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Preface

Welcome to the 24th Conference on Computational Linguistics and Speech
Processing at Yuan Ze University. Sponsored by the Association for Computational
Linguistics and Chinese Language Processing (ACLCLP), ROCLING is the oldest
and most comprehensive conference to focus on computational linguistics and speech
processing. This year we received 45 valid submissions, each of which was reviewed
by at least two experts on the basis of originality, significance, technical soundness,
and relevance to the conference. In total, 15 papers were accepted for oral
presentation and 19 for poster presentation. These papers cover a broad range on
topics in natural language processing and speech technology and maintain the
consistent quality of papers presented at ROCLING. The publications of these papers
represent the joint effort of many researchers, and we are grateful to the efforts of the
review committee for their work.

We are honored to have two distinguished invited speakers. Dr. Kenneth Church
(President of ACL), speaking on “Towards Google-like Search on Spoken Documents
with Zero Resources’, and Dr. Li Deng (Principal Researcher, Microsoft Research),
speaking on “Deep Learning and A New Wave of Innovationsin Speech Technology”.
In addition, Prof. Jhing-Fa Wang will be organizing a panel discussion on “Research
& Application of Speech & Language Technology for Orange Computing”.

We would also like to thank our sponsors, including the Ministry of Education, the
National Science Council, the Academia Sinica (Institute of Information Science),
Chunghwa Telecom Laboratories, the Institute for Information Industry, the Industrial
Technology Research Institute (Information and Communications Research
Laboratories), Cyberon Corporation, and Behavior Design Corporation.

Finally, we appreciate your active participation and support to ensure a smooth and
successful conference.

Richard Tzong-Han Tsal
Liang-Chih Yu
ROCLING 2012 Conference Chairs

Chia-Ping Chen

Cheng-Zen Yang

Shu-Kai Hsieh

ROCLING 2012 Program Chairs
September 2012
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Program Overview

September 21, 2012 (Friday) 9:00 ~ 20:00
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09:50:10:00 | Opening Ceremony Prof. Jin-Fu Chang
Chair: Prof. Richard Tzong-Han
Tsa
Prof. Liang-Chih Yu
10:00-11:00 | Invited Talk: Speaker:
How Many Multiword Expressions Dr. Kenneth Church, President of
do People Know? ACL
Chair: Dr. Wen-Lian Hsu
11:00-11:30 | coffee Break
11:30-12:30 | Oral Session 1: Speech Processing | | Chair: Dr. Yu Tsao
12:30-13:15 | Lunch
13:15-14:00 | ACLCLP meeting for future directions
14:00-15:20 | Oral Session 2: Sentiment Analysis | Chair: Dr. Lun-Wei Ku
and
Semantics
15:20-15:50 | coffee Break / 1JCLCLP editors meeting
16:00-17:00 | Panel Discussion: Panelists:
Research & Application of Speech & | prof. Chung-Hsien Wu
Language Technology for Orange Dr. Chih-Chung Kuo
Computing Dr. Bo-Wei Chen
Chair: Prof. Jhing-Fa Wang
17:00~18:00 | yzu — Banquet place (Hotel Kuva Chateau)
18:00-20:00

Banquet

September 22, 2012 (Saturday) 9:30 ~ 16:20
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Deep Learning and A New Wave of Dr. Li Deng, Microsoft Research

Innovations in Speech Technology Chair: Prof. Chung-Hsien Wu
10:30-11:00 | coffee Break
11:00-12:00 | oral Session 3: Speech Processing Il | Chair: Prof. Yuan-Fu Liao
12:00-13:00 | |unch
13:00-14:00 | poster Session
14:00-15:00 | oral Session 4: NLP Applications Chair: Prof. Chao-Lin Liu
15:00-15:20 | coffee Break
15:20-16:00 | Oral Session 5: Machine Translation | Chair: Prof. Shou-De Lin

and

Information Retrieval

16:00-16:20 | Closing Ceremony and Best Paper Award
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Invited Speaker: Kenneth Church

How Many Multiword Expressions do People Know?

Abstract

What is a multiword expression (MWE) and how many are there? What isa MWE?
What is many? Mark Liberman gave a great invited talk at ACL-89 titled “How
many words do people know?” where he spent the entire hour questioning the
guestion. Many of these same questions apply to multiword expressions. What isa
word? What is many? What is a person? What does it mean to know? Rather
than answer these questions, this paper will use these questions as Liberman did, as an
excuse for surveying how such issues are addressed in a variety of fields: computer
science, web search, linguistics, lexicography, educational testing, psychology,
statistics, etc.

Biography

Kenneth Church was a researcher at Microsoft Research in Redmond, before moving
to Hopkins, and before that he was the head of a data mining department in AT&T
Labs-Research (formally AT&T Bell Labs). Prof. Kenneth Church received BS,
Masters and PhD from MIT in computer science in 1978, 1980 and 1983, respectively.
He enjoys working with very large corpora such as the Associated Press newswire (1
million words per week) and larger datasets such as telephone call detail (1-10 billion
records per month). He has worked on many topics in computational linguistics
including: web search, language modeling, text analysis, spelling correction,
word-sense disambiguation, terminology, trandation, lexicography, compression,
speech (recognition and synthesis), OCR, as well as applications that go well beyond
computational linguistics such as revenue assurance and virtual integration (using
screen scraping and web crawling to integrate systems that traditionally don't talk
together aswell asthey could such as billing and customer care).
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Invited Speaker: Li Deng

Deep Learning and A New Wave of |nnovationsin Speech Technology

Abstract

Semantic information embedded in the speech signal manifests itself in a dynamic
process rooted in the deep linguistic hierarchy as an intrinsic part of the human
cognitive system. Modeling both the dynamic process and the deep structure for
advancing speech technology has been an active pursuit for over more than 20 years,
but it is not until recently that noticeable breakthrough has been achieved by the new
methodology commonly referred to as “deep learning”. Deep Belief Net (DBN) and
the related deep neural nets are recently being used to replace the Gaussian Mixture
Model component in the HMM -based speech recognition, and has produced dramatic
error rate reduction in both phone recognition and large vocabulary speech
recognition while keeping the HMM component intact. On the other hand, the
(constrained) Dynamic Bayesian Net has been developed for many years to improve
the dynamic models of speech while overcoming the IID assumption as a key
weakness of the HMM, with a set of techniques and representations commonly known
as hidden dynamic/trgjectory models or articulatory-like models. A history of these
two largely separate lines of research will be critically reviewed and analyzed in the
context of modeling the deep and dynamic linguistic hierarchy for advancing speech
recognition technology. Future directions will be discussed for the exciting area of
deep and dynamic learning research that holds promise to build a foundation for the
next-generation speech technology with human-like cognitive ability.

Biography

Li Deng received the Ph.D. from Univ. Wisconsin-Madison. He was an Assistant
(1989-1992), Associate (1992-1996), and Full Professor (1996-1999) at the University
of Waterloo, Ontario, Canada. He then joined Microsoft Research, Redmond, where
he is currently a Principal Researcher and where he received Microsoft Research
Technology Transfer, Goldstar, and Achievement Awards. Prior to MSR, he also
worked or taught at Massachusetts Institute of Technology, ATR Interpreting Telecom.
Research Lab. (Kyoto, Japan), and HKUST. He has published over 300 refereed
papers in leading journals/conferences and 3 books covering broad areas of human
language technology, machine learning, and audio, speech, and signal processing. He
is a Fellow of the Acoustical Society of America, a Fellow of the IEEE, and a Fellow
of the International Speech Communication Association. He is an inventor or
co-inventor of over 50 granted patents. He served on the Board of Governors of the
IEEE Signal Processing Society (2008-2010). More recently, he served as
Editor-in-Chief for IEEE Signal Processing Magazine (2009-2011), for which he
received the 2011 |IEEE SPS Meritorious Service Award. He currently serves as
Editor-in-Chief for IEEE Transactions on Audio, Speech and Language Processing.

Xii
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W RS EHEF AN SRR T PR 5T
Improved Histogram Equalization Methods for Robust Speech

Recognition

S04 Hsin-Ju Hsieh! 2, 3t7E(& Jeih-weih Hung2, B AEIEHE Berlin Chen!
BT SR TR A
EE VA E YN et A L
hsinju@ntnu.edu.tw, berlin@ntnu.edu.tw, jwhung@ncnu.edu.tw

e

iaTlE<F (LA (Histogram Equalization, HEQ)[11/& MM B H A ATREH FZUE
Rty > AT R Z T e B R s e M B WA SRR FEAGR S > IRFIEAESR
sTE FALARIPTTE > f2H — RV H 58 5 55 By 22 8 — B [ 2 SCR & et & AR
(Spatial-Temporal Contextual Statistics)(Vah & R l@ 774 2L A E RN AR E A H
— (& 2 A7 > (Differencing) F1F5(Averaging) I pa /5 20 - ¥ 2 BIFEEFFEI12E
TS LR RSSO A 73 B > DATEE HH 8 5 R (A 22 P B Ik A [FIARER B o) 2 St &
i REE ST AR T IR bR NS & - AR B BB B R AT IE R 2 2 -
HATHIZ A A FATR:

x(d,t)—x(d—l,t)’ 2<d<D
X, gy (dy 1) = 2

| x(d, 1), d=1

x(d,t)+x(d—1,t)’ 2<d<D
Xy g (A5 1) = 2

10, d=1

Hepx, . (d, 08 x . (d,0) 57 IR FAAEE S R s 25 [ AR A s A
FRHVEEETERR o [EEM - BRI T = E R [E— 4 A B W EAHATEY S HE » IR ] i
FFIGEE R TR I b2 S8 X, (d, O THESR x,_,, (d, ) Y SCARSEE & < LRSS
ARG S MR N —(EER A 50K - A 22 SRR [ R 8y S R R 2 x (d, ) SR
AR X, (d, ) DASRPENIRERY 7245 & RIS R E A #E— PRty ZER -

B R Ea E R R sE S R R R Py b 2 & R4 S Ja 17 1E #7 b (Dimension-Wise) HY
ARG AR PERE A EE ) Z5 £ (Cepstral Mean Subtraction, CMS)[2] ~ ZIfEzE 215 {F i 8
EEFHI{EI£(Cepstral Mean and Variance Normalization, CMVN)[3]55 » A& e LAY
— 25 T AR — D IE R B[R] 22 e BARF ] 2 RV RHE T AR &R B BEA R
N EEFEIRE A E AN R A B ESUHPRES ~ aiatEF LA AwEnY R » 7REIE
WM e P A 2 - (H BN » HNEE S e R R s sz s Y IE
HFUEREHE 70 A5 A2 E R R i EE & FE s B — B IE AR bR B R g [4-5]
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Keywords: automatic speech recognition, noise robustness, histogram equalization, feature
contextual statistics.
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DAGR M2 8 B A BRI SRy B IR B AR Z s AT A

A Voice Conversion Method Mapping Segmented Frames with Linear
Multivariate Regression

TR RF 4 R E
Hung-Yan Gu Jia-Wei Chang Zan-Wei Wang

ET SRR AT A
Department of Computer Science and Information Engineering
National Taiwan University of Science and Technology
e-mail: {guhy, m9815064, m10015078} (@mail.ntust.edu.tw

HEES

Y GMM S 7 SRS AT A FE B EIH —(E R B R s g s A T
78 (over smoothing) Ay 52 - [A]IHE A G 5L S 5 L AR M % 8 8 0 B (linear multivariate
regression, LMR)ACHERE S5 — TSR 575 - Ay ERESSUES RS ORI RRE - &
o > BAFIHEE T LMR SHERRAYERATRAR AT > 2R Rk B PATRER - PR
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HUR > FMBTFEHY LMR_F $5U7 - HEgfRHAyEE S fafE - AESEEEST GMM HlLEARY
TR —L -

BRS¢ SEEEM > RUESEENE o SinESEL - BEEREH AR

A
g

so i iEH (voice conversion)iffZEHY H AR » N — ([ SR EE & (source speaker)HYEE & iEA
iS58 HRERE T (target speaker)dVREE o Efdsb BN - IEANEFLEE &
AR DB ERGEE &0 MR ER N EREIEC S aVREEE » DI —(
foE B AR EAOALE - A RE S A JeRTtHIt B i AV T A EHE T
AR r 2 2h(VQ) ¥ (mapping)[1] » HAfRlE(formant) S [2, 3] » ELjr sl
JEEEAI(Gaussian mixture model, GMM) 7 $fifi[4, 5] » ELHAFE K4 R (artificial neural
network, ANN) 7 $if1[6] > LA & ek = ] o5 A (hidden Markov model, HMM) 7 $Hif[ 7,
8]% -

AT VIR E BRI Y GMM B 2 J7 [ 2R fErE a i I H g sl Ak
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JF46 GMM S5 2[4 1A hil Z Y RERE - i HHIAR RS .45 (spectral envelope) & HiEi
A (over smoothing) VFR 52 » —{Ef+21E—F/R > BEERHI AR HEEE — s
TERVIRES 4% - B4R M AR B ACREE & S e A AR 4% - BHERR] B R 4
4RHY F2 ~ F4 ~ Fo FHARIE(formant) AR TR T1RZS - a2 Lsg 2L LAY R D
T SRR B R ER LA IHEE S (5% BAEE WEERIE
It WEL RS TR - SR NBA AR - NEEHT -
[- - . Target — Converted |

(dB) §
-10

¢ F1

20 /)
30

-40

_80 L L 1 1 1 L L SS g
0 1000 2000 3000 4000 5000 6000 7000 11025

[ — ~ AR B L AR A%

By T RS ARRE T EIIE N SRS B IER > [ SRR E R
HU LAz /N5 77 (least mean square, LMS)ga 722 fy BRI > L ST 43 M % &8 & 10 7 (linear
multivariate regression, LMR) 77 NAVAHEEE IR T77E » AR DI B S g -
G20 8 B TR (R A 5 LMR AV E - TEISRPRER RS TaER » DAGIISR
H—1{E dxd HISRTEEERE M > d o — (A ERREFHE R BIAERE - MR A fE
E% o Bl ERRREE S k (EEIER SRR & S (HEE B dx1) » {E LMR Ht i3]
B RS RHEI & Vi RIS Vi = M - Si o BEZR Valbret & AT 1992 FEF2H{H
LMR ¥ sk R SRR TR A4 9] » BB P B BT ZCRE R M A EE K > iR T
—EEITIIEE » IR AR SO > FRME AR ~ HEESERH M AYf#ENT (analytic) K fiF
AN FFIBIPAT S e -

AN AT AT ABYBHFCSHFILS, 10] - FrER A SREE S - RN e fiBsE S
WA (A0 R B B AR 1257 B (segmental ST AY - FIIZS 588 4 — ¥4 2% (one to
many) BRI RIRA[10] » 1% B S AR AR AN B AE 2 ] > R B HE Pt LH A R Al 3R
BIZUAISERE AR 72 (B RE AN 2 4E) - DB (artifact sound)# & R H AR » B TR/ D
S PEE IS > RIEIRMRELE - BBE R B - B AEE S L UIE] > W H
5 B (segment) I EE S S IEFL S HATE 2 & ~ SEREAUNEE > MR R &R ~ BRREAT
WEEEIYEHE - Ao Al ek S EHY LMR $lfuhfs o 2 A Eisa g Be - — (&g ARYEE
HFE RN AE T BN A —(EE - SRR 7 SN EE R S PRIV - R
EATREGEE YR R BRE 5 R R E SR AT DRV ~ BREEE ] DA
1y o w2 M7 Bt GMM i 7 sEEriEia 77 4 [5] > it EPkEFEL
GMM HEEDE » ZsEE A ] DI E SR -

58] IS A B A B Y BR 43R > TP AT 28 PR LS T B 5 A48 Y Al A £ A R (% B (discrete
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cepstrum coefficients, DCC)[ 11, 12] P& Fy 40 P> Bl —(EZHEZE TR co, c1, €2, -, cao
F A {HERE - BREHRZE o, o .. ca0 BFSEHEHARIGEE > FTLIERE dHIER 40 - &
AT S EFERY DCC (B2 1% - Tl AlRIESEHERY DCC REAH R HHRN
&1L, 12] > MR EAGEMEE B - BHAHAVASE - RUE% S HERVRE R IR 1A
(harmonic plus noise model, HNM).Z 58 i SEA TS 2H1[12, 13] » 2Rt n] B2 H]
Lot EEY (12, 13] -

.~ LMR ¥JRysa e

TEFISRPEEL - TRl SREE RIS HHER Y DCC (R 1% - & HEIRRR R IE
(DTW) » BL oS50 —(E PR E & B HE IR S 1E) AT FERY H AR E S S E(HAEEE) - 78
PR HE—{ERE - SRR FTUEEETH N (B EER: S1, S2, -+, Sy MHEEERY N {E 5
fEEAER: T, T, -+, Ty HELE dx1 K/N2 DCC [A) 5 T4 €8 DTW #{UCfc %] DCC [A1&
Sk o By T EHER » T BESHEPE S = [S1, So, -+, Syl > MFEFHE T=[T1, To, -+, Tn] * 1R
BHEEMHNEEfE S KO T YR/ INEDZ dxN « B o BRI —(E K /Ny dxd 1Y LMR ¥
Bk M oSG T RGBSR

M+«S=T . (1)

HIEE - B NAVEEEELL d KRS - BRI SRRy MIEE > 2
HIRBHLARRFE > FEIL S E R ANy d<N Z3 22000 HERE

E=M-S - T. )

E R AR R HIIERR Mo A E R AR E AR AT R AV EHEA I DA/ ME -
HIFARERR E 5 dxN {E7TER - AR M T dxd (ST - BT MIEREL LMS #E01 > Je
EKetEH P TNER E - HEFRZ:

E=E-E'=(M-S-T)M-S-T)", t:transpose. 3)

& E Npi#(trace) > BIt(E) =&, +&,, +..+ &, » EH MAIERHETT - W H SR
TTHIEE S By 0 ZEFE [11, 12] - AT >
d(tr(E))
oM
EAPIEEP A 9(r(E)) / oM HEZFR I (1(E))/ oM, ; > j=1,2, ...,d>i=1,2, ...,d >
EET Bl MAEREE i 515 j {THITTER M, ; K3 (&) (EfRidy - AU LRSI EE
% o BRATRE M EVEHE - AT

M-S-St=T1-8", (5)

=2(M-S-T)-8'=0 4

M=T-§'(s-sH™ . (6)

RAE P E AT AZ(6) A H LMS ZERI T b e Eny M AR » 50 T 2 Eh
A > HFAA] LUE () R iy BE S B R MR BT 2GR B - st B A (DAY M
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FEISRISE RS » AR A B R R T - IR G - D
WA MR > GLLE (b IsE — (A - BRI - ek
£ RS 2R — (DIFER  MIBL AR (OB AT - (0
BB IR » et EACREHE S, S, -+, SYWIFA9E S+ FLLS, - 8" MUY
5410 S, » [EIREHIERFS EVEERE T, To, -+, Ty thBESE AR T SRR IERIIHL
£ - SRAIRREELS » PR S B T WEREE T - A o] S e
)EH °

V =mx

=V

@y=m-x b)yy=m-x

=V

(c)y=m-x+c
B~ BRI ER T
ARG SR FIARESIMERE P HE0EIE - NV TEE (@ ER

TSR (o) FAVIEL - R HEAFEECH - WPTEER—EFAR - SefiId T
FIAHIFE e AT(DHAVEERE M~ S ~ THUEFRIFETT

My g4 S_ S S, .. Sy
M M M) g4 L. 1 ’
= : (7)
My a4 T _ Tl T2 TN
0,0,...0 1 Lo e 1]

S M OFERRIETEROINFs ()X (d+ 1) 2 M FEREE - FREITERSERY M OSBRSS
(@ DFIFISE(d DT > TSR TR AZUDATR + ZMEAE S AEFEPIIAZSE (d+ DA > 3
AR TR 3 i 8 1 IR TSR S AN R (dH1DXN 5 BEE DU
W A I T SRR AR T A0k - 2 1% > shelDUEE AR M ~ S -~ TR AL

6
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2((6) » ZKEL M SEREEE o 00L - & TE A SRS M SRR R A T 0(DES - 5t o] DB 14
AR ARRRZE RN ©

= ZRBE - FISRPEEL

BAM B ERRE E A R - {E5/IREES B X 2V B D RN s = Ao - B e fMEss 7 —
LBV A etisk s > Hdh A5 EEERA ML AT M2 fE(USE > 5 et
FIIBLF_1 A0 F_2 fECSRE - SRPIEEIUALERE & o0 nl EIRE 5 ok == A8 375 A)(3E 2,926
{85 81) Z BUSE-PATER > HUBSREK 22,050Hz » fEAGRSCHE - S8 8 1 DUREGEE AT
A AlE@ML ZM 2 M 1 £F 1~ (F 1 £Z2M_ 1~ ()F_1 £F 2 5N
MR T2 > FrE sl EAOREE - R ERE HAEE

Training sentences of Training sentences of
source speaker target speaker

| Labeling | | Labeling |
v v
Segmenting to Segmenting to
57 classes 57 classes
¥ v
—| Framing | | Framing I—
v v
Computing Computing
DCC DCC
\ DTW
alignment
- - Training - —Z
l_Est1mat1ng segmental LMR Estlmatlng
pitch param. matrix pitch param.

Pitch param. Mapping Pitch param.
of source matrices of target

B = ~ FISRPE R L B D B

3.1 EEHETEFE

A SEREE Frsknvsl SRaE A (BIRT 350 )2 SEATREA]) M5 E HTK (HMM tool kit)
RS - &K REIE 2R (forced alignment) R (E HEMEE - fE—(ERE M SEEEE - BBEHY
BRERER - HNEEEEENE - BEERAT L EH RN - HILBERMEERE
WaveSurfer 88 > DA L& HEMECHEFE S A  AERIILIELE -

P R - BB SR TRaC N B UL E - Al (EE B DB Y B
E « BN B{ERNSREE R > (RIBHFTEAIERCRER - ——H B EZ R - SEHRVE
sl WL AHRPF B TT R Z Z BB 88 > B —Fho0ple 57 JH(21 RPN 36 S8R E)) » 77
R PR S BT ENRE AI4RSE - IR SR S L BN R iEE -

3.2 DCC AREETE
FEAG R SCHE - T PR B EIREE 2 SRR B &g (et 774l L, 12] - 36 H L DCC A3E R

~
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SR - B — (BT HE © FPIEFISEATEEAY DCC (AR 120A B 41 4
{19 DCC {38 - TEIL—(BEHEN BRERTR 512 (BHEABH23.2ms) » TS HERISRIR: By 128
8k A5:(5.8ms) -

3.3 DTW ULECHI LMR 4EfHEETRE

HHS TR R &G S BV BIAN48 - Fr DE B — ¥ 25 (7 - BR BRI RTUNSRHY
17555 ZEE DTW UCfc > FHRULEC Y S B e 75| A5 R AR HY LMR S -
A AREE BN HARE SRS S A2 R NI M A S5 [F— {1 &5 FrEL Y
ATHE (/) > FRIEfE DTW ULEC » DUER2ACEE & & BTV Y SEEZHE S &
HERREE P T E BN R IR H RS E - 21k > &~ P75 e Z felfE DTW ULfc
L AN W R E YT BN HEHE R TERE A (S, Tww) » k=1, 2, -, Ky > Ky TSR n {H]
TERZARFE A # T EERE - 58 BB E-HTE RS ER A (F B
LR (R~ BRREEUHRY— P Y RS HAR S tE R e &

B> LMR JEFHAOKEY - R R —H 5B ~ SEER A5 Jeit SRR
B — ARV EHER H R RV B & - EREENAT(DERY S 1 T 4B -
ZRAALT(O) LIET R AEAL] LMR $LATERHY M B - tE5h > FME AR A= ()
HOAERE S il THRFERL S FIT » FFRALT(6) » IFIHSERERY LMR $HLFTARAY M AEL -

34 TESH

WM EZEATHAR(ZCR) » D ZCR 1R & AV (unvoiced) HAE (I 2K 5 FEAH—
FEELS B FHEE i E F2. AMDF (absolute magnitude difference function)r)EE 38 {51 7774
[14] > ZRAHIFIER EHERY S SR - Z1% > HE—(EFEE S T A E (voiced) B HEEUHIHIHY
HE SRR EERLR BB RS S S I S AR Z » 1 (E M AR E 2
PN A ISR ENETSE

VO~ 2B - PR

MR ERYEE T EIA R RS By F SR FUR A2 AN E DU PR & — )R EE f
A& EE G HUIBIR— YRR - 2R EREREMAB AR 2.2 G A —kk
SrilE 512 A1 128 B - 281% - FEEVURY SRR - 2 g R EASHENE SHE
UNER— (I ERE AR Ry Sy - [ VY Py = (K 5 SRt o EL B A - gt M E =
PEARAERE - H DCC SRS Bt A G it o AR an R —(EZ e R R R s

ZE G A T E SR A

)
o
g, = 1 +— (P - 1) ®)
o

KT E IR > Hop p FoRE IS RIERE - R oY S IR R
SERA P RIS > [ «VF0 o VRIS BB E -

4.1 B -~ BREEE R
EETERIALEEA R (AT LMR $gUEfEs - SRR IE LMR fEAS > ALk
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IRk L0 SRR R R B iE B - T E R IR S sB AT B HIIERCIE % - AGH %
H P EERCRIRT S kY

USRS Pl BIVERp i ARV SE R > ST R BR R B el B D PR sk
1T BEE R BRAVRE - HArEM e B @Ml HTK Brieftayifiakas <22 - A -
FERESITIY HTK AYBaan < 2 Al - B5e#F HTK /Y HMM JI[8fas< » DUESE 350 4
ARV REE ) Bl SR = - SREEHY HMM 5224 -

/ Test sentences /

rl Framing h

Detect Compute
pitch freq. DCC
¥
Segment
recognition
v
Pitch IL.MR
adjusting mapping
1 |
K 2
HNM based

speech synthesis
/ Con\_/erted
Y~ AR EL T SR D B

4.2 E HNM ZsEEE5RE R
TERE R A S A (HNM) > — (A AR AREE 02 0 B AR RE B 70 R = SR A IR
EHbSy oy E S W B o WY PR Ky i KA R (maximum . voiced frequency
MVF)[13] « & T LB S (S5 G AR - (IR SEE & S HERY MVF (E#
L% By 6,000Hz -

{5 HNM A D SRS B &R R S (S G i B L2 Al A & ek &l
TTHHESR - RERHHEE E o aESE - AR E T HIE SR04 - B EFT & ERAVEE = (&

5t o RN FRAMMESC RT3 RAYER LS, 1218 EaRH] HNM B3 (S5t SRl 7ARVAET - By
DA SR REA P BRI -

A~ AR EEE

FESE Ei TP PR T Wi fE LMR SHRHI(EL > 55— IFAR - sREI AT (D) E =R M
FEPRACAE Ryt AEfe -SSR (AR Ry AR LMR St > FE DL LMR_B R 5 210
S5 RE(EARE  BREIAZ()E RN M AR E R AR - SRR Ry e B Al
LMR $t > f£HELL LMR_F %0

BEA » B ZE T —FEf A R LRI LMR $ESE S /E L > 785 LMR_FC



Proceedings of the Twenty-Fourth Conference on Computational Linguistics and Speech Processing (ROCLING 2012)

ZNEERVAENE - S SRPE RS - fE[E = HY”DTW alignment” 1" Train LMR matrix” R J7
PR f > S HI—{E”VQ clustering” J73H » S — (R ERREERIFTUEEE]RY DCC #:a &
(joint vector, #E[S 80){F K-means s3EFAYEREE - LTk L BFHY DCC #2& A& @ I HECEk
L BFrER LA S Z &R DCC [ 857 hI 2314 —{E 5 FERY LMR $iE
M > FEREFRMIE R L 3%k 4 NSRS RIG S8 g &4 SiEga)
HITEML -

PEE AT A NS By - (82U TP AY”LMR mapping” 7 B8 7 il 420 3 il — (& " Select
mapping matrix”J788 > PAfE L {(EAHRE R ch PR — (] > FMIPREAPREE AR - R
AEHERY DCC [m & (4EE 40)FI/I SRS ELaC sk NACHY L flE i A EAYAT 40 4> 22—
ST RERE - AR AT RE AR NN E L 5] B AT A A S e - B HY L A LA LMR
SR

5.1 ZRZEFEHER

HBY 375 AJPTEERIT > A AT 350 A=A LMR B - RS A Ay
DCC [mIEAI HAE DCC [ & Z YRR R » BP0 pl A ERIE(EE R AT 350 A7)RISMET
AEA(EEITR 25 &) ~ 3£ 209 {EEEDRIEE T RIS EMN » 3 R=Ri, Ry, -+, Ry — 5]
B DCC [m & > 1 T=T1, To, -+, T s R FTESERYHE DCC [M &5 > FEIEH
LA N AR,

Davg:% Z diSt(Rk’Tk)’ (9)
1<k<N

RENERIREE 2 P EEE - AU dist( )RRz o iR By -

FIHORTAL =AW 772 > P57 BIE P ELHE RS NS AR 5 T > 22 HAUsH
A HC 25 B B PR 2 B - MR A IV URH R A RO 2 P AR = AP (E
SRS EINR—FrYIVEUE - ek A ZMAVEE AT A - SeBRIAY LMR B4
(LMR_F)PERERATIR SR FTA(LMR_B) » A £ A SRS MR B m s
BNGTRIE 1.6%H1 1.7%) > S HHISCERMEAM FIHNY — 20 A - EERR—1& HirY
BE > B AEAERII NP A IR A —2EYEN » 455 VQ R LMR Sy 574
(LMR_FC) » fEAN BTG 7 IR B Ay SUE - PIEiRaR2=H 04956 =
0.4672 - RICHE 5.7% > ZAMAESMED G - ~PHMasi 22 Al i 0.5382 82K 0.5493
BIEEFET 2.1% o S5—{EEIRE - I8 LMR_FC /A7 NELHERAT T2 E 0.4672
A—EEE  ERNRREMTE G MG PRI LASGE R 0.5 LUT ¢ 4
2GR LMR_B JA 7 NEDHERAV 5 2{E 0.5038 TEAIRA - JERN AR E#H LMR_B
EEEINBNEH PR ECE R 0.5 BUT -

5391 > By 7RI GMM Ry BRI AR ERR > FERE Rt (58 A AH R AVsE-E BC HTRE
FEIRIAEFEIAEREHY DCC SRk A% - Kl ot {H458 GMM S RI[4]0 280 > DU B
GMM #fHitf5 7 (Segmental GMM) [S]HY£:# - Hrh{#5 GMM HfERI AT 128 (&=
o > TS B 5 Bea GMM BRI A 8 {#l S o34 - 281% > AN ESIEAELS T
EIENWRR TR T > M7 ml A 2 HIVUHREA ECH S H BT GMM BRI P
ZEERE > MR HUSHEE SRS 2 PR =Y P H - SRS ENR YRR
{H > BEZER AYERER P (E AT 343 - F s GMM VR RIR I AGRE - A EmiE
AERES MR HIEEDL - B RS GMM BRI/ - (B > ASwSCHTTERY e 3

10
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LMR $#A(LMR_F) » JIEE A — 25 i s P E RV N T 0 EE#dR— LMR_F 7ARY
ERFREMIZE Y AR > AT40 LMR_F SAFE SRR - A S s = ot
7.1%(ELfE4E GMM ) ~ F1 4.5%(ELE Bzl GMM %) » TIAESMIHIEE I » RIREST R
TREAAEIUE 1.5% ~ M1 0.7% - NIL > $FHYr BRI AVEREZ EHE - LMR SREERHVEIBLTE -
HEE A O SR S A

T~ =M LMR S5 A 7 PG

S SR LMR B LMR_F LMR_FC
M 1=>M 2 0.4890 0.4794 0.4475
M 1=>F 1 0.4782 0.4705 0.4451

WERHIES F 1=>M_1 0.4967 0.4881 0.4612
F 1=>F 2 0.5514 0.5443 0.5149
N 0.5038 0.4956 0.4672
M 1=>M 2 0.5467 0.5331 0.5398
M 1=>F 1 0.5174 0.5106 0.5188

SMEHEL F 1=>M 1 0.5388 0.5307 0.5413
F 1=>F 2 0.5867 0.5782 0.5973
1 0.5474 0.5382 0.5493

R~ [ITE GMM SR 7 S-S s

SZ P A s GMM (128 mix.) Segmental GMM (8 mix.)
M 1=>M 2 0.5058 0.5096
M 1=>F 1 0.5012 0.4910

WECHIES [F 1=>M 1 0.5412 0.5095
F 1=>F 2 0.5853 0.5673
A 0.5334 0.5194
M 1=>M 2 0.5346 0.5403
M 1=>F 1 0.5147 0.5146

SNERHIER [F 1=>M 1 0.5551 0.5361
F 1=>F 2 0.5806 0.5766
A 0.5463 0.5419

5.2 SEE B B

FAIE AR S IIER SRV R E = R A 2RAEF o (E{FsE s BRI E1E - B8y
REFrRE X1~ X2~ Y1~ Y2~ Z1 ~ Z2 > {EE X1 B X2 TR {E4E GMM Sl
[41FTHEHA LAY EAE - Y1 B Y2 R LMR_F Sl AT B AE - 1 Z21 Bl 22
FERHEH LMR_FC S5 AR AT EAE » Beoh - A58 X1~ Y1 -~ Z1 iy 1 TR
FM_1 F M_2 ZEEERCEAVEER R SRER 28 > A X2 ~ Y2 ~ 22 iy 2 F/oRfE
FM_1 £ F_1 ZeEECEER I SERI 28 - 75 6 [EEiE e MR EZE THEEt
¥5: http://guhy.csie.ntust.edu.tw/VCLMR/LMR.html
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(EFIE 6 {EE1E - FMIERPERIKAVEEHE S - 55— XERE > Rk X1~ Y1
ks A B2 B ZHE > ZNRIKIFIEI A ~ B HiEsa &S - HERZNES—ER 7
DIEUR B SERVEEE b ELLIE A SRRV SR B RERE > BIREIR Y1 - Z1
Rk A BB EAE > NRIEIGG 2T B EERAE > BEREEIR X2~ Y2 5 A B
B FHE - ARRIRIAGZNETE © SBUUE R > RIBEMIEIR Y2 ~ Z2 pify A B2 B Z4E
ESEIGEZ AT o EVUTEEE B > =R 15 824 - i TRE sy
A B Z IR 2 BRI - EREERIEAEE > 2 ()70 F0R B (A)BETEAVEE S A E
EE A B)EERVIHELF - 1 (DR B (A)FEHRES EEE A B)EEAVIE Rlr—
B 0 RN A - B EERRES ALE -

TEIREEAE B2 1% - PP IRS2 B et (R R SRS FAIR =Ry
HREsT » R =SB EE(H) 0.867 B 0.467) A 3437 > AI{HGr GMM $fL/7ALE
LR > AGRSCHTFERY LMR_F S5 A RE S H s S AR i — EBAYEE S © 5991 k=
FMEYPHRES (B 0.267 B2 0.000) m] 5435 - LMR_F SN LMR_FC $U% > fiE
P sE T Y anE > FPREMEE A 2R > MM E CIEE RS » LMR_FC
BIWUR PR HEE S B an E LR LMR_F SRRV i — 2L -

K= sEEmE TS Ry

AR =) GMM (128mix.) vs LMR_F LMR_F vs LMR_FC
B AVG

M_1=>M 2 |gpp, 0.867 (0.640) 0.267 (0.915)
B AVG

M_1=>F 1 | 0.467 (0.704) 0.000 (0.378)

B AT — BT RIHEE S s BTSN Z GER - AR &l LU L E] (spectrogram) ZEf#
R - & A {4 GMM A —(E RS I FiEiR - S A AR TUE (R
ZE7) P A aE S RN E] 1 () AT B REY © & E A LMR_FC S AS AT (]
AR EE R > RIS EI4A0E 71(0)FrRavEREE o LhiE A (a)f(b) eI 5830 - B F(b)
A H AR (formant){FREX ELIE] 71 (a) AV > BIA0EE (&7 By SRl FRa - fEE 71
(b)#EAYVIE ~ BEEE(EIE « HEAGAYEE)BSEGRS > MAEE FL(a)EAYIE - TR > 5
MRS PR SR A - NI - [ (b)Y SE S R G LR 1. (a) YA — L& -

Hz

7000 -| 8
6500 -| g
5000 © 35
5500 -| AR
5000-| w8
4500 -
4000 -
3500 5
3000
2500 -
2000 -
1500 -
1000 -
500 -

13578
-15456

Eimel 1.5 1.%0 1.85 2.00 2.05 2,10 2.15 2,20 2.25 2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70 2.75 2.80 2.85 2.90 2.85 3.00 3.05

(a) 45 GMM 2L o 5 2 T
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Hz

7000 8
6500-| e
6000 | e
5500
5000 -
4500
4000
3500 -
3000
2500
2000
1500 -
1000 -
500

A
2
i

cle
M

g ll,nrﬂ

||"

L gt
¥

15642 |
18391
time II 1.85 1.%0 1.95 2.00 2.05 2.10 2.15 2.20 2.25 2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70 2.75 2.80 2.85 2.%0 2.95 3.00 3.05

(b) LMR_FC JAEEHA HIGH = 2 A E
[ 7~ W TR A jie-3 jyei-2 fang-1 an-4/(“fE R T FE7) Z R E

ARt

AL E LA SR 2 8 B R (LMR)(F Ry S 2 B - 5 — (R E A £
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Abstract

This study examines the acoustic variability in four 4-year-old children: two with
cerebral palsy (CP) and two typically developing (TD). One recording from each child,
collected from the picture-naming task and spontaneous interaction with adults was analyzed.
Acoustic vowel space, pitch and speech rate in their production were investigated. Study
findings indicated the following: 1) children with CP have a smaller vowel space than TD
children, and there was a scattered distribution of the formant frequencies in CP; 2) children
with CP tend to spend more time producing the utterances and their production of tones was
unstable; and 3) both the speech rate and speech intelligibility in CP were lower. Future
studies are needed to verify these preliminary findings. The variability features in the
production of children with CP provide important references in speech therapy.
Keywords: Mandarin-speaking children, cerebral palsy, vowel space, fundamental frequency,
speech rate

1. Introduction

Cerebral palsy is a common speech motor disability in children, and an umbrella term to
indicate a neurologic developmental condition that affects individuals from early childhood
throughout their lifespan [1]. Due to the neurologic factors, children with cerebral palsy tend
to have several types of speech deficits. According to a previous study [2], 60% of children
with CP have some type of speech deficits, among which dysarthria, the most common
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speech disorder found in individuals with CP, has received more attention. This study focuses
on the acoustic aspects of dysarthria: vowel space, pitch, and speech rate. Vowel space is an
acoustic measure that indicates the jaw’s coordination and the tongue’s controlling ability [3].
Because of poor muscle coordination, individuals with dysarthria tend to have a smaller
vowel space, which influences the accuracy of articulation and reduces the intelligibility of
their speech. Moreover, because dysarthric speakers have a hard time controlling their
respiratory and the laryngeal mechanisms, it is difficult for them to produce correct tones,
which plays an important role in the intelligibility of tonal languages ([2], [4], [5]).
Furthermore, the stability of the speech rate affects listeners’ intelligibility, but dysarthric
speakers usually present a rate disturbance [6]. Therefore, these three acoustic measures are
vital to the speech of the individual with dysarthria. By analyzing these three measures, this
study provides a preliminary index of cerebral palsied speech and a direction for
speech-language intervention.

2. Literature review

2.1 Acoustic vowel space

Many researchers have used vowel space as an index for the size of the vowel
articulatory working space, the accuracy of vowel articulation, and the tongue’s controlling
ability ([3], [7]). Moreover, the influences of dysarthria and unclear speech on the sizes of
vowel areas and the relationship between vowel space and speech intelligibility were
investigated ([8], [9]). According to a previous study [3], vowel area formed by the 1%
formant (F1) and the 2™ formant (F2) can reflect the control ability and mobility of the
tongue. In other words, if the mobility of the tongue is abnormal, the F1-F2 area would be
reduced. In Higgins and Hodge’s [10] study with 12 participants, six children had been
diagnosed with dysarthria, and six were controls. They compared the vowel spaces of the
corner vowels /a/, /i/, /ee/ and /u/ produced by the two groups and found that the vowel space
of children with dysarthria is smaller. Jeng [9] indicated that the vowel quadrilaterals of the
controls are more uniform, while CP groups’ vowel quadrilaterals are variable because of the
non-uniform F1-F2 formant values. People with dysarthria tend to speak at a slower rate or at
a louder volume to make their speech intelligible, which may expand the vowel space [11]. In
clinical treatment, controlling the speech rate is widely employed by speech therapists, and
the effects of slowing the speech rate on vowel space and speech intelligibility was discussed
in the previous study ([5], [9], [11]). Therefore, it can be inferred that the abnormality of
vowel space is a critical reason for the inaccurate articulation and the reduced speech
intelligibility of people with CP.

2.2 Pitch

Dysprosody, where the control of prosodic variables such as fundamental frequency (Fo)
or pitch is impaired, is a common feature of dysarthria [12]. According to Ciocca et al. [2], in
tonal languages, such as Cantonese, tonal-level contrast was the second most problematic
phonetic contrast that influenced speech intelligibility.

In Mandarin Chinese, there are four dominant tones: high-level (tone 1), high-rising
(tone 2), low-falling-rising (tone 3), and high-falling (tone 4) [13]. According to Han et al.
[14], tone or pitch of each monosyllable makes meaningful contrasts. For instance, changing
the four tones of the same syllable, ma, will create meaningful contrasts: “mother” (tone 1),
“hemp” (tone 2), “horse” (tone 3), and “scold” (tone4). Therefore, pitch is central to the
intelligibility of tonal languages.

In order to produce different tones to make meaningful contrasts, speakers alter the
tension of the vocal folds and the amount of air flowing from the lungs [2]. However, because
dysarthric speakers have difficulty controlling the respiratory and the laryngeal mechanisms,
they cannot always produce correct tones ([2], [4], [5]). Bunton et al. [12] found that
English-speaking dysarthric adults tended to decrease the duration of their tone units, or

16
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produce fewer words in a tone unit. In addition, the range of Fo of dysarthric speakers is
restricted. Furthermore, Cantonese dysarthric speakers showed errors in Fo level and/or Fo
contour due to the lack of control of laryngeal mechanism [2].

2.3 Speech rate

Due to the neuromuscular factors, it is not surprising that individuals with dysarthria
tend to have a slower and more unstable speech rate ([3], [6], [15], [16]). Many researchers
have tried to associate speech rate and speech intelligibility to further discuss the complete
index of one’s speech performance [17]. The previous study [4] stated that slower speech rate
of individuals with cerebral palsy may contribute to higher speech intelligibility, which also
serves as an aid to their communication efficiency. In contrast, other studies have found no
significant correlation. Turner, Tjaden, and Weismer [8], by having dysarthric subjects read
the passages at habitual, fast, and slow speaking rate, concluded that there is no specific
correlation between these two issues. Therefore, there is still no agreement on the relationship
between speech rate and speech intelligibility. Whether the slower speech can be a
compensatory strategy to increase intelligibility remains unknown. This study explores the
relationship between speech rate and speech intelligibility in spontaneous speech production
in 4-year-olds with cerebral palsy, and answers the following questions: (1) Is the speech rate
of the children with dysarthria slower than that of typically developing children? (2) How is
speech rate related to speech intelligibility?

3. Methodology

3.1 The participants

Four children participated in this study: two with cerebral palsy (CP1 and CP2, mean age
52.3 months) and two with no specific medical history (TD1 and TD2, mean age 54.8
months). The tables provide background information of CP1 and CP2.

Table 1. Descriptive data of the two CP subjects

Subject ~ Gender  Months Classification ~ Type of CP Severity of

impairment
CP1 Male 48.3 Dyskinetic Quadriplegia Moderate
CP2 Male 56.3 Other Quadriplegia Severe

Table 2. Descriptive data of the two TD subjects

Subject Gender  Months

TD 1 Male 54.5
TD 2 Male 55.1

All of the subjects are male, in order to avoid any potential gender differences in pitch,
and are have normal hearing and intelligence. The two CP subjects were recruited from a
hospital. CP1 has the medical diagnosis of dyskinetic quadriplegia with moderate CP. He has
been diagnosed with borderline language delay on the basis of Preschool Language
Scale-Chinese Version (PLS-C), and has received language therapy. CP2 has the medical
diagnosis of quadriplegia with severe CP. He received education in a special education center,
but he has never received language therapy. The data of TD subjects were taken from a
large-scale study of longitudinal phonetic development.

3.2 Data collection
CP1’s data were collected in lab with less noise disturbance, while the data of CP2 and
the two TD children were collected in their homes. Although the locations were different, the
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same recording equipment was used. A SHURE Wireless microphone system was linked to
TASCAM DR-100 recorders for the purpose of sound recording. During the 50-minute
observation period, speech productions in picture naming task were recorded, and the
Peabody Picture Vocabulary Test-Revised (PPVT-R) was used to provide a quick assessment
of the speech and language ability.

3.3 Data analysis — acoustic vowel space

The first 50 utterances with clear quality were transcribed and analyzed with the
time-frequency analysis software program, TF32. Vowel formant frequencies were
determined with reference to spectrogram, LPC, and FFT with Hillenbrand, Getty, Clark, and
Wheeler [18] as the range reference of formant frequencies. F1 and F2 values and bandwidth
were measured. Vowels with unrecognized formant patterns or with large bandwidth (larger
than 1000Hz) were discarded.

All F1 and F2 values of vowels were normalized. The procedure of normalization is
intended to reduce the differences caused by extrinsic vowel formant values and remaining
the phonological distinctions among different vowels ([19], [20]). The differences of vowel
productions of CP and TD were analyzed in three aspects: the F1 and F2 values of individual
vowels /i/, /a/, /u/, /a/, /¢/, and /o/, standard deviation of formant frequencies, and vowel space.
Overall F1-F2 vowel spaces were calculated to examine the data diversity, and the vowel
space formed by the three corner vowels /i/, /a/, and /u/ were captured to illustrate the
mobility and control ability of tongue and jaw.

3.4 Data analysis - pitch

Pitch values of bi-syllabic or tri-syllabic words were analyzed based on four dominant
tones in Mandarin Chinese: high-level (tone 1), high-rising (tone 2), low-falling-rising (tone
3), and high-falling (tone 4) [13]. However, in Mandarin spoken in Taiwan, the
low-falling-rising tone or dipping tone (tone 3) is always replaced by low-falling tone. The
first 50 intelligible and less disturbed utterances were selected for pitch analysis. The same
procedure was administered to all four children.

TF32, an acoustic analysis program, was used to estimate fundamental frequency (Fo),
mean standard deviation of Fo, mean tone duration (TU), mean slope (in Hz/ms), and the
maximum and minimum values of Fo. In addition, the beginning point (BP) and the end point
(EP) were measured for tone 1 and 4; the beginning point (BP), the inflectional point (IFP),
and the end point (EP) were measured for tone 2 and tone 3.

For slope of tones, two functions were used to measure.

Function 1: SLP1 (Tonel and 4) = (EP-BP)/ (EP — BP)
Function 2: SLP2 (Tone2 and 3) = (IFP-BP)/ (IFP — BP)

SLP3 (Tone2 and 3) = (EP-IFP)/ (EP — IFP)
Note that in Slope Function 2, tone 3 was in fact the low-falling tone.

3.5 Data analysis — speech rate

In speech rate, the target data were the phrases and sentences produced by the four
children in spontaneous interaction. To examine speech intelligibility, the target data were 50
randomly chosen words from the picture-naming task in the same recordings. The following
principles are based on the data collection procedures in [4].
(1) Syllables per minute (SPM): one judge listened to the phrases and sentences, transcribed
the content syllable by syllable, and counted the number of the syllables. SPM is obtained by
calculating the total number of the syllables divided by the time duration, and multiplying the
quotient by 60. In the case of spontancous speech, the intra-sentence pauses were included,
but the inter-sentences pauses were not.
(2) Intelligible syllables per minute (ISPM): ISPM is acquired by counting only the number
of the intelligible syllables divided by the duration, and multiplying the quotient by 60. Ten
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percent of the data were re-analyzed by the second judge. The inter-judge was allowed to
listen to the data again, and to the relevant context but no more than twice. The result of
inter-judge reliability is 86.2%, which exceeds the standard proposed by Kassarjian [21].
Speech intelligibility: Three judges were recruited to transcribe productions of 50 words of
each child in the picture naming tasks. The judges could only listen once and then transcribed
what they heard. All the judges worked alone, and at their own pace. The total number of
correctly transcribed syllables was divided by the total number of the syllables of the 50-word
list. Mean intelligibility from the three judges was calculated as speech intelligibility of each
child.

4. Results and discussion
4.1 Acoustic vowel space

Frequency of occurrence
The following results compare CP and TD group in vowel accuracy and the occurrence
of main vowels (/1/, /a/, /u/, /a/, /¢/, and /9/).

Table 3. The occurrence of main vowel in the four children

Vowels CP1 CP2 TD1 TD2
i/ 21.33% 17.39% 22.95% 25.86%
/a/ 22.67% 21.74% 22.95% 29.31%
/ 10.67% 15.94% 21.31% 13.79%
/a/ 22.67% 24.64% 11.48% 8.62%
e/ 14.67% 10.14% 11.48% 13.79%
o/ 8% 10.14% 9.84% 8.62%

Table 3 shows that vowels /i/ and /a/ have a high frequency of occurrence, and vowel /o/
shows a lowest frequency in both CP and TD children. Furthermore, both CP1 and CP2 show
a high frequency of occurrence in vowel /o/ during their picture naming task.

Table 4. The accuracy of each main vowel in the four subjects’ vowel production

Vowels CP1 CP2 TD1 TD2
i/ 100% 80% 100% 100%
/a/ 100% 100% 100% 75%
/ 100% 100% 100% 100%
/o/ 80% 25% 100% 50%

Table 4 indicates high accuracy in corner vowels (/i/, /a/, and /u/), while a respectively
lower accuracy in vowel /o/. Comparing to TD children, children with CP show a lower
accuracy of vowel production.

Overall vowel spaces

Figure 1 and Figure 2 show the un-normalized and normalized F1 and F2 of the four
children. The dots in the figure represent each individual vowel production. In the figure of
normalized vowel formant values, the influences of extrinsic vowel formant values are
reduced during the normalization procedure.
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Figure 2. Normalized vowel formant values of CPs and TDs.

As Figure 1 and Figure 2 show, the distribution of CPs’ individual vowel formant values
is scattered, while that of TDs is more concentrated and more easily recognized. Moreover,
the distinction of formant values distribution between central vowels and corner vowels was

20
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not clear in CPs.

Individual vowel spaces

F2 {Hz)

F2(H2)

500 1000 1500 2000 2500

0

1000 1500 2000 2500

500

_ g
o
(=)
©
N o
-4
ol g
B sy g
l")@, \‘I .
"-\ ‘-..‘_!, x =]
N DT g °
'\‘-{-\ -3
N i -
¥ =
""""" : bl = - i/
& Jaf = i/a),
o il - 4
5 Y 8 -x- 8l
- /5 59 E
e - sl
T T T T T T T T T T T
200 400 600 800 1000 1200 1400 0 500 1000 1500
F1 (Hz) F1 (H2)
@ . @
b
o~
oy
o o E
72 ) § it
s B 3 a
1% il > S Y. \\
LR e N 5 8 N ot
N Sas Grag Y ¥ 8 \'.'A"_.\‘._.
S = Ny
O Y th o e o
53 R & oo N
[=] o
o) e A
ial al
e - AT
e &) 2 -x- I8
-~ [E/ - [E/
- -
T T T T T T
500 1000 1500 0 500 1000 1500
F1 (Hz) F1(Hz)

Figure 3. Individual vowel spaces of CP1, CP2, TDI, and TD2.

Figure 3 illustrates that almost all individual vowel spaces in CPs are larger than in TDs,
especially in vowel /i/, /a/, and /e/. That is, the deviations of the formant values of CPs are
larger than those of TDs. Moreover, the overlapping of individual vowel categories looks
more obvious in CP children. Almost all individual vowels overlap with each other, and the
positions of vowel spaces gather to the central part, which reduces the distinction between

formant values of different individual vowels in CPs.

Table 5. Mean and standard deviation of F1 and F2 values of individual vowels and vowel
areas in 4 children

Vowels CP1 CcP2 TD1 TD2

F1 F2 F1 F2 F1 F2 F1 F2

/il 497 2285 493 2623 406 2541 413 2333
+(35.1) (121.5) (73.5) (130.3) (41) (90.2) (43) (110.1)

/al 778 1532 814 1618 917 1608 838 1598
(134.8) (100) (106.7) (233.7) (88.4) (128.3) (84.9) (100.9)

/u/ 539 1112 514 1141 504 1127 491 1142
(89.6) (150.9) (126.3) (104.7) (67.9) (110.6) (97.8) (132.6)

1/ 610 1477 539 1633 691 1503 578 1550
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(70.7)  (166.6) (116) (118.9) (101.4) (137) (62.1) (142.9)

Iel 587 2095 546 2330 591 2023 599 2042
(36.9) (102.9) (653) (162.2) (51.1) (61.3) (52.3) (43.5)
ol 632 1435 605 1504 619 1664 552 1525
(64.4) (209.3) (66.4) (78.2) (86.8) (120) (43.7) (75.8)
Vowel 152761 227608 315555 224572
area (Hz?)

+ Standard deviation reported in parentheses

Table 5 reveals the mean formant values of CP and TD groups. The CP group shows
higher F1 values in high vowels (/i/ and /u/) and lower F1 values in low vowel /a/. There is no
obvious difference between CP and TD group in F2 values. Moreover, the CP group shows a
larger standard deviation of vowel formant frequencies, which indicates the instability of
formant frequencies.

S0 20 B0
L !

F2(H)

1000

e cP

cP2
—t— TD1
=i TDZ

£
W

T
200 400 600 800 1000 1200 1400

F1(H2)

Figure 4. Overall vowel spaces of CP1, CP2, TD1, and TD2.

Compared with the TD group, the CP group shows a smaller overall vowel space. As
illustrated in Figure 4, both CP1 and CP2 show a limited range in F1 values, while in F2
values there is no obvious difference between the CP2 and TD groups.

Discussion

The findings indicate that children with CP show a wide and variable range of
distribution in individual vowel formant frequencies, while TD children’s data of formant
values are more concentrated and uniform. This is also found in previous study that the vowel
quadrilaterals of controls are uniform, while those of CPs are relatively variable [9]. The
deviation in vowel production might be attributable to CPs’ abnormal control of the tongue.
Moreover, the reduced distinction between corner vowels and other main vowels, and the
obvious overlapping of different individual vowel spaces in CP1 and CP2 also indicate a
reduced stability in vowel productions. Like what was found in the previous studies ([3], [7],
[10]), CP children show a smaller overall vowel space area than TD children.

F1 and F2 values are related, respectively, to the height and advancement of the tongue.
In this study, children with CP show a higher F1 in high vowel /i/ and /u/, while showing a
lower F1 in mid vowel /¢/ and low vowel /a/. That is, they have limited mobility of tongue
height. There is thus less of a distinction of F1 values between high and low vowels in
children with CP than in TD children [9]. The difference in F2 is less obvious between CP
and TD groups. Therefore, the limited F1 range contributes to the smaller vowel space in CP
children. This finding is different from [10] which indicated that children with dysarthria
used a lower tongue and jaw position to pronounce vowel/a/, and the dysarthric children’s
smaller vowel spaces were resulted from the reduction of F2 extent instead of F1.

4.2 Pitch
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Figure 5 shows the frequency of occurrence of tones. Tone 3 appears to be the least in
both groups. In addition, both TDs and CPs produced relatively more tonel than others.

TD and CP children’'s percentage of
each tone
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Figure 5. Frequency of occurrence of tones in TD and CP children

The accuracy and substitution patterns

As shown in Table 6, in TD 1, the accuracy rate of tone 1 is the highest among the four
tones. The accuracy rate is 96.97% (32 words). The lowest accuracy rate was found in tone 3,
which is 54.17% (13 words). TD 1 used tone 1, tone 2 and tone 4 to substitute for tone 3.
Moreover, the accuracy rate of tone 4 is higher than tone 2. For TD2, his highest accuracy
rate is tone 4 (96.65%; 22 words); while his lowest is tone 2 (70%; 14 words). Moreover,
tone 1 appears to be more accurate than tone 3.

For CP1, tone 4 has the highest accuracy rate among the four tones (84.21%; 16 words).
The lowest accuracy rate can be seen in tone 3, which is 61.11% (11 words). He used both
tone 2 and tone 4 to replace tone 3. Moreover, the accuracy rate of tone 1 is higher than that
of tone 2. For CP2, tone 1 has the highest accuracy rate, which is 81.82% (18 words.) The
lowest accuracy rate is tone 3, which is 60% (9 words). He used tone 2 and tone 4 to replace
tone 3. Moreover, the accuracy rate of tone 2 is higher than that of tone 4.

Table 6. The accuracy and substitution patterns in TD and CP children
Substitution TD1 TD2 CP1 CP2

1—1*

i

1—-2% 0 4 5 4
1—3%* 0 0 1 0
1 —4* 1 1 1 0
2—1% 2 0 0 4
2-2¢ SIS
2—3%* 4 6 2 0
2—4* 1 0 1 1
3—1* 3 0 0 0
3—2% 4 2 5 5
G
3—4* 4 1 2 1
4—1%* 2 0 0 6
4—2% 0 0 1 2
4—3%* 2 1 2 1
40t ISENGIN20l

* one that substitute for the target tone

Mean duration

Figure 6 shows the mean duration of each tone of the four children. Both TD and CP
children’s tone 2 is the longest. For CP children, their tone 4 is the shortest; however, TD
children’s tone 3 is the shortest. Moreover, the mean duration of four tones in CP is about 1.3
to 1.8 times longer than in TD.
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Figure 6. Mean duration of TDs' and CPs' fundamental frequency (Fo)

Mean standard deviation

Table 7 shows the mean standard deviation (SD) of pitch values in each individual tone
category in the four children. The higher the SD is, the more unstable the pitch value. In
general, the SDs of the pitch values of each tone in CPs are all higher than the SDs of TDs.
CPs’ SD is about 1.5-1.6 times larger than that of TDs. Therefore, the results indicated that
CP children’s pitch is indeed more unstable than TD children’s, reflecting the lack of
speech-motor control of children with cerebral palsy. In addition, for CP children, the SD of
their tone 3 is the highest of all, 26.4 Hz, which implies that the pitch development of tone 3
is the most unstable among the four tones. The possible reason is that tone 3 is considered the
most complicated in Chinese. According to a previous study [22], tone 3 has a tone notation
of 214, which means that tone 3 initially falls from 2 to 1 and then rises from 1 to 4.
Therefore, it takes CP children extra energy to produce tone 3, the most difficult one, under
the condition that they lack mature speech-motor control. That is why CP children’s tone 3
appears to be the most different from that of TD children.

Table 7. Mean standard deviation of fundamental frequency (Fo)

Tone 1 Tone 2 Tone 3 Tone 4
TDs 13.8 14.6 20.8 20.9
CPs 16.2 22.2 26.4 24.5

Mean slope

In Table 8, we can see that the mean slope of tone 1 in TDs is -0.191 Hz/ms, while CPs’
is -0.162 Hz/ms. Both TDs’ and CPs’ tone 1 tends to go below the level, causing a slight fall
for this high-level tone. This lowering of high-level tone can also be found in dysarthric
speakers of Cantonese [2] and in hearing-impaired Mandarin-speaking children ([13], [23]).
Furthermore, CPs’ tone 1 tends to approach the level more closely than that of TDs. The
possible explanation is that tone 1 for CP children is actually not a difficult tone to master
compared to the other tones. Tone 2 in Chinese has two segments of slope. Tone 2 is a
high-rising tone [22]. Before raising the pitch, speakers must temporarily and quickly lower it.
Therefore, there are two segments of slope of tone 2. CP children’s pitch movement of tone 2
looks very similar to that of TD children. CP children, at first, lowered their tone 2 and then
rose up just as TD children did when they produced tone 2. Like the pattern of tone 2, tone 3
has two segments of slope. The duration of the falling-down of tone 3 is longer than that of
tone 2. CP children’s tone 3 is more monotonous than that of TD children’s because their
slope, either from BP to IFP or from IFP to EP is closer to the level. The mean slope of TD
and CP subjects’ tone 4 (the high-falling tone) are negative. There is no obvious difference
between TDs” and CPs’ mean slope of tone 4. Compared to other tones, TDs’ and CPs’ tone 4
seem to be the most similar. Tone 4 for CP children is also a rather easy tone to master.
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Table 8. Mean slope of fundamental frequency (Fo)

Tone 1 Tone 2 Tone 3 Tone 4
TDs -0.191 -0.710 0.308 -0.631 0.348 -0.388
CPs -0.162 -0.795 0.262 -0.534 0.212 -0.348

Discussion

CP children’s pitch differs from that of TD children in mean duration and in mean
standard deviation. It was found that CP children tend to spend more time and make more
efforts in speech production due to the disorder of speech-motor control. In addition, the
results of SD indicated that pitch production of CP children is more unstable than TD
children’s, reflecting the lack of speech-motor control. As for the mean slope of each tone,
there is no obvious difference between TD and CP children.

In general, for both TD and CP children, tone 1 and tone 4 are easier to handle than the
other tones. Therefore, the accuracy rate of both tone 1 and tone 4 is the highest among the
four tones for both TD and CP children. The tone values of tone 1 and tone 4 are 55 and 51,
respectively [22]. The procedure involved in the production of these two tones is relatively
easy. In contrast, tone 3 for TD1, CP1 and CP2 is considered the most difficult tone to
produce because the accuracy rate is the lowest among the four tones. Although the most
difficult tone for TD2 seems to be tone 2, the accuracy rate of TD2’s tone 3 is also low
(72.73%; 8 words). The tone value of tone 3 is 214 [22], which is difficult for both TD and
CP children.

4.3 Speech rate
Speech rate: the results of both SPM and ISPM of four subjects are presented in figure 1.
Both SPM and ISPM of CP1 and CP2 are slower than TD1 and TD2.

(1) SPM: although CP1 performed the slowest SPM among the four, the rates of the four
subjects were actually close. If we take further examination of CP2, his rate of SPM
was 239 SPM, which could almost compete with the typically developing children,
which were 254 SPM and 272 SPM respectively.

(2) ISPM: the differences between the group of CP children and the group of TD
children are extended. While the rates of typically developing children remain
almost the same, the rates of the group with cerebral palsy dropped much more
slowly, especially in CP2. CP2 produced the rapid speech rate with a lower

intelligibility.
SPM& ISPM
300
200
B SPM
100 B ISPM
0

CP1 CP2 TD1 TD2

Figure 7. Speech rate in SPM (syllables per minute) and ISPM (intelligibles syllable per
minute) of the four children

Speech intelligibility: in the part of speech intelligibility, the results in CP1 and CP2 were
76% and 63%, and in TD1 and TD2 were 98% and 92%, respectively. Compared with the
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speech rate, there is an obvious difference between CP children and TD children. Both CP1
and CP2 showed a lower intelligibility. Moreover, CP2’s speech intelligibility was only 63%,
which is the lowest of the four children. Compared to the group with cerebral palsy, TD1 and
TD2 showed relatively high intelligibility, at 98% and 92% respectively. Furthermore,
combined with the result of ISPM, although CP2 is the rapid speaker, his intelligibility has
been affected by this rapidness and dropped more apparently than other three children. While
CP1 produced the slower speech rate, his speech intelligibility was higher than CP2.

Discussion

Compared to that of typically developing children, the speech rate of the children with
cerebral palsy group is slower. The findings in this paper that both SPM and ISPM of CP
children are slower than TD children are consistent with the dysarthria literature ([3], [15],
[16]). Moreover, group with cerebral palsy also demonstrated the lower speech intelligibility.
Nevertheless, there were individual differences in CP children, especially in the case of CP2.
CP2 showed similar speech rate as the TD group in SPM, which was much faster than CP1.
This might be due to the different type of cerebral palsy. In this study, although CP1 is less
severe than CP2 in cerebral palsy, CP1 is diagnosed with dyskinetic quadriplegia, and this
type of cerebral palsy usually affects the speech production more obviously. Ingram and Barn
[24] propose that the reason leading to dyskinetic dysarthria is generally because the motor
control of the voluntary articulator in dyskinetic speakers has been aggravated by their
involuntary movements, which leads to the disruption of the speech. Although there is
disagreement in some of the latter findings [25], the influences of involuntary movements on
the speech production of dyskinetic speakers merit investigation in future studies. As to CP2,
his rapid speech may result from the repetition of the target items in picture naming. Through
these repetitions, the duration of the repeated utterances became shorter. The repeated
utterances take up 15% of the whole data, which might explain the fast speech rate of CP2.
Furthermore, while examining the repeated utterances in CP2, it was found that even though
children with cerebral palsy have some speech defects, they have the ability to adjust their
speech rate at will. In the recording, when CP2 was mischievously playing with adults, he
obviously slowed down or sped up the rate of the target utterances. This finding confirms
previous literature that the dysarthric speakers can adjust their rate as needed, revealing that
they are capable of planning speech production. From this rate flexibility in CP children, we
can respond to the statement in LeDorze, Ouellet, and Ryalls [6] that the speech deficit in
dysarthric speakers is a matter of performance, not of competence.

5. Summary and further studies

Due to the deficit of speech-motor control, children with cerebral palsy show substantial
differences in speech production comparing with typically developing children. Regarding
vowel space, CP children have scattered and non-uniform formant values of each vowel,
which reflects that children with CP have a relative lack of ability to coordinate and control
the movements of the tongue. Furthermore, the vowel space of CP children is smaller than
that of TD children. This finding suggests that CP children have limited tongue mobility. As
to pitch features of CP children, the mean duration of each tone in CP children is longer than
that in TD children. This finding indicated that CP children tend to spend more time
producing speech because of their impaired speech-motor control. In addition, pitch
production in CP children tends to be more unstable than in TD children. With regard to
speech rate, CP children have slower rate and reduced intelligibility than children who do not
have CP. Moreover, a slower speech rate can improve the intelligibility of speech in children
with CP.

The limitations in this preliminary study suggest directions for future research. First, the
number of children included for analysis is limited. Future studies with more participants
would yield more objective results, and the correlation of CP children’s speech rate and their
speech intelligibility could be verified. Second, the findings of this study were just based on

26



Proceedings of the Twenty-Fourth Conference on Computational Linguistics and Speech Processing (ROCLING 2012)

the observation of 4-year-old children. Extended longitudinal observation can provide more
complete data of the individual differences and the profile of the development in vowels,
pitch patterns, speech rate, and other speech and language characteristics. Third, the
background disturbance in the recording procedures compromised the quality of the
recordings. The background noises made the measurement of vowel formant frequency and
pitch values difficult.

Moreover, pitch production in CP children tends to be very inconsistent. Even within a
monosyllabic utterance, CP children make constant changes in pitch. For instance, CP
children pronounced “dian” in “dianshi” (television) as “dian én.” The pitch movement of
this utterance looked abnormal and changing (Figure 8). The change of pitch within one
monosyllabic utterance is very common in the data of CP children. Therefore, this also
created some difficulties in the transcription and later in pitch analysis.

e il

Figure 8. CP children’s bumpy pitch movement due to pitch changes within one syllable

Furthermore, speech productions of CP children tend to be fractured and discontinuous,
just like grow pulse in [26]. It seems that CP children press the muscles too strongly in their
larynx while speaking. Thus, the pitch movement shown in Figure 9 appears to be unstable,
bumpy, and usually broken. The bumpy and unstable pitch movement makes the
measurement of fundamental frequency very difficult.

Figure 9. CP children’s bumpy pitch movement due to growl pulse

Last, in this study, the spontancous speech data used in speech rate analysis, inevitably
introduces variables. During the recording procedures, when the children became bored about
the tasks they had to perform, they would produce faster and more unintelligible speech
because of their impatience. This affected the study results. Accordingly, if we could
minimize or eliminate these limitations in future or extended studies, the findings would be
valuable for clinical speech-language intervention.
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Abstract

The researches of sentiment analysis aim at exploring the emotional state of writers. The
analysis highly depends on the application domains. Analyzing sentiments of the articles in
different domains may have different results. In this study, we focus on corpora from three
different domains in Traditional and Simplified Chinese, then examine the polarity degrees of
vocabularies in these three domains, and propose methods to capture sentiment differences.
Finally, we apply the results to sentiment classification with supervised SVM learning. The
experiments show that the proposed methods can effectively improve the sentiment
classification performance.
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Abstract
This paper focuses on problems of attachment of prepositional phrases (PPs) and
problems of prepositional suggestions. We transform the problems of PPs attach-
ment and prepositional suggestions into an abstract model, and apply the same com-
putational procedures to solve these two problems. The common model features four
headwords, i.e., the verb, the first noun, the preposition, and the second noun in the
prepositional phrases. Our methods consider the semantic features of the headwords
in WordNet to train classification models, and apply the learned models for tackling
the attachment and suggestion problems. This exploration of PP attachment problems
is special in that only those PPs that are almost equally possible to attach to the verb
and the first noun were used in the study. The proposed models consider only four
headwords to achieve satisfactory performances. This study reconfirms that semantic
information is instrument for both PP attachment and prepositional suggestions.
keyword : semantic analysis, machine translation, text proofreading
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KA R ERIXE ETF & B (context-free ) 89 &2 F £ o 13 =48 P28 &8 69 IF
I REFERE REEL TH3E - L08R E— N4E-LFRE | 9% flLhn
Bd s T8y - 438 — N 4E -3 = (V-NI-P-N2) |- PR E & LE 0T R
SHEEEREEE c R ABRE AP B E O WEE R P OIS AR R H
8 o BAIHA WordNet I8 X9 A PR RAFBRB AN BTRRE LR ARE
EfrE o BARABRNEMERENEHYYREILAETA -2 RAER/NA TR Bfodk
BIEFESN A3 -

AR BRFIBEN AR BEMPI AN AFREE AR M T — B3R H
fbe NAFRBEMEA  ARETALAZFTY > THEAWBSELSL  BaEE ~ 1546435
—HETRAET - RIIEICA R A SSRGS L3 —FTH - NAFHRBE R
ERRBEEE ~ LF —FLE W BNT > ZEETRAR—EN A3 - BBRIER
RRILRAA—BEE RREAA —BELEENES - A4 AREHEBENNA
FME R -

NE&BER B MY AARERGB R LB FRE > N2 EEE PR T
— 1B % AR FRUA > BERN > RFITAE HIEEF AT S ENBERS -

A HHNAZFARBRMAOPIE > FEEFERIALEPDEAANLAARLE —F
— Az b ey B Al o 2R M A4 Ratnaparkhi & A [12] A7 260 F 03358 & > 52 RRR
SRR S AN AEBRESAGER &Rk 1H- 0 P NPP A%4 458
N43FRE > @ VPP A5 &R0 A E R 3E o 7T A BLE — B & 3 89 Z A4 DL
AABRE » R RMOAR GEHHEEN AT FoaEm LR -

% 1: RRR &4} & » NPP #2 VPP &% &

/%3 [NPP VPP | #43 || /%3 [ NPP VPP | 423 || /%3 [ NPP VPP | 4%
about | 187 86 |273 || for 1342 1310 | 2652 || of 6553 61 6614
as 123 497 | 620 || from 360 716 | 1076 || on 736 826 | 1562
at 166 594 | 760 || in 1999 2061 | 4060 | to 566 1486 | 2052
by 151 326 | 477 || like 30 21 51 with 397 739 | 1136

HRRRAE AN AR FZBEAORAY » AR RLERS & W@ R 6 R

' & Chris Manning #= Hinrich Schiitze > Foundations of statistical natural language prochessing & # 8.3
Zhttps://sites.google.com/site/adwaitratnaparkhi/publications/ppa.tar.gz?attredirects=0&d=1

P}
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A% (Max Entropy ) 4F > {2824 & EF X8 Stanford B S B R L ER S - M A
N %E B e AR R RN B AT H R R R AR — N ETE -

N AFGAB AR > — AT S EHEE AR B AR > Baldwin % A [2] #* 2009
F BBEATFEIAESRNAFAMOFE AT a6 TARRA BB BN 4
A -

WIS ARV ZERAKRRTRITO T RAABRANZFA R ZEMMAE (o
Hindle #= Rooth [8] ~ Liu % A [9] #» Ratnaparkhi 5 A ) > &% AFARKBFHMBE NS
R pEmEFCHE  EHE LB - N AFENELE —c AR E TR BEH
MERITBEASTENAFR B TR AL o KM H BRI E F o3 0 Atterer fu
Schiitze [1] 45 H BEE X AR A B E MR - (2 RAAFRE BX P OB L okl HFPo
O BRAF R A AT R B 6y — 3R 0 HRATHER 0 3 8y F 3 R R AR SE Stanford B AT 53 0 W
Stanford & 47 A & 2 3 £ Collins [3] 89#F %2 L ©

FERY XK > TAEBGENAFHH B Teh4F & 0 4o Stetina #v Nagao [13] R E
BE—ENAFREFESENESR  c BEXITONAFAEIRAEBRASIX > TH2F % 1>
Blha %28 “of K % BHYBFEH A T AL L3 o Bk Coppola EAMEER T H “of #y
I

BB AR AR AR R RN LR FRGMAR  BAHFLARASER
HABXEERA > BARARL TN AFRE ) 69 )T 4 M %A De Felice fu
Pulman [5] ~ Gamon % A [7] #v Tetreault #2 Chodorow [14] °

KB B A& R A i =5« —EPE R R A4S > % — Py & £ IE © De Felice
#u Pulman [6] ~ Gamon % A#v Helping Our Own 2012 Shared Task ( Wu % A [16] ## Quan
FA[11]) # 2 A% % £ - De Felice #v Pulman [5] £ % EN 4 % - AFF b2 %
ENGE REARR  BIIRIEBERAR —BRE > 2R ARFRR LM > AT
BAIEFAAN R FIRE

De Felice #v Pulman [5] 895 R $LRBF R &9 A F 4 B R 848 > BIARAE A UK E
REGER R IGRAEA > B TRRGEFRON A -

2 BHANE
2.1 MR

A% 45 B Peen Treebank 3 (LA T ffi#% PTB3) ¥ RRR RAE AN 438 K B &AL
BB R MABTRENRETEHREENZARBNZHE -

RRR RRR 35#} & % &5 Ratnaparkhi % A [12] & PTB0.5 B % sk o £ & & — % TR0
#48% PTB0.5 #3) h 33 P ey w8 F o R) ML iR se > KAIF S sk A2 A RRR
# X o

PTB3 PTB3 2 —fEi§ B KRBT LML EHRE » A3 % B KRBT RPN REER
BRAETAEZE  KARERAUBRALZBRAARAEZIR  BEYNRAAS TS mERS
B3Rt 2499 B AR E > LA 98732 &) LEMEALeh &) F 0 AL B AFEE ) F R 25 & e
ERSARAEYFTR AMAERAD R B LB EE ERE T 2011 £33
AR N B a4 T E BB 3ReY 68983 &) Fukr H BFIR ey 55358 &) o MAB ML
ERATDMABNMEERE  MEHFRABNELSANRE - B AREIFY
SR G R AEBABRBARGAE -
22 WRIE

ARIZEIR 5T o) Fahlr o) Sl d7 ~ PO IR ~ FHMEBIE A R BB A Pt
BN AEETE - ARETSLSEE 1 B EFISAMRERIL  FTEIFEATHLE
KB EANRTRIZOMSE - £ H E R4 B MAa H 0TI TE B4 B 6) B3 47 &) T 09 42 B
WIRE {E A PTB3 3k & > B R M EHEM PRR P OHGALMBLRIE  #£H RRR
TR R A RBIE S RIE c AT A B EER RRR 9 EHEX > Bh— R

3Stanford Parser 2.0 #& (2012 4 2 A 3 B ) http://nlp.stanford.edu/software/lex-parser.shtm]
“http://asia.wsj.com/home-page
Shttp://www.nytimes.com/

34



Proceedings of the Twenty-Fourth Conference on Computational Linguistics and Speech Processing (ROCLING 2012)

BN o MBI A —HER W T BNES T P ORLEEH ~ REFFHIARA
B AR AL o HAN H 3 RSB RAR > BLE AR A AR S A6 3R 4
L AMEARLGN AT - BEZHBENRAASAHEAABREERS > ENALFE
£ BULAMA RRRZEFHE S E - HNN AR B R AARIHER S RALE
RSN 5HF -

[ i & 4o 21 # ]—»[ B 3] 4 IR ]—{ T *{E;}Al";i;&
T

T T
% /%8 m
[ 4 ) B IR j[: P8 j(: SRR j

1: ATRIEARAZE

221 & -FRA Sl 4

FAr A1 A Stanford 147 % ¥ Lingpipe®i§ Fr L & 643547 6) > BT REYG T =¥y
G A £ 6 F o B F B A A Stanford 47 B B G T 96 F > AR TIF R A48
222 PuHEIHR

FEM AL T EER P ORI o R0 BAZ K SR T LS 85 8 3
REFNNAFREZ wE 200E 3R A B LR LGB EINN AT R B
#£1 4% A Penn Treebank &8 4% & 5= ° 18 — B &4 s A 69 K B B 47 PP 32 18 & 25 5 #
NP A VPZTF - —EEBEYT VP FTHRASHEILERTARRMENEE > wilhE
R -BEFEIN LTEENA3E 0 “to) BENLRF GBI ETR TO ° HAE
Fl Stanford Tregrex’ tb ¥ B 2Fu B 3694k K -

VB| VB|

VBD)| VBD|

VBG| \ VBG|

VBN| _ . VBN

VBP| || NP1 \ VBP|

VBZ "IFI\(I)| VBZ
2: B3 R 3B 1540 4 ) 3: #13E R 3E: 15 A6 83

RE2H6F EKEABZMEHRGBAZ S CHAEGE 3&H - b wiEH a4
& 2R E M o TiE A A Stanford 2|47 2% 49 SemanticHeadFinder®$8 % #% &) v {8 £ &
REmeg P o FRHERwE 2P OE AT o

& 2. (( S (NP-SBJ (DT The) (JJ Venezuelan) (JJ central) (NN bank) )
(VP (VBD set) (NP (PP (NP (DT a)(ADJP (CD 30) (NN %) )(NN floor) )

(IN on)(NP (DT the) (NN bidding) ))))(. .) ))
& 20 P uEdhER

R 3% LN
)37 (VBD set) set
43 kh3E— || (NP (NP (DT a) (ADJP (CD 30) (NN %) ) (NN floor))) floor
%39 (IN for) for
43 k3% = || (NP (DT the) (NN bidding) ) bidding

223 #HBIR

ERAIGBRRAL > LA R D G FE AEE LG TREH —LHke it
BFHERA T O 0 Blde D% o R BB T A RAT TE T AR AL
8 Bk BRMeFAB LA RBFRIE -

Ohttp://alias-i.com/lingpipe/

7Stanford Tregrex 2.0.1 k& (2012 4 1 A 6 8 ) » http://nlp.stanford.edu/software/tregex.shtml
8http://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/trees/SemanticHeadFinder.html
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T Bz o i 38 A RRR #9354 & 48 & Ratnaparkhi % A 83218 >
12 Pantel #v Lin [10] 4 RRR 34} B2 2] 133 £ 43¥ — R £3¥ =% “the” > PTB3 &4,
H B3 “the” WA ERALFGEW o B 4ME RRR ¥ PTB3 3E4 B34 — 4k 438 &
“a” & “an” B9 o EMEHE I 0 RAVTAF AL B R o

sboh > B g e A A WordNet I #ER - % > BOTERAZOFNEHHFMN > o
R WordNet 4 F &84T E £ 3% (synset) > A& 4R o

Coppola 5 A [4] B4 %] > R 43— AR ELH > AN AFARZARFHOEER A M
NEE o B —F @ R A BRI AFT WordNet W > B sk £ 3# AR L B LA R
e —ABFF S PR F b GBI o

HRA L AL AR R B e 593 B 3B B4 w a4 Rl ey oo
NARBERAARAAREN - AN A FEE R AL EHE ~ 538 —Fo 43
AR fENAEAE B LER c LB K BATEARAAR Y RRIE
s 2 AR B3R o

224 HBEJBHELGN A

ANAFARBEAGEAY  ROFAE—BENAFAFHILrBE > DHBSH L
B EEEARE T EO BB L ETUAH AN ERBL T A BIEA S
%3 “of P AERATFIEN BB IESFAGN A o BB EAIBMENAFE 0 B AK
BIERAMBEEREZEBELY  AIARFEHERYD - BUARMIHEA Entropy 4 R,
(1) FodB R 32 AR HEN 237 BN B IR RTFHALBELZHNAH -

Entropy = _ —Pr(d)log, Pr(d) (1)
deD

K1) F o “off BB NAFERBEMMESA D BRF B yRL D =
{VPP,NPP} > Pr(d) A14545 % 3 811545 8y 33 4l 89 Lot © B b > /AP T S 4o Pr(NPP) =
6553/6614 ~ Pr(VPP) = 16/6614 » &% 7T A3t B & Entropy ° Entropy B a8 K &=
T %F =B 48 %) 69 30 2 AR AR B P BRI -

ENZAEENRATY > ROGKEHNEREEERIONE3E -
2.3 B eysEH

B a9B M R RAGd 220 AT RIBE HIEFRGER - N AF R BRI EH
FHA9HF A RRR FREERI 0N AR A E > BB L ARMOGKIT T > BESHENN 43
S ETFHRERSW - N AFAEEMABRAZRENNA2FARE S EARE mEZNN
%% o Hiz AR AEFIIE T — @4 4 (Distribution ) * 4 4 69 & & & AL T L
HRRMAEOHEEE -

NAFRBRARAE  RIFONZAREIHAOEL > 2B TE X Q2) X Q)
8 Pr(VPP) $& Pr(NPP) & 154683 S5 46 4 35 fe 350 B AR AL1F 48 S 09 L fal o

Distribution = Max(Pr(V'), Pr(N)) (2)

N HFAERE LA RO BRFERSHEBENZADREOEL > BLRE AN %3
AEMNEBEAEFAEF IS wX Q) HF |z k- HBREE - mAEa > H
Ko AARUEB A RIBEHEBHE

Distribution = |Preposition|/|Total 3)

231 NAFERBRAEH

K3~ %k 4R SERRREZHEHHEBEZILER > KMELE “for” ~ “on” ~ “in”
 “with” ~ “from” fo “to” > AP AIZENA PN ARE L B R EAEN 0 MBE=F
A RMESERATFHOERL > REETABKENENAE —RBET R - ILREH -
BB R AR B AR EHEERS o

* 6~ & THok 8% PTB3 :@EZ 694K » A e E ¥ RRR KRB A E 8 - A
Stanford |47 B #Ltb#x » FHZATE R PTB3 89 02 2] 21 & #OR3R3BH 0 22 8 B 3E )
00 ~ 01 ~ 23 Fu 24 & fR3REH} ©
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% 3: RRR AT R IR & 2. 2|4k 358 % 4: RRR AT R FE & R B skt

i S n  Entropy %% NAF v n  Entropy %% %

for 829 869  0.9996 51.18% for 147 169  0.9965 53.48%
on 512 485 09995 51.35% on 120 100  0.9940 54.55%
in 1392 1314 0.9994 51.44% in 272 289 09993 51.52%
with 454 268 09516 62.88% with 73 47 0.9659  60.83%
from 451 237 09290 65.55% from 74 52 0.9779  58.73%
to 1145 394  0.8207 74.40% to 190 82 0.8831  69.85%
e 4783 3567 09846  57.28% RS 876 739  0.9948  54.24%

% 5: RRR AT R I 4 R A4 # 6: PTB3 AT R IZ & R 3| 4Rk35 4
%% v n Entropy & %% v n Entropy 7%
for 111 148 0.9852 57.14% for 732 892 09930  54.93%
on 66 93 0.9791 58.49% on 512 523  0.9999 50.53%
in 156 200 09890  56.18% in 15311241 0.9921 55.23%
with 55 35 0.9641 61.11% with 450 269 0.9538 62.59%
from 60 32 0.9321 65.22% from 441 290 0.9690  60.33%
to 135 76 0.9428  63.98% to 1064335 0.7941 76.05%
A 583 584 1.0000  50.04% A 47303550 0.9853 57.13%

# 7: PTB3 A & 3L & R BrsEsBft % 8: PTB3 AT 32 &8 R R
%% v n  Entropy A& %% v n  Entropy A%
for 23 39 0.9514  62.90% for 115 189 0.9568 62.17%
on 30 22 0.9829 57.69% on 104 101 0.9998 50.73%
in 72 61 0.9951 54.14% in 288 289 0.1000  50.09%
with 10 5 0.9183 66.67% with 74 51 0.9754  59.20%
from 14 10 0.9799  58.33% from 77 46 0.9537  62.60%
to 34 16 0.9044  68.00% to 182 77 0.8780  70.27%

IS 183 153 0.9942  54.46% combine 840 753 0.9978  52.73%

R OT & QBRER R s % KR OPTBIATRELR I AIREHNR 4 a#
] 4.};.[%3\%}? ¢] 3% Stanford |#7 & 3/ % > for on in with  from to
BN R E AL EEFE - 296 203 546 122 120 232

232 NAHEHRBEH
£ 102 S BB AMY: ++& KAV R I 603 E R R DR~ B R 0 A PR
BEBR S 11BN AT -
*10: 2R DR AOFRATREL R

FES AR B A HES-§ AR B R
¥E oh% | HE ’\Z"ﬁ?? HE nh% | HE ’\#ﬁ??
of 7341  28.36% | 2390 27.71% from | 1300 5.02% 413 4.79%
in 5353  20.68% | 1801 20.88% at 1109 4.28% 359 4.16%
for 2892  11.17% 916 10.62% as 694 2.68% 239 2.77%
to 2471 9.55% 892 10.34% by 522 2.02% 162 1.88%
on 2248 8.68% 768 8.91% about | 329 1.27% 112 1.30%
with 1625 6.28% 572 6.63% 42 | 25884 28.36% | 8624 27.71%
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3 MRF%

B E2H BRI > TUUTR EE R S wE TR §E s L8 — - AR ER
LE = ARFIARE > KRIVFZwE T OERE L CIEE > EEHEOEET
MNRFVR B R P RREHE— AR b A -

30 HHERHE

4 3% WordNet &34 M R 69 B R\ EAR KRFIRA THHM > AR FHAZL—EF
WoOMBERITHLIMBERENEE R, ASHAFTLZ LM BT
Tl — B E R kA -

R BHMRIE S THM BB E M B nETRARE RS ELNA
2o RAMERG LA FHMIEEILE — B8 o @RGSR TT N B E Tk
REMNGLE  RIOBLABRSEMELYER - B O0EEZEAN KBS EIL
B TARRGRERR °
3.1.1 #H#Fit

HAHNE =L XA AR 2R - £ — 184 % WordNet B2 893E £ F -
HEMBE—BRRFDNEINRGEFAAVRRAE ) —UEEZ RO ZFAA &
LHREAHENGLA FHELENASBEGE Y EENEZR BtEE2ENA
F—AEROBREPHE—EHIRERANEE  TORME ——N8BEF—FRELNH T
® -

Uk SRR TRIAGBEHMERE 1820 BREAMARAKRADNENAALHENS
fr o — 1B %% i@ WordNet T A BB KRB EUNRERGEHAAHRRFE - L
ARAPERFEHU L KT RIAARBELO0 &5 °

Bk —UREBEHRFETRAEAEERAET > Am—BARKAETEH AR
Loy bAnE) s TS AR KRB EDNRNIBHRBL R R — 15 Hb{ZMD AT N
R RZTFHSHEEEFENE LR ERABARKFELZ A AT EENE
£ BB AL UEBMAR ARG 25 XWBREAMEGE &P E 0 ARERK
FEBEE LG BB RALH  REBEMANBEITELY Rk ERIKAEL
—EE P E M-

4% 5~ 8 2@ “eat’ & WordNet #9 4 *kroot** ]
o BB AL ETAE AR {* x ; ' :
root + x) BB B 0 4 B P )6 E T consume, ingest, take in, take, have ]
% ) WordNet 4% %] 89 35 & (sense) % 3% ° ((Q eat ] @ feed, eat J
I

B 7 38 RFRGIK 1 BF RSB

Bed T BB R A 1 cat )J e

Ml =4l A R %BIE 2 9L {eat) — 4: AE3E “eat” Aipl
{consume,ingest,takein,take, have} — {x * root * x}> B AF X #HIK 2 > R A &£
WGBS ALEEAR ARG ELEREA 1 FARBRK 1 HBE=
% o 3 & {eat} — {eat} — {consume,ingest,takein,take, have} — {x * root * x} Fu
{eat} — {consume,ingest, takein, take, have} — {x x root * x} > EB1E KM g4 1 -F
BN ARIBAT > Bl LI AR B ey BB B B R &R 0.5 © B &ATE G F)
— AR R FHENE RFE > R RGBT 0 AFBEA 3MERE RFE {cat}
{consume, ingest, takein, take, have} Fa {* x root * x} & EHA &) » BRI R A5 IE
FEARERAE E e 0.5 AR X R A 1 X SIS AA 0 &Rhok 1145 AT -
wxi% > BHABMERRFANEFHREBORIE - XA NARHE | LARGKE2 T8
=8 {eat} BB &Ih %) {cal} B BREAHF —R» RSB MERE /B NE
KRB BB {eat} KB B REBA R > HLELOERMBMWBBRU2 -
EALH & Rdo K 1277 %
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* 11: B g1t

B git || hoiB o4t L
EEXY T3 1 7 1 2 * 12: &Hr2 21t
BAE 1 211 1 A& | w3 Fst
{eat} 05 05| X[ 1 X F & % %
{eat} 05 X | 105 1 feat} | 1 1 I
{consume, ingest, {eat} 1.5 0.75 1.5
takein, take, have} 0.5 051 ! !
{* *x Toot x *} 05 05| 1 1 1

Rt mpykiated > Rk R ER AN BT LK E £ EAL R
SR THREBHRBEE LR HBAMAALTBRERELEYREZFE -

El A LA “eat” A5 > B4R GIAZLRE & 11 » ik AR Bl &R 3F Ewbany & R
ERAL > ERAZ B RZ G EILOERBLD 03] 1 2/ & 1209 A A R ERL -

3.1.2  H#Umi#

B AR B A e 8 R &R R ERAE Rl AR A & i@ WordNet & 3)
hE g WERIMERFNEIRGEBRAANRRFE > FARERELEH B LK
BB ETRERBGEE > ETUTGRMRE - LEBREEZOME BREREFXE
WordNet & % & X o9 2244 ££ 3.1. 18 2 ABEME R (bag of word) #A&Z/Le I X & »
LHhoNT — R XM es c R TRMATNNEB _FoHEr K

FHRIER 455 L H G % WordNet AT 86948 % > £ WordNet A7 32 36948 & R 1% 2 4F
HFEmOBEER > MAAARARGEAR - ARERMOAR T FAMBEBR L RRE > {2
I B FRAT T A P F A ) R AT o BEF ARG FORARE A E] -

2 A{eat} — {consume, ingest, takein, take, have} — {x x root x x} ZAFIEAE B fp] » £

WordNet #AP17T LA &30 2] {eat} BB F] & 3% % /£ WordNet #8948 F 5% 13 > B b KA 13
REBHRBEEZERNRTHEEMS -
BARE BRORERANZHBIRGB/AEBYHBHET  LHABORE -
ERARP ISR A — R0 MG E-PFHRER - 2 ROREAAR > AZE &
FERBRMRABTEE > RIMRAAEE - B RIEZRREUNEBEAT B
RERZFNELE3LIG T LR -

B4k 2 {eat} — {consume,ingest, takein, take, have} — {* * root x x} EAFIEAE K]
BEERERA A3 —2—1°
32 HEUEHE

—MBFETRES & AEAKMAEERERRE > MARAAE TRYERRLRER
R Fh FALE R AN 0L (feature pool) > PR AAF GBI BB E G IEF M S 0 4
BObEORAT A EE O E RFVE o A HRBCLIEFRAR © M ey B4 WordNet £330 R
PIT LA RS S R LA T R R B4 o RObRIIRGT T — 2R XA REF S &
MmABEBHRIER XNGEFEZ > ETUREBEREMRGELE > BEAN AR RMBHEY
BRERAG > BBRAARMI RGP REEATREERE R LR T AR R -

321 MBRAERHE

PR RBEFHETEFFEE 1T - B RMNEBAAZHFH =BT A
F LR LE = (N AFREBRMMBAL T SN 43 N AFEE AW
NA4FAZELE) £ WordNet BH R ZAE R RG B IAA R RFNE > L HAF
BRI RPN EMKB B - B ARBECCER A ZRHNRERORZRAE
2R Bk ey AR 318 6 iR A A BUA AL o B8 3228 BB
FEREMOYRERAE  HETWRAAECERLET —EEHROLEEXNEE S &
WEHOR RFERN RME AT EERMEE XEBEF P @ BRI RIA o BT
WT BB NE LR RFAELRARMENR KA E o) B3 > € BHEEt
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ARG EMME B REE > Wb R B H B KA 3 o B4R SR A AT T ey KO R %
HHUEBVFEFILE - Z—FH ANEERFNELRGTEREMESMH Y > BFEH
BARPE R X EE > TEI GRS B Y -

KRAVIE LA SA S RERE X EZRE - B 5% —18 51689 WordNet 4% » & —
BN E—EREZFNE > HF S, REARRAENHIE - & 13LHLNEBIRE > &
BHBMRA=ZEES > K=EF o HEHbr—18  &—18 <3 %% WordNet & 2874
HEVE SR ZGIEBAREG I S, 02 - Bl RFEFILYBE > ROR_TEME
R

FOEERBRLETMBOER - BARFEHREFAAE ECAREENRZRANEES
FOMREM EEHRIRFER S~ S, fv Sy BUR_UkEIL S &Rk 144K
0° ZB 32245 EBIRFBIEL > B3R S, 1 S, A EHRMEL TR ARNE
B BRJE SRR @ HE S, 8y EAxE Sy Fu Sy 6y B4 S A E o JbBF S Bl R S, 8
bAuzE o HbHN VP2 ERME > VP2 5 —EHW 2 EEM  BEZ B EHZLH
BHOF SR 4R BEAEE REEF > wRBMAK S WEHRS, #
Lhok 148K 2 om0 AREN VP2 BEER Sy ERAARRGLE - AF =R %
BEHKS, AIEMLE S, 25, CEHFE > FFUBEMHREHUEERD R I Lo
14148 3 -

& 13: fAL3EH R £ )

%k R RFEEZAREG KRG
VP1 {51} — {S3} — {54}

VP2 {S3} — {S3} — {S4}

VP3  {S5} —{S:} — {57} — {54}

5: fi41t &) WordNet 44
F 14: 88 XEF ) X

A0 A 1 X 2 4K 3
A% A ICH S S5 Ss S Se S4 S Se S4 Se
VPI 1 0 0 1 0 0 1 0 0 1 0
VP2 0 1 0 1 1 0 1 1 0 1 0
VP3 0 0 1 0 0 1 1 0 1 1 1

3.2.2 #HEEH

MR T R T A A =4 (—) A E X440 A 6948 3 3 3B 08 K48 09 3R
o0 (=) #EMbf) (gainratio) 3t HBE MG E N 0 9458 (=) HE R
(collocation) Bl &%#F % - #BEWE KFNE R T LM ZILRERHRER LR LR KM
R LA $% AP A H B L 4 S AL 3B oA B AR 3 B, o
PR ERMBECEETET O BRI RA RPN ERZAAMEZ AT HREA -
bR Mgt S EEROEHMEZEOPHALAN R BEADSNBHMNARKRE R
HEP) 3 3% =B PG 0 AR R AR 10 S PIABAA B ok & A RIE -
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REE 1R AR pcssE
WA EHE
Bl N E#REREAMSY
find_representational features for each generation(Corpus)
(3B R B8 Ep 09 838 ~ &3 — Ao & 3 U BUR 32 )
for all ¢ € Corpus do
fPeandidate < feature processing(c)
end for
i=0{ X}
for all c € Corpus do
g; < find all leaves in candidate feature pool(c)
end for
while (terminal conditions cannot be satisfied) do
ft = build feature vector(fpcandidates i)
Preepeds TPabandonea = select_feature(ft)
i=i+1 { EAT—EHAX}
gi < fpkeeped
for all f € fpupandonea do
gi < ﬁnd_hypenyms(f, fpkeepeda fpabandoned)
end for
end while
return g

REE 2 FH 43
ﬁnd_hypenyms(fa fpkeepeda fpabandoned)
ch = find canditante hynernyms(f)
for all h € ch do
if (h Q fpk’eeped Vh € fpabandoned) then
hypernyms < h
end if
end for
return hypernyms

3R — R AR E R G B EGE AR RIS + LR —a e Rk o B8
ERAHRA] - HAA E T AF IR — e R B R R

33 BAZH
BRGEIES > T— 5 A B RS ST E G Ak REs -
331 EEHAZE

B H AN R F R BRI T — 2 507 Naive Bayes 8978 Bk > #5 A4 K &4
Ao ORABRRRARGERTHBAMRAARL - AFZHNZFAZXIT » HZMFEN
FHAB—HHMMAHE ~ 2FE—BEF R RFERS c EEXERAFNERLY
HATF ﬁmﬁ&@%iEﬁ%mé%@ﬁ&@Tu%mﬁ%ﬂimm%°

BRI A Ee A P oss  FREAFENAFPK AT AW = (V, N1, N2)
Er—AEHFRZ APV NI N2 A ETHH ~ LR —URLF = - xRIABE
BRI AR BRI D L R 4n 838 k545 £33 — > Al D = {VPP,NPP} -
PiE—F &ﬁT#i%%ﬁﬂ%&@Pw—w VPP|W) #o 545 4 # eyt & Pr =
(D NPP|W) ° i WordNet B30 * $3M B ZAERTHV = {50, 50, 50,

ﬂ'] %‘Tﬁl Nl—{snhasnlg;"'asnlj} Z“j %‘%%N2:{5n2173n227"'7Sn2k}°
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SeR(S) SeR(S)
= > Pr(SW) x Pr(D|5) (5)
SeRr(S)
= > Pr(sy, sn1,s $u2, [V, N1, N2) x Pr(D|sy,, $n1,, Sn2,) (6)
SeRr(S)
= > Pr(s,|V) x P(sp1,IN1) X Pr(sus,|N2) x Pr(Dl|sy, sn1,,$n2,)  (7)
SeRr(S)

W LK F o RBEFOERF Pr(s,|V) > Psu,|N1) F2 Pr(s,,|N2) 38 » 2
BE Al TeaX Q) mF HF WNS) A r— A —EREAFAELH
WordNet Z3#0/F 20938 % o > L3P RFE TR A 00 Bb&RFIMER Laplace estimator
AT HIE (smooth) » MK (8) ¥ |V| &7F V ayfBH# -

Pr(s,,|V) = (WN(s,,) + 1)/(( Y WN(S,,)) +|V]) (®)
Svm €V
PT(D|Svia3n1j7Sn2k) IE\ ’ E\l];%_ﬁ.%‘)[léj{ﬂ%‘- > Qg.i\;bﬁ}f‘%"l’fﬁjff-?— °
PT(D|SW7 Snlju San) - |(Svi7 Snlju Sn2y» D)|/|(Sv“ Snlju San)‘ (9)
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Bayes 1 A #) T & =& Weka3-6-6'"3k & o

SVM #.1r1:% A ) kernel method % RBF ° % Z3F 2 28 ~ Fv cost Mg LB 21t -
F AL A grid search JE HAFE S > A A 69 T BT libsvm 89 grid.py © #F = #h ¥ E 2
cost 3B FLERA-5E 11 FHA 2 My hHRE v 2HEERA-11 23y
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CASWIEE R TR AL _ELE  BEGIE D 56 E6]E A confidencefactor
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333 &SR A (metalearner) 24
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41 TR E

AARF FEFERLTRE LT R ERNETRH P

BT EE (Accuacy ) AT ERAEBAO T X - BEBATREH Y E0HE
T m3ER R EGEA N AR EE K (10) -

Accuracy =T /N (10)
BN BATAEFEFE (Precision) >~ BE % (Recall)) Fo47463F 2 (Fi-measure) 3

FEEMEBAGRERAR - ZERARNAGFREEAWEAE > AER ROy A S Ha
Kok o AT ENAFREMS  BHALMENAS -

AR FE R TR HNZEN y A EENE BRE B RAEREY  ERE—
HAHBELE MABARTUHZEN YRGB ES D> A E5EF T AR il 4o
K (11) °

Precision = D/FE (11

BE R AT TR BEADE R LB N SRE - BREE —80F GREF
AR B E R FAe R (12)
Recall = D/G (12)

EHL ROFERAERIZEOREMRG  EEALERAZHEFHABREI TR RS
BERBEAHER - ERRGFERALT > FRAKSFo IR BLAMEKALES
2 (Fi-measure) > 4w =, (13) °

Fi-measure = (2 x Precision X Recall)/(Precision + Recall) (13)
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CE TS 60.35 | 68.02 | 69.38 | 75.75 | 76.07 | 78.32 75.98
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Abstract

In this paper, we introduce a hybrid method to associate English collocations with sense class
members chosen from WordNet. Our combinational approach includes a learning-based
method, a paraphrase-based method and a sense frequency ranking method. At training time,
a set of collocations with their tagged senses is prepared. We use the sentence information
extracted from a large corpus and cross-lingual information to train a learning-based model.
At run time, the corresponding senses of an input collocation will be decided via majority
voting. The three outcomes participated in voting are as follows: 1. the result from a
learning-based model; 2. the result from a paraphrase-based model; 3. the result from sense
frequency ranking method. The sense with most votes will be associated with the input
collocation. Evaluation shows that the hybrid model achieves significant improvement when
comparing with the other method described in evaluation time. Our method provides more
reliable result on associating collocations with senses that can help lexicographers in



compilation of collocations dictionaries and assist learners to understand collocation usages.
FASEGE RN > RGO > SRR R - M S ERE - B

Keywords: supersense tagging, collocation classification, word sense disambiguation,
WordNet, maximum entropy model, Paraphrase.

1 Introduction

A collocation is a pair of words that co-occur with more frequency than random. A
collocation usually contains a base word (e.g., “oil” in fuel oil) and a collocate (e.g., “fuel” in
fuel oil). In a collocations dictionary, we can find many collocates of a base word (e.g., fuel
oil, motor oil, peanut o0il, salad oil). Some collocations dictionaries show the collocates for all
senses, while other collocations dictionaries present the collocates by senses of a base word
so learners can better grasp the usage of a collocation.

Determining the set of broad senses to classify collocations is not an easy task.
Researches have used thesaurus topics such as Roget’s (Yarowsky, 1992) or arbitrarily
top-level WordNet senses as classes. There are 44 semantic classes called lexicographer-files
and each synset in WordNet is assigned to one lexicographer-file. There are 26
lexicographer-files (or supersenses), which can be used to tag common nouns. Consider the
word “oil” which can be used as fuel/to make machines work smoothly, or as belonging to the
noun.substance supersense and used in cooking could be seen as belonging to the noun.food
supersense.

In this paper, we present a hybrid model that automatically associated a given
collocation with the corresponding supersense. The hybrid model is composed of a
learning-based method, a paraphrase-based method and a sense frequency ranking method.
The output supersense of a collocation is decided via majority vote of the above three
methods.

At training time, we need some collocations tagged with supersenses as seeds. There are
a huge number of collocations in WordNet, so we can use those collocation and supersense
pairs to train the model. Sentences containing the input collocations extracted from a large
corpus and Chinese translation of the collocations are used as features of the model. We will
descript the training process in more details in Chapter 3.



Input collocation: fuel oil

Leaning-based features
large, quantity, toxic, chemical,...,large quantity, toxic chemical, ..., ¥4, i, FAH
Outcome ranking: 1. noun.substance, 2. noun.artifact
Paraphrases

petroleum, gasoling, gas, ...

Outcome ranking: 1. noun.artifact, 2. noun.substance

Sense frequency ranking
1. (0il.n.01, substance), 2. (0il.n.02, artifact), 3. (petroleum.n.01, substance) 4. (vegetable_oil.n.01, food)
Outcome ranking: 1. noun.substance, 2. noun.artifact, 3. noun.food

Supersense ranking Learning-based Paraphrase-based | Frequency ranking

l

Voting result
noun.sut.)stance 2 —
noun.artifact
noun.food 0

noun.substance noun.artifact noun.substance

Output supersense: noun.substance

=

Figure 1. An example procedure for associating the collocation of fuel oil with a supersense

noun.substance

An example procedure for associating the collocation of fuel oil with a supersense
noun.substance is shown in Figure 1. We extract sentences containing the input collocation
from a corpus and take the sentences and Chinese translation as features. Then, we use the
pre-trained machine learning model to predict the supersense. Second, we use the words
similarity and words dependency relations to paraphrase the base word. Then, we calculate
the WordNet similarity of base word and the paraphrases to identify the supersense. Third, we
simply list the lexicographer-files of the input collocation base word and choose the first one
as the supersense since the order of the list corresponds to the sense frequency of that word.
At last, a relative majority vote for the three results determines the final output.

The experimental results show that our hybrid method can automatically associate
collocations with supersenses with a higher performance than the baseline method. The
results can also be used to help lexicographers in compilation of a collocations dictionary.
Furthermore, learners could understand the usage of collocations in a specific sense.

2 Related Work

Associating collocations with supersenses in WordNet is similar to Word Sense
Disambiguation (WSD), the process of identifying the meaning of a specific word in a given
context. In this paper, we address a special case of disambiguating the headword of a given
collocation.

Previous work in WSD is mostly based on some kind of machine learning models.
Hearst (1991) uses a set of orthographic, syntactic and lexical features to train large text
corpora and disambiguates noun homographs. Yarowsky (1992) uses Naive Bayesian model
to train large corpora to disambiguate words to Roget’s Thesaurus categories. Leacock,
Towell and Voorhees (1993) bases on Bayesian decision theory, neural networks and content



vectors to train the knowledge about patterns of words co-occurrences and disambiguates
words to WordNet senses. The main disadvantage is that the demand of annotated training
data which are time-consuming and labor intensive to obtain.

In a work more closely to our research, Inumella, Kilgarriff and Kovar (2009) try to
assign the collocations for a word that automatically identified from a large corpus to its
distinct senses. Their short term goal is to generate a new English collocations dictionary
(Macmillan Collocation Dictionary). Most of the previous works focus on words level, while
this research focuses on collocations. We describe two of their automatic approaches:
Thesaurus method and Yarowsky’s method (1995). The thesaurus method works on the
promise that a sense shares its collocates with its thesaurus class members. For example,
consider a thesaurus class with six members {cricket, butterfly, leech, worm, bee, queen},
they extract collocates such as young, fly, feed, breed that at least appear in two class
members and insert them to that sense. Another method is Yarowsky’s method, which relies
on the heuristic of “one sense per collocation” (Yarowsky, 1993) and “one sense per
discourse” (Gale, Church and Yarowsky, 1992). The algorithm first collects some seed
collocations with senses by dictionary-parsing and uses supervised classification algorithms
for training and labeling. Then they add new labeled collocations to training set and repeat
labeling. Finally, they use a decision list algorithm to terminate.

In contrast to previous works in Word Sense Disambiguation and semantic classification,
we present a hybrid system that automatically associates collocations to supersenses using a
learning-based method, a paraphrase-based method and a sense frequency ranking method,
with the goal to help lexicographers in compilation of collocation dictionaries and help
learners to better grasp the usage of a collocation. We describe the method in more details in
the next chapter.

3 Method

Associating collocations (e.g., required course) with dictionary senses often does not work
very well. To obtain a better performance, we introduce a learning-based method using
context and cross-lingual features, a paraphrase-based method using words similarity relation
and dependency relation, and a sense frequency ranking method.

3.1 Problem Statement

We focus on automatically associating collocations with corresponding supersenses. The
output senses could be used by lexicographers to save effort in compile collocations
dictionaries and learners can better grasp the usage of a collocation. Supersenses are 26
lexicographer-files in WordNet noun hierarchy chosen by lexicographers and are believed to
be general enough for sense allocation.

3.2 Training Sense Assignment Models

In this section, we explain our approaches to find the supersense including a learning-based
method, a paraphrase-based method and a sense frequency ranking method. Figure 2

describes the processes of our methods.

(1) Generate collocation and supersense pairs from WordNet (Section 3.2.1)




(2) Train machine learning model from corpus for collocations (Section 3.2.2)
(3) Obtain supersense using machine learning model (Section 3.2.3)
(4) Obtain supersense using similarity and dependency information (Section 3.2.4)

(5) Obtain supersense using sense frequency ranking from WordNet (Section 3.2.5)

Figure 2. Outline of the process for obtaining supersense in different approaches

fuel oil noun.substance
electrical discharge noun.event
busy day noun.time
required course noun.act

fitted sheet noun.artifact
bus driver noun.person

Figure 3. Example of collocation and supersense pairs extracted from WordNet

3.2.1 Generating Collocation and Supersense Pairs

In the first stage (Step (1) in Figure 2), we attempt to find a set of collocations and their

pre-tagged supersenses pairs
C55= (= Col},5; = < Col,,5, =, < Coly,5; =, .., < Col,5, =)

as seeds collocations to train a machine learning model M from WordNet. For example, the
supersense for a collocation fuel oil is noun.substance. Examples of collocation and
supersense pairs extracted from WordNet are shown in Figure 3.

We use two heuristics to achieve this goal. First, we go through each hyponyms of noun
synsets and examine their lemma names to find collocations. For example, consider a synset
Synset('discharge.n.01'), one of its lemma name is discharge and one of its hyponyms is
Synset(‘electrical _discharge.n.01') with a lemma name electrical discharge. Since the base
word of electrical discharge matches Synset('discharge.n.01')’s lemma name discharge, we
can take electrical discharge as a collocation and the lexicographer-file of
Synset('discharge.n.01") noun.event as a supersense to form the
< collocation, supersense > pair, (electronic discharge, noun.event).

Second, we search the collocations from definitions D, and example sentences E,, of

T

each noun synset. We utilize a parser to generate part-of-speech and lemma for D, and



E,... For a noun synset symn,, one of its lemma name is lem,, and the definition or example
i as one of our selected < collocation,supersense > pair. For example, a synset
Synset('day.n.05') has one lemma name day and one example sentence “it was a busy day on
the stock exchange”. So we can take busy day as a collocation and the lexicographer-file
noun.time as a supersense to form the < collocation,supersense > pair, (busy day,
noun.time).

3.2.2 Training Machine Learning Model

In the second stage (Step (2) in Figure 2), we use the collocation and supersense pairs
obtained in section 3.2.1 to find sentences to train a sense classifier. First, a parser is used for
generating part-of-speech tag and lemma form for all sentences in the monolingual corpus
p and search from on-line machine translating system MT for Chinese collocation

translation.

For example, consider the collocation required course and its supersense noun.act. We can
find sentence such as “A required course for all students, to be completed before the end of
the third year, and to be examined by individual colleges” from MC and its Chinese
collocation translation “PMEER” from on-line translation resource. The base word course has
6 different supersenses, but the words like students, third year, examined, colleges are highly
related to the collocation required course and the supersense noun.act rather than other
supersenses such as noun.food, noun.artifact or noun.object. The Chinese translation provides
cross-lingual information like “G#” to disambiguate the sense of course. The other translation

for course like “PE4E” or ““&” would lead to different supersenses.

The input to this stage is a set of features. The above example required course showed that
context words of a collocation may contain some words highly related to the corresponding
supersense and cross-lingual information for a collocation also helps to disambiguate the
supersense. So the features we use for one training event are

C
(1) unigram and bigram of a sentence extracted from ¥ containing the collocation

(2) Chinese translation of the collocation from MT
For each < Col,5 = pairs in CS5, we extract sentences containing Col from MC, as

Sentences and obtain Chinese translation of Col from MT as Trans. Then, for each

sentence Sent in Sentences, we extract unigram Uni and bigram Bi from Sent. Note
that stopwords are filtered for both Uni and Bi. The next step, we use Uni, Bi and Trans
as features and S as the standard output supersense to append machine learning event to
Features. Note that Trans actually transforms to a list of unigram and bigram of Chinese
words while training. The output of this stage is a probability model M trained from a set of
training events Features for predicting the collocation supersenses using a machine
learning tool ML.

3.2.3 Obtaining supersense using machine learning model

In the third stage (Step (3) in Figure 2), we attempt to predict the supersense for the input



collocation (C, B) using the machine learning model M described in Section 3.2.2. The
runtime procedure is similar to the training algorithm.

First, we extract sentences containing (C, B) from MC, as Sentences (Step(la) in

Figure 4) and use on-line machine translation system MT to obtain Chinese translation of
(C, B) as Tran (Step(lb)). For associating (C, B) with a supersense, we only consider
i in Sentences, we extract unigram Uni (Step (2a)) and bigram Bi (Step (2b)) from Sent.
Stopwords are filtered for both Uni and Bi similar to what is done at training time. Then,
Uni, Bi and Tran are combined together to predict the supersenses using M. The output
of M is a supersense probability list predictList that contains all supersenses and the
probability for (C, B) (Step 3)).

Algorithm 2. Obtaining supersense using machine learning model

PROCEDURE MachineLearningEvaluateSupersense((C, B))
(la) Sentences= extractSentences((C, B),MC,)

(Ib)  Trans= getTranslation((C, B'))
(1c) Candidates = getLexFiles(B)
topScore= @, topSense=Q, freq= @, totalProb= @, avgProb= @, outcome = @

for each Sent; in Sentences

(2a) Uni= extractUnigram(Sent;)
(2b) Bi= extractBigram(Sent;)
3) predictList= M(Uni, Bi, Trans)

for each (sense; prob;) in predictList

if sense; in Candidate and (prob; > numProb)

(4a) tmpScore; = prob;

(4b) tmpSense; = sense;

(5a) topScore; = Max(tmpScore;)

(5b) topSense; = tmpSense; that has Max(tmpScore;)
(5¢) totalProb[topSense;| += topScore;

(5d) freqtopSense;] +=1

for each sense in totalProb

(6) outcome[sense] = (freq[sense], totalProb[sensel/freq[sense])

(7) rankedSenses= Sort outcome in decreasing order of freq, if more than 1 sense
share same frequency, sofrt those sense in decreasing order of
average probability

(8) Return the top rankedSenses




Figure 4. Algorithm for obtaining supersense using machine learning model

We go through each (sense

;> prob;) in predictList and keep (sense;, prob;) as

1

(tmpSense;, tmpScore;) if both sense; in Candidate and prob; higher than a

i’ f]

probability threshold numProb (Step (4a and 4b)). Then we choose maximum tmpScore j

as topScore;, the corresponding tmpSense; as topSense; (Step (5a) and (5b)). A

7

dictionary totalProb is used to store the probability sum topScore; of each distinct

topSense., and another dictionary freqg is used to store the frequency of each distinct

topSense; (Step (5¢) and (5d)). For each sense in totalProb, we store the frequency

freq[sense] and the average sense probability totalProb sense /freq[sense] to
outcome (Step (6)). Then, we sort outcome in decreasing order of frequency as
rankedSenses. If there is more than one sense in outcome that have the same frequency,
they would be sorted in decreasing order of the average sense probability. Finally, we output
LB (Step (7)).

Corpus-based machine learning for associating collocations with supersenses can reduce the
sense dominance problem, since context words of different supersenses are generally
different and translations of a same base word in different senses tend to be different, too.
With this in mind, we use sentences of a collocation extracted from a corpus and the
collocation translation to disambiguate the supersenses of the base word of a given
collocation.

3.2.4 Obtain supersense using similarity & dependency information

In the fourth stage (Step (4) in Figure 2), we use a paraphrase-based strategy to determine the
supersense. A paraphrase is a restatement of the meaning of a text or passage using another
form. By calculating the similarity between a collocation and its paraphrases, we can
determine its supersense. This method is based on the assumption that original collocation
shares the same supersense with its paraphrases.

For example, consider an input collocation fitted sheet using the paraphrase method. The
word sheet has four supersenses: noun.object, noun.communication, noun.artifacrt,
noun.shape in WordNet. Paraphrase candidates of fitted sheet are coat, cloth, plate, pan, foil,
plastic identified base on similar words list of sheet and coat,

Table 1. Example similar words and dependent words of required course

Similar words of sheet Dependency relation of fitted




(‘plate’, 0.16), ('sheeting', 0.15) (jacket', 9), (‘suit', 5)
(‘pan', 0.14), (‘steel’, 0.14) ('bodice', 3), ('less', 3)
('coat’, 0.13), ('tube’, 0.12) ('gown', 2), ('Top', 2)
(‘metal’, 0.12), ("paper’, 0.12) (‘carpet', 1), ('cloth', 1)
(‘slab', 0.11), ('pipe', 0.11) ('coat', 1), ('leader’, 1)
('layer', 0.11), (‘cold-rolled', 0.11) (‘plaid', 1), ("topper’, 1)
(‘stainless', 0.11), (‘surface', 0.11) (‘'version', 1), (‘a little', 1)
(‘'glass', 0.11), (‘tubing', 0.11) ('long', 1), (‘'uniquely', 1)
('booklet', 0.11), (‘cut-sheet’, 0.11) (‘around', 1), ('than', 1)
(‘cloth’, 0.11), ...

cloth, jacket, suit based on dependency relations list of fitfed. The intersection of the two
candidate list contains coat and cloth. It means that coat and cloth are paraphrases of sheet
when collocating with fitted. The example similar words and dependency relations of fitted
sheet is shown in Table 1.

Subsequently, we compare the synsets similarity for both (coat, sheet) and (cloth, sheet). The
top-ranked similarity of (coat, sheet) is ((Synset('coating.n.01'), Synset('sheet.n.06')), 0.769)
and the lexicographer-file of Synset('sheet.n.06') is noun.artifact; the top-ranked similarity of
(cloth, sheet) 1s ((Synset('fabric.n.01'), Synset('sail.n.01')), 0.857) and the lexicographer-file of
Synset('sail.n.01') is noun.artifact. So the frequency of noun.artifact is 2, while other
supersenses are all 0. We then output noun.artifact as the supersense of input collocation
fitted sheet.

By using paraphrase-based method, words that related to the input collocation can be the
extracted. The collocation could be disambiguated since most of the words with other senses
tend not to share the paraphrases. So we can find the sense relation between input collocation
and extracted words to obtain the supersense.

3.2.5 Obtaining supersense using sense frequency ranking

In the last stage (Step (5) in Figure 2), we use the sense frequency to identify the supersense.
In many previous works on WSD, sense frequency plays an important role to indicate the
sense. A word may have different senses, but most of time, it tends to associated with the
dominant sense. So for disambiguating word senses, choosing the most frequent sense is
often used as a baseline.

Many sense frequency methods are based on sense estimation in a corpus. But here we use
the sense frequency information in WordNet. For any word in WordNet, there are one or more
synsets and the synsets are listed in decreasing order of frequency. So we can simply return
the first synset as the supersense. Sense frequency ranking method has the highest coverage,
and that is important since our goal is to disambiguate all collocations. We also use this
method as the baseline method to compare with our results. We will describe the details of
evaluation in Chapter 4.



3.2.6 The Runtime Hybrid Process

Once the learning-based procedure, the paraphrase-based procedure and the sense frequency
ranking procedure produce the supersenses, a relative majority vote is carried out to
FR are the three predicted supersense described in sections 3.2.2 to 3.2.4. Each supersense
has one vote and the supersense with the most votes is the final output S. As shown in Figure
2, after running the three procedures for collocation firel oil, we obtain noun.substance,
noun.artifact and noun.substance. The supersense noun.substance has 2 votes and
noun.artifact has 1, so the final output S is noun.substance.

Sometimes the three procedures produce 3 different supersenses without an agreement.
Moreover, the learning-based procedure or the paraphrase-based procedure produce no results,
because either the sentences containing the input collocation cannot be found in corpus MC,
or the paraphrases of the input collocation cannot be found and leads the voting has no
agreement. In this case, we use back-off to find the supersense. When there is no agreement
FR. As long as the base word of the input collocation exists in WordNet, we can produce an
output.

4 Experimental Setting

We have proposed a hybrid model to associate collocations with broad sense classes, with the
goal of helping lexicographers in compilation of collocation dictionaries. The evaluation
focuses on the intended supersenses of a set of collocations produced by the proposed system.
We extracted a set of collocation and supersense pairs from WordNet, so the evaluation could
be done automatically.

4 .1 Data set

In our experiment, we used WordNet, a large lexical database of English which contains
approximately 117,000 synsets and 155,000 sense-disambiguated words and collocations, to
generate the collocations for training, developing and testing. As we have described in
Section 3.2.1, collocations are extracted from WordNet using two heuristics:

(1) extract collocations from hyponyms of noun synsets

(2) extract collocations from definitions and examples sentences of noun synsets

We extracted 18,586 collocation and supersense pairs from (1) and 1,784 pairs from (2). The
extracted collocations were filtered through a collocation list. The collocation we used is a
list of base word/collocates pairs for the top 60,000 lemmas from the Corpus of
Contemporary American English (COCA) (Davies, 2008) which contains 4,200,000
collocations. After this step, the total number of collocations was reduced to 7,489. With
heuristic (2), we used GENIA tagger (Tsuruoka, 2005) which analyzes English sentences and
outputs the base forms, part-of-speech tags, chunk tags, and named entity tags to tag the
definitions and example sentences.

We randomly selected 829 collocations as development set and 6,660 for training and testing
from the collocation and supersense pairs. For training and testing, we split the 6,660
collocations into 10 parts that each part contains 666 collocations and we ran ten-fold
validation to evaluate the performance of each part.

In learning-based procedure, we employed Maximum Entropy (ME) model to associate input



collocations with supersenses. ME is a flexible statistical learning model that aims to
maximize the entropy when characterizing some unknown events. The model estimates
outcomes according to a set of features with least possible bias. The ME model we used for
training and testing is Maximum Entropy Modeling Toolkit for Python and C++ (Zhang,
2004). The features we used for the ME model is extracted from British National Corpus
(BNC), a 100 million word collection of samples of written and spoken language from a wide
range of sources. We use GENIA tagger to tag the sentences in BNC and filtered the
stopwords in the sentences using Natural Language Tool Kit (NLTK), a suite of open source
program modules written in Python (Loper and Bird, 2002). More specifically, we used the
stopwords in nltk.corpus and obtained the English stopwords list. Another feature, the
Chinese translation of the collocations, was obtained from Google Translate.

In the paraphrase-based procedure, we use a set of words with similar words which contains
100,000 words and about 24,000,000 similar words and words with dependency relations
which contains 20,000,000 dependency relations. The data is obtained using MINIPAR (Lin,
1993), a broad-coverage parser for the English language. The similarity comparison
algorithm for words used in this stage is JCN similarity (Jiang and Conrath, 1997). JCN
similarity bases on the information content (IC, a measure of the specific of a concept) of the
Least Common Subsumer (LCS, most specific ancestor node). According to (Sinha and
Mihalcea, 2007), JCN similarity tends to work best for nouns.

4.2 Methods compared

Our approach starts with an adjective-noun or noun-noun collocation given by a user, and
determines the corresponding sense to the input collocation using external resources related
to the input collocation. The output of our system is a supersense in WordNet associated with
the input collocation that can be used to help lexicographers in compiling collocation
dictionaries, or shown to English learners directly.

In this paper, we have proposed a hybrid model for associating collocations with supersenses,
in which we used a learning-based model, a paraphrase-based similarity comparison, and a
sense frequency ranking method. Therefore, we compare the results based on each method
and combination of the above methods for evaluating the system performance in more details.

We compare different methods to associating the collocation with supersense using the test
set described in Section 4.1. The methods evaluated for the comparison are listed as follows:

— FR: Sense frequency ranking method as we described in Section 3.2.5, using the
sense frequency information to determine the supersense of a collocation. This
method is also the baseline method in our experiment.

— LB: Learning-based method as we described in Section 3.2.3, using learning-based
method to determine the supersense of a collocation.

— LB+FR: Combinational method of learning-based method and sense frequency
ranking method, using FR as a back-off if LB cannot be applied.

— PB: Paraphrase-based method as we described in Section 3.2.4, using similarity and
dependency relations of a collocation to determine the sense of that collocation.

— PB+FR: Combinational method of paraphrase-based method and sense frequency
ranking method, using FR as a back-off if PB cannot be applied.



— LB+PB: Combinational method of learning-based method and paraphrase-based
method, using PB as a back-off if LB cannot be applied.

— LB+PB+FR: Hybrid method of all methods we proposed. The running sequence is
LB—PB—FR that LB determines all the test set, then PB determines those LB
cannot solve, then FR determines those PB cannot solve.

— MV+BO: The most complete version of the system we proposed. First, we run the
test set using all three methods LB, PB and FR and use relative majority vote to
rank supersense results. The rest of collocations that cannot be determined run in the

following sequence LB—PB—FR.

5 Evaluation Result and Discussion

In this chapter, we report the evaluation results of our experiments using methodologies and
the settings we described in Chapter 4. We evaluated 8 different methods as described in
Section 4.2. We ran ten-fold validation on 6,660 random selected collocations. We report the
average performance of the 10 test results. For non-learning based method, we evaluated the
whole 6,660 collocations. Table 2 shows the performance for development dataset and test
dataset in 8 different methods based on precision, recall and F-measure.

Table 2. Performance for development dataset and test dataset in 8 different methods based

on precision, recall and F-measure

strategy Development Set Test Set
Prec. Rec. F-m. Prec. Rec. F-m.
FR (baseline) 174 74 74 75 75 75
LB 180 .61 .69 80 .62 .70
LB+FR 178 78 78 80 .80 .80
PB 179 57 .66 76 .55 .63
PB+FR 178 78 78 76 76 .76
LB+PB 180 T2 76 80 T2 75
LB+PB+FR 180 .80 .80 80 .80 .80
MV+BO 181 81 81 81 81 81

For comparison, we used the baseline of sense frequency ranking method FR with 75%
precision, recall and F-measure. The learning-based method LB achieves the precision 80%
and recall 62% with 5% increases in precision. But the recall decreases since no sentences
containing the collocations are found in the corpus. Those collocations are not given a
supersense. If we add FR to the system as LB+FR, the precision, recall and F-measure
increases to 80%. The paraphrase-based method PB on development dataset has a 5%
increase on precision comparing with baseline, but on test dataset, the precision decreases to
76% with a low recall of 55%. The low recall is due to the fact that many collocations
paraphrases cannot be found. For this we also add FR to the system as a back-off and the
precision, recall and F-measure of PB+FR increases to 76%. The experimental result on
LB+PB shows that the precision maintains on 80%, and recall increases nearly 10%
comparing with LB and achieves the highest recall in all the methods without FR.



The performance of LB+PB+FR reaches 80%, the same as LB+FR since the performance of
PB is not good as LB. We believe that using a relative majority vote to determine the
supersense would lead a better performance. MV+BO confirms our hypothesis and achieves
the best performance of precision, recall and F-measure 81%. The precision of majority vote
that has 3 votes is 95% with recall of 33% while the majority with 2 votes is precision 79%
and recall 34%. So with more than 2 votes, the precision reaches 87% with a recall of 67%
and F-measure of 76%.

Take a deeper look in the sense dominance problem we mentioned in Chapter 3.
Previous work suffered from that the collocations are often associated with dominant senses.
We show the performance of MV+BO when dealing with two different condition: (1) most
frequent sense collocations, (2) non-most frequent sense collocations. We could see that when
dealing with most frequent sense collocations, 93% of collocations can be correctly
associated with supersenses. When dealing with non-most frequent sense collocations, we are
still able to correctly associate 46% of collocations with supersenses. So we prove that the
sense dominance problem can be reduced by using our hybrid algorithm.

6 Conclusion

Many avenues exist for future research and improvement of our system. For example, in the
learning-based method, the recall could increase by using a larger corpus or the web data to
extract more sentences as collocations’ features. The cases where the sentences of the input
collocation are not found in a corpus could be reduced. Additionally, we could improve the
quality of collocation translations to improve the performance of the learning-based method.
In the paraphrase-based method, both precision and recall are not satisfactory, but we still
believe that the method has potential. By generating a new similar words list and dependency
relations list using a large corpus could produce better paraphrases for associating
collocations with supersenses and increasing the recall. Most of the 26 supersenses are
natural and reasonable. However, we still find that some supersenses are not very intuitive
and may cause problems in tagging. So finding more appropriate set of classes is worth
further study.

In summary, we have introduced a hybrid method to automatically associate collocations
with supersenses. Our goal is to help lexicographers in compilation of a collocation
dictionary and help learners to better grasp the usage of a collocation. Our method is
composed of a learning-based model, a paraphrase-based method, and a sense frequency
ranking method. In our evaluation, we have shown that the hybrid method is significantly
better compared with other methods described in this paper. And we also prove that our
model can partially reduce the sense dominance problem.
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Abstract

This study adopts a corpus-based computational linguistic approach to measure individual
differences (IDs) in visual word recognition. Word recognition has been a cardinal issue in
the field of psycholinguistics. Previous studies examined the IDs by resorting to test-based or
questionnaire-based measures. Those measures, however, confined the research within the
scope where they can evaluate. To extend the research to approximate to IDs in real life, the
present study undertakes the issue from the observations of experiment participants’ daily-life
lexical behaviors. Based on participants’ Facebook posts, two types of personal lexical
behaviors are computed, including the frequency index of personal word usage and personal
word frequency. It is investigated that to what extent each of them accounts for participants’
variances in Chinese word recognition. The data analyses are carried out by mixed-effects
models, which can precisely estimate by-subject differences. Results showed that the effects
of personal word frequency reached significance; participants responded themselves more
rapidly when encountering more frequently used words. People with lower frequency indices
of personal word usage had a lower accuracy rates than others, which was contrary to our
prediction. Comparison and discussion of the results also reveal methodology issues that can
provide noteworthy suggestions for future research on measuring personal lexical behaviors.
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1. Introduction

In the field of psycholinguistics, a major research interest is to investigate how people
recognize written words or access the corresponding word representations stored in their
mental lexicon. Psycholinguists usually undertake the investigation starting from isolated
words since less factors are involved, compared to words within sentences. Therefore,
research on the isolated word recognition is fundamental for understanding how lexical
access takes places. In general, the term ‘visual word recognition’ is used to simply address
the recognition of isolated written words.

Research of word recognition traditionally have concentrated on how characteristics of
words per se (e.g. word length, word frequency, or neighborhood size) affected the procedure
of recognition [1] [2] [3] [4] [5], taking the discrepancies between participants’ performance
as merely statistical deviation. Recently, however, there has been a growing interest in the
individual differences (IDs, henceforth) of experiment participants. Results of the ID studies
showed that the issue was noteworthy because personal experiences and knowledge of words
(e.g. print-exposure experience [6] [7], reading skills [8], or vocabulary knowledge [9] [10]
[11]) accounted for systematic variances between participants in word recognition. Even
when participants were homogeneous in their educational level, their IDs sufficiently resulted
in distinct performance in word recognition. Furthermore, [8] provided compelling evidence
that conflicting results of regularity effects’ in the literature were attributable to lacking
control over participants’ IDs of reading skills.

To date, the studies of IDs, however, have focused on test-measured or self-rated 1D
variables. In such approaches, the observed IDs were confined in the boundary of a test or
questionnaire design, and the uniqueness of each individual in real life was neglected. In an
attempt to examine the approximate real-life IDs, this research measures and analyzes IDs
based on each participant's own lexical behaviors. Lexical behaviors here refer to a person’s
word usage and preference in his/her daily life. Intuitively, language usage reveals one’s
vocabulary knowledge, such as the words the person knows and how to use those words
within context. Vocabulary knowledge was proved relating to word recognition [9] [10] [11];
hence, it is highly possible that IDs of lexical behaviors can explain the disparity of
participants’ performance in word recognition. The lexical behaviors mainly have two merits
over the measure of vocabulary tests. First, people’s lexical knowledge will be evaluated not
by a small set of vocabularies in a given test, but by the words used by themselves. In this
case, a variable’s value assigned to a given participant is personalized and not confined to the
scale or the total score of a test. The other merit resides in that the data of language usage can
provide a deeper insight into a person’s lexical knowledge, compared with a vocabulary test.
If a person is able to use or produce a given word naturally (and frequently), it suggests that
the word’s representation has been firmly established in his/her mental lexicon.

Besides, it is worth noting that the stance we take in measuring the ‘individuality’ is
naturalistic rather than natural, in that the lexical behaviors we describe are assumedly
anchored in the interaction as naturalistic situated interactions, rather than natural ones (like
using camera to collect data). A pitfall of the natural ones is that when observers and/or
cameras are present those interactions are not quite what they would be in our absence.

! Regularity denotes that the extent to which the spelling-to-sound correspondence in words are invariant. The
effects of regularity are that a response is made slower to less ‘regular’ words (e.g. pint) than to ‘regular’
words (e.g. name).
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Therefore, the present study begins with a preliminary survey on the lexical behaviors of
participants’ naturalistic data on Facebook” Walls (Figure 1).
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Figure 1. A snapshot of Facebook Wall

Our attention for lexical behaviors computed from participants’ Facebook data is
fastened upon the frequency index of personal word usage and the personal word frequency
calculated from participants’ language data. Whether the two variables are associated with
participant’s performance in a lexical decision task® will be explored respectively in two
experiments. More important, as a pioneer study on lexical behaviors and word recognition,
the other main objective of this research is to preliminarily explore its computational
methodology.

The rest of this paper is organized as follows: Section 2 presents the procedure of our
data collection, including conducting a lexical decision experiment and extracting the
experiment participants’ language usage data from the Facebook. Section 3 demonstrates the
methods and results of two experiments, each of which computed a lexical behavior variable
and further examined the relationships between participants’ IDs of lexical behaviors and
lexical-decision responses. Section 4 concludes this study by giving a summary and
contributions of the current study. Section 5 provides potential research directions for future
work.

2. Data collection
2.1 Lexical decision task

2.1.1 Participants

Sixteen Chinese native speakers (10 females and 6 males; ages ranging from 21 to 29
years old) consented to participant in the task and were offered participant fees. For the
purpose of augmenting the possibility of finding individual differences (IDs) of personal
lexical behaviors, the participants were recruited from diverse backgrounds. They should be
right-handed, which was examined via a self-report handedness inventory [12].

2.1.2 Materials
Experiment materials included 456 Chinese words and 456 non-words. The word stimuli

2 http://www.facebook.com/
3 The lexical decision task is an extensively-used experiment of visual word recognition.

63



Proceedings of the Twenty-Fourth Conference on Computational Linguistics and Speech Processing (ROCLING 2012)

were nouns selected from the Chinese Lexicon Profile (CLP)*, comprising 152
high-frequency, 152 mid-frequency, and 152 low-frequency words. In addition to word
frequency, the number of characters, the number of senses, and the neighborhood size of
words were collected from the CLP and will be treated as covariates at the stage of statistical
analysis because we intended to disentangle their impacts on the lexical-decision responses.

To equalize yes and no stimuli, 456 non-words were also subsumed into the stimuli.
These non-words were randomly generated by using characters of existing nouns in Chinese.
Take two-character non-words for example. The procedure of random generation is illustrated
in Figure 2. The first and second characters of existing nominal words were separately stored
into two vectors. Next, the first and second characters of a non-word were randomly selected
from the two vectors respectively and then combined altogether. If an automatically
generated non-word sounded like an existing word, it would be removed from the non-word
list.

The task is a within-subjects design; that is, a participant saw all of the 912 stimuli. The
non-words, high-, mid-, and low-frequency words were evenly divided into four blocks. The
order of four blocks was counterbalanced across 16 participants. Within a block, experimental
stimuli were administered in a random order.

& b wy 1

Figure 2. The procedure for random generation of two-character
non-word stimuli in the visual lexical decision task

2.1.3 Procedure

Each participant was tested individually in a quiet room. The experiment was conducted
and presented on a laptop via E-prime 2.0 professional. Participants were instructed to judge
whether a visually presented stimulus was a meaningful word in Mandarin Chinese. They
were required to respond as quickly as possible but without expense of accuracy, and their
judgment were recorded as soon as they pressed the ‘yes’ or ‘no’ response button.

The procedure of a trial was initiated with a fixation sign (+) appearing in the center of
the monitor for 1000 ms. Next, a stimulus was presented. The presentation would be
terminated immediately when a participant responded. If no response was detected in 4000
ms, the given stimulus would be removed from the monitor. After termination of the stimulus

* The Chinese Lexicon Profile (CLP) is a research project launched at LOPE lab at National Taiwan University.
The project purports to build up a large-scaled open lexical database platform for Chinese mono-syllabic to
tri-syllabic words used in Taiwan. With its incorporation of behavioral and normative data in the long term,
the CLP would allow researchers across various disciplines to explore different statistical models in search for
the determinant variables that influence lexical processing tasks, as well as the training and verification of
computational simulation studies. The number of Chinese words in CLP has been accumulated up to 204,922
so far.
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presentation, a feedback was provided on the monitor for 750 ms, along with the participant’s
accumulated accuracy rate in a block.

The entire experiment included four blocks and lasted approximately one hour. Prior to
the experiment, a practice session was given to familiarize participants with the experimental
procedure. The session contained 4 words and 4 non-words, none of which appeared in the
formal experiment.

2.2 Facebook data

The Facebook module in i-Corpus’ was employed to gathering participants’ data of
language usage and preferences. The procedure is presented beneath. For the module was in
its rudimentary stage of development, it was still semi-autonomous; more specifically, the
initial steps in the procedure were manually accomplished.

[Step one] Log in an APP to get a user's access token to Facebook

[Step two] Paste the access token in the i-Corpus program

[Step three] Type in a participant's Facebook ID

[Step four] Save the data on the participant’s Facebook Wall (JSON format)

[Step five] Extract each message in categories of post, photo, comment, and other
users' walls (One message was saved as a text.) In this study, the quantification of
participants’ lexical behaviors is based on only the category of posts given that other
categories of messages have context which is not shown in themselves.

[Step six] Pre-process the 'post’ messages by the CKIP Chinese Word Segmentation
System®. After the segmentation, we obtained the token number in each participant’ data
of language usage (see Table 1).

Table 1. The token numbers in participants’ Facebook posts

Subject  Chinese Token Number | Subject  Chinese Token Number
Subject01 12506 | Subject09 7487
Subject02 2765 | Subjectl0 7690
Subject03 2144 | Subjectll 4727
Subject04 3590 | Subjectl2 4389
Subject05 8251 | Subjectl3 5908
Subject06 3442 | Subjectl4 18636
Subject07 4293 | Subjectl5 985
Subject08 2960 | Subjectl6 2260

> i-Corpus is an on-going NSC-granted research project conducted at the LOPE lab, National Taiwan University.
This project envisions an effort to construct i-corpora so as to obtain and analyze a wide spectrum of
individual linguistic and extra-linguistic data. Considering the collected material is restricted by some
copyright issues, a set of iCorpus toolkits is proposed which performs the tasks of autonomous corpus data
collection and exploitation (by running an integrated software package) to extract, analyze huge volumes of
individual language usage data, and automatically provide an idiolect sketch with quantitative information for
the benefits of linguistic and above all, sociolinguistic studies.

S http://ckipsvr.iis.sinica.edu.tw/
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Results of the automatic segmentation were not further checked and corrected by human
labor because the present study purports to explore and develop a methodology that is not
labor-consuming and rather feasible for future research to compute and control the IDs of
lexical behaviors. The segmented words from participants’ Facebook posts were prepared for
the computation of personal lexical behaviors proposed in the subsequent section.

3. Experiments on the individual differences of lexical behaviors

3.1 Experiment 1: The role of the frequency index of personal word usage in visual
word recognition

Word frequency in corpora was attested to have a high negative correlation with word
difficulty [13]. In this experiment, the Academia Sinica Balanced Corpus’ frequency of a
word was analogously taken as the possibility that the word is generally acquired and used by
native speakers, thus being referred to for computing the frequency index of personal word
usage. A lower frequency index of word usage indicates that a person was apt to use
low-frequency words, which was preliminarily assumed to imply a person’s relatively
broader vocabulary knowledge. It was concerned that whether IDs of the frequency indices
across participants were capable of explaining their differences in response latencies and
accuracies.

3.1.1 Method
There were four steps to compute the frequency index per person, as shown in the
following.

[Step one] Produce a list per participant which contained all of the words he/she used
and the occurrence frequency of those words in his/her segmented Facebook data.
Examples are shown in the first and second columns of Table 2.

[Step two] Gather from the CLP the corresponding word frequency in Sinica Corpus of
each word on the list, as exemplified in the third column of Table 2. Note that a few
words were assigned a missing value “NA” in the column since they did not appear in
the Sinica Corpus. Those words, which possessed no Sinica frequencies, would be
excluded from the calculation of participants’ frequency indices. Given that some of
them were a string that was erroneously grouped as a word by the automatic
segmentation program (e.g. zai4 wuo3 nao3 ({EFME) ‘in my brain”), the exclusion
enabled this experiment to filter out the data noise procured by automatic segmentation,
thus diminishing the impact of segmentation errors on the calculation of individual

lexical behaviors.

[Step three] Compute the frequency index of personal word usage U; of the participant
J by (1), where P;; was the participant’s personal frequency of the ith word, and S; was

the word’s frequency in the Sinica Corpus. In this equation, Ujcan be interpreted as the

mean Sinica frequency of words used by the participant j on the Facebook. The lower
the index was, the more rarely-seen words used by the participant were, which
assumedly meant the person had broader word knowledge.

7 http://dblx.sinica.edu.tw/kiwi/mkiwi/
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[Step four] The U; index of each participant was put along with his/her response
latencies and accuracies in the lexical decision task for analysis.

The steps of computation introduced above applied to the complete word list of each
participant (called as “the Intact word list” hereafter). In addition to the list, this experiment
also made the other word list for each participant to calculate another index. This word list
(called as “the NV word list” hereafter) comprised only multi-character words tagged as
nouns and verbs by CKIP Segmentation System and was preliminarily considered to be less
affected by segmentation errors, compared with the Intact list.

Table 2. An example of a portion of one participant’s word list

Word Personal word  Sinica word
frequency frequency

ok 12 48749

i 4 7582

SR 2 3280

fEZE 1 NA

AL 1 NA

RIS 1 NA

3.1.2 Results and Discussion

The data analyses were conducted by mixed-effects models in the /me4 package of R®
since the models can precisely estimate by-subject differences. In both the latency and
accuracy analyses, experiment stimuli and participants were treated as random factors in the
models. Procedure variables (i.e. block number and trial number) as well as word variables
including types of word frequency, sense number, character number, and neighborhood size
were taken as covariates. The inclusion of covariates was intended to disentangle their
independent influences on the reaction latencies and accuracies. Provided that any covariate
did not reach significance, it would be dropped out of the analysis; afterwards, the other
variables would refit the models.

Ahead of the analysis of response latencies, incorrect responses (2.57%) were discarded
at first. Two frequency indices of personal word usage respectively fitted mixed-effects
models together with the above-mentioned random factors and covariates. Besides, note that
the response latencies put into statistical analyses were log-transformed so as to reduce
skewed distribution of reaction time. Inspection of the residuals of the models found notable
non-normality, as shown in the upper right panel of Figure 3°. To improve the goodness of fit,
we removed outliers with standardized residuals outside the interval (-2.5, 2.5) [14, 15],
which were 2.54% of the correct-response data set in models of the Intact list and the NV list.
After the removal, the models were refitted; the residuals of the refitted models are displayed
in the lower right panel in the figure. As can be seen, the non-normality of the residuals was

¥ http://www.r-project.org/
? Figure 3 displays the residuals of the model fitted by the values computed from the Intact word list. The plot
of residuals in the NV list model is not demonstrated because it was the same as Figure 3.
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attenuated. In the final models, statistical results showed that the frequency indices from the
Intact list (p = .3638) and NV list (p = .4926) both did not significantly vary with
participants’ response.
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Figure 3. Residual diagnostics for the models of the Intact list before (upper

panels) and after (lower panels) removal of outliers

Concerning the analysis of response accuracies, responses to all of the word stimuli in
the task were taken into the analysis. Correct responses were coded as ones, and incorrect
response as zeros. Seeing that the accuracy values were binomial, the analysis was carried out
by the logistic mixed-effect models. Results suggested that the index computed from
participants’ NV lists was found to affect response accuracies (p < .001). Its effect on the
accuracy, however, was opposite to our preliminary prediction that lower indices should
suggest a person had broader lexical knowledge, thus relating to higher accuracy rates.
Experimental results revealed that people with lower indices responded less accurately than
those with higher indices. The counter-prediction may be ascribed to our methodology of
computing the frequency index in two aspects.

The first aspect resides in that the personal indices were calculated by referring to an
external lexical resource (i.e. the Academia Sinica Balance Corpus), where word frequency
counts mainly came from written data rather than spoken data. When observing the
calculation, we found that low-frequency words in the Sinica corpus encompassed not only
rarely-used words but also words that were commonly used in daily-life conversation. Under
the circumstances, a participant might receive a low frequency index from our computation
because he/she utilized a number of ‘low-frequency’ words that are ubiquitous in spoken data,
which are certainly not associated with broad lexical knowledge. This problem would
become apparent when the frequency index was computed from the NV list of personal word
usage. Unlike the NV list, the Intact list contained function words in addition to nouns and
verbs. Function words, such as pronouns or conjunctions, are words that express grammatical
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relations between sentences and other words, so their occurrence in both written and spoken
data must be high. With the involvement of function words, the Intact list could relieve the
computation problem which was yielded by the huge discrepancy of word frequencies
between written and spoken data. This is the possible reason why our results depending on
the NV list showed that people with lower frequency indices had lower response accuracies
but the results relying on the Intact list did not.

The second aspect is that participants posted messages on their own Facebook Wall for
diverse main purposes. Facebook is a social network designed for users to convey themselves
and communicate with friends. Users can freely post any kind of messages they would like to
share on their own Facebook Walls. Some users favored confiding their feelings at one
moment; some preferred sharing anecdotes they experienced on a day; others often made
serious comments on news and social events to evoke friends’ or even the public’s awareness.
A skim over the Facebook data we collected could detect that the phenomena happened to
users participating in this study. Accordingly, modes of the collected personal language data
varied over a continuum illustrated in Figure 4. For instance, participants who were used to
casually express their feelings in the data would be closer to the “informal” and “spoken” end
of the continuum. A concern is raised about those who tended to take the Facebook Wall as
the space to share informal messages. Even if a person has broad vocabulary knowledge and
would use rarely-seen words when writing formal messages or articles, the possibility that
he/she uses those words in the informal/spoken mode might decrease. Furthermore, due to the
inconsistent modes across participants’ Facebook data, the seriousness of the problem caused
by the Sinica Corpus word frequency might vary from person to person. As mentioned above,
various commonly-used spoken or informal words were shown as low-frequency words in the
Sinica corpus. Those spoken vocabularies were the sources from which our computed
frequency indices were distorted. Consequently, if one’s Facebook posts were generally close
to the informal end of the mode continuum, his/her index would be largely affected by the
problem originated from the Sinica word frequency.

Informal- Formal-

Spoken. Written.

Figure 4. Continuum of modes in Facebook posts

According to the two forgoing aspects, our counter-hypothesis findings were
predominately accredited to the Sinica word frequencies. Thereupon, it is suggested that the
computation of frequency indices in future research should take a spoken corpus as the
reference of general word frequencies. With respect to the concern that people with broad
lexical knowledge may use informal register and extensively-used vocabularies on the
Facebook, it is a reflection we had when looking at the Facebook data. The extent to which it
impacted on the index computation was unsure. A future research may probe into the extent
by comparing the frequency indices calculated from people’s Facebook posts with those form
their compositions in an academic exam. The compositions in an exam would be scored. In
that case, people must write in the formal mode to show their competence as they can as
possible. Via a comparison with this formal data of language usage, the influence of the

69



Proceedings of the Twenty-Fourth Conference on Computational Linguistics and Speech Processing (ROCLING 2012)

informal Facebook posts on the frequency index can be known.

3.2 Experiment 2: The role of personal word frequency in visual word recognition

This experiment investigates whether a subject’s personal word frequency of a certain
LDT" stimulus would influence his/her corresponding reaction latency. It was preliminarily
hypothesized that if he/she used a word more frequently than other words, the response to the
word would be more rapid. Besides, as shown in Table 1, each participant’s data differ in
length; to render frequency counts across the data sets comparable, two kinds of
normalization were conducted. A comparison on the effectiveness of the normalization
methods is also provided in the discussion on experiment results.

3.2.1 Method

The personal word frequency referred to the relative degrees to which a given LDT
occurred in one’s Facebook posts. Steps for its calculation are as follows:

[Step one] All of 16 participants’ Facebook data were joined altogether into a file at first.
If an LDT word stimulus appeared at least once in the file, it was chosen to be examined
in this experiment. In total, there were 218 LDT stimuli conforming to the criterion, thus
taken as the stimuli in this experiment.

[Step two] Personal word frequencies of the 218 stimuli were automatically counted.

[Step three] Two distinct methods were utilized to normalize the frequency counts. The
first method was to divide the each subject’s word frequencies by his/her own summed

token numbers (see (2)). In the equation, F;; was the participant j’s frequency count of

the ith word; the i was limited between 1 to 218 since only 218 words were selected as
stimuli in this experiment. However, note that the 7 in the denominator was not limited
within the range, but by » instead. The » was the number of word types in a participant’s
Facebook data. In other words, the denominator added up word frequencies of all word
types, thus representing the participant’s total token number. Consequently, the output of
the equation, R;;, was the participant ;’s frequency ratio of the ith stimulus.
__Fy
=<

Z«i:l Fiy

A potential problem of (2) was that the normalized figures were affected by each
participant’s token number. The token number was calculated according to the results of
automatic segmentation, so it certainly would be contaminated by segmentation errors.

Therefore, the other approach (i.e. the z-score approach) was also adopted. Like the

R, @

previous equation, Fj; in (3) was the participant ;°s frequency count of the ith word. F;

was the mean of the participant’s 218 word frequency counts, and S, was the standard
deviation of those frequency counts.

Zij = 75}7’ ?3)

' LDT refers to the lexical decision task in this paper.
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[Step four| The two types of personal word frequency were respectively put along with
his/her response latencies in the lexical decision task for analysis.'"

3.2.2 Results and Discussion

Response errors in the lexical decision task (approximately 0.06% of the data set) were
first screened. Two types of normalized personal word frequencies (i.e. ratio and z-score)
were analyzed by mixed-effects models. Like the analysis in Experiment 1, in both models,
two random factors and six covariates were also included. Random factors encompassed
experiment stimuli and participants. Covariates were procedure variables (i.e. block number
and trial number) and word variables (i.e. types of word frequency, sense number, character
number, and neighborhood size). The covariates were subsumed in order to avoid
mis-attributing the variances caused by procedure and word variables to the effect of personal
word frequency. If there was any covariate not reaching significance, which meant it
statistically did not affect the lexical-decision responses, it would be removed from the
analysis and the other variables refitted the mixed models.

The residuals of the two models, however, showed marked non-normality, especially at
the end of long response latencies (see the upper right panel in Figure 5)'2. To attenuate the
unfitness, outliers with standardized residuals outside the interval (-2.5, 2.5) were removed.
The removed data in both the ratio and z-score models were 2.48% of the data set. After
trimming the outliers, we refitted the models. The residuals in the trimmed models were close
to normality, as shown in the lower right panel of Figure 5.

Statistical results showed that personal word frequency significantly accounted for
response latencies in both the analyses of frequency ratio (p < .001) and z-score (p < .05).
The estimates of them were negative, which are visualized in Figure 6. According to the
figures, the negative estimates indicated that participants responded faster to stimuli with
higher personal word frequencies. The experimental results revealed that IDs of frequencies
of stimuli could explain individual variances between participants in lexical decision.

Words that frequency occurred in one’s Facebook data revealed the things or issues
he/she paid closer attention, the words he/she got accustomed to use but was unaware of, or
his/her daily-life surroundings. Therefore, the effect of personal word frequencies in this
experiment was considered to result from people’s conscious or subconscious familiarity with
words or concepts. The familiarity with word form and meaning facilitated the access to
corresponding underlying lexical representations in the participants’ mental lexicon.

Another discussion brought up in this experiment is a methodological issue of
computing personal lexical behaviors. Among two types of normalization of personal word
frequency counts, the ratio method was assumed to be possibly problematic since
segmentation errors were involved, and the z-score method was hypothesized to be a better
one. Nevertheless, the analyses of word frequency ratio and z-score both reached significance.
This indicated that normalizing frequency counts by the token number in each personal
corpus is feasible even though there are segmentation errors and noise among the tokens.
Evidence can be found when we compare each participant’s total token number, which
includes segmentation errors, with his token number summed from the 218 stimuli in
Experiment 2, which includes no errors. The two categories of token numbers are highly
correlated (» = .95). The correlation suggests that although segmentation errors make the total
token numbers of Facebook data imprecise and inaccurate, the numbers still generally reflect

""" Unlike Experiment 1, the response accuracies were not analyzed in this experiment. It was because the
accuracy of the 218 stimuli here was extremely high (99.4%).

"2 Figure 5 is the residuals of the model fitted by the personal word frequency ratios. The residuals of the
z-score model are the same as those of the ratio model, so its residual plot is not given here.
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the comparative differences between participants’ genuine token numbers.
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Figure 5. Residual diagnostics for the model of personal word frequency
ratios before (upper panels) and after (lower panels) removal of outliers
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4. Conclusion

By integrating the approach of computational linguistics into a psycholinguistic
experiment, the current study sheds a new light on methods of capturing the nature of IDs in
word recognition. The interdisciplinary effort testified that the quantified personal lexical
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behaviors were associated with word recognition, thus uncovering a territory to be explored.
One promising prospect of this study is that as the methodology of measuring lexical
behaviors grows mature in the future, the readily available data of language usage, like
Facebook posts, can function as convenient and valid resources for researchers to control the
participant factors.

Furthermore, through the comparison of experimental results, the present study made a
preliminary exploration on the methodology of measuring lexical behaviors and suggests the
relatively appropriate methods. The counter-prediction finding in the frequency index
experiment was possibly attributed to that the Sinica Corpus mainly consists of written data;
therefore, it is suggested that similar experiments in future research resort to the frequency
counts in a spoken corpus. Additionally, according to our examination, a person’s total token
number is feasible for normalizing his/her frequency counts even though word segmentation
errors were contained within the tokens. Finally, when naturalistic data like the Facebook
posts are utilized for the measurement, it is recommend basing the computation on personal
preference or pattern of lexical usage (e.g. Experiment 2), instead of on every single word in
one’s language usage data (Experiment 1).

5. Future Work

The present study examines word recognition by only concentrating on the lexical
decision task. To obtain a clearer picture of the IDs in recognition, the future work can collect
converging evidence from other types of extensively-used tasks, such as the naming task
[16, 17]. Besides, this preliminary research recruited 16 participants. It is expected that when
the number of participants increases in future research, it might give us other or deeper
insight into the issue of individual differences (IDs). Moreover, in the Chinese Lexicon
Profile (CLP) corpus mentioned in Section 2.1.2, there provides a great number of
characteristics of words per se. Researchers may try to compute and explore individual
lexical behaviors from the available characteristics, aside from the word frequency which is
utilized in this study. In the respect of personal language usage data, we are constructing
i-Corpus, which will comprise individualized corpora. A corpus per person will include
various types of his/her language usage data, which can be looked into in the future so as to
uncover multiple facets of personal language usage.
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B EER RR A o JER R — RS - AR TR SRERYEE
SR TR S S LR - IR AR AR R UG AN BE 5 S P A B P Al _E -
fE R AL > BRI T — B fR R SO R A RERE R AR G Rh A T
fififBiiH - AL A C5.0 YA FEHC —HE Special Case 241 HHAY 25 F EfifHGE

B TR AL > L TE A B AR A A TR RO R SRR A TR AL IEMESR 0 B S 93.42% A0
91.13% -

Abstract

Taiwanese tone sandhi problem is one of the important research issues for Taiwanese

Text-to-Speech systems. In word level, we can use the general tone sandhi rules to deal with
the Taiwanese tone sandhi problem. The tone sandhi becomes more difficult in sentence level
because of that the general tone sandhi rules for words may not apply at each word in a
sentence. In this paper we proposed a module to deal with the Taiwanese tone sandhi problem
for Chinese to Taiwanese Text-to-Speech systems. We adopt Decision tree C5.0 algorithm
accompanied with three Special Cases generated from training data to predict the tone sandhi
of each syllable. In this module, the accuracy of the inside test and outside test are 93.42%
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and 91.13%, respectively.
BRGEE © GRS R TR

Keywords: Taiwanese Tone Sandhi, Text-to-Speech System, Decision Tree.
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Abstract

The main goal of this paper is to develop a large scale Taiwanese corpus. In the mean time,
we try to establish a successful model for the computational linguistic research on other
minority Taiwanese languages such as Haka.In this paper, we will build a Taiwanese speech
corpus. The source of speech corpus is Taiwanese dramas and news from TV stations. The
goal of the corpus is 200 hours speech material with annotation.
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Abstract

An increasing number of people learn Chinese as second language in the world.
About 60% of Chinese characters are picto-phonetic compounds which are composed
of a phonetic component (PC) and semantic component. Therefore » one can make a
guess at a character’s pronunciation and meaning from its phonetic and semantic
component for a new character. For this reason > we propose an order of phonetic
components based on pronunciation strength > frequency and number of strokes for
efficient learning with proper pronunciation rules and graph recognition. We adopt
stem-deriving instructional method which extends each phonetic component with
different radical component to derive new picto-phonetic compounds of similar
pronunciation. Via simulation, the top 400 phonetic components and their
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picto-phonetic extensions are enough for the recognition of 60% characters in general
articles; and top 800 phonetic components can help recognition of 90% characters of
general news articles.

BRI PR B B DI

Keywords: picto-phonetic compounds > phonetic component * component >
stem-deriving instructional method.
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Abstract

No matter that learning Chinese as a first or second language, a quite important issue,
misspelled words, needs to be addressed. Many studies proposed that there was a suggestion
of correcting misspelled words for students who are still schooling as well as a suggestion of
teaching and learning strategies of Chinese characters for teachers. Although in schooling, it
does to prevent students who do lots of precautions and corrections from generating
misspelled words; students sometimes are unconscious of their misspelled words while
writing. As a result, in addition to emphasize the recognition of misspelled words in teaching,
mentioning how to prevent from generating misspelled words during the process of using
words become