
spaces that make this possible, as well as with un-
derstanding how these properties can be leveraged
by sophisticated models.

A further contribution of this work is that it serves
as a proof-of-concept for a new method for dissoci-
ating the influences of lexical and compositional in-
fluences on CDSM performance. Future work can
extend this approach by finding alternatives to loca-
tive expressions in order to test a wider variety of
constructions. More immediately, future work may
improve the locative expressions dataset by using

crowdsourcing to obtain naive participant ratings to
corroborate the expert ratings and to increase the
size of the dataset.
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Abstract

The automatic induction of scripts (Schank
and Abelson, 1977) has been the focus of
many recent works. In this paper, we employ
a variety of these methods to learn Schank
and Abelson’s canonical restaurant script, us-
ing a novel dataset of restaurant narratives we
have compiled from a website called “Din-
ners from Hell.” Our models learn narrative
chains, script-like structures that we evaluate
with the “narrative cloze” task (Chambers and
Jurafsky, 2008).

1 Introduction

A well-known theory from the intersection of psy-
chology and artificial intelligence posits that humans
organize certain kinds of general knowledge in the
form of scripts, or common sequences of events
(Schank and Abelson, 1977). Though many early AI
systems employed hand-encoded scripts, more re-
cent work has attempted to induce scripts with auto-
matic and scalable techniques. In particular, several
related techniques approach the problem of script in-
duction as one of learning narrative chains from text
corpora (Chambers and Jurafsky, 2008; Chambers
and Jurafsky, 2009; Jans et al., 2012; Pichotta and
Mooney, 2014). These statistical approaches have
focused on open-domain script acquisition, in which
a large number of scripts may be learned, but the ac-
quisition of any particular set of scripts is not guar-
anteed. For many specialized applications, however,
knowledge of a few relevant scripts may be more
useful than knowledge of many irrelevant scripts.
With this scenario in mind, we attempt to learn

the famous “restaurant script” (Schank and Abel-
son, 1977) by applying the aforementioned narrative
chain learning methods to a specialized corpus of
dinner narratives we compile from the website “Din-
ners from Hell.” Our results suggest that applying
these techniques to a domain-specific dataset may
be reasonable way to learn domain-specific scripts.

2 Background

Previous work in the automatic induction of scripts
or script-like structures has taken a number of dif-
ferent approaches. Regneri et al. (2010) attempt
to learn the structure of specific scripts by eliciting
event sequence descriptions (ESDs) from humans
to which they apply multiple sequence alignment
(MSA) to yield one global structure per script. (Orr
et al. (2014) learn similar structures in a probabilis-
tic framework with Hidden Markov Models.) Al-
though Regneri et al. (2010), like us, are concerned
with learning pre-specified scripts, our approach is
different in that we apply unsupervised techniques to
scenario-specific collections of natural, pre-existing
texts.

Note that while the applicability of our approach
to script learning may appear limited to domains
for which a corpus conveniently already exists, pre-
vious work demonstrates the feasibility of assem-
bling such a corpus by automatically retrieving rel-
evant documents from a larger collection. For ex-
ample, Chambers and Jurafsky (2011) use informa-
tion retrieval techniques to gather a small number of
bombing-related documents from the Gigaword cor-
pus, which they successfully use to learn a MUC-
style (Sundheim, 1991) information extraction tem-
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plate for bombing events.
Following the work of Church and Hanks (1990)

in learning word associations via mutual informa-
tion, and the DIRT system introduced by Lin and
Pantel (2001), Chambers and Jurafsky (2008) pro-
pose a PMI-based system for learning script-like
structures called narrative chains. Several follow-
up papers introduce variations and improvements
on this original model for learning narrative chains
(Chambers and Jurafsky, 2009; Jans et al., 2012; Pi-
chotta and Mooney, 2014). It is from this body of
work that we borrow techniques to apply to the Din-
ners from Hell dataset.

As defined by Chambers and Jurafsky (2008), a
narrative chain is “a partially ordered set of narrative
events that share a common actor,” where a narrative
event is “a tuple of an event (most simply a verb) and
its participants, represented as typed dependencies.”
To learn narrative chains from text, Chambers and
Jurafsky extract chains of narrative events linked by
a common coreferent within a document. For exam-
ple, the sentence “John drove to the store where he
bought some ice cream.” would generate two nar-
rative events corresponding to the protagonist John:
(DRIVE, nsubj) followed by (BUY, nsubj). Over
these extracted chains of narrative events, pointwise
mutual information (PMI) is computed between all
pairs of events. These PMI scores are then used to
predict missing events from such chains, i.e. the nar-
rative cloze evaluation.

Jans et al. (2012) expand on this approach, intro-
ducing an ordered PMI model, a bigram probabil-
ity model, skip n-gram counting methods, corefer-
ence chain selection, and an alternative scoring met-
ric (recall at 50). Their bigram probability model
outperforms the original PMI model on the narra-
tive cloze task under many conditions. Pichotta and
Mooney (2014) introduce an extended notion of nar-
rative event that includes information about subjects
and objects. They also introduce a competitive “un-
igram model” as a baseline for the narrative cloze
task.

To learn the restaurant script from our dataset,
we implement the models of Chambers and Juraf-
sky (2008) and Jans et al. (2012), as well as the
unigram baseline of Pichotta and Mooney (2014).
To evaluate our success in learning the restaurant
script, we perform a modified version of the nar-

rative cloze task, predicting only verbs that we an-
notate as “restaurant script-relevant” and comparing
the performance of each model. Note that these an-
notations are not used for training.

3 Methods

This section provides an overview of each of the dif-
ferent methods and parameter settings we employ to
learn narrative chains from the Dinners from Hell
corpus, starting with the original model (Chambers
and Jurafsky, 2008) and extending to the modifica-
tions of Jans et al. (2012). As part of this work,
we are releasing a program called NaChos, our inte-
grated Python implementation of each of the meth-
ods for learning narrative chains described in this
section.1

3.1 Counting methods for PMI
Formally, a narrative event, e := (v, d), is a verb,
v, paired with a typed dependency (De Marneffe
et al., 2006), d, defining the role a “protagonist”
(coreference mention) plays in an event (verb). The
main computational component of learning narrative
chains in Chambers and Jurafsky’s model is to learn
the pointwise mutual information for any pair of nar-
rative events:

pmi(e1, e2) := log
C(e1, e2)

C(e1, ∗)C(∗, e2) (1)

whereC(e1, e2) is the number of times that narrative
events e1 and e2 “co-occur” and

C(e, ∗) :=
∑
e′
C(e, e′) (2)

Chambers and Jurafsky define C(e1, e2) as “the
number of times the two events e1 and e2 had a core-
ferring entity filling the values of the dependencies
d1 and d2.” This is a symmetric value with respect
to e1 and e2.

We implement the following counting variants:

Skip N-gram By default, C(e1, e2) is incre-
mented if e1 and e2 occur anywhere within the same
chain of events derived from a single coreference
chain (skip-all); we also implement an option to re-
strict the distance between e1 and e2 to 0 though 5
intervening events (skip-0 through skip-5). (Jans et
al., 2012)

1www.clsp.jhu.edu/people/rachel-rudinger

206



Coreference Chain Length The original model
counts co-occurrences in all coreference chains; we
include Jans et al. (2012)’s option to count over only
the longest chains in each document, or to count
only over chains of length 5 or greater (long).

Count Threshold Because PMI favors low-count
events, we add an option to set C(e1, e2) to zero for
any e1, e2 for whichC(e1, e2) is below some thresh-
old, T , up to 5.

3.2 Predictive Models for Narrative Cloze
In order to perform the narrative cloze task, we need
a model for predicting the missing narrative event, e,
from a chain of observed narrative events, e1 . . . en,
at insertion point k. The original model, proposed
by Chambers and Jurafsky (2008), predicts the event
that maximizes unordered pmi,

ê = arg max
e∈V

n∑
i=1

pmi(e, ei) (3)

where V is the set of all observed events (the vo-
cabulary) and C(e1, e2) is symmetric. Two addi-
tional models are introduced by Jans et al. (2012)
and we use them here, as well. First, the ordered
pmi model,

ê = arg max
e∈V

k∑
i=1

pmi(ei, e) +
n∑

i=k+1

pmi(e, ei)

(4)
where C(e1, e2) is asymmetric, i.e., C(e1, e2)
counts only cases in which e1 occurs before e2. Sec-
ond, the bigram probability model:

ê = arg max
e∈V

k∏
i=1

p(e|ei)
n∏

i=k+1

p(ei|e) (5)

where p(e2|e1) = C(e1,e2)
C(e1,∗) and C(e1, e2) is asym-

metric.

Discounting For each model, we add an option
for discounting the computed scores. In the case
of the two PMI-based models, we use the discount
score described in Pantel and Ravichandran (2004)
and used by Chambers and Jurafsky (2008). For the
bigram probability model, this PMI discount score
would be inappropriate, so we instead use absolute
discounting.

Document Threshold We include a document
threshold parameter,D, that ensures that, in any nar-
rative cloze test, any event e that was observed dur-
ing training in fewer than D distinct documents will
receive a worse score (i.e. be ranked behind) any
event e′ whose count meets the document threshold.

4 Dataset: Dinners From Hell

The source of our data for this experiment is a blog
called “Dinners From Hell”2 where readers submit
stories about their terrible restaurant experiences.
For an example story, see Figure 1. To process the
raw data, we stripped all HTML and other non-story
content from each file and processed the remain-
ing text with the Stanford CoreNLP pipeline version
3.3.1 (Manning et al., 2014). Of the 237 stories ob-
tained, we manually filtered out 94 stories that were
“off-topic” (e.g., letters to the webmaster, dinners
not at restaurants), leaving a total of 143 stories. The
average story length is 352 words.

4.1 Annotation

For the purposes of evaluation only, we hired four
undergraduates to annotate every non-copular verb
in each story as either corresponding to an event
“related to the experience of eating in a restaurant”
(e.g., ordered a steak), “unrelated to the experience
of eating in a restaurant” (e.g., answered the phone),
or uncertain. We used the WebAnno platform for
annotation (Yimam et al., 2013).

A total of 8,202 verb (tokens) were annotated,
each by three annotators. 70.3% of verbs anno-
tated achieved 3-way agreement; 99.4% had at least
2-way agreement. After merging the annotations
(simple majority vote), 30.7% of verbs were labeled
as restaurant-script-related, 68.6% were labeled as
restaurant-script-unrelated, and the remaining 0.7%
as uncertain.

Corresponding to the 8,202 annotated verb to-
kens, there are 1,481 narrative events at the type
level. 580 of these narrative event types were anno-
tated as script-relevant in at least one token instance.

2www.dinnersfromhell.com
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“A long time ago when I was still in college, my family
decided to take me out for pizza on my birthday. We
decided to try the new location for a favorite pizza
chain of ours. It was all adults and there were about 8
of us, so we ordered 3 large pizzas. We got to chatting
and soon realized that the pizzas should’ve been ready
quite a bit ago, so we called the waitress over and she
went to check on our pizzas. She did not come back.
We waited about another 10 minutes, then called over
another waitress, who went to check on our pizzas and
waitress. It now been over an hour. About 10 minutes
later, my Dad goes up to the check-out and asks the girl
there to send the manager to our table. A few minutes
later the manager comes out. He explains to us that
our pizzas got stuck in the oven and burned. They were
out of large pizza dough bread, so they were making us
6 medium pizzas for the price of 3 large pizzas. We

had so many [pizzas] on our table we barely had
[room] to eat! Luckily my family is pretty easy going
so we just laughed about the whole thing. We did tell
the manager that it would have been nice if someone,
anyone, had said something earlier to us, instead of
just disappearing, and he agreed. He even said it was
his responsibility, but that he had been busy trying to
fix what caused the pizzas to jam up in the oven. He
went so far as to give us 1/2 off our bill, which was
really nice. It was definitely a memorable birthday!”

Figure 1: Example story from Dinners from Hell corpus. Bold
words indicate events in the “we” coreference chain (the longest
chain). Boxed words (blue) indicate best narrative chain of
length three (see Section 5.2); underlined words (orange) are
corresponding subjects and bracketed words (green) are corre-
sponding objects.

5 Evaluation

5.1 Narrative Cloze

We evaluate the various models on the narrative
cloze task. What is different about our version of
the narrative cloze task here is that we limit the cloze
tests to only “interesting” events, i.e., those that have
been identified as relevant to the restaurant script by
our annotators (see Section 4.1).

Because our dataset is small (143 documents), we
perform leave-one-out testing at the document level,
training on 133 folds total. (Ten documents are ex-
cluded for a development set.) For each fold of train-
ing, we extract all of the narrative chains (mapped
directly from coreference chains) in the held out test
document. For each test chain, we generate one nar-
rative cloze test per “script-relevant” event in that

MODEL AVGRNK MRR R@50
unigram model (baseline) 298.13 0.062 0.50
1. unordered pmi; avgrnk 276.88 0.063 0.36
2. unordered pmi; mrr 376.25 0.058 0.33
3. unordered pmi; R@50 400.36 0.050 0.50
4. ordered pmi; avgrnk 284.68 0.061 0.32
5. ordered pmi; mrr 381.44 0.054 0.25
6. ordered pmi; R@50 401.69 0.047 0.50
7. bigram; avgrnk 281.07 0.077 0.38
8. bigram; mrr 378.06 0.066 0.30
9. bigram; R@50 271.78 0.084 0.43
10. bigram disc; avgrnk 283.01 0.077 0.38
11. bigram disc; mrr 378.10 0.067 0.30
12. bigram disc; R@50 271.62 0.089 0.43

Figure 2: Narrative cloze evaluation. Shaded blue cells indi-
cate which scoring metric that row’s parameter settings have
been optimized to. Bold numbers indicate a result that beats
the baseline. Row 12 representes the best model performance
overall.

ROW SKIP T D COREF PMI DISC ABS DISC

1 0 1 3 all yes N/A
2 1 3 5 long no N/A
3 1 5 4 longest yes N/A
4 0 1 3 all yes N/A
5 3 5 5 long no N/A
6 0 3 4 longest yes N/A
7 all 1 3 all N/A no
8 3 5 5 long N/A no
9 all 1 5 all N/A no
10 all 1 3 all N/A yes
11 3 5 5 long N/A yes
12 all 1 5 all N/A yes

Figure 3: Parameter settings corresponding to each model in
Fig 2.

chain. For example, if a chain contains ten events,
three of which are “script-relevant,” then three cloze
tests will be generated, each containing nine “ob-
served” events. Chains with fewer than two events
are excluded. In this way, we generate a total of
2,273 cloze tests.

Scoring We employ three different scoring met-
rics: average rank (Chambers and Jurafsky, 2008),
mean reciprocal rank, and recall at 50 (Jans et al.,
2012).

Baseline The baseline we use for the narrative
cloze task is to rank events by frequency. This
is the “unigram model” employed by Pichotta and
Mooney (2014), a competitive baseline on this task.
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For each model and scoring metric, we perform
a complete grid search over all possible parameter
settings to find the best-scoring combination on a
cloze tests from a set-aside development set of ten
documents. The parameter space is defined as the
Cartesian product of each of the following possible
parameter values: skip-n (all,0-5), coreference chain
length (all, long, longest), count threshold (T=1-
5), document threshold (D=1-5), and discounting
(yes/no). Bigram probability with and without dis-
counting are treated as two separate models.

Figure 2 reports the results of the narrative cloze
evalutation. Each of the four models (unordered
pmi, ordered pmi, bigram, and bigram with dis-
counting) outperform the baseline on the average
rank metric when the parameters are optimized for
that metric. Both bigram models beat the baseline on
mean reciprocal rank not only for MRR-optimized
parameter settings, but for the average-rank- and
recall-at-50-optimized settings. None of the param-
eter settings are able to ouperform the baseline on
recall at 50, though both PMI models tie the base-
line. Overall, the model that performs the best is the
bigram probability model with discounting (row 12
of Figure 2) which has the following parameter set-
tings: skip-all, coref-all, T=1, and D=5.

The fact that several model settings outperform an
informed baseline on average rank and mean recip-
rocal rank indicates that these methods may in gen-
eral be applicable to smaller, domain-specific cor-
pora. Furthermore, it is apparent from the results
that the bigram probability models perform better
overall than PMI-based models, a finding also re-
ported in Jans et al. (2012). This replication is futher
evidence that these methods do in fact transfer.

5.2 Qualitative Example

To get a qualitative sense of the narrative events
these models are learning to associate from this data,
we use the conditional probabilities learned in the
bigram model (Fig 2, row 12) to select the high-
est probability narrative chain of length three out of
the 12 possible events in the “we” coreference chain
in Figure 1 (bolded). The three events selected are
boxed and highlighted in blue. The bigram model
selects the “deciding” event (selecting restaurant)
and the “having” event (having pizza), both reason-
able components of the restaurant script. The third

event selected is “having room,” which is not part of
the restaurant script. This mistake illustrates a weak-
ness of the narrative chains model; without consid-
ering the verb’s object, the model is unable to distin-
guish “have pizza” from “have room.” Incorporating
object information in future experiments, as in Pi-
chotta and Mooney (2014), might resolve this issue,
although it could introduce sparsity problems.

6 Conclusion

In this work, we describe the collection and anno-
tation of a corpus of natural descriptions of restau-
rant visits from the website “Dinners from Hell.” We
use this dataset in an attempt to learn the restaurant
script, using a variety of related methods for learn-
ing narrative chains and evaluating on the narrative
cloze task. Our results suggest that it may be pos-
sible in general to use these methods on domain-
specific corpora in order to learn particular scripts
from a pre-specified domain, although further exper-
iments in other domains would help bolster this con-
clusion. In principle, a domain-specific corpus need
not come from a website like Dinners from Hell;
it could instead be sub-sampled from a larger cor-
pus, retrieved from the web, or directly elicited. Our
domain-specific approach to script learning is poten-
tially useful for specialized NLP applications that re-
quire knowledge of only a particular set of scripts.

One feature of the Dinners from Hell corpus that
bears further inspection in future work is the fact that
its stories contain many violations of the restaurant
script. A question to investigate is whether these vi-
olations impact how the restaurant script is learned.
Other avenues for future work include incorporat-
ing object information into event representations and
applying domain adaptation techniques in order to
leverage larger general-domain corpora.
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Abstract 

An English entity linking (EL) workflow is 

presented, which combines the annotations of 

five public open source EL services. The an-

notations are combined through a weighted 

voting scheme inspired by the ROVER meth-

od, which had not been previously tested on 

EL outputs. The combined results improved 

over each individual system’s results, as eval-

uated on four different golden sets.  

1 Introduction 

The Entity Linking (EL) literature has shown that 

the quality of EL systems’ results varies widely 

depending on characteristic of the corpora they are 

applied to, or on the types of entities we need to 

link (Cornolti et al., 2013, Usbeck et al., 2015). For 

instance, a system that links to a wide set of entity 

types can be less accurate at basic types like Per-

son, Location, Organization than systems special-

izing in those basic types.  

A way to make up for the uneven performance 

of entity linking methods across corpora would be 

mixing different annotators’ results, so that the 

annotators’ strengths complement each other. This 

paper presents a method to combine the outputs of 

five open source entity linking systems, in order to 

obtain improved results. The method involves a 

weighted voting scheme that had not been previ-

ously applied to EL, and improves annotation re-

sults across four test-corpora.  

The structure of the paper is as follows: Section 

2 presents related work. Section 3 describes the 

combined entity linking system. Section 4 provides 

an evaluation of the system’s results and a discus-

sion.  

2 Related Work 

General surveys on EL can be found in (Cornolti 

et al., 2013) and (Rao et al., 2013). Besides the EL 

literature, work on combining NLP annotators is 

particularly relevant for the present article.  

The goal of combining different NLP systems is 

obtaining combined results that are better than the 

results of each individual system. Fiscus (1997) 

created the ROVER method, with weighted voting 

to improve speech recognition outputs. ROVER 

was found to improve parsing results by De la 

Clergerie et al. (2008). In Named Entity Recogni-

tion (NER), Rizzo et al. (2014) improved results 

combining systems via different machine learning 

algorithms.  

In entity linking, the potential benefits of com-

bining annotations have been explored before. Riz-

zo and Troncy (2012) describe the NERD system, 

which combines entity linkers. However, we are 

not aware of a system that, like ours, makes an au-

tomatic choice among the systems’ conflicting an-

notations, based on an estimate of each 

annotation’s quality. Our approach to choose 

among conflicting annotations is inspired by the 

ROVER method, which had not been previously 

attempted for EL to our knowledge. A further dif-

ference in our system is that the set of linkers we 

combine is public and open-source.  
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3 Combining Annotators 

Our workflow performs English EL to Wikipedia, 

combining the outputs of the following EL sys-

tems: Tagme 2
1
 (Ferragina and Scaiella, 2010), 

DBpedia Spotlight
2
 (Mendes et al. 2011), Wikipe-

dia Miner
3
 (Milne and Witten, 2008a), AIDA

4
 

(Hoffart et al., 2011) and Babelfy
5
 (Moro et al. 

2014). A description of the different systems can 

be found in (Usbeck et al., 2015). The systems rely 

on a variety on algorithms and it can be expected 

that their results will complement each other.  

3.1 Obtaining Individual Annotator Outputs 

First of all, a client requests the annotations for a 

text from each linker’s web-service, using the ser-

vices’ default settings except for the confidence 

threshold,
6
 which is configured in our workflow.  

We obtained optimal thresholds for each system 

(Column t in Tables 1 and 2) with the BAT 

Framework
7
 (Cornolti et al., 2013). The BAT 

Framework allows calling several entity linking 

tools and compares their results using different 

annotation confidence thresholds, with a view to 

finding the thresholds that yield best results ac-

cording to several evaluation measures. 

Annotations are filtered out if their confidence 

is below the thresholds obtained in the way just 

described. The remaining annotations proceed to 

the annotation-voting step.  

3.2 Pre-ranking Annotators 

Our annotation voting exploits annotators’ preci-

sion on an annotated reference set in order to 

weight the annotations produced by each annotator 

(details in 3.3 below). It is not viable to create a 

reference set for each new corpus that we need to 

perform entity linking on. To help overcome this 

issue, we adopt the following approach: We have 

ranked the annotators for precision on two refer-

ence sets: AIDA/CONLL Test B (Hoffart et al., 

                                                           
1 http://tagme.di.unipi.it/tagme_help.html 
2 https://github.com/dbpedia-spotlight/dbpedia-spotlight/wiki 
3 http://wikipedia-miner.cms.waikato.ac.nz/ 
4 https://github.com/yago-naga/aida  
5 http://babelfy.org/download.jsp 
6 The public deployments were used, but for AIDA, which 

was set up locally: Source v2.1.1, Data 2010-08-17v7. In 

AIDA, the tech=GRAPH option was used (non-default, but 

recommended by AIDA’s authors for benchmarking). 
7 https://github.com/marcocor/bat-framework 

2011), and IITB (Kulkarni et al., 2009). The IITB 

dataset contains annotations for category Others, 

i.e. entities that are not a person, organization or 

location, whereas AIDA/CONLL B does not con-

tain such annotations. The proportion of annota-

tions in a corpus that fall into the Others category 

is a strong predictor of annotators’ performance on 

that corpus, according to a study on how different 

dataset features correlate with annotators’ results, 

available on the GERBIL platform
8
 (Usbeck et al., 

2015). Taking this into account, in order to anno-

tate a new corpus, if annotations for the Others 

category are needed for that new corpus, the anno-

tator ranking for the IITB corpus will be used in 

order to weight the new corpus’ annotations, since 

IITB is the only one among our two reference sets 

that contains annotations for Others, and an anno-

tator performing well on IITB is likely to perform 

well when annotations for Others are needed. If, 

conversely, annotations for the Others category are 

not needed, the annotator ranking for the 

AIDA/CONLL B reference corpus is used in order 

to weight the new corpus’ annotations. 

3.3 Annotation Voting Scheme 

The voting scheme is in Figure 1. Each annotation 

is formalized as a pairing between a mention m (a 

span of characters in the text) and a Wikipedia en-

tity e. For each annotation <m, e>, Ωm is the set of 

annotations whose mentions overlap
9
 with m. The 

set Ωm is divided into disjoint subsets, each of 

which contains annotations linking to a different 

entity. Each subset L is voted by vote(L): For each 

annotation o in L, N is the number of annotators we 

combine (i.e. 5), ro,anr, is the rank of annotator anr, 

which produced annotation o, and Panr is anr’s pre-

cision on the ranking reference corpus (see 3.2 

above). Finally, parameter α influences the dis-

tance between the annotations’ votes based on their 

annotators’ rank, and was set at 1.75 based on the 

best results on both ranking reference corpora.  
 

                                                           
8 See Annotator - Dataset feature correlations at 

http://gerbil.aksw.org/gerbil/overview  
9 Assume two mentions (p1, e1) and (p2, e2), where p1 and p2 

are the mentions’ first character indices, and e1 and e2 are the 

mentions’ last character indices. The mentions overlap iff ((p1 

= p2) ˄ (e1 = e2)) ˅ ((p1 = p2) ˄ (e1 < e2)) ˅ ((p1 = p2) ˄ (e2 

< e1)) ˅ ((e1 = e2) ˄ (p1 < p2)) ˅ ((e1 = e2) ˄ (p2 < p1)) ˅ 

((p1 < p2) ˄ (p2 < e1)) ˅ ((p2 < p1) ˄ (p1 < e2)). 
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for each set Ωmof overlapping annotations: 
 

 for L ∊ Ωm: 

      vote(L) = 
∑  (N −  ( ro,anr −  α ))  ∙ Po,anro ∈ L

N
 

 if max
  L ∊ Ωm

( vote(L) ) > Pmax  : select argmax
  L ∊ Ωm

(vote(L)) 

Figure 1: Entity voting scheme. 

The entity for the subset L which obtains the high-

est vote among Ωm’s subsets is selected if its vote 

is higher than Pmax, i.e. the maximum precision for 

all annotators on the ranking corpus.
10

 Once an 

entity has been selected for a set of overlapping 

mentions, the mention itself needs to be selected. 

Best results were obtained when the most common 

mention in the set was selected. In case of ties, the 

longest mention among the most common ones 

was selected (e.g. if two mentions occur twice each 

in the set, select the longer one).  

4 Evaluation and Results 

4.1 Evaluation Method 

Datasets: The workflow was tested on four golden 

sets. First, the two datasets that had also been used 

as reference sets in order to obtain the weights to 

vote annotations with (see Section 3.2). These two 

datasets were AIDA/CONLL B (231 documents 

with 4485 annotations; 1039 characters avg., news 

and sports topics) and IITB (103 documents with 

11245 annotations; 3879 characters avg., topics 

from news, science and others). In order to test 

whether the annotator weights obtained from those 

two corpora can improve results when applied to 

annotator combination on other corpora, we tested 

on two additional datasets: MSNBC (Cucerzan, 

2007), with 20 documents and 658 annotations 

(3316 characters avg., news topics) and AQUAINT 

(Milne and Witten, 2008b), with 50 documents and 

727 annotations (1415 characters avg., news top-

ics). 

The AQUAINT dataset contains annotations for 

common noun entities (besides Person, Location, 

Organization). For this reason, according to the 

procedure described in 3.2 above, its annotations 

were weighted according to annotators’ ranking on 

                                                           
10 See Table 1 and Table 2 below for Pmax values in the rank-

ing reference corpora: Pmax is the maximum (excluding row 

Combined) in columns AIDA/CONLL B and IITB. 

the IITB corpus, which also contains common-

noun annotations. The MSNBC dataset does not 

contain common-noun annotations, so the annota-

tor ranking for the AIDA/CONLL test-set was 

used in order to combine annotations in MSNBC.  

Measures: The EL literature has stressed the 

importance of evaluating systems on more than 

one measure. We tested the workflow on strong 

annotation match (SAM) and entity match (ENT) 

(Cornolti et al., 2013). SAM requires an annota-

tion’s position to exactly match the reference, be-

sides requiring the entity annotated to match the 

reference entity. ENT ignores positions and only 

evaluates whether the entity proposed by the sys-

tem matches the reference. 

Mapping files: Evaluating EL to Wikipedia re-

quires making sure that we consider the same set 

of target entities for each EL system, since the ver-

sions of Wikipedia deployed within each system 

may differ. A mapping between current Wikipedia 

titles for the golden set annotations and non-

canonical forms for these titles was created (in-

cluding e.g. older titles redirecting to the new 

ones), and applied to golden and system sets before 

evaluation.
11

 

Tools: Evaluation was carried out with the  

neleval tool12 from the TAC-KBP Entity Discovery 

and Linking task (Ji et al., 2014). The tool imple-

ments several EL-relevant metrics, accepting a 

common delimited format for golden sets and re-

sults across corpora. The tool’s significance testing 

function via randomized permutation/bootstrap 

methods was also applied to our results.  

4.2 Results and Discussion 

Results are provided in Table 1 (SAM measure) 

and Table 2 (ENT measure). Note that, to promote 

transparency, individual system annotations, com-

bined results, reference annotations and mapping 

files are available on a website.
13

 Each table shows 

micro-averaged precision, recall and F1 on the four 

golden sets, for each individual system, plus results 

for the combined workflow in the last row. The 

optimal confidence thresholds for each annotator 

are also indicated where applicable. 

                                                           
11 The mapping was created based on fetch_map from the 

conll03_nel_eval tool by Hachey et al. (2013), 

https://github.com/wikilinks/conll03_nel_eval 
12 https://github.com/wikilinks/neleval/wiki 
13 https://sites.google.com/site/entitylinking1/ 
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Corpus AIDA/CONLL B IITB MSNBC AQUAINT 

System t P R F1 t P R F1 t P R F1 t P R F1 

Tagme 0.219 54.8 53.9 54.4 0.086 41.1 42.6 41.8 0.188 44.7 42.4 43.5 0.188 39.9 46.5 43.0 

Spotlight 0.086 28.1 38.8 32.6 0.016 41.0 48.2 44.3 0.063 21.8 28.1 24.6 0.055 15.6 45.3 23.2 

W Miner 0.57 45.3 50.3 47.7 0.25 55.2 44.4 49.2 0.664 42.3 38.2 40.2 0.57 34.8 57.6 43.4 

AIDA 0.0 76.7 46.7 58.1 0.0 50.2 5.6 10.0 0.0 63.6 23.8 34.7 0.0 50.3 27.7 35.7 

Babelfy dna 34.7 34.0 34.3 dna 46.8 14.9 22.7 dna 31.8 28.8 31.1 dna 22.6 31.5 26.3 

Combined dna 64.8 61.7 *61.9 dna 59.3 44.7 *50.0 dna 54.3 43.4 *48.2 dna 34.1 64.1 44.5 

Table 1: Strong annotation match (SAM). Optimal confidence thresholds (t), Micro-averaged Precision, Recall, F1 

for each annotator and combined system. Babelfy and the combined system use no confidence thresholds (dna). 

 
Corpus AIDA/CONLL B IITB MSNBC AQUAINT 

System t P R F1 T P R F1 t P R F1 t P R F1 

Tagme 0.234 58.2 67.9 62.7 0.102 47.6 45.7 46.7 0.328 66.8 49.9 57.1 0.198 63.8 55.4 59.3 

Spotlight 0.094 30.8 40.1 34.8 0.008 36.6 51.8 42.9 0.063 21.6 27.5 24.2 0.055 26.2 49.8 34.3 

W Miner 0.477 46.9 57.3 51.6 0.195 61.3 43.3 50.6 0.664 50.1 52.8 51.4 0.523 59.9 62.5 61.1 

AIDA 0.0 79.7 79.7 *79.7 0.0 61.4 11.72 19.7 0.0 74.6 56.3 64.2 0.0 67.8 37.3 48.1 

Babelfy dna 35.6 37.9 36.7 dna 48.4 16.3 24.4 dna 36.5 37.5 37.0 dna 39.1 37.8 38.3 

Combined dna 65.0 78.5 71.1 dna 60.7 44.6 *51.4 dna 66.7 62.3 64.4 dna 58.4 67.3 *62.5 

Table 2: Entity match (ENT). Optimal confidence thresholds (t), Micro-averaged Precision, Recall, F1 in for 

each annotator and combined system. Babelfy and the combined system use no confidence thresholds (dna). 

 

 

The annotator rankings and weights with which 

annotations were weighted in our voting scheme 

(Figure 1) can be read off the P column for the 

ranking reference corpora (AIDA/CONLL or 

IITB). For instance, results for MSNBC were 

combined using the ranking from AIDA/CONLL. 

In terms of Figure 1, this means that MSBC anno-

tations (for the SAM measure) were weighted with 

the following values, in format (Annotator, Rank, 

Weight): (AIDA, 0, 0.767), (Tagme, 1, 0.548), 

(Wikipedia Miner, 2, 0.453), (Babelfy, 3, 0.347), 

(Spotlight, 4, 0.281). The Pmax value that each an-

notation’s vote is compared to in MSNBC is 0.767.  

In the tables, the best F1 score in each corpus is 

marked in bold, and the second-best F1 is in italics. 

The combined workflow obtains the best score in 

all cases, except ENT scores on AIDA/CONLL B. 

For the SAM measure, the improvements range 

between 0.8 points and 4.7 points of F1. For the 

ENT measure, improvements range between 0.2 

and 1.4 points of F1. The differences are statistical-

ly significant in the majority of cases (scores with 

a star). Significance (p < 0.05) was assessed with 

the random permutation method in the neleval 

tool
12

. 

The combined workflow was able to improve 

over the best individual system regardless of which 

this system was: Tagme, Wikipedia Miner or 

AIDA. In some cases, the improvements over the 

best individual system’s F1 take place because of 

markedly increased recall in the combined system 

compared to the best individual system’s recall, 

without a major decrease in precision in the com-

bined system (see AQUAINT results for ENT). 

The opposite pattern of improvement is also attest-

ed: In the MSNBC results for SAM, it is the in-

creased precision of the combined workflow that 

makes its F1 improve over the best individual sys-

tem’s F1.  

Regarding the significant drop in F1 in the 

combined system vs. the best individual system 

(AIDA) in the ENT results for the 

AIDA/CONLL B corpus, note that, in this case, the 

difference between AIDA’s individual results and 

the results for the second-best individual system 

was much higher (17.2 points of F1) than any-

where else in the rest of tests performed. When 

such a large difference exists between the best in-

dividual system and the rest, an alternative type of 

voting may be needed in order to improve results 

over the best individual system. 
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5 Conclusion and Future Work 

A workflow that combines the outputs of public 

open source entity linking (EL) systems via 

weighted voting was presented. The simple voting 

scheme generally improved F1 scores over the best 

individual system’s F1, as assessed by the strong 

annotation match and entity match measures. Be-

sides some enhancements to the voting scheme, 

interesting future work could be comparing this 

simple scheme’s results with a more complex 

combination method, e.g. involving supervised 

learning based on available corpora annotated for 

entity linking (with mention–entity pairings).  

Acknowledgements 

Pablo Ruiz was supported through a PhD scholar-

ship from Région Île de France. 

References 

Marco Cornolti, Paolo Ferragina, and Massimiliano 

Ciaramita. (2013). A framework for benchmarking 

entity-annotation systems. In Proc. of WWW, 249–

260. 

Silviu Cucerzan. (2007). Large-scale named entity dis-

ambiguation based on Wikipedia data. In Proc. 

EMNLP and CNLL, 708–716. 

Éric V. De La Clergerie, Olivier Hamon, Djamel 

Mostefa, Christelle Ayache, Patrick Paroubek, and 

Anne Vilnat. (2008). Passage: from French parser 

evaluation to large sized treebank. In Proc. of LREC 

2008, 3570–3576. 

Paolo Ferragina and Ugo Scaiella. (2010). Tagme: on-

the-fly annotation of short text fragments (by wikipe-

dia entities). In Proc. of CIKM’10, 1625–1628. 

Jonathan G. Fiscus. (1997). A post-processing system to 

yield reduced word error rates: Recognizer output 

voting error reduction (ROVER). In Proc. of the 

IEEE Workshop on Automatic Speech Recognition 

and Understanding, 1997, 347–354. 

Ben Hachey, Joel Nothman, and Will Radford. (2014). 

Cheap and easy entity evaluation. In Proc. ACL, 

464–469. 

Johannes Hoffart, Mohamed Amir Yosef, Ilaria Bordi-

no, Hagen Fürstenau, Manfred Pinkal, Marc Spaniol, 

Bilyana Taneva, Stefan Thater, and Gerhard 

Weikum. (2011). Robust disambiguation of named 

entities in text. In Proc. of EMNLP, 782–792. 

Heng Ji, Joel Nothman and Ben Hachey. (2014). Over-

view of TAC-KBP2014 Entity Discovery and Link-

ing Tasks. In Proc. Text Analysis Conference.  

Sayali Kulkarni, Amit Singh, Ganesh Ramakrishnan, 

and Soumen Chakrabarti. (2009). Collective annota-

tion of Wikipedia entities in web text. In Proc. ACM 

SIGKDD, 457–466. 

Pablo N. Mendes, Max Jakob, Andrés García-Silva, and 

Christian Bizer. (2011). DBpedia spotlight: shedding 

light on the web of documents. In Proc. of the 7th 

Int. Conf. on Semantic Systems, I-SEMANTICS’11, 

1–8. 

David Milne and Ian H. Witten. (2008a). An effective, 

low-cost measure of semantic relatedness obtained 

from Wikipedia links. In Proc. of AAAI Workshop on 

Wikipedia and Artificial Intelligence: an Evolving 

Synergy, 25–30. 

David Milne and Ian H. Witten. (2008b). Learning to 

link with Wikipedia. In Proc. CIKM, 509–518.  

Andrea Moro, Alessandro Raganato, and Roberto Navi-

gli. (2014). Entity Linking meets Word Sense Dis-

ambiguation: A Unified Approach. Transactions of 

the ACL, 2, 231–244. 

Delip Rao, Paul McNamee, and Mark Dredze. (2013). 

Entity linking: Finding extracted entities in a 

knowledge base. In Multi-source, Multilingual In-

formation Extraction and Summarization, 93–115. 

Springer.  

Giuseppe Rizzo and Raphaël Troncy. (2012). NERD: a 

framework for unifying named entity recognition and 

disambiguation extraction tools. In Proc. of the 

Demonstrations at EACL’12, 73–76. 

Giuseppe Rizzo, Marieke van Erp, and Raphaël Troncy. 

(2014). Benchmarking the Extraction and Disambig-

uation of Named Entities on the Semantic Web. In 

Proc. of LREC 2014, 4593–4600. 

Ricardo Usbeck, Michael Röder, Axel-Cyrille Ngonga, 

Ciro Baron, Andrea Both, Martin Brümmer, Diego 

Ceccarelli, Marco Cornolti, Didier Cherix, Bernd 

Eickmann, Paolo Ferragina, Christiane Lemke, An-

drea Moro, Roberto Navigli, Francesco Piccino, 

Giuseppe Rizzo, Harald Sack, René Speck, Raphaël 

Troncy, Jörg Waitelonis, and Lars Wesemann. 

(2015). GERBIL–General Entity Annotator Bench-

marking Framework. In Proc. of WWW.  

215



Proceedings of the Fourth Joint Conference on Lexical and Computational Semantics (*SEM 2015), pages 216–221,
Denver, Colorado, June 4–5, 2015.

Automatic Generation of a Lexical Resource to support Semantic Role 

Labeling in Portuguese 

 

 

Magali Sanches Duran Sandra Aluísio 
Center for Computational Linguistics (NILC) 

São Paulo University (USP)  

São Carlos-SP, Brazil 

Center for Computational Linguistics (NILC) 

São Paulo University (USP) 

São Carlos-SP, Brazil 
magali.duran@uol.com.br  sandra@icmc.usp.br  

  

  

  

 

Abstract 

This paper reports an approach to automatical-

ly generate a lexical resource to support in-

cremental semantic role labeling annotation in 

Portuguese. The data come from the corpus 

Propbank-Br (Propbank of Brazilian Portu-

guese) and from the lexical resource of Eng-

lish Propbank, as both share the same 

structure.  In order to enable the strategy, we 

added extra annotation to Propbank-Br. This 

approach is part of a previous decision to in-

vert the process of implementing a Propbank 

project, by first annotating a core corpus and 

only then generating a lexical resource to ena-

ble further annotation tasks. The reasoning 

behind such inversion is to explore the task 

empirically before distributing the annotation 

task and to provide simultaneously: 1) a first 

training corpus for SRL in Brazilian Portu-

guese and 2) annotated examples to compose 

a lexical resource to support SRL. The main 

contribution of this paper is to point out to 

what extent linguistic effort may be reduced, 

thereby speeding up the construction of a lexi-

cal resource to support SRL for less resourced 

languages. The corpus Propbank-Br, with the 

extra annotation described herein, is publicly 

available.  

1 Introduction 

The task of semantic role labeling (SRL) consists 

of identifying a predicate (a verb or a predicate 

noun) and its arguments, assigning to each argu-

ment the semantic roles it play in the argumental 

structure (Palmer et al. 2010). For example, in the 

sentence “Parents complain to education depart-

ment about schools constantly switching uni-

forms”, there are two predicates: “complain” and 

“switching”. The argumental structure of “com-

plain” is: “Parents” (agent), “to the education de-

partment” (recipient), “about schools constantly 

switching uniforms” (theme). The argumental 

structure of “switching” is: “schools” (agent); 

“constantly” (time/frequency); “uniforms” (theme). 

There is no consensus regarding an ideal 

set of semantic role labels and, for this reason, the 

first difficult decision in a project of SRL is to 

choose which set to adopt. No matter which set is 

used, it is not always easy to decide which label to 

assign to each argument during the annotation task. 

In order to facilitate such decision, some projects 

of SRL developed lexical resources that predict the 

set of semantic roles required by each predicate. 

Some of such resources define semantic roles for 

verb classes, as Verbnet (Kipper et al. 2006); oth-

ers for semantic frames, as Framenet (Baker et al. 

1998); others define semantic roles for verb senses, 

as Propbank (Palmer et al. 2005) or for predicate 

nouns, as Nombank (Meyers et al, 2004). 

The more detailed and clear is the lexical re-

source, the easier the decision about which role 

label to assign during a manual annotation task. 

This is very important, because when we ease SRL 

annotation, we increase the likelihood of obtaining 

a high inter-annotator agreement and, consequent-

ly, the likelihood of obtaining a good precision for 

machine learning classifiers for the task.  
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Among the lexical resources available for SRL 

in English, we consider that of Propbank1 the best 

one for supporting a distributed task of SRL anno-

tation. From hereafter, we will refer to such lexical 

resource simply as Propbank, regardless the fact 

that Propbank encompass both the lexical resource 

and the annotated corpus.  

Propbank does not require any linguistic exper-

tise from the annotators and, instead of using role 

labels as “agent” and “patient”, it uses a small set 

of numbered arguments, like Arg0 (for agents, 

causers or experiencers) and Arg1 (for patients and 

themes), which are described differently for each 

verb sense. For example, the verb sense “give.01” 

predicts an Arg0: “giver”, an Arg1: “thing given” 

and an Arg2: “entity given to”. This kind of de-

scription renders the roles very clear for annota-

tors, regardless their background on semantic role 

labels.  

Propbank has 56492 frame files, which are files 

containing (a) simple and complex predicates asso-

ciated to a given verb; (b) a coarse distinction of 

the verb senses; (c) the set of semantic roles of 

each sense of a verb (rolesets) and (d) several an-

notated examples to show how the semantic roles 

may occur in real texts.  

In practice, the annotator consults this kind of 

lexical resource while performing the annotation 

task. In the frame file of the verb being annotated, 

he looks for the sense that best suits the instance of 

annotation in question. Once identified the verb 

sense, the annotator needs to identify the constitu-

ents that play the semantic roles predicted for that 

verb sense, assigning them the respective role la-

bels.  

In short, the lexical resource of verbal frame 

files works as a repository of knowledge for SRL, 

accessible during the annotation task, that reduces 

the learning curve of SRL and facilitates the as-

signment of annotation tasks to several annotators. 

Provided that every instance receives a double-

blind annotation, the quality of the annotation may 

be controlled through inter-annotator agreement. 

Instances with disagreement may be discarded or 

receive linguists’ adjudication. This kind of lexical 

resource, therefore, is an essential part of the infra-

                                                           
1 http://verbs.colorado.edu/~mpalmer/projects/ace.html 
2 As informed in the site of the Verb-Index, updated on 

08/01/2013. 

structure to produce large training corpus for SRL 

classifiers.  

It is not a simple task to construct a lexical re-

source, equivalent to Propbank, to support SRL in 

another language. Everyone that consults regularly 

the Unified Verb-Index3, the system that gives ac-

cess to Propbank’s frame files, may observe that 

Propbank has been improved over the years, incor-

porating evidence provided by continuous annota-

tion experience. In a project with limited budget 

and time, it is natural to think about reusing exist-

ing resources in order to maximize the results. In 

this paper, we report the strategies used to build a 

lexical resource to support SRL in Portuguese 

(hereafter referred as Verbo-Brasil), profiting from 

the English resource developed within the Prop-

bank project and of annotated instances of the cor-

pus Propbank-Br (Duran and Aluísio, 2012). 

The remainder of this paper is organized as fol-

lows. Section 2 explains the strategies used in min-

imizing the efforts towards the construction of 

frame files; Section 3 briefly addresses an extrinsic 

evaluation of Verbo-Brasil obtained from a par-

ticular SRL annotation task. Finally, in Section 4, 

we present our conclusions and future work. 

2 Methodology 

Initially, we intended to construct Verbo-Brasil by 

manually creating frame files for the 1000 most 

frequent verbs in Portuguese, using the editor of 

frame files Cornerstone (Choi et. al. 2010), devel-

oped within the Propbank project. We envisaged, 

from the beginning, the possibility of reusing anno-

tated instances of the corpus Propbank-Br, de-

scribed in the Subsection 2.1, as examples to 

illustrate verb senses. However, when we started 

the task, we realized it was possible to automatical-

ly construct frame files, reducing the effort re-

quired for the task. Automatization entailed the use 

of two strategies. The first strategy constituted the 

creation of frame files using the existing data from 

both the corpus of the earlier version of Propbank-

Br and the lexical repository of the English Prop-

bank plus some new data, which was incorporated 

for this purpose in an updated version of Propbank-

Br; this strategy is described in the Subsection 2.2.  

In the second strategy, described in Subsection 2.3, 

we duplicated the structure of the framefiles from 

                                                           
3 http://verbs.colorado.edu/verb-index/ 
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the English Propbank to Propbank-Br for every 

verb which, in English, possessed a single sense. 

2.1 The corpus Propbank-Br 

The corpus Propbank-Br (Duran and Aluisio, 

2012) was annotated by a sole linguist, aiming to 

provide a training corpus for SRL. During this pro-

cess, we investigated to which extent the Propbank 

guidelines were reusable for undertaking an analo-

gous approach to SRL in Portuguese. We ascer-

tained the need of some adjustments in the 

guidelines in order to deal with differences be-

tween the Portuguese and English languages, as 

well as the differences between the parser outputs 

of the respective treebanks. As there was no lexical 

resource to support the annotation task, the sense 

distinction was made simultaneously to the annota-

tion task, taking as base the guidelines of Propbank 
4 5.  

The annotation was over the Brazilian portion of 

Bosque corpus (Afonso et. al. 2002), containing 

4213 sentences. Bosque corpus is a treebank anno-

tated by the parser Palavras (Bick, 2000) and re-

vised by linguists. The sentences produced 6142 

instances for annotation. Two SRL classifiers were 

trained on the resulting corpus. One of them (Alva-

Manchego and Rosa, 2012) adopted a semi-

supervised approach and obtained an F-Measure of 

82.3%; the other (Fonseca and Rosa, 2013) adopt-

ed a neural architecture to label semantic argu-

ments, disregarding the syntactic layer of 

annotation, and obtained an F-Measure of 62.82%.  

2.2 Reusing existing data from Propbank-Br 

and English Propbank 

To enable this strategy, it was necessary to add 

previously some extra data in the corpus Prop-

bank-Br, a manual task that was by far quicker 

than constructing the frame files from scratch. 

First, we defined which fields of the frame file 

could be filled in with information from English 

Propbank, which ones could be filled in with in-

formation from Propbank-Br and which fields 

would require new information, not available in 

any one of the existing resources. The idea was to 

                                                           
4http://verbs.colorado.edu/~mpalmer/projects/ace/PBguideline

s.pdf 
5 http://verbs.colorado.edu/~mpalmer/projects/ace/ Fram-

ingGuidelines.pdf 

add the extra information required to the corpus 

Propbank-Br. Aiming this, we created six “word 

tags” in corpus Propbank-Br, using the same anno-

tation tool used to annotate the original corpus 

(SALTO – Burchardt et al. 2006), as may be seen 

in Fig.1. 

 
Figure 1. Extra annotation inserted in Propbank-Br. 

 

The word tags are: 

(1) PB-roleset: an equivalent roleset-id in 

Propbank, was used as field key to bring, 

from Propbank, the semantic roles, the se-

mantic roles description, the related Verb-

net classes and the Verbnet roles to the 

framefiles (Fig. 2); 

(2) t-glosa: field that was filled in only in the 

first occurrence of a verb sense; it contains 

a brief description or a synonym of this 

sense of the verb to distinguish it from the 

other possible senses. 

(3) Nota (note): field used for observations re-

garding a roleset contained within a verb’s 

framefile when further clarification is 

thought to be helpful to the annotator; 

(4) Predicate_lemma: field, filled in only in 

the first occurrence of a verb sense, con-

taining the verb lemma or the name of a 

complex predicate (phrasal verb) when ap-

plicable; 

(5) Sentido (sense): field that indicates which 

verb sense is the one being used in the sen-

tence in question, also referred as roleset 

id, and is filled in for all instances. Once 

classified, the sentences can be subse-

quently added as examples of their respec-
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tive verb sense within the appropriate 

frame file; 

(6) Nota_do_exemplo (example note): field 

used to convey information about a given 

example. 

 
Figure 2. Data brought from Propbank using the 

roleset id as field key. 

 

Once we had created the word tags in the cor-

pus, we undertook the annotation task to fill in 

them, as showed in the Fig.1. The greater the num-

ber of senses of a verb (polysemy), the greater was 

the difficulty to elect an English equivalent in Eng-

lish Propbank to fill in the word tag “PB_roleset”. 

We realized that highly polysemous verbs would 

demand special attention in the next phase of the 

process, that is, during the revision of frame files 

automatically generated.  

The annotation task provided the identification 

of 1453 verb senses in Portuguese for 1060 verb 

lemmas (an average of 1.37 senses per lemma). 

From the 1060 verb lemmas annotated in the cor-

pus, 80% present only one sense, 13% present two 

senses; 3% present three senses and 4% present 

four or more senses. Only 109 of the 1453 senses 

identified in Portuguese did not have an equivalent 

verb sense in English identified in Propbank. Con-

sequently, as the frame files of such 109 verbs 

could not obtain the fields brought from Propbank 

automatically, they required manual edition.  

Using the XML frame file structure of Prop-

bank, we defined the automatic generation of 

frame files, combining data from Propbank-Br and 

from Propbank, as shown in Fig.3. In the frame file 

structure, we used the field called “framnet” 

(aimed to store mappings to Framenet) for the in-

formation brought from the word tag “PB-roleset”, 

that is, the equivalent roleset id in the English 

Propbank. The Propbank roleset id was the field 

key to access and bring data from the respective 

English frame file.  

 
Figure 3. Frame file combining data from Propbank-Br 

and data brought from Propbank 

The strategy succeeded, and we achieved 1060 

frame files with 1453 verb senses and 6142 anno-

tated examples. After the generation, we began the 

revision of frame files with the most frequent 

verbs, translating the description of semantic roles, 

as may be seen in Fig.4. Currently, 541 frame files 

are fully revised.  
 

  
Figure 4. Frame file that combines information from 

corpus Propbank-Br and from Propbank’s equivalent 

roleset. 

2.3 Extension of the lexical resource using 

monosemous verbs  

During the task of filling in the word tags in the 

corpus Propbank-Br, we observed that verbs pre-

senting a unique sense (monosemous verbs) were 
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the easiest to link to an English verb sense in Prop-

bank and almost always the equivalent verb sense 

was the unique sense of the respective frame file. 

This led us to hypothetize that monosemous verbs 

in Portuguese, would probably correspond to mon-

osemous verbs in English and vice-versa, whenev-

er an equivalent verb exists. 

On that basis, we decided to extend our resource 

taking as the start point the frame files that have a 

single verb sense in English Propbank. We identi-

fied 3737 English frame files that met such condi-

tion. We then translated only the verb lemmas of 

such frame files. Translation was executed auto-

matically using Google translator and revised 

manually. We chose Google translator because we 

needed to translate at once 3737 out-of-context 

verb lemmas in a quickly and uncomplicated man-

ner. It would be ideal if Google translator returned 

the word class of the results, thus allowing us to 

filter the verbs (we would only have obtained such 

result if we had translated the verbs one-by-one). 

For several verbs, the automatic translation pro-

vided no output. Among the output words in Por-

tuguese, there were several nouns, many of which 

do not correspond to any verb in Portuguese (eg. 

“to hangar”, “to shark”, “to tassle”). We then re-

vised the translation, providing better equivalents 

when necessary and marking an “N” for those 

translated lexical items that were not verbs in Por-

tuguese. After eliminating: (1) repetitions of trans-

lated verbs (two or more verbs translated into a 

same verb in Portuguese) and (2) verbs that we 

already had in our database, we obtained 1538 new 

verbs to extend our resource.  

The next step was to duplicate the respective 

English frame files, using the name of the verb in 

Portuguese to substitute the name of the English 

verb in the fields “roleset id” and “predicate lem-

ma”. Subsequently, we replaced the example sen-

tences in English by ones in Portuguese, extracted 

from corpus PLN-Br (Bruckschen et al., 2008). 

Lastly, to complete these new frame files, we are 

now annotating the examples with semantic role 

labels. Cornerstone frame files editor is being used 

for this task.  

3 Evaluation 

The two strategies we reported to automatically 

generate Portuguese frame files gave us 2598 

framefiles. The 541 frame files already revised 

correspond to the verbs with frequency above 1000 

in the corpus PLN-Br, which include the most pol-

ysemous verbs in Portuguese. Such verbs were 

target of a double-blind annotation task of 8345 

instances extracted from the same corpus. The an-

notation task has just been accomplished and will 

be fully reported in a later date; the Kappa inter 

annotator agreement (Carletta, 1996) for verb 

sense identification was 0.93.  

This annotation task gave us feedback to evalu-

ate and improve the respective frame files. Among 

the actions taken during the annotation task we can 

cite: adding new senses identified in the corpus; 

merging or splitting senses for verbs that presented 

low inter-annotator agreement; including new ex-

amples to better illustrate a verb sense.  

4 Concluding Remarks and Future work 

The approach we adopted to build a Propbank-like 

lexical resource to support SRL in Brazilian Portu-

guese may be of use for other researchers working 

on under-represented languages and with a limited 

budget.  

The 541 already revised frame files were used in 

a double-blind annotation SRL task that obtained a 

Kappa inter-annotator agreement for sense distinc-

tion of 0.93. 

In the future, we plan to use Verbnet classes, an 

information brought from the equivalent verb sense 

in Propbank, to find in Verbnet-Br (Scarton et al., 

2014) verb senses that are not in Verbo-Brasil. 

As soon as we accomplish the revision of the 

frame files, we will make Verbo-Brasil publicly 

available. The new version of the corpus Prop-

bank-Br, with the extra annotation described in this 

paper is now available for download at 

nilc.icmc.usp.br/portlex/index.php/en/downloadsin

gl. 
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Abstract

We describe a topic model based approach for
selectional preference. Using the topic fea-
tures generated by an LDA model on the ex-
tracted predicate-arguments over the Chinese
Gigaword corpus, we show improvement to
our state-of-the-art Chinese SRL system by
2.34 F1 points on arguments of nominal pred-
icates, 0.40 F1 point on arguments of verb
predicates, and 0.66 F1 point overall. More
over, similar gains were achieved on out-of-
genre test data, as well as on English SRL us-
ing the same technique.

1 Introduction

It’s long been theorized that selectional preferences
(SP)/semantic constraints can improve automatic se-
mantic role labeling (SRL). And while there have
been several publications showing positive effects of
SP, the evaluations have been dominated by pseudo-
disambiguation. Zapirain et al. (2013) demonstrated
end-to-end SRL improvement on arguments of En-
glish verb predicates by using a combination of lex-
ical resources and distributional similarity based SP.
However, the margin of improvement is a modest
0.4 F1 point (on WSJ) over a baseline system with
performance over 4 F1 points lower than the top sys-
tem in CoNLL-2005 (Carreras and Màrquez, 2005).
These results may not be convincing enough to mo-
tivate the incorporation of SP when building an SRL
system. One reason for the small improvement may
be that arguments of a verb predicate are highly con-
strained by the underlying syntactic parse, and SP
features that could disambiguate between role types

are often negated by parse errors. With the recent
extension of PropBank SRL to nominal and adjec-
tive predicates, preposition relationships, light-verb
constructions, and abstract meaning representation
(Bonial et al., 2014; Banarescu et al., 2013), it may
be time to revisit SP for SRL. We hypothesize that
SP will provide a greater benefit to nominal SRL, es-
pecially on a language with lower parsing accuracy.

In this paper, we apply SP to Chinese SRL (which
has few morphological clues that impacts parsing
accuracy) for arguments of both verb and nominal
predicates using Chinese Gigaword. Our hypothe-
sis, that SP will provide a greater benefit for nomi-
nal predicates than for verbal predicates, is verified
by our results. We achieve a 2.34 F1 point improve-
ment to our Chinese SRL system on arguments of
nominal predicates, 0.40 F1 point on arguments of
verb predicates, and 0.66 F1 point overall.

2 Previous Work on Selectional Preference

Inducing selectional preferences from corpus data
was first proposed by Resnik (1997) for sense dis-
ambiguation. He generalized seen words using the
WordNet (Fellbaum, 1998) hierarchy. Gildea and
Jurafsky (2002) applied SP to automatic SRL by
clustering extracted verb-direct object pairs, result-
ing in modest improvements. This syntactic signa-
ture based selectional preference technique has also
been successfully extended and applied to unsuper-
vised SRL by Lang and Lapata (2011) (using split-
merge role clustering), as well as Titov and Kle-
mentiev (2012) (using a distance-dependent Chinese
Restaurant Process prior for role clustering). Zapi-
rain et al. (2013) improved the end-to-end perfor-
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mance of an English PropBank SRL system by 0.4
F1 points using a variety of word similarity mea-
sures, from WordNet hierarchy distance to distribu-
tional similarity measures.

Ritter and Etzioni (2010) reasoned that the set of
hidden variables modeled by latent Dirichlet alloca-
tion (LDA) naturally represents the semantic struc-
ture of a document collection, and the topics gener-
ated can be viewed as the latent set of classes that
store preferences. The work utilizes LinkLDA, a
variant of the standard LDA that models two sets of
distributions for each topic simultaneously, with the
resulting topics encoding the mutual constraints of a
pair of arguments for the same predicate. Séaghdha
and Korhonen (2014) also proposed SP w/ the LDA
variants ROOTH-LDA and LEX-LDA.

There has also been work on Chinese selec-
tional preferences, both lexical resource (HowNet)
based and corpus based (Jia et al., 2011; Jia et al.,
2013). The authors found the LDA corpus based
SP improved over the HowNet based SP on pseudo-
disambiguation. All of these results encouraged us
to also attempt an LDA based approach to SP.

3 Selectional Preference for SRL

3.1 SP Representation

Some of the most discriminative SP models used
by Zapirain et al. (2013) relied on distributional
similarity computed over dependency relationships
(provided by Lin (1998)). For example, in “John
lent Mary the book.”, we would extract John-nsubj,
Mary-iobj, book-dobj for the predicate lend. While
this has proven to be of higher quality than pure
word co-occurrence based similarity, it may not be
optimal for semantic-based processing. With nom-
inal SRL, a large portion of the arguments (around
50% in Chinese PropBank) are not the direct syntac-
tic dependents of the predicate: in figure 1, because
of a light verb-like construction, all the arguments
of 欢迎/welcome are the syntactic dependents of 表
示/express. To address this, we directly extract SP
of the predicates by running our SRL system over
the unannotated corpus. For our example, we would
extract John-Arg0, Mary-Arg2, book-Arg1 for lend.

3.2 SP with LDA-based Topic Model

Our approach to modeling selectional preferences
(SP) follows a relatively straightforward application
of LDA to a set of predicate-argument instances de-
rived from a corpus. In the standard LDA model, a
document d is represented by a bag of words and is
drawn from a multi-nominal Dirichlet θd over top-
ics. The resulting model is a probability distribution
of each word amongst the topics.

For the SRL application, we treat each extracted
argument (represented by the (label, headword)
pair) as a “word”, and the collection of arguments
for all instances of a particular predicate as a “doc-
ument”. The generated topics would then contain
arguments sharing a similar set of predicates. With
this definition, we allow different role labels to share
the same topic (though it does not encode role con-
straints quite like LinkLDA, ROOTH-LDA, etc).
For prepositional phrases, we used the dependent of
the preposition as the head word since the preposi-
tion can often be omitted in Chinese.

3.3 SRL Filtering

Building selectional preferences by means of using
the output of an SRL system is unlikely to improve
the same SRL system unless one filters out the lower
quality labels (in earlier experiments where we per-
formed no filtering, this was indeed the case). We
ran SRL on the unannotated corpus using a logistic
regression model and filtered out the low probability
output. To balance between precision and recall, we
set a hard 0.5 probability cutoff and discounted the
occurrences of the rest using the label probability.

Since we can extract higher quality SP from the
output of a better performing SRL system, we can
iteratively improve our SRL system by re-extracting
SP using a retrained (SP enhanced) SRL system. We
arrived at diminishing returns after one additional it-
eration (of training SRL, extracting SP, and retrain-
ing SRL w/ new SP).

4 SRL Implementation

Our Chinese SRL system follows the standard (En-
glish) approach where the SRL task is posed as
a multi-class classification problem requiring the
identification of argument candidates for each pred-
icate and their argument types using a set of lexical
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A0 AM-tmp A1 Sup V

[香港 长官 董建华] [今天] [对 美国 基金会 发表 的 经济 报告] [表示] 欢欢欢迎迎迎

Hong Kong official Dong Jianhua today toward US foundation post economic report express welcome

[AM-tmp Today], [A0 Hong Kong official Dong Jianhua] [V welcomed] [A1 the economic report released by the US foundation].

Figure 1: Chinese nominal predicate translated to English verb predicate

and syntactic features (predicate word, constituent
head, path, syntactic frame, etc). While the top SRL
systems from CoNLL-20051 and some subsequent
systems use multiple parses for structural inference,
we instead implement a 2-stage argument label clas-
sification system on a single input parse: the argu-
ment set found by the first classifier is used as an
additional feature for the second classifier (to iden-
tify missing or duplicate argument label types).

4.1 Selectional Preference
The LDA topic model produces a probability dis-
tribution of words (represented here by the (label,
headword) pair) over topics. For the SRL task, ar-
gument candidates with topic distributions similar to
those of the arguments found in the training set are
likely to be permissible. Ideally, we would use these
distributions directly. Since our SRL system was de-
signed to accept lexical (binary) features only (for
training/decoding performance), we pared the distri-
bution down to at most 3 topics for each label type
and excluded words that do not have high affinity
to a few topics (sum of the probability of the top 3
topics < 50%) to prevent diluting the discriminative
power of the topic feature. We used the resulting
list of (label, topic id) pairs for each word as the
selectional preference feature for each encountered
constituent in the Chinese SRL system.

During the normal LDA inference stage, using
the learned topic model, a predicate instance (“doc-
ument”) will be assigned a probability distribution
over topics based on its arguments, and each argu-
ment will be assigned a specific topic (or topic distri-
bution). This could further constrain an argument’s
selectional preference within the context of the pred-
icate instance and other arguments. For our system,
we experimented with performing inference on the
argument label set extracted from the first stage clas-
sifier and using the constrained argument topic dis-

1We use CoNLL-2005 instead of CoNLL-2009 for compar-
ison because our SRL system is based on constituent parses.

tribution for the second stage classifier. However,
we observed no improvement, likely because there
are only a few arguments for each predicate instance.

5 Experiment

5.1 Setup

Our Chinese SRL system is trained on Chinese Tree-
Bank 5.1 and Chinese PropBank 1.0. We used the
standard: sections 81-885 for training, sections 41-
80 for development, and sections 1-40, 900-931 for
testing. We generated the training parses (with 10
fold cross-validation) and the test parses using the
Berkeley parser2 (5 split-merge cycles). The parser
F1 score on the test sections is 82.73 as measured by
ParseEval (Black et al., 1991).

We prepared the Chinese Gigaword3 corpus with
the Stanford Chinese Word Segmenter4. We per-
formed LDA topic modeling using PLDA+ (Liu et
al., 2011) and the recommended α = 50/topic cnt,
β = 0.01 values. We chose 2000 topics (tuned on
the SRL performance of the development set rather
than any topic based metrics). Table 1 lists some of
the found topics (with the most frequent, relatively
interesting, and least frequent headword, label pairs)
using Chinese Gigaword.

5.2 Performance

As table 2 shows, the addition of the SP feature im-
proved nominal SRL by 2.34 F1 points. Verb SRL
improved by 0.40 F1 point and overall SRL im-
proved by 0.66 F1 point. These F1 differences were
all found to be statistically significant5 (p ≤ 0.05).

We also tested the system on Sinorama magazine
and other out-of-genre sections (broadcast conver-
sation, broadcast news, web blog) in Chinese Prop-

2code.google.com/p/berkeleyparser/
3LDC2011T13
4nlp.stanford.edu/software/segmenter.shtml
5SIGF (www.nlpado.de/%7esebastian/software/sigf.shtml),

using stratified approximate randomization test (Yeh, 2000)
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topic headword:argument label pairs
emergency
response

破坏/damage:Arg1 阻止/stop:Arg1 制造/fabricate:Arg1 寻找/search:Arg1 自杀/suicide:Arg1
... 灭火/extinguish:Arg1敲诈/blackmail:Arg1挣脱/break free:Arg1东山再起/comeback:Arg1

government
agency

海 关/custom:Arg0 联 合 会/union:Arg0 务 部/work department:Arg0 旅 游

局/travel department:Arg0 统 计 局/census:Arg0 ... 部 会/ministries:Arg0 边 检

站/checkpoint:Arg0财政局/finance bureau:Arg0

law &
order

警 方/police:Arg0 嫌 犯/suspect:Arg1 男 子/male:Arg1 到 案/court appearance:Arg1 公

安/public safety:Arg0 ... 巷/alley:Argm-loc 嘉义市/Chiayi City:Argm-loc 哥伦比亚
人/Columbian:Arg1

path
道 路/road:Arg1 路/path:Arg1 大 道/avenue:Arg1 ... 红 地 毯/red carpet:Arg1 钢

丝/steel wire:Arg1 独木桥/plank bridge:Arg1 ... 迷宫/maze:Arg1 侧门/side entrance:Arg1 险
棋/risky move:Arg1

competition
比赛/competition:Arg1 决赛/final:Arg1 联赛/league comp:Arg1 ... 考试/exam:Arg1 大
选/election:Arg1 世 乒 赛/world pingpong match:Arg1 ... 加 赛/playoff:Arg1 分 团/sub-
group:Arg0

moral &
ethics

精 神/spirit:Arg1 传 统/tradition:Arg1 作 风/style:Arg1 文 明/civil:Arg1 ... 校

风/school spirit:Arg1 同舟共济/share hard time:Arg1 ... 幸福观/happy outlook:Arg1 博
爱/universal love:Arg1

Table 1: Topics in Chinese Gigaword

system
nominal verb all

p r f1 f1 f1
baseline 64.71 48.20 55.25 75.53 72.08
SPLDA 65.70 51.27 57.59 75.93 72.74

Table 2: Chinese PropBank 1.0 results

sections system p r f1
Sinorama baseline 37.58 25.10 30.10
nominal SPLDA 39.72 27.36 32.40

verb
baseline 67.13 50.37 57.55
SPLDA 67.56 50.59 57.86

4051- baseline 62.01 50.74 55.81
4411 (verb) SPLDA 62.70 51.03 56.27

Table 3: Chinese PropBank 3.0 out-of-genre results

Bank 3.0. Only Sinorama has nominal SRL anno-
tations. As table 3 shows, even though the absolute
performance is much lower, SP improved the preci-
sion and recall in all cases, the nominal SRL score
on Sinorama by 2.30 F1 points, and verb SRL score
by 0.31-0.46 F1 point. Again, these F1 differences
were statistically significant.

5.2.1 Comparison
Direct performance comparison with previous

Chinese SRL systems is a bit difficult: Xue (2008),
Zhuang and Zong (2010) trained the syntactic
parsers with an additional 250K word broadcast
news corpus found in Chinese TreeBank 6.0, while
Sun (2010) only reported results using gold POS
tags but no additional gold parses. However, as ta-
ble 4 shows, for verb predicates, our system bests
Xue’s (2008) system by 4-7 F1 points with less
parser training data and when tested with (but was
not retrained to take full advantage of) gold POS tags
besting Sun’s (2010) system by 0.53 F1 point. For
nominal predicates, our system bests Xue’s (2008)
system, by 1.9 F1 points on arguments of nominal
predicates (since we have an integrated SRL sys-
tem, the results are obtained by training both verb
and nominal predicates, then using only the nominal
classifier to classify the nominal predicates).

5.2.2 English SRL
We applied the same techniques to English SRL

using the English Gigaword7 corpus. We used 800
topics (w/ lemmatized headwords) tuning on the

6Verb results are from SRL systems trained on verbs only.
Table 2 results are from SRL systems trained on all predicates.

7LDC2003T05
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type system p r f1

verb

Xue 2008 76.8 62.5 68.9
w/ gold POS 79.5 65.6 71.9

Sun 2010
81.03 72.38 76.46

(gold POS)
SPLDA 82.74 70.96 76.40

w/ gold POS 82.81 71.93 76.99

nominal
Xue 2008 62.9 53.1 57.6
SPLDA 67.30 53.31 59.50

Table 4: Chinese SRL comparison6

system p r f1 error∆

SwiRL 79.7 70.9 75.0
Zapirain 2013 80.0 71.3 75.4 −1.60%

baseline 82.59 77.27 79.84
SPLDA 82.96 77.52 80.15 −1.54%

Table 5: English SRL comparison (CoNLL-2005 WSJ)

CoNLL-2005 development set. Compared to Zapi-
rain et al. (2013) (table 5), our SP approach had a
smaller (but still statistically significant) absolute F1
gain, with most of the gain coming from core argu-
ment type improvements. But with a much higher
performing baseline system (one of the highest re-
ported results using a single input parse per sen-
tence), the error reduction rate is comparable.

6 Conclusion

We presented a LDA topic model based selectional
preference approach to improving automatic SRL.
Using SP extracted from a 63.6M sentence Chinese
Gigaword corpus, we were able to improve on the
results of an already competitive Chinese SRL sys-
tem by 2.34 F1 points on nominal predicates, 0.40
F1 point on verb predicates, and 0.66 F1 point on the
standard test set. More over, we obtained compara-
ble improvement on out-of-genre data and demon-
strated our technique is also applicable to English
SRL. Given the margin of improvement on nomi-
nal SRL, which is not as well constrained by syntax
as verb SRL, there are reasons to speculate the pro-
posed technique could be applicable to other predi-
cate type extensions of PropBank SRL.

As our first attempt at automatically deriving Chi-
nese selectional preference, there is a lot of room

for future improvement. Notably, these include
techniques used for English SP such as computing
similarity based on lexical resources (for Chinese
- HowNet (Dong et al., 2010)), distributional sim-
ilarity, latent word language model (Deschacht and
Moens, 2009), different variants of LDA topic mod-
els, as well as taking advantages of argument con-
straints in parallel corpora to extract higher quality
SP.
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Abstract

With the increasing automation of health care
information processing, it has become crucial
to extract meaningful information from textual
notes in electronic medical records. One of
the key challenges is to extract and normalize
entity mentions. State-of-the-art approaches
have focused on the recognition of entities that
are explicitly mentioned in a sentence. How-
ever, clinical documents often contain phrases
that indicate the entities but do not contain
their names. We term those implicit entity
mentions and introduce the problem of im-
plicit entity recognition (IER) in clinical doc-
uments. We propose a solution to IER that
leverages entity definitions from a knowledge
base to create entity models, projects sen-
tences to the entity models and identifies im-
plicit entity mentions by evaluating semantic
similarity between sentences and entity mod-
els. The evaluation with 857 sentences se-
lected for 8 different entities shows that our al-
gorithm outperforms the most closely related
unsupervised solution. The similarity value
calculated by our algorithm proved to be an
effective feature in a supervised learning set-
ting, helping it to improve over the baselines,
and achieving F1 scores of .81 and .73 for dif-
ferent classes of implicit mentions. Our gold
standard annotations are made available to en-
courage further research in the area of IER.

1 Introduction

Consider the following sentence, extracted from
a clinical document: “Patient has shortness of
breath with reaccumulation of fluid in extremities.”
It states that the patient has ‘shortness of breath’ and
‘edema’. The former is explicitly mentioned, while

the latter is implied by the semantics of the phrase
‘reaccumulation of fluid in extremities’. We term
such occurrences implicit entity mentions.

While implicit entity mentions are common in
many domains, resolving them is particularly valu-
able in the clinical domain. Clinical documents
are rich in information content that plays a cen-
tral role in understanding patients’ health status and
improving the quality of the delivered services. It
is a common practice to employ computer assisted
coding (CAC) solutions to assist expert “coders”
in determining the unique identifier (e.g., ICD9 or
ICD10) for each medical condition or combina-
tion of conditions. These identifiers are impor-
tant to unambiguously represent the medical con-
ditions, to prepare the post-discharge plan, and to
perform secondary data analysis tasks. A human
coder reading the sentence ‘Patient has shortness
of breath with reaccumulation of fluid in extremi-
ties’ would generate the corresponding codes for en-
tities ‘shortness of breath’ and ‘edema’. However,
the solutions developed to perform entity recogni-
tion in clinical documents (Aronson, 2006) (Fried-
man et al., 1994) (Savova et al., 2010) (Friedman
et al., 2004) (Fu and Ananiadou, 2014) (Pradhan et
al., 2015) do not recognize the presence of entity
‘edema’ in this sentence.

Implicit entity mentions are a common occur-
rence in clinical documents as they are often typed
during a patient visit in a way that is natural in spo-
ken language and meant for consumption by the
professionals with similar backgrounds. An anal-
ysis with 300 documents in our corpus showed
that 35% of the ‘edema’ mentions and 40% of the
‘shortness of breath’ mentions are implicit.

Recognizing implicit mentions is particularly
228



challenging since, besides the fact that they lack the
entity name, they can be embedded with negations.
For example, the semantics of the sentence ‘The pa-
tients’ respiration become unlabored’ implies that
the patient does not have ‘shortness of breath’. Iden-
tification of the negated mentions of entities in clin-
ical documents is crucial as they provide valuable
insights into the patients’ health status.

We propose an unsupervised solution to the IER
problem that leverages knowledge embedded in en-
tity definitions obtained for each entity from the
Unified Medical Language System (UMLS) (Bo-
denreider, 2004). UMLS provides a standard vocab-
ulary for the clinical domain. Our solution: a) Cre-
ates an entity model from these definitions, b) Iden-
tifies the sentences in input text that may contain
implicit entity mentions, c) Projects these sentences
onto our entity model, and d) Classifies the sen-
tences to distinguish between those containing im-
plicit entity mentions or negated implicit mentions,
by calculating the semantic similarity between the
entity model and the projected sentences.

The contributions of this work are as follows:

1. We introduce the problem of implicit entity
recognition (IER) in clinical documents.

2. We propose an unsupervised solution to IER
that outperforms the most relevant unsuper-
vised baseline and improves the results of a su-
pervised baseline.

3. We create a gold standard corpus annotated for
IER in the clinical domain and make it avail-
able to encourage research in this area.

2 Related Work

To the best of our knowledge, this is the first work
to address the problem of Implicit Entity Recogni-
tion (IER) in clinical documents. However, there is a
large body of research that is relevant to the problem,
including Named Entity Recognition (NER), Entity
Linking (EL), Coreference Resolution, Paraphrase
Recognition, and Textual Entailment Recognition.

Much like IER, both NER and EL have the ob-
jective of binding a natural language expression
to a semantic identifier. However, related work
in NER and EL expect the proper name (explicit
mention) of entities and assume the presence of

noun phrases (Collins and Singer, 1999) (Bunescu
and Pasca, 2006). The solutions developed for
NER leverage regularities on morphological and
syntactical features that are unlikely to hold in the
case of IER. The most successful NER approaches
use word-level features (such as capitalization, pre-
fixes/suffixes, and punctuation), list lookup fea-
tures (such as gazetteers, lexicons, or dictionaries),
as well as corpus-level features (such as multiple
occurrences, syntax, and frequency) (Nadeau and
Sekine, 2007) that are not exhibited by the phrases
with implicit entity mentions.

Many approaches couple NER with a follow up
EL step (Hachey et al., 2013) in order to assign an
unique entity identifiers to mentions. Therefore, the
inadequacy of NER techniques will limit the capa-
bility of recognizing implicit entity mentions by a
solution developed for EL. Moreover, state-of-the-
art EL approaches include a ‘candidate mapping’
step that uses entity names to narrow down the space
of possible entity identifiers, which is also a limiting
factor in the IER case. Finally, neither NER nor EL
deal with the negated mentions of entities.

Coreference resolution (CR) focuses on grouping
multiple mentions of the same entity with different
surface forms. The solutions to CR focus on map-
ping explicit mentions of entity names to other pro-
nouns and noun phrases referring to the same en-
tity (Ng, 2010) (Durrett and Klein, 2013). In IER
implicit mentions occur without co-referring corre-
sponding entity. Hence, they must be resolved with-
out dependencies on co-referents.

In contrast to NER, EL, and CR problems and
their solutions, IER addresses instances where nei-
ther explicit mention of an entity nor noun phrases
or any of the above mentioned features are guaran-
teed to appear in the text but still have a reference to
a known entity. Hence, IER solutions require treat-
ment for implied meaning of the phrases beyond its
syntactic features.

Since our solution to IER establishes a relation-
ship between entity definitions and the input text,
the tasks of paraphrase recognition (Barzilay and El-
hadad, 2003) (Dolan et al., 2004) and textual entail-
ment recognition (Giampiccolo et al., 2007) are re-
lated to our solution. However, these tasks are fun-
damentally different in two aspects: 1) Both para-
phrase recognition and textual entailment recogni-

229



tion are defined at the sentence level, whereas text
phrases considered for IER can exist as a sentence
fragment or span across multiple sentences, and
2) The objective of IER is to find whether a given
text phrase has a mention of an entity—as opposed
to determining whether two sentences are similar or
entail one another. However, our solution benefits
from the lessons learned from both tasks.

The question answering solutions cope with the
questions that describe the characteristics of a con-
cept and expect that concept as the answer. This
particular type of questions resembles implicit en-
tity mentions. However, they assume that the ques-
tions are referring to some concept and the problem
is to uncover which one, whereas the implicit entity
mention problem requires us to first check whether
a particular sentence/phrase has a mention of an en-
tity at all. Furthermore, question answering systems
benefit from the presence of pronouns, nouns, and
noun phrases in the questions and the candidate an-
swers to derive helpful syntactic and semantic fea-
tures (Lally et al., 2012)(Wang, 2006), while phrases
with implicit entity mentions may not contain such
features.

The existing work on clinical document annota-
tion focused on explicit entity mentions with con-
tiguous phrases (Aronson, 2006) (Savova et al.,
2010) (Friedman et al., 2004) (Fu and Ananiadou,
2014). Going one step beyond, the SemEval 2014
task 7 recognized the need for identifying discon-
tiguous mentions of explicit entities (Pradhan et al.,
2014). However, the recognition of implicit entities
has yet to address by this community.

3 Implicit Entity Recognition (IER) in
Clinical Documents

We define the Implicit Entity Recognition (IER) task
in clinical documents as: given input text that does
not have explicit mentions of target entities, find
which target entities are implied (including implied
negations) in the input text.

Negation detection is traditionally separated from
the entity recognition task because negation indi-
cating terms can be recognized separately from the
phrases that contain explicit mention of an entity. In
contrast, implicit mention can involve an antonym
that fuses the entity indication with negated sense
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Entity 
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Entity Model 
Creation
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Calculation
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Figure 1: Components of the Proposed Solution

(e.g., ‘patient denies shortness of breath’ vs ‘patient
is breathing comfortably’). Hence, negation detec-
tion is considered as a sub-task of IER.

Typical entity recognition task considers the de-
tection of the boundaries of the phrases with enti-
ties (i.e., segmentation) as a sub-task. We consider
boundary detection of the implicit entity mentions
as an optional step due to two reasons: 1) It is con-
sidered an optional step in biomedical entity recog-
nition task (Tsai et al., 2006), and 2) The phrases
with implicit entity mentions can be noncontiguous
and span multiple sentences. Further, in some cases,
even domain experts disagree on the precise phrase
boundaries.

We define the IER as a classification task. Given
an input text, classify it to one of the three cate-
gories: TPe if the text has a mention of entity e, or
Tnege if the text has a negated mention of entity e, or
TNe if the entity e is not mentioned at all. As men-
tioned, the phrases with implicit entity mentions can
span to multiple sentences. However, this work will
focus only on implicit mentions exist within a sen-
tence. Our unsupervised solution to this classifica-
tion task: 1) Creates an entity model from the entity
definitions, 2) Selects candidate sentences that may
contain implicit entity mentions, 3) Projects the can-
didate sentences into entity model space, and 4) Cal-
culates the semantic similarity between projected
sentences and the entity model. Figure 1 shows the
components of our solution which are discussed be-
low in detail.

In order to facilitate these sub-tasks, our algo-
rithm introduces the concept of an entity represen-
tative term for each entity and propose an automatic
way to select these terms from entity definitions.
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3.1 Entity Representative Term Selection

Entity representative term (ERT) selection finds a
term with high representative power to an entity and
plays an important role in defining it.

The representative power of a term t for entity e
is defined based on two properties: its dominance
among the definitions of entity e, and its ability to
discriminate the mentions of entity e from other en-
tities. This is formalized in eq. (1). Consider the
entity ‘appendicitis’ as an example. It is defined as
‘acute inflammation of appendix’. Intuitively, both
terms inflammation and appendix are candidates to
explain the entity appendicitis. However, the term
appendix has more potential to discriminate the im-
plicit mentions of appendicitis than the term inflam-
mation, because the term inflammation is used to de-
scribe many entities. Also, none of the definitions
define appendicitis without using the term appendix;
therefore, appendix is the dominant term, and conse-
quently it has the most representative power for the
entity ‘appendicitis’.

We used a score inspired by the TF-IDF measure
to capture this intuition. The IDF (inverse document
frequency) value measures the specificity of a term
in the definitions. The TF (term frequency) captures
the dominance of a term. Hence the representative
power of a term t for entity e (rt) is defined as,

rt = freq(t,Qe) ∗ log
|E|
|Et| (1)

Qe is the set of definitions of entity e, E is the
set of all entities. freq(t,Qe) is the frequency of
term t in setQe, |E| is the size of the set E (3962 in
our corpus), and the denominator |Et| calculates the
number of entities defined using term t. We expand
the ERT found for an entity with this technique by
adding its synonyms obtained from WordNet.

We can define entity representative terms based
on the definition of representative power.

Definition 3.1 (Entity Representative Term). Let
Le = {t1, t2, ..., tn} be the set of terms in a defi-
nitions of an entity e. Let RLe = {rt1 , rt2 , ..., rtn}
be the representative power calculated for each term
ti in Le for e. We select term tm as the entity rep-
resentative term of the entity e if its representative
power is maximum, i.e., rtm ≥ rti for all i where
1 ≤ i ≤ n.

3.2 Entity Model Creation

Our algorithm creates an entity indicator from a
definition of the entity. An entity indicator con-
sists of terms that describe the entity. Consider
the definition ‘A disorder characterized by an un-
comfortable sensation of difficulty breathing’ for
‘shortness of breath’, for which the selected ERT is
‘breathing’. The terms uncomfortable, sensation,
difficulty, and breathing collectively describe the en-
tity. Adding other terms in this definition to the en-
tity indicator negatively affects the similarity calcu-
lation with the candidate sentences since they are
less likely to appear in a candidate sentence. We
exploited the neighborhood of the ERT in the defini-
tion to create the entity indicator and automatically
selected the nouns, verbs, adjectives, and adverbs in
the definition within a given window size to the left
and to the right of the ERT. We used a window size
of four in our experiments.

An entity can have multiple definitions each ex-
plaining it using diverse vocabulary. On average,
an entity in our corpus had 3 definitions. We cre-
ate an entity indicator from each definition of the
entity, hence an entity has multiple indicators. We
call the collection of indicators of an entity as its en-
tity model. In other words, an entity model consists
of multiple entity indicators that capture diverse and
orthogonal ways an entity can be expressed in the
text.

3.3 Candidate Sentence Selection

The sentences with ERT in an input text are identi-
fied as candidate sentences containing implicit men-
tion of the corresponding entity. A sentence may
contain multiple ERTs and consequently become a
candidate sentence for multiple entities. This step
reduces the complexity of the classification task as
now a sentence has only a few target entities.

3.4 Candidate Sentence Pruning

In order to evaluate the similarity between any given
candidate sentence and the entity model, we per-
form a projection of candidate sentences onto the
same semantic space. We perform this by pruning
the terms in candidate sentences that does not par-
ticipate in forming the segment with implicit entity
mentions. Candidate sentences are pruned by fol-
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lowing the same steps followed to create the entity
indicators from the entity definitions.

3.5 Semantic Similarity Calculation
As the last step, our solution calculates the similarity
between the entity model and the pruned candidate
sentence. The sentences with implicit entity men-
tions often use adjectives and adverbs to describe the
entity and they may indicate the absence of the en-
tities using antonyms or explicit negations. These
two characteristics pose challenges to the applica-
bility of existing text similarity algorithms such as
MCS (Mihalcea et al., 2006) and matrixJcn (Fer-
nando and Stevenson, 2008) which are proven to
perform well among the unsupervised algorithms in
paraphrase identification task (ACLWiki, 2014).

The existing text similarity algorithms largely
benefit from the WordNet similarity measures. Most
of these measures use the semantics of the hierar-
chical arrangement of the terms in WordNet. Unfor-
tunately, adjectives and adverbs are not arranged in
a hierarchy, and terms with different part of speech
(POS) tags cannot be mapped to the same hierarchy.
Hence, they are limited in calculating the similar-
ity between terms of these categories. This limi-
tation negatively affects the performance of IER as
the entity models and pruned sentences often contain
terms from these categories. Consider the following
examples:

1. Her breathing is still uncomfortableadjective.

2. She is breathing comfortablyadverb in room air.

3. His tip of the appendix was inflamedverb.

The first two examples use an adjective and an ad-
verb to mention the entity ‘shortness of breath’ im-
plicitly. The third example uses a verb to men-
tion the entity ‘appendicitis’ implicitly instead of the
noun inflammation that is used by its definition.

We have developed a text similarity measure over-
coming these challenges and weigh the contributions
of the words in the entity model to the similarity
value based on their representative power.

Handling adjectives, adverbs and words with
different POS tags: To get the best out of all Word-
Net similarity measures, we exploited the relation-
ships between different forms of the terms in Word-
Net to find the noun form of the terms in the entity

models and pruned sentences before calculating the
similarity. We found the adjective for an adverb us-
ing relationship ‘pertainym’ and noun for an adjec-
tive or a verb using the relationship ‘derivationally
related form’ in WordNet.

Handling negations: Negations are of two types:
1) Negations mentioned with explicit terms such as
no, not, and deny, and 2) Negations indicated with
antonyms (e.g., 2nd example in above list). We used
the NegEx algorithm (Chapman et al., 2001) to ad-
dress the first type of negations. To address the sec-
ond type of negations, we exploited the antonym re-
lationships in the WordNet.

The similarity between an entity model and the
pruned candidate sentence is calculated by comput-
ing the similarities of their terms. The term sim-
ilarity is computed by forming an ensemble using
the standard WordNet similarity measures namely,
WUP (Wu and Palmer, 1994), LCH (Leacock and
Chodorow, 1998), Resnik (Resnik, 1995), LIN (Lin,
1998), JCN (Jiang and Conrath, 1997), as well as a
predict vector-based measure Word2vec (Mikolov et
al., 2013) and a morphology-based similarity metric
Levenshtein1 as:

sim(t1, t2) = maxm∈M (simm(t1, t2)) (2)

where t1 and t2 are input terms and M is the
set of above mentioned similarity measures. This
ensemble-based similarity measure exploits orthog-
onal ways of comparing terms: semantic, statisti-
cal, and syntactic. An ensemble-based approach
is preferable over picking one of them exclusively
since they are complementary in nature, that is, each
outperforms the other two in certain scenarios.

The similarity values calculated by WordNet sim-
ilarity measures in simm(t1, t2) are normalized to
range between 0 and 1.

The similarity of a pruned candidate sentence to
the entity model is calculated by calculating its sim-
ilarity to each entity indicator in the entity model,
and picking the maximum value as the final simi-
larity value for the candidate sentence. The similar-
ity between entity indicator e and pruned sentence
s, sim(e, s), is calculated by summing the similari-
ties calculated for each term te in the entity indica-
tor weighted by its representative power as defined

1http://en.wikipedia.org/wiki/Levenshtein distance
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in eq. (1). If te is an antonym for any term in s
(ts), it contributes negatively to the overall similar-
ity value, else it contributes in linear portion of the
maximum similarity value between te and some ts
(eqs. (4) and (5)). The overall similarity value is
normalized based on the total representative power
of all the terms tes (eq. (1)) and ranges between -1
and +1.

Note that this formulation weighs the contribution
of each term according to its importance in defining
the entity. The higher similarity with a term that has
higher representative power leads to higher overall
similarity value, while the lower similarity with such
terms leads to a lower total similarity value. The spe-
cial treatment for antonyms takes care of the negated
mentions of an entity.

sim(e, s) =

∑
te∈e f(te, s) ∗ rte∑

te∈e rte
(3)

f(te, s) =

{
−1 α(te, s) == 0
maxts∈s sim(te, ts) otherwise

(4)

α(te, s) =
∏
ts∈s

{
0 if te is an antonym of ts
1 otherwise

(5)
Finally, the sentences are classified based on a

configurable threshold values selected between -1
and +1.

4 Evaluation

We reannotated a sample of the corpus created for
SemEval-2014 task 7 (Pradhan et al., 2014) to in-
clude implicit mention annotations and measured
the performance of our proposed method in classify-
ing entities annotated with TP and Tneg mentions2.

4.1 Gold Standard Dataset
The SemEval-2014 task 7 corpus consists of 24,147
de-identified clinical notes. We used this corpus to
create a gold standard for IER with the help of three
domain experts. The gold standard consists of 857

2We do not explicitly report performance on TN because our
focus is to find sentences that contain entity mentions rather
than those devoid of mentions.

Entity TP Tneg TN
Shortness of breath 93 94 29
Edema 115 35 81
Syncope 96 92 24
Cholecystitis 78 36 4
Gastrointestinal gas 18 14 5
Colitis 12 11 0
Cellulitis 8 2 0
Fasciitis 7 3 0

Table 1: Candidate Sentence Statistics

sentences selected for eight entities. The creation of
the gold standard is described below in detail.

We have annotated the corpus for explicit men-
tions of the entities using cTAKES (Savova et
al., 2010) and ranked the entities based on their
frequency. The domain experts on our team
then selected a subset of these entities that they
judged to be frequently mentioned implicitly in
clinical documents. For example, the frequent
entity ‘shortness of breath’ was selected but not
‘chest pain’ since the former is mentioned implic-
itly often but not the latter. We used four frequently
implicitly mentioned entities as the primary focus of
our evaluation. We refer to these as primary enti-
ties from here on (the first four entities in Table 1).
To test the generalizability of our method, as well
as to evaluate its robustness when lacking training
data, we selected another four entities (the last four
entities in Table 1). We then selected a random sam-
ple of candidate sentences for each of these entities
based on their ERTs and winnowed it down further
by manually selecting a subset that exhibits syntactic
diversity. Ultimately, our corpus consisted of 120-
200 sentences for each primary entity and additional
80 sentences selected from the other four entities.

Each candidate sentence was annotated as TPe
(contains a mention of entity e), Tnege (contains a
negated mention of entity e), or TNe (does not con-
tain a mention of entity e). Each sentence was anno-
tated by two domain experts, and we used the third
one to break the ties. The Cohens’ kappa value for
the annotation agreement was 0.58. While the anno-
tators have good agreement on annotating sentences
in category TP, they agreed less on the categories
Tneg and TN. The latter categories are indeed dif-
ficult to distinguish. For example, annotators often
argue whether ‘patient breathing at a rate of 15-20’
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means the negation of entity ‘shortness of breath’
(because that is a normal breathing pattern) or just
lacks a mention of the entity. The final anno-
tation label for a sentence is decided based on
majority voting. Table 1 shows the statistics of
the annotated candidate sentences. The prepared
data set is available at http://knoesis.org/
researchers/sujan/data-sets.html

4.2 Implicit Entity Recognition Performance
Since IER is a novel task, there are no baseline algo-
rithms that can be directly applied such that it would
yield a fair comparison with our algorithm. How-
ever, we deem some of the related algorithms to have
good potential applicability for this task. Therefore,
we included two strong algorithms from the closest
related work as baseline solutions to the problem.

The first baseline is the well-known text similar-
ity algorithm MCS (Mihalcea et al., 2006). MCS is
one of the best performing unsupervised algorithms
in paraphrase recognition task (ACLWiki, 2014). It
uses an ensemble of statistical and semantic similar-
ity measures, which is a preferable feature for the
IER as opposed to one measure used by the ma-
trixJcn (Fernando and Stevenson, 2008). Both MCS
and our algorithm classify the candidate sentences
based on threshold values selected experimentally.

To include also a supervised baseline, we trained
an SVM (Cortes and Vapnik, 1995) one of the
state-of-the-art learning algorithms, shown to per-
form remarkably well in a number of classifica-
tion tasks. We trained separate SVMs for each pri-
mary entity, considering unigrams, bigrams, and tri-
grams as the features. It has been shown that SVM
trained on ngrams performed well on text classifica-
tion tasks (Pang et al., 2002) (Zhang and Lee, 2003).
The SVMs trained with bigrams consistently pro-
duced the best results for the 4-fold cross validation.
Therefore, our testing phase used the SVMs trained
with the bigrams.

Preparation of training and testing datasets:
We created training and testing datasets by splitting
the dataset annotated for each primary entity as 70%
(training) and 30% (testing). The training datasets
were used to train the SVM models for each pri-
mary entity and to select the threshold values for
both MCS and our algorithm.

The classification performance of each algorithm

is studied in the TP and Tneg categories using preci-
sion, recall, and F-measure.

The precision (PP) and recall (PR) for category
TP at threshold t are defined as:

PPt = STP with sim≥t
all sentences with sim≥t

PRt = STP with sim≥t
STP

Similarly, NP and NR for Tneg are defined as:

NPt = STneg with sim<t
all sentences with sim<t

NRt = STneg with sim<t
STneg

where STP and STneg denote the sentences anno-
tated with TP and Tneg respectively by domain ex-
perts and sim is the calculated similarity value for
the pruned sentence.

Selecting threshold value: The threshold values
for both MCS and our algorithm are selected based
on their classification performance in the training
dataset. The MCS algorithm produced the best F1
score for the TP category with a threshold value of
0.5, and for the Tneg category with a threshold value
of 0.9, while our algorithm produced the best F1 for
the TP category with 0.4 and for the Tneg category
with 0.3. We examined threshold values that pro-
duce best F1 scores by the two algorithms by starting
with 10% of the training data and gradually increas-
ing the size of the training data. The threshold val-
ues with best F1 scores were stabilized after adding
30% of the training data. Hence, we could select the
threshold values with just 50% of the training data.

4.3 Classification Performance

The first experiment evaluates the classification per-
formance of our algorithm, MCS, and SVM.

Method PP PR PF1 NP NR NF1
Our 0.66 0.87 0.75 0.73 0.73 0.73
MCS 0.50 0.93 0.65 0.31 0.76 0.44
SVM 0.73 0.82 0.77 0.66 0.67 0.67

Table 2: precision, recall, and F1 values for each algorithm (PF1 and
NF1 indicate F1 scores for the TP and Tneg categories respectively).
SVM outperforms our algorithm in the TP category, while our algorithm
outperforms SVM on the Tneg category.

Our algorithm outperforms the other unsuper-
vised solution MCS, but the SVM was able to lever-
age supervision to outperform our algorithm in the
TP category in terms of F-measure (PF1 on Ta-
ble 2). For example, the sentence ‘he was placed on
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mechanical ventilation shortly after presentation’ is
annotated as TP in the gold standard for the entity
‘shortness of breath’ since ‘mechanical ventilation’
indicates the presence of ‘shortness of breath’. This
annotation requires domain knowledge that was not
present in the entity definitions that we used to build
entity models. However, with enough examples, the
SVM was able to learn the importance of the bigram
‘mechanical ventilation’ and classify it as TP.

For the Tneg category, however, our algorithm
outperforms the SVM (NF1 on Table 2). This is
due to the explicit treatment for the negated men-
tions by our algorithm to capture different variations
of the negated mentions.

The MCS algorithm underperformed in both cat-
egories. We observed that this was mostly due to
its limitations described in Section 3.5. The over-
all classification accuracy—the accuracy of classify-
ing both TP and Tneg instances—of our algorithm,
MCS, and SVM are 0.7, 0.4, and 0.7 respectively.

Method PP PR PF1 NP NR NF1
SVM 0.73 0.82 0.77 0.66 0.67 0.67
SVM+MCS 0.73 0.82 0.77 0.66 0.66 0.66
SVM+Our 0.77 0.85 0.81 0.72 0.75 0.73

Table 3: Comparison of SVM results incorporating similarity values
calculated by our algorithm and MCS as a feature. Our algorithm com-
plements the SVM in both categories whereas MCS does not contribute
to improve the classification.

The second experiment evaluates the impact of in-
cluding the similarity scores calculated by MCS and
our algorithm for each candidate sentence as a fea-
ture to the best performing SVM model. Table 3
shows that the inclusion of MCS scores as a fea-
ture did not help to improve the SVM results. In
fact, it negatively affected the results for the Tneg
category. Since the MCS showed low precision for
the Tneg category in the previous experiment (Ta-
ble 2), it is potentially introducing too much noise
that the SVM is not able to linearly separate. How-
ever, the similarity value calculated by our algorithm
improves the SVM classifiers. It increased the pre-
cision and recall values for both the TP and Tneg
categories. This shows that the similarity value cal-
culated by our algorithm can be used as an effective
feature for a learning algorithm that is designed to
solve the IER problem. The overall classification
accuracy of SVM, SVM+MCS, and SVM+Our con-

figurations are 0.7, 0.7, and 0.74 respectively.
We were interested in exploring how much la-

beled data would be needed for supervised solution
to outperform our unsupervised score alone. We an-
alyzed the behavior of the three configurations of the
SVM with our unsupervised approach with different
training set sizes. Figure 2 shows the F1 values ob-
tained by gradually increasing the size of the train-
ing dataset3, while testing on the same test set. The
F1 value of our approach remains constant after 50%
training data since it has already decided the thresh-
old values. Figure 2 shows that the SVM trained
with bigrams needs 76% of the training dataset to
achieve the F1 value achieved by our unsupervised
approach in the TP category, and it does not achieve
the F1 achieved by our algorithm in Tneg category
(note the crossing points of the line marked with ‘X’
and line marked with circles).

Figure 2 also shows that the similarity score cal-
culated by our algorithm complements the SVM at
each data point. After adding our similarity score to
the SVM as a feature, it achieved the F1 achieved by
our unsupervised algorithm with 50% of the training
data in the TP category and with 90% of the training
data in the Tneg category (note the crossing points
of the line marked with ‘X’ and line marked with
‘+’). Also, SVM+Our configuration achieved the
best F1 value for SVM with just 70% of the train-
ing data in the TP category and with just 50% of the
training data in the Tneg category. This shows that
our similarity score can be used as an effective fea-
ture to reduce manual labeling effort and to improve
the supervised learning algorithms to solve the IER
problem.

Finally, to evaluate the generalization ability of
our algorithm and to demonstrate its usage in situ-
ations with a lack of training data, we applied it to
a set of 80 sentences selected for four new entities
(the last four entities in Table 1). Our algorithm pro-
duced the following results for these entities when
we classify their sentences with the threshold values
selected using the training dataset created for the pri-
mary entities.

PP = 0.72, PR = 0.77, PF1 = 0.74
NP = 0.78, NR = 0.83, NF1 = 0.80

3We draw these graphs considering training dataset size
>50% for clarity.
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Figure 2: The variation of the F1 value in the TP (left) and Tneg (right) categories with varying sizes of training datasets. These graphs show that
the SVM trained with bigrams needs 76% of the training data to achieve the F1 score of our unsupervised method in the TP category while it does
not achieve the F1 score of our algorithm in the Tneg category. This also shows that the similarity value calculated by our algorithm complements
the SVM trained with bigrams at each data point and helps it to beat or perform on par with our algorithm. The paired T-test values calculated for
SVM and SVM+Our configurations show that this is not a random behavior (t- T-test value, df- degree of freedom, p- probability value).

Although negation detection with NegEx is not a
contribution of our work, our algorithm enables its
application to IER. This is not possible for MCS.
NegEx requires two inputs: 1) The sentence, and
2) The term being considered for possible negation.
MCS does not detect the key term in the sentence,
hence it is not possible to apply NegEx with MCS.
However, our algorithm starts with identifying the
ERT which is considered for possible negation.

5 Limitations

The candidate sentence selection based on the ERT
can be seen as a limitation of our approach since it
does not select sentences with implicit entity men-
tions that do not use the selected ERT. However, we
do not expect this limitation to have a major impact.
We asked our domain experts to come up with sen-
tences that contain implicit mentions of the entity
‘shortness of breath’ without using its ERT ‘breath-
ing’ or its synonyms (‘respiration’ and ‘ventila-
tion’). According to them, the sentences ‘the patient
had low oxygen saturation’, ‘the patient was gasp-
ing for air’, and ‘patient was air hunger’ are such
sentences (the emphasis indicates the phrases that
imply ‘shortness of breath’). However, we found
only 113 occurrences of these phrases as opposed

to 8990 occurrences of its ERTs in our corpus.

6 Conclusion and Future Work

We defined the problem of implicit entity recogni-
tion in clinical documents and proposed an unsuper-
vised solution that recognizes the implicit mentions
of entities using a model built from their definitions
in a knowledge base. We showed that our algorithm
outperforms the most relevant unsupervised method
and it can be used as an effective feature for a su-
pervised learning solution based on an SVM. The
ability to capture the diverse ways in which an en-
tity can be implicitly mentioned by exploiting their
definitions with special treatment for two types of
negations are the main strengths of our method.

In the future, we will explore the ability to detect
the boundary of the phrases with implicit mentions,
capture the sentences with implicit mentions with-
out selected ERT, and investigate more intensive ex-
ploitation of domain knowledge for IER.
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Abstract

Semantic role labeling has become a key mod-
ule for many language processing applica-
tions such as question answering, information
extraction, sentiment analysis, and machine
translation. To build an unrestricted semantic
role labeler, the first step is to develop a com-
prehensive proposition bank. However, creat-
ing such a bank is a costly enterprise, which
has only been achieved for a handful of lan-
guages.

In this paper, we describe a technique to build
proposition banks for new languages using
distant supervision. Starting from PropBank
in English and loosely parallel corpora such as
versions of Wikipedia in different languages,
we carried out a mapping of semantic propo-
sitions we extracted from English to syntactic
structures in Swedish using named entities.

We trained a semantic parser on the generated
Swedish propositions and we report the results
we obtained. Using the CoNLL 2009 evalua-
tion script, we could reach the scores of 52.25
for labeled propositions and 62.44 for the un-
labeled ones. We believe our approach can be
applied to train semantic role labelers for other
resource-scarce languages.

1 Introduction

Semantic role labeling has become a key module for
many language processing applications and its im-
portance is growing in fields like question answer-
ing (Shen and Lapata, 2007), information extraction
(Christensen et al., 2010), sentiment analysis (Jo-
hansson and Moschitti, 2011), and machine trans-

lation (Liu and Gildea, 2010; Wu et al., 2011). To
build an unrestricted semantic role labeler, the first
step is to develop a comprehensive proposition bank.
However, building proposition banks is a costly en-
terprise and as a consequence of that, they only exist
for a handful of languages such as English, Chinese,
German, or Spanish.

In this paper, we describe a technique to create
proposition banks for new languages using distant
supervision. Our approach builds on the transfer of
semantic information through named entities. Start-
ing from an existing proposition bank, PropBank in
English (Palmer et al., 2005), and loosely parallel
corpora such as versions of Wikipedia in different
languages, we carried out a mapping of the semantic
propositions we extracted from English to syntactic
structures in the target language.

We parsed the English edition of Wikipedia up
to the predicate–argument structures using a se-
mantic role labeler (Björkelund et al., 2010a) and
the Swedish Wikipedia using a dependency parser
(Nivre et al., 2006). We extracted all the named
entities we found in the propositions and we dis-
ambiguated them using the Wikidata nomenclature1.
Using recurring entities, we aligned sentences in the
two languages; we transferred the semantic annota-
tion from English sentences to Swedish sentences;
and we could identify 2,333 predicate–argument
frames in Swedish.

Finally, we used the resulting corpus to train a
semantic role labeler for Swedish that enabled us
to evaluate the validity of our approach. Beyond
Swedish, we believe it can apply to any resource-

1http://www.wikidata.org
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scarce language.

2 Previous Work

The techniques we applied in this paper are simi-
lar to those used in the extraction of relations be-
tween entity mentions in a sentence, where rela-
tional facts are often expressed in the form of triples,
such as: (Seoul, CapitalOf, South Korea). While su-
pervised and unsupervised techniques have been ap-
plied to the extraction of such relations, they both
suffer from drawbacks. Supervised learning relies
on labor-intensive, hand-annotated corpora, while
unsupervised approaches have lower precision and
recall levels.

Distant supervision is an alternative to these ap-
proaches that was introduced by Craven and Kum-
lien (1999). They used a knowledge base of ex-
isting biological relations, automatically identified
sentences containing these relations, and trained a
classifier to recognize the relations. Distant supervi-
sion has been successfully transferred to other fields.
Mintz et al. (2009) describe a method for creat-
ing training data and relation classifiers without a
hand-labeled corpus. The authors used Freebase and
its binary relations between entities, such as (/loca-
tion/location/contains, Belgium, Nijlen). They ex-
tracted entity pairs from the sentences of a text and
matched them to those found in Freebase. Using
the entity pairs, the relations, and the corresponding
sentence text, they could train a relation extractor.

Padó and Lapata (2009) used parallel corpora and
constituent-based models to automatically project
FrameNet annotations from English to German.
Hoffmann et al. (2010) introduced Wikipedia in-
foboxes in relation extraction, where the authors
trained a classifier to predict the infobox schema of
an article prior to the extraction step. They used
relation-specific lexicons created from a web crawl
to train individual extractors for 5,025 relations and,
rather than running all these extractors on every ar-
ticle and sentence, they first predicted the schema of
an article and then executed the set of correspond-
ing extractors. Early work in distant supervision
assumed that an entity pair expresses a unique ex-
plicit relation type. Surdeanu et al. (2012) describe
an extended model, where each entity pair may link
multiple instances to multiple relations. Ritter et al.

(2013) used a latent-variable approach to model in-
formation gaps present in either the knowledge base
or the corresponding text.

As far as we know, all the work on relation extrac-
tion focused on the detection of specific semantic re-
lations between entities. In this paper, we describe
an extension and a generalization of it that poten-
tially covers all the relations tied to a predicate and
results in the systematic extraction of the semantic
propositions observed in a corpus.

Similarly to Mintz et al. (2009), we used an ex-
ternal resource of relational facts and we matched
the entity pairs in the relations to a Swedish text
corpus. However, our approach substantially dif-
fers from theirs by the form of the external resource,
which is a parsed corpus. To our best knowledge,
there is no Swedish repository of relational facts be-
tween entities in existence. Instead, we semantically
parsed an English corpus, in our case the English
edition of Wikipedia, and we matched, article by ar-
ticle, the resulting semantic structures to sentences
in the Swedish edition of Wikipedia. Using the gen-
erated Swedish semantic structures, we could train a
semantic role labeler.

3 Extending Semantic Role Labeling

In our approach, we employ distantly supervised
techniques by combining semantic role labeling
(SRL) with entity linking. SRL goes beyond the
extraction of n-ary relations and captures a seman-
tic meaning of relations in the form of predicates–
argument structures. Since SRL extracts relations
between a predicate and its arguments, it can be con-
sidered as a form of relation extraction which in-
volves a deeper analysis.

However, the semantic units produced by classi-
cal semantic role labeling are still shallow, as they
do not resolve coreference or disambiguate named
entities. In this work, we selected the propositions,
where the arguments corresponded to named entities
and we resolved these entities in unique identifiers.
This results in a limited set of extended propositions
that we think are closer to the spirit of logical forms
and can apply in a cross-lingual setting.
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Input Explanation # cand. Output
helsingborg c Railway station in Helsingborg 1 wikidata:Q3062731
kärna Medieval tower in Helsingborg 27 wikidata:Q1779457
berga District in Helsingborg 33 wikidata:Q25411

Table 1: Entries in the detection dictionary, all related to the city of Helsingborg in Sweden, with their unique Wikidata
Q-number and a short explanation in italics.

4 Named Entity Linking

Named entity linking (or disambiguation) (NED) is
the core step of distant supervision to anchor the par-
allel sentences and propositions. NED usually con-
sists of two steps: first, extract the entity mentions,
usually noun phrases, and if a mention corresponds
to a proper noun – a named entity –, link it to a
unique identifier.

For the English part, we used Wikifier (Ratinov
et al., 2011) to disambiguate entities. There was
no similar disambiguator for Swedish and those de-
scribed for English are not directly adaptable be-
cause they require resources that do not exist for this
language. We created a disambiguator targeted to
Swedish: NEDforia. NEDforia uses a Wikipedia
dump as input and automatically collects a list of
named entities from the corpus. It then extracts the
links and contexts of these entities to build disam-
biguation models. Given an input text, NEDforia
recognizes and disambiguates the named entities,
and annotates them with their corresponding Wiki-
data number.

4.1 Entity Detection

We created a dictionary of entities from Wikipedia
using the combination of a POS tagger (Östling,
2013), language-dependent uppercase rules, and
two entity databases: Freebase (Bollacker et al.,
2008) and YAGO2 (Hoffart et al., 2010). Ta-
ble 1 shows three dictionary entries, where an en-
try consists of a normalized form and the out-
put is a list of Wikidata candidates in the form
of Q-numbers. The output can be the native
Wikipedia page, if a Wikidata mapping could
not be found, as for “wikipedia.sv:Processorkärna”
(“wikipedia.en:Multi-core processor” in the English
Wikipedia).

The entity detection module identifies the strings
in the corpus representing named entities. It tok-

enizes the text and uses the longest match to find the
sequences of tokens that can be associated to a list
of entity candidates in the dictionary.

4.2 Disambiguation

We disambiguated the entities in a list of candi-
dates using a binary classifier. We trained this
classifier with a set of resolved links that we re-
trieved from the Swedish Wikipedia articles. As
in Bunescu and Paşca (2006), we extracted all the
manually created mention–entity pairs, encoded as
[[target|label]] in the Wikipedia markup,
and we marked them as positive instances. We cre-
ated the negative instances with the other mention–
candidate pairs that we generated with our dictio-
nary.

As classifier, we used the L2-regularized logis-
tic regression (dual) from LIBLINEAR (Fan et al.,
2008) with three features and we ranked the candi-
dates according to the classifier output. The features
are the popularity, commonness (Milne and Witten,
2008), and context. The popularity is the probability
that a candidate is linked to an entity. We estimate
it through the count of unique inbound links to the
candidate article (Table 2). The commonness is the
probability the sequence of tokens could be the can-
didate: P (candidate|sequence of tokens). We com-
pute it from the target–label pairs (Table 3). The
context is the count of unique words extracted from
the two sentences before the input string that we in-
tersect with the words found in the candidate’s arti-
cle.

Entity Occupation Popularity
Göran Persson Skåne politician 4
Göran Persson Musician 5
Göran Persson Prime minister 257

Table 2: The popularity of some entities.
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Entity Mention Common.
Scandinavian Airlines SAS 90.4%
Special Air Service SAS 5.4%
SAS System SAS 0.4%
Cable News Network CNN 99.2%
Cable News Network Int. CNN 0.8%

Table 3: The commonness of some entities.

5 Distant Supervision to Extract Semantic
Propositions

The distant supervision module consists of three
parts:

1. The first one parses the Swedish Wikipedia up
to the syntactic layer and carries out a named
entity disambiguation.

2. The second part carries out a semantic parsing
of the English Wikipedia and applies a named
entity disambiguation.

3. The third part identifies the propositions hav-
ing identical named entities in both languages
using the Wikidata Q-number and aligns them.

5.1 Semantic and Syntactic Parsing
As first step, we parsed the English edition of
Wikipedia up to the predicate–argument structures
using the Mate-Tools dependency parser and seman-
tic role labeler (Björkelund et al., 2010a) and the
Swedish Wikipedia using MaltParser (Nivre et al.,
2006). To carry out these parsing tasks, we used
a Hadoop-based architecture, Koshik (Exner and
Nugues, 2014), that we ran on a cluster of 12 ma-
chines.

5.2 Named Entity Disambiguation
The named entity disambiguation links strings to
unique Wikidata and is instrumental to the proposi-
tion alignment. For the two English-Swedish equiv-
alent sentences:

Cologne is located on both sides of the
Rhine River

and

Köln ligger på båda sidorna av floden
Rhen,

Wikifier, on the English version, identi-
fies Cologne and Rhine river as named en-
tities and links them respectively to the
en.wikipedia.org/wiki/Cologne and
en.wikipedia.org/wiki/Rhine pages,
while NEDforia, on the Swedish text, produces
a ranked list of entity candidates for the words
Köln and Rhen shown in Table 4. We assign the
named entities to the top candidates, Q365 for Köln
‘Cologne’ and Q584 for Rhen ‘Rhine.’ We import
the resulting annotated Wikipedia into Koshik,
where we map the document titles and anchor
targets to Q-numbers.

Words Entities English pages
Köln Q365 Cologne

Q54096 University of Cologne
Q104770 1. FC Köln
Q7927 Cologne (region)
Q157741 Cologne Bonn Airport
... ...

Rhen Q584 Rhine
Q10650601 No English page

Table 4: The ranked entity candidates matching the words
Köln ‘Cologne’ and Rhen ‘Rhine.’ The entities are iden-
tified by their Wikidata Q-numbers.

5.3 Alignment of Parallel Sentences

We ran the alignment of loosely parallel sentences
using MapReduce (Dean and Ghemawat, 2008)
jobs. Both the English and Swedish articles are se-
quentially read by mappers. For each sentence, the
mappers build and emit key-value pairs. The map-
pers create keys from the entity Q-numbers in each
sentence and we use the sentences as values.

The shuffle-and-sort mechanism in Hadoop en-
sures that, for a given key, each reducer receives
all the sentences. In this process, the sentences are
aligned by their Q-numbers and given as a group
to the reducers with each call. The reducers pro-
cess each group of aligned sentences and anno-
tate the Swedish sentence by linking the entities by
their Q-numbers and by inferring the semantic roles
from the aligned English sentences. The annotated
Swedish sentences are then emitted from the reduc-
ers. For each newly formed Swedish predicate, we
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select the most frequent alignments to form the fi-
nal Swedish predicate–argument frames. Figure 1
shows this alignment process.

We believe that by only using pairs of correspond-
ing articles in different language editions and, hence,
by restraining cross-article supervision using the
unique identifiers given by Wikipedia, we can de-
crease the number of false negatives. We based this
conviction on the observation that many Swedish
Wikipedia articles are loosely translated from their
corresponding English article and therefore express
the same facts or relations.

5.4 Semantic Annotation Transfer
Figure 2 shows the parsing results for the sentences
Cologne is located on both sides of the Rhine River
and Köln ligger på båda sidorna av floden Rhen in
terms of predicate–argument structures for English,
and functions for Swedish. We identify the named
entities in the two languages and we align the pred-
icates and arguments. We obtain the complete ar-
gument spans by projecting the yield from the argu-
ment token. If the argument token is dominated by a
preposition, the preposition token is used as the root
token for the projection.

5.4.1 Forming Swedish Predicates
During the alignment of English and Swedish sen-

tences, we collect token-level mappings between
sentences. The mappings keep a record of how many
times an English predicate is aligned with a Swedish
verb. For each Swedish verb, we then select the most
frequent English predicate it is aligned with. We cre-
ate a new Swedish frame by using the lemmatized
form of the verb and attaching the sense of the En-
glish predicate. We use the sentences representing
the most frequent mappings to generate our final cor-
pus of Swedish propositions. Table 6 shows how two
Swedish frames, vinna.01 and vinna.03, are created
by selecting the most frequent mappings. Table 7
shows the ten most frequent Swedish frames created
using this process.

6 A Swedish Corpus of Propositions

We processed more than 4 million English
Wikipedia articles and almost 3 million Swedish
Wikipedia pages from which we could align over
17,000 English sentences with over 16,000 Swedish

English
Cologne SBJ Q365 A1

is ROOT
located VC locate.01

on LOC AM-LOC
both NMOD
sides PMOD

of NMOD
the NMOD

Rhine NAME Q584
River PMOD

Swedish
A1 Q365 SS Köln

ligga.01 ROOT ligger
AM-LOC RA på

DT båda
PA sidorna
ET av
DT floden

Q584 PA Rhen

Figure 2: Transfer of the predicate–argument structure
from an English sentence to a corresponding Swedish
sentence. The sentences are aligned by the two entities
that they both share: Cologne (Q365) and the Rhine River
(Q584). The argument roles are transferred using the Q-
number entity links. The Swedish predicate is formed
using the lemma of the verb token, that is the syntactical
parent of the arguments.

Type Count
English articles 4,152,283
Swedish articles 2,792,089
Supervising sentences (English) 17,115
Supervised sentences (Swedish) 16,636
Number of supervisions 19,121

Table 5: An overview of distant supervision statistics.

sentences. This resulted into 19,000 supervisions
and the generation of a corpus of Swedish propo-
sitions. Table 5 shows an overview of the statistics
of this distant supervision process.

The generated corpus consists of over 4,000 sen-
tences, a subset of the 16,000 Swedish sentences
used in the supervision process. These 4,000 sen-
tences participate in the most frequent English to
Swedish mappings, as detailed in Sect 5.4.1. Table 8
shows an overview of the corpus statistics.

Table 7 shows the ten most frequent mappings and
we can see that all of them form meaningful Swedish
frames. We can with caution state that our method
of selecting the most frequent mapping works sur-
prisingly well. However, if we examine Table 6,
we observe some drawbacks to this approach. Al-
though some unlikely mappings, such as pay.01 are
filtered out, defeat.01 and prevail.01 could be used to
form new Swedish predicates with different senses
of the verb vinna ‘win’. In addition, the predicates,
help.01, take.01, and scoring.01, might participate
as auxiliary verbs or otherwise form propositions
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Sentence

ENGLISH Q1 Q8 Sentence

MAP SHUFFLE & SORT REDUCE

Q365 Q584ENGLISH

ENGLISH

SWEDISH

SWEDISH

Transfer 
Semantic 

Annotation

Transfer 
Semantic 

Annotation

Sentence

Sentence

Sentence

Sentence

Q1 Q8

Q1 Q8

Q365 Q584

Q1 Q8

Q365 Q584

Sentence

Sentence

Sentence

Sentence

Figure 1: Automatic parallel alignment of sentences through MapReduce. The Map phase creates a key-value pair
consisting of list of entities and a sentence. The Shuffle & Sort mechanism groups the key-value pairs by the list
of entities, effectively aligning sentences across the languages. The Reduce phase steps through the list of aligned
sentences and transfers semantic annotation from a language to another. Figure 2 shows this latter process.

English predicate Count Swedish predicate
win.01 125 vinna.01
defeat.01 24 –
beat.03 10 vinna.03
help.01 4 –
take.01 4 –
scoring.01 2 –
pay.01 1 –
prevail.01 1 –

Table 6: Selecting the most frequent English to Swedish
mapping to form new Swedish predicates for the verb
vinna ‘win’. A bold typeface indicates a newly formed
Swedish predicate. A dash indicates that a Swedish pred-
icate for the verb vinna was not formed using the corre-
sponding English predicate.

having the same meaning as win.01. A more thor-
ough investigation of the roles played by the enti-
ties, possibly in combination with the use of addi-
tional semantic information from Wikidata, would
certainly aid in improving the extraction of Swedish
predicates.

7 Semantic Role Labeling

To assess the usefulness of the proposition corpus,
we trained a semantic role labeler on it and we com-
pared its performance with that of a baseline parser.
Some roles are frequently associated with grammat-

English predicate Swedish predicate Count
win.01 vinna.01 125
follow.01 följa.01 107
become.01 bli.01 93
play.01 spela.01 67
locate.01 ligga.01 55
move.01 flytta.01 55
find.01 förekomma.01 41
bear.02 föda.02 41
use.01 använda.01 39
release.01 släppa.01 37

Table 7: The ten most frequent Swedish frames and their
mappings from English predicates.

ical functions, such as A0 and the subject in Prop-
Bank. We created the baseline using such associa-
tion rules and we measured the gains brought by the
corpus and a statistical training.

We split the generated corpus into a training, de-
velopment, and test sets with a 60/20/20 ratio. We
used the training and development sets for selecting
features during training and we carried out a final
evaluation on the test set.

7.1 Baseline Parser

The baseline parser creates a Swedish predicate
from the lemma of each verbal token and assigns it
the sense 01. Any token governed by the verbal to-
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ken having a syntactic dependency function is iden-
tified as an argument. The Talbanken corpus (Tele-
man, 1974) serves as training set for the Swedish
model of MaltParser. We used four of its grammat-
ical functions: subject (SS), object (OO), temporal
adjunct (TA), and location adjunct (RA) to create the
roles A0, A1, AM-TMP (temporal), and AM-LOC
(locative), respectively.

7.2 Training a Semantic Role Labeler
The SRL pipeline, modified from Björkelund et al.
(2010b), consists of four steps: Predicate identifica-
tion, predicate disambiguation, argument identifica-
tion, and argument classification.

During predicate identification, a classifier deter-
mines if a verb is a predicate and identifies their pos-
sible sense. Predicates may have different senses
together with a different set of arguments. As an
example, the predicate open.01 describes opening
something, for example, opening a company branch
or a bottle. This differs from the predicate sense,
open.02, having the meaning of something begin-
ning in a certain state, such as a stock opening at
a certain price.

The argument identification and classification
steps identify the arguments corresponding to a
predicate and label them with their roles.

7.3 Feature Selection
We considered a large number of features and we
evaluated them both as single features and in pairs to
model interactions. We used the same set as Johans-
son and Nugues (2008) and Björkelund et al. (2009),
who provide a description of them. We used a
greedy forward selection and greedy backward elim-
ination procedure to select the features (Björkelund
et al., 2010a). We ran the selection process in multi-
ple iterations, until we reached a stable F1 score. Ta-
ble 10 shows the list of single features we found for
the different steps of semantic role labeling: Pred-
icate identification, predicate disambiguation, argu-
ment identification, and argument classification.

Interestingly, the amount of features used in ar-
gument identification and classification, by far ex-
ceeds those used for predicate identification and dis-
ambiguation. This hints that, although our gen-
erated corpus only considers entities for argument
roles, the diverse nature of entities creates a corpus

Unfiltered Filtered
Property Count Count
Generated frames 2,333 457
Number of propositions 4,369 2,663
Number of sentences 4,152 2,562
Number of tokens 77,015 43,617

Table 8: An overview of corpus statistics.

in which arguments hold a wide variety of syntacti-
cal and lexical roles.

7.4 The Effect of Singleton Predicate Filtering

We performed a secondary analysis of our generated
corpus and we observed that a large number of pred-
icates occurs in only one single sentence. In addi-
tion, these predicates were often the result of errors
that had propagated through the parsing pipeline.

We filtered out the sentences having mentions of
singleton predicates and we built a second corpus to
determine what kind of influence it had on the qual-
ity of the semantic model. Table 8, right column,
shows the statistics of this second corpus. Singleton
predicates account for a large part of the corpus and
removing them shrinks the number of sentences by
almost a half and dramatically reduces the overall
number of predicates.

7.5 Validation on the Test Set

Table 9 shows the final evaluation of the base-
line parser and the semantic role labeler trained
on the generated corpus using distant supervision.
The baseline parser reached a labeled F1 score of
22.38%. Clearly, the indiscriminating choice of
predicates made by the baseline parser gives a higher
recall but a poor precision. The semantic role la-
beler, trained on our generated corpus, outperforms
the baseline parser by a large margin with a labeled
F1 score of 39.88%. Filtering the corpus for single-
ton mention predicates has a dramatic effect on the
parsing quality, increasing the labeled F1 score to
52.25%. We especially note a F1 score of 62.44%
in unlabeled proposition identification showing the
validity of the approach.
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Labeled Unlabeled
Method Precision Recall F1 Precision Recall F1
Baseline 15.74 38.73 22.38 25.10 61.78 35.70
Distant supervision (Unfiltered corpus) 46.99 34.65 39.88 67.06 49.45 56.92
Distant supervision (Filtered corpus) 58.23 47.38 52.25 69.59 56.62 62.44

Table 9: Summary of semantic role labeling results. The table shows precision, recall, and F1 scores for our baseline
and distant supervision methods. Evaluation performed on test set.

Feature PI PD AI AC
ArgDeprel • •
ArgPOS • •
ArgWord • •
ChildDepSet • •
ChildPOSSet • •
ChildWordSet • •
DepSubCat • •
DeprelPath • •
LeftPOS •
LeftSiblingPOS •
LeftSiblingWord •
LeftWord •
POSPath • •
Position • • •
PredLemma • • •
PredLemmaSense •
PredPOS • • •
PredParentPOS • • • •
PredParentWord • • •
PredWord • •
RightPOS • •
RightSiblingWord •
RightWord • •

Table 10: List of features used in the four stages of se-
mantic role labeling. PI stands for predicate identifica-
tion, PD for predicate disambiguations, AI for argument
identification, and AC for argument classification.

8 Conclusion

By aligning English and Swedish sentences from
two language editions of Wikipedia, we have shown
how semantic annotation can be transferred to gen-
erate a corpus of Swedish propositions. We trained
a semantic role labeler on the generated corpus and
showed promising results in proposition identifica-
tion.

We aligned the sentences using entities and fre-
quency counts to select the most likely frames.
While this relatively simple approach could be con-
sidered inadequate for other distant supervision ap-
plications, such as relation extraction, it worked sur-
prisingly well in our case. We believe this can be at-
tributed to the named entity disambiguation, which
goes beyond a simple surface form comparison and
uniquely identifies the entities used in the supervi-
sion. In addition, we believe that the implicit entity
types that a set of named entities infer, constrain a
sentence to a certain predicate and sense. This in-
creases the likelihood that the Swedish aligned sen-
tence contains a predicate which preserves the same
semantics as the English verb of the source sentence.
Furthermore, we go beyond infobox relations as we
infer new predicates with different senses. Using in-
fobox relations would have limited us to relations
already described by the infobox ontology.

Since our technique builds on a repository of en-
tities extracted from Wikipedia, one future improve-
ment could be to exploit the semantic information
residing in it, possible from other repositories such
as DBpedia (Bizer et al., 2009) or YAGO2. Another
possible improvement would be to increase the size
of the generated corpus. We envision this being done
either by applying a coreference solver to anaphoric
mentions to increase the number of sentences that
could be aligned or by synthetically generating sen-
tences through the use of a semantic repository. An
additional avenue of exploration lies in extending
our work to other languages.
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Abstract

Hypernymy relation acquisition has been
widely investigated, especially because tax-
onomies, which often constitute the backbone
structure of semantic resources are structured
using this type of relations. Although lots
of approaches have been dedicated to this
task, most of them analyze only the written
text. However relations between not necessar-
ily contiguous textual units can be expressed,
thanks to typographical or dispositional mark-
ers. Such relations, which are out of reach
of standard NLP tools, have been investigated
in well specified layout contexts. Our aim is
to improve the relation extraction task consid-
ering both the plain text and the layout. We
are proposing here a method which combines
layout, discourse and terminological analyses,
and performs a structured prediction. We fo-
cused on textual structures which correspond
to a well defined discourse structure and which
often bear hypernymy relations. This type of
structure encompasses titles and sub-titles, or
enumerative structures. The results achieve a
precision of about 60%.

1 Introduction

The hypernymy relation acquisition task is a widely
studied problem, especially because taxonomies,
which often constitute the backbone structure of
semantic resources like ontologies, are structured
using this type of relations. Although this task
has been addressed in literature, most of the
publications report analyses based on the written
text only, usually at the phrase or sentence level.

However, a written text is not merely a set of words
or sentences. When producing a document, a writer
may use various layout means, in addition to strictly
linguistics devices such as syntactic arrangement or
rhetorical forms. Relations between textual units
that are not necessarily contiguous can thus be
expressed thanks to typographical or dispositional
markers. Such relations, which are out of reach of
standard NLP tools, have been studied within some
specific layout contexts. Our aim is to improve
the relation extraction task by considering both the
plain text and the layout. This means (1) identifying
hierarchical structures within the text using only
layout, (2) identifying relations carried by these
structures, using both lexico-syntactic and layout
features.

Such an approach is deemed novel for at least
two reasons. It combines layout, discourse and
terminological analyses to bridge the gap be-
tween the document layout and lexical resources.
Moreover, it makes a structured prediction of the
whole hierarchical structure according to the set of
visual and discourse properties, rather than making
decisions only based on parts of this structure, as
usually performed.

The main strength of our approach is its ap-
plicability to different document formats as well
to several domains. It should be highlighted that
encyclopedic, technical or scientific documents,
which are often analyzed for building semantic
resources, are most of the time strongly structured.
Our approach has been implemented for the French
language, for which only few resources are currently
available. In this paper we focus on specific textual
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structures which share the same discourse properties
and that are expected to bear hypernymy relations.
They encompass for instance titles/sub-titles, or
enumerative structures.

The paper is organized as follows. Some
related works about hypernymy relation identifica-
tion are reported in section 2. Section 3 presents
the theoretical framework on which the proposed
approach is based. Sections 4 and 5 respectively
describe transitions from the text layout to its
discourse representation and from this discourse
structure to the terminological structure. Finally we
draw conclusions and propose some perspectives.

2 Related works

The task of extracting hypernymy relations (it
may also be denoted as generic/specific, taxo-
nomic, is-a or instance-of relations) is critical
for building semantic resources and for semantic
content authoring. Several parameters concerning
corpora may affect the methods used for this task:
the natural language quality (carefully written or
informal), the textual genre (scientific, technical
documents, newspapers, etc.), technical properties
(corpus size, format), the level of precision of the
resource (thesaurus, lightweight or full-fledged
ontology), the degree of structuring, etc. This task
may be carried out by using the proper text and/or
external pre-existing resources. Various methods
for exploiting plain text exist using techniques
such as regular expressions (also known as lexico-
syntactic patterns) (Hearst, 1992), classification
using supervised or unsupervised learning (Snow
et al., 2004; Alfonseca and Manandhar, 2002),
distributional analysis (Lenci and Benotto, 2012) or
Formal Concepts Analysis (Cimiano et al., 2005).
In the Information Retrieval area, the relevant terms
are extracted from documents and organized into
hierarchies (Sánchez and Moreno, 2005).

Works on the document structure and on the
discourse relations that it conveys have been carried
out by the NLP community. Among these are
the Document Structure Theory (Power et al.,
2003), and the DArtbio system (Bateman et al.,
2001). These approaches offer strong theoretical

frameworks, but they were only implemented from
a text generation point of view.

With regard to the relation extraction task
using layout, two categories of approaches may
be distinguished. The first one encompasses ap-
proaches exploiting documents written in a markup
language. The semantics of these tags and their
nested structure is used to build semantic resources.
For instance, collection of XML documents have
been analyzed to build ontologies (Kamel and
Aussenac-Gilles, 2009), while collection of HTML
or MediaWiki documents have been exploited to
build taxonomies (Sumida and Torisawa, 2008).

The second category gathers approaches ex-
ploiting specific documents or parts of documents,
for which the semantics of the layout is strictly
defined. Let us mention dictionaries and thesaurus
(Jannink and Wiederhold, 1999) or specific and well
localized textual structures such as category field
(Chernov et al., 2006; Suchanek et al., 2007) or
infoboxes (Auer et al., 2007) from Wikipedia pages.
In some cases, these specific textual structures are
also expressed thanks to a markup language. All
these works implement symbolic as well as machine
learning techniques.

Our approach is similar to the one followed
by Sumida and Torisawa (2008) which analyzes
a structured text according to the following steps:
(1) they represent the document structure from a
limited set of tags (headings, bulleted lists, ordered
lists and definition lists), (2) they link two tagged
strings when the first one is in the scope of the
second one, and (3) they use lexico-syntactic and
layout features for selecting hypernymy relations,
with the help of a machine learning algorithm.
Some attempts have been made for improving these
results (Oh et al., 2009; Yamada et al., 2009).
However our work differs in two points: we aimed
to be more generic by proposing a discourse struc-
ture of layout that can be inferred from different
document formats, and we propose to find out the
relation arguments (hypernym-hyponym term pairs)
by analyzing propositional contents. Prior to de-
scribing the implemented processes, the underlying
principles of our approach will be reported in the
next section.
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3 Underlying principles of our approach

We rely on principles of discourse theories and on
knowledge models for respectively formalizing text
layout and identifying hypernymy relations.

3.1 Discourse analysis of the layout

Several discourse theories exist. Their starting point
lies in the idea that a text is not just a collection
of sentences, but it also includes relations between
all these sentences that ensure its coherence (Mann
and Thompson, 1988; Asher and Lascarides, 2003).
Discourse analysis aims at observing the discourse
coherence from a rhetorical point of view (the
intention of the author) or from a semantic point
of view (the description of the world). A discourse
analysis is a three step process: splitting the text
into Discourse Units (DU), ensuring the attachment
between DUs, and then labeling links between DUs
with discourse relations. Discourse relations may
be divided into two categories: nucleus-satellite
(or subordinate) relations which link an important
argument to an argument supporting background
information, and multi-nuclear (or coordinate)
relations which link arguments of equal importance.
Most of discourse theories acknowledge that a
discourse is hierarchically structured thanks to
discourse relations.

Text layout supports a large part of seman-
tics and participates to the coherence of the text; it
thus contributes to the elaboration of the discourse.
Therefore, we adapted the discourse analysis to treat
the layout, according to the following principles:

- a DU corresponds to a visual unit (a bloc);
- two units sharing the same role (title, para-

graph, etc.) and the same typographic and
dispositional markers are linked with a multi-
nuclear relation; otherwise, they are linked with
a nuclear-satellite relation.

An example1 of document from Wikipedia and the
tree which results from the discourse analysis of its
layout is given (Figure 1). In the following figures,
we represent nucleus-satellite relations with solid
lines and multi-nuclear relations with dashed lines.

1http://fr.wikipedia.org/wiki/Redécentralisation d’Internet

We are currently interested in discourse structures
displaying the following properties:

- n DUs are linked with multi-nuclear relations;
- one of these coordinated DU is linked to an-

other DU with a nucleus-satellite relation.
Figure 2 gives a representation of such a discourse
structure according to the Rhetorical Structure The-
ory (Mann and Thompson, 1988).

  ...

Figure 2: Rhetorical representation of the discourse
structure of interest

Although there is only one explicit nucleus-
satellite relation, this kind of structure involves n
implicit nucleus-satellite relations (between DU0

and DUi (2 ≤ i ≤ n)). Indeed, from a discourse
point of view, if a DUj is subordinated to a DUi,
then all DUk coordinated to DUj , are subordinated
to DUi. As mentioned above, this kind of dis-
course structure encompasses textual structures such
as titles/sub-titles and enumerative structures which
are frequent in structured documents, and which of-
ten convey hypernymy relation. In that context,
the hypernym is borne by the DU0 and each DUi

(1 ≤ i ≤ n) bears at least one hyponym.

3.2 Knowledge models for hypernymy relation
identification

Hypernymy relation identification is carried out in
two stages: specifying if the relation is hypernymic
and, if appropriate, identifying its arguments. The
first stage relies on linguistic regularities denoting
a hypernymy relation, regularities which are ex-
pressed thanks to lexical, syntactic, typographical
and dispositional clues.

The second stage is based on a graph represen-
tation. Rather than independently identifying links
between the hypernym and each potential hyponym,
we take advantage from the fact that writers use the
same syntactic and visual skills (recognized by a tex-
tual parallelism) for expressing knowledge units of
equal rhetorical importance. Generally, these salient
units are semantically linked and belong to a same
lexical field.
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[3 Solutions ]_1
[La décentralisation d'Internet peut se faire via : ]_2

● [l'autohébergement de son serveur grâce aux projets : ]_3
● [YunoHost ; ]_4
● [ArkOS ; ]_5

● [aux réseaux pair à pair et aux protocoles de communication 
interopérables et libres comme : ]_6

● [le courrier électronique : SMTP, IMAP ; ]_7
● [la messagerie instantanée : XMPP ; ]_8
● [le partage de fichiers en pair à pair avec par exemple le 

protocole BitTorrent ; ]_9
● [le tchat en salons (permettant plus de deux personnes) avec 

des logiciels tels que RetroShare, Marabunta ; ]_10
● [aux moteurs de recherche décentralisés comme YaCy, Seeks ; ]_11
● [aux architectures distribuées. ]_12

text

[2] paragraph

[3] item [6] item [11] item

text

[1] title (level 1)

[12] item

[4] item [5] item [7] item [8] item [9] item [10] item

Figure 1: Example of a discourse analysis of text layout

Thus, we represent each discourse structure of in-
terest bearing a hypernymy relation as a directed
acyclic graph (DAG), where the nodes are terms and
the edges are possible relations between them. This
DAG is decomposed into layers, each layer i gath-
ering nodes corresponding to terms of a given DUi

(0 ≤ i ≤ n). Each node of a layer i (0 ≤ i ≤
(n− 1)) is connected by directed edges to all nodes
of the layer i+1. A root node is added on the top of
the DAG. Figure 3 presents an example of this DAG.

root

réseaux
pair à pair

protocoles de com-
munication interopérables

courrier
électronique

SMTP

                         

     

IMAP

layer 0

layer 1

messagerie
instantanée XMPP

partage de 
fichiers en pair à pair 

protocole
BitTorrent

                              layer 2

                    layer 3

tchat
en salons

personnes RetroShare Marabunta

                         

          

layer 4                                   

logiciels

               

Figure 3: Example of a DAG

We weight the edges according to the inverse sim-
ilarity of terms they link. Thus, the terms in the
lower-cost path starting from the root and ending at
the last layer are maximally cohesive. A flatter rep-
resentation does not allow this structured prediction.

4 From text layout to its discourse
representation

To elicit discourse structures from text layout, the
system detects visuals units and labels them with
their role (paragraph, title, footnote, etc.) in the text.
Then, it links the labeled units using discourse rela-
tions (nucleus-satellite or multi-nuclear) in order to
produce a discourse tree.

We are currently able to process two types of doc-
uments: documents written in a markup language
and documents in PDF format. It is obvious that
tags of markup languages both delimit blocs and
give their role. Getting the visual structure is thus
straightforward. Conversely, PDF documents do not
benefit from such tags. So we used the LAPDF-Text
tool (Ramakrishnan et al., 2012) which is based on a
geometric analysis for detecting blocs, and we have
implemented a machine learning method for label-
ing these blocs. The features include typographical
markers (size of fonts, emphasis markers, etc.) and
dispositional one (margins, position in page, etc.).

For labeling relations, we used an adapted version
of the shift-reduce algorithm as (Marcu, 1999) did.
We thus obtain a dependency tree representing the
discourse structure of the text layout. We evaluate
this process on a corpus of PDF documents (docu-
ments written in a markup language pose no prob-
lem). Results are good since we obtain an accuracy
of 80.46% for labeling blocs, and an accuracy of
97.23% for labeling discourse relations (Fauconnier
et al., 2014). The whole process has been imple-
mented in the LaToe2 tool.

2 http://github.com/fauconnier/LaToe
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Finally, the extraction of discourse structures of
interest may be done easily by means of tree patterns
(Levy and Andrew, 2006).

5 From layout discourse structure to
terminological structure

We wish to elicit possible hypernymy relations from
identified discourse structures of interest. This task
involves a two-step process. The first step consists in
specifying the nature of the relation borne by these
structures. The second step aims at identifying the
related terms (the relation arguments). These steps
have been independently evaluated on an annotated
corpus, while the whole system has been evaluated
on another not annotated corpus. Corpora and eval-
uation protocols are described in the next section.

5.1 Corpora and evaluation protocols

The annotated corpus includes 166 French
Wikipedia pages corresponding to urban and
environmental planning. 745 discourse structures of
interest were annotated by 3 annotators (2 students
in Linguistics, and an expert in knowledge engi-
neering) according to a guideline. The annotation
task for each discourse structure of interest has
consisted in annotating the nucleus-satellite relation
as hypernymy or not, and when required, in anno-
tating the terms involved in the relation. For the first
stage, we have calculated a degree of inter-annotator
agreement (Fleiss et al., 1979) and obtained a kappa
of 0.54. The second stage was evaluated as a named
entity recognition task (Tateisi et al., 2000) for
which we have obtained an F-measure of 79.44.
From this dataset, 80% of the discourse structures
of interest were randomly chosen to constitute
the development set, and the remaining 20% were
used for the test set. The tasks described below
were tuned on the development set using a k-10
cross-validation. The evaluation is done using the
precision, the recall and the F-measure metrics.

A second evaluation for the entire system was
led on two corpora respectively made of Wikipedia
pages from two domains: Transport and Computer
Science. For each domain, we have randomly
selected 400 pages from a French Wikipedia Dump
(2014-09-28). Since those copora are not manually
annotated, we have only reported the precision.

5.2 Qualifying the nucleus-satellite relation

Hypernymy relations present lexical, syntactic, ty-
pographical and dispositional regularities in the
text. The recognition of these relations is thus
based on the analysis of these regularities within
the two DUs explicitly linked by the nucleus-
satellite relation. We consider this problem as
a binary classification one: each discourse struc-
ture is assigned to either the Hypernymy-Structure
class or the nonHypernymy-Structure class. The
Hypernymy-Structure class encompasses discourse
structures with a nucleus-satellite relation bearing
a hypernymy, whereas the nonHypernymy-Structure
one gathers all others discourse structures. In the ex-
ample given in figure 1, the discourse structures con-
stituted of DUs {3,4,5} and {6,7,8,9,10} would be
classified as Hypernymy-Structure, while this con-
stituted of DUs {2,3,6,11,12} would be assigned to
the nonHypernymy-Structure class.

For this purpose, we applied feature functions
(summarized in table 1) in order to map the two DUs
linked by the explicit nucleus-satellite relation into
a numerical vector which is submitted to a classi-
fier. The feature functions were defined according
to background knowledge and were selected on the
basis of a Pearson’s correlation.

Features Description
POS Unigrams of parts of speech
Position Position of a token in a DU
Markers Boolean indicating whether a token be-

longs to a predefined lexicon
Gram Boolean indicating whether the last sen-

tence of a DU shows a syntactic hole
Punc Returns the last punctuation of a DU
NbToken Number of tokens in a DU
NbSent Number of sentences in a DU

Table 1: Main features for qualifying the relation

We have compared two types of classifiers: a
linear one which generalizes well, but may pro-
duce more misclassifications when data distribution
presents a large spread, and a non-linear one which
may lead to a model separating well the training set
but with an overfitting risk. We respectively used
a Maximum Entropy classifier (MaxEnt) (Berger et
al., 1996) and a Support Vector Machine (SVM)
with a Gaussian kernel (Cortes and Vapnik, 1995).
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The morphological and lexical information used
were obtained from the French dependency parser
Talismane (Urieli, 2013). For the classifiers, we
have used the OpenNLP3 library for the MaxEnt
and the LIBSVM implementation of the SVM4. This
task has been evaluated against a majority baseline
which better reflects the reality because of the asym-
metry of the relation distribution. Table 2 presents
the results. The two supervised strategies outper-
form significantly the baseline (p-values<0.01)5.

Strategies Prec. Rec. F1
MaxEnt 78.01 84.78 81.25
SVM 74.77 90.22 81.77
Baseline 63.01 100.0 77.31

Table 2: Results for qualifying the relation

Regarding the F-measure metric, the difference
between the MaxEnt and the SVM is not significant.
We observe that the MaxEnt achieves the best preci-
sion, while the SVM reaches the best recall. These
results are not surprising since the SVM decision
boundary seems to be biased by outliers, thus in-
creasing the false positive rate on unseen data.

5.3 Identifying the terms linked by the
hypernymy relation

We have now to identify terms linked by the hyper-
nymy relation. As previously mentioned we build a
DAG reflecting all possible relations between terms
of the DUs, to find the lower-cost path which repre-
sents the most cohesive sequence of terms.

If we consider the discourse structure consti-
tuted of DUs {6,7,8,9,10} in figure 1, the retrieved
path from the corresponding DAG (figure 3) would
be [“protocoles de communication interopérables”
(interoperable communication protocols), “courrier
électronique” (email), “messagerie instantanée” (in-
stant messaging), “partage de fichiers en pair à pair”
(peer-to-peer file sharing), “tchat en salons” (chat
room)]. Then, an example of hypernymy relation
would be “courrier électronique” (email) is a kind of
“protocoles de communication interopérables” (in-
teroperable communication protocols).

3 http://opennlp.apache.org/
4 http://www.csie.ntu.edu.tw/∼cjlin/libsvm/
5 The p-values are calculated using a paired t-test.

The cost of an edge is defined using the following
function:

cost(< T ji , T
k
i+1 >) = 1− p(y|T ji , T ki+1)

where T ji is the j-th term of DUi. The probability
assigned to the outcome y measures the likeliness
that both terms are linked. This probability is condi-
tioned by lexical and dispositional clues. Since it is
expected that terms involved in the relation share the
same lexical field, we also consider the cosine sim-
ilarity between the term vectors. All those clues are
mapped into a numerical vector using feature func-
tions summarized in table 3.

Features Description
POS c Context of a term (bigrams and unigrams

of parts of speech)
POS t Parts of speech of a term
Role Role of a DU
Visual Boolean indicating whether a pair of

terms share the same visual properties
Position t Value indicating a term position
Position d Position of a DU in the whole document
Coord For a DU, presence of coordinated DUs
Sub For a DU, presence of subordinated DUs
Level Value indicating the level of a DU in the

structure of document
Punc Returns the last punctuation of a DU
NbToken Number of tokens in a DU
NbSent Number of sentences in a DU
COS Cosine similarity for a pair of terms

Table 3: Main features for the terms recognition

We built two models based on supervised prob-
abilistic classifiers since characteristics of links
between a hypernym and a hyponym are different
from those between two hyponyms. The first model
considers only the edges between layer 0 and layer
1 (hypernym-hyponym link), whereas the second
one is dedicated to the edges of remaining layers
(hyponym-hyponym link).

For this step, we used ACABIT (Daille, 1996)
and YaTeA (Aubin and Hamon, 2006) for extracting
terms. The cosine similarity is based on a distri-
butional model constructed with the word2vec tool
(Mikolov et al., 2013) and the French corpus FrWac
(Baroni et al., 2009). We have learned the models
using a Maximum Entropy classifier.

254



For computing the lower-cost path, we use
an A* search algorithm because it can handle large
search space with an admissible heuristic. The
estimated cost of a path P , a sequence of edges
from the root to a given term, is defined by:

f(P ) = g(P ) + h(P )

The function g(P ) calculates the real cost along the
path P and it is defined by:

g(P ) =
∑

<T j
i ,T

k
i+1> ∈ P

cost(< T ji , T
k
i+1 >)

The heuristic h(P ) is a greedy function which picks
a new path with the minimal cost over d layers and
returns its cost:

h(P ) = g(ld(P ))

The function ld(P ) is defined recursively: l0(P ) is
the empty path. Assume ld(P ) is defined and T jdid is
the last node reached on the path formed by the con-
catenation of P and ld(P ), then we define:

ld+1(P ) = ld(P ). < T jdid , T
m
id+1 >

where m is the index of the term with the lower cost
edge and belonging to the layer id + 1:

m = argmin
k<|layer id+1|

cost(< T jdid , T
k
id+1 >)

This heuristic is admissible by definition. We
set d=3 because it is a good tradeoff between the
number of operations and the number of iterations
during the A* search.

In order to evaluate this task, we compare it to
a baseline and two vector-based approaches. The
baseline works on the assumption that two related
terms belong to a same window of words; then it
takes the last term of the layer 0 as hypernym, and
the first term of each layer i (1 ≤ i ≤ n) as hy-
ponym. The two other strategies use a cosine sim-
ilarity (calculated with respectively 200- and 500-
dimensional vectors) for the costs estimation. Table
4 presents the results.

The MaxEnt achieves the best F-measure and
outperforms the others proposed strategies. The

Strategies Prec. Rec. F1
MaxEnt 78.98 69.09 73.71
w2v-200 66.52 30.10 41.45
w2v-500 83.71 30.10 44.28
Baseline 48.37 69.09 56.91

Table 4: Results for terms recognition

vector-based strategies present interesting preci-
sions, which seems to confirm a correlation between
the lexical cohesion of terms and their likelihood of
being involved in a relation.

To lead additional evaluations we define the score
of a path as the mean of its costs, and we select re-
sults using a list of threshold values: only the paths
with a score lower than a given threshold are re-
turned. Figure 4 shows the Precision-Recall curves
using the whole list of threshold values.
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Figure 4: Comparison between the baseline, the
vector-based strategies and the MaxEnt

5.4 Evaluation of the whole system
In this section, we report the results for the whole
process applied on two corpora made of Wikipedia
pages from two domains: Transport and Com-
puter Science. For each of them, we applied a
discourse analysis of the layout, and we extracted
the hypernym-hyponym pairs. This extraction was
done with a Maximum Entropy classifier which has
shown a good precision for the two tasks described
before. The retrieved pairs were ranked according
to the score of the path they belong to. Finally, we
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Figure 5: Precision curves for two domains of Wikipedia

manually checked the first 500 pairs. The curves
in figure 5 indicate the precision. For the two do-
mains, around 300 pairs were retrieved with a preci-
sion of about 60% for the highest threshold. Table 5
presents examples of extracted relations. The terms
noted with a symbol ‘*’ are considered as errors.

hypernyms hyponyms
transporteurs
frigorifiques
(refrigerated
transporters)

STEF, transporteur*, Groupe De-
lanchy, Norbert Dentressangle,
Groupe Malherbe, Madrias

pôles
d’échanges
(interchange
stations)

Gare de la Part Dieu, Centre in-
termodal d’échanges de Limo-
ges, Union Station à Toronto

transmission
(transmis-
sion)

Courte distance*, Moyenne dis-
tance*, Longue distance*

Table 5: Examples of extracted relations

We have identified the main sources of error. The
most common arises from nested discourse struc-
tures. In this case, intermediate DUs often specify
contexts, and therefore do not contain the searched
hyponyms. This is the case in the last example of
table 5 where the retrieved hyponyms for “transmis-
sion” (transmission) are “Courte distance” (Short
distance), “Moyenne distance” (Medium distance)
and “Longue distance” (Long distance).

Another error comes from a confusion between
hypernymy and meronymy relations, which are both
hierarchical. The fact that these two relations share
the same linguistic properties may explain this con-
fusion (Ittoo and Bouma, 2009). Furthermore we are
still faced with classical linguistic problems which
are out of the scope of this paper: anaphora, ellipse,
coreference, etc.

Finally, we ignore cases where the hypernymy re-
lation is reversed, i.e. when the hyponym is local-
ized into the nucleus DU and its hypernym into a
satellite DU. Clues that we use are not enough dis-
criminating at this level.

6 Conclusion
In this paper we investigate a new way for extract-
ing hypernymy relations, exploiting the text layout
which expresses hierarchical relations and for which
standard NLP tools are not suitable.

The system implements a two steps process:
(1) a discourse analysis of the text layout, and
(2) a hypernymy relation identification within spe-
cific discourse structures. We first evaluate each
module independently (discourse analysis of the
layout, identification of the nature of the relation,
and identification of arguments of the relation), and
we obtain accuracies of about 80% and 97% for
the discourse analysis, and F-measures of about
81% and 73% for the relation extraction. We
then evaluate the whole process and we obtain a
precision of about 60%.
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One way to improve this work is to extend this
analysis to other hierarchical relations. We plan
to investigate more advanced techniques offered by
distributional semantic models in order to discrimi-
nate hypernymy relation from meronymy ones.

Another way is to extend the scope of investiga-
tion of the layout to take into account new discursive
structures. Moreover, a subsequent step to this work
is its large scale application on collections of struc-
tured web documents (such as Wikipedia pages) in
order to build semantic resources and to share them
with the community.
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Toulouse.

Ichiro Yamada, Kentaro Torisawa, Jun’ichi Kazama, Kow
Kuroda, Masaki Murata, Stijn De Saeger, Francis
Bond, and Asuka Sumida. 2009. Hypernym discov-
ery based on distributional similarity and hierarchical
structures. In Proceedings of the 2009 Conference on
Empirical Methods in Natural Language Processing:
Volume 2-Volume 2, pages 929–937. Association for
Computational Linguistics.

258



Proceedings of the Fourth Joint Conference on Lexical and Computational Semantics (*SEM 2015), pages 259–268,
Denver, Colorado, June 4–5, 2015.

The complexity of finding the maximum spanning DAG and other
restrictions for DAG parsing of natural language

Natalie Schluter
Center for Language Technology

University of Copenhagen
Copenhagen, Denmark

natalie.elaine.schluter@jur.ku.dk

Abstract

Recently, there has been renewed interest in
semantic dependency parsing, among which
one of the paradigms focuses on parsing di-
rected acyclic graphs (DAGs). Considera-
tion of the decoding problem in natural lan-
guage semantic dependency parsing as find-
ing a maximum spanning DAG of a weighted
directed graph carries many complexities. In
particular, the computational complexity (and
approximability) of the problem has not been
addressed in the literature to date. This pa-
per helps to fill this gap, showing that this
general problem is APX-hard, and is NP-hard
even under the planar restriction, in the graph-
theoretic sense. On the other hand, we show
that under the restriction of projectivity, the
problem has a straightforward O(n3) algo-
rithm. We also give some empirical evidence
of the algorithmic importance of these graph
restrictions, on data from the SemEval 2014
task 8 on Broad Coverage Semantic Depen-
dency Parsing.

1 Introduction

Consideration of the decoding problem in natural
language semantic dependency parsing as finding
a maximum spanning DAG of a weighted directed
graph carries many complexities that have not been
addressed in the literature to date. Amongst these
are the problem’s computational complexity (and its
approximability). The decoding problem for seman-
tic dependency parsing was first introduced as the
maximum spanning directed acyclic graph problem
(MSDAG) by McDonald and Pereira (2006), where

it is stated to be NP-hard.1 The MSDAG problem
asks for the highest weighted spanning sub-DAG of
an input weighted digraph.

In this paper, we explain the APX-hardness of
MSDAG, by relating it to the almost identical min-
imum weighted feedback arc set and maximum
weighted acyclic subgraph problems. The proof
of MSDAG’s APX-hardness seems to discourage
its use for decoding in semantic dependency pars-
ing. However, unlike in syntactic dependency (tree)
parse decoding, where projective decoding given
by Eisner (1996)’s algorithm has a slightly higher
computational complexity (O(n3)) than the non-
projective (Tarjan) maximum spanning tree algo-
rithm (O(n2)) (Tarjan, 1977; Chu and Liu, 1965;
Edmonds, 1967; McDonald et al., 2005), finding the
maximum spanning projective dependency DAG is
tractable and can be found in time O(n3), contrary
to its APX-hard non-projective counterpart.

Projective MSDAG has been referred to in the
semantic dependency parsing literature as “planar
MSDAG”, which is an unfortunate mismatch with
long-established graph theoretical terminology, that
we need in this paper. As we discuss below, the
planar MSDAG problem is in fact NP-hard, where
“planar” is used in the graph theoretical sense. We
generalise the definition of projectivity from tree
models of syntax theory, which forbids crossing
edges, to digraphs.

The projectivity restriction itself has not been lin-
guistically motivated to date. However, an efficient

1McDonald and Pereira (2006) provide a reference to
(Heckerman et al., 1995) for this fact. This fact is actually indi-
rectly shown much earlier, as we discuss in Section 4.
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exact algorithm for this restriction would pose a
starting point for various relaxations of the definition
(also known as mild non-projectivity) that reflect lin-
guistic description of the data, as has been done for
the Eisner algorithm (in for example (Bodirsky et
al., 2005; Gómez-Rodrı́guez et al., 2011; Pitler et
al., 2012; Pitler et al., 2013; Satta and Kuhlmann,
2013)). This projectivity restriction has been inher-
ent in transition-based approaches to semantic de-
pendency parsing (for example, in (Sagae and Tsujii,
2008; Titov et al., 2009)), without any study of the
complexity nor proof of the power of the automaton
models in recognising all projective DAGs. So, in
terms of computational efficiency, we provide the-
oretical justification for the already used restriction
of projectivity in DAG parsing, exhibiting a dynamic
programming algorithm for this task, which runs in
polynomial time.

Previous automaton approaches to DAG parsing
can roughly be separated into two camps: one simi-
lar to (Sagae and Tsujii, 2008), which assumes pro-
jectivity of graphs in the data and parses without car-
rying out any transformation to relax the constraint
of projectivity, and another similar to (Titov et al.,
2009), which attempts (online) to find a re-ordering
of the words in the sentence such that the resulting
graph is projective. The latter approach assumes,
as we will explain, precisely outerplanarity of the
graphs, which, it turns out, is also NP-hard (Cf.
§2 and §7). With respect to the data that we con-
sider here, it turns out that the assumption of graph
outerplanarity is well represented (almost all graphs
among three data sets being outerplanar), whereas
the percentage of projective graphs differs greatly
from one dataset to another (from 57% to 84%, Cf.
Section 5).

The projective MSDAG algorithm presented here
is a first-order decoding algorithm, and empirical re-
search on semantic parsing seems to have already
gone beyond this (for example, in (Martins and
Almeida, 2014)); moreover, first-order decoding us-
ing MSDAG in general seems not to be appropri-
ate (Schluter, 2014), though the empirical work pre-
sented by Martins and Almeida (2014) on digraph
decoding using a second order model suggests the
relevance of higher-order DAG decoding in seman-
tic dependency parsing. Manufacturing higher-order
parsing algorithms in the sense of (McDonald and

Satta, 2007; Carreras, 2007) from the tree decoding
literature, based on the algorithm presented here is
straightforward. And we believe that it is these lat-
ter algorithms, rather, that would provide the basis
for empirical studies based on the generally theoret-
ical research presented here.

2 Preliminaries

A graph is called planar if it can be drawn in the
plane with no crossing edges. Each maximal region
of the plane surrounded by edges of the planar graph
drawn in the plane is called a face. There is one
outer or unbounded face and some number of in-
ner or bounded faces. If a connected planar graph
can be written in the plane so that all vertices are on
the outer face, then we call the graph outerplanar.
A connected component of a graph is a maximal
subgraph in which any two vertices are connected
to each other by a path. A digraph is a directed
graph (where edges have an orientation). A DAG
is a digraph without any directed cycles. Consider
the underlying undirected graph H of a digraph G.
A weakly connected component of G is a maximal
sub-digraph whose underlying undirected graph is a
connected component of H .

Notation. We put [i, j] := {i, i+ 1, . . . , j − 1, j},
for i ≤ j, and [i] := [1, i].

In this paper, edge weights can be positive or neg-
ative and not zero, unless otherwise stated.

Hardness of approximability. APX is the class of
all NP optimisation problems that can be solved in
polynomial time with approximation ratio bounded
by some constant. A problem is APX-hard if there
is a PTAS-reduction from every problem in APX
to that problem.2 In this paper, we use a simpler
type of PTAS-reduction called an L-reduction (lin-
ear reduction), which intuitively is a mapping be-
tween problems so that (approximate) solutions dif-
fer only by some constant factor. Any L-reduction is
also a PTAS-reduction (but not vice versa).

Definition 1. An L-reduction from problem A to
problem B with respective cost functions cA and

2A discussion of PTAS-reductions is out of the scope of this
paper. The definition of a PTAS-reduction can be found, for
example, in (Wegener, 2005).
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cB consists of a pair of polynomial-time computable
functions f and g such that:

• if x ∈ A then f(x) ∈ B,

• if y is a solution to f(x), then g(y) is a solution
to x,

• there exists a positive constant α such that the
optimal solution for f(x) ∈ B (optB(f(x))) is
bounded by a factor α of the optimal solution
for x ∈ A (optA(x)), and

optB(f(x)) ≤ α · optA(x)

• there exists a positive constant β bounding dif-
ferences between solutions and optimal solu-
tions

|optA(x)−cA(g(y))| ≤ β·|optB(f(x))−cB(y)|.

3 Generalising projectivity to DAGs

In statistical natural language syntactic or semantic
dependency parsing decoding problems, the input is
a sequence of n words, W = 〈w1, . . . , wn〉, called
the sentence and a further set of weighted asymmet-
ric binary relations (directed edges) between these
words (nodes). The task is to output a most likely
connected and spanning digraph over those words,
where the formal expressivity of the structure is de-
fined with respect to the linguistic theory in ques-
tion.

The order of words in the sentence is essential
for the description of important restrictions of trees
and DAGs for natural language. We therefore in-
clude the order in the sentence digraph structure, so
GW = (V,E,≤W ) is a dependency digraph for the
sentence W , where V is the set of words tokens, E
is the set of directed binary relations between words,
and ≤W describes the order of the words in the sen-
tence W (≤W is the sentential order). For the re-
mainder of this paper, when we talk about depen-
dency digraphs (or dependency DAGs or dependency
trees) the nodes of the underlying digraphs are asso-
ciated with some fixed total order. Also we use the
terms “word” and “node” synonymously in this con-
text.

In linguistic terms, if (wi, wj) is an edge, then we
say thatwi is a head ofwj and thatwj is a dependent

of wi. We can also write the edge (wi, wj) as wi →
wj . wi

∗−→ wj is the reflexive transitive closure of
the dependency relation.

A dependency tree then is just a connected de-
pendency digraph in which every node has a unique
head, except for a special node called the root, which
has no head.

An interesting property yielding good coverage
of some natural languages (for example, English) is
that resulting dependency trees should be projective.

Definition 2. A dependency tree T = (V,E,≤W
) is projective if for all edges (wi, wj) ∈ E,
for all intervening words, wk such that k ∈
[min{i, j},max{i, j}], we have wi

∗−→ wk.

It turns out that the edges of a projective depen-
dency tree can be written above the sentence (i.e.,
words written on a line segment in sentential order)
without any crossing edges. This notion of avoiding
crossing edges in “desirable” spanning DAGs has
been considered in recent natural language parsing
research, however the projectivity of edges as given
in Definition 3 for dependency trees is no longer a
sufficient condition to ensure this property in DAGs.
As such, NLP researchers have adopted the unfortu-
nate term “planar”. Rather than assign a new mean-
ing to the term planar, we generalise the definition
of projectivity using the notion of crossing edges so
that it applies to dependency digraphs, adopting this
definition for the remainder of the paper. We then
provide the correct restriction of planar digraphs that
projective digraphs correspond to.

Definition 3. For a dependency digraph GW =
(V,E,≤W ), an edge (wi, wj) or (wj , wi), with i ≤
j is projective if and only if for all words wk such
that i < k < j, there are no edges (wl, wk) or
(wk, wl) such that l < i or l > j.
GW is projective if and only if all its edges are pro-
jective.

Since the definition of projectivity excludes cross-
ing edges when nodes are laid out on a line segment
(sentential order), we see that the underlying digraph
of a projective digraph is outerplanar. Moreover, it
is easy to prove that for any planar digraph with all
nodes on its outer face, we can choose a first node
and define an ordering ≤W on the nodes by follow-
ing the order of nodes (in a fixed direction) along an
outer face, skipping repeats, until the original node
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is met (recalling that one can find this outer face in
linear time). So, there is a correspondence between
the sets of projective digraphs and outerplanar di-
graphs.

Proposition 4. For the projective digraph GW =
(V,E,≤W ), (V,E) is an outerplanar digraph.
Also, every outerplanar digraph corresponds to
some projective digraph with a sentential ordering
defined by node traversal in a fixed direction along
its outer face.

On the other hand, given an outerplanar graph and
some random sentential order, we of course do not
necessarily have a projective digraph. In particu-
lar, an outerplanar drawing in the plane of a digraph
does not necessarily have the specific desired order
of vertices on its outer face. So, for example, finding
the outerplanar MSDAG and the projective MSDAG
are two different problems.

4 APX-hardness of MSDAG and its dual

In this section we give L-reductions from the APX-
hard problems maximum weighted directed acyclic
subgraph and its dual minimum weighted feedback
set to MSDAG and its dual.

Minimum weighted feedback arc set. The dual
problem of the MSDAG problem is almost identi-
cal with that of finding a minimum weighted feed-
back arc set. Given a directed graph, G = (V,E),
a feedback arc set (FAS) is a subset S of G’s
edges whose removal leaves a DAG (i.e., such that
(V,E(G)\E(S)) is a DAG). A minimum feedback
arc set (MFAS) is the smallest among all possible
feedback arc sets and a minimum weighted feedback
arc set (MWFAS) is a feedback arc set of minimum
weight. We call an MWFAS whose removal leaves a
connected DAG a nice MWFAS. Finding a nice MW-
FAS is the dual of the MSDAG problem.

Already, the decision version of the FAS problem,
which asks whether there is a feedback arc set of
size k was listed as one of Karp’s original 21 NP-
complete problems (Karp, 1972), which shows the
NP-hardness of the optimisation version. In fact,
this optimisation problem is also shown to be APX-
hard (Kann, 1992). The best approximation algo-
rithm in the literature to date for this problem has an
approximation guarantee of O(log n log logn) and

the solution is NP-hard to approximate to within any
factor smaller than 10

√
5 − 21 ≈ 1.36 (Even et al.,

1998).
An L-reduction from MWFAS to MSDAG for a

weighted directed digraph G goes as follows. We
first show that if the G has no edge cut consist-
ing only of edges of negative weights, then the nice
MWFAS is simply the MWFAS. Let D∗ be an MS-
DAG for G. We show that the nice MWFAS F :=
E(G) − E(D∗) must also form an MWFAS. Sup-
pose otherwise, then there is some other F ′ of lower
weight and such that D′ := (V (G), E(G) − F ′) is
acyclic. So D′ is disconnected and has at least two
weakly connected components; we suppose without
loss of generality that it has precisely two weakly
connected components, C1 and C2. But then there
must not be any positive weighted edge e in E(G)
between C1 and C2; otherwise we could remove
that edge from F ′ to achieve an MWFAS of lower
weight, since C1 ∪ C2 ∪ {e} is still acyclic.

Now suppose that there is some edge cut con-
sisting solely of edges of negative weight in G and
therefore in D∗. Without loss of generality, we can
suppose that there is only one such edge cut. Clearly,
D∗ contains at most one edge from this edge cut,
the rest of them being in the nice MWFAS. An MW-
FAS would contain every negative weighted edge.
So, the difference between a nice MWFAS and an
MWFAS is just this one edge, for G. In particu-
lar, we have given an L-reduction from MWFAS to
nice MWFAS, where the optimal solution for MW-
FAS is just the nice MWFAS with negative weighted
edges removed (so both α and β from Definition 1
are equals to 1).

This shows the APX-hardness of the dual of the
MSDAG problem, nice MWFAS.

Maximum weighted directed acyclic subgraph.
An almost identical problem to MSDAG is the max-
imum weighted directed acyclic subgraph problem
(MWDAS), which aims to find the (not necessar-
ily spanning) DAG of highest weight. The decision
version of the maximum directed acyclic subgraph
problem (MDAS) problem which asks whether there
is a directed acyclic subgraph on k edges can be
solved by the decision version of the FAS prob-
lem, with m − k as the parameter (where m is the
number of edges in the input graph), and hence has
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long been shown to be NP-complete (Karp, 1972).
By the same token, the optimisation problem has
been shown to be APX-hard (Kann, 1992). The
best approximation algorithm in the literature to date
for this problem has an approximation guarantee of
1
2 + Ω

(
1√
dmax

)
where dmax is the maximum vertex

degree for the graph (Berger and Shor, 1997). More-
over, the solution is Unique Games-hard to approxi-
mate to within any factor smaller than 1/2, which is
a tight bound (Guruswami et al., 2008).

Again, if there are no edge cuts in the graph con-
sisting only of negative weighted edges, then the
MSDAG and MWDAS solutions are identical. Oth-
erwise, the MWDAS is just the MSDAG without its
negative weighted edges, by the discussion above L-
reducing MWFAS to nice MWFAS.

We have therefore shown the following fact.

Theorem 5. MSDAG and its dual, nice MWFAS, are
APX-hard.

5 Planarity, outerplanarity and
projectivity of DAGs in English data

APX-hardness of the MSDAG problem not only
means that the problem is essentially infeasible, but
also that it theoretically cannot be very well approxi-
mated. However, with some structural assumptions,
such as the planarity, outerplanarity or projectivity
of the objective DAGS, either approximation algo-
rithms with a good approximation guarantee or even
feasible algorithms might be achievable. The au-
thors are not aware of any specific theoretical lin-
guistic evidence for the planarity or outerplanarity
of semantic dependency DAGs. However, we con-
sider the three datasets from SemEval 2014 task
8 on Broad Coverage Semantic Dependency Pars-
ing (Oepen et al., 2014), referred to as PAS, DM
and PCEDT, following the packing conversion into
DAGs described in (Schluter et al., 2014), without
the actual label packing or edge removal heuristic,
finding that almost all DAGs are outerplanar (and
therefore also planar). Moreover, the datasets con-
sist of a majority of projective DAGs, with those
graphs that are not projective having proportion-
ally on average a large projective subgraph (respec-
tively 0.555, 0.580,and 0.605 for the PAS, DM, and
PCEDT datasets). This large projective proportion
suggests future avenues for algorithms for mildly

projective DAGs, based on the projective algorithm
presented in this paper.

PAS DM PCEDT
% projective 58.461 56.840 84.192
% outerplanar 97.796 99.160 95.390
% planar 99.997 100 99.904

Table 1: Percentage of projective, planar, and outerplanar
DAGs in the data.

6 The NP-hardness of finding a planar or
outerplanar MSDAG

By a similar discussion to that in Section 4 on
the relationship between MWDAS and MSDAG,
finding the both the maximum weighted planar or
outerplanar spanning DAG of a directed weighted
graph can simply be shown to be NP-hard, where
“planar” (and “outerplanar”) is used in the graph-
theoretical sense (Garey and Johnson, 1979). To our
knowledge, approximability of finding a maximum
weighted planar or outerplanar acyclic directed sub-
graph is still an open problem. The NP-hardness of
finding a maximum weighted outerplanar spanning
DAG is somewhat discouraging. But the next sec-
tion provides a polynomial algorithm if there is a re-
striction on the the order of nodes on the outer face
of the output (which is just projective MSDAG).

7 Finding a projective MSDAG or digraph
in O(n3) time

We now turn our attention to the projective MS-
DAG problem, which can be solved efficiently. Our
algorithm employs bottom-up dynamic program-
ming across spans of words, where a span con-
sists of a segment of words of the input sentence
W = 〈w1, w2, . . . , wn〉 along with any attributed
edges, similarly to the CKY-algorithm for context-
free language parsing (Cocke, 1969; Kasami, 1965;
Younger, 1967) and projective maximum spanning
tree algorithms (Eisner, 1996), though the proof of
correctness is slightly more complex. Following
this, we explain how to simplify the algorithm to the
task of finding the maximum weighted spanning di-
graph of digraph within the same time complexity.

Let GW = (V,E,≤W ) be a weighted de-
pendency digraph over the input sentence W =
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〈w1, w2, . . . , wn〉 and we suppose without loss of
generality that |E| = n(n− 1). An (i, j)-span (with
i ≤ j) for S is the subsequence of consecutive words
wi, wi+1, . . . , wj−1, wj . We construct an algorithm
proj-MSDAG (Algorithm 1) which takesGW as in-
put and outputs a highest weighted projective span-
ning dependency DAG for GW : a projective MS-
DAG for GW . For simplicity, instead of GW , we
just write G.

We call a directed path from node i to node j, an
i − j path. The algorithm constructs the upper tri-
angular square matrix A = {ai,j} (i, j ∈ [n]), from
left to right and from the diagonal upwards, where
component ai,j contains at most three different re-
strictions of optimal projective spanning DAGs for
the (i, j) span along with their associated weights:

1. ai,j .G1 is a projective MSDAG of the spanning
subgraph G[i, j], and ai,j .w1 is its weight

2. ai,j .G2 is a maximum projective spanning
DAG for which there is no i − j path, and
ai,j .w2 is its weight, and

3. ai,j .G3 is a maximum projective spanning
DAG for which there is no j − i path, and
ai,j .w3 is its weight.

The solution to the problem is then a1,n.G1. The
motivation for distinguishing between these three
types of graphs is to allow restricted combinations
of them which ensure that no cycles are introduced.

We claim that these three restrictions on projec-
tive MSDAGs for the span (i, j) can be constructed
from those of shorter spans within (i, j) using the
three following operations, (A1), (A2), and (A3)
(Lemma 6).

(A1) Concatenate sub-DAGs Hai,k
and Hak,j

from
among the graphs in the cells ai,k and ak,j re-
spectively (i < k < j), creating the graph

({wi, . . . , wj}, E(Hai,k
) ∪ E(Hak,j

)),

(A2) Concatenate a single edge e ∈ {(i, j), (j, i)}
with the sub-DAGs Hai,k

and Hak,j
from

among the graphs in the cells ai,k and ak,j re-
spectively (i < k < j), creating the graph

({wi, . . . , wj}, {e} ∪ E(Hai,k
) ∪ E(Hak,j

)),

(A3) Connect two sub-DAGsHai,k
andHak+1,j

from
among the graphs in the cells ai,k and ak+1,j

respectively (i ≤ k < j) with a single edge
e ∈ {(i, j), (j, i)}, creating the graph

({wi, . . . , wj}, {e} ∪E(Hai,k
)∪E(Hak+1,j

)).

Lemma 6. The projective DAGs ai,j .G1, ai,j .G2,
and ai,j .G3 can be de-constructed, by reversing a
single operation (A1), (A2) or (A3), to obtain two
sub-DAGs D1 and D2 which span their vertices and
where either

• D1 is on vertices {wi, . . . , wk} and D2 is on
vertices {wk, . . . , wj}, for i < k < j, or

• D1 is on vertices {wi, . . . , wk} and D2 is on
vertices {wk+1, . . . , wj}, for i ≤ k < j.

Furthermore, for p ∈ [2] and 1 ≤ a < b ≤ n, let
G[a, b] be the spanning subgraph of G on the ver-
tices {wa, wa+1, . . . , wb−1, wb}, let Dp be a DAG
on the vertices wa, wa+1, . . . , wb−1, wb.

1. Dp is a projective MSDAG for G[a, b], or

2. Dp is the a highest projective spanning DAG
with no a− b path for G[a, b], or

3. Dp is the a highest projective spanning DAG
with no b− a path for G[a, b].

Proof. We separate the proof into two parts: Part
1 for the graph ai,j .G1 and Part 2 for the graphs
ai,j .G2, and ai,j .G3.
Part 1. Let us denote ai,j .G1 by D for ease in nota-
tion. We denote by ED(u) the set of edges in E(D)
having u for some endpoint. Consider the word wi.
By D’s connectivity, ED(wi) is non-empty. Let e
be the edge in ED(wi) of longest span, and sup-
pose without loss of generality in edge direction that
e = (wi, wk) for some k ∈ {i+ 1, . . . , j}.

There are two cases to consider. Either k < j in
which case we can reverse (A1) (Case 1), or k = j
in which case we can reverse (A2) or (A3) (Case 2).

Consider first Case 1, where k < j. By D’s
projectivity and the fact that e has the longest span
in ED(w1), there are no edges with one endpoint
among wi, . . . , wk−1 and the other endpoint among
wk+1, . . . , wj . So we can partition D into two
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sub-DAGs D[i, k], which is a spanning subgraph
over the nodes wi, . . . , wk and D[k, j], which is
a spanning subgraph over the nodes wk, . . . , wj .
BothD[i, k] andD[k, j] are projective MSDAGs for
G[i, k] and G[k, j] respectively, otherwise we can
construct a projective MSDAG D′ for G of higher
weight than D, by taking the respective projective
MSDAGs to form D′.

Otherwise, we have Case 2, with k = j. Note that
there must not be anywj−wi path inD (for acyclic-
ity). We remove the edge (wi, wj) fromD, the result
of which is either connected or disconnected.

If D − {(wi, wj)} is connected, it must be the
maximum spanning DAG for G not containing any
wj − wi path. In the same manner as for the case
where k < j, we can partition D − {(wi, wj)}
into two sub-DAGsD[i, k], which is a spanning sub-
DAG over the nodes wi, . . . , wk and D[k, j], which
is a spanning sub-DAG over the nodes wk, . . . , wj ,
where either D[i, k] does not have a k − i path or
D[k, j] does not have a j − k path. Clearly D[i, k]
and D[k, j] are the maximum weighted projective
spanning DAGs with this property for G[i, k] and
G[k, j] respectively. This is the reversal of (A2).

Otherwise D − {(wi, wj)} is disconnected into
two weakly connected components D[i, k] and
D[k + 1, j], with k ∈ [j − 1], such that D[i, k] is
a projective MSDAG for G[i, k] and D[k + 1, j] is
a projective MSDAG for G[k + 1, j] (which is the
reversal of (A3)).
Part 2. We prove, without loss of generality, the
result for the graph ai,j .G3, the proof for the graph
ai,j .G2 being symmetric. The proof follows almost
exactly the one in Part 1, so we simply indicate the
differences here. Again, for ease in notation, we de-
note ai,j .G2 by D, and carry out the same partition
of D as in Part 1.

The difference for Case 1 is that either the result-
ing D[i, k] must be a maximum weighted projec-
tive spanning DAG for G[i, k] with no k − i path,
or D[k, j] must be a maximum weighted projective
spanning DAG for G[k, j] with no j − k path.

Case 2 is precisely the same if the result of remov-
ing the edge (wi, wj) is disconnected. If the result
is connected, then the difference is that D[i, k] must
be a maximum projective weighted spanning DAG
for G[i, k] with no k − i path, or D[k, j] must be
a maximum weighted projective spanning DAG for

G[k, j] with no j − k path.

Algorithm 1 uses the operations (A1), (A2) and
(A3) to fill the matrix A. In Figure 1, we define
three different subroutines corresponding to each of
these operations, which take the matrix A, the span,
and the forbidden direction for the edge of the span,
if there is one (and the empty set otherwise). Clearly
each of these runs in O(n) time.

We observe that Lines 9 through 14 in Algo-
rithm 1 dominate the time complexity, takingO(n3).
Lemma 7 shows that Algorithm 1 fills the table cells
with the correct projective MSDAG restrictions.

Lemma 7. For i ≤ j, Algorithm 1 fills matrix entry
ai,j with:

1. a projective MSDAG for G[i, j],

2. a projective MSDAG for G[i, j] with no i − j
path, and

3. a projective MSDAG for G[i, j] with no j − i
path.

Proof. The proof is by induction on the span size.
For the table cells ai,i for i ∈ [n], we have ai,i.G1 =
ai,i.G2 = ai,i.G3 = ({wi}, ∅); the graphs are all
single nodes. For our base case, ai,i+1, i ∈ [n − 1],
we construct the cell contents as follows:

1. ai,i+1.G1 is the highest weighted edge among
(wi, wi+1) and (wi+1, wi).

2. ai,i+1.G2 is (wi, wi+1) if this edge is in G.

3. ai,i+1.G3 is (wi+1, wi) if this edge is in G.

This is Lines 1 through 8 in Algorithm 1.
Suppose now that the entries ai,k and ak,j con-

tain the appropriate graphs G1, G2 and G3, for
i < k < j. For each k (i < k < j), Lines
9 through 14 in Algorithm 1 construct the three
graphs, ai,j .G1(k), ai,j .G2(k), and ai,j .G3(k), as
follows, which is possible according to Lemma 6:

1. ai,j .G1(k) is a highest weighted projective de-
pendency DAG for G[i, j] that can be con-
structed from the graphs stored in ai,k and ak,j .

2. ai,j .G2(k) is a highest weighted projective de-
pendency DAG for G[i, j] that can be con-
structed from the graphs stored in ai,k, ai,k+1

and ak,j , which avoids an i− j path.
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A1(G,A, i, j, ∅) = arg max
{H|H=({wi,...,wj},E(ai,k.G1)∪E(ak,j .G1)), i<k<j}

w(H)

A1(G,A, i, j,→) = arg max
{H|H=({wi,...,wj},E(ai,k.G2)∪E(ak,j .G1)), i<k<j}
∪{H|H=({wi,...,wj},E(ai,k.G1)∪E(ak,j .G2)), i<k<j}

w(H)

A1(G,A, i, j,←) = arg max
{H|H=({wi,...,wj},E(ai,k.G3)∪E(ak,j .G1)), i<k<j}
∪{H|H=({wi,...,wj},E(ai,k.G1)∪E(ak,j .G3)), i<k<j}

w(H)

A2(G,A, i, j, ∅) = arg max
{H|H=({wi,...,wj}, {(wi,wj)}∪E(ai,k.G1)∪E(ak,j .G1)), i<k<j}

w(H)

A2(G,A, i, j,→) = arg max
{H|H=({wi,...,wj}, {(wj ,wi)}∪E(ai,k.G2)∪E(ak,j .G1)), i<k<j}
∪{H|H=({wi,...,wj}, {(wj ,wi)}∪E(ai,k.G1)∪E(ak,j .G2)), i<k<j}

w(H)

A2(G,A, i, j,←) = arg max
{H|H=({wi,...,wj}, {(wi,wj)}∪E(ai,k.G3)∪E(ak,j .G1)), i<k<j}
∪{H|H=({wi,...,wj}, {(wi,wj)}∪E(ai,k.G1)∪E(ak,j .G3)), i<k<j}

w(H)

A3(G,A, i, j, ∅) = arg max
{H|H=({wi,...,wj}, {(wi,wj)}∪E(ai,k.G1)∪E(ak+1,j .G1)), i≤k<j}

w(H)

A3(G,A, i, j,→) = arg max
{H|H=({wi,...,wj}, {(wj ,wi)}∪E(ai,k.G2)∪E(ak+1,j .G1)), i≤k<j}
∪{H|H=({wi,...,wj}, {(wj ,wi)}∪E(ai,k.G1)∪E(ak+1,j .G2)), i≤k<j}

w(H)

A3(G,A, i, j,←) = arg max
{H|H=({wi,...,wj}, {(wi,wj)}∪E(ai,k.G3)∪E(ak+1,j .G1)), i≤k<j}
∪{H|H=({wi,...,wj}, {(wi,wj)}∪E(ai,k.G1)∪E(ak+1,j .G3)), i≤k<j}

w(H)

Figure 1: Subroutines corresponding to the operations (A1), (A2), and (A3) as used by Algorithm 1.

Algorithm 1 proj-MSDAG(G)
1: for i← 1, . . . , n do
2: ai,i.G1 ← ai,i.G2 ← ai,i.G3 = ({i}, ∅)
3: if i < n then
4: ai,i+1.G1 ← ({wi, wi+1}, {arg maxe∈{(wi,wi+1),(wi+1,wi)}w(e)})
5: ai,i+1.G2 ← ({wi, wi+1}, {(wi+1, wi)})
6: ai,i+1.G3 ← ({wi, wi+1}, {(wi, wi+1)})
7: end if
8: end for
9: for i← 1, . . . , n do

10: for j ← i− 1, . . . , 1 do
11: ai,j .G1 ← arg maxH∈{A1(G,A,i,j,∅),A2(G,A,i,j,∅),A3(G,A,i,j,∅)}w(H)
12: ai,j .G2 ← arg maxH∈{A1(G,A,i,j,→),A2(G,A,i,j,→),A3(G,A,i,j,→)}w(H)
13: ai,j .G3 ← arg maxH∈{A1(G,A,i,j,←),A2(G,A,i,j,←),A3(G,A,i,j,←)}w(H)
14: end for
15: end for
16: return a1,n.G1

3. ai,j .G3(k) is a highest weighted projective de-
pendency DAG for G[i, j] that can be con-

structed from the graphs stored in ai,k, ai,k+1

and ak,j , which avoids an j − i path.
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With Lemmata 6 and 7, the proof of correctness
of the following theorem is complete.

Theorem 8. There is an algorithm for finding a
projective MSDAG of a weighted digraph in O(n3)
time, where n is the number of word tokens of the
input sentence.

The proof of Theorem 8 can be simplified to adapt
it to that of projective digraphs. We simply substi-
tute the word “DAG” by “digraph”, and disregard all
graphs in table entries avoiding certain paths, since
cycles are permitted: in the entry ai,j , we need only
construct and record the graph ai,j .G1. We have thus
also shown the following fact.

Theorem 9. There is an algorithm for finding a pro-
jective maximum weighted spanning digraph of a
weighted digraph inO(n3) time, where n is the num-
ber of word tokens of the input sentence.

8 Concluding Remarks

Understanding the complexity of the problem of
finding a maximum spanning DAG as well as im-
portant restrictions provides a basis for both theo-
retical and empirical studies using restrictions or re-
laxations of the DAG parsing paradigm. We have
provided the first direct discussion of this problem’s
complexity, showing that the problem is APX-hard
as well as the first algorithm for the projective MS-
DAG problem proven to be exact and polynomial
time. Additionally, we briefly discussed the com-
plexity of finding a planar and outerplanar MSDAG,
the approximability of which remains open.
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Abstract

This paper proposes a method of incremen-
tally constructing semantic representations.
Our method is based on Steedman’s Combina-
tory Categorial Grammar (CCG), which has a
transparent correspondence between the syn-
tax and semantics. In our method, a derivation
for a sentence is constructed in an incremen-
tal fashion and the corresponding semantic
representation is derived synchronously. Our
method uses normal form CCG derivation.
This is the difference between our approach
and previous ones. Previous approaches use
most left-branching derivation called incre-
mental derivation, but they cannot process co-
ordinate structures incrementally. Our method
overcomes this problem.

1 Introduction

By incremental interpretation, we mean that a sen-
tence is analyzed from left to right, and a semantic
representation is assigned to each initial fragment of
the sentence. These properties enable NLP systems
to analyze unfinished sentences. Moreover, incre-
mental interpretation is useful for incremental dia-
logue systems (Allen et al., 2001; Aist et al., 2007;
Purver et al., 2011; Peldszus and Schlangen, 2012).
Furthermore, in the field of psycholinguistics, incre-
mental interpretation has been explored as a human
sentence processing model.

This paper proposes a method of constructing a
semantic representation for each initial fragment of
a sentence in an incremental fashion. The proposed
method is based on Combinatory Categorial Gram-
mar (CCG) (Steedman, 2000). CCG represents the

syntactic process as a derivation which is a tree
structure. Our method constructs a CCG derivation
by applying operations used in incremental phrase
structure parsing. Each intermediate data structure
constructed by the operations represents partial in-
formation of some derivation. Our method obtains a
semantic representation from the intermediate struc-
ture. Since the obtained semantic representations
conform to the CCG semantic construction, we can
expect that incremental semantic interpretation is re-
alized by applying a CCG-based semantic analysis
such as (Bos, 2008).

This paper is organized as follows: Section
2 briefly explains Combinatory Categorial Gram-
mar. Section 3 gives an overview of previous work
of CCG-based incremental parsing and discusses
its problem. Section 4 proposes our CCG-based
method of incrementally constructing semantic rep-
resentations. Section 5 reviews related work and
Section 6 concludes this paper.

2 Combinatory Categorial Grammar

Combinatory Categorial Grammar (CCG) (Steed-
man, 2000) is a grammar formalism which has a
transparent correspondence between the syntax and
semantics. Syntactic information is represented us-
ing basic categories (e.g., S, NP) and complex cate-
gories. Complex categories are in the form of X/Y
or X\Y , where X and Y are categories. Intuitively,
each category in the form of X/Y means that it re-
ceives a category Y from its right and returns a cat-
egory X . In the case of the form X\Y , the direc-
tion is to left. For example, the category of a transi-
tive verb is (S\NP)/NP, which receives an object NP
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Forward function application: X/Y : f Y : a ⇒> X : fa
Backward function application: Y : a X\Y : f ⇒< X : fa
Forward function composition: X/Y : f Y/Z : g ⇒>B X/Z : λx.f(gx)
Backward function composition: Y \Z : g X\Y : f ⇒<B X\Z : λx.f(gx)
Backward crossed substitution: Y/Z : g (X\Y )/Z : f ⇒<S× X/Z : λx.fx(gx)

Forward type-raising: X : a ⇒>T T/(T\X) : λf.fa
Backward type-raising: X : a ⇒<T T\(T/X) : λf.fa
Coordination: X : f CONJ : b X : g ⇒<Φ> X : λ . . . b(g . . .)(f . . .)

Figure 1: CCG rules
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Figure 2: An example of CCG derivation.

from its right and returns a category S\NP. The cat-
egory S\NP corresponds to a verb phrase. It receives
a subject NP from its left and the result is a sentence
S. Formally, categories are combined using CCG
rules such as the ones shown in Figure 1. Each rule
means that, when the elements of the left-hand side
of the arrow are combined in this order, the result
is the right-hand side. The symbol with which the
arrow is subscripted designates its rule type. Each
element consists of a syntactic category and a se-
mantic representation which is separated by a colon.
A semantic representation is a λ-term. Each com-
bination of syntactic categories has a corresponding
semantic composition of their semantic representa-
tions. Figure 2 shows an example of CCG deriva-
tion, which is taken from (Steedman, 2000).1 Here,

1For simplicity, we use a symbol for a semantic repre-
sentation of a word. Note that it is allowed to use com-
plex semantic representations. For example, by assigning
λpx.3(px) (3 is possibility operator.) and λpq.p∧q to “might”
and “and” respectively, we can obtain a modal logic formula
3(marry′manny′anna′) ∧meet′manny′anna′.

we write λx1x2 · · ·xn.M and M1M2M3 · · ·Mn to
abbreviate λ-terms (λx1.(λx2.(· · · (λxn.M) · · · )))
and ((· · · ((M1M2)M3) · · · )Mn), respectively. In
this example, each node has three labels: a syntac-
tic category, a semantic representation and the rule
type which is used to derive this node. For each leaf
node, a word is assigned instead of a rule type.

3 Incremental Parsing Based on CCG

Incremental parsing methods based on CCG have
been proposed so far (Reitter et al., 2006; Hassan
et al., 2008; Hefny et al., 2011). By using the prop-
erty that CCG allows non-standard constituents, pre-
vious CCG-based incremental parsers assign a syn-
tactic category to each initial fragment of an input
sentence. The obtained derivations are most left-
branching ones which are called incremental deriva-
tions. Figure 3 shows two examples of incremental
derivations. In Figure 3(a), the fragment “Anna met”
is a non-phrase, but it has a syntactic category S/NP.

However, Demberg (2012) has demonstrated that
some kinds of sentences cannot have strictly left-
branching derivations. This means that previous ap-
proaches have the case where the parser cannot as-
sign any syntactic categories to an initial fragment.
This also means that such initial fragments do not
have any semantic representations.

A typical example is coordinate structure. In
CCG, a coordinate structure is derived by combin-
ing conjuncts and a conjunction using coordination
rule. This prevents the first conjunct from combin-
ing with its left constituent. As an example, let us
consider the incremental derivation shown in Fig-
ure 3(b). Here, the word “met” is the first con-
junct of “met and might marry” and cannot be com-
bined with “Anna”. If we assign the category S/NP
to initial fragment “Anna met” as shown in Figure
3(a), the word “met” cannot be treated as a con-

270



��

�����

Anna

��

�		
������������

>

��
�����

λf�f�����

>T


��������

�		
�

met

����

λx��		
�x�����

>B

��

������

Manny

(a)


���������

�		
�

met


��������

������

marry

����

����

and


��������

λyz�����
����
�
������y�z�
�		
�yz�

<Φ>

��

������

Manny


������
�����

����
�

might


��������

λx�����
�
������x�

>B

��

����
����
�
�������������������
�		
�������������

<

��

�����

Anna

��
�����

λf�f�����

>T

����

λx������
����
�
������x�������
�		
�x������

>B

(b)

Figure 3: Incremental derivations.

junct. This example demonstrates that sentences in-
cluding coordinate structures cannot be represented
by any strictly left-branching derivations. That is,
incremental derivation approaches cannot achieve a
word-by-word incremental interpretation.

4 Incremental Semantic Construction
Based on CCG

This section proposes a method of constructing se-
mantic representations in an incremental fashion. To
overcome the problem described in the previous sec-
tion, our method adapts a different approach. Our
method needs not to use incremental derivations.
For each initial fragment of a sentence, our proposed
method obtains a semantic representation from the
normal form derivation. A normal form derivation
is defined as the one which uses type-raising and
function composition only if they are required.2 We
consider a derivation as a parse tree and construct
it based on incremental phrase structure parsing.
For each initial fragment of a sentence, incremen-
tal parsing can construct a partial parse tree which
connects all words in the fragment. Our method ob-
tains a semantic representation from the partial parse
tree. In the constructed partial parse tree, some parts
of the derivation are underspecified. Our method in-
troduces variables to denote underspecified parts of
the semantic representation. These variables are re-

2Several variants of normal form have been presented. For
example, see (Eisner, 1996) and (Hockenmaier and Bisk, 2010).

placed with semantic representations as soon as they
are determined. In the rest of this section, we first
describe incremental parsing which is the basis of
our method. Next, we explain how to obtain a se-
mantic representation from a partial parse tree con-
structed by incremental parsing.

4.1 Incremental Construction of CCG
Derivation

Our method considers a CCG derivation as a tree
structure. We call this parse tree. Our method
constructs a parse tree according to an incremental
parsing formalism proposed in (Kato and Matsub-
ara, 2009). This formalism extends the incremental
parsing of (Collins and Roark, 2004) by introducing
adjoining operation used in Tree Adjoining Gram-
mar (Joshi, 1985). The incremental parsing assigns
partial parse trees for any initial fragments of a sen-
tence. Adjoining operation reduces local ambiguity
caused by left-recursive structure, and improves the
parsing accuracy (Kato and Matsubara, 2009). Fur-
thermore, in the field of psycholinguistics, adjoining
operation is introduced to a human sentence process-
ing model (e.g., (Sturt and Lombardo, 2005; Mazzei
et al., 2007; Demberg et al., 2013)).

4.1.1 A Formal Description of Incremental
Parsing

This section gives a formal description of incre-
mental parsing of (Kato and Matsubara, 2009). The
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parsing grammar consists of three types of elements:
allowable tuples, allowable chains and auxiliary
trees. Each allowable tuple is a 3-tuple ⟨X, Y, Z⟩
which means that the grammar allows a node la-
belled with Z to follow a node labelled with Y un-
der its parent labelled with X . Each allowable chain
is a sequence of labels. This corresponds to a se-
quence of labels on a path from a node to its leftmost
descendant leaf in a parse tree. Each auxiliary tree
consists of two nodes: a root and a foot. The label
of a root is the same as that of its foot.

A parse tree is constructed by applying two opera-
tions: attaching and adjoining. Attaching operation
combines a partial parse tree and an allowable chain.
The operation is defined as follows:

attaching: Let σ be a partial parse tree and c be an
allowable chain. Let η be the attachment site of
σ. attach(σ, c) is the result of attaching c to η
as the rightmost child (see Figure 4(a)).

Let X , Y and Z be the label of η, the label of the
rightmost child of η and the label of the root of c. If
a grammar does not have allowable tuple ⟨X, Y, Z⟩,
attach(σ, c) is not allowed by the grammar. Next,
we give the definition of adjoining operation. Ad-
joining operation inserts an auxiliary tree into a par-
tial parse tree. The operation is defined as follows:

adjoining: Let σ be a partial parse tree and a be an
auxiliary tree. Let η be the adjunction site of σ.
adjoin(σ, a) is the result of splitting σ at η and
combining the upper tree of σ with the root of
a and the lower tree of σ with the foot of a (see
Figure 4(b)). If the label of η is not the same as
that of the foot of a, adjoin(σ, a) is undefined.

Here, we give the definitions of attachment site
and adjunction site. These sites are defined in order
to construct a parse tree from left to right. We say
that a node η is complete if η satisfies the following
conditions:

• All children of η are instantiated and com-
plete.3

3In incremental phrase structure parsing, to identify whether
or not all children are instantiated, (Collins and Roark, 2004)
and (Kato and Matsubara, 2009) use a special symbol which
means end of constituent. All children of η are instantiated if
and only if the rightmost child of η is labelled with this special

• Adjoining operation is not applicable to η. By
the term “applicable”, we mean that the gram-
mar has an auxiliary tree whose foot label is
identical to that of η and adjoining operation
has not been applied to η yet.

The attachment site of σ is defined as the node η
satisfying the following conditions:

• Not all children of η are instantiated.

• All instantiated children of η are complete.

The adjunction site of σ is defined as the node η sat-
isfying the following conditions:

• All children of η are instantiated and complete.

• Adjoining operation is applicable to η.

Finally, we introduce nil-adjoining operation
which changes not a partial parse tree, but node
states. When the operation is applied to a node, we
deem that adjoining operation is applied to the node.
This affects whether or not each node in the partial
parse tree is complete. The symbol nil designates the
operation.

4.1.2 Constructing CCG Derivations
First of all, we show an example of incremental

constructing process of CCG derivations in our pro-
posed method. See Figure 5. Attaching operation
is represented as a solid arrow labelled with an al-
lowable chain. Adjoining operation is represented as
a dotted arrow labelled with an auxiliary tree. The
subscript i of a node indicates that the node is instan-
tiated at the point when i-th word wi is consumed.
The solid boxes mean that the nodes are complete.
The dotted box represents that adjoining operation
is applicable to the node. The symbol ‘*’ means that
the annotated node is introduced by adjoining oper-
ation (This node corresponds to the root of the aux-
iliary tree.). We call it adjoined node. Each node in
a partial parse tree is labelled with a syntactic cate-
gory and a rule type (or a word). No semantic repre-
sentations are assigned. This is because each partial
parse tree includes underspecified parts and it is im-
possible to determine their contents. This example
symbol. In CCG derivation, it can be identified by counting the
number of children, since the number is uniquely determined by
the rule type of η.
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Figure 4: Attaching operation and adjoining operation.
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Figure 5: Incremental constructing process of CCG derivations.

demonstrates that each initial fragment has a partial
parse tree, which connects all the words in the frag-
ment.

Next, we consider the parsing grammar for CCG
derivation. We do not need any allowable tuples,
since the CCG rules determine the syntactic cate-
gory of the node which follows a node. For example,
when a parent node is labelled with category S and
rule type <, and its leftmost child is labelled with
category NP, the following node must be labelled
with S\NP. The rule type is arbitrary. Of course, we
can also define allowable tuples to restrict the rule
type.

Each node of the allowable chains and the aux-
iliary trees is also labelled with a category and a
rule type as shown in Figure 5. When an auxil-
iary tree a is adjoined to a partial parse tree at a

node η, the label of η must be the same as that of
the foot of a. That is, cat(η) = cat(foot(a)) and
rule(η) = rule(foot(a)) hold. Here, we write
cat(η) and rule(η) for the category and the rule type
of a node η, respectively. foot(a) is the foot node of
an auxiliary tree a.

4.2 Incremental Semantic Construction
This section presents our incremental semantic con-
struction procedure. For each initial fragment, our
method derives a semantic representation from the
partial parse tree obtained by the incremental con-
structing process. The semantic representation is
composed as follows:

• Construct a function ti which adds the informa-
tion about the word wi to the semantic repre-
sentation si−1 for w1 · · ·wn−1. The function is
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obtained from the nodes which are instantiated
at the point when the word wi is consumed.

• Apply the function ti to the semantic represen-
tation si−1. That is, the semantic representation
for w1 · · ·wi is si = ti(si−1).

We call the function ti semantic transition function
(or transition function for short). The key point is
how to construct the semantic transition function for
a word. In the following, we explain it.

To construct a semantic transition function ti, our
method assigns a pair ⟨α,M⟩ to each node η ∈
Ni(σ) where Ni(σ) is the set of the nodes in a partial
parse tree σ which are instantiated at the point when
i-th word wi is consumed. Here, α is a sequence of
variables and M is a semantic representation. The
variables in α occur in M and represent underspeci-
fied parts of the semantic representation M . The se-
mantic representation M conveys information about
the word wi. The variables are expected to be spec-
ified in the order of α. A transition function is ob-
tained from a pair.

4.2.1 Semantic Construction without
Adjoining Operation

For ease of explanation, we first describe the con-
struction of transition function in the case where ad-
joining operation is not used. Below, arity(R) is
the number of the elements of the left-hand side of
rule R. CR[M1, . . . , Mn] is the result of combining
semantic representations M1, . . ., Mn using rule R
where n must be equal to arity(R). The procedure
of constructing a transition function is as follows:

1. For the leaf node η ∈ Ni(σ), if cat(η) : M is a
lexical entry for wi, assign ⟨ε,M⟩ to η.

2. Let η be an inner node in Ni(σ). Let ⟨α, M⟩
be the pair assigned to the child of η. As-
sign ⟨αx2 · · ·xn, Crule(η)[M,x2, . . . , xn]⟩ to
η, where n = arity(rule(η)) and x2,. . .,xn are
fresh variables.

3. Let ⟨α,M⟩ be the pair assigned to the highest
node in Ni(σ). The semantic transition func-
tion ti is defined as follows:

λsα.sM

where s is a fresh variable.

By applying semantic transition functions, our
method realizes incremental semantic construction.
All semantic representations for initial fragments are
in the form of λxα′.M ′ where xα′ is a sequence of
variables designating underspecified parts in a se-
mantic representation M ′ (x is the first variable.).
By applying semantic transition function λsα.sM ,
we obtain the following semantic representation:

(λsα.sM)(λxα′.M ′) ↠β λαα′.M ′[x := M ]

The result is in the same form. The underspecified
part designated by the variable x is replaced with M
which is specified by the word wi.

As an example of our incremental semantic con-
struction, let us consider a sentence “Anna met
Manny.” Figure 6 shows examples of semantic tran-
sition functions. The initial semantic representa-
tion is the identity function λx.x. For the word
“Anna”, the transition function shown in Figure 6(a)
is constructed. By applying this function to the ini-
tial semantic representation, we obtain the follow-
ing semantic representation for the initial fragment
“Anna”:

(λsy.s(yanna′))(λx.x) ↠β λy.yanna′ (1)

Next, by applying the semantic transition function
for “met” which is shown in Figure 6(b) to the se-
mantic representation (1), the following one is ob-
tained for the initial fragment “Anna met”:

(λsy.s(meet′y))(λy.yanna′) ↠β λy.meet′yanna′

(2)
This semantic representation captures the predicate-
argument relation between anna′ and meet′. Fi-
nally, by applying the semantic transition function
λs.smanny′ to the semantic representation (2), we
can obtain the following one:

meet′manny′anna′ (3)

This semantic representation is the same as that of
the normal form derivation.

4.2.2 Semantic Construction Using Adjoining
Operation

In this section, we extend the transition function
construction procedure to allow adjoining operation.

For η ∈ Ni(σ) which is a node of an allowable
chain, we modify steps 1 and 2 in the transition func-
tion construction procedure as follows:
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Figure 6: Examples of semantic transition function construction.

• Let ⟨α,M⟩ be the pair assigned to η in the
version without adjoining operation. If adjoin-
ing operation is applicable to η, assign the pair
⟨αz, zM⟩ to η instead of ⟨α, M⟩ where z is a
fresh variable.

The variable z is utilized for updating a semantic
representation when adjoining operation is applied
to η. When nil-adjoining operation is applied to η,
the variable z is replaced with the identity function
λx.x. That is, after applying λs.s(λx.x) to the se-
mantic representation si−1, the semantic transition
function ti is applied.

For an adjoined node η ∈ Ni(σ), the modified
procedure assigns a pair to η in the following way:

• Let ⟨α,M⟩ be the pair assigned to the root node
of the allowable chain which is attached under
η. Let R be rule(η) and n be arity(R). If
adjoining operation is applicable to η, assign
the following pair to η:

⟨αy3 . . . ynz, λx.zCR[x,M, y3, . . . yn]⟩

Otherwise, assign the following pair to η:

⟨αy3 . . . yn, λx.CR[x, M, y3, . . . yn]⟩

Here, x, y3,. . .,yn and z are fresh variables.

The pair assignment for a node to which adjoining
operation is applicable and the one for an adjoined
node work cooperatively (see Figure 7). If adjoin-
ing operation is applicable to a node, a fresh vari-
able z is introduced to the semantic representation.
When adjoining operation is applied to the node, this
variable is replaced with a function in the form of
λx.CR[x,M2, . . .] which receives a semantic repre-
sentation of the first child and returns the result of se-
mantic composition. Figure 6(c) shows an example

Table 1: Incremental semantic construction of “Anna met
and might marry Manny.”

word # semantic representation
Anna 1 λy.yanna′
met 2 λzy.zmeet′yanna′
and 3 λyx.and′(yxanna′)(meet′xanna′)

might 4 λyx.and′(might′(yx)anna′)(meet′xanna′)
marry 5 λx.and′(might′(marry′x)anna′)(meet′xanna′)
Manny 6 and′(might′(marry′manny′)anna′)(meet′manny′anna′)

of constructing the transition function where adjoin-
ing operation is applicable to the node (S\NP)/NP.
Figure 6(d) shows an example of constructing the
transition function where the node (S\NP)/NP is an
adjoined node.

The transition function is applied in the same way
as the version without adjoining operation. Table 1
shows an example of the semantic representations
constructed by our method.

As an example, let us consider the initial fragment
“Anna met...” By applying the transition function
shown in Figure 6(c) to the semantic representation
(1), we obtain the semantic representation #2 shown
in Table 1.

In the case where the next word is “Manny”,
nil-adjoining operation is applied to the node
(S\NP)/NP, that is, the function λs.s(λx.x) is ap-
plied to #2. The result is identical to the semantic
representation (2), therefore, we obtain the semantic
representation (3) for “Anna met Manny”.

Next, let us consider the case where the word
“and” follows the initial fragment “Anna met.” In
this case, the derivation is constructed as shown in
the lower side of Figure 5. The semantic transi-
tion function for the word “and” is constructed as
shown in Figure 6(d). By applying the function to
the semantic representation #2, we obtain the se-
mantic representation #3. Furthermore, if the word
sequence “might marry Manny” follows this initial
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λzα'...(zM1)...

M2

CR[M1, M2,...]

(λsα.s(λx.CR[x, M2,...]))(λzα'...(zM1)...)

→β λα.(λzα'...(zM1)...)(λx.CR[x, M2,...])

→β λαα'...((λx.CR[x, M2,...])M1)...

→β λαα'...(CR[M1, M2,...])...

λsα.s(λx.CR[x, M2,...])

zM1

M1 ���

λαα'...(CR[M1, M2,...])...

λα'...M1...

M1

λs.s(λx.x)

(λs.s(λx.x))(λzα'...(zM1)...)

→β (λzα'...(zM1)...)(λx.x)

→β λα'...((λx.x)M1)...

→β λα'...(M1)...

Figure 7: Updating a semantic representation by adjoining operation.

Table 2: Semantic representations assigned by incremen-
tal derivations.

word semantic representation
Anna anna′
met −
and −

might −
marry λx.and′(might′(marry′x)anna′)(meet′xanna′)
Manny and′(might′(marry′manny′)anna′)(meet′manny′anna′)

fragment, the semantic representations #4, #5 and
#6 are obtained in this order. This example demon-
strates that our method can incrementally construct
semantic representations for sentences including co-
ordinate structures. In comparison with our incre-
mental semantic construction, incremental deriva-
tion approaches have the case where no semantic
representations are assigned to initial fragments. Ta-
ble 2 shows semantic representations which are as-
signed using incremental derivations. There exist
initial fragments which have no semantic represen-
tations as discussed in Section 3.4

5 Related Work

Our incremental semantic construction is based on
the λ-calculus. There have been several meth-
ods of incremental semantic construction using the
λ-calculus. Pulman (1985) has developed an in-
cremental parser which uses context-free rules an-

4The initial fragment “Anna met” can have the semantic rep-
resentation λx.meet′xanna′ as shown in Figure 3(a). However,
the derivation which has this semantic representation is not a
partial structure of incremental derivation shown in Figure 3(b).
That is, the derivation is not consistent with that of “Anna met
and might marry Manny.”

notated with semantic representations. The pars-
ing process proceeds on a word-by-word basis, but
its intermediate structure is a stack, that is, the
parser does not assign a fully-connected seman-
tic representation to each initial fragment. Mil-
ward (1995) has proposed an incremental semantic
construction method based on Categorial Grammar.
The method uses two types of transition functions:
state-application and state-prediction. Our seman-
tic transition function is similar to these functions.
However, our method is more general than that of
Milward. Milward’s method cannot produce CCG
derivations, since it can deal with only function ap-
plication.

There are other approaches to incremental se-
mantic construction, which use different formalism.
Purver et al. (2011) have developed a dialogue sys-
tem based on Dynamic Syntax (DS) (Kempson et al.,
2001), which provides an incremental framework
of constructing semantic representations. Peldszus
and Schlangen (2012) have proposed incremental
semantic construction based on Robust Minimal Re-
cursion Semantics (RMRS) (Copestake, 2007). Say-
eed and Demberg (2012) have proposed incremental
semantic construction for PLTAG (Demberg et al.,
2013). It is unclear how to construct a wide cov-
erage grammar (with semantic annotation) in these
frameworks.5 On the other hand, our method can use

5DS grammar induction method (Eshghi et al., 2013) was
only applied to a small artificial corpus (200 sentences, max
sentence length is 6.). Peldszus and Schlangen (2012) manu-
ally assigned semantic annotations to a small set of context-free
rules (30 rules). Sayeed and Demberg (2012) only provided
small examples.
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CCG-based lexicon (e.g., (Bos, 2009)) directly. Al-
though our method requires a set of allowable chains
and auxiliary trees in addition to such a lexicon, we
can easily extract it from CCGbank (Hockenmaier
and Steedman, 2007) by using the method proposed
in (Kato and Matsubara, 2009).

6 Conclusion

This paper proposed a CCG-based method of incre-
mentally constructing semantic representations. Our
approach is based on normal form derivations unlike
previous ones. In this paper, we focused on the for-
mal aspect of our method. We defined semantic tran-
sition function to obtain semantic representations for
each initial fragment of an input sentence.

Another important issue is how to interpret in-
termediate semantic representations for initial frag-
ments. To our knowledge, there is little work to this
direction. In future work, we will explore a model-
theoretic approach to this problem.
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Abstract

We describe a semantic role labeler with state-
of-the-art performance and low computational
requirements, which uses convolutional and
time-domain neural networks. The system is
designed to work with features derived from
a dependency parser output. Various system
options and architectural details are discussed.
Incremental experiments were run to explore
the benefits of adding increasingly more com-
plex dependency-based features to the system;
results are presented for both in-domain and
out-of-domain datasets.

1 Introduction

Semantic role labeling (Gildea and Jurafsky [2002]),
the task of identifying and classifying the semantic
arguments of verbal and nominal predicates in text,
represents one of the most complex NLP tasks to
be addressed by supervised machine learning tech-
niques. In the standard supervised approach to
building SRL systems, collections of multiway clas-
sifiers are trained using annotated corpora such as
PropBank (Palmer et al. [2005]). In this approach,
classifiers are trained using features derived directly
from the original source text, as well as from subse-
quent syntactic and semantic processing.

As reported in several shared tasks (Carreras and
Màrquez [2004],Carreras and Màrquez [2005],Hajič
et al. [2009]), SRL systems trained in this manner
can achieve high performance. State-of-the-art sys-
tems employ classifiers such as support vector ma-
chines trained with large numbers of relatively com-
plex combinations of features, often combined with

re-ranking based on multiple syntactic analyses. Un-
fortunately, these approaches have a number of non-
trivial limitations including the computational cost
of the syntactic parsing and the sparse nature of the
complex features on which they rely. This latter lim-
itation is particularly critical since it leads to signif-
icant degradation in performance when the trained
system is applied to texts from new domains.

However, recent results using multilayer neu-
ral networks and pre-trained word embeddings
have demonstrated high performance using a much
smaller number of minimalist features. The archi-
tecture described by Collobert et al. [2011] com-
bines time delay convolutional neural networks
(Waibel et al. [1989]) and pre-trained word embed-
dings for a number of NLP tasks. They develop four
components and compare their performance to pre-
vious benchmarks, one of which is an SRL system
which uses features derived from a phrase-structure
parse as input, based on the CoNLL 2005 shared
task (Carreras and Màrquez [2005]).

The work described here adopts the basic archi-
tecture from Collobert et al. [2011] and explores
issues related to the use of this architecture in the
context of the CoNLL 2009 shared task. In partic-
ular, we present Daisy, a system that (1) employs
features derived from dependency parse as input,
(2) assigns semantic roles to both verbal and nom-
inal predicates, and (3) automatically assigns word
senses to the predicates as described in the CoNLL
2009 shared task (Hajič et al. [2009]).

The following sections will describe the architec-
ture of the Daisy system, present state-of-the-art per-
formance on the CoNLL 2009 shared task, and ex-
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plore the utility of features derived from dependency
parses, including a version of the traditional SRL
syntactic path feature.

2 Experimental Setup

The CoNLL 2009 shared task consists of identify-
ing the sense and semantic arguments for each given
argument-bearing token (predicate). In addition to
the words themselves, the training data provides the
part of speech, syntactic head, and syntactic depen-
dency relation to the head for each word in the sen-
tence. Table 1 shows an example sentence and its
representation in the dataset. The PDEPREL and
PHEAD features are the head word and dependency
relation predicted automatically by a dependency
parser. In the example sentence, there are two pred-
icates identified for labeling: announce, and close.
The system should output two arguments for an-
nounce: results:A1 (Object), and after:AM-TEMP
(Temporal Marker). Similarly, market:A1 should be
output for the predicate close. In addition to role
identification, the word sense for each predicate is
output, in the example, the expected sense for an-
nounce is 01, and for close is 02.

The training, validation, and evaluation datasets
are annotated sentences from the Wall Street Jour-
nal. An additional out of domain dataset mostly
from the Brown corpus was also supplied. A com-
prehensive F1 score was generated for both role
labels and sense predictions using the provided
eval09.pl perl script.

3 Semantic Role Labeling System

The general block diagrams for the Daisy SRL sys-
tem are shown in Figure 1. The input to the system
is a list of words wi from w1 to wn, a list of pred-
icate positions, and dependency parse tree informa-
tion for the sentence. We treat role labeling and the
sense identification as two separate tasks. For each
predicate in a given sentence, the Role Subsystem
outputs the list of predicted role tags for all words
(SRLi), and the Sense Subsystem outputs the sense
tag of the predicate. The system is composed of five
major components:

• Word Preprocessing and Word Derived Feature
Convolution (Figure 2).
• Predicate Position Feature Convolution.

Feature Vector Convolution

Word 
Derived

Role Neural Network and
Viterbi Decoder

Predicate Position
and Path

Word 
Position

⌃

Sentence Words
wi

Dependency Tree

Word POS

Sentence SRL Tags

SRLi

A B C

D

(a) Role Subsystem

Feature Vector Convolution

Word 
Derived

Sense Neural Network

Predicate Position
and Path

⌃

Sentence Words
wi

Dependency Tree

Word POS

Predicate Senses

BA

E

Predicate Lemma

(b) Sense Subsystem

Figure 1: SRL Role and Sense Block Diagrams

• Word Position Feature Convolution.
• Neural Network and Viterbi (Figure 4).
• Predicate Sense Neural Network (Figure 5).

3.1 Word Derived Feature Convolution Section

The Word Derived Features and Convolution sec-
tion, shown in Figure 2, is sourced by five features
which are derived on a word by word basis.

The upper portion of Figure 2 depicts the process
of looking up features from the words and parse tree
information. The numeric information from the fea-
tures for each word is concatenated together to form
one long feature vector, shown in the diagram as a
multi-shaded set of rectangles. Three words of fea-
ture information (the word and its two neighbors)
from the Word Derived Feature Vector are multi-
plied by the the weights and bias of Θ4 and stored
in the Convolved Word Derived Feature Vector, for
each word in the sentence. For the default convo-
lution width of 300, this results in a long vector of
300 · n, where n is the number of words in the sen-
tence.

Each feature lookup table contains an entry for
PADDING. In order to allow the window to extend
beyond boundaries of the sentence for early and
late words the Feature Vector is padded with the
PADDING value from each lookup table. If a fea-
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ID FORM LEMMA PLEMMA POS PPOS FEAT PFEAT HEAD PHEAD DEPREL PDEPREL FILLPRED PRED A[announce] A[close]

1 The the the DT DT 2 2 NMOD NMOD
2 results result result NNS NNS 3 3 SBJ SBJ A1
3 were be be VBD VBD 0 0 ROOT ROOT
4 announced announce announce VBN VBN 3 3 VC VC Y announce.01
5 after after after IN IN 4 4 TMP TMP AM-TMP
6 the the the DT DT 8 8 NMOD NMOD
7 stock stock stock NN NN 8 8 NMOD NMOD
8 market market market NN NN 9 9 SBJ SBJ A1
9 closed close close VBD VBD 5 5 SUB SUB Y close.02
10 . . . . . 3 3 P P

Table 1: CoNLL format SRL Dependency Parse Input Test Sentence Example
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Figure 2: Word Preprocessing, Word Derived Features,
and Word Derived Feature Convolution. A in figures
1(a) and 1(b).

ture is in the table, the associated vector is output,
otherwise the vector corresponding to the special to-
ken UNKNOWN is output. The PADDING and UN-
KNOWN vectors are trained during supervised train-
ing.

To train the word representations from scratch, all
except the 0.63% least common unique words from
the training set are added to the lookup table. The
remaining words are therefore trained as the UN-
KNOWN word, which can then be used to represent
any word encountered outside the trained word list.
For other features, the representation for the most
probable token is used as the UNKNOWN represen-

tation.
The five types of word-derived features tested for

the SRL Dependency Parse tagger are:

• Word Embeddings
• Capitalization
• POS tag of word
• Dependency Relation
• POS tag of head

3.1.1 Word Pre-processing
The input data provided for the CoNLL 2009

task has already gone through some initial tokeniz-
ing. This prevents tokenization differences of differ-
ent systems from influencing the results, which are
meant to allow comparison of the SRL tagging ar-
chitecture itself. The Daisy pre-processor does not
split hyphenated input words, so each input word
will result in a single pre-processed word. Numeric
values are collapsed to the single common 0 token,
and words are lower-cased to create a word repre-
sentation lookup word.

3.1.2 Word Embeddings
Words are transformed to numeric representations

using a lookup table. Like all other feature lookup
tables in the system, the word representation vec-
tors can be initialized to small random values to start
with, and then trained using the supervised training
algorithm.

A method of training the word representations
from untagged databases has been very successfully
applied to create a starting set of vectors that can
be used to initialize a network, which is then fine-
tuned with supervised training to execute a specific
task. By ”pre-training” these word representations
using large amounts of untagged text, very infor-
mative word relationships can be inexpensively ex-
tracted, and later used as the starting point for task
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specific application learning, see for example Hin-
ton et al. [2006], Bengio et al. [2007] and Weston
et al. [2012].

The word representations, or embeddings, used as
input to the Daisy SRL System for the experiments
described here were generated by Collobert et al.
[2011] and were created using a pairwise ranking
approach (Schapire and Singer [1998]).

3.1.3 Capitalization
Prior to lower casing, each word is checked for all

capitals, initial capital, any capital, or no capitals,
and this criteria is used to lookup a vector (default
length 5) from the caps table.

3.1.4 Predicted Dependency Relation
The PDEPREL column from the training data,

shown in table 1.

3.1.5 Predicted POS tag of word and of head
The Predicted Part-of-speech tag is provided in

PPOS column of the training data. The head part
of speech tag is found by following the PHEAD col-
umn and extracting the PPOS column. (see Table
1).

3.2 Predicate Position and Path Feature
Convolution Section

Predicate Position and optional Path features are ex-
tracted on a per word basis and convolved, once per
predicate (the outer loop of two).

3.2.1 Predicate Position Feature
The position of each word relative to the predicate

being evaluated is represented by 25 vectors, based
on distances of -12 to +12, and distances outside this
range are saturated.

3.2.2 Dependency Path Feature
Information about the path from each word to a

given predicate is maintained in a lookup table and is
provided in the Predicate Position Convolution sec-
tion as a per word feature.

Generic Path: The sequence of up and down
transitions to traverse the tree from a word to a given
predicate is referred to here as the Generic Path. The
dependency parse trees for each of the two predi-
cates from the example training sentence shown in
Table 1 are diagrammed in Figure 3. The Generic

uud ud d o u uuuu uuuu uuu uu ud
DT NNS VBD VBN IN DT NN NN VBD
The results were announced after the stock market closed

NMOD SBJ

root

VC TMP
NMOD

NMOD SBJ

SUB

A1

AM-TMP

announce.01

uuddd uddd ddd dd d uu uu u o uddd
DT NNS VBD VBN IN DT NN NN VBD
The results were announced after the stock market closed

NMOD SBJ

root

VC TMP
NMOD

NMOD SBJ

SUB

A1

close.02

Figure 3: Dependency Parse and Generic Paths

Path for each word is shown in the diagram, above
the part of speech tag for the word.

Labeled Path: These are path descriptions which
include both the arc direction (Generic Path) and
the dependency relation of the arc within the depen-
dency tree. After several rounds of experimentation,
we chose to include paths which occur at least five
times in the training data, which resulted in about
77K unique path types.

3.3 Word Position Feature Convolution Section

The position of every word with respect to the spe-
cific word being evaluated is extracted once per
word, per predicate (the inner loop of two). In a sim-
ilar fashion to the predicate position feature, the po-
sition of each word relative to the word being evalu-
ated is represented by 25 vectors, based on distances
of -12 to +12, and distances outside this range are
saturated.

3.4 Role Neural Network and Viterbi

Figure 4 shows the process of combining the Con-
volved Feature Vectors, processing with a neural
network, and finding the most likely role sequence
with a Viterbi detector. Both the Role and Sense
neural networks are constructed with a single non-
linear layer followed by an output layer. The param-
eters for each layer are referred to here as Θ, which
includes a matrix of weights,W , and a vector of bias
terms b. Each layer’s output, prior to the activation
function, can be calculated from the previous layer’s
activation output and parameters.
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f lΘ = W l−1f l−1
Θ + bl−1 (1)

The tanh function is used as the nonlinear activa-
tion function.

SRL 
Tag Scores

n (number of words) Sentence
SRL Tags
SRLi

Sequence Detector 
(Viterbi)
⇥initial

⇥transition

500

186
SRL Tag Scores

tanh

⇥out

(and �output)

300

Max

300 * n

per word, per verb

⌃

⇥1 = {W1, b1}

Sum of Convolved Features For:
• Word Derived
• Predicate Position
• Word Position

Figure 4: SRL Neural Network and Viterbi. D in figure
1(a).

The three Convolved Feature Vectors (dia-
grammed separately) are summed, then the maxi-
mum for each index within each group of 300 is
determined. This results in a 300 element vector
which will be the input to the Neural Network. A
single layer neural network followed by a single out-
put layer is used to create a ”score” for each possi-
ble role ”tag”, for the word and predicate being an-
alyzed. After running all words through the system
for a single predicate, a matrix of SRL roles scores
of size tags× words is created, which will be used
as the input to the Viterbi sequence decoder.

3.5 Sequence Decoder (Viterbi)
The Viterbi decoding algorithm input is a matrix
which consists of a vector of SRL role scores for
each word. The algorithm is initialized with a
learned set of weights per tag, and computes the log-
likelihood of transitioning from each state to the next
by applying a learned set of weights from the transi-
tion matrix.

3.6 Predicate Sense Neural Network
Figure 5 shows the process of combining the Con-
volved Feature Vectors, processing with a neural

network, and finding the most likely sense for a
given predicate. The neural network parameters for
the sense subsystem are managed with a lookup ta-
ble holding parameters for each lemma in the train-
ing set that is mapped to multiple senses.

300

20
Predicate Sense

tanh

300

Max

300 * n

⌃

⇥sns = {Wsns, bsns}

⇥sns out

Sum of Convolved Features For:
• Word Derived
• Predicate Position

(one set per Lemma)

Figure 5: SRL Neural Network for Predicate Sense. E
in figure1(b).

4 Sense Labeler Training and Forward
Model Creation

Both the Role and Sense subsystems are trained us-
ing stochastic gradient descent. A forward pass is
first run on the system, during which the indices of
the maximum values of the sum of the convolutions
layers (word-derived and predicate) are saved.

Back-propagation of the Sense Neural Network is
based on minimizing a log-likelihood objective:

log p(y|x,Θ) = f [x,Θ]y − log(
∑
j

e(f [x,Θ]j)) (2)

The two Sense and Role subsystems have the
same convolution structures (See figures 1(a) and
1(b)). Experiments run using a common structure
for both tasks resulted in about 0.5% worse perfor-
mance, so the the systems were kept independent.

A separate neural network was trained for each
lemma found in the training data set, and the param-
eters for each network were stored in a lookup table.
This results in very large memory requirements dur-
ing training, especially since Adagrad (Duchi et al.
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[2011] was used to decrease training time. To min-
imize memory requirements and training time, the
sense for lemmas which always train to the same
sense in the training data are stored in a dictionary.
During forward processing, when a lemma is en-
countered that was not trained (and therefore is not
in the parameter lookup table), the sense from the
dictionary is output. If the lemma never occurred
during training, it won’t be in the dictionary, and the
most commonly occurring sense of ”01” is output by
default.

5 Role Labeler Training and Forward
Model Creation

During a forward pass, the activation layers and
maxIndices are saved and reused during training.

5.1 Cost Calculation
The Viterbi parameters for initial score and tran-
sition probabilities are trained using the Sentence
Level Log-Likelihood (SLL) cost function.

This cost function is based on Sentence Level
Likelihood and is similar to equation 2, except the
reference path score must be normalized by using
the sum of the exponential of all path scores (the
sum of unnormalized probabilities for all possible
paths, instead of for all possible tags). A recursive
method, developed in Rabiner [1989] and specified
in Collobert et al. [2011], provides an important and
efficient means of computing the sum of the expo-
nential of all path scores. An intermediate vector, δ,
is calculated, which will contain the unnormalized
log probability that any path through the trellis will
pass through a particular state k for the particular
word t. The δ vectors have a dimension of N, the
number of tags, and they are re-used for the gradient
calculation during back-propagation.

5.2 Back-propagation
The recursion described in Collobert et al. [2011] is
used to calculate Viterbi delta terms and gradients.
The error is then back-propagated through the sys-
tem in reverse, ending with the feature lookup ta-
bles. This is done for each word, for each predi-
cate, requiring two nested loops for training a full
sentence. The loop structure makes for long train-
ing times, roughly three days on a 2015 compute-
optimized AWS core.

6 Results

6.1 Benchmark
The best ConLL 2009, English, SRL F1 score,
is labeled Nugues, and the system is described in
Björkelund et al. [2009]. To the best of our knowl-
edge, the current state of the art for this dataset is
represented by these results, and we therefore use
them as a benchmark (See section 7). To generate
these benchmark results, 20 features were used for
argument identification, including the Dependency
Relation Path, and Part of Speech of Dependency
Relation Path. A reranker was then run on the out-
put of multiple system outputs.

Table 2 compares the benchmark with a complete
Daisy system using a labeled path, with a cutoff of
5, and two separate systems for sense and role la-
bels. F1 scores are 0.41% higher for the WSJ Eval
dataset, and 2.59% higher for the out of domain
(OOD) Brown dataset.

System Description WSJ F1 Brown F1

Benchmark
(CoNLL2009)

85.63% 73.31%

Daisy 86.04% 75.90%

Table 2: SRL Dependency Parse Test F1

6.2 Metrics
In all experiments, we strictly followed the standard
evaluation procedure of the CoNLL 2009 challenge.
A simple validation procedure using the specified
validation set was used to choose system hyper pa-
rameters, and the provided eval09.pl perl script was
used to generate all system F1 scores. The system
F1 score is the harmonic mean of precision and re-
call for both role and sense labels. Since we treated
the predicate sense disambiguation and the predicate
role assignment tasks as independent, it is interest-
ing to view the performance of the two tasks sep-
arately. The predicate sense task requires a label
for each given predicate, so a per predicate accuracy
was calculated (SenseAcc). Similarly we generated
a role label F1 score (RoleF1) that is independent of
the sense labels. These subsystem performance met-
rics were also calculated on the CoNLL 2009 bench-
mark results for comparison.
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6.3 Incremental Experiments and Results
Feature abbreviations used in the descriptions are
shown in Table 3.

Abbrev. Feature Description

W words, initialized randomly prior to
training

C capitalization
P Part of Speech
HP Part of Speech of head word
DR Dependency Relation
GP Generic path
TW words, initialized with pre-trained

word embeddings prior to training
LP5 Labeled paths that occur at least five

times in the training data.

Table 3: Feature Abbreviations
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Figure 6: Scatter Plot of Dev F1 vs. Eval F1 for Various
Feature Configurations (See also Table 4)

Incremental experiments were run to explore
the benefits of adding increasingly more complex
dependency-based features to the system.

We began with a basic configuration of only
words (randomly initialized) and capitalization
(W,C), Following this, a simple per-token part of
speech was added (W,C,P). Information from the
dependency parser is then added in two steps, first
the head word part of speech and dependency re-
lation (W,C,P,HP,DR), and next the generic path
(W,C,P,HP,DR,GP). The word representations were
then seeded with the pre-trained embeddings de-
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Figure 7: Dev F1 vs. Brown (OOD) F1 for Various Fea-
ture Configurations (See also Table 5)

scribed in section 3.1.2 (TW,C,P,HP,DR,GP). Fi-
nally, the labeled path was used instead of the
generic path, still seeding the words with pre-trained
embeddings (TW,C,P,HP,DR,LP5).

For each system configuration, 12 role subsys-
tems and 8 sense subsystems were trained and
tested, using the WSJ development F1 score dur-
ing training to determine the best model parameter
state. After model generation, the WSJ development
scores for different systems don’t correlate well with
the WSJ eval or Brown scores. For example, mod-
els with high development scores don’t necessarily
correspond to best scoring models for the WSJ or
Brown data tests.

The CoNLL2009 results used as benchmarks
were given as single data points so statistics are not
available.

Figure 7 shows the relationship between the de-
velopment and Evaluation F1 scores, as well as the
general performance improvement as features were
added.

Tables 4 and 5 show the statistical performance of
the system with WSJ and Brown test data.

For the WSJ (evaluation) dataset, the role subsys-
tem F1 improves much more dramatically than the
sense subsystem as POS (+1.52%) and dependency
parser information (+1.68%) is added. The mean
System F1 score is -0.25% under the benchmark
without the pre-trained word embeddings. Adding
the embeddings boosts performance such that even
the lowest scoring systems beat the benchmark, and
the mean F1 score is about 0.41% higher.
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System Description SystemF1 RoleF1 SenseAcc
Min Mean (∆) Max Mean (∆) Mean (∆)

Daisy(W,C) 82.86 83.03 83.24 77.47 94.92
Daisy(W,C,P) 83.83 84.12

(+1.09)
84.43 79.00

(+1.52)
95.15

(+0.23)

Daisy(W,C,P,HP,DR) 84.46 84.79
(+0.67)

85.10 79.92
(+0.92)

95.29
(+0.13)

Daisy(W,C,P,HP,DR,GP) 85.05 85.38
(+0.58)

85.78 80.69
(+0.76)

95.46
(+0.17)

Benchmark (CoNLL2009) 85.63
(+0.25)

81.00
(+0.31)

95.59
(+0.13)

Daisy(TW,C,P,HP,DR,GP) 85.64 85.92
(+0.29)

86.17 81.40
(+0.40)

95.66
(+0.07)

Daisy(TW,C,P,HP,DR,LP5) 85.77 86.04
(+0.13)

86.31 81.53
(+0.13)

95.77
(+0.11)

Table 4: Performance on WSJ Eval Dataset for Various System Configurations

System Description SystemF1 RoleF1 SenseAcc
Min Mean (∆) Max Mean (∆) Mean (∆)

Daisy(W,C) 70.50 71.70 72.43 65.49 85.08
Daisy(W,C,P) 72.45 73.13

(+1.43)
73.78 67.38

(+1.89)
85.66

(+0.59)

Benchmark (CoNLL2009) 73.31
(+0.18)

67.78
(+0.40)

85.23
(-0.43)

Daisy(W,C,P,HP,DR) 72.47 73.48
(+0.17)

74.43 67.87
(+0.09)

85.71
(+0.48)

Daisy(W,C,P,HP,DR,GP) 73.17 73.83
(+0.36)

74.23 68.21
(+0.34)

86.04
(+0.33)

Daisy(TW,C,P,HP,DR,GP) 74.85 75.80
(+1.97)

76.46 70.80
(+2.59)

86.72
(+0.68)

Daisy(TW,C,P,HP,DR,LP5) 75.19 75.90
(+0.09)

76.93 70.62
(-0.18)

87.40
(+0.69)

Table 5: Performance on Brown Dataset (OOD) for Various System Configurations

For the Brown (OOD) dataset, the role subsys-
tem F1 improves significantly with POS and depen-
dency parse information (+2.72%) while the sense
subsystem benefits less (0.96%). The role subsys-
tem dramatically improves when pre-trained words
are added (2.59%), due in large part to a better abil-
ity to handle unseen words. The mean System F1
scores are higher than the benchmark as soon as de-
pendency parser information is supplied, and the F1
is significantly better for the fully populated system
(+2.59%).

7 Related Work

The same Semantic Role Labeling system used to
generate the results used as our benchmark was
later tested using improved dependency parsing in
Björkelund et al. [2010]. Woodsend and Lapata
[2014] explore text rewriting and compare results
with the benchmark, which they accept as the cur-
rent state-of-the-art.

Kanerva and Ginter [2014] use the CoNLL 2009
data as a benchmark for investigating the use of Fin-

ish and English word vector relationships, and the
relationships of word vectors as they relate to se-
mantic roles.

In Socher et al. [2013], the authors present a Re-
cursive Neural Tensor Network (RNTN) which uses
word vectors as a primary input and which is used to
recursively generate a phrase tree structure for each
sentence. The resulting structures are then further
used to generate fine-grained sentiment analysis es-
timates.

Convolutional neural networks which include
character level structures have been effectively used
for sentiment analysis by dos Santos and Gatti
[2014]. The characters are not pre-trained, and syn-
tactic trees are not used as input to the network.

In Luong et al. [2013], words are broken down
into morphemes as the input to a recursive neural
network to capture morphological compositionality
with the goal of improving the vector representa-
tions of scarce words.

The characteristics and semantic expressive
power of various word embedding collections are in-
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vestigated by Mikolov et al. [2013] and Chen et al.
[2013].

8 Conclusion and Future Work

We have presented a dependency-based semantic
role labeler using neural networks, inspired by Col-
lobert et al. [2011] and others to reduce the use
of hand-crafted features and make use of unsuper-
vised techniques. Experimental evaluations show
that our architecture improves the state of the art
performance for this task significantly, for both in
domain and out of domain test data. A key element
of the system’s performance is based on the use of
features derived from syntactic dependency parses.
The use of a dependency-based path feature, in par-
ticular, provides a significant boost in performance
over simpler feature sets.

Promising future directions suggested by these re-
sults include whether proxies for the dependency-
based features can be derived from a similar archi-
tecture without the direct need for a full dependency
analysis, thus eliminating the pre-processing parser
cost. Another future direction involves the pred-
icate disambiguation system. Although this sense
disambiguation task is part of the CoNLL 2009 SRL
evaluation, it is more properly a word sense disam-
biguation problem. A more thorough investigation
of sense disambiguation in the context of an SRL
system is warranted.
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Abstract

Most recent studies on coreference resolu-
tion advocate accurate yet relatively com-
plex models, relying on, for example, entity-
mention or graph-based representations. As
it has been convincingly demonstrated at the
recent CoNLL 2012 shared task, such algo-
rithms considerably outperform popular basic
approaches, in particular mention-pair mod-
els. This study advocates a novel approach
that keeps the simplicity of a mention-pair
framework, while showing state-of-the-art re-
sults. Apart from being very efficient and
straightforward to implement, our model fa-
cilitates experimental work on the pairwise
classifier, in particular on feature engineering.
The proposed model achieves the performance
level of up to 61.82% (MELA F, v4 scorer)
on the CoNLL test data, on par with complex
state-of-the-art systems.

1 Introduction

The mention-pair model, as proposed by Soon et
al. (2001) has been used for over a decade now.
It combines a simple classifier trained to discrimi-
nate between coreferent and not-coreferent pairs of
mentions (“links”) with fast heuristic procedures for
merging the classifier’s decisions at the decoding
stage. Several decoding heuristics have been advo-
cated in the literature, the most commonly used ones
including first-link (Soon et al., 2001) and best-link
(Ng and Cardie, 2002).

Most state-of-the-art algorithms for coreference
resolution, on the contrary, rely on complex mod-
eling, ranging from entity-ranking to structural per-
ceptron and other graph-based approaches (for an

overview of state-of-the-art coreference resolvers,
see (Ng, 2010; Pradhan et al., 2012)). Such algo-
rithms show a clearly superior performance: thus, at
the CoNLL-2012 shared task, the best-performing
(Soon et al., 2001)-style system loses around 8% to
the winning algorithm.

However, more traditional mention-pair ap-
proaches still have some important advantages.
Thus, a mention-pair model is easy to implement
and allows for fast prototyping. It relies on a sim-
ple binary classifier making it very fast to train com-
pared to state-of-the-art models that are based on
complex structural representations (Fernandes et al.,
2012; Björkelund and Kuhn, 2014). This efficiency
at the training step allows for straightforward au-
tomatic parameter optimization. Most importantly,
mention-pair models can be useful for understand-
ing low-level system behavior, and, in particular, for
feature engineering. This can in turn help improve
more complex models, since many of them rely on
mention-pairs as their basic building blocks.

In this paper, we advocate a new easy-first
mention-pair algorithm (EFMP): while it is based
solely on pairs of mentions and does not attempt
any global inference, it benefits from the decision
propagation strategy to create a coreference parti-
tion. Augmented with the sieve-style prefiltering,
the system achieves a performance level comparable
to the state of the art.

The contribution of this paper is two-fold. First,
we propose a novel decoding approach that com-
bines predictions of the mention-pair classifier based
on its confidence score, taking into account—in con-
trast to the previous studies, e.g. (Ng and Cardie,
2002; Stoyanov and Eisner, 2012; Björkelund and
Kuhn, 2014)—both positive and negative links. We
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thus propose a procedure for propagating positive
and negative links to create the final coreference
partition: we start from the most confident among
all the classifier’s decisions and iteratively con-
struct coreference partitions by merging coreference
chains (positive links) or blacklisting future merges
(negative links). This decoding strategy is slower
than the commonly used best-link model, but con-
siderably faster than ILP-based decoding (Finkel
and Manning, 2008; Denis and Baldridge, 2009).

Second, we show that our approach, being very
fast and easy to implement, can be used for a variety
of low-level experiments on coreference resolution,
in particular, for studies on feature engineering or
selection. Thus, we augment our system with two
feature combination techniques, Jaccard Item Min-
ing (Segond and Borgelt, 2011) and Entropy Guided
Feature Inductions (Fernandes et al., 2012). While
the latter has been used for coreference resolution
before, Jaccard Item Mining (JIM), to our knowl-
edge, has never been applied to any NLP task. The
JIM algorithm has been developed within the data
mining community and aims at finding combina-
tions that tend to occur in a particular set of un-
labeled transactions. In this paper, we introduce a
post-filtering technique to re-score JIM output w.r.t.
the class labels (±coreferent). We show empirically
that JIM is more suitable for coreference: it provides
smaller and more meaningful feature combinations
leading to a better performance level.

The combination of our decoding approach with
the JIM feature induction technique allows us to
achieve a performance level of 61.82% on the
CoNLL-2012 test data, just 1.5% percent below the
(much more complex) winning system and above all
the other submissions (cf. Table 4).

2 Related work

An improvement over the original mention-pair
model (Soon et al., 2001) has been proposed by
Ng and Cardie (2002). Their “best-link” algo-
rithm picks the most confident antecedent for each
anaphor. Unlike Ng and Cardie (2002), we do not
process the input text from left to right incremen-
tally, instead, we assess the confidence of all the pro-
posed links at the same time (“easy-first”) and keep
track of negative assignments.

Our work has been motivated by more complex
algorithms using the easy-first strategy, most im-
portantly, by Stoyanov and Eisner (2012), Nico-
lae and Nicolae (2006) and Björkelund and Farkas
(2012). There are two important differences be-
tween these studies and the Easy-First Mention-Pair
model (EFMP): (i) EFMP does not evaluate links be-
tween entities or clusters, always operating on men-
tion pairs instead; (ii) EFMP integrates both positive
and negative assignments in its hierarchy of easy-to-
hard decisions.

Being conceptually very simple, our algorithm al-
lows for a straightforward integration of other tech-
niques proposed in the literature, in particular, sieve-
style prefiltering (Lee et al., 2011) and feature in-
duction. Several recent studies have attempted ex-
haustive analysis of features and their impact on
the overall performance (Recasens and Hovy, 2009;
Uryupina, 2006; Bengtson and Roth, 2008; Dur-
rett and Klein, 2013). We refer the reader to (Ng,
2010) for an overview of different features. Kob-
dani et al. (2010) create a framework that facilitates
the engineering process for complex features. This
approach, however, still relies on the human exper-
tise for creating meaningful combinations. Versley
et al. (2008) use kernel-based similarity as an im-
plicit feature induction technique.

The only study we are aware of that investigates
an explicit feature combination technique has been
conducted by Fernandes et al. (2012). Their al-
gorithm for Entropy-based feature induction (EFI),
shows substantial improvement on the OntoNotes
dataset. In the present work, we propose an al-
ternative to EFI, based on the recent advances in
Data Mining. We believe that Fernandes et al.
(2012) have opened a very important research di-
rection with their feature induction approach. We
want therefore to evaluate EFI in a simpler and more
straightforward mention-pair model—and compare
it to our approach.

3 Easy-First Mention-Pair Model

In what follows, we describe our Easy-First
Mention-Pair (EFMP) approach and then propose
a solution for combining our model with manu-
ally engineered filters, inspired by Stanford “sieves”
(Lee et al., 2011). EFMP is a decoding algorithm.
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Algorithm 1 Easy-first decoding (EFMP)
Require: L = {< anal, antel, labell, confidencel >}: list

of classified mention pairs
1: sort L according to confidence
2: for all l ∈ L do
3: /* don’t override prev. decisions */
4: if chain(anal) == chain(antel) then
5: continue
6: if unlinked(chain(anal), chain(antel)) then
7: continue
8: /* update chains and unlink info */
9: if labell==not-coreferent then

10: unlink(chain(anal), chain(antel))

11: if labell==coreferent then
12: UpdateUnlinkInfo({chain(anal), chain(antel))
13: MergeChains({chain(anal), chain(antel))
14: function UPDATEUNLINKINFO(chain1, chain2)
15: for all c such as unlinked(c, chain2) do
16: unlink(c, chain1)

17: function MERGECHAINS(chain1, chain2)
18: for all m ∈ chain2 do
19: chain(m) = chain1

At the encoding step, we generate mention-pairs in
a straightforward exhaustive way: each candidate
anaphor is paired with all the preceding candidate
antecedents. Following the state-of-the-art, we fil-
ter out mention pairs using the same sieve-style ap-
proach at both the encoding and the decoding steps
(cf. Section 3.2 below).

3.1 Plain EFMP

Our EFMP approach addresses the clustering step of
a coreference resolution process: as its input, it as-
sumes a set of mention pairs for a given document,
labeled as positive (two mentions corefer) or neg-
ative (two mentions do not corefer) by an external
classifier. We also assume the classifier to output the
confidence of its decisions.

The key idea behind EFMP is the processing of
all the decisions, both positive and negative ones,
in a specific order, according to the classifier’s con-
fidence. We start by sorting all the mention pairs
by the confidence of the assigned label. We in-
stantiate our clustering assigning each mention to
its own cluster (“all singletons”), however, we do
not prohibit potential links between any of them.
Our EFMP module processes all the (sorted) men-
tion pairs one-by-one, at each step performing one
of the following operations, whenever possible:

• link: merge two clusters (includes propagating
unlink information, cf. below)
• unlink: mark two given clusters to prohibit po-

tential merge at any future step

These operations, however, are only performed if the
system has no information about the possibility of
(un)linking the two mentions at the given step.

Let us illustrate the approach with the following
example:

(1) [Alice]1 is showing [Zoe]2 [her]3 papers on
coreference.

In this snippet, we collect three mentions (“Al-
ice” (M1), “Zoe” (M2) and “her” (M3)), form-
ing three mention pairs.1 A state-of-the-art pair-
wise coreference classifier would confidently label
< Alice, Zoe > as negative; and less confidently—
< Alice, her > and < Zoe, her > as positive.
The score for < Alice, her > would be slightly
higher: “Alice” is a subject and a first mention in
the sentence. The EFMP module starts from three
clusters: C1 = {M1}, C2 = {M2}, C3 = {M3}.
At the first step, it registers the information, that
C1 and C2 should never be merged (“unlink”). At
the second step, it links M1 and M3, merging C1

and C3, thus producing a partition with two clus-
ters: C ′1 = {M1,M3}, C2 = {M2}. It also prop-
agates the previously collected unlinking informa-
tion, registering the fact thatC ′1 andC2 should never
be merged. At the next step, it tries to link M2 and
M3. This, however, doesn’t work, since the system
has already collected some more reliable evidence
that the corresponding clusters shouldn’t be merged.
As there are no more mention-pairs left, the system
stops and outputs the last partition (C ′1, C2).

3.2 EFMP with Sieves
The plain EFMP approach, as described above, as-
sumes that all the mention pairs are labeled by the
pairwise classifier. This has several potential issues.
First, it requires sorting all the links: when mention-
pairs are generated exhaustively, it amounts to the
running time of O(n2 log(n)), where n is the total
number of mentions. Second, the pairwise classifier
has to be trained on a very biased dataset, containing

1We omit other mentions (“her papers” and “coreference”)
to simplify the presentation.
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too many negative or irrelevant examples; this might
decrease the performance and also requires substan-
tial tuning of learning parameters.

To alleviate the problem, we pre-filter mention
pairs aggressively, heuristically eliminating links
that are either definitely positive (for example, pairs
of same named entities), definitely negative (pairs
with incompatible gender values) or “uninforma-
tive”. The latter are pairs that we cannot realisti-
cally expect to be analyzed by our system, due to the
limits of our feature representation. For example, a
pair of two noun phrases sharing no common tokens
and appearing far apart from each other might be
either positive or negative, with the particular deci-
sion depending on a lot of factors, starting from the
semantic compatibility of the two mentions (“car”
and “relativity” can hardly be coreferent), but also
including discourse-related factors and some suit-
ably represented knowledge of other entities (“car”
and “Ferrari” in different parts of a document talking
about Formula 1 may refer to different entities). We
believe that forcing our pairwise classifier to learn
a labeling for such “uninformative” examples with-
out providing adequate features might lead to infe-
rior performance.

Our pre-filtering approach was inspired by the
Stanford sieves algorithm (Lee et al., 2011), where
several high-precision rules are applied in a spe-
cific order to filter out candidates. This approach
has since then been used in several systems, most
successfully by Fernandes et al. (2012) to filter out
training data for coreference resolution classifiers.
The idea of distinguishing between “informative”
and “uninformative” instances has been implicitly
adopted by many systems, restricting their search to
a specific window. This approach is very common
for pronominal anaphora, but it’s also used by sev-
eral general-purpose coreference resolvers (Fernan-
des et al., 2012; Stoyanov and Eisner, 2012).

All these rule-based decisions can be integrated
into EFMP in a straightforward way. Thus, the un-
informative pairs are simply excluded from the fur-
ther processing. They do not produce training mate-
rial and they are not processed by EFMP at the test
time (consequently, mentions from such a pair may
end up in the same cluster, as well as in two differ-
ent ones, depending on other (un)links established
by the system). This allows for a substantial reduc-

tion of the pairs to be processed at the decoding step
(for example, in our setting described in Section 5.1
below, around 90% of all the pairs are eliminated
as “uninformative”). The pairs, deemed positive or
negative by the rule-based pre-filtering, do not con-
tribute to the training data. At the test step, they are
considered to be very confidently positive/negative
instances, outscoring any test pairs, originating from
the classifier output. Such pairs do not contribute to
speeding up the EFMP part, however, they help im-
prove the quality of our pairwise classifier, decreas-
ing the bias towards negative instances in the data.

4 Techniques for generating feature
combinations

Most state-of-the-art coreference resolution systems
combine complex modeling with rich feature sets.
While early data-driven approaches were essentially
knowledge-poor (for example, the famous system of
Soon et al. (2001) is based on 12 shallow features),
modern algorithms rely on dozens of carefully engi-
neered features, encoding various clues relevant for
the task: from different measures of surface similar-
ity, to morphological, syntactic, semantic and dis-
course properties, and world knowledge.

This study focuses on the automatic feature engi-
neering task. We start from atomic features that are
already encoded in a state-of-the-art toolkit (BART)
and use a data mining technique, Jaccard item min-
ing, to boost the system performance through auto-
matic induction of complex features.

The features used by most coreference resolu-
tion systems are very heterogeneous. Some of them
(for example, different measures of salience) encode
insights from the linguistic theory, whereas others
are purely data-driven (tokens). Some features are
direct indicators for or against coreference (string
matching vs. contra-indexing constraints), whereas
others are supposed to provide more general infor-
mation (individual properties of mentions). Some
features are very frequent (mention types), whereas
others are relatively rare (apposition). Finally,
some features encode basic properties (“anaphor is
a pronoun”), whereas others are combinations of
such properties (“both anaphor and antecedent are
pronouns and they have the same surface form”).
Therefore, we specifically aim at designing an algo-
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rithm that is able to overcome these idiosyncrasies
and provide meaningful combinations for such a het-
erogeneous set of atomic features.

4.1 Jaccard Item Mining
In this study, we adapt the Jaccard Item Mining
(JIM) technique (Segond and Borgelt, 2011) to the
coreference resolution task. Below we describe the
JIM algorithm and our adjustment of JIM to the task
of selecting meaningful features.

The Data Mining community has invested sub-
stantial efforts into Frequent Item Mining algo-
rithms: techniques for finding frequent combina-
tions of “items” in a “transaction database”. We as-
sume that a database is a set of item sets with some
items often appearing together. Several approaches
have been proposed to solve the task of enumerat-
ing all such frequently occurring combinations in a
fast and efficient way, the most popular ones being
Eclat and FP-growth. A typical application would
be, for example, the task of finding similarities in
shopping lists for different customers. We refer the
reader to (Borgelt, 2012) for an overview of relevant
approaches.

Frequent Item Mining algorithms output all the
combinations with a frequency (“support”) higher
than a predefined threshold. If the original items are
very heterogeneous, the output might get very noisy:
for example, if there are some very frequent items,
they will pollute most combinations and the interest-
ing item sets will be difficult to find. To overcome
this problem, Segond and Borgelt (2011) propose to
use the Jaccard index as a measure of the item set
quality. For a given set of items I , the Jaccard in-
dex JT (I) is defined as a ratio of the set’s support
over the number of transactions containing at least
one item from the set:

JT (I) =
| ∩i∈I KT ({i})|
| ∪i∈I KT ({i})| ,

where KT ({i}) is a set of transactions, containing
the item i.

It is straightforward to see that JT (I) is an anti-
monotone function. Therefore, standard frequent
item mining algorithms can be easily adapted to
cover the Jaccard index. In our experiments, we use
a publicly available JIM implementation.2

2http://www.borgelt.net/jim.html

We recast the feature induction problem as a fre-
quent item mining task. We start from atomic fea-
tures (string, nominal and binary) and convert them
into binary features that represent our items. Since
our feature set is very heterogeneous, some items
are very rare or, conversely, very frequent. We fil-
ter out all the items with the support below or above
predefined thresholds. The frequent item mining ap-
proaches assume that all the transactions are equal.
In our case, however, transactions correspond to
training instances—and they come with the class la-
bels. Since we are interested in the feature combi-
nations that help distinguish between positive and
negative examples, we perform two JIM runs, split-
ting the training data into the positive and negative
parts. For each part, we induce all the combinations
with the high Jaccard index (J+

T (I) and J−T (I)). Af-
ter this step, we have two lists of items, each cor-
responding to feature combinations showing a good
association strength for positive and negative exam-
ples respectively.

Both lists are then reranked, dividing the positive
index over the negative one and vice versa:

score+(I) =
J+
T (I)
J−T (I)

, score−(I) =
J−T (I)
J+
T (I)

.

This reranking step helps us to filter out fea-
ture combinations that are either redundant or
not indicative of coreference. For example, our
atomic features already contain some combina-
tions (e.g., NEStringMatch is a combination of
MentionType Coarse and StringED). With-
out the reranking step, we are getting numerous
combinations reflecting peculiarities in the feature
design. As the final JIM output, we take all the sets
I with the scores exceeding some predefined thresh-
olds (score+(I) > thr+ or score−(I) > thr−).
Note that our score measures are not monotone and
cannot therefore be used in a fast Eclat-style al-
gorithm (Borgelt, 2012) to directly provide score-
optimal combinations.

To better align our approach with the Entropy
Guided Feature Induction framework presented be-
low, we convert our item sets back to the sets of
atomic features, abstracting away from the partic-
ular values used for binarization.

The JIM-based feature induction algorithm relies
on several parameters: the feature filtering thresh-
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olds (for removing too rare or too common features),
the minimal Jaccard index for the JIM algorithm and
the thresholds thr+ and thr− for selecting good
item sets after the reranking step. We fit these pa-
rameters on the development set.

4.2 Entropy Guided Feature Induction

Fernandes et al. (2012) have proposed using Entropy
Guided Feature Induction (EFI) for coreference res-
olution and have shown that it significantly improves
the performance of their system. Below we provide
a brief overview of the EFI approach, referring the
reader to the original paper for further details.

The system works at two stages, using two differ-
ent machine learning techniques. At the first stage,
the EFI algorithm relies on a decision tree, generated
from the training data, to obtain meaningful feature
combinations. In particular, the algorithm extracts
all the paths leading from the root of the induced
tree to any node. Each node in a tree corresponds to
a specific value assigned to some atomic feature and
therefore each path corresponds to a conjunction of
atomic features with assigned values. Fernandes et
al. (2012) abstract over the values, thus, converting
each path to a conjunction of atomic features. These
conjunctions, or combinations, are then used to gen-
erate numerous binary features to be used by a linear
classifier at the second stage.

Since the induced tree might get very large, the
EFI algorithm might lead to conjunctions of too
many atomic features, generating, in turn, too many
binary features. To address the issue, Fernandes et
al. (2012) prune their tree at the depth 5. In our im-
plementation, we follow the algorithm of Fernandes
et al. (2012) with no adjustments or alterations.

5 Experiments

Our first group of experiments assesses the quality
of the baseline setting, with no feature combina-
tion techniques. We compare against the CoNLL
submission of the BART group to make sure that
our (Soon et al., 2001)-style mention-pair baseline
shows an acceptable performance. We then evalu-
ate the EFMP approach to confirm that it provides
much higher performance figures and is on par with
the state of the art. In our second experiment, we use
EFMP to assess the impact of the feature combina-

tion techniques on the performance of a coreference
resolution system.

5.1 Experimental Setup

We evaluate our approach on the English portion of
the CoNLL-2012 dataset (Pradhan et al., 2012). To
asses the system’s performance, we use the official
scorer, provided by the CoNLL organizers. How-
ever, the version used at the competition time (v4)
was later found to contain errors and replaced with
another implementation (v7). This procedure re-
sulted in a performance drop for all the systems, but
didn’t affect their ranking. To facilitate comparison
against previous and future studies, we report both
v4 and v7 MELA scores. All the experiments are
performed on automatically extracted mentions and
use no gold information.

For our study, we use the publicly available
BART toolkit (Uryupina et al., 2012). We have
made several adjustments, starting from the con-
figuration, suggested in the BART distribution for
the OntoNotes/CoNLL data. Thus, we have mod-
ified the mention detection module, improving the
treatment of coordinations and eliminating numeric
named entities (PERCENT, MONEY etc). We
have replaced the original split architecture with
a single-classifier approach to be able to estimate
the impact of our feature combination techniques
in a more principled way. We have also re-
placed Decision Trees (Weka J48) with the Lib-
Linear SVM package, to get a classifier outputting
reliable confidence values, as needed by EFMP.
We have considerably expanded the feature set,
mainly reimplementing features from the winning
system of CoNLL-2012 (Fernandes et al., 2012).
Altogether, we have around 170 individual fea-
tures (string, nominal or binary values), correspond-
ing to around 20k features after the binarization
step. The full list of our feature templates can be
found at http://bart-coref.eu/papers/
sem15-suppl.pdf.

Finally, we have augmented BART with a rule-
based prefiltering module, motivated by Stanford
Sieves (Lee et al., 2011), the winning approach of
the CoNLL-2011 shared task. Our sieve-style pre-
filtering algorithm splits all the training instances
into confidently positive, confidently negative, irrel-
evant and relevant. To implement the prefiltering
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development test
v4 v4 v7

BART CoNLL-2012 submission
- 56.12 50.02

simplified reimplemented BART submission
WEKA (j48) 56.02 55.84 49.83
SVM (Liblinear) 48.31 47.29 39.17

-*-, all features
WEKA (j48) 56.53 55.98 49.84
SVM (Liblinear) 49.83 48.11 40.04

best-link, all features
SVM (Liblinear) 59.71 59.03 55.21

EFMP, features from BART submission
SVM (Liblinear) 57.40 56.16 50.65

EFMP, all features
SVM (Liblinear) 60.02 59.12 55.38

Table 2: Baseline performance vs. plain EFMP: MELA
score, different versions of the CoNLL scorer.

module, we have started with the original sieves and
the version used by Fernandes et al. (2012). We have
changed some sieves and introduced several addi-
tional filters (cf. Table 1).

5.2 Baselines vs. EFMP

Table 2 shows the performance levels for different
baseline algorithms, learners and features on both
CoNLL-2012 development and test sets. Note that
the development set was used for parameter tuning
and does not therefore provide an accurate estima-
tion of the system’s performance.

The results suggest that our simplified version of
the BART CONLL-2012 system can be considered
an adequate starting point: it only shows a very mi-
nor performance drop, compared to the original sub-
mission (we believe that this drop can be attributed
to the simpler no-split architecture that we are
adopting in this study). The (Soon et al., 2001)-style
mention-pair model, however, suffers from several
problems. First of all, its performance is simply
not good enough: thus, the winners of the CoNLL-
2012 shared task reported a v4 score of 63.37 on
the test data. With a v4 score of 55.84, our sys-
tem would have achieved the 12th place in the com-
petition (out of 15+1). Second, this approach only
works with the decision tree-based classifier: with

SVMs, the performance gets much lower. We be-
lieve that this can be caused by several factors: (a)
decision trees perform some sort of feature combina-
tions, whereas Liblinear only relies on a sum of indi-
vidual features for its classification and (b) the (Soon
et al., 2001)-style model employs different sampling
strategies for training and testing data (in fact, test-
ing instance are sampled dynamically, based on the
decisions made by the classifier so far), leading to a
misfit between the two sets that is more problematic
for Liblinear. Third, even with the decision trees,
the system performance does not improve substan-
tially when we add a lot of manually engineered
high-quality features.

The EFMP model, on the contrary, shows promis-
ing performance figures. With an F-score of 59.12,
the system would have achieved the 8th place in the
CoNLL-2012 competition, within the cluster of very
similarly performing systems on places 2–8(9). It
must be stressed that EFMP is a very simple and fast
algorithm, much less complex than any of the high-
performing CoNLL systems.

We have also evaluated EFMP against a mention-
pair model with the same sieve-style prefiltering and
a best-link decoder (Table 2, row 6). As the results
suggest, the best-link decoder shows a better perfor-
mance level compared to (Soon et al., 2001), since
it relies on the most confident positive links. The
EFMP decoder, however, brings a further improve-
ment, by incorporating and propagating information
on confident negative links as well.

5.3 Feature combinations

In our second experiment, we investigate the appli-
cability of JIM to coreference resolution, comparing
it against EFI. The latter has been proven to yield a
performance gain of up to 10%, leading to a system,
significantly outperforming all the other competitors
at the CoNLL-2012 shared task. While the impact of
EFI on the system of Fernandes et al. (2012) cannot
be underestimated, the following points need further
clarifications: (a) the algorithm of Fernandes et al.
(2012) shows only very moderate performance with-
out EFI—it is not yet clear if EFI is equally benefi-
cial for more competitive approaches; and (b) the
system of Fernandes et al. (2012) relies on a rela-
tively complex model—it is not clear how model-
specific the benefits of EFI are.
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Confidently negative
Expletive Mi or Mj is an expletive pronoun
Span one mention spans over the other
Agreement Mi and Mj disagree in number, gender or semantic class
Syntax Mi and Mj violate contra indexing constraints (c-command etc)
SpeakerAliasProFalse heuristics for 1/2 person pronouns, based on the speaker value
Pronouns Mi is a pronoun, Mi and Mj disagree in person (respecting the speaker)

Confidently positive
SpeakerAliasPro heuristics for 1/2 person pronouns, based on the speaker value
SpeakerAliasNE heuristics for 1 person pronouns (Mj) and NE (Mi), based on the speaker
SameNE Mi and Mj are exactly matching NEs

Irrelevant
ProNonpro Mj is a pronoun, Mi is not a pronoun
DistantPro Mj is a pronoun, Mi is more than thr1 sentences away (dist(Mj ,Mi) > thr1)
DistantNP Mj is a common NP, dist(Mj ,Mi) > thr2, head nouns of Mi and Mj differ
DistantNE Mj is an NE, dist(Mj ,Mi) > thr2, Mi and Mj do not match

Table 1: Sieves for pre-filtering of mention pairs: each sieve is applied to a pair of mentions {Mi,Mj}, i < j, where
Mi is a candidate antecedent and Mj is a candidate anaphor.

EFI and JIM use very different intuitions for com-
bining atomic features. It is therefore not surprising,
that the outputs of these two algorithms are different.
Figure 1 summarizes the distribution of EFI vs. JIM-
induced combinations of different lengths, normal-
ized by the total number of combinations extracted
by each method. EFI outputs around 20 times more
sets than JIM (2k vs. 90). Most of them, however,
are too long and do not provide good features. By
definition, EFI cannot produce a lot of short combi-
nations, since all the EFI paths must start from the
root. JIM, on the contrary, tends to produce com-
binations of smaller lengths that are more likely to
yield high-quality features.

Table 3 shows the performance of EFMP, aug-
mented with EFI or JIM-induced features. We see
that both techniques bring an improvement over the
plain EFMP (significant, per-document t-test, p <
0.05). Even though JIM produces much fewer com-
binations, it still outperforms EFI (p < 0.05).

5.4 EFMP and State of the art

Table 4 compares the performance level of the
EFMP approach, plain and enhanced with the JIM-
based feature induction module, against the top 5
CoNLL-2012 systems on the CoNLL-2012 test set.

As the results show, the EFMP approach achieves

Figure 1: Normalized combination length for JIM and
EFI: number of induced sets of size 1..9, 10+ divided by
the total number of induced sets

results comparable to the state-of-the-art. At the
same time, it’s much faster than more complex ap-
proaches. The vast majority of high-performance
coreference resolution systems (in particular, the
CoNLL-2012 winning algorithm by Fernandes et al.
(2012)) rely on complex structural representations
and are therefore slow at the training stage. Our sys-
tem only needs a simple binary mention-pair classi-
fier that can be trained very efficiently. Some high-
performance approaches rely on the same classifier,
postponing a heavy global inference step to the de-
coding stage, for example, through Integer Linear
Programming (Denis and Baldridge, 2009; Finkel
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development test
v4 v4 v7

EFMP, all features, SVM
none 60.02 59.12 55.38
EFI 61.66 60.75 57.56
JIM 62.53 61.82 59.14

Table 3: Feature combinations, JIM vs. EFI: MELA
score, different versions of the CoNLL scorer.

test
v4 v7

1 fernandes 63.37 60.65
EFMP+JIM 61.82 59.14
2 martschat 61.31 57.68
3 bjorkelund 61.24 57.42
EFMP 59.12 55.38
4 chang 60.18 56.10
5 chen 59.69 54.52

Table 4: EFMP and top-5 CoNLL-2012 systems: MELA
score, systems ranked by the v7 score on the test set.

and Manning, 2008). While these systems have the
same training requirements as EFMP, their decod-
ing (ILP with binary variables) is known to be NP-
complete. In practice, ILP-based approaches incor-
porating any forms of global modeling via transitiv-
ity constraints (Denis and Baldridge, 2009; Finkel
and Manning, 2008) are known to be particularly
slow. Our simple decoding algorithm runs in O(p ∗
log(p)), where p is the total number of mention
pairs: for the plain EFMP, p = n ∗ (n − 1)/2, for
the EFMP with sieves, p = const∗n, where n is the
number of mentions in the document.

6 Conclusion

In this study, we advocate an easy-first mention-pair
model (EFMP). This approach combines the sim-
plicity of mention-pair models with the high perfor-
mance level of state-of-the-art systems. We believe
that several research lines are open in the field of
coreference resolution, ours being simple and allow-
ing to focus more on low-level linguistic phenom-
ena. Nevertheless, the approach shows a high per-
formance level, despite the lack of any global infer-
ence (augmented with a feature induction module,

our system would have achieved the second place at
the CoNLL-2012 shared task, outperforming more
complex algorithms). This suggests that there is still
a lot of potential improvement that can be achieved
within more complex frameworks, e.g., structural
approaches that attempt at modeling links interde-
pendence explicitly. One of our directions for future
work involves comparing EFMP against other algo-
rithms effectively combining positive and negative
links, in particular, ILP-based approaches.

The proposed EFMP model allows for a straight-
forward investigation of possibilities for automatic
feature induction. We have adapted the Jaccard Item
Mining algorithm (JIM) to our task and compared
its output against the Entropy-based Feature Induc-
tion (EFI) methodology proposed in the literature,
showing that both techniques yield meaningful fea-
ture combinations and improve the system’s perfor-
mance. Yet, the JIM approach outputs smaller com-
binations, leading to a larger performance increase.

In our future work, we plan to focus further on the
feature induction task, following several research di-
rections. First, we want to apply automatic feature
induction in a multilingual setting. Second, we plan
to investigate other feature induction techniques: (i)
comparing various similarity measures alternative to
the Jaccard index in a JIM-style setting, (ii) trying to
run EFI on different samples of the training set to ob-
tain different decision trees and (iii) combining JIM
and EFI-induced features. Finally, we want to ver-
ify our hypothesis that complex features represent
meaningful linguistic combinations and as such can
be used to enhance the performance level of more
complex algorithms. This again would bridge the
work on mention-pair and more advanced models.
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Abstract

Discourse deixis is a linguistic phenomenon in
which pronouns have verbal or clausal, rather
than nominal, antecedents. Studies have esti-
mated that between 5% and 10% of pronouns
in non-conversational data are discourse deic-
tic. However, current coreference resolution
systems ignore this phenomenon. This paper
presents an automatic system for the detec-
tion and resolution of discourse-deictic pro-
nouns. We introduce a two-step approach that
first recognizes instances of discourse-deictic
pronouns, and then resolves them to their ver-
bal antecedent. Both components rely on lin-
guistically motivated features. We evaluate
the components in isolation and in combina-
tion with two state-of-the-art coreference re-
solvers. Results show that our system out-
performs several baselines, including the only
comparable discourse deixis system, and leads
to small but statistically significant improve-
ments over the full coreference resolution sys-
tems. An error analysis lays bare the need for
a less strict evaluation of this task.

1 Introduction

Coreference resolution is a central problem in Nat-
ural Language Processing with a broad range of ap-
plications such as summarization (Steinberger et al.,
2007), textual entailment (Mirkin et al., 2010), in-
formation extraction (McCarthy and Lehnert, 1995),
and dialogue systems (Strube and Müller, 2003).
Traditionally, the resolution of noun phrases (NPs)
has been the focus of coreference research (Ng,
2010). However, NPs are not the only participants
in coreference, since verbal or clausal mentions can

also take part in coreference relations. For example,
consider:

(1) The United States says it may invite Israeli
and Palestinian negotiators to Washington.

(2) Without planning it in advance, they chose
to settle here.

In (1), the antecedent of the pronoun is an NP, while
in (2) the antecedent1 is a clause2 (Webber, 1988).
Current state-of-the-art coreference resolution sys-
tems (Lee et al., 2011; Fernandes et al., 2012; Dur-
rett and Klein, 2014; Björkelund and Kuhn, 2014)
focus on the former and ignore the latter cases.

Corpus studies across several languages (Eckert
and Strube, 2000; Botley, 2006; Recasens, 2008)
have estimated that between 5% and 10% of pro-
nouns in non-conversational data, and up to 20% in
conversational, have verbal antecedents. A corefer-
ence system that is able to handle discourse deixis
will thus be more accurate, and benefit downstream
applications.

In this paper we present an automatic system that
processes discourse-deictic pronouns. We resolve
the three pronouns it, this and that, which can appear
in linguistic contexts that reflect the phenomenon il-
lustrated in (2). Our system has a modular archi-
tecture consisting of two independent stages: clas-
sification and resolution. The first stage classifies a
pronoun as discourse deictic (or not), and the second
stage resolves discourse-deictic pronouns to verbal
antecedents. Both stages use linguistically moti-

1Since the pronoun in (2) is cataphoric, it has a postcedent
rather than an antecedent, but we use the two indistinctively.

2Following the OntoNotes convention, we represent clausal
antecedents by their verbal head.

299



vated features.
We first evaluate our system by measuring the

performance of the detection and resolution com-
ponents in isolation. They outperform several base-
lines, including Müller’s (2007) approach, which is
the only other comparable discourse deixis system,
to the best of our knowledge. We also measure the
impact of our system on two state-of-the-art coref-
erence resolution systems (Durrett and Klein, 2014;
Björkelund and Kuhn, 2014). The results show the
benefits of stacking a discourse deixis engine on top
of NP coreference resolution.

2 Related Work

Coreference resolution systems mostly focus on
NPs. Although some isolated efforts have been
made to study discourse-deictic pronouns, they con-
sist mostly of theoretical inquiries or corpus analy-
ses. A few practical implementations have been pro-
posed as well, but most rely on manual intervention
or only apply to restricted domains.

Webber (1988) presents a seminal account of
discourse-deictic pronouns. She catalogs how the
usage of certain pronouns varies based on discourse
context. She also provides an insight into the distin-
guishing characteristics of discourse deixis.

Several empirical studies have also been con-
ducted to evaluate the prevalence of discourse deixis
in corpora across languages. These have been ap-
plied to English for dialogues (Byron and Allen,
1998; Eckert and Strube, 2000) and news and liter-
ature (Botley, 2006), Danish and Italian (Navarretta
and Olsen, 2008; Poesio and Artstein, 2008; Caselli
and Prodanof, 2010), and Spanish (Recasens, 2008).
These studies find that discourse deixis occurs in dif-
ferent languages, although prevalence depends on
the domain in question. While discourse deixis can
account for up to 20% of pronouns in dialogue and
conversational text, a more general figure is between
5% to 10% for other genres.

In addition to a corpus analysis, Eckert and Strube
(2000) provide a schema for performing discourse
deixis resolution that they evaluate by measuring
inter-annotator agreement on five dialogues from the
Switchboard corpus. Byron (2002) presents an early
attempt at a practical system that handles discourse
deixis. However, it relies on sophisticated discourse

Algorithm 1
Discourse deixis resolution of pronoun p
pc(p)← Θc(p) . Classify
if pc(p) > thc then

for v ← Candidates(p) do
pr(v, p) = Θr(v, p) . Resolve

end for
vbest ← arg maxv pr(v, p)
if pr(vbest, p) > thr then

return vbest
end if

end if
return ∅ . No verbal antecedent

and semantic features, thus only working with man-
ual intervention in a limited domain.

The first fully automatic system to handle
discourse-deictic pronouns was the one by Müller
(2007). In contrast to our two-stage approach, it
directly resolves pronouns to nominal or verbal an-
tecedents. The author targets coreference resolution
in dialogues, but includes several features that are
equally applicable to text data—thus making a com-
parison to our system viable.

Chen et al. (2011) present another unified ap-
proach to dealing with entity and event coreference.
Their system combines the predictions from seven
distinct mention-pair resolvers, each of which fo-
cuses on a specific pair of mention types (NP, pro-
noun, verb). In particular, their verb-pronoun re-
solver falls within the scope of discourse deixis.
Due to the tight coupling of multiple resolvers, a di-
rect comparison with systems focusing on discourse
deixis is hard. However, their features are among the
ones considered in this work.

3 Our Approach

In this section we describe the architecture of our
two-stage system, and then detail the features used
in both stages.

3.1 System Architecture
We propose a two-stage approach for discourse
deixis processing. Our system first classifies a po-
tential pronoun as discourse deictic (or not), and
then it optionally resolves discourse-deictic pro-
nouns with their antecedent.
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Feature Description Cla. Res. Mül.

Pronoun word Word of p • -
Demonstrative p is this or that • - •
Token position Relative position of p in sentence •
Document position Relative position of sentence containing p -
Verb presence Sentences before p have verb •
Parent lemma Lemma of parent of p if verb •
Parent & label Lemma of parent and dependency label of p • •
Tree depth Depth of p in parse tree -
Pronoun path Dependency label path of p to root • -
?Negated parent Parent of p is a negated verb -
?Parent transitivity Transitivity of parent verb of p •
?Clause-governing parent Probability of parent verb to govern a clause •
?Attribute lemma Lemma of attribute of p -
?Attribute POS POS of attribute of p -

Sentence distance Number of sentences between v and p • •
Token distance Log-distance between v and p in tokens • •
Verb distance Number of verbs between v and p -
Relative position v precedes p (anaphora/cataphora) •
Direct dominance v is the immediate parent of p •
Dominance v is an ancestor of p • •
Candidate path Dependency label path of v to root •
?Negated candidate v is negated •
?Candidate transitivity Transitivity of v • •
?Clause-governing candidate Probability of v to govern a clause -
?Right frontier v is in the right frontier of p • •
?I-incompatibility Attribute of p is a non-individual adjective • •
?Verb association strength NPMI between v and parent verb of p -
?Selectional preference Preference between v and parent verb of p -

Table 1: Features used for pronoun p and candidate v in the classification (Cla.) and resolution (Res.) stages. Features
marked with • were selected, and those marked with - were discarded by feature selection. The last column (Mül.)
contains the features used by Müller (2007). Features marked with ? are described in Section 3.2.

More specifically, and as described in Algo-
rithm 1, a classification model Θc is applied to each
pronoun p to obtain its probability of being dis-
course deictic pc(p). If the probability is above a
threshold thc, the pronoun is considered for resolu-
tion. All verbs v in the current and n previous sen-
tences3 are considered as candidates. A resolution
model Θr is applied to each candidate v to obtain its
probability of being the antecedent of p, pr(v, p); if
the candidate with the highest score vbest is above a
threshold thr, then it is returned as the antecedent.

3A window of 3 sentences is used in our experiments.

Otherwise, the pronoun remains unlinked.
Both components are implemented as maximum

entropy classifiers. For simplicity, our approach is
independent from the NP–NP coreference resolution
component: competition between verbal and nomi-
nal antecedents is not considered.

3.2 Features

Table 1 gives an overview of the features that were
used by the classification and resolution models. We
consider all the features listed in the table, but some
of them (marked with -) are pruned by feature se-
lection (see Section 4.2). Real-valued features are
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quantized, and dependency label paths are consid-
ered up to length 2. Details for the more sophisti-
cated features (marked with ? in the table) follow.

Negated parent/candidate We consider a verb to-
ken to be negated if it has a child connected with a
negation label.

Parent/candidate transitivity We consider a verb
token to be transitive if it has a child with a direct
object label.

Clause-governing parent/candidate This is the
probability of the parent/candidate to have a clausal
or verbal argument. Probabilities for every verbal
lemma are estimated from the Google News corpus.
We then use the logarithm of these probabilities as
the feature values.

Attribute lemma/POS If the pronoun is the sub-
ject of a copular verb, we consider the lemma and
POS of the attribute of this verb as features.

Right frontier Webber (1988) proposes the right
frontier condition to restrict the set of candidates
available as antecedents for discourse-deictic pro-
nouns. We define this condition in terms of what
Webber calls discourse units. These are minimal
discourse segments, and a sequence of several units
can also be nested and form a larger unit. She states
that only units on the right frontier (i.e., not followed
by another unit at the same nesting level) can be an-
tecedents for such pronouns.

(3) [President Obama arrived in San Francisco
on Sunday.] [ [When he held a press confer-
ence,] he reported [he would meet with busi-
ness leaders.] ] [He thought it went well.]

In (3), where discourse units are marked by square
brackets, the verbal heads of discourse segments that
are on the right frontier are underlined, while the
others are italicized to denote inaccessibility.

In our system, we approximate discourse units by
sentences and clauses. The candidate antecedents
are the respective verbal heads of these units. This
feature triggers if the antecedent candidate occurs
on the right frontier of the pronoun. Since we also
consider cataphoric relations, we reverse the rule to
check the left frontier for these cases.

I-incompatibility Eckert and Strube (2000) de-
fine an anaphor to be I-incompatible if it occurs in
a context in which it “cannot refer to an individ-
ual object.” Adjectives can be used as contextual
cues for I-incompatible anaphors in copular con-
structions (4).

(4) It is true.

Similarly to Müller (2007), we define the I-
incompatibility score of an adjective as its condi-
tional probability of being the attribute of a non-
nominal subject given that it occurs in a copular con-
struction. This is estimated from the Google News
corpus as the number of occurrences of the adjective
in one of these patterns:

• clausal subject + BE + ADJ
(To read is healthy)
• IT + BE + ADJ + TO/THAT

(It is healthy to read)
• nominalized4 subject + BE + ADJ

(The construction was suspended)
• -ing subject + BE + ADJ

(Reading is healthy)

divided by its number of occurrences in the pattern
BE + ADJ. At classification time, if the pronoun is
in a copular construction with an adjective attribute,
the I-incompatibility score of the latter is used as
feature.

Verb association strength To capture the strength
of association between the candidate antecedent and
the parent verb of the pronoun, we use the normal-
ized pointwise mutual information of the two verbs
co-occurring within a window of 3 sentences, esti-
mated from counts in the Google News corpus.

Selectional preference We use selectional prefer-
ence, as defined by Resnik (1997), to capture the
degree to which the antecedent makes a reason-
able substitute of the pronoun in the context of its
parent verb. The selectional preference strength
of verb ω is defined as SR(ω) = KL(p(a|ω) ‖
p(a)), where KL denotes Kullback-Leibler di-
vergence and a are all possible arguments of ω
in the Google News corpus. Larger values of

4Nominalizations were identified using NOMLEX
(Macleod et al., 1998).
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Pronoun Total Discourse-Deictic

it 1310 75
that 400 120
this 365 57

Overall 2075 252

Table 2: Distribution of discourse-deictic pronouns in the
test set of the CoNLL-2012 English corpus.

this quantity correspond to more selective predi-
cates. Then, the selectional preference strength of
a verb ω for a particular argument a is defined as
AR(ω, a) = p(a|ω) · log (p(a|ω)/p(a)) /SR(ω).
To account for nominalizations, verbs and nouns are
stemmed following Porter (1980).

4 Evaluation

In this section we describe the setup for evaluating
our system.

4.1 Dataset

We perform all our experiments on the English sec-
tion of the CoNLL-2012 corpus (Pradhan et al.,
2012), which is based on OntoNotes (Pradhan et al.,
2007). It consists of 2384 documents (1.6M words)
from a variety of domains: news, broadcast conver-
sation, weblogs, etc. It is annotated with POS tags,
syntax trees, word sense annotation, coreference re-
lations, etc. The coreference layer includes verbal
mentions.

Given these annotations, we consider a pronoun
to be discourse deictic if the preceding mention in
its coreference cluster is verbal, or if it is the first
mention in the cluster and the next one is verbal.
The distribution of potentially discourse-deictic pro-
nouns (it, this and that) in the test set is summarized
in Table 2.

For all our experiments we train, tune and test ac-
cording to the CoNLL-2012 split of OntoNotes. The
gold analyses provided for the shared task are used
for training, and the system analyses for develop-
ment and testing.

4.2 Experiments

We train the two components of our system sepa-
rately. For each of them, a maximum entropy model
is learned on the train partition. Feature selection

and threshold tuning are performed by hill climbing
on the development set. We use separate thresholds
for it, this, and that, since their distributions in the
corpus are quite different.

We perform two evaluations of our system: first
classification and resolution are evaluated in isola-
tion, and then both components are stacked on top
of an NP coreference engine.

For classification, we measure system perfor-
mance on standard precision (P), recall (R) and F1 of
correctly predicting whether a pronoun is discourse
deictic or not. For resolution, precision is computed
as the fraction of predicted antecedents that are cor-
rect, and recall as the fraction of gold antecedents
that are correctly predicted. To decouple the eval-
uation of both stages, we also include results with
oracle classifications as input to the resolution stage.

Finally, we use the output of our system to ex-
tend the predictions of two state-of-the-art NP coref-
erence systems:

• BERKELEY (Durrett and Klein, 2014), a joint
model for coreference resolution, named entity
recognition, and entity linking.
• HOTCOREF (Björkelund and Kuhn, 2014), a

latent-antecedent model which exploits non-
local features via beam search.

We only add our predictions for pronouns it, this,
that that are output as singletons by the NP corefer-
ence system.

We report the standard coreference measures on
the combined outputs using the updated CoNLL
scorer v7 (Pradhan et al., 2014). Here, the systems
are evaluated on all nominal, pronominal, and verbal
mentions. The metrics include precision, recall and
F1 for MUC, B3 and CEAFe, and the CoNLL met-
ric, which is the arithmetic mean of the first three F1
scores.

4.3 Baselines
We compare our classification component against
two baselines:

• ALL, which blindly classifies all mentions as
discourse deictic.
• NAIVEc, which classifies all this and that men-

tions as discourse deictic, and all it mentions
as non-discourse-deictic. This is motivated by
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it that this Overall

P R F1 P R F1 P R F1 P R F1

ALL 5.7 100.0 10.8 30.0 100.0 46.2 15.6 100.0 27.0 12.1 100.0 21.7
NAIVEc 0.0 0.0 0.0 30.0 100.0 46.2 15.6 100.0 27.0 23.1 70.2 34.8
TWOSTAGE 33.3 4.0 7.1 33.6 77.5 46.9 57.1 21.1 30.8 35.2 42.9 38.6

Table 3: Classification evaluation (TWOSTAGE corresponds to our system).

it that this Overall

P R F1 P R F1 P R F1 P R F1

NAIVEr 30.7 30.7 30.7 47.5 47.5 47.5 33.3 33.3 33.3 39.3 39.3 39.3
MÜLLERr 30.7 30.7 30.7 47.8 45.0 46.4 43.9 43.9 43.9 41.6 40.5 41.0
TWOSTAGE 46.3 33.3 38.8 59.6 46.7 52.3 59.1 45.6 51.5 55.7 42.5 48.2

Table 4: Resolution evaluation with oracle classification (TWOSTAGE corresponds to our system).

it that this Overall

P R F1 P R F1 P R F1 P R F1

NAIVEr 0.0 0.0 0.0 15.3 34.2 21.1 20.0 7.0 10.4 15.3 17.9 16.5
MÜLLERr 0.0 0.0 0.0 16.7 36.7 22.9 20.0 7.0 10.4 16.5 19.0 17.7
TWOSTAGE 14.3 1.3 2.4 21.5 40.0 28.0 46.2 10.5 17.1 22.6 21.8 22.2

Table 5: Resolution evaluation with system classification (TWOSTAGE corresponds to our system).

the distribution of discourse deixis in the cor-
pus (see Table 2).

For resolution, we use the baselines:

• NAIVEr, which resolves a pronoun to the clos-
est verb in the previous sentence. This is moti-
vated by corpus analyses studying the position
of discourse-deictic pronouns relative to their
antecedents (Navarretta, 2011).
• MÜLLERr, which is an equivalent maximum

entropy model using the subset of our features
also considered by Müller (2007). See column
Mül. in Table 1.

Finally, when measuring the impact of our system
on top of an NP coreference resolution engine, we
consider the following baselines:

• NAIVE, which uses NAIVEc and NAIVEr.
• MÜLLER, which does not include a classifica-

tion stage, and uses MÜLLERr for resolution.
• ONESTAGE, which does not include a classifi-

cation stage, and uses our complete feature set

for resolution.5

• ORACLE, which outputs the gold annotations
for discourse-deictic relations.

5 Results

The results for the classification stage are presented
in Table 3, broken down by pronoun type. ALL per-
forms the poorest overall, penalized by a precision
just above 12%. Since in the case of it only 5.7%
of the occurrences are discourse deictic, NAIVEc
gets better results overall by always classifying it
as non-deictic. Our TWOSTAGE system improves
over NAIVEc by an additional 4% F1. However, the
scores remain low—partly because of the difficulty
of the problem (especially the class imbalance), and
partly because despite using a rich set of features,
most of them focus on local context and ignore cues
at the discourse level. The classification of it is par-
ticularly difficult, reflecting the fact that the pronoun
has a wide variety of usages in English.

5Feature selection and threshold tuning were done sepa-
rately for this model. The exact subset of resolution features
that were chosen is omitted for brevity.
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The scores for resolution are shown in Tables 4
and 5. The former uses oracle classification whereas
the latter uses the system output of our classifier.

With oracle classification, NAIVEr and MÜLLERr
perform very similar, except for the case of this. Our
TWOSTAGE resolver outperforms both of them for
all pronouns and metrics, except for the recall of
that. Overall, the difference in F1 is 9 points over
NAIVEr and 7 points over MÜLLERr. The evalua-
tion actually penalizes recall for our system, since
we do not take advantage of the fact that all con-
sidered pronouns are discourse deictic: we trust the
threshold and do not force the assignment of an an-
tecedent.

All the results are lower with system classifica-
tion. Given that our classifier performs the best for
that, the drop for this pronoun is not as high as for
the other two. Again, it stands out as the hardest
pronoun to resolve. Neither NAIVEr nor MÜLLERr
recover any correct antecedent for it. TWOSTAGE

obtains the highest scores across all pronouns and
metrics.

Finally, Table 6 contains the coreference mea-
sures for end-to-end evaluation on top of the
BERKELEY and HOTCOREF systems. The ORA-
CLE row shows an upper bound of 2% in CoNLL
score improvement. All three baselines—NAIVE,
MÜLLER and ONESTAGE—actually cause a de-
crease of up to 0.9% CoNLL.

Our system TWOSTAGE achieves a small fraction
of the headroom. The total number of discourse-
deictic entities that it predicts on the test set is 248,
of which 204 end up merged in the BERKELEY out-
put, and 210 in HOTCOREF. This allows it to ob-
tain the best B3, CEAFe and CoNLL values, de-
spite the fact that the low recall in the classification
of discourse-deictic it reduces our margin for recall
gains by one third. The drop in MUC highlights the
difficulty of keeping the precision level, but our sys-
tem is able to reach a better precision-recall balance
than the other compared approaches.

We assess the statistical significance of the
improvements of TWOSTAGE over BERKELEY

and HOTCOREF using paired bootstrap resam-
pling (Koehn, 2004) followed by two-tailed
Wilcoxon signed-rank tests. All the differences are
significant at the 1% level, except for the B3 F1 dif-
ferences.

Error type %

System errors

Classification 22.9
Resolution 20.0
Preprocessing 5.7

Annotation errors

Missing 11.4
Multiple antecedents 20.0

System & Annotation errors

Debatable 20.0
Overall 100.0

Table 7: Distribution of errors.

6 Error Analysis

In order to gain insight into the precision errors of
our system, we manually analyzed 50 of its de-
cisions on the CoNLL-2012 development set. Of
these, 30% were correct, matching the gold anno-
tation, as in (5).6

(5) Ah, we have established the year 2006 as
Discover Hong Kong Year. Why is that?

The distribution of errors for the remaining cases is
shown in Table 7. While half of the errors are due to
actual errors in the model learned by our system—
either in classification (6) or resolution (7)—or due
to a pre-processing error, another third of them are
not true errors but missing (8) or partial annota-
tions (9)–(10) in the gold standard corpus.

(6) If pictures are taken without permission, that
is to say, it will at all times be pursued by
legal action, a big hassle.

(7) Do we even know if these two medications
are going to be effective against a strain that
hasn’t even presented itself? Here’s the im-
portant thing about that.

(8) You will be taken to stand before governors
and kings. People will do this to you because
you follow me.

6The pronoun to be resolved is in boldface, the antecedent
annotated in the gold standard (if any) is in italics, and the an-
tecedent predicted by our system is underlined.
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MUC B3 CEAFe CoNLL

P R F1 P R F1 P R F1 F1

Durrett and Klein (2014) 72.61 69.91 71.23 61.18 56.43 58.71 56.16 54.23 55.18 61.71

BERKELEY

+ NAIVE 70.10 70.33 70.21 58.64 57.49 58.06 52.02 57.21 54.50 60.92
+ MÜLLER 71.57 70.18 70.86 60.15 57.02 58.54 54.55 55.86 55.20 61.53
+ ONESTAGE 71.63 70.19 70.90 60.21 57.03 58.58 54.66 55.88 55.26 61.58
+ TWOSTAGE 71.87 70.19 71.02 60.50 57.02 58.71 55.14 55.77 55.45 61.73

+ ORACLE 73.09 71.64 72.36 61.95 58.77 60.32 58.05 58.51 58.28 63.65

Björkelund and Kuhn (2014) 74.30 67.46 70.72 62.71 54.96 58.58 59.40 52.27 55.61 61.64

HOTCOREF

+ NAIVE 71.38 67.92 69.61 59.72 56.09 57.85 54.14 55.45 54.79 60.75
+ MÜLLER 73.11 67.74 70.32 61.51 55.58 58.39 57.32 54.00 55.61 61.44
+ ONESTAGE 73.15 67.79 70.37 61.54 55.61 58.43 57.35 54.02 55.64 61.48
+ TWOSTAGE 73.49 67.77 70.51 61.94 55.58 58.59 58.14 53.93 55.96 61.69

+ ORACLE 74.79 69.20 71.88 63.59 57.33 60.30 61.33 56.87 59.02 63.73

Table 6: End-to-end coreference resolution evaluation (TWOSTAGE corresponds to our system). All differences be-
tween the baseline system and TWOSTAGE are significant at the 1% level except for the B3 F1 differences.

(9) At this point they’ve wittled it down to one
aircraft and a missing crew of four individ-
uals. So we’ve gone from several possible
aircraft to one aircraft and from several miss-
ing airmen to four. So how much easier will
that make it for you to unlock this case, do
you think?

(10) What do you mean by that? Either she
either passed out regurgitated. Something
had happened. And on top of that now
there’s a statement. . .

The examples (8)–(10) show the difficulty of an-
notating discourse deixis relations under guidelines
that require a unique verbal antecedent (Poesio and
Artstein, 2008; Recasens, 2008). In our analysis
we found several cases in which more than one an-
tecedent is acceptable. This is usually the case when
there is an elaboration (i.e., both the first clause and
the follow-up clause restating or elaborating on the
first one are acceptable antecedents, as in (9)) or
a sequence of related and overlapping events. As
pointed out by Poesio and Artstein (2008), “it is not
completely clear the extent to which humans agree
on the interpretation of such expressions,” and the
inconsistencies observed in the data are evidence of
this.

Another class of hard cases are the discourse-
deictic pronouns that are used for packaging a previ-
ous fragment or set of clauses (10). It is very hard to

pick an antecedent for them, even deciding whether
the antecedent is an NP or a clause (Francis, 1994).

Finally, in 20% of the cases the system and the
annotation are in disagreement, but both decisions
are debatable. In many of them, the system did not
make any prediction, but the one in the gold anno-
tation is incorrect. In (11), act is a more plausible
antecedent for that.

(11) “Why didn’t the Bank Board act sooner?”
he said. “That is what Common Cause
should ask be investigated.”

As a result, even though our system obviously makes
multiple mistakes in its decisions, we believe that the
evaluation overpenalizes its performance due to the
debatable and not always clear-cut annotations dis-
cussed above. Discourse deixis resolution is a hard
problem in itself (the chances of selecting a wrong
antecedent for a pronoun are many times greater
than picking the right one), and this difficulty is
accentuated by the problematic annotations in the
training and test data.

Given the difficulty of identifying a single an-
tecedent to discourse-deictic pronouns, as evidenced
by the low inter-annotator agreement on this task,
a more flexible evaluation measure for discourse
deixis systems is needed.
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7 Conclusion

We have presented an automatic system for dis-
course deixis resolution. The system works in two
stages: first classifying pronouns as discourse deic-
tic or not, and then assigning an antecedent.

Empirical evaluations show that our system out-
performs naive baselines as well as the only exist-
ing comparable system. Additionally, when stacked
on top of two different state-of-the-art NP corefer-
ence resolvers, our system yields improvements on
the B3, CEAFe and CoNLL measures. The results
are still far from the upper bound achievable by an
oracle. However, our research highlights the incon-
sistencies in the annotation of discourse deixis in
existing resources, and thus the performance of our
system is likely underestimated.

These inconsistencies call for future work to im-
prove existing annotated corpora so that similar sys-
tems may be more fairly evaluated. Regarding our
approach, a tighter integration between the NP and
discourse deixis components could help them make
more informed decisions. Other future research in-
cludes jointly learning the classification and reso-
lution stages of our system, and exploring semi-
supervised learning techniques to compensate for
the paucity of annotated data. Finally, we would like
to transfer our system to other languages.
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Abstract

Readability depends on many factors rang-
ing from shallow features like word length
to semantic ones like coherence. We intro-
duce novel graph-based coherence features
based on frequent subgraphs and compare
their ability to assess the readability of Wall
Street Journal articles. In contrast to Pitler
and Nenkova (2008) some of our graph-based
features are significantly correlated with hu-
man judgments. We outperform Pitler and
Nenkova (2008) in the readability ranking task
by more than 5% accuracy thus establishing a
new state-of-the-art on this dataset.

1 Introduction

Readability depends on many factors which enable
readers to process a text. These factors can be used
by readability assessment methods to quantify the
difficulty of text understanding. Possible applica-
tions of readability assessment are automatic text
summarization and simplification systems. Measur-
ing readability can also be used in question answer-
ing and knowledge extraction systems to prune texts
with low readability (Kate et al., 2010).

Many different text features have been used to
assess readability. They include shallow features
(Flesch, 1948; Kincaid et al., 1975), language
modeling features (Si and Callan, 2001; Collins-
Thompson and Callan, 2004), syntactic features
(Schwarm and Ostendorf, 2005) and text flow or
coherence (Barzilay and Lapata, 2008; Pitler and
Nenkova, 2008). In a coherent text each sentence

has some connections with other sentences. Al-
though these local connections make the text more
readable, the corresponding coherence features used
in Pitler and Nenkova (2008) (Section 2) are not
strongly correlated with human judgments.

The main goal of this paper is to introduce novel
graph-based coherence features for assessing read-
ability. To achieve this goal, we use the entity graph
coherence model by Guinaudeau and Strube (2013)
(Section 3.1.1) and follow two ideas. The first main
idea is to use a graph representation of rhetorical re-
lations between sentences of a text (Section 3.1.2)
and to merge the entity graph and the rhetorical
graph (Section 3.1.3). Hence we enrich the entity
graph and consequently consider the distribution of
two aspects of coherence (i.e. entities and discourse
relations) simultaneously. The second main idea is
to apply subgraph mining algorithms to find frequent
subgraphs (i.e. patterns) in texts (Section 3.2). Sub-
graph mining has been successfully applied to other
tasks, e.g. image processing (Nowozin et al., 2007)
and language modeling (Biemann et al., 2012). We
hypothesize that text coherence correlates with fre-
quent subgraphs (vaguely reminding us of coherence
patterns (Daneš, 1974)) and that the mined patterns
are good predictors for readability ratings.

Our study is novel in introducing new and infor-
mative graph-based coherence features. We examine
the predictive power of these feature in two experi-
ments: first, readability rating prediction, and sec-
ond, ranking texts according to the readability (Sec-
tion 5).
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Figure 1: The entity graph representation of the text in Table 1. Dark entities are shared by the sentences.

2 Readability Assessment

The quality of a text depends on different factors
which make the text easier to read. These factors
range from shallow features like word length to se-
mantic features like coherence. Readability assess-
ment leads to two problems: distinguishing and rec-
ognizing readability levels of texts and predicting
human readability ratings.

Pitler and Nenkova (2008) use all entity transi-
tions of the entity grid model (Barzilay and Lapata,
2008) as coherence features. They compute the cor-
relation between them and readability ratings and
show that none of them is significantly correlated
with human readability judgments. Indeed, none of
these features on its own is a good predictor to mea-
sure coherence and to predict readability as well.

3 Method

We introduce the graph representation of a text and
propose to use these graphs to model coherence.

3.1 Graphs

3.1.1 Entity Graph
Guinaudeau and Strube (2013) describe a graph-
based version of the entity grid (Barzilay and Lap-
ata, 2008) which models the interaction between en-
tities and sentences as a bipartite graph. This graph
contains two sets of nodes: sentences and entities.
Sentence and entity nodes are connected if and only
if the entity is mentioned in the sentence (Figure 1).
Edges are weighted according to the grammatical
role of the entity mentioned in the sentence.

Guinaudeau and Strube (2013) model entity tran-
sitions between sentences via a one-mode projec-

tion of the entity graph. The one-mode projec-
tion is a graph consisting of sentence nodes that
are connected if and only if they have at least one
entity in common in the entity graph. One-mode
projections are directed as they follow the text or-
der. Hence, backward edges never occur. Guin-
audeau and Strube (2013) introduce three kinds of
projections. The unweighted projection PER

u models
the existence of the entity connections between sen-
tences. The weighted projection PER

w uses the num-
ber of shared entities by sentences as a weight for the
corresponding edge (Figure 2). PER

acc takes the gram-
matical function of entities in sentences into account
as edge weights. Guinaudeau and Strube (2013)
show that PER

acc does not perform well for readabil-
ity assessment. It does not outperform PER

w in our

S1: The [Associated] [Press]’s [earthquake] [coverage]
drew [attention] to a [phenomenon] that deserves some
[thought] by public [officials] and other [policy] [mak-
ers].
S2: Private [relief] [agencies], such as the [Salvation]
[Army] and [Red] [Cross], mobilized almost instantly
to help [people], while the [Washington] [bureaucracy]
”took [hours] getting into [gear].”
S3: One [news] show we saw [yesterday] even displayed
25 federal [officials] meeting around a [table].
S4: We recall that the [mayor] of [Charleston] com-
plained bitterly about the federal [bureaucracy]’s re-
sponse to [Hurricane Hugo].
S5: The [sense] grows that modern public [bureaucra-
cies] simply don’t perform their assigned [functions]
well.

Table 1: A sample text from the Wall Street Journal
dataset (Pitler and Nenkova, 2008).
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Figure 2: PER
u : unweighted, and PER

w : weighted projec-
tion graphs. In the weighted projection all edge weights
are equal to one, because all sentences share one entity.

experiments as well. Thus, we do explain further
details of PER

w here.

3.1.2 Discourse Relation Graph
Lin et al. (2011) and Lin (2011) use Rhetorical
Structure Theory (RST) to describe and model co-
herence by considering the transitions between dis-
course relations. Inspired by the entity grid they ex-
pand the relation sequence into a two-dimensional
matrix whose rows and columns are sentences and
entities, respectively. The cell 〈si,e j〉 corresponds
to the set of discourse relations entity e j is involved
with in sentence si. These methods are based on en-
tity transitions which, however, are intuitively im-
plausible, because discourse relations connect sen-
tences (or elementary discourse units).

Since discourse relations capture interactions be-
tween sentences (Table 2), we model these relations
with a graph.

Relation Arg1 Arg2
Implicit Expansion S1 S2
Explicit Comparison S2 S2
Implicit Expansion S2 S3
Implicit Temporal S3 S4
Implicit Contingency S4 S5

Table 2: PDTB-style discourse relations (Prasad et al.,
2008) of the sample text in Table 1

A discourse relation graph is PDR
u = (V,R), where

V is the set of sentence nodes and R is the edge
set which represents all discourse relations in the
text. Two sentence nodes are adjacent if and only
if they are connected by at least one discourse rela-
tion. Intra-sentential discourse relations are repre-
sented as self-edges. We define PDR

w as a weighted
discourse relation graph whose edge weights are

s1

s2

s3

s4

s5

s1

s2

s3
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u PDR

w

Figure 3: PDR
u : unweighted, and PDR

w : weighted discourse
relation graphs.

the number of discourse relations between sentence
nodes (Figure 3).

3.1.3 Combined Entity and Discourse Relation
Graphs

Both projection and discourse relation graphs rep-
resent different types of connections. These graphs
can be merged by employing basic operators.

We use the ∨ operator (logical OR) to combine
the projection graph PER

u with the PDR
u graph. The

∨ operator takes two sentence nodes and creates an
edge between them if they are connected at least
by one connection, whether entity transition (PER

u )
or discourse relations (PDR

u ). The other basic logi-
cal operators (e.g. ∧ or ⊕) lose connections. Hence
we do not report on their performance. Inspired by
linear regression models we combine the weighted
graphs by adding (+) the edge weights in PER

w and
PDR

w (Figure 4).

s1

s2

s3

s4

s5

s1

s2

s3

s4

s5

1
1

1

1

2

1

1

1

PER
u ∨PDR

u PER
w +PDR

w

Figure 4: Combined entity and discourse relation graphs.

3.2 Coherence Features
We use the proposed graphs to introduce novel co-
herence features.

Average outdegree. Measures to which extent a
sentence is connected with other sentences (Guin-
audeau and Strube, 2013):

AvgOutDegree(P) = ∑s∈S OutDegree(s)
‖S‖
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where OutDegree(s) is the sum of the weights as-
sociated with edges that leave node s and ‖S‖ is the
number of sentences in the text.

Number of components. The projection graph
can be disconnected. A graph is disconnected if
there are at least two nodes which are not reachable
from each other (like s1 and s2 in Figure 2). A max-
imal non-empty connected subgraph in a graph is
called component. Each projection graph in Figure
2 contains two components. Intuitively, projection
graphs of a more coherent text should contain fewer
number of components. The outdegree does not cap-
ture this type of connectivity. E.g., in Figure 5 the
average outdegree of the two graphs is equal, while
the left graph contains more components and should
be less coherent.

s1 s2 s3 s4

s5s6

s1 s2 s3 s4

s5s6

(a) (b)

Figure 5: Two graphs with the same outdegree value.
Graph (a) has two components. It is less coherent.

Frequent subgraphs. We hypothesize that par-
ticular coherence patterns show a correlation with
readability. These patterns are encoded as subgraphs
in graphs. An advantage is that coherence can be
measured beyond simple sentence or node connec-
tivity. We first define the graph concepts employed.

Isomorphic. Two graphs G and G′ are isomorphic,
if they fulfill two conditions: there should be a one-
to-one association between nodes of G′ and those of
G, and two nodes of G′ should be connected, if and
only if their associated nodes in G are connected.

Subgraph. Graph G′ is a subgraph of graph G, if
G′ is isomorphic to a graph whose nodes and edges
are in G.

k-node subgraph. A subgraph with k nodes is
called k-node subgraph.

Induced subgraph. The graph G′ is an induced
subgraph of graph G, if G′ is a subgraph of G whose
nodes are connected by all edges which connect the
corresponding nodes in G (Figure 6). We always
mean induced subgraphs when using the term sub-
graph.

Frequent subgraph & minimum support. Let ζ =
{G1,G2, · · · ,Gn} be a database of n graphs. For

(a) (b) (c)

Figure 6: Both graphs (b) and (c) are subgraphs of (a).
Only (c) is an induced subgraph of (a).

each subgraph sg, support(sg) denotes the number
of graphs (in ζ ) which contain sg as a subgraph. A
subgraph sg is a frequent subgraph if and only if
support(sg) > λ , where λ is called minimum sup-
port.

Graph signature. Given a set of fre-
quent subgraphs {sg1,sg2, ...,sgm}, a graph
signature for G ∈ ζ is the vector Φ(G) =
(ϕ(sg1,G),ϕ(sg2,G), ...,ϕ(sgm,G)), where

ϕ(sgi,G) =
count(sgi,G)

∑sg j∈(sg1,sg2,...,sgm) count(sg j,G)

Here count(sgi,G) is the number of occurrences
of sgi in graph G. We use the relative frequency
ϕ(sgi,G) because it compares graphs with different
numbers of nodes and different numbers of edges.

Subgraph features are divided into two categories:
basic subgraphs and frequent large subgraphs.

Basic subgraphs. Instead of frequent subgraphs
all possible 3-node subgraphs (Figure 7) are used as
basic subgraphs because they are the smallest mean-
ingful subgraphs that can model coherence patterns.

Figure 7: All possible directed 3-node subgraphs.

Because backward edges never occur in one-
mode projections, only four subgraphs are feasible
(Figure 8).

We interpret these subgraphs as follows:
• sg1: The connection between a sentence and

subsequent ones. In other words, at least two
entities are mentioned in one sentence and the
subsequent ones are about these entities.
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st su
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st su

sv

st su

sv

st su

sv

sg1 sg2 sg3 sg4

Figure 8: Feasible 3-node subgraph coherence features.
Node labels illustrate the order of sentences. Sentence st
occurs before sentence su, and sentence su occurs before
sentence sv (i.e. t < u< v).

• sg2: Indicates that entities in st and su get con-
nected to each other in sv.
• sg3: Each sentence tends to refer to the most

prominent entity (focus of attention) in pre-
ceding sentences (Sidner, 1983; Grosz et al.,
1995). The absence of a connection between
st and sv indicates that the entity connecting st

and su is different from the entity connecting su

and sv. Therefore this subgraph approximately
corresponds to the shift of the focus of atten-
tion.
• sg4: Merges sg1 and sg3 and represents all con-

nections of these two subgraphs.

We use these feasible 3-node subgraphs and com-
pute the graph signature, Φ, of each G ∈ ζ . We pro-
pose each ϕ ∈Φ (i.e. relative frequency of each sub-
graph in G) as a connectivity feature of graph G to
measure text coherence.

Frequent large subgraphs. Since we observe a
strong correlation between basic subgraphs and hu-
man readability ratings (Table 4), we mine frequent
large subgraphs of projection graphs. Our intuition
is that larger subgraphs are more informative coher-
ence patterns. Hence, we extend the coherence fea-
tures from all feasible 3-node subgraphs to frequent
k-node subgraphs. We first use an efficient subgraph
mining algorithm to extract all subgraphs with size k
and then compute the count of each subgraph as an
induced subgraph in each graph G ∈ ζ . We retain a
subgraph sg, if it is frequent (i.e. support(sg)> λ ).
The result of these steps is a two-dimensional ma-
trix whose rows represent graphs in ζ and columns
represent frequent subgraphs with size k. The cell
〈Gi,sg j〉 shows the count of sg j in graph Gi. Given
this matrix, we compute the graph signature of each
G ∈ ζ and take each element of the graph signature
as a coherence feature.

4 Experiments

4.1 Data
We use the dataset created by Pitler and Nenkova
(2008) which consists of randomly selected articles
from the Wall Street Journal corpus. The articles
were rated by three humans on a scale from 1 to 5
for readability based on quality measures that are de-
signed to estimate the coherence of articles. The fi-
nal readability score of each article is the average of
these three ratings.

We exclude three files from this dataset: wsj-
-0382 does not exist in the Penn Treebank (Mar-
cus et al., 1994)1. wsj-2090 does not exist in
the Penn Discource Treebank (Prasad et al., 2008).
wsj-1398 is a poem.

4.2 Settings
Entity graph. We use the gold parse trees in the
Penn Treebank (Marcus et al., 1994) to extract all
nouns in a document as mentions. We consider
nouns with identical stem2 as coreferent. We divide
the edge weight between two sentence nodes si and
s j by their distance j− i to decrease the importance
of links that exist between non-adjacent sentences.
Discourse relation graph. We use gold PDTB-style
discourse relations (Prasad et al., 2008). We filter
out EntRel and NoRel relations.
Number of components. For counting the number
of components in each projection graph, the Sage-
Math3 package is used. This feature is computed on
unweighted projections (i.e. PER

u ).
Frequent subgraphs. Since subgraph mining is
an NP-complete problem, different algorithms have
been introduced to improve the performance of sub-
graph mining. We use the gSpan4 algorithm (Yan
and Han, 2002) to mine subgraphs of a graph
database which contains PER

u projections. An advan-
tage of using efficient subgraph mining algorithms is
that we can exhaustively search very large subgraph
spaces. A graph with ‖E‖ edges, however, poten-
tially has O(2‖E‖) subgraphs. Having sparse graphs

1Pitler and Nenkova (2008) also remove one file from their
experiments. We assume that it is wsj-0382.

2We use Stanford CoreNLP (http://nlp.stanford.
edu/software/corenlp.shtml)

3http://sagemath.org/download-linux.html
4We use the Java package: http://www.cs.ucsb.

edu/˜xyan/software/gSpan.htm
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Figure 9: Frequent subgraphs with four nodes where t <
u< v< w.

and using efficient subgraph mining algorithm lets
us to search trough this space. We mine subgraphs
with k = 4 and λ = 0 (Figure 9).

4.3 Evaluation

We evaluate on the following benchmark tasks.
Readability assessment. We use the Pearson cor-
relation coefficient to find features correlated with
readability scores. It takes feature values and read-
ability scores of all articles and returns −1 ≤ ρ ≤
+1. A high value of |ρ| shows a strong correlation.
We report statistical significance on the 0.05-level5.
Readability as ranking. We rank texts pairwise
with respect to their readability. We define a clas-
sification problem with a set of text pairs and a la-
bel, which indicates whether the first text in a pair

5The results written in bold face (Section 5).

ρ p value
Entity Graph
PER

u −0.013 0.949
PER

w 0.151 0.452
PER

acc 0.150 0.455
Discourse Relation Graph
PDR

u 0.150 0.455
PDR

w 0.155 0.440
Combination of Entity and Discourse Relation
PER

u ∨PDR
u 0.083 0.681

PER
w +PDR

u 0.185 0.356
PER

w +PDR
w 0.187 0.350

Table 3: The correlation of the average outdegree of dif-
ferent graphs with human readability ratings.

is more readable. We use every two texts whose hu-
man readability scores differ by at least 0.5. Each
text is represented with its graph-based coherence
features. We employ WEKA’s linear support vector
implementation (SMO) to classify the pairs. Perfor-
mance is evaluated using 10-fold cross-validation.

5 Results

Readability assessment. We report the correlation
of our coherence models encoded in graph features
and compare them with Guinaudeau and Strube’s
(2013) entity graph as the state-of-the-art coherence
model. Pitler and Nenkova (2008) show that the en-
tity transition features extracted from the entity grid
model (Barzilay and Lapata, 2008) on its own do
not significantly predict human readability ratings.
So we do not describe their results here.

The results for the outdegree feature is shown
in Table 3. The average outdegree of PER

w is
highly correlated with human readability ratings.
This confirms the readability results of Guinaudeau
and Strube (2013) on the Encyclopedia Britannica
dataset. The outdegrees of discourse relation graphs
are more strongly correlated with human readability
ratings than the outdegree of the projections in the
entity graph, suggesting that efficient graph-based
encoding of discourse relations can measure read-
ability well. The outdegree of the combined graph
PER

w + PDR
w is highly correlated, showing that the

interaction of entity connections and discourse re-
lations is important for text coherence. However,
none of the outdegree measures in this table are
significantly correlated with human readability rat-
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ings, confirming the intuition that outdegree only
measures node connectivity in graphs and it is not
enough to measure readability.

ρ p value
Number of Components −0.391 0.044
Relative frequency of 3-node Subgraphs
sg1 0.310 0.116
sg2 −0.325 0.098
sg3 −0.384 0.048
sg4 0.108 0.592

Table 4: Number of components and subgraph sg3 are
significantly correlated to readability.

Table 4 shows the correlation of two features
of projections6: The number of components has
a strong and significant negative correlation with
human readability ratings7, suggesting that simple
properties of graphs measure text coherence. The
lower part of Table 4 shows the correlation of the rel-
ative frequency of 3-node subgraphs (see Figure 8).
More readable articles have many sg1 and few num-
ber of sg2 patterns. Pattern sg3 is significantly and
negatively correlated with human readability judg-
ments, confirming the intuition that many shifts in
focus of attention make texts difficult to read.

Table 5 shows the correlation between the rela-
tive frequency of 4-node subgraphs and readabil-
ity ratings. First, most subgraphs with less than
four edges are negatively correlated with readabil-
ity, except sg20 and sg24 which are weakly corre-
lated with readability. Few connections between
sentences make the text difficult to read.

Second, the highest positive and significant cor-
relation of sg12 and the most negatively correlated
subgraph sg11 show that different patterns of edges
in subgraphs capture readability judgments. Stod-
dard (1991, p.29) explains this by the ambiguity
node phenomenon: “[...] in some cases, there may
be more than one logical, possible node for a given
cohesive element in a text, in which case, a reader
may see the resulting ambiguity but not be able to

6Although, the proposed features can be applied on all kind
of presented graphs, we evaluate them (except outdegree) only
on projections of the entity graph model. We leave the applica-
tion to the other graph representations for future work.

7This supports Karamanis et al. (2009) who report that
NOCB transitions in the centering model can be used for the
sentence ordering task.

number of edges ρ p value
sg1 6 0.103 0.609
sg2 5 −0.212 0.288
sg3 5 −0.176 0.380
sg4 4 −0.257 0.196
sg5 5 −0.140 0. 486
sg6 5 0.200 0.317
sg7 5 −0.402 0.038
sg8 4 −0.317 0.107
sg9 5 0.153 0.446
sg10 4 −0.238 0.232
sg11 4 −0.509 0.007
sg12 4 0.449 0.019
sg13 4 −0.045 0.824
sg14 4 −0.033 0.870
sg15 3 −0.358 0.067
sg16 4 −0.068 0.736
sg17 3 −0.308 0.118
sg18 3 −0.546 0.003
sg19 3 −0.601 0.001
sg20 3 0.094 0.641
sg21 4 0.068 0.736
sg22 3 −0.374 0.055
sg23 3 −0.314 0.111
sg24 3 0.100 0.620

Table 5: The correlation between the relative frequency
of 4-node subgraphs and readability ratings.

decide between the choices”. E.g., in sg11 a reader
may make a decision about the focus of attention
in sw, while in sg12 the focus of attention of sw is
the same as the focus of attention of st . This phe-
nomenon can also be observed in all positively cor-
related subgraphs. If readers have to return to one
point in the text, they prefer to return to a sentence
which is the core of the preceding sentences. How-
ever, we should refrain of interpreting too much into
these patterns.

Finally, we conclude that in all strongly negative
correlated subgraphs, a subgraph suffers either from
edge shortage or the ambiguity node phenomenon
like sg7.

Considering the correlation of 3-node subgraphs
in Table 4 and 4-node subgraphs in Table 5, two
results are noticeable. First, in large subgraphs
there are more strongly correlated subgraphs than
3-node subgraphs, confirming our hypothesis that
larger subgraphs convey coherence patterns with
higher quality. Second, sg12 in 4-node subgraphs is
more strongly and positively correlated than sg4 in
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3-node subgraphs, because sg12 captures more cir-
cumstances about st . The relative frequency of sg12
is more informative than sg4’s relative frequency.
Readability as ranking. Results of the readability
ranking problem are shown in Table 6. Baseline fea-
tures are entity transition features which are used as
coherence features by Pitler and Nenkova (2008)8.

Features Accuracy
Baselines

None (Majority class) 47.85%
Baseline features (Pitler and Nenkova, 2008) 83.25%

Graph-based Features
Number of components 61.72%
Basic subgraphs (3-node) 79.43%
Frequent large subgraphs (4-node) 89.00%
Frequent basic + large subgraphs 88.52%
Baseline features + frequent large subgraphs 93.30%

Table 6: SVM prediction accuracy.

When classifying with graph signatures based on
basic subgraphs, accuracy is lower than with the
baseline coherence features. This is probably related
to the entity grid features which represent gram-
matical role transitions of entities, while the basic
subgraphs only models the occurrence of entities
across sentences. Graph signatures based on large
subgraphs improve the performance of basic sub-
graphs by around 10%. This high accuracy ver-
ifies that larger subgraphs capture coherence pat-
terns with high quality. Combining basic (3-node)
and large subgraphs (4-node) cannot improve the
performance of the large subgraphs features. This
probably is because basic subgraphs are implicitly
included in larger subgraphs. The combination of
coherence baseline features and frequent large sub-
graphs improves the accuracy.

6 Related Work

There is a research tradition developing metrics for
readability and using these metrics to quantify how
difficult it is to understand a document. Shallow fea-
tures such as word, sentence and text length, which
only capture superficial properties of a text, have
been used traditionally (Flesch, 1948; Kincaid et al.,

8The accuracy reported in their paper is 79.42%. Our reim-
plementation achieves higher accuracy, because our dataset has
three articles less.

1975). De Clercq et al. (2014) use traditional shal-
low features and apply these to a new corpus anno-
tated with two different methodologies. However,
some studies indicate that shallow features do not
precisely predict the readability of a text (Feng et al.,
2009; Petersen and Ostendorf, 2009). Later studies
introduce deeper (more semantic) features such as
those obtained by language models (Si and Callan,
2001; Collins-Thompson and Callan, 2004) and syn-
tactic features like the number of NPs in sentences
or the height of the sentence’s parse tree (Schwarm
and Ostendorf, 2005; Heilman et al., 2007). Barzi-
lay and Lapata (2008) propose an entity-based co-
herence model which operationalizes some of the
intuitions behind the centering model (Grosz et al.,
1995). Although this model works well on the sen-
tence ordering and summary coherence rating tasks,
it does not work well for readability assessment.
Only when combining the entity grid with features
taken from Schwarm and Ostendorf (2005) the en-
tity grid performs competitively.

While most of these studies predict the readabil-
ity level of documents, Pitler and Nenkova (2008)
present a new readability dataset with Wall Street
Journal articles, where each article is assigned hu-
man readability ratings. They analyze the correla-
tion between different readability features and hu-
man readability scores. They show no correla-
tion between entity-transition features and readabil-
ity scores. In contrast to them we are able to report
a statistically significant correlation between some
entity-based features and human readability ratings.

7 Conclusions

We proposed graph-based coherence features based
on the notion of frequent subgraphs. We analyzed
these features on the dataset created by Pitler and
Nenkova (2008) which associates human readabil-
ity ratings with each document. We have shown that
frequent subgraphs represent coherence patterns in
a text. Larger subgraphs obtain a high and statisti-
cally significant correlation with human readability
ratings.

Pitler and Nenkova (2008) did not achieve statis-
tically significant (positive or negative) correlations
between their features derived from the entity grid
and human readability ratings. In contrast, some of
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our automatically induced subgraphs have a strong
statistically significant correlation. We also outper-
form Pitler and Nenkova (2008) in the readability
ranking task by more than 5% accuracy thus estab-
lishing a new state-of-the-art on this dataset. We
conclude that the graph-based representation (Guin-
audeau and Strube, 2013) is a better and more infor-
mative starting point for assessing readability.

In future work, we plan to induce common sub-
graphs and apply our method to different datasets
(e.g. the dataset created by De Clercq et al. (2014))
combined with other readability features (Schwarm
and Ostendorf, 2005).
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