CoNLL 2017

The 21st Conference on
Computational Natural Language Learning

Proceedings of the Conference

August 3 - August 4, 2017
Vancouver, Canada

Sponsors

Google

(©2017 The Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street

Stroudsburg, PA 18360

USA

Tel: +1-570-476-8006

Fax: +1-570-476-0860

acl@aclweb.org

ISBN 978-1-945626-54-8

il

Introduction

The 2017 Conference on Computational Natural Language Learning (CoNLL) is the 21st in the series
of annual meetings organized by SIGNLL, the ACL special interest group on natural language learning.
CoNLL 2017 will be held on August 3—4, 2017, and is co-located with the 55th annual meeting of the
Association for Computational Linguistics (ACL) in Vancouver, Canada.

As in most previous years, in order to accommodate papers with experimental material and detailed
analysis/proofs, CoNLL 2017 invited only long papers, allowing eight pages of content plus unlimited
pages of references and supplementary material in initial submission. Final, camera-ready submissions
were allowed one additional page, so that all papers in the proceedings have a maximum of nine content
pages plus unlimited pages of references and supplementary material.

CoNLL 2017 received a record number of 280 submissions in total, out of which 2 had to be rejected
for formal reasons, and 12 were withdrawn by the authors during the review period. Of the remaining
271 papers, 50 papers were chosen to appear in the conference program, with an overall acceptance
rate of 18.7%, the lowest ever for the conference. Seven of these were withdrawn after the notification,
resulting in 43 papers for the final program: 20 selected for oral presentation, and the remaining 23
for poster presentation plus lightning oral presentation. All 43 papers appear here in the conference
proceedings.

CoNLL 2017 features two invited talks, given by Chris Dyer (Google DeepMind) and Naomi Feldman
(University of Maryland), and two shared tasks: one on Universal Morphological Reinflection and one
on Multilingual Parsing from Raw Text to Universal Dependencies. Papers accepted for the shared tasks
are published in companion volumes of the CoNLL 2017 proceedings.

We would like to thank all the authors who submitted their work to CoNLL 2017, and the program
committee for helping us select the best papers out of many high-quality submissions. We are grateful
to the many program committee members who answered positively to our late requests for reviewing
assistance due to the unexpectedly large number of submissions. For this year’s CoNLL, we allowed
simultaneous submission to other conferences, and in order to ease the burden on the community of
reviewers we implemented limited, partial cross-conference review sharing with EMNLP for papers
submitted to both conferences. We are grateful to the EMNLP chairs, Rebecca Hwa and Sebastian
Riedel, for working together with us, and to the EMNLP program committee members who participated
in this process. We are also grateful to our invited speakers and to the SIGNLL board members. In
particular, we are immensely thankful to Julia Hockenmaier for her valuable advice and assistance in
putting together this year’s program and proceedings. We also thank Ben Verhoeven, for maintaining
the CoNLL 2017 website. We are grateful to the ACL organization for helping us with the program,
proceedings and logistics. Finally, our gratitude goes to our sponsor, Google Inc., for supporting the best
paper award at CoNLL 2017.

We hope you enjoy the conference!
Roger Levy and Lucia Specia

CoNLL 2017 conference co-chairs

il

Conference Chairs:

Lucia Specia, University of Sheffield (UK)
Roger Levy, MIT (USA)

Invited Speakers:

Chris Dyer, CMU (USA) and Google DeepMind (UK)
Naomi Feldman, Department of Linguistics and Institute for Advanced Computer Studies,
University of Maryland (USA)

Program Committee:

Steven Abney
Zeljko Agié

Roee Aharoni
Héctor Martinez Alonso
Waleed Ammar
Tom Anderson

Ron Artstein

Yoav Artzi

Wilker Aziz

Collin Baker

Omid Bakhshandeh
Timothy Baldwin
Miguel Ballesteros
Roy Bar-Haim
Timo Baumann
Daniel Beck
Barend Beekhuizen
Yonatan Belinkov
Dane Bell

Jonathan Berant
Yevgeni Berzak
Chandra Bhagavatula
Suma Bhat
Pushpak Bhattacharyya
Joachim Bingel
Yonatan Bisk
Johannes Bjerva
Frédéric Blain
Michael Bloodgood
Bernd Bohnet
Francesca Bonin
Chloé Braud

Chris Brockett

Julian Brooke

Kris Cao

Cornelia Caragea
Gracinda Carvalho
Francisco Casacuberta
Baobao Chang
Kai-Wei Chang
Snigdha Chaturvedi
Boxing Chen
Dangi Chen
Wei-Te Chen
David Chiang

Hai Leong Chieu
Eunah Cho

Yejin Choi

Christos Christodoulopoulos

Grzegorz Chrupata
Volkan Cirik
Alexander Clark
Stephen Clark
Arman Cohan
Trevor Cohn
Benoit Crabbé
Walter Daelemans
Andrew Dai
Bhavana Dalvi
Vera Demberg
Steve DeNeefe
Lingjia Deng

Nina Dethlefs
Mark Dras

Rotem Dror

Kevin Duh

Greg Durrett

Chris Dyer

Judith Eckle-Kohler
Jacob Eisenstein
Meng Fang

Geli Fei

Raquel Fernandez
José A. R. Fonollosa
George Foster
Stella Frank
Stefan L. Frank
Lea Frermann
Richard Futrell
Matt Gardner
Michaela Geierhos
Daniel Gildea
Roxana Girju

vi

Dan Goldwasser
Carlos Gémez-Rodriguez
Alvin Grissom II
Cyril Grouin

Sonal Gupta

Masato Hagiwara
Keith Hall

Jey Han Lau

Homa B. Hashemi
Hua He

Julian Hitschler

Julia Hockenmaier
Andrea Horbach
Yufang Hou

Diana Inkpen

Laura Jehl

Charles Jochim
Anders Johannsen
Sariya Karimova
Casey Kennington
Fabio Kepler

Daniel Khashabi
Tracy Holloway King
Sigrid Klerke

Roman Klinger
Philipp Koehn
Mikhail Kozhevnikov
Julia Kreutzer

Jayant Krishnamurthy
German Kruszewski
Sandra Kiibler
Marco Kuhlmann
Jonathan K. Kummerfeld
Ophélie Lacroix
Chiraag Lala

Carolin Lawrence
Tao Lei

Alessandro Lenci
Omer Levy

Qi Li

Tal Linzen

Ting Liu

Yi Luan

Marco Lui

Franco M. Luque
Pranava Swaroop Madhyastha
Daniel Marcu

Alex Marin

Bruno Martins

Luis Marujo

vii

Yuji Matsumoto
Yevgen Matusevych
David McClosky
Kathy McKeown
Marissa Milne
Ashutosh Modi
Alessandro Moschitti
Nasrin Mostafazadeh
Skatje Myers
Preslav Nakov
Jason Naradowsky
Shashi Narayan

Jan Niehues

Joakim Nivre

Pierre Nugues
Alexis Palmer
Denis Paperno
Viktor Pekar
Nanyun Peng
Xiaochang Peng
Johann Petrak

Luis Nieto Pifia
Yuval Pinter
Barbara Plank
David Powers

Nazneen Fatema Rajani

Carlos Ramisch
Roi Reichart
Corentin Ribeyre
Laura Rimell
Alan Ritter

Brian Roark

Kirk Roberts
Salvatore Romeo
Dan Roth

Michael Roth
Alla Rozovskaya
Kenji Sagae
Benoit Sagot
Bahar Salehi
Ryohei Sasano
Carolina Scarton
Shigehiko Schamoni
Marten van Schijndel
Jonathan Schler
William Schuler
Roy Schwartz
Djamé Seddah
Yee Seng Chan
Chaitanya Shivade

viii

Vered Shwartz
Khalil Simaan
Patrick Simianer
Kairit Sirts

Noah A. Smith
Anders Sggaard
Artem Sokolov
Luca Soldaini
Vivek Srikumar
Shashank Srivastava
Gabriel Stanovsky
Tan Stewart

Kevin Stowe
Simon Suster
Swabha Swayamdipta
Partha Talukdar
Chenhao Tan

Sam Thomson
James Thorne
Shubham Toshniwal
Reut Tsarfaty

Oren Tsur

Lifu Tu

Anh Tuan Luu
Marco Turchi
Marc Verhagen
Yannick Versley
Aline Villavicencio
Andreas Vlachos
Svitlana Volkova
Ivan Vulié
Ekaterina Vylomova
Zhiguo Wang
Zeerak Waseem
Taro Watanabe
Ingmar Weber
Ralph Weischedel
Michael Wiegand
John Wieting
Michael Wojatzki
Rui Xia

Berrin Yanikoglu
Marcos Zampieri
Qi Zhang
Xingxing Zhang
Hai Zhao

Muhua Zhu

iX

Table of Contents

Should Neural Network Architecture Reflect Linguistic Structure?
(] 11 F D) /<" PP 1

Rational Distortions of Learners’ Linguistic Input
Naomi Feldman e 2

Exploring the Syntactic Abilities of RNNs with Multi-task Learning
Emile Enguehard, Yoav Goldberg and Tal Linzenooouuuuiiieeeeeiiinnn. 3

The Effect of Different Writing Tasks on Linguistic Style: A Case Study of the ROC Story Cloze Task
Roy Schwartz, Maarten Sap, loannis Konstas, Leila Zilles, Yejin Choi and Noah A. Smith 15

Parsing for Grammatical Relations via Graph Merging
Weiwei Sun, Yantao Du and Xiaojun Wan........ ...ttt 26

Leveraging Eventive Information for Better Metaphor Detection and Classification
[-Hsuan Chen, Yunfei Long, Qin Lu and Chu-RenHuang............... 36

Collaborative Partitioning for Coreference Resolution
Olga Uryupina and Alessandro Moschitti........... ..o, 47

Named Entity Disambiguation for Noisy Text
Yotam Eshel, Noam Cohen, Kira Radinsky, Shaul Markovitch, Ikuya Yamada and Omer Levy . .58

Tell Me Why: Using Question Answering as Distant Supervision for Answer Justification
Rebecca Sharp, Mihai Surdeanu, Peter Jansen, Marco A. Valenzuela-Escércega, Peter Clark
and Michael Hammond 69

Learning What is Essential in Questions
Daniel Khashabi, Tushar Khot, Ashish Sabharwal and DanRoth............................. 80

Top-Rank Enhanced Listwise Optimization for Statistical Machine Translation
Huadong Chen, Shujian Huang, David Chiang, Xin-Yu Dai and Jiajun CHEN................. 90

Embedding Words and Senses Together via Joint Knowledge-Enhanced Training
Massimiliano Mancini, Jose Camacho-Collados, Ignacio Iacobacci and Roberto Navigli 100

Automatic Selection of Context Configurations for Improved Class-Specific Word Representations
Ivan Vulié, Roy Schwartz, Ari Rappoport, Roi Reichart and Anna Korhonen................. 112

Modeling Context Words as Regions: An Ordinal Regression Approach to Word Embedding
Shoaib Jameel and Steven Schockaert. i 123

An Artificial Language Evaluation of Distributional Semantic Models
Fatemeh Torabi Asr and Michael Jones i 134

Learning Word Representations with Regularization from Prior Knowledge
Yan Song, Chia-Jung Leeand Fei Xiao e 143

Attention-based Recurrent Convolutional Neural Network for Automatic Essay Scoring
Fei Dong, Yue Zhang and Jie Yang e e 153

X1

Feature Selection as Causal Inference: Experiments with Text Classification
Michael J. Paul. o e 163

A Joint Model for Semantic Sequences: Frames, Entities, Sentiments
Haoruo Peng, Snigdha Chaturvedi and DanRoth.......... o i, 173

Neural Sequence-to-sequence Learning of Internal Word Structure
Tatyana Ruzsics and Tanja Samardzic.cooiiiiiite it 184

A Supervised Approach to Extractive Summarisation of Scientific Papers
Ed Collins, Isabelle Augenstein and Sebastian Riedel 195

An Automatic Approach for Document-level Topic Model Evaluation
Shraey Bhatia, Jey Han Lau and Timothy Baldwin............... i ... 206

Robust Coreference Resolution and Entity Linking on Dialogues:
Character Identification on TV Show Transcripts
Henry Y. Chen, Ethan Zhou and Jinho D. Choi o i, 216

Cross-language Learning with Adversarial Neural Networks
Shafiq Joty, Preslav Nakov, Lluis Marquez and Israa Jaradat 226

Knowledge Tracing in Sequential Learning of Inflected Vocabulary
Adithya Renduchintala, Philipp Koehn and Jason Eisner............... 238

A Probabilistic Generative Grammar for Semantic Parsing
Abulhair Saparov, Vijay Saraswat and Tom Mitchell 248

Learning Contextual Embeddings for Structural Semantic Similarity using Categorical Information
Massimo Nicosia and Alessandro Moschitti e 260

Making Neural QA as Simple as Possible but not Simpler
Dirk Weissenborn, Georg Wiese and Laura Seiffe............... i ... 271

Neural Domain Adaptation for Biomedical Question Answering
Georg Wiese, Dirk Weissenborn and Mariana Nevesooiiiireiiiiinneennnnn... 281

A phoneme clustering algorithm based on the obligatory contour principle
Mans Hulden. 290

Learning Stock Market Sentiment Lexicon and Sentiment-Oriented Word Vector from StockTwits
Quanzhi Liand Sameena Shah............ 301

Learning local and global contexts using a convolutional recurrent network model
for relation classification in biomedical text
Desh Raj, Sunil Sahu and Ashish Anand, 311

Idea density for predicting Alzheimer’s disease from transcribed speech
Kairit Sirts, Olivier Piguet and Mark Johnson. i i i 322

Zero-Shot Relation Extraction via Reading Comprehension
Omer Levy, Minjoon Seo, Eunsol Choi and Luke Zettlemoyer.............................. 333

The Covert Helps Parse the Overt
Xun Zhang, Weiwei Sun and Xiaojun Wan i 343

Xii

German in Flux: Detecting Metaphoric Change via Word Entropy
Dominik Schlechtweg, Stefanie Eckmann, Enrico Santus, Sabine Schulte im Walde
and Daniel Hole 354

Encoding of phonology in a recurrent neural model of grounded speech
Afra Alishahi, Marie Barking and Grzegorz Chrupata 368

Multilingual Semantic Parsing And Code-Switching
Long Duong, Hadi Afshar, Dominique Estival, Glen Pink, Philip Cohen and Mark Johnson ... 379

Optimizing Differentiable Relaxations of Coreference Evaluation Metrics
Phong Le and Ivan TitOVo i 390

Neural Structural Correspondence Learning for Domain Adaptation
Yftah Ziser and Roi Reichart 400

A Simple and Accurate Syntax-Agnostic Neural Model for Dependency-based Semantic Role Labeling
Diego Marcheggiani, Anton Frolovand Ivan Titov............. ..., 411

Joint Prediction of Morphosyntactic Categories for Fine-Grained Arabic Part-of-Speech Tagging Ex-
ploiting Tag Dictionary Information
Go Inoue, Hiroyuki Shindo and Yuji Matsumotot iiiiii i, 421

Learning from Relatives: Unified Dialectal Arabic Segmentation
Younes Samih, Mohamed Eldesouki, Mohammed Attia, Kareem Darwish, Ahmed Abdelali,
Hamdy Mubarak and Laura Kallmeyer e 432

Natural Language Generation for Spoken Dialogue System using RNN Encoder-Decoder Networks
Van-Khanh Tran and Le-Minh Nguyen i i 442

Graph-based Neural Multi-Document Summarization
Michihiro Yasunaga, Rui Zhang, Kshitijh Meelu, Ayush Pareek, Krishnan Srinivasan
and Dragomir Radev. 452

Xiii

Conference Program

Thursday, August 3, 2017

8:45-9:00

9:00-10:00

10:00-10:15

10:15-10:17

10:17-10:19

10:19-10:21

10:21-10:23

10:23-10:25

Opening Remarks

Invited Talk by Chris Dyer

Should Neural Network Architecture Reflect Linguistic Structure?
Chris Dyer

Session 1

Exploring the Syntactic Abilities of RNNs with Multi-task Learning
Emile Enguehard, Yoav Goldberg and Tal Linzen

Session 1L: Lightning Talks for Poster Session

The Effect of Different Writing Tasks on Linguistic Style:
A Case Study of the ROC Story Cloze Task

Roy Schwartz, Maarten Sap, Ioannis Konstas, Leila Zilles,
Yejin Choi and Noah A. Smith

Farsing for Grammatical Relations via Graph Merging
Weiwei Sun, Yantao Du and Xiaojun Wan

Leveraging Eventive Information for Better Metaphor Detection and Classification
I-Hsuan Chen, Yunfei Long, Qin Lu and Chu-Ren Huang

Collaborative Partitioning for Coreference Resolution
Olga Uryupina and Alessandro Moschitti

Named Entity Disambiguation for Noisy Text

Yotam Eshel, Noam Cohen, Kira Radinsky, Shaul Markovitch,
Ikuya Yamada and Omer Levy

XV

Thursday, August 3, 2017 (continued)

10:25-10:27

10:27-10:29

10:29-10:31

10:31-11:00

11:00-12:30

12:30-2:00

2:00-3:30

3:30-4:00

Tell Me Why: Using Question Answering as Distant Supervision

for Answer Justification

Rebecca Sharp, Mihai Surdeanu, Peter Jansen, Marco A. Valenzuela-Escarcega,
Peter Clark and Michael Hammond

Learning What is Essential in Questions
Daniel Khashabi, Tushar Khot, Ashish Sabharwal and Dan Roth

Top-Rank Enhanced Listwise Optimization for Statistical Machine Translation
Huadong Chen, Shujian Huang, David Chiang, Xin-Yu Dai and Jiajun Chen
Coffee Break

Session ST1: CoNLL-SIGMORPHON Shared Task

Mans Hulden, Ryan Cotterell, Christo Kirov, and John Sylak-Glassman:
Universal Morphological Reinflection in 52 Languages

Lunch Break

Session ST2: CoNLL Shared Task

Dan Zeman, Jan Hajic, et al.:
Multilingual Parsing from Raw Text to Universal Dependencies

Coffee Break

XVi

Thursday, August 3, 2017 (continued)

Session 2

4:00-4:15 Embedding Words and Senses Together via Joint Knowledge-Enhanced Training
Massimiliano Mancini, Jose Camacho-Collados, Ignacio Iacobacci
and Roberto Navigli

4:15-4:30 Automatic Selection of Context Configurations for Improved Class-Specific
Word Representations
Ivan Vulié, Roy Schwartz, Ari Rappoport, Roi Reichart and Anna Korhonen

4:30-4:45 Modeling Context Words as Regions: An Ordinal Regression Approach
to Word Embedding

Shoaib Jameel and Steven Schockaert

4:45-5:00 An Artificial Language Evaluation of Distributional Semantic Models
Fatemeh Torabi Asr and Michael Jones

5:00-5:15 Learning Word Representations with Regularization from Prior Knowledge
Yan Song, Chia-Jung Lee and Fei Xia
Session 2L: Lightning Talks for Poster Session

5:15-5:17 Attention-based Recurrent Convolutional Neural Network for Automatic
Essay Scoring

Fei Dong, Yue Zhang and Jie Yang

5:17-5:19 Feature Selection as Causal Inference: Experiments with Text Classification
Michael J. Paul

5:19-5:21 A Joint Model for Semantic Sequences: Frames, Entities, Sentiments
Haoruo Peng, Snigdha Chaturvedi and Dan Roth

5:21-5:23 Neural Sequence-to-sequence Learning of Internal Word Structure
Tatyana Ruzsics and Tanja Samardzic

5:23-5:25 A Supervised Approach to Extractive Summarisation of Scientific Papers
Ed Collins, Isabelle Augenstein and Sebastian Riedel

X Vil

Thursday, August 3, 2017 (continued)

5:25-5:27 An Automatic Approach for Document-level Topic Model Evaluation
Shraey Bhatia, Jey Han Lau and Timothy Baldwin

5:27-5:29 Robust Coreference Resolution and Entity Linking on Dialogues:
Character Identification on TV Show Transcripts
Henry Y. Chen, Ethan Zhou and Jinho D. Choi

5:29-5:31 Cross-language Learning with Adversarial Neural Networks
Shafiq Joty, Preslav Nakov, Lluis Marquez and Israa Jaradat

5:31-6:31 Business Meeting

Friday, August 4, 2017

Invited talk by Naomi Feldman
8:45-9:45 Rational Distortions of Learners’ Linguistic Input
Naomi Feldman

Session 3

9:45-10:00 Knowledge Tracing in Sequential Learning of Inflected Vocabulary
Adithya Renduchintala, Philipp Koehn and Jason Eisner

10:00-10:15 A Probabilistic Generative Grammar for Semantic Parsing
Abulhair Saparov, Vijay Saraswat and Tom Mitchell

XViil

Friday, August 4, 2017 (continued)

10:15-10:17

10:17-10:19

10:19-10:21

10:21-10:23

10:23-10:25

10:25-10:27

10:27-10:29

10:29-11:00

11:00-2:00

Session 3L: Lightning Talks for Poster Session
Learning Contextual Embeddings for Structural Semantic Similarity
using Categorical Information

Massimo Nicosia and Alessandro Moschitti

Making Neural QA as Simple as Possible but not Simpler
Dirk Weissenborn, Georg Wiese and Laura Seiffe

Neural Domain Adaptation for Biomedical Question Answering
Georg Wiese, Dirk Weissenborn and Mariana Neves

A phoneme clustering algorithm based on the obligatory contour principle
Mans Hulden

Learning Stock Market Sentiment Lexicon and Sentiment-Oriented
Word Vector from StockTwits

Quanzhi Li and Sameena Shah

Learning local and global contexts using a convolutional recurrent
network model for relation classification in biomedical text

Desh Raj, Sunil Sahu and Ashish Anand

Idea density for predicting Alzheimer’s disease from transcribed speech
Kairit Sirts, Olivier Piguet and Mark Johnson

Coffee Break

Poster Session and Lunch

X1X

Friday, August 4, 2017 (continued)

2:00-2:15

2:15-2:30

2:30-2:45

2:45-3:00

3:00-3:15

3:15-3:30

3:30-4:00

Session 4

Zero-Shot Relation Extraction via Reading Comprehension
Omer Levy, Minjoon Seo, Eunsol Choi and Luke Zettlemoyer

The Covert Helps Parse the Overt
Xun Zhang, Weiwei Sun and Xiaojun Wan

German in Flux: Detecting Metaphoric Change via Word Entropy
Dominik Schlechtweg, Stefanie Eckmann, Enrico Santus,

Sabine Schulte im Walde and Daniel Hole

Encoding of phonology in a recurrent neural model of grounded speech
Afra Alishahi, Marie Barking and Grzegorz Chrupata

Multilingual Semantic Parsing And Code-Switching
Long Duong, Hadi Afshar, Dominique Estival, Glen Pink,
Philip Cohen and Mark Johnson

Optimizing Differentiable Relaxations of Coreference Evaluation Metrics
Phong Le and Ivan Titov

Coffee Break

XX

Friday, August 4, 2017 (continued)

4:00-4:15

4:15-4:30

4:30-4:45

4:45-5:00

5:00-5:15

5:15-5:30

5:30-5:35

5:35-5:45

Session 5

Neural Structural Correspondence Learning for Domain Adaptation
Yftah Ziser and Roi Reichart

A Simple and Accurate Syntax-Agnostic Neural Model for Dependency-based Se-
mantic Role Labeling
Diego Marcheggiani, Anton Frolov and Ivan Titov

Joint Prediction of Morphosyntactic Categories for Fine-Grained Arabic Part-of-
Speech Tagging Exploiting Tag Dictionary Information
Go Inoue, Hiroyuki Shindo and Yuji Matsumoto

Learning from Relatives: Unified Dialectal Arabic Segmentation

Younes Samih, Mohamed Eldesouki, Mohammed Attia, Kareem Darwish,
Ahmed Abdelali, Hamdy Mubarak and Laura Kallmeyer

Natural Language Generation for Spoken Dialogue System using

RNN Encoder-Decoder Networks

Van-Khanh Tran and Le-Minh Nguyen

Graph-based Neural Multi-Document Summarization

Michihiro Yasunaga, Rui Zhang, Kshitijh Meelu, Ayush Pareek,
Krishnan Srinivasan and Dragomir Radev

Best Paper Award

Closing Remarks

XX1

Invited Talk

Should Neural Network Architecture
Reflect Linguistic Structure?

Chris Dyer
DeepMind/CMU

Abstract: 1 explore the hypothesis that conventional neural network models (e.g., recurrent neural
networks) are incorrectly biased for making linguistically sensible generalizations when learning, and
that a better class of models is based on architectures that reflect hierarchical structures for which
considerable behavioral evidence exists. I focus on the problem of modeling and representing the
meanings of sentences. On the generation front, I introduce recurrent neural network grammars
(RNNGs), a joint, generative model of phrase-structure trees and sentences. RNNGs operate via a
recursive syntactic process reminiscent of probabilistic context-free grammar generation, but decisions
are parameterized using RNNs that condition on the entire (top-down, left-to-right) syntactic derivation
history, thus relaxing context-free independence assumptions, while retaining a bias toward explaining
decisions via "syntactically local" conditioning contexts. Experiments show that RNNGs obtain better
results in generating language than models that don’t exploit linguistic structure. On the representation
front, I explore unsupervised learning of syntactic structures based on distant semantic supervision using
a reinforcement-learning algorithm. The learner seeks a syntactic structure that provides a compositional
architecture that produces a good representation for a downstream semantic task. Although the inferred
structures are quite different from traditional syntactic analyses, the performance on the downstream
tasks surpasses that of systems that use sequential RNNs and tree-structured RNNs based on treebank
dependencies. This is joint work with Adhi Kuncoro, Dani Yogatama, Miguel Ballesteros, Phil Blunsom,
Ed Grefenstette, Wang Ling, and Noah A. Smith.

Bio: Chris Dyer is a research scientist at DeepMind and an assistant professor in the School of
Computer Science at Carnegie Mellon University. In 2017, he received the Presidential Early Career
Award for Scientists and Engineers (PECASE). His work has occasionally been nominated for best paper
awards in prestigious NLP venues and has, much more occasionally, won them. He lives in London and,
in his spare time, plays cello.

1

Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017), page 1,
Vancouver, Canada, August 3 - August 4, 2017. (©2017 Association for Computational Linguistics

Invited Talk

Rational Distortions of
Learners’ Linguistic Input

Naomi Feldman
University of Maryland

Abstract: Language acquisition can be modeled as a statistical inference problem: children use
sentences and sounds in their input to infer linguistic structure. However, in many cases, children
learn from data whose statistical structure is distorted relative to the language they are learning. Such
distortions can arise either in the input itself, or as a result of children’s immature strategies for encoding
their input. This work examines several cases in which the statistical structure of children’s input differs
from the language being learned. Analyses show that these distortions of the input can be accounted for
with a statistical learning framework by carefully considering the inference problems that learners solve
during language acquisition

Bio: Naomi Feldman is an associate professor in the Department of Linguistics and the Institute for
Advanced Computer Studies at the University of Maryland. She received her PhD in Cognitive Science
from Brown University in 2011. Her research lies at the intersection of cognitive science, computer
science, and linguistics. She uses methods from machine learning to create formal models of how
people learn and represent the structure of their language, and has been developing methods that take
advantage of naturalistic speech corpora to study how listeners encode information from their linguistic
environment.

2

Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017), page 2,
Vancouver, Canada, August 3 - August 4, 2017. (©2017 Association for Computational Linguistics

Exploring the Syntactic Abilities of RNNs with Multi-task Learning

Emile Enguehard!

Yoav Goldberg?

Tal Linzen3*

'Département d’informatique, ENS, PSL Research University
2Computer Science Department, Bar Ilan University
3LSCP & IJN, CNRS, EHESS and ENS, PSL Research University
“Department of Cognitive Science, Johns Hopkins University

{emile.enguehard,tal.linzen}@ens.fr

Abstract

Recent work has explored the syntactic
abilities of RNNs using the subject-verb
agreement task, which diagnoses sensitiv-
ity to sentence structure. RNNs performed
this task well in common cases, but fal-
tered in complex sentences (Linzen et al.,
2016). We test whether these errors are
due to inherent limitations of the architec-
ture or to the relatively indirect supervi-
sion provided by most agreement depen-
dencies in a corpus. We trained a sin-
gle RNN to perform both the agreement
task and an additional task, either CCG su-
pertagging or language modeling. Multi-
task training led to significantly lower er-
ror rates, in particular on complex sen-
tences, suggesting that RNNs have the
ability to evolve more sophisticated syn-
tactic representations than shown before.
We also show that easily available agree-
ment training data can improve perfor-
mance on other syntactic tasks, in partic-
ular when only a limited amount of train-
ing data is available for those tasks. The
multi-task paradigm can also be leveraged
to inject grammatical knowledge into lan-
guage models.

1 Introduction

Recurrent neural networks (RNNs) have seen
rapid adoption in natural language processing ap-
plications. Since these models are not equipped
with explicit linguistic representations such as de-
pendency parses or logical forms, new methods
are needed to characterize the linguistic general-
izations that they capture. One such method is
drawn from behavioral psychology: the network
is tested on cases that are carefully selected to be

3

yoav.goldberg@gmail.com

informative as to the generalizations that the net-
work has acquired.

Linzen et al. (2016) have recently applied this
methodology to evaluate how well a trained RNN
captures sentence structure, using the agreement
prediction task (Bock and Miller, 1991; Elman,
1991). The form of an English verb often de-
pends on its subject. Identifying the subject of a
given verb of requires sensitivity to sentence struc-
ture. Consequently, testing an RNN on its ability
to choose the correct form of a verb in context can
shed light on the sophistication of its syntactic rep-
resentations (see Section 2.1 for details).

RNNs trained specifically to perform the agree-
ment task can achieve very good average per-
formance on a corpus, with accuracy close to
99%. However, error rates increase substantially
on complex sentences (Linzen et al., 2016, 2017),
suggesting that the syntactic knowledge acquired
by the RNN is imperfect. Finally, when the RNN
is trained as a language model rather than specif-
ically on the agreement task, its sensitivity to
subject-verb agreement, measured as the relative
probability of the grammatical and ungrammatical
forms of the verb, degrades dramatically.

Are the limitations that RNNs showed in pre-
vious work inherent to their architecture, or can
these limitations be mitigated by stronger super-
vision? We address this question using multi-
task learning, where the same model is encour-
aged to develop representations that are simulta-
neously useful for multiple tasks. To provide the
RNN with an incentive to develop more sophis-
ticated representations, we trained it to perform
one of two tasks: the first is combinatory categor-
ical grammar (CCG) supertagging (Bangalore and
Joshi, 1999), a sequence labeling task likely to re-
quire robust syntactic representations; the second
task is language modeling.

We also investigate the inverse question: can

Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017), pages 3—14,
Vancouver, Canada, August 3 - August 4, 2017. (©2017 Association for Computational Linguistics

tasks such as supertagging benefit from joint train-
ing with the agreement task? This question is of
practical interest. Large training sets for the agree-
ment task are much easier to create than training
sets for supertagging, which are based on manu-
ally parsed sentences. If the training signal from
the agreement prediction task proves to be ben-
eficial for supertagging, this could lead to im-
proved supertagging (and therefore parsing) per-
formance in languages in which we only have a
small amount of parsed training sentences.

We found that multi-task learning, either with
LM or with CCG supertagging, improved the per-
formance of the RNN on the agreement prediction
task. The benefits of combined training with su-
pertagging can be quite large: accuracy in chal-
lenging relative clause sentences increased from
50.6% to 76.2%. This suggests that RNNs are
in principle capable of acquiring much better syn-
tactic representations than those they learned from
the corpus in Linzen et al. (2016).

In the other direction, joint training on the
agreement prediction task did not improve over-
all language model perplexity, but made the model
more syntax-aware: grammatically appropriate
verb forms had higher probability than grammati-
cally inappropriate ones. When a limited amount
of CCQG training data was available, joint training
on agreement prediction led to improved supertag-
ging accuracy. These findings suggest that multi-
task training with auxiliary syntactic tasks such as
agreement prediction can lead to improved perfor-
mance on standard NLP tasks.

2 Background and Related Work

2.1 Agreement Prediction

English present-tense third-person verbs agree in
number with their subject: singular subjects re-
quire singular verbs (the boy smiles) and plural
subjects require plural verbs (the boys smile). Sub-
jects in English are not overtly marked, and com-
plex sentences often have multiple subjects corre-
sponding to different verbs. Identifying the subject
of a particular verb can therefore be non-trivial in
sentences that have multiple nouns:

Q8 The only championship banners that are
currently displayed within the building are
for national or NCAA Championships.

Determining that the subject of the verb in bold-
face is banners rather than the singular nouns

championship and building requires an under-
standing of the structure of the sentence.

In the agreement task, the learner is given the
words leading up to a verb (a “preamble”), and is
instructed to predict whether that verb will take the
plural or singular form. This task is modeled after
a standard psycholinguistic task, which is used to
study syntactic representations in humans (Bock
and Miller, 1991; Franck et al., 2002; Staub, 2009;
Bock and Middleton, 2011).

Any English sentence with a third-person
present-tense verb can be used as a training exam-
ple for this task: all we need is a tagger that can
identify such verbs and determine whether they
are plural or singular. As such, large amounts of
training data for this task can be obtained from a
corpus.

The agreement task can often be solved using
simple heuristics, such as copying the number of
the most recent noun. It can therefore be useful to
evaluate the model using sentences in which such
a heuristic would fail because one or more nouns
of the opposite number from the subject intervene
between the subject and the verb; such nouns “at-
tract” the agreement away from the grammatical
subject. In general, the more such attractors there
are the more difficult the task is for a sequence
model that does not represent syntax (we focus on
sentences in which all of the nouns between the
subject and the verb are of the opposite number
from the subject):

2) The number of men is not clear. (One at-
tractor)

3) The ratio of men to women is not clear.
(Two attractors)

) The ratio of men to women and children is
not clear. (Three attractors)

2.2 CCG Supertagging

Combinatory Categorial Grammar (CCG) is a syn-
tactic formalism that relies on a large inventory of
lexical categories (Steedman, 2000). These cate-
gories are known as supertags, and can be thought
of as a fine-grained extension of the usual part-
of-speech tags. For example, intransitive verbs
(smile), transitive verbs (build) and raising verbs
(seem) all have different tags: S\WP, (S\WP)/NP
and (S\WP)/(S\NP), respectively.

CCG parsers typically rely on a supertagging
step where each word in a sentence is associated

with an appropriate tag. In fact, supertagging is
almost as difficult as finding the full CCG parse of
the sentence: once the supertags are determined,
only a small number of parses are possible. At the
same time, supertagging is simple to set up as a
machine learning problem, since at each word it
amounts to a straightforward classification prob-
lem (Bangalore and Joshi, 1999). RNNs have
shown excellent performance on this task, at least
in English (Xu et al., 2015; Lewis et al., 2016;
Vaswani et al., 2016).

In contrast with the agreement task, training
data for supertagging needs to be obtained from
parsed sentences which require expert annotation
(Hockenmaier and Steedman, 2007); the amount
of training data is therefore limited even in En-
glish, and much more sparse in other languages.

2.3 Language Modeling

The goal of a language model is to learn the dis-
tribution p(w;|wi, ..., wj—1) of the j-th word in
a sentence given the j — 1 words preceding it. We
seek to minimize the mean negative log-likelihood
of all sentences s; = w; 1 . . . W; 5, in our data:

N n;

—% >0 logp(wi;

i=1 j=1

L(p) =

win—1) (1)

where Z = ZZJ\; 1 n;. Language modeling per-
formance is often quantified using the perplexity
2L(P) The effectiveness of RNNs in language
modeling, in particular LSTMs, has been demon-
strated in numerous studies (Mikolov et al., 2010;
Sundermeyer et al., 2012; Jozefowicz et al., 2016).

2.4 Multitask Learning

The benefits of multi-task learning in neural net-
works are straightforward. Neural networks often
require a large amount of training data to achieve
good performance on a task. Even with a signifi-
cant amount of training data, the signal may be too
sparse for them to pick it up given their weak in-
ductive biases. By training a network on a simple
task for which large quantities of data are avail-
able, we can encourage it to evolve representations
that would help its performance on the primary
task (Caruana, 1998; Bakker and Heskes, 2003).
This logic has been applied to various NLP tasks,
with generally encouraging results (Collobert and
Weston, 2008; Hashimoto et al., 2016; Sggaard

and Goldberg, 2016; Martinez Alonso and Plank,
2017; Bingel and Sggaard, 2017).

3 Methods

3.1 Datasets

We used two training datasets. The first is the cor-
pus of approximately 1.5 million sentences from
the English Wikipedia compiled by Linzen et al.
(2016). All sentences had at most 50 words and
contained at least one third-person present-tense
agreement dependency. Following Linzen et al.
(2016), we replaced rare words by their part-of-
speech tags, using the Penn Treebank tag set (Mar-
cus et al., 1993).!

The second data set we used is the CCG-Bank
(Hockenmaier and Steedman, 2007), a CCG ver-
sion of the Penn Treebank. This corpus con-
tained 48934 English sentences, 27299 of which
include a present tense third-person verb agree-
ment dependency. A negligible number of sen-
tences longer than 90 words were removed. We
applied the traditional split where Sections 2-21
are used for training and Section 23 for testing
(41294 and 2407 sentences respectively).>? Out
of the 1363 different supertags that occur in the
corpus, we only attempted to predict the 452 su-
pertags that occurred at least ten times; we re-
placed the rest (0.2% of the tokens) by a dummy
value.

3.2 Model

The model in all of our experiments was a standard
single-layer LSTM.? The first layer was a vec-
tor embedding of word tokens into D-dimensional
space. The second was a D-dimensional LSTM.
The following layers depended on the task. For
agreement, the output layers consisted of a linear
layer with a one-dimensional output and a sigmoid
activation; for language modeling, a linear layer
with an V-dimensional output, where /V is the size
of the lexicon, and a softmax activation; and for
supertagging, a linear layer with an S-dimensional

'Tn the LM experiments, we restricted ourselves to 10000
words, amounting to 91.2% of the all occurrences. In the
CCG supertagging experiments, we used those 12, 126 words
that occurred more than 150 times, amounting to 92.2% of
the total number of occurrences.

For experiments using this corpus, we use 15784 words
occurring at least four times, amounting to 95.9% of occur-
rences, and replace other words by their POS tags.

30ur code and data are available at https://github.
com/emengd/multitask—-agreement.

output, where S is the number of possible tags,
followed by a softmax activation.

The language modeling loss is the mean neg-
ative log-likelihood of the data given in Equa-
tion (1); the loss for agreement is the mean binary
cross-entropy of the classifier:

Loy = Z log (¢

SGS

num

5)|5:vb))

where ¢ is the estimated distribution of verb num-
bers, S the set of sentences, num(s) the correct
verb number in s and s.,, the sentence up to the
verb. The loss for CCG supertagging is the mean
cross-entropy of the classifiers:

zrrzzlog

ses ”LU]GS

Lst = (tag wj)|sw))

where 7 is the estimated distribution of CCG su-
pertags, tag(w;) is the correct tag of word wj in s,
and s, is the sentence s up to and including w;.

We had at most two tasks in any given exper-
iment. We considered two separate setups for
learning from those two tasks: joint training and
pre-training.

Joint training: In this setup we had parallel out-
put layers for each task. Both output layers re-
ceived the shared LSTM representations as their
input. We define the global loss L as follows:

L= Lt L @

where L and L5 are the losses associated with
each task, and r is the weighting ratio of task 2
relative to task 1. This means that r is a hyperpa-
rameter that needs to be tuned. Note that sample

averaging occurs before formula (2) is applied.

Pre-training: In this setup, we first trained the
network on one of the tasks; we then used the
weights learned by the network for the embedding
layer and the LSTM layer as the initial weights of
a new network which we then trained on the sec-
ond task.

3.3 Training

All neural networks were implemented in Keras
(Chollet, 2015) and Theano (Theano Development
Team, 2016). We use the AdaGrad optimizer.
We use batch training with batch sizes 128 for
language modeling experiments and 256 for su-
pertagging experiments on supertagging.

4 Agreement and Supertagging

For the supertagging experiments we used the full
CCG corpus as well as 30% of the Wikipedia cor-
pus for the agreement task (20% for training and
10% for testing). We trained the model for 20
epochs. The accuracy figures we report are av-
eraged across three runs. We set the size of the
network D to 500 hidden units.* We ran a single
pre-training experiment in each direction, as well
as four joint training experiments, with the weight
r of the agreement task set to 0.1, 1, 10 or 100.

We considered two baselines for the agreement
task: the last noun baseline predicts the number of
the verb based on the number of the most recent
noun, and the majority baseline always predicts
a singular verb (singular verbs are more common
than plural ones in our corpus). Our baseline for
supertagging was a majority baseline that predicts
for each word its most common supertag.

The agreement task predicts the number of the
verb based only on its left context (the preamble).
We trained our supertagging model in the same
setup. Since our model did not have access to the
right context of a word when determining its su-
pertag, we could not expect to compete with state-
of-the-art taggers that use right-context lookahead
(Xu et al., 2015) or even bidirectional RNNs that
read the entire sentence from right to left (Vaswani
et al., 2016; Lewis et al., 2016); we therefore did
not compare our accuracy to these taggers.

4.1 Overall Results

Figure 1 shows the overall results of the experi-
ment. Multi-task training with supertagging sig-
nificantly improved overall accuracy on the agree-
ment task (Figure 1a), either with pre-training or
joint training: compared to the single-task setup,
the agreement error rate decreased by up to 40%
in relative terms (from 2.04% to 1.24%). Con-
versely, multi-task training with agreement did not
improve supertagging accuracy, either in the pre-
training or in the joint training regime; supertag-
ging accuracy decreased the higher the weight of
the agreement task (Figure 1b).

Comparing the two multi-task learning regimes,
the pre-training setup performed about as well as
the joint training setup with the optimal r. In the
following supertagging experiments we dispensed
with the joint training setup, which is time con-

“In initial experiments D = 50 yielded supertagging re-
sults inferior to a majority choice baseline.

1.00

14
o
@

Single-task baseline

14
o
3

Last noun baseline

14
o
g

Agreement prediction accuracy
2
S

0.90
0.01 0.1

1.0 10.0 100.0
Weight r of agreement task

(a) Agreement

0.95

o
®
]

Pre-training with agreement

Single-task baseline

Joint training

Majority baseline

CCG classification accuracy
&
3

0.65

0.01 0.1 1.0 10.0 100.0
Weight r of agreement task

(b) Supertagging

Figure 1: Overall results of supertagging + agree-
ment multi-task training.

suming since it requires trying multiple values of
r, and focused only on the pre-training setup.

4.2 Effect of Corpus Size

To further investigate the relative contribution of
the two supervision signals, we conducted a se-
ries of follow-up experiments in the pre-training
setup, using subsets of varying size of both cor-
pora. We also included POS tagging as an aux-
iliary task to determine to what extent the full
parse of the sentence (approximated by supertags)
is crucial to the improvements we have seen in the
agreement task. Since POS tags contain less syn-
tactic information than CCG supertags, we expect
them to be less helpful as an auxiliary task. Penn
Treebank POS tags distinguish singular and plural
nouns and verbs, but CCG supertags do not; to put
the two tasks on equal footing we removed num-
ber information from the POS tags. We trained for
15 epochs and averaged our results over 5 runs.
The results for the agreement task are shown
in Figure 2a (baseline values are always calcu-
lated over the full corpora). The figure confirms

1.00

o
©
ol

o
©
o

o
)
[

El Single-task agreement
I POS pre-training
I CCG pre-training

Agreement prediction accuracy

o
©
o

909 209 % a 909 st
% ag,.ee"]e o ag,.ee,ne greemen ° 3 ceme Noyp base),;
nt/lOOo/ "”1000/ t/100% c nt/lo% c €ling
° ° Ccg CG G
(a) Agreement
1.00
HE Single-task CCG

0.95 HEl Agreement pre-training
>
20.90
=3
I+
© 0.85
c
2
© 0.80
2
=
?0.75
Kol
o
8 0.70
(s}

0.65

0.60

909 agr, 209 agr, 1% agre 909 ag B
€emeg, Ceme, €Men, Cemeg, asg),
"t/ 100 nt/loo% Cct/loo nt 6 ne

(b) Supertagging

Figure 2: The effect of corpus size on agreement
and supertagging accuracy in multi-task settings.

the beneficial effect of supertagging pre-training
(note that the scale starts at 0.8, not 0.9 as in Fig-
ure la). This effect was amplified when we used
less training data for the agreement task. Pre-
training on POS tagging yielded a similar though
slightly weaker effect. This suggests that much of
the improvement in syntactic representations due
to pre-training on supertagging can also be gained
from pre-training on POS tagging.

Finally, Figure 2b shows that pre-training on
the agreement task improved supertagging accu-
racy when we only used 10% of the CCG corpus
(increase in accuracy from 73.4% to 76.3%); how-
ever, even with agreement pre-training supertag-
ging accuracy is lower than when the model is
trained on the full CCG corpus (where accuracy
was 83.1%).

In summary, the data for each task can be used
to supplement the data for the other, but there
is a large imbalance in the amount of informa-
tion provided by each task. This is not surpris-
ing given that the CCG supertagging data is much
richer than the agreement data for any individual
sentence. Still, we showed that the syntactic sig-

1.0

o
©

o
)

o
IS

With CCG (90%)
With POS (90%)
Single-task (90%)
With CCG (1%)
With POS (1%)
Single-task (1%)

(11

Agreement prediction accuracy
o
N

« o m
LRI

o
o

Number of attractors

Figure 3: Agreement accuracy as a function of the
number of attractors intervening between the sub-
ject and the verb, for two different subsets of the
agreement corpus (90% and 1% of the corpus).

nal from the agreement prediction task can help
improve parsing performance when CCG train-
ing data is sparse; this weak but widely available
source of syntactic supervision may therefore have
a practical use in languages with smaller treebanks
than English.

4.3 Attraction Errors

Most sentences are syntactically simple and do not
pose particular challenges to the models: the ac-
curacy of the last noun baseline in Figure 1a was
close to 95%. To investigate the behavior of the
model on more difficult sentences, we next break
down our test sentences by the number of agree-
ment attractors (see Section 2.1).

Our results, shown in Figure 3, confirm that at-
tractors make the agreement task more difficult,
and that pre-training helps overcome this diffi-
culty. This effect is amplified when we only use
a small subset of the agreement corpus. In this
scenario, the accuracy of the single-task model on
sentences with four attractors is only 20.4%. Pre-
training makes it possible to overcome this diffi-
culty to a significant extent (though not entirely),
increasing the accuracy to 40.1% in the case of
POS tagging and 51.2% in the case of supertag-
ging. This suggests that a network that has devel-
oped sophisticated syntactic representations can
transfer its knowledge to a new syntactic task us-
ing only a moderate amount of data.

4.4 Relative Clauses

In Linzen et al. (2016), attraction errors were par-
ticularly severe when the attractor was inside a rel-

1.0

Agreement prediction accuracy

Il Single-task agreement
Il CCG pre-training

0.0

A, R, R,
"ep4h... eph... /3¢ /3t
os tions, pos't"an five /Sp five,, P
/’Sp

G//p

Figure 4: Accuracy on sentences from Bock and
Cutting (1992). Error bars indicate standard devi-
ation across runs.

ative clause. To gain a more precise understanding
of the errors and the extent to which pre-training
can mitigate them, we turn to two sets of care-
fully constructed sentences from the psycholin-
guistic literature (Linzen et al., 2017). Bock and
Cutting (1992) compared preambles with preposi-
tional phrase modifiers to closely matched relative
clause modifiers:

®) PREPOSITIONAL: The demo tape(s) from
the popular rock singer(s)...

(6) RELATIVE: The demo tape(s) that pro-
moted the popular rock singer(s)...

They constructed 24 such sentence pairs. Each
of the sentences in each pair has four versions,
with all possible combinations of the number of
the subject and the attractor. We refer to them
as SS for singular-singular (tape, singer), SP for
singular-plural (tape, singers), and likewise PS
and PP. We replaced out-of-vocabulary words with
their POS, and further streamlined the materials by
always using that as the relativizer.

We retrained the single-task and pre-trained
models on 90% of the Wikipedia corpus. Like hu-
mans, neither model had any issues with SS and
PP sentences, which do not have an attractor. The
results for SP and PS sentences are shown in Fig-
ure 4. The comparison between prepositional and
relative modifiers shows that the single-task model
was much more likely to make errors when the at-
tractor was in a relative clause (whereas humans
are not sensitive to this distinction). This asymme-
try was substantially mitigated, though not com-
pletely eliminated, by CCG pre-training.

Our second set of sentences was based on the
experimental materials of Wagers et al. (2009).
We adapted them by deleting the relativizer and
creating two preambles from each sentence in the
original experiment:

@) EMBEDDED VERB:
coach(es)...

The player(s) the

®) MAIN CLAUSE VERB: The player(s) the
coach(es) like the best...

In the first preamble, the verb is expected to agree
with the embedded clause subject (the coach(es)),
whereas in the second one it is expected to agree
with the main clause subject (the player(s)).

Figure 5 shows that both models made very
few errors predicting the embedded clause verb,
and more errors predicting the main clause verb.
The relative improvement of the pre-trained model
compared to the single-task one is more modest in
these sentences, possibly because the single-task
model does better to begin with on these sentences
than on the Bock and Cutting (1992) ones. This
in turn may be because the attractor immediately
precedes the verb in Bock and Cutting (1992) but
not in Wagers et al. (2009), and an immediately
adjacent noun may be a stronger attractor. The
Appendix contains additional figures tracking the
predictions of the network as it processes a sample
of sentences with relative clauses; it also illustrates
the activation of particular units over the course of
such a sentence.

5 Agreement and Language Modeling

We now turn our attention to the language model-
ing task. The previous experiments confirmed that

o
©

o
o

I
IS

o
N

Agreement prediction accuracy

I Single-task agreement
Il CCG pre-training

o
)

E,77 Ms5;, Ms;
be in Qin
e, cly, Cly
d, Use ,
Sp

Use /s
Figure 5: Accuracy on sentences based on Wagers
et al. (2009). Error bars indicate standard devia-
tion across runs.

Single-task baseline

Joint training
07} eeeeieeaeeannaaflonee.. LAStNOUN DaSElNE

Majority baseline

Agreement prediction accuracy

0.01 0.1 10.0 100.0

1.0
Weight r of agreement task

(a) Agreement

60 Joint training

LM perplexity

Single-task baseline

0.01 0. 10.0 100.0

1 1.0
Weight r of agreement task

(b) Language modeling

Figure 6: Overall results of language modeling +
agreement multi-task training (trained only on
sentences with an intervening noun).

agreement in sentences without attractors is easy
to predict. We therefore limited ourselves in the
language modeling experiments to sentences with
potential attractors. Concretely, within the subset
of 30% of the Wikipedia corpus, we trained our
language model only on sentences with at least
one noun (of any number) between the subject
and the verb. There were 60680 sentences in the
training set. We averaged our results over three
runs. Training was stopped after 10 epochs, and
the number of hidden units was set to D = 50.

5.1 Overall Results

The overall results are shown in Figure 6. Joint
training with the LM task improves the perfor-
mance of the agreement task to a significant ex-
tent, bringing accuracy up from 90.2% to 92.6% (a
relative reduction of 25% in error rate). This may
be due to the higher quality of the word representa-
tions that can be learned from the language mod-
eling signal, which in turn help the model make
more accurate syntactic predictions.

In the other direction, we do not obtain clear im-
provements in perplexity from jointly training the
LM with agreement. Surprisingly, visual inspec-
tion of Figure 6b suggests that the jointly trained
LM may achieve somewhat better performance
than the single-task baseline for small values of r
(that is, when the agreement task has a small effect
on the overall training loss). To assess the statis-
tical significance of this difference, we repeated
the experiment with »r = 0.01 with 20 random
initializations. The standard deviation in LM loss
was about 0.018, yielding a standard deviation of
0.011 for three-run averages under Gaussian as-
sumptions. Since the difference of 0.015 between
the mean LM losses of the single-task and joint
training setups is of comparable magnitude, we
conclude that there is no clear evidence that joint
training reduces perplexity.

5.2 Grammaticality of LM Predictions

To evaluate the syntactic abilities of an RNN
trained as a language model, Linzen et al. (2016)
proposed to perform the agreement task by com-
paring the probability under the learned LM of
the correct and incorrect verb forms, under the as-
sumption that all other things being equal a gram-
matical sequence should have a higher probabil-
ity than an ungrammatical one (Lau et al., 2016;
Le Godais et al., 2017). For instance, if the sen-
tence starts with the dogs, we compute:

ﬁ(wg = are|w0:1 = the dogs)
plwy = are|...) + p(wy =is|...)
3)
The prediction for the agreement task is derived by
thresholding Peorrect at 0.5.

Is the LM learned in the joint training setup with
high » more aware of subject-verb agreement than
a single-task LM? Note that this is not a circular
question: we are not asking whether the explicit
agreement prediction output layer can perform the
agreement task — that would be unsurprising —
but whether joint training with this task rearranges
the probability distributions that the LM defines
over the entire vocabulary in a way that is more
consistent with English grammar.

As the method outlined in Equation 3 may be
sensitive to the idiosyncrasies of the particular
verb being predicted, we also explored an unlex-
icalized way of performing the task. Recall that
since we replace uncommon words by their POS

Dcorrect =

10

1.0

Agreement prediction accuracy

B Single-task LM
B joint training
]

m prediction {véx) F;fed'

A L,
orn;ftion (Pogrfaegent fmd;st Noun basejipq
Figure 7: Language model agreement evalua-
tion. Red bars indicate the results obtained on the
single-task LM model, blue bars those obtained in
a joint training setup with » = 100.

tags, POS tags are part of our lexicon. We can
use this fact to compare the LM probabilities of
the POS tags for the correct and incorrect verb
forms: in the example of the preamble the dogs,
the correct POS would be VBP and the incorrect
one VBZ.

The results can be seen in Figure 7. The accu-
racy of the LM predictions from the jointly trained
models is almost as high as that obtained through
the agreement model itself. Conversely, the
single-task model trained only on language mod-
eling performed only slightly better than chance,
and worse than our last noun baseline (recall that
the dataset only included sentences with an in-
tervening noun between the subject and the verb,
though possibly of the same number as the sub-
ject). Predictions based on POS tags are some-
what worse than predictions based on the specific
verb. In summary, while joint training with the ex-
plicit agreement task does not noticeably reduce
language model perplexity, it does help the LM
capture syntactic dependencies: the ranking of up-
coming words is more consistent with the con-
straints of English syntax.

6 Conclusions

Previous work has shown that the syntactic rep-
resentations developed by RNNs that are trained
on the agreement prediction task are sufficient for
the majority of sentences, but break down in more
complex sentences (Linzen et al., 2016, 2017).
These deficiencies could be due to fundamental
limitations of the architecture, which can only be
addressed by switching to more expressive archi-

tectures (Socher, 2014; Grefenstette et al., 2015;
Dyer et al., 2016). Alternatively, they could be
due to insufficient supervision signal in the agree-
ment prediction task, for example because relative
clauses with agreement attractors are infrequent in
a natural corpus.

We showed that additional supervision from
pre-training on syntactic tagging tasks such as
CCG supertagging can help the RNN develop
more effective syntactic representations which
substantially improve its performance on complex
sentences, supporting the second hypothesis.

The syntactic representations developed by the
RNNs were still not perfect even in the multi-
task setting, suggesting that stronger inductive bi-
ases expressed as richer representational assump-
tions may lead to further improvements in syn-
tactic performance. The weaker performance on
complex sentences in the single-task setting in-
dicates that the inductive bias inherent in RNNs
is insufficient for learning adequate syntactic rep-
resentations from unannotated strings; improve-
ments due to a stronger inductive bias are there-
fore likely to be particularly pronounced in lan-
guages for which parsed corpora are small or un-
available. Finally, the strong syntactic supervi-
sion required to promote sophisticated syntactic
representations in RNNs may limit their viabil-
ity as models of language acquisition in children
(though children may have sources of supervision
that were not available to our models).

We also explored whether multi-task training
with the agreement task can improve performance
on more standard NLP tasks. We found that it
can indeed lead to improved supertagging accu-
racy when there is a limited amount of training
data for that task; this form of weak syntactic su-
pervision can be used to improve parsers for low-
resource languages for which only small treebanks
are available.

Finally, for language modeling, multi-task
training with the agreement task did not reduce
perplexity, but did improve the grammaticality
of the predictions of the language model (as
measured by the relative ranking of grammatical
and ungrammatical verb forms); such a language
model that favors grammatical sentences may pro-
duce more natural-sounding text.

11

Acknowledgments

We thank Emmanuel Dupoux for discussion. This
research was supported by the European Research
Council (grant ERC-2011-AdG 295810 BOOT-
PHON), the Agence Nationale pour la Recherche
(grants ANR-10-IDEX-0001-02 PSL and ANR-
10-LABX-0087 IEC) and the Israeli Science
Foundation (grant number 1555/15).

References

Bart Bakker and Tom Heskes. 2003. Task clustering
and gating for Bayesian multitask learning. Journal
of Machine Learning Research 4:83-99.

Srinivas Bangalore and Aravind K. Joshi. 1999. Su-
pertagging: An approach to almost parsing. Com-
putational Linguistics 25(2):237-265.

Joachim Bingel and Anders Sggaard. 2017. Identify-
ing beneficial task relations for multi-task learning
in deep neural networks. In Proceedings of the 15th
Conference of the European Chapter of the Associa-
tion for Computational Linguistics: Volume 2, Short
Papers. Association for Computational Linguistics,
Valencia, Spain, pages 164—169.

Kathryn Bock and J. Cooper Cutting. 1992. Reg-
ulating mental energy: Performance units in lan-
guage production. Journal of Memory and Lan-
guage 31(1):99-127.

Kathryn Bock and Erica L. Middleton. 2011. Reaching
agreement. Natural Language & Linguistic Theory
29(4):1033-1069.

Kathryn Bock and Carol A. Miller. 1991. Broken
agreement. Cognitive Psychology 23(1):45-93.

Rich Caruana. 1998. Multitask learning. In Sebas-
tian Thrun and Lorien Pratt, editors, Learning to

learn, Kluwer Academic Publishers, Boston, pages
95-133.

Francgois Chollet. 2015. Keras. https://github.
com/fchollet/keras.

Ronan Collobert and Jason Weston. 2008. A uni-
fied architecture for natural language processing:
Deep neural networks with multitask learning. In
Proceedings of the 25th International Conference
on Machine Learning. New York, NY, USA, pages
160-167.

Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros,
and A. Noah Smith. 2016. Recurrent neural net-
work grammars. In Proceedings of the 2016 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies. Association for Computational
Linguistics, pages 199-209.

Jeffrey L. Elman. 1991. Distributed representations,
simple recurrent networks, and grammatical struc-
ture. Machine Learning 7(2-3):195-225.

Julie Franck, Gabriella Vigliocco, and Janet Nicol.
2002. Subject-verb agreement errors in French and
English: The role of syntactic hierarchy. Language
and Cognitive Processes 17(4):371-404.

Edward Grefenstette, Karl Moritz Hermann, Mustafa
Suleyman, and Phil Blunsom. 2015. Learning to
transduce with unbounded memory. In Advances
in Neural Information Processing Systems 28. pages
1828-1836.

Kazuma Hashimoto, Caiming Xiong, Yoshimasa Tsu-
ruoka, and Richard Socher. 2016. A joint many-task
model: Growing a neural network for multiple NLP
tasks. In NIPS 2016 Continual Learning and Deep
Networks Workshop.

Julia Hockenmaier and Mark Steedman. 2007. CCG-
bank: A corpus of CCG derivations and dependency
structures extracted from the Penn Treebank. Com-
putational Linguistics 33(3):355-396.

Rafal Jozefowicz, Oriol Vinyals, Mike Schuster, Noam
Shazeer, and Yonghui Wu. 2016. Exploring
the limits of language modeling. arXiv preprint
arXiv:1602.02410 .

Jey Han Lau, Alexander Clark, and Shalom Lappin.
2016. Grammaticality, acceptability, and probabil-
ity: A probabilistic view of linguistic knowledge.
Cognitive Science .

Gaél Le Godais, Tal Linzen, and Emmanuel Dupoux.
2017. Comparing character-level neural language
models using a lexical decision task. In Proceedings
of the 15th Conference of the European Chapter of
the Association for Computational Linguistics: Vol-
ume 2, Short Papers. Association for Computational
Linguistics, Valencia, Spain, pages 125-130.

Mike Lewis, Kenton Lee, and Luke Zettlemoyer. 2016.
LSTM CCG parsing. In Proceedings of the 2016
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies. pages 221-231.

Tal Linzen, Emmanuel Dupoux, and Yoav Goldberg.
2016. Assessing the ability of LSTMs to learn
syntax-sensitive dependencies. Transactions of the
Association for Computational Linguistics 4:521—

535.

Tal Linzen, Yoav Goldberg, and Emmanuel Dupoux.
2017. Agreement attraction errors in neural net-
works. In Proceedings of the CUNY Conference on
Human Sentence Processing.

Mitchell P. Marcus, Mary Ann Marcinkiewicz, and
Beatrice Santorini. 1993. Building a large annotated
corpus of English: The Penn Treebank. Computa-
tional Linguistics 19(2):313-330.

12

Héctor Martinez Alonso and Barbara Plank. 2017.
When is multitask learning effective? Semantic se-
quence prediction under varying data conditions.
In Proceedings of the Conference of the European
Chapter of the Association for Computationl Lin-
guistics.

Tomas Mikolov, Martin Karafidt, Lukas Burget, Jan
Cernocky, and Sanjeev Khudanpur. 2010. Recurrent
neural network based language model. In Proceed-
ings of Interspeech.

Richard Socher. 2014. Recursive Deep Learning for
Natural Language Processing and Computer Vision.
Ph.D. thesis, Stanford University.

Anders Sggaard and Yoav Goldberg. 2016. Deep
multi-task learning with low level tasks supervised
at lower layers. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers). Association for
Computational Linguistics, Berlin, Germany, pages
231-235.

Adrian Staub. 2009. On the interpretation of the num-
ber attraction effect: Response time evidence. Jour-
nal of Memory and Language 60(2):308-327.

Mark Steedman. 2000. The syntactic process. MIT
Press.

Martin Sundermeyer, Ralf Schliiter, and Hermann Ney.
2012. LSTM neural networks for language model-
ing. In Proceedings of the 13th Annual Conference
of the International Speech Communication Associ-
ation (INTERSPEECH). pages 194-197.

Theano Development Team. 2016. Theano: A
Python framework for fast computation of mathe-
matical expressions. arXiv e-prints abs/1605.02688.
http://arxiv.org/abs/1605.02688.

Ashish Vaswani, Yonatan Bisk, Kenji Sagae, and Ryan
Musa. 2016. Supertagging with LSTMs. In Pro-
ceedings of NAACL-HLT . pages 232-237.

Matthew W. Wagers, Ellen F. Lau, and Colin Phillips.
2009. Agreement attraction in comprehension: Rep-
resentations and processes. Journal of Memory and
Language 61(2):206-237.

Wenduan Xu, Michael Auli, and Stephen Clark. 2015.
CCG supertagging with a recurrent neural network.
In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing (Volume 2: Short Papers). Associ-
ation for Computational Linguistics, Beijing, China,
pages 250-255.

A Appendix

This appendix presents figures based on sen-
tences with relative clause (see Section 4.4). Fig-
ure 8 tracks the word-by-word predictions that
the single-task model and the pre-trained model
make for three sample sentences; the grammati-
cal ground truth is indicated with a dotted black
line. Overall, the pre-trained model is closer to
the ground truth than the single-task model, even
in cases where both models ultimately make the
correct prediction (Figure 8b). Figures 8a and 8c
show cases in which an attractor in an embedded
clause misleads the single-task but not the pre-
trained one. Finally, Figure 9 shows a sample of
four units that appear to track interpretable aspects
of the sentence.

13

1.0

Ground,
truth

0.8
Single-task

Pre-trained

0.2

actors that directed the film

(a) Bock and Cutting (1992): PS

P(plural)

& 7 & e R .l rag; r;
he Dh//oSOpZ@ Scig, n t/;gglscllss Zé/,,ng he adj, ,Orogramare/y
ers

(b) Wagers et al. (2009): PS

1.0

Single-task

Ground truth

P(plural)
o

ES

Pre-trained

0.0

the a

Scysg ury, -

Phifee the
Osop, her ts

scie,ws
(c) Wagers et al. (2009): SP

Figure 8: Probability of a plural prediction after
each word in the sentence for three sample sen-
tences. The black dotted line indicates the gram-
matical ground truth.

0.0

-0.2
-0.4
-0.6
e SS
-0.8 . SP
—e PS
"o PP
the bhj the S Tise, Ay, the I 2 r oo the Phj, the S dise, Aupy, the I 2 IE
e i e Clep 1S ur;, e aqj, Prog,. are e 7 e Clgp 1 IS Urj) e 'dqj, Prog,. ar
IosO"”ers) e"“St(sc)"Ss(eg)" o ""0grg,ely Ios%her) e"[’st(sc)"SS(eg)" o "%ray, €ly
(a) Unit 30: approximately tracks the number of the (b) Unit 50: only active within noun phrases
currently relevant subject
1.0 "

the ‘agj, Dro_c,ra,’:fe/y

the Dhijy the Scigy,, Yisc,, Yury, the "agj, Prog, ’ar the bhjj, the Scig,, 9isc, ur;
¢ U) lio 9r5, "€, o, €N, SCU,)
ey,) Sles)d am Y “OPheys, oUls) les)
(c) Unit 73: represents of the number of the main (d) Unit 86: approximately tracks the number of the
clause subject currently relevant subject)

Figure 9: Activations of a sample of interpretable units throughout an example sentence from Wagers
et al. (2009), for all four number configurations.

14

The Effect of Different Writing Tasks on Linguistic Style:
A Case Study of the ROC Story Cloze Task

Roy Schwartz'-?, Maarten Sap', Ioannis Konstas',
Li Zilles', Yejin Choi' and Noah A. Smith!

'Paul G. Allen School of Computer Science & Engineering,
University of Washington, Seattle, WA, USA
2 Allen Institute for Artificial Intelligence, Seattle, WA, USA

{roysch,msap, ikonstas, lzilles,yejin, nasmith}@cs.

Abstract

A writer’s style depends not just on per-
sonal traits but also on her intent and
mental state. In this paper, we show
how variants of the same writing task can
lead to measurable differences in writing
style. We present a case study based on
the story cloze task (Mostafazadeh et al.,
2016a), where annotators were assigned
similar writing tasks with different con-
straints: (1) writing an entire story, (2)
adding a story ending for a given story
context, and (3) adding an incoherent end-
ing to a story. We show that a simple
linear classifier informed by stylistic fea-
tures is able to successfully distinguish
among the three cases, without even look-
ing at the story context. In addition, com-
bining our stylistic features with language
model predictions reaches state of the art
performance on the story cloze challenge.
Our results demonstrate that different task
framings can dramatically affect the way
people write.!

1 Introduction

Writing style is expressed through a range of lin-
guistic elements such as words, sentence structure,
and rhetorical devices. It is influenced by per-
sonal factors such as age and gender (Schler et al.,
20006), by personality traits such as agreeableness
and openness (Ireland and Mehl, 2014), as well as
by mental states such as sentiment (Davidov et al.,
2010), sarcasm (Tsur et al., 2010), and deception
(Feng et al., 2012). In this paper, we study the ex-
tent to which writing style is affected by the nature
of the writing task the writer was asked to perform,

!This paper extends our LSDSem 2017 shared task sub-
mission (Schwartz et al., 2017).

15

washington.edu

Story Prefix Ending

John liked a girl at his Qhe feels flattered
work. He tried to get apd asks John on a
her attention by acting gate.

silly. She told him to
grow up. John con-
fesses he was trying
to make her like him
more.

The girl found this
charming, and gave
him a second chance.

John was happy about
being rejected.

Table 1: Examples of stories from the story cloze
task. The table shows a story prefix with three con-
trastive endings: The original ending, a coherent
ending and a incoherent one.

since different tasks likely engage different cogni-
tive processes (Campbell and Pennebaker, 2003;
Banerjee et al., 2014).2

We show that similar writing tasks with dif-
ferent constraints on the author can lead to mea-
surable differences in her writing style. As a
case study, we present experiments based on
the recently introduced ROC story cloze task
(Mostafazadeh et al., 2016a). In this task, authors
were asked to write five-sentence self-contained
stories, henceforth original stories. Then, each
original story was given to a different author, who
was shown only the first four sentences as a story
context, and asked to write two contrasting story
endings: a right (coherent) ending, and a wrong
(incoherent) ending. Framed as a story cloze task,
the goal of this dataset is to serve as a common-
sense challenge for NLP and Al research. Table 1
shows an example of an original story, a coherent
story, and an incoherent story.

While the story cloze task was originally de-

2For the purposes of this paper, style is defined as content-
agnostic writing characteristics, such as the number of words
in a sentence.

Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017), pages 15-25,
Vancouver, Canada, August 3 - August 4, 2017. (©2017 Association for Computational Linguistics

signed to be a story understanding challenge, its
annotation process introduced three variants of the
same writing task: writing an original, right, or
wrong ending to a short story. In this paper, we
show that a linear classifier informed by stylistic
features can distinguish among the different end-
ings to a large degree, even without looking at the
story context (64.5-75.6% binary classification re-
sults).

Our results allow us to make a few key observa-
tions. First, people adopt a different writing style
when asked to write coherent vs. incoherent story
endings. Second, people change their writing style
when writing the entire story on their own com-
pared to writing only the final sentence for a given
story context written by someone else.

In order to further validate our method, we
also directly tackle the story cloze task. Adapt-
ing our classifier to the task, we obtain 72.4% ac-
curacy, only 2.3% below state of the art results.
We also show that the style differences captured
by our model can be combined with neural lan-
guage models to make a better use of the story
context. Our final model that combines context
with stylistic features achieves a new state of the
art—75.2%—an additional 2.8% gain.

The contributions of our study are threefold.
First, findings from our study can potentially shed
light on how different kinds of cognitive load
influence the style of written language. Sec-
ond, combined with recent similar findings of Cai
et al. (2017), our results indicate that when de-
signing new NLP tasks, special attention needs
to be paid to the instructions given to authors.
Third, we establish a new state of the art result
on the commonsense story cloze challenge. Our
code is available at https://github.com/
roysl74/writing_style.

2 Background: The Story Cloze Task

To understand how different writing tasks affect
writing style, we focus on the story cloze task
(Mostafazadeh et al., 2016a). While this task was
developed to facilitate representation and learning
of commonsense story understanding, its design
included a few key choices which make it ideal
for our study. We describe the task below.

ROC stories. The ROC story corpus consists of
49,255 five-sentence stories, collected on Ama-

16

zon Mechanical Turk (AMT).> Workers were in-
structed to write a coherent self-contained story,
which has a clear beginning and end. To col-
lect a broad spectrum of commonsense knowl-
edge, there was no imposed subject for the stories,
which resulted in a wide range of different topics.

Story cloze task. After compiling the story cor-
pus, the story cloze task—a task based on the
corpus—was introduced. A subset of the stories
was selected, and only the first four sentences
of each story were presented to AMT workers.
Workers were asked to write a pair of new story
endings for each story context: one right and one
wrong. Both endings were required to complete
the story using one of the characters in the story
context. Additionally, the endings were required
to be “realistic and sensible” (Mostafazadeh et al.,
2016a) when read out of context.

The resulting stories, both right and wrong,
were then individually rated for coherence and
meaningfulness by additional AMT workers. Only
stories rated as simultaneously coherent with a
right ending and neutral with a wrong ending were
selected for the task. It is worth noting that work-
ers rated the stories as a whole, not only the end-
ings.

Based on the new stories, Mostafazadeh et al.
(2016a) proposed the story cloze task. The task
is simple: given a pair of stories that differ only
in their endings, the system decides which ending
is right and which is wrong. The official train-
ing data contains only the original stories (without
alternative endings), while development and test
data consist of the revised stories with alternative
endings (for a different set of original stories that
are not included in the training set). The task was
suggested as an extensive evaluation framework:
as a commonsense story understanding task, as
the shared task for the Linking Models of Lexical,
Sentential and Discourse-level Semantics work-
shop (LSDSem 2017, Roth et al., 2017), and as a
testbed for vector-space evaluation (Mostafazadeh
et al., 2016b).

Interestingly, only very recently, one year after
the task was first introduced, the published bench-
mark on this task surpassed 60%. This comes
in contrast to other recent similar machine read-
ing tasks such as CNN/DailyMail (Hermann et al.,
2015), SNLI (Bowman et al., 2015), LAMBADA

2’Recently, additional 53K stories were released, which re-
sults in roughly 100K stories.

(Paperno et al., 2016) and SQuAD (Rajpurkar
et al., 2016), for which results improved dramati-
cally over similar or much shorter periods of time.
This suggests that this task is challenging and that
high performance is hard to achieve.

In addition, Mostafazadeh et al. (2016a) made
substantial efforts to ensure the quality of this
dataset. First, each pair of endings was written by
the same author, which ensured that style differ-
ences between authors could not be used to solve
the task. Furthermore, Mostafazadeh et al. imple-
mented nine baselines for the task, using surface
level features as well as narrative-informed ones,
and showed that each of them reached roughly
chance-level. These results suggest that real un-
derstanding of text is required in order to solve the
task. In this paper, we show that this is not neces-
sarily the case, by demonstrating that a simple lin-
ear classifier informed with style features reaches
near state of the art results on the task—72.4%.

Different writing tasks in the story cloze task.
Several key design decisions make the task an
interesting testbed for the purpose of this study.
First, the training set for the task (ROC Stories
corpus) is not a training set in the usual sense,*
as it contains only positive (right) examples, and
not negative (wrong) ones.

On top of that, the original endings, which serve
as positive training examples, were generated dif-
ferently from the right endings, which serve as the
positive examples in the development and test sets.
While the former are part of a single coherent story
written by the same author, the latter were gener-
ated by letting an author read four sentences, and
then asking her to generate a fifth right ending.

Finally, although the right and wrong sentences
were generated by the same author, the tasks for
generating them were quite different: in one case,
the author was asked to write a right ending, which
would create a coherent five-sentence story along
with the other four sentences. In the other case, the
author was asked to write a wrong ending, which
would result in an incoherent five-sentence story.

3 Surface Analysis of the Story Cloze
Task

We begin by computing several characteristics of
the three types of endings: original endings (from
“Ie., the training instances are not drawn from a popu-

lation similar to the one that future testing instances will be
drawn from.

17

the ROC story corpus training set), right endings
and wrong endings (both from the story cloze task
development set). Our analysis reveals several
style differences between different groups. First,
original endings are on average longer (11 words
per sentence) than right endings (8.75 words),
which are in turn slightly longer than wrong ones
(8.47 words). The latter finding is consistent with
previous work, which has shown that sentence
length is also indicative of whether a text was de-
ceptive (Qin et al., 2004; Yancheva and Rudzicz,
2013). Although writing wrong sentences is not
the same as deceiving, it is not entirely surprising
to observe similar trends in both tasks.

Second, Figure 1a shows the distribution of five
frequent POS tags in all three groups. The fig-
ure shows that both original and right endings
use pronouns more frequently than wrong endings.
Once again, deceptive text is also characterized by
fewer pronouns compared to truthful text (New-
man et al., 2003).

Finally, Figure 1b presents the distribution of
five frequent words across the different groups.
The figure shows that original endings use co-
ordinations (“and”) more than right endings, and
substantially more than wrong ones. Furthermore,
original and right endings seem to prefer enthu-
siastic language (e.g., “!”), while wrong endings
tend to use more negative language (“hates”), sim-
ilar to deceptive text (Newman et al., 2003). Next
we show that these style differences are not anec-
dotal, but can be used to distinguish among the
different types of story endings.

4 Model

To what extent do different writing constraints
lead authors to adopt different writing styles? In
order to answer this question, we first use simple
methods that have been shown to be very effective
for recognizing style (see Section 8). We describe
our model below.

We train a logistic regression classifier to cate-
gorize an ending, either as right vs. wrong or as
original vs. new (right). Each feature vector is
computed using the words in one ending, without
considering earlier parts of the story. We use the
following style features.

e Length: the number of words in the sentence.

e Word n-grams: we use sequences of 1-5
words. Following Tsur et al. (2010) and

Frequency in Corpus (%)

(a) POS tags

(b) Words

Figure 1: The distribution of five frequent POS tags (1a) and words (1b) across original endings (hori-
zontal lines) from the story cloze training set, and right (diagonal lines) and wrong (solid lines) endings,

both from the story cloze task development set.

Schwartz et al. (2013b), we distinguish be-
tween high frequency and low frequency
words. Specifically, we replace content
words (nouns, verbs, adjectives, and ad-
verbs), which are often low frequency, with
their part-of-speech tags.

Character n-grams: character n-grams are
one of the most useful features in identifying
author style (Stamatatos, 2009). We use char-
acter 4-grams.’

S Experiments

We design two experiments to answer our research
questions. The first is an attempt to distinguish
between right and wrong endings, the second be-
tween original endings and new (right) endings.
For completeness, we also run a third experiment,
which compares between original and wrong end-
ings.

Experiment 1: right/wrong endings. The goal
of this experiment is to measure the extent to
which style features capture differences between
the right and wrong endings. As the story cloze
task doesn’t have a training corpus for the right
and wrong endings (see Section 2), we use the de-
velopment set as our training set, holding out 10%
for development (3,366 training endings, 374 for
development). We keep the story cloze test set as
is (3,742 endings).

It is worth noting that our classification task is
slightly different from the story cloze task. In-
stead of classifying pairs of endings, one which
is right and another which is wrong, our classifier
decides about each ending individually, whether it

SExperiments with 5-grams on our development set
reached similar performance.

18

is right (positive instance) or wrong (negative in-
stance). By ignoring the coupling between right
and wrong pairs, we are able to decrease the im-
pact of author-specific style differences, and focus
on the difference between the styles accompanied
with right and wrong writings.

Experiment 2: original/new endings. Here the
goal is to measure whether writing the ending
as part of a story imposes different style com-
pared to writing a new (right) ending to an exist-
ing story. We use the endings of the ROC stories
as our original examples and right endings from
the story cloze task as new examples. As there
are far more original instances than new instances,
we randomly select five original sets, each with
the same number of instances as we have new in-
stances (3,366 training endings, 374 development
endings, and 3,742 test endings). We train five
classifiers, one with each of the original training
sets, and report the average classification result.

Experiment 3: original/wrong endings. For
completeness, we measure the extent to which our
classifier can discriminate between original and
wrong endings. We replicate Experiment 2, this
time replacing right endings with wrong ones.

Experimental setup. In all experiments, we add
a START symbol at the beginning of each sen-
tence.® For computing our features, we keep n-
gram (character or word) features that occur at
least five times in the training set. All feature val-
ues are normalized to [0, 1]. For the POS features,
we tag all endings with the Spacy POS tagger.’
We use Python’s sklearn logistic regression imple-

99% of all sentences end with a period or an exclamation
mark, so we do not add a STOP symbol.

"http://spacy.io/

Experiment Accuracy
right vs. wrong 0.645
original vs. right 0.685
original vs. wrong 0.756

Table 2: Results of experiments 1 (right
vs. wrong), 2 (original vs. right (new)) and 3 (orig-
inal vs. wrong (new) endings). In all cases, our
setup implies a 50% random baseline.

mentation (Pedregosa et al., 2011) with Ly regu-
larization, performing grid search on the develop-
ment set to tune a single hyperparameter—the reg-
ularization parameter.

5.1 Results

Table 2 shows our results. In all experiments,
our model achieves performance well above what
would be expected under chance (50% by design).
Noting again that our model ignores the story con-
text (the preceding four sentences), our model is
unable to capture any notion of coherence. This
finding provides strong evidence that the authors’
style was affected by the writing task they were
given to perform.

5.2 Story Cloze Task

The results of Experiment 1 indicate that right
and wrong endings are characterized by different
styles. In order to further estimate the quality of
our classification results, we tackle the story cloze
task using our classifier. This classification task is
more constrained than Experiment 1, as two end-
ings are given and the question is which is right
and which is wrong. We apply the classifier from
Experiment 1 as follows: if it assigns different
labels to the two given endings, we keep them.
Otherwise, the label whose posterior probability
is lower is reversed.

Table 3 shows our results on the story cloze test
set. Our classifier obtains 72.4% accuracy, only
2.3% lower than state of the art results. Impor-
tantly, unlike previous approaches,® our classifier
does not require the story corpus training data, and
in fact doesn’t even consider the first four sen-
tences of the story in question. These numbers
further support the claim that the styles of right
and wrong endings are indeed very different.

80ne exception is the EndingsOnly system (Cai et al.,
2017), which was published in concurrence with this work,
and obtains roughly the same results.

19

Model Acc.
DSSM (Mostafazadeh et al., 2016a) 0.585
ukp (Mihaylov and Frank, 2017) 0.711
tbmihaylov (Mihaylov and Frank, 2017) 0.724
1EndingsOnly (Cai et al., 2017) 0.725
cogcomp 0.744
HIER,ENCPLOTEND,ATT (Cai et al., 2017) | 0.747
RNN 0.677
1Ours 0.724
Combined (ours + RNN) 0.752
[Human judgment [1.000]

Table 3: Results on the test set of the story cloze
task. The middle block are our results. cogcomp
results and human judgement scores are taken
from Mostafazadeh et al. (2017). Methods marked
with (1) do not use the story context in order to
make a prediction.

Combination with a neural language model.
We investigate whether our model can benefit
from state of the art text comprehension models,
for which this task was designed. Specifically,
we experiment with an LSTM-based (Hochreiter
and Schmidhuber, 1997) recurrent neural network
language model (RNNLM; Mikolov et al., 2010).
Unlike the model in this paper, which only con-
siders the story endings, this language model fol-
lows the protocol suggested by the story cloze task
designers, and harnesses their ROC Stories train-
ing set, which consists of single-ending stories, as
well as the story context for each pair of endings.
We show that adding our features to this power-
ful language model gives improvements over our
classifier as well as the language model.

We train the RNNLM using a single-layer
LSTM of hidden dimension 512. We use the ROC
stories for training,” setting aside 10% for val-
idation of the language model. We replace all
words occurring less than 3 times with an out-
of-vocabulary token, yielding a vocabulary size of
21,582. Only during training, we apply a dropout
rate of 60% while running the LSTM over all 5
sentences of the stories. Using the Adam opti-
mizer (Kingma and Ba, 2015) and a learning rate
of 7 = 0.001, we train to minimize cross-entropy.

To apply the language model to the classifica-
tion problem, we select as right the ending with
the higher value of

pp(ending | story)
po(ending)

)

"We use the extended, 100K stories corpus (see Sec-
tion 2).

Feature Type Accuracy
Word n-grams 0.612
Character n-grams 0.639
Full model 0.645

Table 4: Results on Experiment 1 with different
subsets of features.

The intuition is that a right ending should be un-
surprising (to the model) given the four preceding
sentences of the story (the numerator), controlling
for the inherent surprisingness of the words in that
ending (the denominator).

On its own, our neural language model performs
moderately well on the story cloze test. Selecting
endings based on py(ending | story) (i.e., the nu-
merator of Equation 1), we obtained only 55% ac-
curacy. The ratio in Equation 1 achieves 67.7%
(see Table 3).1°

We combine our linear model with the RNNLM
by adding three features to our classifier: the nu-
merator, denominator, and ratio in Equation 1, all
in log space. We retrain our linear model with the
new feature set, and gain 2.8% absolute, reaching
75.2%, a new state of the art result for the task.
These results indicate that context-ignorant style
features can be used to obtain high accuracy on the
task, adding value even when context and a large
training dataset are used.

6 Further Analysis

6.1 Most Discriminative Feature Types

A natural question that follows from this study is
which style features are most helpful in detecting
the underlying task an author was asked to per-
form. To answer this question, we re-ran Experi-
ment 1 with different sub-groups of features. Ta-
ble 4 shows our results. Results show that char-
acter n-grams are the most effective style predic-
tors, reaching within 0.6% of the full model, but
that word n-grams also capture much of the sig-
nal, yielding 61.2%, which is only 3.3% worse
than the full model. These findings are in line with
previous work that used character n-grams along
with other types of features to predict writing style
(Schwartz et al., 2013b).

1%Note that taking the logarithm of the expression in Equa-
tion 1 gives the pointwise mutual information between the
story and the ending, under the language model.

20

6.2 Most Salient Features

A follow-up question is which individual features
contribute most to the classification process, as
these could shed light on the stylistic differences
imposed by each of the writing tasks.

In order to answer this question, we consider the
highest absolute positive and negative coefficients
in the logistic regression classifier in Experiments
1 and 2, an approach widely used as a method of
extracting the most salient features (Nguyen et al.,
2013; Burke et al., 2013; Brooks et al., 2013). It is
worth noting that its reliability is not entirely clear,
since linear models like logistic regression can as-
sign large coefficients to rare features (Yano et al.,
2012). To mitigate this concern, we consider only
features appearing in at least 5% of the endings in
our training set.

Experiment 1. Table 5a shows the most salient
features for right (coherent) and wrong (incoher-
ent) endings in Experiment 1, along with their cor-
pus frequency. The table shows a few interesting
trends. First, authors tend to structure their sen-
tences differently when writing coherent vs. inco-
herent endings. For instance, incoherent endings
are more likely to start with a proper noun and end
with a common noun, while coherent endings have
a greater tendency to end with a past tense verb.
Second, right endings make wider use of coor-
dination structures, as well as adjectives. The lat-
ter might indicate that writing coherent stories in-
spires the authors to write more descriptive text
compared to incoherent ones, as is the case in
truthful vs. deceptive text (Ott et al., 2011). Fi-
nally, we notice a few syntactic differences: right
endings more often use infinitive verb structure,
while wrong endings prefer gerunds (VBG).

Experiment 2. Table 5b shows the same analy-
sis for Experiment 2. As noted in Section 2, orig-
inal endings tend to be much longer, which is in-
deed the most salient feature for them. An inter-
esting observation is that exclamation marks are a
strong indication for an original ending. This sug-
gests that authors are more likely to show or evoke
enthusiasm when writing their own text compared
to ending an existing text.

Finally, when comparing the two groups of
salient features from both experiments, we find
an interesting trend. Several features, such as
“START NNP” and “NN .”, which indicate wrong
sentences in Experiment 1, are used to predict

Right | Weight | Freq. Wrong Weight | Freq.
‘ed 0.17 6.5% START NNP 021 | 54.8%
‘and’ 0.15 13.6% NN. 0.17 | 47.5%
1 0.14 | 45.8% NN NN. 0.15 5.1%
toVB | 0.13 | 20.1% VBG 0.11 10.1%
‘d th’ 0.12 10.9% || STARTNNP VBD | 0.11 | 41.9%
(a) Experiment 1
Right | Weight | Freq. Wrong Weight | Freq.
length | 0.81 100.0% ¢ 0.74 | 93.0%
‘r 0.46 6.1% START NNP 0.40 | 39.2%
NN 0.35 789% || START NNP VBD | 0.23 | 29.0%
RB 0.34 44.7% NN. 020 | 42.3%
‘) 0.32 12.7% the NN . 0.20 | 10.6%
(b) Experiment 2

Table 5: The top 5 most heavily weighted features for predicting right vs. wrong endings (5a) and original
vs. new (right) endings (5b). length is the sentence length feature (see Section 4).

new (i.e., right) endings in Experiment 2. This
indicates that, for instance, incoherent endings
have a stronger tendency to begin with a proper
noun compared to coherent endings, which in
turn are more likely to do so than original end-
ings. This partially explains why distinguishing
between original and wrong endings is an easier
task compared to the other pairs (Section 5.1).

7 Discussion

The effect of writing tasks on mental states. In
this paper we have shown that different writing
tasks affect a writer’s writing style in easily de-
tected ways. Our results indicate that when au-
thors are asked to write the last sentence of a five-
sentence story, they will use different style to write
a right ending compared to a wrong ending. We
have also shown that writing the ending as part
of one’s own five-sentence story is very different
than reading four sentences and then writing the
fifth. Our findings hint that the nature of the writ-
ing task imposes a different mental state on the
author, which is expressed in ways that can be ob-
served using extremely simple automatic tools.
Previous work has shown that a writing task can
affect mental state. For instance, writing decep-
tive text leads to a significant cognitive burden ac-
companied by a writing style that is different from
truthful text (Newman et al., 2003; Banerjee et al.,
2014). Writing tasks can even have a long-term
effect, as writing emotional texts was observed
to benefit both physical and mental health (Lep-

ore and Smyth, 2002; Frattaroli, 2006). Campbell
and Pennebaker (2003) also showed that the health
benefits of writing emotional text are accompanied
by changes in writing style, mostly in the use of
pronouns.

Another line of work has shown that writing
style is affected by mental state. First, an author’s
personality traits (e.g., depression, neuroticism,
narcissism) affect her writing style (Schwartz
et al., 2013a; Ireland and Mehl, 2014). Sec-
ond, temporary changes, such as a romantic re-
lationship (Ireland et al., 2011; Bowen et al.,
2016), work collaboration (Tausczik, 2009; Gon-
zales et al., 2009), or negotiation (Ireland and Hen-
derson, 2014) may also affect writing style. Fi-
nally, writing style can also change from one sen-
tence to another, for instance between positive and
negative text (Davidov et al., 2010) or when writ-
ing sarcastic text (Tsur et al., 2010).

This large body of work indicates a tight con-
nection between writing tasks, mental states, and
variation in writing style. This connection hints
that the link discovered in this paper, between dif-
ferent writing tasks and resulting variation in writ-
ing style, involves differences in mental state. Ad-
ditional investigation is required in order to further
validate this hypothesis.

Design of NLP tasks. Our study also provides
important insights for the future design of NLP
tasks. The story cloze task was very carefully de-
signed. Many factors, such as topic diversity and

21

temporal and causal relation diversity, were con-
trolled for (Mostafazadeh et al., 2016a). The au-
thors also made sure each pair of endings was writ-
ten by the same author, partly in order to avoid
author-specific style effects. Nonetheless, despite
these efforts, several significant style differences
can be found between the story cloze training and
test set, as well as between the positive and nega-
tive labels.

Our findings suggest that careful attention must
be paid to instructions given to authors, especially
in unnatural tasks such as writing a wrong ending.
The COPA dataset (Roemmele et al., 2011), which
was also designed to test commonsense knowl-
edge, explicitly addressed potential style differ-
ences in their instructions. In this task, systems
are presented with premises like I put my plate in
the sink, and then decide between two alternatives,
e.g.: (a) I finished eating. and (b) I skipped dinner.
Importantly, when writing the alternatives, annota-
tors were asked to be as brief as possible and avoid
proper names, as well as slang.

Applying our story cloze classifier to this
dataset yields 53.2% classification accuracy—
close to a random baseline. While this could be
partially explained by the smaller data size of the
COPA dataset (1,000 examples compared to 3,742
in the story cloze task), this indicates that simple
instructions may help alleviate the effects of writ-
ing style found in this paper. Another way to avoid
such effects is to have people rate naturally occur-
ring sentences by parameters such as coherence
(or, conversely, the level of surprise), rather than
asking them to generate new text.

8 Related Work

Writing style. Writing style has been an active
topic of research for decades. The models used to
characterize style are often linear classifiers with
style features such as character and word n-grams
(Stamatatos, 2009; Koppel et al., 2009). Previ-
ous work has shown that different authors can be
grouped by their writing style, according to factors
such as age (Pennebaker and Stone, 2003; Arga-
mon et al., 2003; Schler et al., 2006; Rosenthal
and McKeown, 2011; Nguyen et al., 2011), gender
(Argamon et al., 2003; Schler et al., 2006; Bam-
man et al., 2014), and native language (Koppel
et al., 2005; Tsur and Rappoport, 2007; Bergsma
et al., 2012). At the extreme case, each individ-
ual author adopts a unique writing style (Mosteller

22

and Wallace, 1963; Pennebaker and King, 1999;
Schwartz et al., 2013b).

The line of work that most resembles our work
is the detection of deceptive text. Several re-
searchers have used stylometric features to predict
deception (Newman et al., 2003; Hancock et al.,
2007; Ott et al., 2011; Feng et al., 2012). Some
works even showed that gender affects a person’s
writing style when lying (Pérez-Rosas and Mihal-
cea, 2014a,b). In this work, we have shown that
an even more subtle writing task—writing coher-
ent and incoherent story endings—imposes differ-
ent styles on the author.

Machine reading. The story cloze task, which
is the focus of this paper, is part of a wide set of
machine reading/comprehension challenges pub-
lished in the last few years. These include datasets
like bAbI (Weston et al., 2016), SNLI (Bowman
et al., 2015), CNN/DailyMail (Hermann et al.,
2015), LAMBADA (Paperno et al., 2016) and
SQuAD (Rajpurkar et al., 2016). While these
works have presented resources for researchers,
it is often the case that these datasets suffer
from methodological problems caused by apply-
ing noisy automatic tools to generate them (Chen
et al., 2016).!' 1In this paper, we have pointed
to another methodological challenge in design-
ing machine reading tasks: different writing tasks
used to generated the data affect writing style, con-
founding classification problems.

9 Conclusion

Different writing tasks assigned to an author re-
sult in different writing styles for that author. We
experimented with the story cloze task, which in-
troduces two interesting comparison points: the
difference between writing a story on one’s own
and continuing someone else’s story, and the dif-
ference between writing a coherent and an inco-
herent story ending. In both cases, a simple lin-
ear model reveals measurable differences in writ-
ing styles, which in turn allows our final model to
achieve state of the art results on the story cloze
task.

The findings presented in this paper have cogni-
tive implications, as they motivate further research

'Similar problems have been shown in visual question an-
swering datasets, where simple models that rely mostly on
the question text perform competitively with state of the art
models by exploiting language biases (Zhou et al., 2015; Jabri
et al., 2016).

on the effects that a writing prompt has on an au-
thor’s mental state, and also her concrete response.
They also provide valuable lessons for designing
new NLP datasets.

10 Acknowledgments

The authors thank Chenhao Tan, Luke Zettle-
moyer, Rik Koncel-Kedziorski, Rowan Zellers,
Yangfeng Ji and several anonymous reviewers for
helpful feedback. This research was supported
in part by Darpa CwC program through ARO
(WO11NF-15-1-0543), Samsung GRO, NSF IIS-
1524371, and gifts from Google and Facebook.

References

Shlomo Argamon, Moshe Koppel, Jonathan Fine, and
Anat Rachel Shimoni. 2003. Gender, genre, and
writing style in formal written texts. Text 23(3):321—
346.

David Bamman, Jacob Eisenstein, and Tyler Schnoe-
belen. 2014. Gender identity and lexical variation in
social media. Journal of Sociolinguistics 18(2):135—
160.

Ritwik Banerjee, Song Feng, Jun S. Kang, and Yejin
Choi. 2014. Keystroke patterns as prosody in digital
writings: A case study with deceptive reviews and
essays. In Proc. of EMNLP.

Shane Bergsma, Matt Post, and David Yarowsky. 2012.
Stylometric analysis of scientific articles. In Proc. of
NAACL.

Jeffrey D. Bowen, Lauren A. Winczewski, and
Nancy L. Collins. 2016. Language style matching
in romantic partners? conflict and support interac-
tions. Journal of Language and Social Psychology
pages 1-24.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In Proc. of EMNLP.

Michael Brooks, Katie Kuksenok, Megan K. Torkild-
son, Daniel Perry, John J. Robinson, Taylor J. Scott,
Ona Anicello, Ariana Zukowski, Paul Harris, and
Cecilia R. Aragon. 2013. Statistical affect detection
in collaborative chat. In Proc. of CSCW.

Moira Burke, Lada A. Adamic, and Karyn Marciniak.
2013. Families on facebook. In Proc. of ICWSM.

Zheng Cai, Lifu Tu, and Kevin Gimpel. 2017. Pay at-
tention to the ending: Strong neural baselines for the
ROC story cloze task. In Proc. of ACL.

R. Sherlock Campbell and James W. Pennebaker. 2003.
The secret life of pronouns flexibility in writing

23

style and physical health. Psychological Science
14(1):60-65.

Danqi Chen, Jason Bolton, and Christopher D. Man-
ning. 2016. A thorough examination of the
CNN/Daily Mail reading comprehension task. In
Proc. of ACL.

Dmitry Davidov, Oren Tsur, and Ari Rappoport. 2010.
Enhanced sentiment learning using Twitter hashtags
and smileys. In Proc. of COLING.

Song Feng, Ritwik Banerjee, and Yejin Choi. 2012.
Syntactic stylometry for deception detection. In
Proc. of ACL.

Joanne Frattaroli. 2006. Experimental disclosure and
its moderators: a meta-analysis. Psychological bul-
letin 132(6):823.

Amy L. Gonzales, Jeffrey T. Hancock, and James W.
Pennebaker. 2009. Language style matching as a
predictor of social dynamics in small groups. Com-
munication Research 37(1):3-19.

Jeffrey T. Hancock, Lauren E. Curry, Saurabh Goorha,
and Michael Woodworth. 2007. On lying and be-
ing lied to: A linguistic analysis of deception in
computer-mediated communication. Discourse Pro-
cesses 45(1):1-23.

Karl Moritz Hermann, Tomd$§ Kocisky, Edward
Grefenstette, Lasse Espeholt, Will Kay, Mustafa Su-
leyman, and Phil Blunsom. 2015. Teaching ma-
chines to read and comprehend. In Proc. of NIPS.

Sepp Hochreiter and Jiirgen Schmidhuber. 1997.
Long short-term memory. Neural Computation
9(8):1735-1780.

Molly E. Ireland and Marlone D. Henderson. 2014.
Language style matching, engagement, and impasse
in negotiations. Negotiation and Conflict Manage-
ment Research 7(1):1-16.

Molly E. Ireland and Matthias R. Mehl. 2014. Natu-
ral language use as a marker of personality, Oxford
University Press, USA, pages 201-237. The Oxford
Handbook of Language and Social Psychology.

Molly E. Ireland, Richard B. Slatcher, Paul W. East-
wick, Lauren E. Scissors, Eli J. Finkel, and James W.
Pennebaker. 2011. Language style matching pre-
dicts relationship initiation and stability. Psycholog-
ical Science 22(1):39-44.

Allan Jabri, Armand Joulin, and Laurens van der
Maaten. 2016. Revisiting visual question answering
baselines. In Proc. of ECCV.

Adam: A
In Proc. of

Diederik Kingma and Jimmy Ba. 2015.
method for stochastic optimization.
ICLR.

Moshe Koppel, Jonathan Schler, and Shlomo Arga-
mon. 2009. Computational methods in authorship
attribution. Journal of the American Society for in-
formation Science and Technology 60(1):9-26.

Moshe Koppel, Jonathan Schler, and Kfir Zigdon.
2005. Determining an author’s native language by
mining a text for errors. In Proc. of KDD.

Stephen J. Lepore and Joshua M. Smyth. 2002. The
Writing Cure: How Expressive Writing Promotes
Health and Emotional Well-being. American Psy-
chological Association.

Todor Mihaylov and Anette Frank. 2017. Simple story
ending selection baselines. In Proc. of LSDSem.

Tomas§ Mikolov, Martin Karafidt, Luka$§ Burget, Jan
Cernocky, and Sanjeev Khudanpur. 2010. Recur-
rent neural network based language model. In Proc.
of Interspeech.

Nasrin Mostafazadeh, Nathanael Chambers, Xiaodong
He, Devi Parikh, Dhruv Batra, Lucy Vanderwende,
Pushmeet Kohli, and James Allen. 2016a. A cor-
pus and cloze evaluation for deeper understanding
of commonsense stories. In Proc. of NAACL.

Nasrin Mostafazadeh, Michael Roth, Annie Louis,
Nathanael Chambers, and James F. Allen. 2017. LS-
DSem 2017 shared task: The story cloze test. In
Proc. of LSDSem.

Nasrin Mostafazadeh, Lucy Vanderwende, Wen-tau
Yih, Pushmeet Kohli, and James Allen. 2016b.
Story cloze evaluator: Vector space representation
evaluation by predicting what happens next. In
Proc. of RepEval.

Frederick Mosteller and David L. Wallace. 1963. Infer-
ence in an authorship problem. Journal of the Amer-
ican Statistical Association 58(302):275-309.

Matthew L. Newman, James W. Pennebaker, Diane S.
Berry, and Jane M. Richards. 2003. Lying words:
Predicting deception from linguistic styles. Person-
ality and Social Psychology Bulletin 29(5):665-675.

Dong Nguyen, Rilana Gravel, Dolf Trieschnigg, and
Theo Meder. 2013. “How old do you think i am?”
a study of language and age in Twitter. In Proc. of
ICWSM.

Dong Nguyen, Noah A. Smith, and Carolyn P. Rosé.
2011. Author age prediction from text using linear
regression. In Proc. of LaTeCH.

Myle Ott, Yejin Choi, Claire Cardie, and Jeffrey T.
Hancock. 2011. Finding deceptive opinion spam by
any stretch of the imagination. In Proc. of ACL.

Denis Paperno, German Kruszewski, Angeliki Lazari-
dou, Ngoc Quan Pham, Raffaella Bernardi, San-
dro Pezzelle, Marco Baroni, Gemma Boleda, and
Raquel Ferndndez. 2016. The LAMBADA dataset:
Word prediction requiring a broad discourse context.
In Proc. of ACL.

Fabian Pedregosa, Gaél Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron

24

Weiss, Vincent Dubourg, Jake Vanderplas, Alexan-
dre Passos, David Cournapeau, Matthieu Brucher,
Matthieu Perrot, and Edouard Duchesnay. 2011.
Scikit-learn: Machine learning in Python. JMLR
12:2825-2830.

James W. Pennebaker and Laura A. King. 1999. Lin-
guistic styles: language use as an individual differ-
ence. Journal of Personality and Social Psychology
77(6):1296-1312.

James W. Pennebaker and Lori D. Stone. 2003. Words
of wisdom: language use over the life span. Jour-
nal of Personality and Social Psychology 85(2):291—
301.

Verénica Pérez-Rosas and Rada Mihalcea. 2014a.
Cross-cultural deception detection. In Proc. of ACL.

Verénica Pérez-Rosas and Rada Mihalcea. 2014b.
Gender differences in deceivers writing style. Lec-
ture Notes in Computer Science 8856:163—174.

Tiantian Qin, Judee Burgoon, and Jay F. Nunamaker Jr.
2004. An exploratory study on promising cues in
deception detection and application of decision tree.
In Proc. of HICSS.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions
for machine comprehension of text. In Proc. of
EMNLP.

Melissa Roemmele, Cosmin Adrian Bejan, and An-
drew S. Gordon. 2011. Choice of plausible alter-
natives: An evaluation of commonsense causal rea-
soning. In AAAI Spring Symposium: Logical For-
malizations of Commonsense Reasoning.

Sara Rosenthal and Kathleen McKeown. 2011. Age
prediction in blogs: A study of style, content, and
online behavior in pre- and post-social media gener-
ations. In Proc. of ACL.

Michael Roth, Nasrin Mostafazadeh, Nathanael Cham-
bers, and Annie Louis, editors. 2017. Proceedings
of the 2nd Workshop on Linking Models of Lexical,
Sentential and Discourse-level Semantics. Associa-
tion for Computational Linguistics.

Jonathan Schler, Moshe Koppel, Shlomo Argamon,
and James Pennebaker. 2006. Effects of age and
gender on blogging. In AAAI Spring Symposium:
Computational Approaches to Analyzing Weblogs.

Andrew H. Schwartz, Johannes C. Eichstaedt, Mar-
garet L. Kern, Lukasz Dziurzynski, Stephanie M.
Ramones, Megha Agrawal, Achal Shah, Michal
Kosinski, David Stillwell, Martin E.P. Seligman, and
Lyle H. Unger. 2013a. Personality, gender, and
age in the language of social media: The open-
vocabulary approach. PloS one 8(9):¢73791.

Roy Schwartz, Maarten Sap, loannis Konstas, Leila
Zilles, Yejin Choi, and Noah A. Smith. 2017. Story
cloze task: UW NLP system. In Proc. of LSDSem.

Roy Schwartz, Oren Tsur, Ari Rappoport, and Moshe
Koppel. 2013b. Authorship attribution of micro-
messages. In Proc. of EMNLP.

Efstathios Stamatatos. 2009. A survey of modern au-
thorship attribution methods. Journal of the Ameri-
can Society for information Science and Technology
60(3):538-556.

Yla Rebecca Tausczik. 2009. Linguistic analysis
of workplace computer-mediated communication.
Master’s thesis, University of Texas.

Oren Tsur, Dmitry Davidov, and Ari Rappoport. 2010.
ICWSM—a great catchy name: Semi-supervised
recognition of sarcastic sentences in online product
reviews. In Proc. of ICWSM.

Oren Tsur and Ari Rappoport. 2007. Using classifier
features for studying the effect of native language
on the choice of written second language words. In
Proc. of CACLA.

Jason Weston, Antoine Bordes, Sumit Chopra, Alexan-
der M Rush, Bart van Merriénboer, Armand Joulin,
and Tomas Mikolov. 2016. Towards Al-complete
question answering: A set of prerequisite toy tasks.
In Proc. of ICLR.

Maria Yancheva and Frank Rudzicz. 2013. Automatic
detection of deception in child-produced speech us-
ing syntactic complexity features. In Proc. of ACL.

Tae Yano, Noah A. Smith, and John D. Wilkerson.
2012. Textual predictors of bill survival in congres-
sional committees. In Proc. of NAACL.

Bolei Zhou, Yuandong Tian, Sainbayar Sukhbaatar,
Arthur Szlam, and Rob Fergus. 2015. Sim-
ple baseline for visual question answering.
ArXiv:1512.02167.

25

Parsing for Grammatical Relations via Graph Merging

Weiwei Sun, Yantao Du and Xiaojun Wan
Institute of Computer Science and Technology, Peking University
The MOE Key Laboratory of Computational Linguistics, Peking University
{ws, duyantao, wanxiaojun}@pku.edu.cn

Abstract

This paper is concerned with building
deep grammatical relation (GR) analysis
using data-driven approach. To deal with
this problem, we propose graph merging, a
new perspective, for building flexible de-
pendency graphs: Constructing complex
graphs via constructing simple subgraphs.
We discuss two key problems in this per-
spective: (1) how to decompose a com-
plex graph into simple subgraphs, and (2)
how to combine subgraphs into a coher-
ent complex graph. Experiments demon-
strate the effectiveness of graph merging.
Our parser reaches state-of-the-art perfor-
mance and is significantly better than two
transition-based parsers.

1 Introduction

Grammatical relations (GRs) represent functional
relationships between language units in a sen-
tence. Marking not only local but also a wide
variety of long distance dependencies, GRs en-
code in-depth information of natural language sen-
tences. Traditionally, GRs are generated as a by-
product by grammar-guided parsers, e.g. RASP
(Carroll and Briscoe, 2002), C&C (Clark and Cur-
ran, 2007b) and Enju (Miyao et al., 2007). Very
recently, by representing GR analysis using gen-
eral directed dependency graphs, Sun et al. (2014)
and Zhang et al. (2016) showed that considerably
good GR structures can be directly obtained using
data-driven, transition-based parsing techniques.
We follow their encouraging work and study the
data-driven approach for producing GR analyses.

The key challenge of building GR graphs is due
to their flexibility. Different from surface syn-
tax, the GR graphs are not constrained to trees,
which is a fundamental consideration in design-

26

ing parsing algorithms. To deal with this problem,
we propose graph merging, a new perspective, for
building flexible representations. The basic idea is
to decompose a GR graph into several subgraphs,
each of which captures most but not the complete
information. On the one hand, each subgraph is
simple enough to allow efficient construction. On
the other hand, the combination of all subgraphs
enables whole target GR structure to be produced.

There are two major problems in the graph
merging perspective. First, how to decompose
a complex graph into simple subgraphs in a
principled way? To deal with this problem,
we considered structure-specific properties of the
syntactically-motivated GR graphs. One key prop-
erty is their reachability: In a given GR graph,
almost every node is reachable from a same and
unique root. If a node is not reachable, it is dis-
connected from other nodes. This property en-
sures a GR graph to be successfully decomposed
into limited number of forests, which in turn can
be accurately and efficiently built via tree parsing.
We model the graph decomposition problem as an
optimization problem and employ Lagrangian Re-
laxation for solutions.

Second, how to merge subgraphs into one co-
herent structure in a principled way? The prob-
lem of finding an optimal graph that consistently
combines the subgraphs obtained through individ-
ual models is non-trivial. We treat this problem as
a combinatory optimization problem and also em-
ploy Lagrangian Relaxation to solve the problem.
In particular, the parsing phase consists of two
steps. First, graph-based models are applied to as-
sign scores to individual arcs and various tuples of
arcs. Then, a Lagrangian Relaxation-based joint
decoder is applied to efficiently produces globally
optimal GR graphs according to all graph-based
models.

We conduct experiments on Chinese GRBank

Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017), pages 26-35,
Vancouver, Canada, August 3 - August 4, 2017. (©2017 Association for Computational Linguistics

Sl

KAT
issue practice

N
I R A

Pudong recently

T

k&

involve economic field

obj

subj*Idd

relative
n

ERE U

regulatory document

5

S K

Figure 1: An example: Pudong recently enacted regulatory documents involving the economic field.

(Sun et al., 2014). Though our parser does not
use any phrase-structure information, it produces
high-quality GR analysis with respect to depen-
dency matching. Our parsers obtain a labeled f-
score of 84.57 on the test set, resulting in an er-
ror reduction of 15.13% over Sun et al. (2014)’s
single system. and 10.86% over Zhang et al.
(2016)’s system. The remarkable parsing result
demonstrates the effectiveness of the graph merg-
ing framework. This framework can be adopted to
other types of flexible representations, e.g. seman-
tic dependency graphs (Oepen et al., 2014, 2015)
and abstract meaning representations (Banarescu
et al., 2013).

2 Background

In this paper, we focus on building GR analy-
sis for Mandarin Chinese. Mandarin is an an-
alytic language that lacks inflectional morphol-
ogy (almost) entirely and utilizes highly config-
urational ways to convey syntactic and semantic
information. This analytic nature allows to repre-
sent all GRs as bilexical dependencies. Sun et al.
(2014) showed that analysis for a variety of com-
plicated linguistic phenomena, e.g. coordination,
raising/control constructions, extraction, topical-
ization, can be conveniently encoded with directed
graphs. Moreover, such deep syntactic depen-
dency graphs can be effectively derived from Chi-
nese TreeBank (Xue et al., 2005) with very high
quality. Figure 1 is an example. In this graph,
“subj*1dd” between the word “J# X /involve” and
the word “3C f#/documents” represents a long-
distance subject-predicate relation. The arguments
and adjuncts of the coordinated verbs, namely /i
Affifissue” and “SE{T/practice,” are separately yet
distributively linked to the two heads.

By encoding GRs as directed graphs over
words, Sun et al. (2014) and Zhang et al. (2016)
showed that the data-driven, transition-based ap-

27

proach can be applied to build Chinese GR struc-
tures with very promising results. This architec-
ture is complementary to the traditional approach
to English GR analysis, which leverages grammar-
guided parsing under deep formalisms, such as
LFG (Kaplan et al., 2004), CCG (Clark and Curran,
2007a) and HP SG (Miyao et al., 2007). We follow
Sun et al.’s and Zhang et al.’s encouraging work
and study the discriminative, factorization models
for obtaining GR analysis.

3 Theldea

The key idea of this work is constructing a
complex structure via constructing simple partial
structures. Each partial structure is simple in the
sense that it allows efficient construction. For in-
stance, projective trees, 1-endpoint-corssing trees,
non-crossing dependency graphs and 1-endpoint-
crossing, pagenumber-2 graphs can be taken as
simple structures, given that low-degree polyno-
mial time parsing algorithms exist (Eisner, 1996;
Pitler et al., 2013; Kuhlmann and Jonsson, 2015;
Cao et al., 2017; Sun et al., 2017). To construct
each partial structure, we can employ mature pars-
ing techniques. To get the final target output, we
also require the total of all partial structures en-
ables whole target structure to be produced. In this
paper, we exemplify the above idea by designing
a new parser for obtaining GR graphs. Take the
GR graph in Figure 1 for example. It can be de-
composed into two tree-like subgraphs, shown in
Figure 2. If we can parse the sentence into sub-
graphs and combine them in a principled way, we
get the original GR graph.

Under this perspective, we need to develop a
principled method to decompose a complex struc-
ture into simple sturctures, which allows us to gen-
erate data to train simple solvers. We also need
to develop a principled method to integrate partial
structures, which allows us to produce coherent

root

subj
comp
N N /\ N R s
FAR IE Ok MU AT

Pudong recently issue practice
Kgomp/ prt

T

temp
subj

root

K&

involve economic ﬁeld

obj

comp
relative

TN

U B EAE U

regulatory document

N\ mod_7

/Jl

N.amod_7

subj[inverse

Figure 2: A graph decomposition for the GR graph in Figure 1. The two subgraphs are shown on two
sides of the sentence respectively. The subgraph on the upper side of the sentence is exactly a tree,
while the one on the lower side is slightly different. The edge from the word “3{4/document” to “i#
M Jinvolve” is tagged “[inverse]” to indicate that the direction of the edge in the subgraph is in fact

opposite to that in the original graph.

structures as outputs. We are going to demonstrate
the techniques we use to solve these two problems.

4 Decomposing GR Graphs

4.1 Graph Decomposition as Optimization

Given a sentence s = wiws - - - Wy, of length n,
we use a vector y of length n? to denote a graph
on it. We use indices ¢ and j to index the elements
in the vector, y(i,7) € {0, 1}, denoting whether
there is an arc from w; to w; (1 < 4,7 < n).
Given a graph y, we hope to find m subgraphs
Y1, ---» Ym, €ach of which belongs to a specific
class of graphs G (k = 1,2,--- ,m). Each class
should allow efficient construction. For example,
we may need a subgraph to be a tree or a non-
crossing dependency graph. The combination of
all y; gives enough information to construct y.
Furthermore, the graph decomposition procedure
is utilized to generate training data for building
sub-models. Therefore, we hope each subgraph yy
is informative enough to train a good disambigua-
tion model. To do so, for each y;, we define a
score function sy, that indicates the “goodness” of
yi. Integrating all ideas, we can formalize graph
decomposition as an optimization problem,

>k Sk(Yk)
y; belongs to G;

The last condition in this optimization problem en-

max.
S.t.

28

sures that all edges in y appear at least in one sub-
graph.

For a specific graph decomposition task, we
should define good score functions s and graph
classes Gy, according to key properties of the tar-
get structure y.

4.2 Decomposing GR Graphs into Tree-like
Subgraphs

One key property of GR graphs is their reachabil-
ity: Every node is either reachable from a unique
root or by itself an independent connected com-
ponent. This property allows a GR graph to be
decomposed into limited number of tree-like sub-
graphs. By tree-like we mean if we treat a graph
on a sentence as undirected, it is a tree, or it is a
subgraph of some tree on the sentence. The ad-
vantage of tree-like subgraphs is that they can be
effectively built by adapting data-driven tree pars-
ing techniques. Take the sentence in Figure 1 for
example. For every word, there is at least one path
link the virtual root and this word. Furthermore,
we can decompose the graph into two tree-like
subgraphs, as shown in Figure 2. In this decom-
position, one subgraph is exactly a tree, and the
other is very close to a tree.

We restrict the number of subgraphs to 3. The
intuition is that we use one tree to capture long
distance information and the other two to capture

coordination information.! In other words, we de-
compose each given graph y into three tree-like
subgraphs g1, g2 and g3. The goal is to let g1, g2
and g3 carry important information of the graph
as well as cover all edges in y. The optimization
problem can be written as

max.
S.t.

s1(g1) + s2(g2) + s3(g3)
g1, g2, g3 are tree-like

4.2.1 Scoring a Subgraph

We score a subgraph in a first order arc-factored
way, which first scores the edges separately and
then adds up the scores. Formally, the score func-
tion is sx(g) = >_wk (i, j)gk(i,j) (k = 1,2,3)
where wy (i, 7) is the score of the edge from i to
7. Under this score function, we can use the Max-
imum Spanning Tree (MST) algorithm (Chu and
Liu, 1965; Edmonds, 1967, Eisner, 1996) to de-
code the tree-like subgraph with the highest score.

After we define the score function, extracting a
subgraph from a GR graph works like this: We
first assign heuristic weights wy(7,7) (1 < 4,5 <
n) to the potential edges between all the pairs of
words, then compute a best projective tree gj us-
ing the Eisner’s Algorithm:

g, = arg max sy (g) = argmax > we(i. j)g (i, §)-
g g

gi. 1s not exactly a subgraph of y, because there
may be some edges in the tree but not in the graph.
To guarantee we get a subgraph of the original
graph, we add labels to the edges in trees to encode
necessary information. We label g (7, j) with the
original label, if y (i, j) = 1; with the original la-
bel appended by “~R” if y(j,47) = 1; with “None”
else. With this labeling, we can have a function
t2g to transform the extracted trees into tree-like
graphs. t2g(gx) is not necessary the same as the
original graph y, but must be a subgraph of it.

4.2.2 Three Variations of Scoring

With different weight assignments, we can extract
different trees from a graph, obtaining different

! In this paper, we employ projective parsers. The mini-
mal number of sub-graphs is related to the pagenumber of GR
graphs. The pagenumber of 90.96% GR graphs is smaller
than or equal to 2, while the pagenumber of 98.18% GR
graphs is at most 3. That means 3 projective trees are perhaps
good enough to handle Chinese sentences, but 2 projective
trees are not. Due to the empirical results in Table 3, using
three projective trees can handle 99.55% GR arcs. Therefore,
we think three is suitable for our problem.

29

subgraphs. We devise three variations of weight
assignment: wj, ws, and ws. Each wy (k is 1,2
or 3) consists of two parts. One is shared by
all, denoted by S, and the other is different from
each other, denoted by V. Formally, wy(i,j) =
S(i,7) + Vi(i,7) (k=1,2,3and 1 < i,j < n).
Given a graph y, S is defined as S(4,7)
S1(i,7) + Sa2(i,7) + Ss(i,5) + Sa(i, j), where

. c ify(i,j)=1lory(j,7) =1
Si(if) = {01 elsye(7) y(j, 1)
. co ify(i,g) =1
Sa(i,j) = {02 elsz(7)
S3(i,j) = cs(n—[i—j|)
54(Za]) = C4(nilp(i’j))

In the definitions above, c¢q, c2, c3 and ¢4 are
coefficients, satisfying c¢; > c3 > c3, and [, is a
function of 7 and j. [,(4, j) is the length of shortest
path from ¢ to j that either ¢ is a child of an ances-
tor of j or j is a child of an ancestor of <. That is
to say, the paths are in the form ¢ «— nj « - --
ng — jori <« n; — --- — ng — j. [f nosuch
path exits, then [,,(Z, j) = n. The intuition behind
the design is illustrated below.

«—

S1 indicates whether there is an edge between ¢
and 7, and we want it to matter mostly;

S5 indicates whether the edge is from ¢ to j, and
we want the edge with correct direction to be
selected more likely;

S3 indicates the distance between 7 and j, and we
like the edge with short distance because it is
easier to predict;

Sy indicates the length of certain type of path be-
tween ¢ and j that reflects c-commanding re-
lationships, and the coefficient remains to be
tuned.

We want the score V' to capture different infor-
mation of the GR graph. In GR graphs, we have
an additional information (as denoted as “*1dd”
in Figure 1) for long distance dependency edges.
Moreover, we notice that conjunction is another
important structure, and they can be derived from
the GR graph. Assume that we tag the edges re-
lating to conjunctions with “*cjt.” The three varia-
tion scores, i.e. V1, V5 and V3, reflect long distance
and the conjunction information in different ways.

X*1dd

TR
X*cjt
cjt
N\
p - Wey

w e Wyey o Woep o Wey e WY

Figure 3: Examples to illustrate the additional
weights.

Vi. First for edges y(7, j) whose label is tagged
with *Idd, we assign Vi(i,5) = d. d is a co-
efficient to be tuned on validation data.. When-
ever we come across a parent p with a set of con-
junction children cjt1, cjta, - - - , cjt,, we find the
rightmost child gc;, of the leftmost child in con-
junction c¢jtq, and add d to each Vi(p,cjt;) and
Vi(ejti, geir). The edges in conjunction that are
added additional d’s to are shown in blue in Figure
3.

Vs. Different from Vi, for edges y(i,j) whose
label is tagged with *1dd, we assign an V5(j,7) =
d. Then for each conjunction structure with
a parent p and a set of conjunction children
cjti, cjta, - ,cjty, we find the leftmost child
gcy of the rightmost child in conjunction cjt,,
and add d to each Va(p, cjt,) and Va(cjty, gen).
The concerned edges in conjunction are shown in
green in Figure 3.

V3. We do not assign d’s to the edges with tag
*]dd. For each conjunction with parent p and con-
junction children cjty, cjta, - - -, cjt,, we add an
dto Va(p,cjt1), Va(p, cjta), - - -, and V3(p, cjty,).

4.3 Lagrangian Relaxation with
Approximation

As soon as we get three trees gi, g2 and g3, we get
three subgraphs t2g(g1), t2g(g2) and t2g(g3). As
is stated above, we want every edge in a graph y to
be covered by at least one subgraph, and we want
to maximize the sum of the edge weights of all
trees. Note that the inequality in the constrained
optimization problem above can be replaced by a
maximization, written as

max. s1(g1) + s2(g2) + s3(g3)
S.t. g1, g2, gs are trees
max{t29(g1)(%, j), t29(g2) (%, j),

where sy, (gk) = Z Wk (ia j)gk (i7 .7)

Let g, = max{t29(g1),129(92),129(gs)}.
and by max{gi, g2, g3} we mean to take the maxi-
mum of three vectors pointwisely. The Lagrangian

Algorithm 1: The Tree Extraction Algorithm

Initialization: set (%) to 0
for k = 0 to K do
g1 < argmaxy s1(g1) + u® T gy
g2 < argmaxg, s2(g2) + uF)T gy
gs < argmaxg, s3(gs) + uF) T gs
if max{gi, g2,93} = y then

| return g1, g2, g3
L)

ugry — ¥ (max{gi, g2, g3} — y)
return g, g2, g3

of the problem is

L£(g1,92,93;u) = 51(g1) + s2(g2) + 53(g3)

+UT (gm - y)
where v is the Lagrangian multiplier.
Then the dual is
L(u) = max L(g1,92,93;u)
91,92,93
1
= max(s1(g1) + fuTgm)
g1 3
1
+max(s2(ge) + fuTgm)
g2 3
1
+max(s3(gs) + fuTgm) —u'y
g3 3
According to the duality principle,
MaXg, g, ,g5;u Mily £(g1,92,93) = miny, L(u),

so we can find the optimal solution for the
problem if we can find min,, £(u). However it
is very hard to compute L£(u), not to mention
min, £(u). The challenge is that g,, in the three
maximizations must be consistent.

The idea is to separate the overall maximization
into three maximization problems by approxima-
tion. We observe that g1, g2, and g3 are very close
t0 gm, SO we can approximate £(u) by

L'(u) = max L(g1,g2,93u)

91,92,93
1

= max(si(g1) + zu' g1)
g1 3

1
+ max(s2(g2) + fung)
g2 3

1
+max(s3(gs) + —u'gs) —u'y
g3 3
In this case, the three maximization problem can
be decoded separately, and we can try to find the
optimal u using the subgradient method.

4.4 The Algorithm

Algorithm 1 is our tree decomposition algorithm.
In the algorithm, we use subgradient method to
find min,, £'(u) iteratively. In each iteration, we
first compute g1, g2, and g3 to find £'(u), then
update u until the graph is covered by the sub-
graphs. The coefficient %’s can be merged into
the steps a(¥), so we omit them. The three sep-
arate problems gy « argmaxg, si(gx) + u' gp
(k = 1,2,3) can be solved using Eisner’s algo-
rithm, similar to solving arg max,, sx(gx). In-
tuitively, the Lagrangian multiplier v in our Al-
gorithm can be regarded as additional weights for
the score function. The update of u is to increase
weights to the edges that are not covered by any
tree-like subgraph, so that it will be more likely
for them to be selected in the next iteration.

5 Graph Merging

The extraction algorithm gives three classes of
trees for each graph. We apply the algorithm to
the graph training set, and get three training tree
sets. After that, we can train three parsing models
with the three tree sets. In this work, the parser
we use to train models and parse trees is Mate
(Bohnet, 2010), a second-order graph-based de-
pendency parser.

Let the scores the three models use be
f1, f2, f3 respectively. Then the parsers can
find trees with highest scores for a sentence.
That is solving the following optimization prob-
lems: argmaxg, fi(g1), argmaxg, fa(g2) and
argmaxg, f3(gs). We can parse a given sen-
tence with the three models, obtain three trees,
and then transform them into subgraphs, and com-
bine them together to obtain the graph parse of
the sentence by putting all the edges in the three
subgraphs together. That is to say, we obtain the
graph y = max{t2g(g1),t29(g2),t29(gs3)}. We
call this process simple merging.

However, the simple merging process omits
some consistency that the three trees extracted
from the same graph achieve, thus losing some
important information. The information is that
when we decompose a graph into three subgraphs,
some edges tend to appear in certain classes of
subgraphs at the same time. We want to retain
the co-occurrence relationship of the edges when
doing parsing and merging. To retain the hidden
consistency, we must do joint decoding instead of
decode the three models separately.

31

5.1 Capturing the Hidden Consistency

In order to capture the hidden consistency, we add
consistency tags to the labels of the extracted trees
to represent the co-occurrence. The basic idea is
to use additional tag to encode the relationship of
the edges in the three trees. The tag set is 7 =
{0,1,2,3,4,5,6}. Given atagt € 7, t&1, t&2,
t&4 denote whether the edge is contained in g1,
g2, g3 respectively, where the operator “&” is the
bitwise AND operator. Specially, since we do not
need to consider first bit of the tags of edges in g1,
the second bit in g5, and the third bit in g3, we
always assign 0 to them. For example, if y(i, j) =
L g1(i,j) = 1, g2(4,4) = 1, g3(4,j) = 0 and
ts(7,4) = 0, we tag g1(4,7) as 2 and g2(j,) as 1.

When it comes to parsing, we also get labels
with consistency information. Our goal is to guar-
antee the tags in edges of the parse trees for a
same sentence are consistent while graph merg-
ing. Since the consistency tags emerge, for con-
venience we index the graph and tree vector rep-
resentation using three indices. g(i,j,t) denotes
whether there is an edge from word w; to word
w; with tag ¢ in graph g.

The joint decoding problem can be written as a
constrained optimization problem as

max. fi(g1) + f2(g2) + f3(g3)

st g1(6,4,2) +91(1,5,6) < 3, g5(i, 4, 1)
gi(iaja 4) +gi(iaja 6) < Ztgé(iajat)
gé(iaja 1) +gé(iaja 5) < Ztgll(i7j7 t)
gé(iaja 4) +gé(iaja 5) < Ztgé(iv%t)
gé(%]a 1) +gé(2a.7a 3) < Ztg/1<i7j7t>
gé(iaja 2) +gé(iaja 3) < Ztgé(ivjv t)
Vi, j

where g;. = t29(gx)(k = 1,2, 3).

The inequality constraints in the problem are the
consistency constraints. Each of them gives the
constraint between two classes of trees. For exam-
ple, the first inequality says that an edge in g; with
tag t&2 # 0 exists only when the same edge in g
exist. If all of these constraints are satisfied, the
subgraphs achieve the consistency.

5.2 Lagrangian Relaxation with
Approximation

To solve the constrained optimization problem
above, we do some transformations and then ap-
ply the Lagrangian Relaxation to it with approxi-
mation.

Let a12(%,7) = 91(3,,2) + g1(4, J, 6), then the
first constraint can be written as an equity con-
straint

91(:,5,2) +91(:,:,6) = a2 * (Z g2(:,:,1))

IR

where is to take out all the elements in the
corresponding dimension, and “.x” is to do multi-
plication pointwisely. So can the other inequality
constraints. If we take a12,a13,--- , asy as con-
stants, then all the constraints are linear. The con-
straints thus can be written as

A1g1 + Azgo + A3gz =0

where A1, Ao, and As are matrices that can be
constructed from a2, @13, - - , aso.
The Lagrangian of the optimization problem is

L(g1,92,93:u) = fi(g1) + fa(g2) + f3(g3) +
u' (A1gy + Asgs + Aszgs)

where w is the Lagrangian multiplier. Then the
dual is

L(u)

max L(g1,92,93;u)
91,9293

H;?X(fl (g1) +u' Aig1)

+H£X(f2(92) +u' Asgo)

+ %%X(f:a(g:z) +u' Azgs)

Again, we use the subgradient method to min-
imize L(u). During the deduction, we take
a2, a13, -+ , @32 as constants, but unfortunately
they are not. We propose an approximation for the
a’s in each iteration: Using the a’s we got in the
previous iteration instead. It is a reasonable ap-
proximation given that the «’s in two consecutive
iterations are similar and so are the a’s.

5.3 The Algorithm

The pseudo code of our algorithm is shown in Al-
gorithm 2. We know that the score functions fi,
fo, and f3 each consist of first-order scores and
higher order scores. So they can be written as

f(g) (9) + si(g)

where s}5(g) = Y wyi(i,4)g(i, j) (k = 1,2,3).
With this property, each individual problem gy «—
arg maxg, fr(gr)+ u " Argy, can be decoded eas-
ily, with modifications to the first order weights

— S]1€St

32

Algorithm 2: The Joint Decoding Algorithm

Initialization: set u(©), A;, A5, A3 t0 0,
for k =0to K do
g1 — argmax,, fi(g1) +u™TA1gy
g2 — argmax,, f2(g2) +uMT Asgs
g3 — argmax,, f3(gs) +u™T Asgs
update Ay, As, As
if A1g1 + A2g2 + Aszgs = 0 then

| return gi, g2, g3
QD)

uy — oW (A1g1 + Args + Asgs)
return gd1,92, 393

of the edges in the three models. Specifically, let
wy = u! Ay, then we can modify the wy, in sg to
wy., such that wj (i, j,) = wi (i, J, t)+w (i, j,)+
Wi (j y i, t) .

The update of w1, wa, w3 can be understood
in an intuitive way. When one of the constraints
is not satisfied, without loss of generality, say,
the first one for edge y(i,j). We know g;(i,7)
is tagged to represent that go(i,j) = 1, but it
is not the case. So we increase the weight of
that edge with all kinds of tags in g2, and de-
crease the weight of the edge with tag representing
g2(i,j) = 1in g;. After the update of the weights,
the consistency is more likely to be achieved.

5.4 Labeled Parsing

For sake of formal concision, we illustrate our al-
gorithms omitting the labels. It is straightforward
to extend the algorithms to labeled parsing. In the
joint decoding algorithm, we just need to extend
the weights w1, wo, wg for every label that ap-
pears in the three tree sets, and the algorithm can
be deduced similarly.

6 Evaluation and Analysis

6.1 Experimental Setup

We conduct experiments on Chinese GRBank
(Sun et al., 2014), an LFG-style GR corpus for
Mandarin Chinese. Linguistically speaking, this
deep dependency annotation directly encodes in-
formation such as coordination, extraction, rais-
ing, control as well as many other long-range de-
pendencies. The selection for training, develop-
ment, test data is also according to Sun et al.
(2014)’s experiments. Gold standard POS-tags are
used for deriving features for disambiguation.

UP UR UF UCompl LP LR LF LCompl

subgraphl | 88.63 76.19 81.94 18.09 8594 7388 79.46 16.11

SM subgraph2 | 88.04 78.20 82.83 17.47 8531 75.77 8026 1543
subgraph3 | 88.91 81.12 84.84 2036 86.57 78.99 8261 17.30
Merged | 83.23 8845 8576 2297 80.59 85.64 83.04 19.29
subgraphl | 89.76 77.48 83.17 18.60 87.17 7525 80.77 16.39

LR subgraph2 | §9.30 79.18 83.93 18.66 86.68 76.85 8147 16.56
subgraph3 | 89.42 81.55 8531 2053 87.09 79.43 83.08 17.81
Merged | 88.07 85.14 86.58 2632 8555 8270 84.10 21.61

Table 1: Results on development set. SM is for Simple Merging, and LR for Lagrangian Relaxation.

UPpP UR UF UCompl LP LR LF LCompl
subgraphl 89.80 76.74 82776 18.69 87.81 7504 8093 17.13
subgraph?2 89.34 78.66 83.66 1846 8726 76.84 81.72 16.97
subgraph3 89.57 8123 8519 20.18 87.78 79.61 8349 1822
Merged 88.06 85.11 86.56 2624 86.03 83.16 84.57 22.84
Sun et al. - - - - 83.93 79.82 81.82 -
Zhang et al.[Single] - - - - 82.28 83.11 82.69 -
Zhang et al.[Ensemble] - - - - 8492 85.28 85.10 -
Table 2: Lagrangian Relaxation Results on test set.

The measure for comparing two dependency Coverage | Edge Sentence
graphs is precision/recall of GR tokens which are subgraphl | 85.52 28.73
defined as (wp,, wg, [) tuples, where wy, is the head, subgraph2 | 88.42 28.36
wy is the dependent and [is the relation. Labeled SD subgraph3 | 90.40 34.37
precision/recall (LP/LR) is the ratio of tuples cor- Merged | 96.93 71.66
rectly identified by the automatic generator, while subgraphl | 85.66 2901
unlabeled precision/recall (UP/UR) is the ratio re- subgraph2 | 88.48 7863
gardless of [. F-score is a harmonic mean of pre- LR subgraph3 | 90.67 34.72
cision and recall. These measures correspond to Merged | 99.55 96.90

attachment scores (LAS/UAS) in dependency tree
parsing. To evaluate our GR parsing models that
will be introduced later, we also report these met-
rics.

6.2 Results of Graph Decomposition

Table 3 shows the results of graph decomposition
on the training set. If we use simple decompo-
sition, say, directly extracting three trees from a
graph, we get three subgraphs. On the training
set, each kind of the subgraphs cover around 90%
edges and 30% sentences. When we merge them
together, they cover nearly 97% edges and over
70% sentences. This indicates that the ability of
a single tree is limited and three trees can cover
most of the edges.

When we apply Lagrangian Relaxation to the
decomposition process, both the edge coverage
and the sentence coverage gain great error reduc-

33

Table 3: Results of graph decomposition. SD is
for Simple Decomposition and LR for Lagrangian
Relaxation

tion, indicating that Lagrangian Relaxation is very
effective on the task of decomposition.

6.3 Results of Graph Merging

Table 1 shows the results of graph merging on the
development set, and Table 2 on test set. The three
training sets of trees are from the decomposition
with Lagrangian Relaxation and the models are
trained from them. In both tables, simple merging
(SM) refers to first decode the three trees for a sen-
tence then combine them by putting all the edges
together. As is shown, the merged graph achieves
higher f-score than other single models. With La-
grangian Relaxation, the performance of not only

the merged graph but also the three subgraphs are
improved, due to capturing the consistency infor-
mation.

When we do simple merging, though the recall
of each kind of subgraphs is much lower than the
precision of them, it is opposite of the merged
graph. This is because the consistency between
three models is not required and the models tend
to give diverse subgraph predictions. When we re-
quire the consistency between the three models,
the precision and recall become comparable, and
higher f-scores are achieved.

The best scores reported by previous work, i.e.
(Sun et al., 2014) and (Zhang et al., 2016) are
also listed in Table 2. We can see that our sub-
graphs already achieve competitive scores, and
the merged graph with Lagrangian Relaxation im-
proves both unlabeled and labeled f-scores sub-
stantially, with an error reduction of 15.13% and
10.86%. We also include Zhang et al.’s parsing re-
sult obtained by an ensemble model that integrate
six different transition-based models. We can see
that parser ensemble is very helpful for deep de-
pendency parsing and the accuracy of our graph
merging parser is sightly lower than this ensemble
model. Given that the architecture of graph merg-
ing is quite different from transition-based pars-
ing, we think system combination of our parser
and the transition-based parser is promising.

7 Conclusion

To construct complex linguistic graphs beyond
trees, we propose a new perspective, namely graph
merging. We take GR parsing as a case study and
exemplify the idea. There are two key problems
in this perspective, namely graph decomposition
and merging. To solve these two problems in a
principled way, we treat both problems as opti-
mization problems and employ combinatorial op-
timization techniques. Experiments demonstrate
the effectiveness of the graph merging framework.
This framework can be adopted to other types of
flexible representations, e.g. semantic dependency
graphs (Oepen et al., 2014, 2015) and abstract
meaning representations (Banarescu et al., 2013).

Acknowledgments

This work was supported by 863 Program of China
(2015AA015403), NSFC (61331011), and Key
Laboratory of Science, Technology and Standard
in Press Industry (Key Laboratory of Intelligent

34

Press Media Technology). We thank anonymous
reviewers for their valuable comments.

References

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract meaning representa-
tion for sembanking. In Proceedings of the
7th Linguistic Annotation Workshop and Interoper-
ability with Discourse. Association for Computa-
tional Linguistics, Sofia, Bulgaria, pages 178—186.
http://www.aclweb.org/anthology/W13-2322.

Bernd Bohnet. 2010. Top accuracy and fast depen-
dency parsing is not a contradiction. In Proceedings
of the 23rd International Conference on Computa-
tional Linguistics (Coling 2010). Coling 2010 Or-
ganizing Committee, Beijing, China, pages 89-97.
http://www.aclweb.org/anthology/C10-1011.

Junjie Cao, Sheng Huang, Weiwei Sun, and Xiao-
jun Wan. 2017. Parsing to 1-endpoint-crossing,
pagenumber-2 graphs. In Proceedings of the 55th
Annual Meeting of the Association for Computa-
tional Linguistics. Association for Computational
Linguistics.

John Carroll and Ted Briscoe. 2002. High pre-
cision extraction of grammatical relations. In
Proceedings of the 19th International Conference
on Computational Linguistics - Volume 1. As-
sociation for Computational Linguistics, Strouds-
burg, PA, USA, COLING °’02, pages 1-7.
https://doi.org/10.3115/1072228.1072241.

Y.J. Chu and T.H. Liu. 1965. On the shortest arbores-
cence of a directed graph. Science Sinica pages
14:1396-1400.

Stephen Clark and James Curran. 2007a. Formalism-
independent parser evaluation with CCG and Dep-
Bank. In Proceedings of the 45th Annual Meet-
ing of the Association of Computational Lin-
guistics. Association for Computational Linguis-
tics, Prague, Czech Republic, pages 248-255.
http://www.aclweb.org/anthology/P07-1032.

Stephen Clark and James R. Curran. 2007b.
Wide-coverage efficient statistical pars-
ing with CCG and log-linear models.
Computational Linguistics 33(4):493-552.

https://doi.org/10.1162/coli.2007.33.4.493.

. Edmonds. 1967. Optimum branchings. Journal of
Research of the NationalBureau of Standards pages
71B:233-240.

Jason M. Eisner. 1996. Three new probabilistic models
for dependency parsing: an exploration. In Proceed-
ings of the 16th conference on Computational lin-
guistics - Volume 1. Association for Computational
Linguistics, Stroudsburg, PA, USA, pages 340-345.

Ron Kaplan, Stefan Riezler, Tracy H King, John T
Maxwell III, Alex Vasserman, and Richard Crouch.
2004. Speed and accuracy in shallow and deep
stochastic parsing. In Daniel Marcu Susan Du-
mais and Salim Roukos, editors, HLT-NAACL 2004:
Main Proceedings. Association for Computational
Linguistics, Boston, Massachusetts, USA, pages
97-104.

Marco Kuhlmann and Peter Jonsson. 2015. Parsing to
noncrossing dependency graphs. Transactions of the
Association for Computational Linguistics 3:559—
570.

Yusuke Miyao, Kenji Sagae, and Jun’ichi Tsu-
jit. 2007. Towards framework-independent
evaluation of deep linguistic parsers. In Ann
Copestake, editor, Proceedings of the GEAF 2007
Workshop. CSLI Publications, CSLI Studies in
Computational Linguistics Online, pages 238-258.

Xun Zhang, Yantao Du, Weiwei Sun, and Xiaojun
Wan. 2016. Transition-based parsing for deep de-
pendency structures. Computational Linguistics
42(3):353-389. http://aclweb.org/anthology/J16-
3001.

http://www.cs.cmu.edu/ sagae/docs/geaf07miyaoetal.pdf.

Stephan Oepen, Marco Kuhlmann, Yusuke Miyao,
Daniel Zeman, Silvie Cinkovd, Dan Flickinger, Jan
Hajic, and Zdenka Uresovd. 2015. Semeval 2015
task 18: Broad-coverage semantic dependency pars-
ing. In Proceedings of the 9th International Work-
shop on Semantic Evaluation (SemEval 2015).

Stephan Oepen, Marco Kuhlmann, Yusuke Miyao,
Daniel Zeman, Dan Flickinger, Jan Hajic, An-
gelina Ivanova, and Yi Zhang. 2014. Semeval 2014
task 8: Broad-coverage semantic dependency pars-
ing. In Proceedings of the 8th International Work-
shop on Semantic Evaluation (SemEval 2014). As-
sociation for Computational Linguistics and Dublin
City University, Dublin, Ireland, pages 63-72.
http://www.aclweb.org/anthology/S14-2008.

Emily Pitler, Sampath Kannan, and Mitchell Mar-
cus. 2013. Finding optimal 1-endpoint-crossing
trees. TACL 1:13-24. http://www.transacl.org/wp-
content/uploads/2013/03/paper13.pdf.

Weiwei Sun, Junjie Cao, and Xiaojun Wan. 2017. Se-
mantic dependency parsing via book embedding. In
Proceedings of the 55th Annual Meeting of the Asso-
ciation for Computational Linguistics. Association
for Computational Linguistics.

Weiwei Sun, Yantao Du, Xin Kou, Shuoyang Ding, and
Xiaojun Wan. 2014. Grammatical relations in Chi-
nese: GB-ground extraction and data-driven pars-
ing. In Proceedings of the 52nd Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers). Association for Computa-
tional Linguistics, Baltimore, Maryland, pages 446—
456. http://www.aclweb.org/anthology/P14-1042.

Naiwen Xue, Fei Xia, Fu-dong Chiou, and Marta
Palmer. 2005. The penn Chinese treebank:
Phrase structure annotation of a large corpus.
Natural Language FEngineering 11:207-238.
https://doi.org/10.1017/S135132490400364X.

35

Leveraging Eventive Information for
Better Metaphor Detection and Classification

I-Hsuan Chen’, Yunfei Long?, Qin Lu?, Chu-Ren Huang®
'Department of Chinese & Bilingual Studies, The Hong Kong Polytechnic University
{ihsuan.chen, churen.huang}@polyu.edu.hk
?Department of Computing, The Hong Kong Polytechnic University
{csylong, cslugin}@comp.polyu.edu.hk

Abstract

Metaphor detection has been both chal-
lenging and rewarding in natural language
processing applications. This study offers a
new approach based on eventive infor-
mation in detecting metaphors by leverag-
ing the Chinese writing system, which is a
culturally bound ontological system orga-
nized according to the basic concepts rep-
resented by radicals. As such, the infor-
mation represented is available in all Chi-
nese text without pre-processing. Since
metaphor detection is another culturally
based conceptual representation, we hy-
pothesize that sub-textual information can
facilitate the identification and classifica-
tion of the types of metaphoric events de-
noted in Chinese text. We propose a set of
syntactic conditions crucial to event struc-
tures to improve the model based on the
classification of radical groups. With the
proposed syntactic conditions, the model
achieves a performance of 0.8859 in terms
of F-scores, making 1.7% of improvement
than the same classifier with only Bag-of-
word features. Results show that eventive
information can improve the effectiveness
of metaphor detection. Event information
is rooted in every language, and thus this
approach has a high potential to be applied
to metaphor detection in other languages.

1 Introduction

Metaphors are a cross linguistic phenomenon in
everyday language as shown in a great amount of
corpus linguistic and experimental studies. The
Conceptual Metaphor Theory (Lakoff, 1989;
Lakoff and Johnson, 1981) shows how linguistic
expressions reflect the mapping of two conceptu-
al domains. For example, the expression | see
what you mean instantiates the conceptual meta-
phor of KNOWING IS SEEING. The phrase is

36

the result of mapping the source domain SEE-
ING, which is embodied daily experience onto
the target domain, KNOWING, as exemplified in
the examples of shed some light on this, an illu-
minating article, and take a close look. Due to the
pervasive use of metaphors, there is an enormous
amount of studies in the techniques of detecting
metaphors. Relevant studies of detecting meta-
phors primarily rely on contextual information.
This study provides a novel approach to detect
and classify metaphors by analyzing eventive in-
formation. Concepts can be classified into a wide
array of event types according to ontology, the
organization of knowledge (Huang et al., 2007).
Eventive information thus can be applied to the
classification of metaphors, which concern map-
pings of conceptual structures from a source do-
main to a target domain.

The classification of metaphoric and literal
senses has been approached by different methods
such as vector-space models with distributional
statistics (Hovy et al., 2013; Tsvetkov et al.,
2014) and compositional distributional semantic
models (CDSMs) (Kartsaklis and Sadrzadeh,
2013a). Most of the studies regarding metaphoric
detection have been done in English, while the
task in Chinese is at the incipient stage. The rele-
vant studies such as clustering models and simi-
larity computation in context (Fu et al., 2016;
Wang, 2010) mainly focus on the metaphoric
sense of each individual noun or adjectival phrase
because the analyses are highly dependent on
contextual information. However, metaphoric
senses of verbs are less touched because it is dif-
ficult to define regularities of their contextual in-
formation. This study deals with the challenge of
the verb category by including eventive infor-
mation, which is the basis of the classification of
metaphors.

Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017), pages 3646,
Vancouver, Canada, August 3 - August 4, 2017. (©2017 Association for Computational Linguistics

Chinese is featured by its semantic-based or-
thography in the writing system. Specifically,
Chinese characters are composed of radicals and
components, which are ideographic or phonetic
symbols. Radicals, which represent core concep-
tual properties, encode eventive information of the
literal senses of characters (Huang 2009, Huang
and Hsieh, 2015). For instance, the verb (5 ti
‘kick’ contains the radical & ‘foot’; the verb 17
chi ‘eat’” has the radical [T “‘mouth’. The radicals
clearly identify the body parts executing the ac-
tions. Chinese radicals, in particular, evoke the
whole event structure such as the initiation, the
process, and the termination of a kicking or an eat-
ing action. Also, radicals are good indicators of
different types of events. For instance, radicals can
encode the information of tools in the concept of
separation. The radical 7] dao ‘knife’ of the char-
acter tJ] gie “‘cut’ implies that the action results in
two pieces, while the radical /5 shi ‘stone’ of the
character fff po ‘break’ emphasizing that the ac-
tion results into pieces. The radicals can thus pro-
vide detailed eventive information to identify the
source domain in the task of metaphor detection.

Event information characterizes detailed prop-
erties such as the volition of the subject and the
resulted status of the object. The properties can be
accessed by their corresponding syntactic con-
structions. We propose 17 syntactic conditions
which are appropriate to differentiate different
event types. First, we implement the algorithm of
metaphor detection based on a Support \ector
Machine (SVM) classifier. The syntactic condi-
tions serve as additional features using Bag-of-
word features as the baseline. Second, we apply
the SVM classifier to predict the senses, either lit-
eral or metaphoric, of each verb in Baidu Baike
corpus, which has 1,543,669 million entries and
7.6 billion tokens.! We then measure the semantic
similarities among different radical groups by the
vector representation according to each sense of
each character. The similarity of vectors based on
word representation and sense representation
proves that radicals can predict semantic groups of
the literal senses. We delimit the syntactic envi-
ronments where the literal senses tend to occur.
When a sense does not occur in the defined set of
syntactic conditions, it is highly possible to be
metaphoric.

! https:/fen.wikipedia.org/wiki/Baidu_Baike

37

In this study, NLP technology is applied to two
deeply culturally bound phenomena: (i) the Chi-
nese writing system and (ii) the classification of
metaphors. The Chinese character orthography is
an ontological system organized based on the
primitive concepts represented by radicals (Chou
and Huang, 2010). Thus, the information repre-
sented by radicals is not only cultural specific but
also available in all Chinese text without the need
for processing. Metaphor detection, as another
culturally based conceptual representation, has
been proven to be both challenging and extremely
valuable in natural language processing. Based on
their shared event information, we hypothesize
that sub-textual information can leverage the ef-
fectiveness to identify and classify different types
of metaphoric events hidden in the Chinese text.
Our experiments prove the effectiveness of even-
tive information in detecting metaphors. The ap-
proach of leveraging event type information by
radicals increases both the precision and the recall
in metaphor detection. Although this approach is
especially effective for Chinese because of the in-
formation embedded in radicals, broader implica-
tions include the possibility of leveraging eventive
information from different sources in other lan-
guages.

2 Related Work

The task of metaphor detection has been handled
in a wide variety of approaches including cluster-
ing models (Birke and Sarkar, 2006; Shutova et
al., 2010; Li and Sporleder, 2010), semantic simi-
larity graphs (Sporleder and Li, 2009), topic mod-
eling (Li et al., 2010; Heintz et al., 2013), and
compositional distributional semantic models
(CDSMs) (Gutiérrez et al. 2016). Feature-based
classification, in particular, attracts most attention
since a wide array of contextual information is in-
cluded (Sporleder and Li, 2009; Dunn., 2013;
Hovy et al., 2011; Mohler et al., 2013; Neuman et
al., 2013; Tsvetkov et al., 2013; Tsvetkov et al.,
2014). Since the studies regarding metaphor iden-
tification have primarily focused on English, there
are more available datasets in English in both
manually-tagged linguistic resources (Gedigian et
al., 2006; Krishnakumaran and Zhu, 2007;
Broadwell et al., 2013) and corpus-based ap-
proach (Birke and Sarker, 2007; Shutova et al.,
2013; Neuman et al., 2013; Hovy et al., 2013).
Metaphor detection in Chinese is at the incipient
stage. Fu et al., (2016) uses hierarchical clustering

for Chinese noun phrases according to their con-
textual information to recognize metaphoric
phrases. Zhou et al. (2011) use the Maximum En-
trophy model to detect the metaphoric reading of
verb phrases based on collocation with noun
phrases, and point out that there is no mature syn-
tactic and semantic tool for metaphor analysis in
Chinese. Our study will close the gap by building
a model of metaphor detection based on syntactic
conditions.

Regarding metaphor detection, most papers
emphasize on distinguishing metaphoric senses
from literal senses in a polysemy network. Dis-
ambiguation of senses has been handled by DSMs
based on the availability of contextual information
(Baroni et al., 2014; Boleda et al., 2012; Erk and
Padd, 2010; Kartsaklis and Sadrzadeh 2013).
When more contextual information is incorpo-
rated, disambiguation would be more successful.
It should be noted that the senses of one form
have different degrees of transparency to be traced
in semantics. The senses of a form which can be
chained together via overlapping semantics, as in
the case of polysemy (cut a new window in the
wall vs. the ball broke a window), are more likely
to be traced. On the contrary, when the senses of a
linguistic form are discrete as in the case of ho-
monymy (e.g. piano keys vs. key point), they may
be problematic to DSM (Baroni et al., 2014).
Gutiérrez et al. (2016) point out that the challenge
arises from the highly context-dependent property
of homonymies since the relations of senses are
not unsystematic. In contrast, the senses of a poly-
semy form a systematic system, and thus CDSM
has a better chance to detect metaphoric senses
(Gutiérrez et al. 2016). Nevertheless, how to
group a variety of senses including metonymic
and metaphoric senses as a polysemy has been a
challenge in Chinese (Fu et al., 2016). In this pa-
per, the use of Chinese radicals for grouping sens-
es can avoid the confusion of polysemy and hom-
onym because Chinese radicals stand for semantic
classification, reflecting the structure of our onto-
logical knowledge structure (Huang 2009).

Contextual information has been regarded as an
important determinant in identifying metaphors.
Previous studies thus primarily focus on the adjec-
tives or nouns as in the studies of English meta-
phors due to the abundant contextual information
from these categories. This study, instead, focuses
on the verb category and shows the literal and
metaphoric senses of a verb can be predicted by

38

their syntactic conditions. The event structure
evoked by a verb offers reliable information for
metaphor detection.

3 Methodology

Our task is to define the syntactic environments
where the metaphoric sense of a verb would be
more likely to occur. Each verb corresponds to a
type of event structure. Chinese radicals denote
the most profiled element in an event structure.
For example, the literal sense of J# guan ‘pour’,
which has a water radical 7, specifies the materi-
al of this action is water. Based on the properties
of water, the verb emphasizes dynamic flows.
Thus the verb tends to appear in non-passive con-
structions for expressing the dynamics. The literal
meaning of # dian ‘pad’, which has the mud rad-
ical £, profiles mud as a loctum, and therefore it
tends to appear with a locative phrase in order to
specify the object to be padded. The literal sense
of tJ] gie “cut’, which has a knife radical /], spec-
ifies the instrument of the separation. The verb
occurs mostly in the VO word order, as in t7]ZEFE
gie diangao ‘cut cakes’ to emphasize on transitivi-
ty. In summary, each verb has its own event struc-
ture, which can be observed in the syntactic envi-
ronments where the verb frequently occurs. Since
a metaphoric sense describes a concept different
from that of a literal sense, it should have a differ-
ent event structure from that of a literal sense. Ac-
cording to corpus data, it can be observed that the
literal senses of a verb tend to occur under a set of
syntactic conditions, while the metaphoric senses
of the same verb tend to occur in the environments
deviating from the standards. For instance, the
metaphoric sense of J# guan ‘pour’ frequently
appears in passive constructions, while the literal
sense generally occurs in non-passive construc-
tions. The metaphoric sense of # dian ‘pad’ is
more likely to occur without a locative phrase,
whereas the literal senses normally occur with a
locative phrase. The metaphoric sense of 1J] gie
‘cut’ as in ‘cannot cut the relationship’ occurs
more frequently in the OV word order, while the
literal sense tends to occur in the VO word order.
The change of event types is expected since the
source domain and the target domain refer to dif-
ferent settings although their underlying concep-
tual structures are organized in a similar way. For
instance, both the literal and metaphoric senses of

- Sample " Sample
Reeil Characters Repfi Characters
K |#% ao ‘simmer’ % |40 bang ‘tight’
huo . mi .
N & ? z 2 & ?
“fire’ & kao “grill ‘thread” &% zhi “weave
7K [5# guan *pour’ 71 |#) dong ‘move’
shui fs5: chong “flush’ | 1T |1 jia*add”
‘water’ ‘power’
4+ [¥.& dian ‘pad’ F# |# bao ‘hug’
tu e , shou ‘e)
mud’ JE sai ‘pack ‘hand’ HE tui ‘push
4 |%] ding ‘pin 1 |1z chi ‘eat’
jin | il kou | thita?
“gold” # zuan “drill ‘mouth’ 7 yao ‘bite
% kan “chop’ —
ya El 13k tiao ‘escape’
shi [P po “break chuo
c 5 ‘interval|E zhui ‘chase’
stone” |5 peng “clash’ | walk’
7) |l shua ‘brush’ & |k tiao ‘jump’
dao . Zu e,
kniife’ 1J] gie ‘cut “foot” 5 ti ‘kick
%7 zan ‘cut’ £ | zou ‘walk’
jin |, ‘ , Zou .)
‘a i duan ‘snap ‘walk’ it2 gan ‘chase

Table 1. Types of radicals and sample characters

1) qie ‘cut’ refer to the concept of separation
which results in two entities, but the separation is
employed to describe different contexts. The lit-
eral one refers to the separation of an entity with a
specific instrument, while the metaphoric one re-
fers to the discontinuation of a relationship. It is
the change of event types that provides infor-
mation of predicting which sense is in use.

3.1

Radicals: The advantages of radical-based analy-
sis are the transparency and traceability of seman-
tic relations among different senses in a polysemy
network. The current experiments include 14
types of radicals as listed in Table 1. Each type of
radicals has two to three verbs which have high
frequency in Chinese Gigaword (Huang 2009) as
the representatives.

Syntactic conditions: We hypothesize that the
literal senses of a verb tend to appear in a set of
syntactic conditions whereas the metaphoric sens-
es tend to deviate from those conditions due to the

Syntactic conditions and Radicals

39

change of event types. To test this hypothesis, we
propose a variety of syntactic conditions to char-
acterize each sense and its relevant event struc-
ture. The conditions are selected based on the fre-
quency of where the literal senses of these verbs
occur.
(i) Word order (VO): If a verb can take an ob-
ject, the verb and its object may occur in ei-
ther VO or OV word order.

Compounding (VV): The verb may form a
compound with another verb in VV form.
The target verb is the second one.
Transitivity (Vt): The verb may be transitive
or intransitive.

Passivity (Pass): The verb may occur in a
passive construction. The indicators are the
occurrences of passive markers.

Disposal constructions (Disposal): The verb
may occur with the disposal markers to
foreground the semantic patient or the direct
object.

Aspectual markers (Asp): The verb may ap-
pear with aspectual markers to specify the
status of the process.

Double-object construction (DO): The verb
may take both a direct object and an indirect
object.

Relative clauses (RC): The verbs may occur
with a relative clause. This feature is indi-
cated by the markers of a relative clause.
Numeral phrases (Num): Amounts relevant
to the event are specified by numeral-
classifier phrases.

Locative phrases (Loc): Location of the
event is specified. The locative phrase can
occur either before or after the verb.
Negation (Neg): Negative markers appear
in the main clause which contains
Postpositions (Post): The verb may take a
postposition phrase.

Prepositions (Prep): The verb may occur
with a preposition phrase. . The indicators
are the occurrences of a variety of preposi-
tions.

Instrumental F yong ‘use’ (yong): The in-
struments are profiled.

¥f dui ‘to/ toward’ (dui): The goal of the
verb is profiled by this marker.

Beneficiary/ maleficent marker 45 gei (gei):
The affectiveness of the event relevant to
the target verb is specified.

(i)

(iii)
(iv)

v)

(vi)

(vii)

(viii)

(ix)

)

(xi)
(xii)
(xiii)

(xiv)
(xv)

(xvi)

FoR T D B8 S TR B 6T 93RO0 97 T 69 48R 1B 90 v o 3 R B R

A1 A2 B1 B2 C1 C2 D1 D2 D3 E1 E2 F1 F2 G1 G2 H1 H2 J1 J2 K1 K2 L1 12 M1IM2N1 N2 0102

oo T e B S R T T 48R) 5 B 8 080 B D e v ek B B

A1 A2 B1 B2 C1 C2 D1 D2 D3 E1 E2 F1 F2 G1 G2 H1 H2 J1 J2 K1 K2 L1 L2 M1IM2 N1 N2 0102

Figure 1: Semantic closeness among different
verbs [upper graph: literal sense; lower graph:
metaphoric sense]

(xvii) Postverbal adverbs (Vadv): The verb may
be followed by an adverb which specifies
degrees or durations of time.

3.2

In order to evaluate the effectiveness of our pro-
posed syntactic conditions, we have to extract the
syntactic features which are relevant to the literal
and metaphoric senses. The task of detecting the
metaphor/literal senses is modeled as a binary
class classification. The proposed syntactic condi-
tions are implemented as additional features in
this model.

SVM are well performed in higher dimension,
particularly when targeted instances only hold a
small portion in a dataset. Since our design focus-
es on the effectiveness of syntactic conditions in
metaphor detection rather than on a classifier, we
choose SVM with linear kernel as our classifier

Design of classification model

40

for its linear binary classification and use LibSVM
(Chang and Lin, 2011) as the SVM tool.

3.3 Word embedding for word similarity

Word embedding is known as a special form of
word vectors which represents a word through a
low dimensional dense vector and has been used
in different lexical tasks, such as semantic similar-
ity, word analogy, word synonym detection, and
concept categorization (Baroni, 2014), (Levy,
2015). Our goal is to increase the precision of
metaphor detection with the aid of the semantic
classification of radicals. Thus we conduct word
embedding to show how different concepts are
categorized in terms of their semantic similarities.
Based on the similarity from word embedding, we
can infer semantic distance among verbs with dif-
ferent radicals and further quantify the differences
between the metaphoric and literal senses of the
same verb.

Various models are proposed to learn the dense
vector representation of words, which are all
based on the distributional hypothesis that words
occur in similar context have similar meanings
(Harris, 1954). Among those models, the most
widely used one is the Skip-Gram model with
negative sampling (Mikolov, 2013). In our task,
word embedding is trained through the Skip-Gram
model with default parameters on the Baidu Baike
corpus® with word segmentation performed by the
HIT LTP too1®,

Since Chinese radicals encode semantic catego-
rizations, verbs which belong to the same radical
group are expected to be close semantically. In or-
der to capture the predictive power of radicals in
semantics, we use multi-dimensional vector space
to show the distribution of verbs when they are
used in their literal senses and metaphoric senses
respectively (Baroni, 2014, Levy, 2015). First, we
use our proposed classifier to predict the senses of
29 selected verbs, and treat metaphor /literal sense
of each word as an individual word. And we cal-
culate the cosine similarity between different
senses. Figure 1 shows that verbs having the same
radical are relatively similar to each other com-
pared to verbs which belong to different radical
groups. However, the grouping by radicals does
not work well in the metaphoric senses, as shown
in the lower graph. The sharp contrast supports the
claim that the metaphoric senses of a verb have a

2 http://www.nlpcn.org/resource/7
% http://www.ltp-cloud.com/

Distribution of metaphoric senses in the syntactic conditions

1.0 v D — W
i
Foe . .
= : i
=) ; v v
9 L]
?ns i ! : é H
a i i :
E i 3 l - : ; L] :
B 04 % i e v 0 i 1
5 ! § : SRR !
2 LIRS R RN
Qo2 1 — . B
° R i 2 '
H ¥ b i
HEEEE I : ; ; | i
0.0 i] v I P l | A |
FEIFITIEFIFIFIEFS
“‘\
Figure 2: Probability of metaphoric senses in

each syntactic condition

different event structure from that of the literal
senses.

4 Experiments

Experiments of feature analysis are conducted to
show whether our proposed syntactic conditions
can improve the model of metaphor detection.

4.1

The dataset is structured based on the 29 verbs
from 14 radical groups introduced in Section 3.1.
For each verb, a random sample of 200-300 sen-
tences are collected from the Chinese Gigaword
corpus (Huang, 2009), a comprehensive archive of
newswire text data. Two Chinese native speakers
manually annotated the metaphoric and literal
senses of each token based on Hantology (Chou
and Huang, 2006), a character-based Chinese lan-
guage resource in which each character is sense-
tagged. In the 6,047 tokens, 1,738 of them are la-
beled as a metaphoric sense and 4,309 are labeled
as a literal sense. Our annotation task has kappa
statistics (Banerjee, 1999) over 0.81 indicating
strong inter-annotator consistency.

Dataset

4.2

We evaluate the 17 syntactic conditions using the
SVM classification model in the dataset intro-
duced in Section 4.1. In order to avoid overfitting,
we perform 10-fold cross validation. To test the
efficiency of our proposed syntactic conditions,
the 17 conditions are divided into 3 feature
groups.

Model and analysis

41

Type Precision | Recall F score
Basic 0.8824 | 0.8559 | 0.8689
All features 0.8952 | 0.8768 | 0.8859
Feature group 1 0.8925 0.8821 0.8872
Feature group 2 0.8752 0.8631 0.8691
Feature group 3 0.8705 0.8521 0.8612

Table 2: Performance in different condition
groups

¢ Base group: Using Bag-of-word features only

e Groupl: transitivity (Vt), numeral phrases
(Num), relative clauses (RC), compounding
(VV), tense, word order (VO), and double-
object construction (DO).

e Group 2: negation (Neg), prepositions (Prep),
locative phrases (Loc), postverbal adverbial
(Vadv), passivity (Pass), and aspectual markers
(Asp).

e Group 3: disposal constructions (Disposal),
postpositions (Post), instrumental A yong ‘use’
(yong), ¥t dui ‘to/ toward’ (dui), and benefi-
ciary/maleficient marker 45 gei (gei).

The three groups are defined based on two princi-
ples: (i) the probability of the occurrence of the
metaphoric senses in the syntactic condition in
question; (ii) the clusters of the verbs. As shown in
Figure 2, the metaphoric senses frequently occur
in a few syntactic conditions, such as Vt, VO, and
relative clauses. Regarding the principle of the
clusters, the condition which has less overlapping
data points is more effective in distinguishing dif-
ferent senses.

The results of the experiment given in Table 2
show that the proposed syntactic conditions have
improved the performance of the model. The in-
corporation of all the 17 features does improve the
classification model by 1.70% in F-score. Howev-
er, Group 1 has the best performance, outperform-
ing the result when all the 17 features are used.
However, when Group 2 and Group 3 are used
alone, they do not contribute to improving the
model. In fact, Group 3 decreases the effective-
ness of the model. The decrease in performance is
on both Precision and Recall. However, while the
model incorporates Group 1, the precision is im-
proved at the expense of a slight decrease in re-
call. This increase in precision indicates that the
features of Group 2 and Group 3 still provide use-
ful information in metaphor detection.

1. oProbability of relative clauses

0.8

o
S

literal senses

0.2
0.0 0.2 0.4 06 08 1.0
metaphoric senses
10 Probability of VO
0.8
x
§ I|I ? a
| -
§0'6 f f
©
50.4
bt
0.2 Jp/ A
|| . _‘_E_.w
0.0 02 04 06 08 10
metaphoric senses
1.0 Probability of VT
0.8
]
@
£0.6
(]
©
50.4|
hat
0.2
0.0. 0.2 0.4 0.6 0.8 1.0
metaphoric senses
Figure 3: Distribution of example literal-

metaphoric pair of verbs under individual syntac-
tic conditions.

5 Discussion

Our experimental result shows that the proposed
syntactic conditions can predict where the literal
and metaphoric senses of the same verb occur.
This is because the two senses tend to be used in
different event structure. For example, the literal
sense of the verb j# guan ‘pour’ as in & E H
guan liang tian ‘irrigating good farms’ specifies
the location right after the verb, while the meta-
phoric sense as in J#7K guan shui pour water “arti-
ficially increasing the amount’ has water as the

42

1.0 Core conditions of the verb % 1.5 Core conditions of the verb B
v
0.8) 0.8 1

§0.6

~EE

]
£0.4 04/

o

Terne

; Tense :‘;/_ e
té 06 68 Lo 0.¢ oz 04 06 68 10

Matsohor sense Batachor sense

L
L

[8]

10 Core conditions of the verb [1.0 Core conditions of the verb il

[K]

1] [] Lo
Metaghor sense

Figure 4. Examples of metaphoric and literal
senses of verbs characterized by a core set of
syntactic conditions.

material without specifying the location. The lit-
eral sense of 7 zhou ‘walk’ appears as an intran-
sitive verb as in {77 T ta zhou le he-walk-Asp
‘he left’, while the metaphoric sense tends to have
a noun phrase following it as in F=4F## zhou hao
yun walk-luck ‘being lucky’. Since the metaphoric
sense describes an event different from that of the
literal sense, the syntactic properties of the meta-
phoric sense should differ from those of the literal
sense. Among our proposed syntactic conditions,
seven of them, transitivity, relative clauses, double
objects, compounds, word order, aspectual mark-
ers, and numeral phrases, are the most effective
conditions in detecting metaphors. Figure 3 shows
examples from these syntactic conditions includ-
ing transitivity, word order, and relative clauses.
The horizontal axis shows conditional probabili-
ties in metaphoric sense. The vertical axis shows
the conditional probabilities in literal sense. A
condition with a stronger predictive power has a
bigger difference in the probability between the
literal and metaphoric senses. For example, the
literal sense and metaphoric sense of the verb 1]
gie ‘cut’ have saliently different probabilities in
the feature of word order. The literal sense is fre-
quently found in the VO word order, while the
metaphoric sense seldom occurs in the VO word
order. It is the difference that can serve to predict
which sense, literal or metaphoric, is in use.

Each syntactic condition is regarded as a meas-
urement. The syntactic conditions then can be
grouped to precisely identify the event types of the
literal and metaphoric senses for each verb as

Radicals

K huo “fire’
7K shui ‘water’
=+ tu ‘mud’

F shou ‘hand’
1 kou ‘mouth’

& zou ‘walk’

Z/3_ chuo ‘interval walk’
g zu “foot’

77 li ‘power’

7 shi “stone’

7] dao “knife’

T jin ‘ax’

% mi ‘thread’

4 jin ‘gold’

Category

Materials

Body parts

Instruments

Movements

Table 3: Higher-level Ontological Categories
of Radicals

shown in the examples of Figure 4. The horizontal
axis shows conditional probabilities in metaphoric
sense. The vertical axis shows the conditional
probabilities in literal sense. Each condition has
different relevancy to a verb because each verb
belongs to a different event type. For example, the
condition of word order (labeled as VO) has high-
er effectiveness in the verb 7 chi ‘eat’ than in the
verb [&7 duan ‘snap’. In other words, the senses of
each verb can be identified by the most relevant
syntactic conditions. Therefore, the syntactic envi-
ronments of where a verb occurs can be used to
predict whether it is metaphoric.

Furthermore, grouping verbs by Chinese radi-
cals can offer generalizations of the event types
associated with a particular semantic group. A
group of relevant radicals denote a higher-level
category in the ontological structure, which refers
to the organization of knowledge structure and the
representation of knowledge system in terms of
relations between concepts (Prévot et al., 2010).
For example, the radicals discussed in this paper
can be classified into four larger semantic catego-
ries, which are instruments, body parts, materials,
movements, as given in Table 3.

The differences in the distribution of the literal
and metaphoric senses of the four semantic groups
can be characterized by the rankings of the syntac-
tic conditions. As shown in Figure 5, the group of
the material radicals and the group of the move-
ment radicals have different arrangement of the

43

Core conditions for the materials radials

o
®

e
o

4
IS

literal senses

e
N

0.4 0.6 0.8 1.0

metaphoric senses

Core conditions for the movement radials

I
o

o
IN

literal senses

4
N

0.4 0.6 0.8 1.

metaphoric senses
Figure 5: Examples of the syntactic conditions
characterizing a higher-level semantic category

0

conditions. In other words, the literal sense of a
larger semantic group can also be identified by its
syntactic distribution. When a verb belonging to a
larger semantic group does not occur in the set of
syntactic conditions where the literal senses gen-
erally occur, it is highly possible to be metaphoric.
Our design shows that syntactic conditions can of-
fer informative clues in detecting metaphoric
senses based on the fact that each sense of a verb
has its own preferred syntactic environments.

The syntactic conditions can be further classi-
fied based on their effectiveness. As discussed in
Section 4.2, the syntactic conditions of Group 1 in
our model, transitivity (Vt), numeral phrases
(Num), relative clauses (RC), compounding (VV),
word order (VO), double-object construction
(DO), are proven to be more efficient. The effec-
tiveness of the conditions reflects three generaliza-
tions of where metaphoric senses tend to occur.
First, a sense tends to be non-metaphoric when a
numeral phrase is involved. The involvement of
numeral phrases specifies the exact numbers of
the object. Since the object has concrete details,
the verb is more likely to be a literal. Second, a
metaphoric sense is generally used to modify a
concept. Due to this modification property, meta-

phoric senses tend to occur when there is a pres-
ence of a relative clause a relative clause, which
serves the purpose of modification. Third, due to
the changes of event types, the inherent properties
of a verb are likely to change. More specifically,
the transitivity of a verb changes when the verb is
used in its metaphoric sense. For example, when a
transitive verb becomes intransitive, the verb is
likely not to be in its literal sense. Regarding the
occurrence of compounding, the addition of an-
other verb provides additional information and
thus creates an event structure which differs from
the original one. Similarly, when a verb which
does not have two objects in its argument structure
appears in the double-object construction, it is a
sign of changing event types because the addition-
al object cannot be accommodated in the original
event structure. As for word order, it is associated
with the information structure, which is a key
component of an event structure. The change of
word order therefore indicates the change of an
event structure. Since each of the syntactic condi-
tions links to a particular aspect of a conceptual
event, its change is an informative indicator of
which sense, literal or metaphoric, is in use.

On the other hand, the conditions in Group 3 do
not contribute much to detecting senses. Although
they provide additional information, the infor-
mation is proven to be peripheral in indicating
changes of event types. In brief, our experiments
can successfully rank the relevancy of syntactic
conditions with event types. The syntactic condi-
tions which are related to the core elements of an
event structure can improve the model of detect-
ing metaphors.

6 Conclusion

This study offers an effective and precise way of
detecting metaphoric and literal senses by includ-
ing eventive information encoded in radicals. A
set of syntactic conditions core to the event struc-
ture of a verb can define where its literal senses
tend to occur. When a verb appears in the envi-
ronments deviating from the defined set, it has a
higher chance to be metaphoric. Instead of focus-
ing on individual lexemes, we offer larger general-
izations by event types encoded by radicals. Event
types correspond to larger conceptual categories.
Thus verbs of the same group have similar syntac-
tic distribution. The generalizations can increase
the efficiency of the model for metaphor detec-
tion.

44

Our study shows that other eventive infor-
mation parsed in the existing platforms such as
WordNet, FrameNet, and Tongyici Cilin should
also have a high potential to be leveraged in the
detecting of metaphors. The tools relevant to
eventive information such as aspectual markers
and word order can be applied to determine event
types. This new approach refocuses metaphor de-
tection in the inherent eventive information of
metaphors instead of its contextual information,
and thus it is more reliable. Our algorithm of
modeling eventive information can provide a
pathway to incorporate analysis of event types in
deep learning as future studies.

In summary, our study show that by leveraging
the Chinese writing system, culturally bound
eventive information can facilitate processing of
metaphor. This method is not only applicable to
all Sinitic languages and a small sub-set of lan-
guages sharing Chinese orthography as their cul-
tural heritage, such as Japanese and Korean.
Huang and Chou (2015) already showed that lexi-
cal processing in Japanese and others based on
Chinese orthography can be automatically boot-
strapped. This study suggests the potential appli-
cations for the use of eventive information to con-
ceptual processing such as automatic classification
of metaphor. Eventive information in many lan-
guages can be automatically or semi-automatically
extracted through the OntoLex interface approach
(Huang et al. 2010). Eventive information in turn
will be a powerful tool in the extraction of event
types for studies based on eventive structures such
as sarcasm and sentiment detection.

Acknowledgment

The work is partially supported by the following
research grants from Hong Kong Polytechnic
University: 1-YW1V, 4-ZZFE and RTVU; as well
as GRF grants (PolyU 15211/14E and PolyU
152006/16E).

References

Marco Baroni, Raffaela Bernardi, and Roberto Zam-
parelli. 2014. Frege in space: A program of composi-
tional distributional semantics. Linguistic Issues in
Language Technology, 9.

Marco Baroni, Georgiana Dinu, and German’
Kruszewski. 2014. Don’t count, predict! A systemat-
ic comparison of context-counting vs. context-
predicting semantic vectors. In Proceedings of the
52nd Annual Meeting of the Association for Compu-
tational Linguistics. Association for Computational
Linguistics, pages 238-247.
https:doi.org/10.3115/v1/P14-1023

George Aaron Broadwell, Umit Boz, Ighacio Cases,
Tomek Strzalkowski, Laurie Feldman, Sarah Taylor,
Samira Shaikh, Ting Liu, Kit Cho, and Nick Webb.
2013. Using imageability and topic chaining to lo-
cate metaphors in linguistic corpora. In Social Com-
puting, Behavioral-Cultural Modeling and Predic-
tion. Springer, pages 102-110.

Julia Birke and Anoop Sarkar. 2007. A clustering ap-
proach for nearly unsupervised recognition of non-
literal language. In Proceedings of the 11th Confer-
ence of the European Chapter of the Association for
Computational Linguistics, pages 329-336.

Gemma Boleda, Eva Maria Vecchi, Miquel Cornudella,
and Louise McNally. 2012. First-order vs. higher or-
der modification in distributional semantics. In Pro-
ceedings of the Joint Conference on Empirical
Methods in Natural Language Processing and Com-
putational Natural Language Learning. Association
for Computational Linguistics, pages 1223-1233.
http://www.aclweb.org/anthology/D12-1112

Yaming Chou and Chu-ren Huang. 2006. Hantology - A
linguistic resource for Chinese language processing
and studying. Paper presented at the 5th Internation-
al Conference on Language Resources and Evalua-
tion, Genoa, Italy.

Ya-Min Chou and Chu-Ren Huang. 2010. Hantology:
conceptual system discovery based on orthographic
convention. In Ontology and the Lexicon: A Natural
Language Processing Perspective. Cambridge Uni-
versity Press, page 122-143.

Jonathan Dunn. 2013. Evaluating the premises and re-
sults of four metaphor identification systems. In
Computational Linguistics and Intelligent Text Pro-
cessing. Springer, pages 471-486.

Katrin Erk and Sebastian Pad6. 2010. Exemplar-based
models for word meaning in context. In Proceedings
of the ACL 2010 Conference Short Papers. Associa-
tion for Computational Linguistics, pages 92-97.

Jianhui Fu, Shi Wang, Ya Wang, Cungen Cao. 2016. A
Practical Method of Identifying Chinese Metaphor
Phrases from Corpus. In International Conference

45

on Knowledge Science, Engineering and Manage-
ment. Springer, pages 43-54.

Matt Gedigian, John Bryant, Srini Narayanan, and
Branimir Ciric. 2006. Catching metaphors. In Pro-
ceedings of the Third Workshop on Scalable Natural
Language Understanding. Association for Computa-
tional Linguistics, pages 41-48.

Gutiérrez Dario, Ekaterina Shutova, Tyler Marghetis,
and Benjamin Bergen. 2016. Literal and metaphori-
cal senses in compositional distributional semantic
models. In Proceedings of the 54th Meeting of the
Association for Computational Linguistics. Associa-
tion for Computational Linguistics, pages 160-170.

Harris, Zellig, 1954. Distributional structure. Word,
10(23):146-162.

Ilana Heintz, Ryan Gabbard, Mahesh Srinivasan, David
Barner, Donald S Black, Marjorie Freedman, and
Ralph Weischedel. 2013. Automatic extraction of
linguistic metaphor with lda topic modeling. In Pro-
ceedings of the First Workshop on Metaphor in
NLP, pages 58-66.

Dirk Hovy, Shashank Srivastava, Sujay Kumar Jauhar,
Mrinmaya Sachan, Kartik Goyal, Huiying Li, Whit-
ney Sanders, and Eduard Hovy. 2013. Identifying
metaphorical word use with tree kernels. In Pro-
ceedings of the First Workshop on Metaphor in
NLP, pages 5257.

Chu-Ren Huang. 2009. Tagged Chinese Gigaword Ver-
sion 2.0, LDC2009T14. Linguistic Data Consorti-
um.

Chu-Ren Huang. 2009. Semantics as an Orthography-
Relevant Level for Mandarin Chinese. In The 17th
Annual Conference of the International Association
of Chinese Linguistics.

Chu-Ren Huang, Siaw-Fong Chung, and Kathleen
Ahrens, 2007. An ontology-based exploration of
knowledge systems for metaphor. In Ontologies
Springer, page 489-517.

Chu-Ren Huang, Nicoletta Calzolari, Aldo Gangemi,
Alessandro Lenci, Alessandro Oltramari, and Lau-
rent Prévot. 2010 (Eds.) Ontology and the lexicon: A
natural language processing perspective. Cam-
bridge: Cambridge University Press,

Chu-Ren Huang and Chou Ya-Min. 2015. Multilingual
conceptual access to lexicon based on shared orthog-
raphy: an ontology-driven study of Chinese and Jap-
anese. In Language Production, Cognition, and the
Lexicon, ed. Nuria Gala, Reinhard Rapp, and Gem-
ma Bel-Enguix. Springer, pages 135-150.

Chu-Ren Huang and Shu-Kai Hsieh. 2015. Chinese
lexical semantics: from radicals to event structure. In
The Oxford Handbook of Chinese Linguistics, ed.
William S.-Y. Wang and Chao-Fen Sun. Oxford
University Press, pages 290-305.

Dimitri Kartsaklis and Mehrnoosh Sadrzadeh. 2013.
Prior disambiguation of word tensors for construct-
ing sentence vectors. In Proceedings of the 2013
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1590-1601.

Dimitri Kartsaklis, Mehrnoosh Sadrzadeh, and Stephen
Pulman. 2013. Separating disambiguation from
composition in distributional semantics. In Proceed-
ings of the 2013 Conference on Computational Nat-
ural Language Learning, pages 114-123.

Saisuresh Krishnakumaran and Xiaojin Zhu. 2007.
Hunting elusive metaphors using lexical resources.
In Proceedings of the Workshop on Computational
approaches to Figurative Language. Association for
Computational Linguistics, pages 13-20.

George Lakoff and Mark Johnson. 1981. Metaphors we
live by. University of Chicago Press, Chicago, IL.

George Lakoff. 1989. Some empirical results about the
nature of concepts. Mind & Language, 4(1-2): 103-
109.

Prévot, Laurent, Chu-Ren Huang, Nicoletta Calzolari,
Aldo Gangemi, Alessandro Lenci, and Alessandro
Oltramari. 2010. Ontology and the lexicon: A multi-
disciplinary perspective. In Ontology and the lexi-
con: A natural language processing perspective, eds.
Chu-Ren Huang, Nicoletta Calzolari, Aldo Gan-
gemi, Alessandro Lenci, Alessandro Oltramari, and
Laurent Prévot. Cambridge: Cambridge University
Press, pages 3-24.

Omer Levy, Yoav Goldberg, Ido Dagan, and Israel
Ramat-Gan. 2015. Improving distributional similari-
ty with lessons learned from word embeddings.
Transactions of the Association for Computational
Linguistics, 3.

Linlin Li, Benjamin Roth, and Caroline Sporleder.
2010. Topic models for word sense disambiguation
and token-based idiom detection. In Proceedings of
the 48th Annual Meeting of the Association for
Computational Linguistics. Association for Compu-
tational Linguistics, pages 1138-1147.

Linlin Li and Caroline Sporleder. 2010. Using Gaussian
mixture models to detect figurative language in con-
text. In Human Language Technologies: The 2010
Annual Conference of the North American Chapter
of the Association for Computational Linguistics.
Association for Computational Linguistics, pages
297-300.

Michael Mohler, David Bracewell, David Hinote, and
Marc Tomlinson. 2013. Semantic signatures for ex-
ample-based linguistic metaphor detection. In Pro-
ceedings of the First Workshop on Metaphor in
NLP, pages 27-35.

Yair Neuman, Dan Assaf, Yohai Cohen, Mark Last,
Shlomo Argamon, Newton Howard, and Ophir

46

Frieder. 2013. Metaphor identification in large texts
corpora. PLoS ONE, 8:62343.

Tomas Mikolov, llya Sutskever, Kai Chen, Greg Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositionali-
ty. In Proceedings of NIPS, pages 3111-3119.

Yulia Tsvetkov, Leonid Boytsov, Anatole Gershman,
Eric Nyberg, and Chris Dyer. 2014. Metaphor detec-
tion with cross-lingual model transfer. In Proceed-
ings of the 52nd Annual Meeting of the Association
for Computational Linguistics. Association for
Computational Linguistics, pages 248-258

Ekaterina Shutova. 2010. Models of metaphor in NLP.
In Proceedings of the 48th Annual Meeting of the
Association for Computational Linguistics. Associa-
tion for Computational Linguistics, pages 688-697.

Ekaterina Shutova, Lin Sun, and Anna Korhonen. 2010.
Metaphor identification using verb and noun cluster-
ing. In Proceedings of the 23rd International Con-
ference on Computational Linguistics. Association
for Computational Linguistics, pages 1002-1010.

Ekaterina Shutova, Simone Teufel, and Anna Korho-
nen. 2013. Statistical metaphor processing. Compu-
tational Linguistics, 39(2):301-353.

Caroline Sporleder and Linlin Li. 2009. Unsupervised
recognition of literal and non-literal use of idiomatic
expressions. In Proceedings of the 12th Conference
of the European Chapter of the Association for
Computational Linguistics, pages 754-762.

Tomek Strzalkowski, George A. Broadwell, Sarah Tay-
lor, Laurie Feldman, Boris Yamrom, Samira Shaikh,
Ting Liu, Kit Cho, Umit Boz, Ignacio Cases, and
Kyle Elliot. 2013. Robust extraction of metaphors
from novel data. In Proceedings of the First Work-
shop on Metaphor in NLP. Association for Compu-
tational Linguistics, pages 67-76.

Yulia Tsvetkov, Elena Mukomel, and Anatole Gersh-
man. 2013. Cross-lingual metaphor detection using
common semantic features. In Proceedings of the
First Workshop on Metaphor in NLP. Association
for Computational Linguistics, pages 45-51.

Yulia Tsvetkov, Leonid Boytsov, Anatole Gershman,
Eric Nyberg, and Chris Dyer. 2014. Metaphor detec-
tion with cross-lingual model transfer. In Proceed-
ings of the 52nd Annual Meeting of the Association
for Computational Linguistics. Association for
Computational ~ Linguistics, page 248-258.
http://www.aclweb.org/anthology/P14-1024

Zhao Hongyan, Qu Weiguang, Zhang Fen, and Zhou
Junsheng. 2011. Chinese verb metaphor recognition
based on machine learning and semantic knowledge.
Journal of Nanjing Normal University (Engineering
and Technology) 11(3):59-64.

Collaborative Partitioning for Coreference Resolution

Olga Uryupina® and Alessandro Moschitti
ODISI, University of Trento 38123 Povo (TN), Italy

Qatar Computing Research Institute, HBKU, 34110, Doha, Qatar
{uryupina, amoschitti}@gmail.com

Abstract

This paper presents a collaborative par-
titioning algorithm—a novel ensemble-
based approach to coreference resolution.
Starting from the all-singleton partition,
we search for a solution close to the en-
semble’s outputs in terms of a task-specific
similarity measure. Our approach assumes
a loose integration of individual compo-
nents of the ensemble and can therefore
combine arbitrary coreference resolvers,
regardless of their models. Our experi-
ments on the CoNLL dataset show that
collaborative partitioning yields results su-
perior to those attained by the individual
components, for ensembles of both strong
and weak systems. Moreover, by applying
the collaborative partitioning algorithm on
top of three state-of-the-art resolvers, we
obtain the second-best coreference per-
formance reported so far in the literature
(MELA vO08 score of 64.47).

1 Introduction
Coreference resolution has been one of the key
areas of NLP for several decades. Major mod-
eling breakthroughs have been achieved, not sur-
prisingly, following three successful shared tasks,
such as MUC (Hirschman and Chinchor, 1997),
ACE (Doddington et al., 2004) and, most recently,
CoNLL (Pradhan et al., 2011; Pradhan et al.,
2012). As of today, several high-performing sys-
tems are available publicly and, in addition, novel
algorithms are being proposed regularly, even if
without any code release. Our study aims at mak-
ing a good use of these resources through a novel
ensemble resolution method.

Coreference is a heterogeneous task that re-
quires a combination of accurate and robust pro-
cessing for relatively easy cases (e.g., name-

47

matching) with very complex modeling of diffi-
cult cases (e.g., nominal anaphora or some types
of pronouns). The general feeling in the commu-
nity is that we are currently approaching the upper
bound for the easy cases and our next step should
involve more complex resolution. If true, this
means that most state-of-the-art systems should
produce very similar outputs: correctly resolving
easy anaphora and failing on less trivial examples.
Table 1 scores the outputs of the three best sys-
tems from the CoNLL-2012 shared task against
each other. As it can be seen, the three systems are
rather different, each of them being only slightly
closer to each other than to the gold key.! This
suggests that a meta-algorithm could merge their
outputs in an intelligent way, combining the cor-
rect decisions of individual systems to arrive at a
superior partition.

Although several coreference resolution toolk-
its exist for over a decade, to our knowledge, there
have been no attempts at trying to merge their out-
puts. The very few ensemble methods reported in
the literature focus on combining several resolu-
tion strategies within the same system. Following
the success of the CoNLL shared task (Pradhan et
al., 2011; Pradhan et al., 2012), however, multiple
complex approaches have been investigated, with
very different underlying models. This means that
a re-implementation of all these algorithms within
a single system requires a considerable engineer-
ing effort. In the present study, we combine the
final outputs of the individual systems, without
making any assumptions on their specifications.
This means that our approach is completely mod-
ular, allowing to combine third-party software as
black boxes.

The present study aims at finding a partition

"Across all the systems, the two most different submis-
sions are zhekova vs. 11 (34.10 MELA) and the two clos-
est ones are chunyang vs. shou (95.85 MELA).

Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017), pages 47-57,
Vancouver, Canada, August 3 - August 4, 2017. (©2017 Association for Computational Linguistics

key fernandes | martschat | bjorkelund
fernandes 60.64 100 66.74 67.07
martschat 57.67 100 64.22
bjorkelund 57.41 100
Table 1: Scoring top CoNLL-2012 systems

against each other, MELA vO08.

combining the outputs of individual coreference
resolvers in a collaborative way. To this end,
we search the space of possible partitions, start-
ing from the all-singleton solution and incremen-
tally growing coreference entities, with the objec-
tive of getting a partition similar to the individual
outputs. As a measure of similarity, we rely on
task-specific metrics, such as, for example, MUC
or MELA scores. To our knowledge, this is the
first ensemble-based approach to coreference, op-
erating directly on the partition level. While tra-
ditional ensemble techniques, such as boosting or
co-training, have been successfully used for coref-
erence resolution before, they are applicable to
classification tasks and can only be used on lower
levels (e.g., for classifying mention pairs). Com-
bining partitions directly is a non-trivial problem
that requires an extra modeling effort.

The rest of the paper is organized as fol-
lows. In the next section, we discuss the previous
ensemble-based approaches to coreference resolu-
tion. Section 3 presents our collaborative parti-
tioning algorithm. In Section 4, we evaluate our
approach on the English portion of the OntoNotes
dataset. Section 5 summarizes our contributions
and highlights directions for future research.

2 Related Work

Only very few studies have so far investigated pos-
sibilities of using multiple resolvers for corefer-
ence. The first group of approaches aim at param-
eter optimization for choosing the best overall par-
tition from the components’ outputs. This line of
research is motivated by the fact that in most ap-
proaches to coreference, the underlying classifier
does not take into account the task metric, such
as, for example, MUC or MELA scores. For in-
stance, in the classical mention-pair model (Soon
et al., 2001), the classifier is trained to distinguish
between coreferent and non-coreferent pairs. The
output of this classifier is then processed heuris-
tically to create coreference partitions. There is
therefore no guarantee that the classifier optimized
on pairs would lead to the best-scoring partition.
One way to overcome this issue involves training a

48

collection of models and then picking the globally
best one on the development data (Munson et al.,
2005; Saha et al., 2011). Another possible solution
is to learn a ranker that would pick the best model
on a per-document basis, using partition-specific
features (Ng, 2005). While these approaches can
integrate arbitrary systems, they only allow to pick
the best output partition, thus, only considering a
single solution at a given time. Our algorithm, on
the contrary, builds a new partition in a collabora-
tive way, manipulating entities produced by indi-
vidual components.

The second research line involves training en-
sembles of classifiers within the same model, us-
ing bagging, boosting or co-training (Vemulapalli
etal., 2009; Ng and Cardie, 2003b; Ng and Cardie,
2003a; Kouchnir, 2004). Building upon these
studies, Rahman and Ng (2011) combine differ-
ent coreference algorithms in an ensemble-based
approach. For each mention in the document,
they run several models (mention-pair, mention-
ranking, entity-ranking) and heuristically merge
their outputs. All these approaches, however, as-
sume a very tight integration of individual com-
ponents into the ensemble. Thus, they all assume
the same set of mentions to be classified.> More-
over, most algorithms can only make ensembles of
rather similar components, for example, varying
feature sets or parameters within the same model
of coreference. While Rahman and Ng (2011) al-
low for a combination of different models, they
do it via model-specific rules, assuming the same
set of mentions and a left-to-right per-mention res-
olution strategy—so a completely different novel
model cannot be integrated. Finally, most ensem-
bles use some internal information from their in-
dividual components, e.g., the confidence scores
for mention-pairs. In practice, these considera-
tions mean that all the individual systems should
be re-implemented in a single framework before
they can be combined in an ensemble. Our study,
on the contrary, makes no assumptions about in-
dividual components. We combine their outputs
at the partition level, without any requirements on
their internal structure. Thus, the individual sys-
tems can rely on different mention detection ap-
proaches. They can have arbitrary models. We
do not use any system-internal information, which

>The CoNLL systems differ considerably with respect to
their underlying mentions, thus, the mention detection F-
score between two systems varies from 50.11 (xinxin vs.
11)t099.07 (chunyang vs. shou).

allows us to use individual components as black
boxes. Most importantly, our approach can be run
without any modification on top of any resolver,
present or future, thus benefiting from other stud-
ies on coreference and advancing the state of the
art performance.

The machine learning community offers several
algorithms combining multiple solutions for tasks
going beyond simple classification or regression.
The work of Strehl and Ghosh (2003) is of par-
ticular relevance for our problem. Thus, Strehl
and Ghosh (2003) introduce the task of ensem-
ble or consensus clustering, where the combiner
aims at creating a meta-clustering on top of sev-
eral individual solutions, without accessing their
internal representations, e.g., features. The formu-
lation of Strehl and Ghosh (2003) is identical to
ours. However, there are several important differ-
ences. Thus, Strehl and Ghosh (2003) focus on the
clustering problem, in particular, for large sets of
data points. They show that the optimal solution
to the consensus clustering problem is not com-
putationally feasible and investigate several very
greedy approaches.

Although coreference is formally a partitioning
problem, the setting is rather different from a typ-
ical clustering scenario. Thus, individual men-
tions and mention properties are very important
for coreference and should carefully be assessed
one by one. The resolution clues are very hetero-
geneous and different elements (mentions) of clus-
ters (entities) can be rather dissimilar in a strict
sense. This is why, for example, clustering evalu-
ation measures are not reliable for coreference—
and, indeed, task-specific metrics have been put
forward. While algorithms of (Strehl and Ghosh,
2003) constitute the state of the art in the ensemble
clustering in general, we propose a coreference-
specific approach. More specifically, (i) while
Strehl and Ghosh (2003) rely on task-agnostic
measures of similarity between partitions (mu-
tual information), approximating the search for
its maximum with various heuristics, we explic-
itly integrate coreference metrics, such as MUC
and MELA and (ii) since our partitions are much
smaller than typical clustering outputs, we can
afford a less greedy agglomerative search strat-
egy, again, motivated by the specifics of the final
task. In our future work, we plan to evaluate our
approach against the general-purpose algorithms
proposed in (Strehl and Ghosh, 2003).

49

Algorithm 1 Collaborative Partitioning

Require: P = {p'.p™}: list of partitions generated by
n systems; each partition p’ is a set of entities p° =
{ei..e,, }, each entity is a set of mentions m

Require: coreference_score: an external metric,

MUC or MELA

begin

: create a list of all the mentions M = {my..ms}

: init the all-singleton partition p = {e;..ex},e; = {m;}

: while ||p|| > 1 do

current_similarity = vote(p, P)

max =0

foralle,, e, € pdo
pP'=pU{eaUes}\ {ea}\ {es}
cand_similarity = vote(p’, P)
if cand_similarity > max then

maz = cand_similarity, maxp = p’

if max < current_similarity then
break;

14: p = mazxp

15: end

16: function VOTE(p,P)

17: sim =0

18: for all p* € P do)

sim+ = coreference_score(p,p*)

e.g.

R A e s

—_—
— O

12:
13:

20: return sim

3 Collaborative Partitioning

This section first describes our collaborative par-
titioning algorithms, summarized in Algorithm 1
and then addresses technical details essential for
running it in a practical scenario. The main idea
behind collaborative partitioning is rather straight-
forward: we aim at finding a partition that is sim-
ilar to all the outputs produced by the individual
components of the ensemble. To implement this
strategy, we have to specify two aspects: (a) the
procedure to effectively search the space of possi-
ble partitions generating outputs to be tested and
(b) the way to measure similarity between a can-
didate partition and a component’s output. In both
cases, we propose task-specific solutions.

Thus, we start with the all-singleton partition,
where each mention makes its own entity and then
try to incrementally grow our entities. At each
iteration, we try to merge two clusters, compar-
ing the similarity to the components’ outputs be-
fore and after the candidate merge. If a candi-
date merge leads to the highest voting score, we
execute this merge and proceed to the next iter-
ation. If no candidate merges improve the sim-
ilarity score for more than a predefined termina-
tion threshold, the algorithm stops. Several things
should be noted. First, when trying to build a new
partition, we only allow for merging: we never go
back and split already constructed entities. This

President Clinton has told a memorial service for the victims of the deadly bomb attack on the USS Cole that justice will prevail . Mr. Clinton promised the
gathering at the Norfolk Naval station Wednesday that those who carried out the deadly attack that killed 17 sailors will be found . To those who attacked them ,
we say you will not find a safe harbor , we will find you and justice will prevail . Meanwhile , in Yemen President Ali Abdul Salay said important evidence had
been uncovered in the investigation . President Salay was quoted as saying two people responsible for the blast were killed in a suicide mission and that the attack
had been planned for a long time . His comments were not immediately confirmed by US officials who are leading the investigation with Yemen ’s help .

137,138]: the investigation

[fernandes [martschat [bjorkelund [ensemble |
1,2]: President Clinton [1,2]: President Clinton 1,2]: President Clinton 1,2] President Clinton
25,26] Mr. Clinton [25,26] Mr. Clinton 25,26] Mr. Clinton 25,26] Mr. Clinton
12,15]: the deadly bomb attack 12,19]: the deadly .. Cole 12,15]: the deadly bomb attack
115,116]: the attack 115,116]: the attack 115,116]: the attack 115,116]: the attack
41,47]: the deadly attack .. sailors 41,47]: the deadly attack .. sailors 41,47]: the deadly attack .. sailors
46,47]: 17 sailors 46,47]: 17 sailors 46,47]: 17 sailors
56,56]: them 56,56] them 56,56] them 56,56] them
37.,47]: those who carried .. sailors 37.,47]: those who carried .. sailors 37.47]: those who carried .. sailors
53,56]: those who attacked them 53,56]: those who attacked them 53,56]: those who attacked them
60,60]: you 60,60]: you 60,60]: you
71,71]: you 71,71]: you 71,71]: you
58,58]: we 58,58]: we 58,58]: we 58,58]: we
68,68]: we 68,68]: we 68,68]: we 68,68]: we
80,80]: Yemen 80,80]: Yemen 80,80]: Yemen 80,80]: Yemen
140,141]: Yemen ’s 140,141]: Yemen ’s 140,141]: Yemen s 140,141]: Yemen s
81,84]: President Ali Abdul Salay 81,84]: President Ali Abdul Salay 81,84]: President Ali Abdul Salay
95,96]: President Salay 95,96): President Salay 95,96]: President Salay 95,96]: President Salay
125,125]: His 125,125]: His 125,125]: His 125,125]: His
92,93]: the investigation 92,93]: the investigation 92,93]: the investigation

137,142]: the inv. with Yemen ’s help 137,138]: the investigation

Table 2: Collaborative partitioning on a sample OntoNotes document: 3 top systems and their ensemble,
using MELA similarity. Each row corresponds to a mention, each (multi-row) cell corresponds to an
entity created by a specific system. Bracketed numbers indicate word ids.

decision is motivated by the cost of a single op-
eration: while there is only one way to merge two
entities, there are exponentially many ways to split
an entity in two, making the latter operation much
more computationally expensive. Second, unlike
most approaches to coreference, we do not pro-
cess the text in the left-to-right order. Instead, we
consider the whole set of mentions from the initial
iteration, doing first the merges supported by the
majority of the components in the ensemble.

To compute the voting score, we first define the
similarity between two partitions, based on coref-
erence metrics, as implemented in the CoNLL
scorer (Pradhan et al., 2014): we score our gen-
erated partitions against the outputs of the ensem-
ble components. This way we ensure that the final
partition is related to the individual outputs in the
way that is relevant for the task. There are multi-
ple ways to derive the voting score from existing
metrics. The parameters to consider here are: the
specific measure to be used (e.g., MUC vs. CEAF
vs. MELA), the granularity (e.g., whether to mea-
sure the increase/decrease of the specific metric as
a continuous or binary value) and the way to com-
bine measures from the different ensemble com-
ponents in a single score (e.g., weighted vs. un-
weighted voting). In Section 3.1 below, we dis-
cuss several practical considerations for making
this choice.

Note that our approach does not make any as-

50

sumptions about mention detection for individual
components: to initialize the run, we simply lump
together all the mentions. This, however, leads to
performance drops if several individual systems
suggest different boundaries for the same men-
tion: the final solution will then keep all the vari-
ants merging them into the same entity. To avoid
this issue, we implement a post-processing clean-
up step: if the final solution contains entities with
nested mentions, we keep the most popular vari-
ants (or the shorter one for the same popularity).
This post-processing helps us avoid any complex
merging machinery at the mention level.

Table 2 shows a sample OntoNotes document
with outputs of the three top systems and the par-
tition created by the collaborative ensemble. Some
entities (e.g. Yemen) are easy for all the systems.
Some entities (attack; investigation; Salay) are re-
covered fully only by two systems, probably for
the lack of required features. Note that although
each system misses some coreference relations, al-
together they resolve all the three entities, leading
to a considerable improvement in the collaborative
partition. Finally, the two entities for attackers and
sailors, central to the document, are represented
with pronominal mentions that are hard to resolve.
Not surprisingly, the systems make several spuri-
ous decisions w.r.t. these entities. The collabora-
tive partitioning algorithm, however, manages to
filter out erroneous assignments and produce the

correct partition.

3.1 Performance Issues

The collaborative partitioning algorithm starts
from the all-singleton solution and tries to incre-
mentally merge entities. Each candidate merge is
evaluated with the coreference scorer. This means
that, in the worst case, the system requires 0(n3)
scorer runs, where n is the total number of men-
tions: it does n merges and for each merge 1, it
searches for a pair among n — ¢ + 1 entities that
maximizes the overall similarity score, requiring
(”_Lg*(n_i) scorer runs. This can become pro-
hibitively slow, making the approach not practical.
Below we discuss three solutions to speed up the
algorithm.

First, the voting function can be simplified.
Thus, instead of using continuous similarity values
(i.e., how much a candidate merge brings the solu-
tion closer to the components’ output via increas-
ing or decreasing the specific coreference metric),
we can rely on binary indicators: the component
up-/down- votes a merge if the metric’s value in-
creases/decreases. To compute the final score, we
use unweighted voting (or, alternatively, weighted
voting with very simple integer weights). This
way, the final score can only take a small num-
ber of values and, for each merge, we can stop
the search once the highest possible score is ob-
served, instead of assessing all the %
possible pairs. This trick does not affect the worst-
case complexity, but can help a lot on the average.
Moreover, a simple voting function is necessary
for the second speed-up adjustment.

Each merge only involves two entities. Thus, at
the merge iteration ¢, the system observes n—1 en-
tities it has already seen before and one new entity
generated at the merge iteration ¢ — 1. To speed up
the processing, we can therefore store voting val-
ues for merge attempts and reuse them at each iter-
ation. With this adjustments, the algorithm needs
only to evaluate candidate merges with the newly
constructed entity and therefore each iteration re-
quires a linear number of scoring runs, leading to
O(n?) runs overall. Two considerations should be
taken into account. Suppose we evaluate a merge
attempt for two entities, e; and ey, at the iteration
7 and store the value for the voting function. If we
then attempt to merge the same two entities at the
iteration ¢’, the coreference scoring functions will
be different, since they assess the whole partition.
This means that this speed-up trick only works if

51

the ensemble voting function is very simple and
is not affected by slight changes in the individual
coreference scores. The second consideration is
more troublesome. Hashing of voting results only
works if the underlying coreference scoring func-
tion respects certain monotonicity properties: sup-
pose a (candidate) merge of two entities, e; and es
at iteration ¢ improves the coreference score with
respect to a component’s output; the same merge
should improve the coreference score also at any
later iteration ¢’. Intuitively speaking, this means
that two entities should or shouldn’t be merged,
according to a specific coreference metric, regard-
less of the rest of the partition. While link- or
mention-based metrics respect this property, the
CEAF scores evaluate partitions as a whole and
therefore are not monotonic.

Finally, some coreference metrics, such as B3
and, most importantly, MUC are very fast to com-
pute. The CEAF scores, on the contrary, re-
quire a computationally expensive partition align-
ment procedure. A considerable speed-up can be
achieved by opting for a faster scorer. In the exper-
imental section, we evaluate the algorithm’s per-
formance with different scoring metrics.

3.2 Algorithm adjustments for the
CoNLL/OntoNotes setting

Following the state of the art, we evaluate our ap-
proach within the CoNLL framework (Pradhan et
al., 2012): we use the OntoNotes dataset (Hovy et
al., 2006) and rely on the official release (v8) of
the scorer (Pradhan et al., 2014). Several impor-
tant adjustments should be made to our algorithm
to account for peculiarities of this set-up. In par-
ticular, (a) the OntoNotes guidelines do not pro-
vide annotations for singleton entities and (b) the
official shared task score (MELA) relies strongly
on B3 and CEAF metrics. These two properties in
combination lead to a number of counter-intuitive
effects. We refer the reader to a recent study by
Moosavi and Strube (2016) for an extensive dis-
cussion of problematic issues with the CoNLL
scoring strategy.

The following adjustments have been made to
run the algorithm in the CoNLL setting. First,
each mention has been duplicated to mitigate the
mention identification effect (Moosavi and Strube,
2016): we expand each document by several lines
and fill them with dummy mentions. This prevents
the system from making spurious merges at the
initial iterations as a result of problematic CEAF

values.

Second, we employ several clean-up strategies
to post-process the final partition. Thus, we re-
move mentions recognized by a single system
only, unless they are considered coreferent with
exactly one popular (recognized by multiple sys-
tems) mention. This rather inelegant solution
could be replaced with a simple requirement that
each mention should be recognized by several sys-
tems if the singletons were not removed from the
evaluation.

4 Experiments

In this section, we evaluate empirically the perfor-
mance of the collaborative partitioning approach
for a variety of ensembles. In particular, we inves-
tigate ensembles of different size and composition
with respect to the components’ quality and assess
different coreference scoring metrics as criteria for
partition similarity.

4.1 Experimental setup

In our experiments, we rely on the English portion
of the CoNLL-2012 dataset (Pradhan et al., 2012).
We use the outputs of the CoNLL submissions on
the test data, made available publicly by the orga-
nizers.

To speed up the system, we use the techniques
discussed in Section 3.1 above. In particular, we
rely on a very simple unweighted voting scheme:
each component contributes equally to the final
score. The per-component score for a candidate
merge between e; and es is computed as follows:
if either e; or eg are not represented in a compo-
nent’s output, it abstains from voting (score
0). Otherwise, the component upvotes candi-
date merges if the underlying coreference score
increases (score 2) and downvotes, if it de-
creases (score = —1). The preference for positive
votes (2 vs. 1) is motivated by the fact, that most
state-of-the-art models explicitly model corefer-
ence, but not non-coreference: if two entities are
annotated as non-coreferent by the system, it can
be due to several factors, such as the lack of rel-
evant features or algorithm peculiarities that limit
the search space. The positive information in the
systems’ output is therefore more reliable than the
negative one. The specific threshold (2 : 1) has
been chosen arbitrary without any tuning. Finally,
the termination threshold has been set to 0.

4.2 Choosing the scoring metric
In our first experiment, we evaluate different ways
of defining similarity between partitions. Recall

52

that each merge is evaluated based on whether
it makes the constructed partition closer to the
outputs of individual components. The similar-
ity between two partitions is assessed with a task-
specific measure. Multiple metrics have been pro-
posed to evaluate coreference resolvers, we re-
fer the reader to (Luo and Pradhan, 2016) for a
detailed description and to (Moosavi and Strube,
2016) for a discussion of their problematic prop-
erties. In the present experiment, we assess
three commonly accepted metrics, MUC, B® and
CEAFE as well as their average, MELA, used for
the official ranking of the CoNLL shared task.

Table 3 summarizes the results achieved by en-
sembles of the top-3 CoNLL systems. The upper
half of the table presents individual components,
re-evaluated with the v8 scorer. The lower part
presents the performance achieved by four differ-
ent ensembles, varying the underlying similarity
measure used for growing up the partitions. For
each performance metric, we highlight the best ap-
proach with boldface.

This experiment suggests several findings.
First, the collaborative partitioning clearly brings a
considerable improvement: depending on the un-
derlying similarity score, the ensemble performs
up to 3.5 percentage points better than the best
individual components. Moreover, all the four
created ensembles yield scores comparable to the
very best state-of-the-art systems.

Second, all the four ensembles outperform indi-
vidual components according to all the evaluation
metrics. This means that the overall improvement
(MELA) reflects a real quality increase and not
just some fortunate re-shuffling of the individual
scores to be averaged.

Third, the best overall improvement is achieved
with the voting function based on the MELA sim-
ilarity. The much faster MUC-based method per-
forms 1.5 percentage points worse. This is an am-
biguous result: on the one hand, a difference of
1.5% on the CoNLL dataset is non-negligible. On
the other hand, even the MUC-based method out-
performs each individual component.

4.3 Ensembles of top vs. bottom CoNLL
systems

The performance of different systems submitted to

CoNLL varies considerably, from 36.11 to 60.64

(MELA score, v08). In this experiment, we try to

combine different types of systems. We split all

the CoNLL systems into “tiers” of 3 submissions,

components | MUCF [CEAFEF | B®F | MELA
CoNLL system outputs
fernandes 70.51 53.86 57.58 60.64
martschat 66.97 51.46 54.62 57.67
bjorkelund 67.58 50.21 54.47 57.41
Per-tier ensembles (3 systems per ensemble), score >0

fernandes, martschat,bjorkelund; MUC similarity 72.45 55.71 59.87 62.67
fernandes, martschat,bjorkelund; CEAFE similarity 71.73 58.04 61.00 63.58
fernandes, martschat,bjorkelund; B2 similarity 71.75 58.31 61.08 63.70
fernandes, martschat,bjorkelund; MELA similarity 71.96 58.95 61.35 64.08

Table 3: Collaborative partitioning with the 3 top CoNLL-2012 systems, using different coreference
metrics when assessing candidate merges. Boldface indicates the best performing system for each score.

components I MUCF [CEAFEF] B®F I MELA
CoNLL system outputs
tierl: fernandes, martschat,bjorkelund | 70.51 66.97 67.58 | 53.86 51.46 50.21 | 57.58 54.6254.47 | 60.65 57.68 57.42
tier2: chang,chen,chunyang 66.38 63.71 63.82 | 48.9448.1047.58 | 52.9951.76 51.21 56.10 54.52 54.20
tier3: stamborg,yuan,xu 64.26 62.5566.18 | 46.6045.9941.25 | 51.6650.1150.30 | 54.17 52.88 52.57
tier4: shou,uryupina,songyang 62.91 60.89 59.83 | 46.6642.9342.36 | 49.4446.2445.90 | 53.0050.02 49.36
tierS: zhekova,xinxin,li 53.5248.2750.84 | 32.1631.9025.21 | 35.6635.7332.29 | 40.44 38.63 36.11
Per-tier ensembles (3 systems per ensemble)
tierl: fernandes, martschat,bjorkelund 71.96 58.95 61.35 64.08
tier2: chang,chen,chunyang 66.35 53.54 56.11 58.66
tier3: stamborg,yuan,xu 68.60 52.98 57.89 59.22
tier4: shou,uryupina,songyang 66.75 51.25 55.10 57.70
tier5: zhekova,xinxin,li 56.18 34.67 41.51 44.12

Table 4: Ensembles of 3 classifiers for different tiers, using MELA for merging.
best performing system for each tier.

Boldface indicates the

components [tier MUC (R) tier MUC(P) | tierMUC(F) | tier MELA
CoNLL system outputs
tierl: fernandes,martschat,bjorkelund | 65.83 65.21 65.23 | 75.91 68.8370.10 | 70.51 66.97 67.58 | 60.64 57.67 57.41
tier2: chang,chen,chunyang 64.77 63.47 64.08 | 68.06 63.96 63.57 | 66.3863.71 63.82 | 56.10 54.51 54.20
tier3: stamborg,yuan,xu 65.41 62.08 59.11 63.1563.0275.18 | 64.26 62.5566.18 | 54.17 52.87 52.57
tier4: shou,uryupina,songyang 63.4561.0055.29 | 62.3860.78 65.19 | 62.9160.8959.83 | 53.00 50.01 49.35
tier5: zhekova,xinxin,li 54.28 55.48 39.12 | 52.7942.7272.57 | 53.5248.2750.84 | 40.44 38.62 36.11
Per-tier ensembles (3 systems per ensemble)

tierl: fernandes,martschat,bjorkelund 69.60 75.55 72.45 62.67

tier2: chang,chen,chunyang 69.26 64.61 66.85 54.63

tier3: stamborg,yuan,xu 67.48 69.12 68.29 54.26

tier4: shou,uryupina,songyang 69.26 66.07 67.63 52.23

tier5: zhekova,xinxin,li 57.07 61.77 59.33 40.85

Table 5: Ensembles of 3 classifiers for different tiers, using MUC for merging. Boldface indicates the

best performing system for each tier.

based on their ranking. We do not use the system
scores; however, we rely on the ranking computed
on the same dataset.’

Tables 4 and 5 report the performance figures
for ensembles composed of systems from each
tier. The former uses MELA as a similarity mea-
sure, the latter—MUC. In both tables, the up-
per half reports performance figures for individ-
ual components (each cell in the upper half con-
tains three values for the performance of the three
systems of each tier). The lower half reports
performance figures for collaborative partitioning
with the components from each tier. The best-
performing system for each performance metric is
shown in boldface: for example, the MUC-based

3This is a rather unfortunate set-up, but there are no means
to roughly evaluate CoNLL systems without using the test
data. We assume, however, that an external evaluation, if

possible, would be able to differentiate top against bottom
submissions.

ensemble of the three tier]l systems outperforms
its individual components in MUC Recall, MUC
F and MELA (Table 5, lower half, first row), with
the scores of 69.6%, 72.45% and 62.67% respec-
tively; the best MUC Precision for tierl (75.91%)
is, however, achieved by an individual component,
the system fernandes (Table 5, upper half, first
row).

As these two tables suggest, collaborative parti-
tioning yields improvement over individual com-
ponents, for both stronger and weaker tiers. This
suggests that collaborative partitioning can be
used on top of any systems: unlike many other
ensemble techniques, it does not suffer from the
error propagation problem when operating on en-
sembles of weaker components.

The final partition depends on the similar-
ity measure used by the collaborative algorithm.
Thus, the MELA measure, being an average of

53

components [MUCR | MUCP | MUCF [MELA
best individual component (fernandes)

fernandes [65.83 [7591 [70.51 [60.65

ensembles, default termination threshold (= 0)

tierl 69.60 75.55 72.45 62.67

tierl+2 74.85 61.73 67.66 52.38

tierl+2+3 75.78 56.43 64.69 43.97

tierl+2+3+4 74.85 53.34 62.29 39.58

tier1+2+3+4+5 (all) 74.08 48.02 58.27 33.10
ensembles, optimal termination threshold

tierl 69.60 75.55 72.45 62.67

tier1+2 70.53 75.93 73.13 53.60

tierl+2+3 71.54 75.24 73.35 44.41

tier1+2+3+4 68.50 77.12 72.55 49.06

tier1+2+3+4+5 (all) 65.36 80.24 72.04 45.78

Table 6: Ensembles of different sizes, using MUC
for merging.

MUC | CEAFE B3 MELA
competitive upper bound, tierl 71.53 56.46 59.74 62.57
competitive upper bound, tierl+2 | 71.53 56.46 59.74 62.57
competitive upper bound , all 72.12 57.55 60.53 63.39
collaborative, tierl 71.96 58.95 61.35 64.08

Table 7: Competitive vs. collaborative partition-
ing, using MELA for selection (competitive) or
merging (collaborative).

MUC, B3 and CEAF, leads to more balanced fi-
nal partitions, improving on each individual score.
MUC-based ensembles, on the contrary, improve
on MUC (through a drastic increase in MUC recall
without much precision loss), but do not guarantee
any increase in B3 or CEAF, leading to mixed re-
sults on MELA.

4.4 Ensembles of different size
In this experiment, we consider ensembles of dif-
ferent sizes, starting from tierl and adding less
performing components. Table 6 reports the re-
sults for ensembles of different size, using MUC
for measuring the similarity while growing parti-
tions. The upper half presents the results with the
default termination parameter. As it shows, the
inclusion of more lower-quality systems leads to
better MUC recall values at the cost of the sharp
deterioration in precision and the overall scores.
The lower half shows the results obtained with
the optimal value of the termination parameter. In
a practical scenario, this parameter can be tuned on
the development data. Here, the best MUC results
(F' = 73.35) are achieved with the top nine sys-
tems. However, this MUC improvement comes at
a high cost in B® and CEAF, leading to low MELA
values even with the optimal parametrization.

4.5 Collaborative vs. Competitive
Partitioning

One of the key advantages of the collaborative par-

titioning algorithm is its loose coupling approach

54

components MUC CEAFE B MELA
berkeleycoref | 69.13 54.30 57.40 60.27
ims-hotcoref 70.25 55.44 58.03 61.23
LSPE 72.34 57.40 60.36 63.36
ensemble 71.98 60.01 61.44 64.47

Table 8: Collaborative partitioning for state-of-
the-art systems, using MELA for merging. Bold-
face indicates the best result for each score.

with respect to individual components. This al-
lows for straightforward integration of any coref-
erence resolver at the moment of its release. The
only other approach with the same property has
been advocated by Ng (2005), where a ranker is
learned to select the best partition from the indi-
vidual outputs. We refer to this algorithm as com-
petitive partitioning, since individual components
compete with each other for each document in-
stead of collaborating to build a new improved par-
tition.

The competitive partitioning algorithm has a
natural upper bound: by using an oracle to always
select the best-performing component for each in-
dividual document, we can get the highest perfor-
mance level possibly attainable with this model.
Table 7 shows these upper bounds for the first 3, 6
and 15 (all) CoNLL systems. Note that these num-
bers are obtained with an oracle—the results with
a real ranker will, obviously, be lower. The last
row of the table shows, for comparison, the tierl
performance for the collaborative partitioning al-
gorithm.

First, it is clear that competitive partitioning on
top of CoNLL systems is hardly promising: even
in the oracle setting, the performance improves by
only 2-3 percentage points. This is due to the
fact that CoNLL has a clear winner, the system
fernandes, yielding the best solution for more
than half of the documents and never losing too
much for the remaining half.

Second, collaborative partitioning, on the con-
trary, seems more beneficial, yielding the results
superior to the upper bound of the competitive par-
titioning algorithm. This is due to the fact that the
collaborative approach makes a better use of in-
dividual components, combining their entities to
arrive at a better new solution.

4.6 Ensembles of post-CoNLL systems

In our last experiment, we depart from the
CoNLL outputs to run the collaborative parti-
tioning algorithm on top of the state-of-the-art
coreference resolvers. In particular, we com-

bine three very different high-performing sys-
tems, berkeleycoref (Durrett et al.,, 2013),
ims-hotcoref (Bjorkelund and Kuhn, 2014)
and lspe (Haponchyk and Moschitti, 2017b;
Haponchyk and Moschitti, 2017a). The former re-
lies on an entity-level modeling, whereas the lat-
ter two use different structural learning approaches
to coreference. All these systems represent state-
of-the-art research in the field. Note that we do
not include the very latest deep learning based ap-
proaches (Wiseman et al., 2016; Clark and Man-
ning, 2016) to allow for a fair comparison: since,
as we have seen in the experiments above, the col-
laborative partitioning algorithm consistently im-
proves over individual ensemble components, in-
tegrating the very best systems would be a triv-
ial but not very informative way of advancing the
state of the art.

Table 8 shows the performance level of each
of these systems on the English portion of the
CoNLL-2012 dataset, individually and of the col-
laborative ensemble. The best performing sys-
tem according to each metric is shown in bold.
The numbers were obtained by running the v08
scorer on the outputs provided by the developers
(berkeleycoref, 1spe) or created using the
official distribution and the provided pre-trained
model (ims-hotcoref). No adjustments have
been made to the collaborative partitioning algo-
rithm.

Similarly to the experimental findings presented
in the previous sections, the collaborative parti-
tioning algorithm outperforms the best individ-
ual components. Most importantly, it yields the
second-best results reported in the literature, out-
performing the system of Wiseman et al. (2016)
by 0.26 percentage points.

5 Conclusion

This paper presents collaborative partitioning—
a novel ensemble-based approach to coreference
resolution. Starting from the all-singleton solu-
tion, we search the space of all partitions, aiming
at finding the solution close to the components’
partitions according to a coreference-specific met-
ric. Our algorithm assumes a loose coupling of in-
dividual components within the ensemble, allow-
ing for a straightforward integration of any third
party coreference resolution system.

Our evaluation experiments on the CoNLL
dataset show that the collaborative partitioning
method improves upon individual components,

55

both for high and low performing ensembles. This
performance improvement is consistent across all
the metrics. Moreover, when combining three
state-of-the-art systems, the collaborative ensem-
ble achieves the second-best results reported in the
literature so far (MELA score of 64.47).

In the future, we plan to concentrate on improv-
ing the voting scheme for the ensemble. Currently,
the model relies on a very simplistic unweighted
voting strategy. This choice is motivated by practi-
cal considerations: a more complex scheme would
not make possible the necessary system speed up
techniques. The unweighted voting, however, is
problematic for ensembles that (a) contain com-
ponents of very different quality or (b) contain
some extremely similar components. This issue
has been investigated within the ensemble classifi-
cation framework, where several approaches have
been put forward to construct large ensembles that
ensure diversity of their components, e.g., through
splitting training data and/or feature sets. In our
scenario, however, we can not rely on such tech-
niques, since we build ensembles of few existing
high-quality systems, each of them being an out-
come of a considerable research and engineering
effort. We plan to overcome these issues, investi-
gating different versions of heterogeneous voting.

Another direction of our future work involves
an extensive comparison of our approach with en-
semble clustering algorithms proposed within the
machine learning and data mining community, in
particular, by Strehl and Ghosh (2003). Thus,
we plan to (i) evaluate our model against these
general-purpose techniques in terms of both accu-
racy and efficiency and (ii) investigate possibilities
of adapting the existing ensemble clustering algo-
rithms to explicitly incorporate task-specific met-
rics.

Finally, we plan to extend our approach to other
NLP tasks, investigating collaborative ensembles
for other problems with complex outputs, going
beyond simple classification-based ensemble tech-
niques.

Acknowledgments

This work has been partially supported by the EC
project CogNet, 671625 (H2020-ICT-2014-2, Re-
search and Innovation action).

References

Anders Bjorkelund and Jonas Kuhn. 2014. Learn-
ing structured perceptrons for coreference resolution
with latent antecedents and non-local features. In
Proceedings of the 52nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 47-57, Baltimore, Maryland,
June. Association for Computational Linguistics.

Kevin Clark and Christopher D. Manning. 2016. Im-
proving coreference resolution by learning entity-
level distributed representations. In Proceedings of
the 54th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 643—653, Berlin, Germany, August. Associ-
ation for Computational Linguistics.

George Doddington, Alexis Mitchell, Mark Przybocki,
Lance Ramshaw, Stephanie Strassell, and Ralph
Weischedel. 2004. The automatic content extrac-
tion (ACE) program-tasks, data, and evaluation. In
Proceedings of the Language Resources and Evalu-
ation Conference.

Greg Durrett, David Hall, and Dan Klein. 2013.
Decentralized entity-level modeling for coreference
resolution. In Proceedings of the 51st Annual Meet-
ing of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pages 114-124, Sofia,
Bulgaria, August. Association for Computational
Linguistics.

Iryna Haponchyk and Alessandro Moschitti. 2017a.
Dont understand a measure? Learn it: Structured
prediction for coreference resolution optimizing its
measures. In Proceedings of the 55th Annual Con-
ference of the Association for Computational Lin-
guistics (ACL), Vancouver, Canada, July. Associa-
tion for Computational Linguistics.

Iryna Haponchyk and Alessandro Moschitti. 2017b.
A practical perspective on latent structured predic-
tion for coreference resolution. In Proceedings of
the 15th Conference of the European Chapter of the
Association for Computational Linguistics: Volume
2, Short Papers, pages 143-149, Valencia, Spain,
April. Association for Computational Linguistics.

Lynette Hirschman and Nancy Chinchor. 1997. MUC-
7 coreference task definition. In Message Under-
standing Conference Proceedings.

Eduard Hovy, Mitchell Marcus, Martha Palmer, Lance
Ramshaw, and Ralph Weischedel. 2006. Ontonotes:
the 90% solution. In Proceedings of the human lan-
guage technology conference of the NAACL, Com-
panion Volume: Short Papers, pages 57-60. Associ-
ation for Computational Linguistics.

Beata Kouchnir. 2004. A machine learning approach
to german pronoun resolution. In Proceedings of the
ACL 2004 Workshop on Student Research, ACLstu-
dent 04, Stroudsburg, PA, USA. Association for
Computational Linguistics.

56

Xiaoqgiang Luo and Sameer Pradhan. 2016. Evaluation
metrics. In Anaphora Resolution, pages 141-163.
Springer Berlin Heidelberg.

Nafise Sadat Moosavi and Michael Strube. 2016.
Which coreference evaluation metric do you trust?
a proposal for a link-based entity aware metric. In
Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics, volume 1,
pages 632-642.

Art Munson, Claire Cardie, and Rich Caruana. 2005.
Optimizing to arbitrary NLP metrics using ensem-
ble selection. In Proceedings of HLT/EMNLP, pages
539-546.

Vincent Ng and Claire Cardie. 2003a. Bootstrapping
coreference classifiers with multiple machine learn-
ing algorithms. In Proceedings of the 2003 Con-
ference on Empirical Methods in Natural Language
Processing, pages 113-120. Association for Com-
putational Linguistics.

Vincent Ng and Claire Cardie. 2003b. Weakly super-
vised natural language learning without redundant
views. In Proceedings of the 2003 Conference of
the North American Chapter of the Association for
Computational Linguistics - Volume 1, pages 173—
180. Association for Computational Linguistics.

Vincent Ng. 2005. Machine learning for coreference
resolution: From local classification to global rank-
ing. In Proceedings of the 43rd Annual Meeting of
the ACL, pages 157-164.

Sameer Pradhan, Lance Ramshaw, Mitchell Marcus,
Martha Palmer, Ralph Weischedel, and Nianwen
Xue. 2011. Conll-2011 shared task: Modeling un-
restricted coreference in ontonotes. In Proceedings
of the Fifteenth Conference on Computational Nat-
ural Language Learning (CoNLL 2011), Portland,
Oregon, June.

Sameer Pradhan, Alessandro Moschitti, Nianwen Xue,
Olga Uryupina, and Yuchen Zhang. 2012. CoNLL-
2012 shared task: Modeling multilingual unre-
stricted coreference in OntoNotes. In Proceedings
of the Sixteenth Conference on Computational Nat-
ural Language Learning (CoNLL’12), Jeju, Korea.

Sameer Pradhan, Xiaoqiang Luo, Marta Recasens, Ed-
uvard H Hovy, Vincent Ng, and Michael Strube.
2014. Scoring coreference partitions of predicted
mentions: A reference implementation. In ACL (2),
pages 30-35.

Altaf Rahman and Vincent Ng. 2011. Ensemble-based
coreference resolution. In Proceedings of the 22nd
International Joint Conference on Artificial Intelli-

gence, pages 1994—1889.

Sriparna Saha, Asif Ekbal, Olga Uryupina, and Mas-
simo Poesio. 2011. Single and multi-objective
optimization for feature selection in anaphora res-
olution. In Proceedings of the International Joint
Conference on Natural Language Processing (1JC-
NLP’I1).

Wee Meng Soon, Hwee Tou Ng, and Daniel
Chung Yong Lim. 2001. A machine learning ap-
proach to coreference resolution of noun phrases.
Computational Linguistic, 27(4):521-544.

Alexander Strehl and Joydeep Ghosh. 2003. Clus-
ter ensembles — a knowledge reuse framework for
combining multiple partitions. The Journal of Ma-
chine Learning Research, 3:583-617, March.

Smita Vemulapalli, Xiaogiang Luo, John F. Pitrelli,
and Imed Zitouni. 2009. Classifier combina-
tion techniques applied to coreference resolution.
In Proceedings of Human Language Technologies:
The 2009 Annual Conference of the North Ameri-

57

can Chapter of the Association for Computational
Linguistics, Companion Volume: Student Research
Workshop and Doctoral Consortium, SRWS 09,
pages 1-6, Stroudsburg, PA, USA. Association for
Computational Linguistics.

Sam Wiseman, Alexander M. Rush, and Stuart M.
Shieber. 2016. Learning global features for coref-
erence resolution. In Kevin Knight, Ani Nenkova,
and Owen Rambow, editors, NAACL HLT 2016, The
2016 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 994—-1004. The

Association for Computational Linguistics.

Named Entity Disambiguation for Noisy Text

Yotam Eshel'
Shaul Markovitch!

Noam Cohen'!
Ikuda Yamada3

Kira Radinsky' >
Omer Levy*

!Technion - Israel Institute of Technology, Haifa, Israel
2eBay Research, Israel
3Studio Ousia, Fujisawa, Kanagawa, Japan
4University of Washington, Seattle, WA

Abstract

We address the task of Named Entity
Disambiguation (NED) for noisy text.
We present WikilinksNED, a large-scale
NED dataset of text fragments from the
web, which is significantly noisier and
more challenging than existing news-
based datasets. To capture the limited
and noisy local context surrounding each
mention, we design a neural model and
train it with a novel method for sam-
pling informative negative examples. We
also describe a new way of initializing
word and entity embeddings that signifi-
cantly improves performance. Our model
significantly outperforms existing state-of-
the-art methods on WikilinksNED while
achieving comparable performance on a
smaller newswire dataset.

1 Introduction

Named Entity Disambiguation (NED) is the task
of linking mentions of entities in text to a given
knowledge base, such as Freebase or Wikipedia.
NED is a key component in Entity Linking (EL)
systems, focusing on the disambiguation task it-
self, independently from the tasks of Named En-
tity Recognition (detecting mention bounds) and
Candidate Generation (retrieving the set of poten-
tial candidate entities). NED has been recognized
as an important component in NLP tasks such as
semantic parsing (Berant and Liang, 2014).
Current research on NED is mostly driven by
a number of standard datasets, such as CoNLL-
YAGO (Hoffart et al., 2011), TAC KBP (Ji et al.,
2010) and ACE (Bentivogli et al., 2010). These
datasets are based on news corpora and Wikipedia,
which are naturally coherent, well-structured, and
rich in context. Global disambiguation models

58

(Guo and Barbosa, 2014; Pershina et al., 2015;
Globerson et al., 2016) leverage this coherency by
jointly disambiguating all the mentions in a sin-
gle document. However, domains such as web-
page fragments, social media, or search queries,
are often short, noisy, and less coherent; such do-
mains lack the necessary contextual information
for global methods to pay off, and present a more
challenging setting in general.

In this work, we investigate the task of NED
in a setting where only local and noisy context
is available. In particular, we create a dataset
of 3.2M short text fragments extracted from web
pages, each containing a mention of a named en-
tity. Our dataset is far larger than previously col-
lected datasets, and contains 18K unique mentions
linking to over 100K unique entities. We have em-
pirically found it to be noisier and more challeng-
ing than existing datasets. For example:

“I had no choice but to experiment with
other indoor games. I was born in At-
lantic City so the obvious next choice
was Monopoly. I played until I became
a successful Captain of Industry.”

This short fragment is considerably less structured
and with a more personal tone than a typical news
article. It references the entity Monopoly_(Game),
however expressions such as “experiment” and
“Industry” can distract a naive disambiguation
model because they are also related the much
more common entity Monopoly (economics term).
Some sense of local semantics must be considered
in order to separate the useful signals (e.g. “indoor
games”, “played”) from the noisy ones.

We therefore propose a new model that lever-
ages local contextual information to disambiguate
entities. Our neural approach (based on RNNs
with attention) leverages the vast amount of train-
ing data in WikilinksNED to learn representations

Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017), pages 58—68,
Vancouver, Canada, August 3 - August 4, 2017. (©2017 Association for Computational Linguistics

for entity and context, allowing it to extract signals
from noisy and unexpected context patterns.

While convolutional neural networks (Sun
etal., 2015; Francis-Landau et al., 2016) and prob-
abilistic attention (Lazic et al., 2015) have been
applied to the task, this is the first model to use
RNNs and a neural attention model for NED.
RNNs account for the sequential nature of textual
context while the attention model is applied to re-
duce the impact of noise in the text.

Our experiments show that our model signifi-
cantly outperforms existing state-of-the-art NED
algorithms on WikilinksNED, suggesting that
RNNs with attention are able to model short and
noisy context better than current approaches. In
addition, we evaluate our algorithm on CoNLL-
YAGO (Hoffartet al., 2011), a dataset of annotated
news articles. We use a simple domain adapta-
tion technique since CoNLL-YAGO lacks a large
enough training set for our model, and achieve
comparable results to other state-of-the-art meth-
ods. These experiments highlight the difference
between the two datasets, indicating that our NED
benchmark is substantially more challenging.

Code and data used for our experiments
can be found at https://github.com/
yotam-happy/NEDforNoisyText

2 Related Work

Local vs Global NED Early work on Named
Entity Disambiguation, such as Bunescu and
Pagca (2006) and Mihalcea and Csomai (2007) fo-
cused on local approaches where each mention is
disambiguated separately using hand-crafted fea-
tures. While local approaches provide a hard-to-
beat baseline (Ratinov et al., 2011), recent work
has largely focused on global approaches. These
disambiguate all mentions within a document si-
multaneously by considering the coherency of en-
tity assignments within a document. For exam-
ple the local component of the GLOW algorithm
(Ratinov et al., 2011) was used as part of the re-
lational inference system suggested by Cheng and
Roth (2013). Similarly, Globerson et al. (2016)
achieved state-of-the-art results by extending the
local-based selective-context model of Lazic et al.
(2015) with an attention-like coherence model.
Global models can tap into highly-
discriminative semantic signals (e.g. coreference
and entity relatedness) that are unavailable to local
methods, and have significantly outperformed the

59

local approach on standard datasets (Guo and Bar-
bosa, 2014; Pershina et al., 2015; Globerson et al.,
2016). However, global approaches are difficult
to apply in domains where only short and noisy
text is available, as often occurs in social media,
questions and answers, and other short web docu-
ments. For example, Huang et al. (2014) collected
many tweets from the same author in order to
apply a global disambiguation method. Since this
work focuses on disambiguating entities within
short fragments of text, our algorithmic approach
tries to extract as much information from the local
context, without resorting to external signals.

Neural Approaches The first neural approach
for NED (He et al.,, 2013) used stacked auto-
encoders to learn a similarity measure between
mention-context structures and entity candidates.
More recently, convolutional neural networks
(CNNs) were employed for learning semantic sim-
ilarity between context, mention, and candidate
inputs (Sun et al., 2015; Francis-Landau et al.,
2016). Neural embedding techniques have also
inspired a number of works that measure entity-
context relatedness using their embeddings (Ya-
mada et al., 2016; Hu et al., 2015). In this paper,
we train a recurrent neural network (RNN) model,
which unlike CNNs and embeddings, is designed
to exploit the sequential nature of text. We also
utilize an attention mechanism, inspired by results
from Lazic et al. (2015) that successfully used a
probabilistic attention-like model for NED.

Noisy Data Chisholm and Hachey (2015)
showed that despite the noisy nature of web data,
augmenting Wikipedia-derived data with web-
links from the Wikilinks corpus (Singh et al.,
2012) can improve performance on standard
datasets. In our work, we find noisy web data to
be a unique and challenging test case for disam-
biguation. We therefore use Wikilinks to construct
a new stand-alone disambiguation benchmark that
focuses on noisy text, rather than use it for training
alone. Moreover, we differ from Chisholm at el.
by taking a neural approach that implicitly discov-
ers useful signals from contexts, instead of manu-
ally crafting features.

Commonly-used benchmarks for NED sys-
tems have mostly focused on news-based cor-
pora. CoNLL-YAGO (Hoffart et al., 2011) is
a dataset based on Reuters, created by hand-
annotating the CoNLL 2003 Named Entity Recog-

nition task dataset with YAGO (Suchanek et al.,
2007) entities. It contains 1,393 documents split
into train, development and test sets. TAC KBP
2010 (Ji et al., 2010) and ACE Bentivogli et al.
(2010) are also news-based datasets that contain
only a limited amount of examples. Ratinov et al.
(2011) used a random sample of paragraphs from
Wikipedia for evaluation; however, they did not
make their sample publicly available.

Our WikilinksNED dataset is substantially dif-
ferent from currently available datasets since they
are all based on high-quality content from either
news articles or Wikipedia, while WikilinksNED
is a benchmark for noisier, less coherent, and more
colloquial text. The annotation process is signifi-
cantly different as well, as our dataset reflects the
annotation preferences of real-world website au-
thors. It is also significantly larger in size, being
over 100 times larger than CoNLL-YAGO.

Recently, a number of Twitter-based datasets
were compiled as well (Meij et al., 2012; From-
reide et al., 2014). These represent a much more
extreme case than our dataset in terms of noise,
shortness and spelling variations, and are much
smaller in size. Due to the unique nature of tweets,
proposed algorithms tend to be substantially dif-
ferent from algorithms used for other NED tasks.

3 The WikilinksNED Dataset:
Entity Mentions in the Web

We introduce WikilinksNED, a large-scale NED
dataset based on text fragments from the web.
Our dataset is derived from the Wikilinks corpus
(Singh et al., 2012), which was constructed by
crawling the web and collecting hyperlinks (men-
tions) linking to Wikipedia concepts (entities) and
their surrounding text (context). Wikilinks con-
tains 40 million mentions covering 3 million enti-
ties, collected from over 10 million web pages.

Wikilinks can be seen as a large-scale,
naturally-occurring, crowd-sourced dataset where
thousands of human annotators provide ground
truths for mentions of interest. This means that the
dataset contains various kinds of noise, especially
due to incoherent contexts. The contextual noise
presents an interesting test-case that supplements
existing datasets that are sourced from mostly co-
herent and well-formed text.

To get a sense of textual noise we have set up
a small experiment where we measure the similar-
ity between entities mentioned in WikilinksNED

60

and their surrounding context, and compare the
results to CONLL-YAGO. We use state-of-the-art
word and entity embeddings obtained from Ya-
mada et al. (2016) and compute cosine similarity
between embeddings of the correct entity assign-
ment and the mean of context words. We com-
pare results from all mentions in CoNLL-YAGO
to a sample of 50000 web fragments taken from
WikilinksNED, using a window of words of size
40 around entity mentions. We find that similar-
ity between context and correct entity is indeed
lower for web mentions (0.163) than for CoNLL-
YAGO mentions (0.188), and find this result to be
statistically significant with very high probability
(p < 1075) . This result indicates that web frag-
ments in WikilinksNED are indeed noisier com-
pared to CONLL-YAGO documents.

We prepare our dataset from the local-context
version of Wikilinks!, and resolve ground-truth
links using a Wikipedia dump from April 20162,
We use the page and redirect tables for resolution,
and keep the database pageid column as a unique
identifier for Wikipedia entities. We discard men-
tions where the ground-truth could not be resolved
(only 3% of mentions).

We collect all pairs of mention m and entity e
appearing in the dataset, and compute the number
of times m refers to e (#(m,e)), as well as the
conditional probability of e given m: P(e|m)
#(m,e)/ > . #(m,e'). Examining these distri-
butions reveals many mentions belong to two ex-
tremes — either they have very little ambiguity,
or they appear in the dataset only a handful of
times and refer to different entities only a couple
of times each. We deem the former to be less in-
teresting for the purpose of NED, and suspect the
latter to be noise with high probability. To filter
these cases, we keep only mentions for which at
least two different entities have 10 mentions each
(#/(m,e) > 10) and consist of at least 10% of
occurrences (P(e|m) > 0.1). This procedure ag-
gressively filters our dataset and we are left with
3.2M mentions.

Finally, we randomly split the data into train
(80%), validation (10%), and test (10%), accord-
ing to website domains in order to minimize lexi-
cal memorization (Levy et al., 2015).

"http://wuw.iesl.cs.umass.edu/data/
wiki-1links
https://dumps.wikimedia.org/

"...indoor games. I was born in Atalantic City so the
obvious next choice was Monopoly. 1 played until

I became a succsesfull Capitain of Industry..."

word vectors

Candidate

list[o— Candidate /%?

o— p., O 3

o- | £

&)

Left A~

context =4

£

=

3

Right E

context _/

//

— -
— -
=
I/ \
| Candidate :
I |
| Attention I
I |
| GRU v
I [
: Context o
|
\

Figure 1: The architecture of our Neural Network
model. A close-up of the Attention-RNN compo-
nent appears in the dashed box.

4 Algorithm

Our DNN model is a discriminative model which
takes a pair of local context and candidate entity,
and outputs a probability-like score for the candi-
date entity being correct. Both words and entities
are represented using embedding dictionaries and
we interpret local context as a window-of-words
to the left and right of a mention. The left and
right contexts are fed into a duo of Attention-RNN
(ARNN) components which process each side and
produce a fixed length vector representation. The
resulting vectors are concatenated and along with
the entity embedding are and then fed into a classi-
fier network with two output units that are trained
to emit a probability-like score of the candidate
being a correct or corrupt assignment.

4.1 Model Architecture

Figure 1 illustrates the main components of our ar-
chitecture: an embedding layer, a duo of ARNNSs,
each processing one side of the context (left and
right), and a classifier.

Embedding The embedding layer first embeds
both the entity and the context words as vectors
(300 dimensions each).

61

ARNN The ARNN unit is composed from an
RNN and an attention mechanism. Equation 1 rep-
resents the general semantics of an RNN unit. An
RNN reads a sequence of vectors {v;} and main-
tains a hidden state vector {h;}. At each step a
new hidden state is computed based on the previ-
ous hidden state and the next input vector using
some function f, and an output is computed using
g. This allows the RNN to “remember” important
signals while scanning the context and to recog-
nize signals spanning multiple words.

hy = f@1 (ht—la Ut)

1
0t = go, (ht) M

Our implementation uses a standard GRU unit
(Cho et al., 2014) as an RNN. We fit the RNN
unit with an additional attention mechanism, com-
monly used with state-of-the-art encoder-decoder
models (Bahdanau et al., 2014; Xu et al., 2015).
Since our model lacks a decoder, we use the en-
tity embedding as a control signal for the attention
mechanism.

Equation 2 details the equations governing the
attention model.

ar € Ryap = Tes (0t7 Ucandidate)
1

> i1 expla}
Oattn = Z CLQOt
t

The function r computes an attention value at
each step, using the RNN output o; and the can-
didate entity vegndidate- The final output vector
Oqttn 18 a fixed-size vector, which is the sum of
all the output vectors of the RNN weighted ac-
cording to the attention values. This allows the
attention mechanism to decide on the importance
of different context parts when examining a spe-
cific candidate. We follow Bahdanau et al. (2014)
and parametrize the attention function r as a single
layer NN as shown in equation 3.

aé = exp{a;}

2

Tes (0t7 vcandidate) = Aot + Bvcandidate +b (3)

Classifier The classifier network consists of a
hidden layer® and an output layer with two output
units in a softmax. The output units are trained by
optimizing a cross-entropy loss function.

3300 dimensions with ReLU, and p = 0.5 dropout.

4.2 Training

We assume our model is only given training ex-
amples for correct entity assignments and there-
fore use corrupt-sampling, where we automati-
cally generate examples of wrong assignments.
For each context-entity pair (c, e), where e is the
correct assignment for ¢, we produce k corrupt ex-
amples with the same context ¢ but with a differ-
ent, corrupt entity ¢/. We considered two alterna-
tives for corrupt sampling and provide an empiri-
cal comparison of the two approaches (Section 5):

Near-Misses: Sampling out of the candidate set
of each mention. We have found this to be
more effective where the training data reli-
ably reflects the test-set distribution.

All-Entity: Sampling from the entire dictionary
of entities. Better suited to cases where the
training data or candidate generation does not
reflect the test-set well. Has an added benefit
of allowing us to utilize unambiguous train-
ing examples where only a single candidate
is found.

We sample corrupt examples uniformly in both
alternatives since with uniform sampling the ratio
between the number of positive and negative ex-
amples of an entity is higher for popular entities,
thus biasing the network towards popular entities.
In the All-Entity case, this ratio is approximately
proportional to the prior probability of the entity.

We note that preliminary experiments revealed
that corrupt-sampling according to the distribution
of entities in the dataset (as is done by Mikolov
at el. (2013)), rather than uniform sampling, did
not perform well in our settings due to the lack of
biasing toward popular entities.

Model optimization was carried out using stan-
dard backpropagation and an AdaGrad optimizer
(Duchi et al., 2011). We allowed the error to prop-
agate through all parts of the network and fine
tune all trainable parameters, including the word
and entity embeddings themselves. We found the
performance of our model substantially improves
for the first few epochs and then continues to
slowly converge with marginal gains, and there-
fore trained all models for 8 epochs with k = 5
for corrupt-sampling.

4.3 Embedding Initialization

Training our model implicitly embeds the vocabu-
lary of words and collection of entities in a com-

62

mon space. However, we found that explicitly
initializing these embeddings with vectors pre-
trained over a large collection of unlabeled data
significantly improved performance (see Section
5.3). To this end, we implemented an approach
based on the Skip-Gram with Negative-Sampling
(SGNS) algorithm by Mikolov et al. (2013) that si-
multaneously trains both word and entity vectors.

We used word2vecf* (Levy and Goldberg,
2014a), which allows one to train word and con-
text embeddings using arbitrary definitions of
”word” and “context” by providing a dataset of
word-context pairs (w,c), rather than a textual
corpus. In our usage, we define a context as an en-
tity e. To compile a dataset of (w), e) pairs, we con-
sider every word w that appeared in the Wikipedia
article describing entity e. We limit our vocabular-
ies to words that appeared at least 20 times in the
corpus and entities that contain at least 20 words
in their articles. We ran the process for 10 epochs
and produced vectors of 300 dimensions; other hy-
perparameters were set to their defaults.

Levy and Goldberg (2014b) showed that SGNS
implicitly factorizes the word-context PMI matrix.
Our approach is doing the same for the word-entity
PMI matrix, which is highly related to the word-
entity TFIDF matrix used in Explicit Semantic
Analysis (Gabrilovich and Markovitch, 2007).

5 Evaluation

In this section, we describe our experimental setup
and compare our model to the state of the art
on two datasets: our new WikilinksNED dataset,
as well as the commonly-used CoNLL-YAGO
dataset (Hoffart et al., 2011). We also examine the
effect of different corrupt-sampling schemes, and
of initializing our model with pre-trained word and
entity embeddings.

In all experiments, our model was trained with
fixed-size left and right contexts (20 words in each
side). We used a special padding symbol when
the actual context was shorter than the window.
Further, we filtered stopwords using NLTK’s stop-
word list prior to selecting the window in order to
focus on more informative words. Our model was
implemented using the Keras (Chollet, 2015) and
Tensorflow (Abadi et al., 2015) libraries.

*http://bitbucket.org/yoavgo/word2vect

Wikilinks Test-Set Evaluation
Model Sampled Test Set (10K) | Full Test Set (300K)
Baseline (MPS) 60 59.6
Cheng (2013) 50.7 -
Yamada (2016) 67.6 66.9
Our Attention-RNN 73.2 73
Our RNN, w/o Attention 72.1 72.2

Table 1: Evaluation on noisy web data (WikilinksNED)

5.1 WikilinksNED

Training we use Near-Misses corrupt-sampling
which was found to perform well due to a large
training set that represents the test set well.

Candidate Generation To isolate the effect of
candidate generation algorithms, we used the fol-
lowing simple method for all systems: given a
mention m, consider all candidate entities e that
appeared as the ground-truth entity for m at least
once in the training corpus. This simple method
yields 97% ground-truth recall on the test set.

Baselines Since we are the first to evaluate NED
algorithms on WikilinksNED, we ran a selection
of existing local NED systems and compared their
performance to our algorithm’s.

Yamada et al. (2016) created a state-of-the-art
NED system that models entity-context similar-
ity with word and entity embeddings trained us-
ing the skip-gram model. We obtained the origi-
nal embeddings from the authors, and trained the
statistical features and ranking model on the Wik-
ilinksNED training set. Our configuration of Ya-
mada et al.’s model used only their local features.

Cheng et al. (2013) have made their global
NED system publicly available®. This algorithm
uses GLOW (Ratinov et al., 2011) for local disam-
biguation. We compare our results to the ranking
step of the algorithm, without the global compo-
nent. Due to the long running time of this system,
we only evaluated their method on the smaller test
set, which contains 10,000 randomly sampled in-
stances from the full 320,000-example test set.

Finally, we include the Most Probable Sense
(MPS) baseline, which selects the entity that was
seen most with the given mention during training.

Results We used standard micro P@1 accuracy
for evaluation. Experimental results comparing

‘https://cogcomp.cs.illinois.edu/page/
software_view/Wikifier

63

our model with the baselines are reported in Table
1. Our RNN model significantly outperforms Ya-
mada at el. on this data by over 5 points, indicating
that the more expressive RNNs are indeed benefi-
cial for this task. We find that the attention mech-
anism further improves our results by a small, yet
statistically significant, margin.

5.2 CoNLL-YAGO

Training CoNLL-YAGO has a training set with
18505 non-NIL mentions, which our experiments
showed is not sufficient to train our model on. To
fit our model to this dataset we first used a sim-
ple domain adaptation technique and then incorpo-
rated a number of basic statistical and string based
features.

Domain Adaptation We used a simple domain
adaptation technique where we first trained our
model on an available large corpus of label data
derived from Wikipedia, and then trained the
resulting model on the smaller training set of
CoNLL (Mou et al., 2016). The Wikipedia corpus
was built by extracting all cross-reference links
along with their context, resulting in over 80 mil-
lion training examples. We trained our model with
All-Entity corrupt sampling for 1 epoch on this
data. The resulting model was then adapted to
CoNLL-YAGO by training 1 epoch on CoNLL-
YAGO'’s training set, where corrupt examples
were produced by considering all possible candi-
dates for each mention as corrupt-samples (Near-
Misses corrupt sampling).

Additional Features We proceeded to use the
model in a similar setting to Yamada et al.
(2016) where a Gradient Boosting Regression
Tree (GBRT) (Friedman, 2001) model was trained
with our model’s prediction as a feature along with
a number of statistical and string based features
defined by Yamada. The statistical features in-
clude entity prior probability, conditional proba-

bility, number of candidates for the given mention
and maximum conditional probability of the entity
in the document. The string based features include
edit distance between mention and entity title and
two boolean features indicating whether the entity
title starts or ends with the mention and vice versa.
The GBRT model parameters where set to the val-
ues reported as optimal by Yamada®.

Candidate Generation For comparability with
existing methods we used two publicly available
candidates datasets: (1) PPRforNED - Pershina at
el. (2015); (2) YAGO - Hoffart at el. (2011).

Baselines As a baseline we took the standard
Most Probable Sense (MPS) prediction, which se-
lects the entity that was seen most with the given
mention during training. We also compare to the
following papers - Francis-Landau et al. (2016),
Yamada at el. (2016), and Chisholm et al. (2015),
as they are all strong local approaches and a good
source for comparison.

Results Table 2 displays the micro and macro
P@1 scores on CoNLL-YAGO test-b for the dif-
ferent training steps. We find that when using only
the training set of CoNLL-YAGO our model is
under-trained and that the domain adaptation sig-
nificant boosts performance. We find that incorpo-
rating extra statistical and string features yields a
small extra improvement in performance.

The final micro and macro P@1 scores on
CoNLL-YAGO test-b are displayed in table 3. On
this dataset our model achieves comparable re-
sults, however it does not outperform the state-
of-the-art, probably because of the relatively small
training set and our reliance on domain adaptation.

5.3 Effects of initialized embeddings and
corrupt-sampling schemes

We performed a study of the effects of using
pre-initialized embeddings for our model, and of
using either All-Entity or Near-Misses corrupt-
sampling. The evaluation was done on a 10% sam-
ple of the evaluation set of the WikilinksNED cor-
pus and can be seen in Table 4.

We have found that using pre-initialized embed-
dings results in significant performance gains, due
to the better starting point. We have also found
that using Near-Misses, our model achieves sig-
nificantly improved performance. We attribute this

SLearning rate of 0.02; maximal tree depth of 4; 10,000
trees.

64

CoNLL-YAGO test-b - Training Steps Eval
Model Micro Macro
P@1 P@1
PPRforNED
CoNLL training set 82 82
+ domain adaptation 86.6 87.7
+ GBRT 87.3 88.6
Yago
CoNLL training set 74.8 73.5
+ domain adaptation 83.6 85.1
+ GBRT 83.3 86.3

Table 2: Evaluation of training steps on CoNLL-
YAGO.

CoNLL-YAGO test-b (Local methods)
Model Micro Macro
P@1 P@1
PPRforNED
Our ARNN + GBRT 87.3 88.6
Yamada (2016) local 90.9 92.4
Yamada (2016) global 93.1 92.6
Yago
Our ARNN + GBRT 83.3 86.3
Yamada (2016) local 87.2 89.6
Francis-Landau (2016) | 85.5 -
Chisholm (2015) local | 86.1 -
Yamada (2016) global 91.5 90.9
Chisholm (2015) global | 88.7 -

Table 3: Evaluation on CoNLL-YAGO.

difference to the more efficient nature of training
with near misses. Both these results were found to
be statistically significant.

6 Error Analysis

We randomly sampled and manually analyzed 200
cases of prediction errors made by our model. This
set was obtained from WikilinksNED’s validation
set that was not used for training.

Working with crowd-sourced data, we expected
some errors to result from noise in the ground
truths themselves. Indeed, we found that 19.5%
(39/200) of the errors were not false, out of which
5% (2) where wrong labels, 33% (13) were pre-
dictions with an equivalent meaning as the correct
entity, and in 61.5% (24) our model suggested a
more convincing solution than the original author
by using specific hints from the context. In this
manner, the mention 'Supreme leader’ , which was

Wikilinks Evaluation-Set
Model Micro
accuracy
Near-misses, with init. | 72.5
Near-misses, random init. | 67.2
All-Entity, with init. 70
All-Entity, random init. | 67.1

Table 4: Corrupt-sampling and Initialization

contextually associated to the Iranian leader Ali
Khamenei, was linked by our model with ’supreme
leader of Iran’ while the correct” tag was the gen-
eral ’supreme leader’ entity.

In addition, 15.5% (31/200) were cases where
a Wikipedia disambiguation-page was either the
correct or predicted entity (2.5% and 14%, respec-
tively). We considered the rest of the 130 errors as
true semantic errors, and analyzed them in-depth.

Error type \ Fraction
False errors

Not errors 19.5% (39/200)
- Annotation error 5% (2/39)
- Better suggestion 61.5% (24/39)
- Equivalent entities 33% (13/39)
Disambiguation page | 15.5% (31/200)

True semantic errors
Too specific/general 31.5% (41/130)
"almost correct’ errors | 26% (34/130)
insufficient training 21.5% (28/130)

Table 5: Error distribution in 200 samples. Cate-
gories of true errors are not fully distinct.

First, we noticed that in 31.5% of the true errors
(41/130) our model selected an entity that can be
understood as a specific (6.5%) or general (25%)
realization of the correct solution. For example,
instead of predicting '’Aroma of wine’ for a text on
the scent and flavor of Turkish wine, the model
assigned the mention ’Aroma’ with the general
"’Odor’ entity. We observed that in 26% (34/130)
of the error cases, the predicted entity had a very
strong semantic relationship to the correct entity.
A closer look discovered two prominent types of
"almost correct’ errors occurred repeatedly in the
data. The first was a film/book/theater type of er-
ror (8.4%), where the actual and the predicted enti-
ties were a different display of the same narrative.
Even though having different jargon and produc-

65

ers, those fields share extremely similar content,
which may explain why they tend to be frequently
confused by the algorithm. A third (4/14) of those
cases were tagged as truly ambiguous even for hu-
man reader. The second prominent type of *almost
correct’ errors where differentiating between ad-
jectives that are used to describe properties of a na-
tion. Particularity, mentions such as ’Germanic’,
"Chinese’ and "Dutch’ were falsely assigned to en-
tities that describe language instead of people, and
vice versa. We observed this type of mistake in
8.4% of the errors (11/130).

Another interesting type of errors where in
cases where the correct entity had insufficient
training. We defined insufficient training errors as
errors where the correct entity appeared less than
10 times in the training data. We saw that the
model followed the MPS in 75% of these cases,
showing that our model tends to follow the base-
line in such cases. Further, the amount of gen-
eralization error in insufficient-training conditions
was also significant (35.7%), as our model tended
to select more general entities.

7 Conclusions

Our results indicate that the expressibility of
attention-RNNs indeed allows us to extract use-
ful features from noisy context, when sufficient
amounts of training examples are available. This
allows our model to significantly out-perform ex-
isting state-of-the-art models. We find that both
using pre-initialized embedding vocabularies, and
the corrupt-sampling method employed are very
important for properly training our model.

However, the gap between results of all systems
tested on both CoNLL-YAGO and WikilinksNED
indicates that mentions with noisy context are in-
deed a challenging test. We believe this to be
an important real-world scenario, that represents
a distinct test-case that fills a gap between existing
news-based datasets and the much noisier Twitter
data (Ritter et al., 2011) that has received increas-
ing attention. We find recurrent neural models are
a promising direction for this task.

Finally, our error analysis shows a number of
possible improvements that should be addressed.
Since we use the training set for candidate genera-
tion, non-nonsensical candidates (i.e. disambigua-
tion pages) cause our model to err and should be
removed from the candidate set. In addition, we
observe that lack of sufficient training for long-

tail entities is still a problem, even when a large
training set is available. We believe this, and some
subtle semantic cases (book/movie) can be at least
partially addressed by considering semantic prop-
erties of entities, such as types and categories. We
intend to address these issues in future work.

References

Martin Abadi, Ashish Agarwal, Paul Barham, Eugene
Brevdo, Zhifeng Chen, Craig Citro, Greg S. Cor-
rado, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Ian Goodfellow, Andrew Harp,
Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal
Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh
Levenberg, Dan Mané, Rajat Monga, Sherry Moore,
Derek Murray, Chris Olah, Mike Schuster, Jonathon
Shlens, Benoit Steiner, Ilya Sutskever, Kunal Tal-
war, Paul Tucker, Vincent Vanhoucke, Vijay Va-
sudevan, Fernanda Viégas, Oriol Vinyals, Pete
Warden, Martin Wattenberg, Martin Wicke, Yuan
Yu, and Xiaoqgiang Zheng. 2015. TensorFlow:
Large-scale machine learning on heterogeneous sys-
tems. Software available from tensorflow.org.
http://tensorflow.org/.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua
Bengio. 2014. Neural machine translation by
jointly learning to align and translate. =~ CoRR
abs/1409.0473. http://arxiv.org/abs/1409.0473.

Luisa Bentivogli, Pamela Forner, Claudio Giu-
liano, Alessandro Marchetti, Emanuele Pianta, and
Kateryna Tymoshenko. 2010. Proceedings of the
2nd Workshop on The People’s Web Meets NLP:
Collaboratively Constructed Semantic Resources,
Coling 2010 Organizing Committee, chapter Ex-
tending English ACE 2005 Corpus Annotation with
Ground-truth Links to Wikipedia, pages 19-27.
http://aclweb.org/anthology/W10-3503.

Jonathan Berant and Percy Liang. 2014. Semantic
parsing via paraphrasing. In Proceedings of the
52nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers). Asso-
ciation for Computational Linguistics, pages 1415—
1425. https://doi.org/10.3115/v1/P14-1133.

Razvan Bunescu and Marius Pagca. 2006. Using en-
cyclopedic knowledge for named entity disambigua-
tion. In I1th Conference of the European Chap-
ter of the Association for Computational Linguistics.
http://aclweb.org/anthology/E06-1002.

Xiao Cheng and Dan Roth. 2013. Relational
inference for wikification. In Proceedings
of the 2013 Conference on Empirical Meth-
ods in Natural Language Processing. Association
for Computational Linguistics, pages 1787-1796.
http://aclweb.org/anthology/D13-1184.

Andrew Chisholm and Ben Hachey. 2015. Entity dis-
ambiguation with web links. Transactions of the As-

66

sociation of Computational Linguistics 3:145-156.
http://aclweb.org/anthology/Q15-1011.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder—decoder
for statistical machine translation. In Proceedings of
the 2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP). Association
for Computational Linguistics, pages 1724—1734.
https://doi.org/10.3115/v1/D14-1179.

Francois Chollet. 2015. Keras.

https://github.com/fchollet/keras.

John C. Duchi, Elad Hazan, and Yoram Singer.
2011. Adaptive subgradient methods for on-
line learning and stochastic optimization. Jour-
nal of Machine Learning Research 12:2121-2159.
http://dl.acm.org/citation.cfm?id=2021068.

Matthew Francis-Landau, Greg Durrett, and Dan
Klein. 2016. Capturing semantic similarity for en-
tity linking with convolutional neural networks. In
Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies.
Association for Computational Linguistics, pages
1256-1261. https://doi.org/10.18653/v1/N16-1150.

Jerome H Friedman. 2001. Greedy function
approximation: a gradient boosting ma-
chine. Annals of statistics pages 1189-1232.
https://doi.org/10.1214/a0s/1013203451.

Hege Fromreide, Dirk Hovy, and Anders Sggaard.
2014. Crowdsourcing and annotating ner for twit-
ter #drift. In Proceedings of the Ninth Inter-
national Conference on Language Resources and
Evaluation (LREC-2014). European Language Re-
sources Association (ELRA). http://www.Irec-
conf.org/proceedings/lrec2014/pdf/421_Paper.pdf.

Evgeniy Gabrilovich and Shaul Markovitch. 2007.
Computing semantic relatedness using wikipedia-
based explicit semantic analysis. In Proceedings
of the 20th International Joint Conference on Artifi-
cal Intelligence. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, IJCAI’07, pages 1606—
1611. http://dl.acm.org/citation.cfm?id=1625275.
1625535.

Amir Globerson, Nevena Lazic, Soumen Chakrabarti,
Amarnag Subramanya, Michael Ringaard, and Fer-
nando Pereira. 2016. Collective entity resolution
with multi-focal attention. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers). As-
sociation for Computational Linguistics, pages 621—
631. https://doi.org/10.18653/v1/P16-1059.

Zhaochen Guo and Denilson Barbosa. 2014. En-
tity linking with a unified semantic representation.
In Proceedings of the 23rd International Confer-
ence on World Wide Web. ACM, New York, NY,

USA, WWW ’14 Companion, pages 1305-1310.
https://doi.org/10.1145/2567948.2579705.

Zhengyan He, Shujie Liu, Mu Li, Ming Zhou, Longkai

Zhang, and Houfeng Wang. 2013. Learning entity
representation for entity disambiguation. In Pro-
ceedings of the 51st Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 2: Short
Papers). Association for Computational Linguis-
tics, pages 30-34. http://aclweb.org/anthology/P13-
2006.

Johannes Hoffart, Amir Mohamed Yosef, Ilaria Bor-

dino, Hagen Fiirstenau, Manfred Pinkal, Marc
Spaniol, Bilyana Taneva, Stefan Thater, and
Gerhard Weikum. 2011. Robust disambigua-
tion of named entities in text. In Proceed-
ings of the 2011 Conference on Empirical Meth-
ods in Natural Language Processing. Associa-
tion for Computational Linguistics, pages 782—792.
http://aclweb.org/anthology/D11-1072.

Zhiting Hu, Poyao Huang, Yuntian Deng, Yingkai Gao,

and Eric Xing. 2015. Entity hierarchy embedding.
In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers). Asso-
ciation for Computational Linguistics, pages 1292—
1300. https://doi.org/10.3115/v1/P15-1125.

Hongzhao Huang, Yunbo Cao, Xiaojiang Huang, Heng

Ji, and Chin-Yew Lin. 2014. Collective tweet
wikification based on semi-supervised graph reg-
ularization. In Proceedings of the 52nd An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). Associa-
tion for Computational Linguistics, pages 380-390.
https://doi.org/10.3115/v1/P14-1036.

Heng Ji, Ralph Grishman, Hoa Trang Dang, Kira Grif-

fitt, and Joe Ellis. 2010. Overview of the tac 2010
knowledge base population track. In Third Text
Analysis Conference (TAC 2010). volume 3, pages
3-3.

Nevena Lazic, Amarnag Subramanya, Michael Ring-

gaard, and Fernando Pereira. 2015. Plato: A selec-
tive context model for entity resolution. Transac-
tions of the Association of Computational Linguis-
tics 3:503-515. http://aclweb.org/anthology/Q15-
1036.

Omer Levy and Yoav Goldberg. 2014a. Dependency-

based word embeddings. In Proceedings of the 52nd
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 2: Short Papers). Associ-
ation for Computational Linguistics, pages 302-308.
https://doi.org/10.3115/v1/P14-2050.

Omer Levy and Yoav Goldberg. 2014b. Neural word

embedding as implicit matrix factorization. In Ad-
vances in Neural Information Processing Systems
27: Annual Conference on Neural Information
Processing Systems 2014, December 8-13 2014,

67

Montreal, Quebec, Canada. pages 2177-2185.
http://papers.nips.cc/paper/5477-neural-word-
embedding-as-implicit-matrix-factorization.

Omer Levy, Steffen Remus, Chris Biemann, and Ido
Dagan. 2015. Do supervised distributional methods
really learn lexical inference relations? In Proceed-
ings of the 2015 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies. Associa-
tion for Computational Linguistics, pages 970-976.
https://doi.org/10.3115/v1/N15-1098.

Edgar Meij, Wouter Weerkamp, and Maarten de Ri-
jke. 2012. Adding semantics to microblog posts.
In Proceedings of the Fifth ACM International Con-
ference on Web Search and Data Mining. ACM,
New York, NY, USA, WSDM ’12, pages 563-572.
https://doi.org/10.1145/2124295.2124364.

Rada Mihalcea and Andras Csomai. 2007. Wik-
ify!: Linking documents to encyclopedic
knowledge. In Proceedings of the Sixteenth
ACM Conference on Conference on Informa-
tion and Knowledge Management. ACM, New
York, NY, USA, CIKM °’07, pages 233-242.
https://doi.org/10.1145/1321440.1321475.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S.
Corrado, and Jeffrey Dean. 2013. Distributed
representations of words and phrases and their com-
positionality. In Advances in Neural Information
Processing Systems 26: 27th Annual Conference
on Neural Information Processing Systems 2013.
Proceedings of a meeting held December 5-8,
2013, Lake Tahoe, Nevada, United States.. pages
3111-3119. http://papers.nips.cc/paper/5021-
distributed-representations-of-words-and-phrases-
and-their-compositionality.

Lili Mou, Zhao Meng, Rui Yan, Ge Li, Yan Xu,
Lu Zhang, and Zhi Jin. 2016. How transfer-
able are neural networks in nlp applications? In
Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing. Associa-
tion for Computational Linguistics, pages 479—-489.
http://aclweb.org/anthology/D16-1046.

Maria Pershina, Yifan He, and Ralph Grishman.
2015. Personalized page rank for named en-
tity disambiguation. In Proceedings of the
2015 Conference of the North American Chap-
ter of the Association for Computational Linguis-
tics: Human Language Technologies. Associa-
tion for Computational Linguistics, pages 238-243.
https://doi.org/10.3115/v1/N15-1026.

Lev Ratinov, Dan Roth, Doug Downey, and Mike An-
derson. 2011. Local and global algorithms for dis-
ambiguation to wikipedia. In Proceedings of the
49th Annual Meeting of the Association for Com-
putational Linguistics: Human Language Technolo-
gies. Association for Computational Linguistics,
pages 1375-1384. http://aclweb.org/anthology/P11-
1138.

Alan Ritter, Sam Clark, Mausam, and Oren Et-
zioni. 2011. Named entity recognition in
tweets: An experimental study. In Proceed-
ings of the 2011 Conference on Empirical Meth-
ods in Natural Language Processing. Association
for Computational Linguistics, pages 1524-1534.
http://aclweb.org/anthology/D11-1141.

Sameer Singh, Amarnag Subramanya, Fernando
Pereira, and Andrew McCallum. 2012. Wikilinks:
A large-scale cross-document coreference corpus
labeled via links to wikipedia. University of
Massachusetts, Amherst, Tech. Rep. UM-CS-2012-
015 https://web.cs.umass.edu/publication/docs
/2012/UM-CS-2012-015.pdf.

Fabian M. Suchanek, Gjergji Kasneci, and Ger-
hard Weikum. 2007. Yago: A core of seman-
tic knowledge. In Proceedings of the 16th Inter-
national Conference on World Wide Web. ACM,
New York, NY, USA, WWW 07, pages 697-706.
https://doi.org/10.1145/1242572.1242667.

Yaming Sun, Lei Lin, Duyu Tang, Nan Yang, Zhen-
zhou Ji, and Xiaolong Wang. 2015. Modeling
mention, context and entity with neural networks
for entity disambiguation. In Proceedings of the
Twenty-Fourth International Joint Conference on
Artificial Intelligence, IJCAI 2015, Buenos Aires,
Argentina, July 25-31, 2015. pages 1333-1339.
http://ijcai.org/Abstract/15/192.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun
Cho, Aaron C. Courville, Ruslan Salakhutdi-
nov, Richard S. Zemel, and Yoshua Bengio.
2015. Show, attend and tell: Neural image
caption generation with visual attention. In
Proceedings of the 32nd International Confer-
ence on Machine Learning, ICML 2015, Lille,
France, 6-11 July 2015. pages 2048-2057.
http://jmlr.org/proceedings/papers/v37/xucl5.html.

Ikuya Yamada, Hiroyuki Shindo, Hideaki Takeda,
and Yoshiyasu Takefuji. 2016. Joint learn-
ing of the embedding of words and entities
for named entity disambiguation. In Proceed-
ings of The 20th SIGNLL Conference on Com-
putational Natural Language Learning. Associa-
tion for Computational Linguistics, pages 250-259.
https://doi.org/10.18653/v1/K16-1025.

68

Tell Me Why: Using Question Answering as Distant Supervision for
Answer Justification

Rebecca Sharp”, Mihai Surdeanu’, Peter Jansen”,
Marco A. Valenzuela-Escarcega“, Peter Clark’ and Michael Hammond”

“University of Arizona
f Allen Institute for Artificial Intelligence
*{bsharp, msurdeanu, pajansen, marcov, hammond } @email.arizona.edu
Tpeterc @allenai.org

Abstract

For many applications of question answer-
ing (QA), being able to explain why a
given model chose an answer is critical.
However, the lack of labeled data for an-
swer justifications makes learning this dif-
ficult and expensive. Here we propose an
approach that uses answer ranking as dis-
tant supervision for learning how to select
informative justifications, where justifica-
tions serve as inferential connections be-
tween the question and the correct answer
while often containing little lexical over-
lap with either. We propose a neural net-
work architecture for QA that reranks an-
swer justifications as an intermediate (and
human-interpretable) step in answer selec-
tion. Our approach is informed by a set of
features designed to combine both learned
representations and explicit features to
capture the connection between questions,
answers, and answer justifications. We
show that with this end-to-end approach
we are able to significantly improve upon
a strong IR baseline in both justification
ranking (+9% rated highly relevant) and
answer selection (+6% P@1).

1 Introduction

Developing interpretable machine learning (ML)
models, that is, models where a human user can
understand what the model is learning, is consid-
ered by many to be crucial for ensuring usabil-
ity and accelerating progress (Craven and Shav-
lik, 1996; Kim et al., 2015; Letham et al., 2015;
Ribeiro et al., 2016). For many applications of
question answering (QA), i.e., finding short an-
swers to natural language questions, simply pro-
viding an answer is not sufficient. A complete

69

Question:

Which of these is a response to an internal stimulus?

(A) A sunflower turns to face the rising sun.

(B) A cucumber tendril wraps around a wire.

(C) A pine tree knocked sideways in a landslide grows up-
ward in a bend.

(D) Guard cells of a tomato plant leaf close when there
is little water in the roots .

Justification: Plants rely on hormones to send signals
within the plant in order to respond to internal stimuli
such as a lack of water or nutrients.

Table 1: Example of an 8th grade science question with a
justification for the correct answer. Note the lack of direct
lexical overlap present between the justification and the cor-
rect answer, demonstrating the difficulty of the task of finding
justifications using traditional distant supervision methods.

approach must be interpretable, i.e., able to ex-
plain why an answer is correct. For example,
in the medical domain, a QA approach that an-
swers treatment questions would not be trusted if
the treatment recommendation is not explained in
terms that can be understood by the human user.

One approach to interpreting complex models
is to make use of human-interpretable information
generated by the model to gain insight into what
the model is learning. We follow the intuition of
Lei et al. (2016), whose two-component network
first generates text spans from an input document,
and then uses these text spans to make predictions.
Lei et al. utilize these intermediate text spans to
infer the model’s preferences. By learning these
human-readable intermediate representations end-
to-end with a downstream task, the representations
are optimized to correlate with what the model
learns is discriminatory for the task, and they can
be evaluated against what a human would consider
to be important. Here we apply this general frame-
work for model interpretability to QA.

In this work, we focus on answering multiple-
choice science exam questions (Clark (2015); see
example in Table 1). This domain is challenging
as: (a) approximately 70% of science exam ques-

Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017), pages 69-79,
Vancouver, Canada, August 3 - August 4, 2017. (©2017 Association for Computational Linguistics

tion shave been shown to require complex forms of
inference to solve (Clark et al., 2013; Jansen et al.,
2016), and (b) there are few structured knowledge
bases to support this inference. Within this do-
main, we propose an approach that learns to both
select and explain answers, when the only super-
vision available is for which answer is correct (but
not how to explain it). Intuitively, our approach
chooses the justifications that provide the most
help towards ranking the correct answers higher
than incorrect ones. More formally, our neural net-
work approach alternates between using the cur-
rent model with max-pooling to choose the high-
est scoring justifications for correct answers, and
optimizing the answer ranking model given these
justifications. Crucially, these reranked texts serve
as our human-readable answer justifications, and
by examining them, we gain insight into what the
model learned was useful for the QA task.
The specific contributions of this work are:

1. We propose an end-to-end neural method for
learning to answer questions and select a
high-quality justification for those answers.
Our approach re-ranks free-text answer jus-
tifications without the need for structured
knowledge bases. With supervision only for
the correct answers, we learn this re-ranking
through a form of distant supervision — i.e.,
the answer ranking supervises the justifica-
tion re-ranking.

We investigate two distinct categories of fea-
tures in this “little data” domain: explicit fea-
tures, and learned representations. We show
that, with limited training, explicit features
perform far better despite their simplicity.

. We demonstrate a large (+9%) improvement
in generating high-quality justifications over
a strong information retrieval (IR) baseline,
while maintaining near state-of-the-art per-
formance on the multiple-choice science-
exam QA task, demonstrating the success of
the end-to-end strategy.

2 Related work

In many ways, deep learning has become the
canonical example of the ’black box” of machine
learning and many of the approaches to explaining
it can be loosely categorized into two types: ap-
proaches that try to interpret the parameters them-
selves (e.g., with visualizations and heat maps

70

(Zeiler and Fergus, 2014; Hermann et al., 2015; Li
etal., 2016), and approaches that generate human-
interpretable information that is ideally correlated
with what is being learned inside the model (e.g.,
Lei et al. (2016)). Our approach falls into the lat-
ter type — we use our model’s reranking of human-
readable justifications to give us insight into what
the model considers informative for answering
questions. This allows us to see where we do well
(Section 6.2), and where we can improve (Section
6.3).

Deep learning has been successfully applied
to many recent QA approaches and related tasks
(Bordes et al., 2015; Hermann et al., 2015; He
and Golub, 2016; Dong et al., 2015; Tan et al.,
2016, inter alia). However, large quantities of
data are needed to train the millions of parame-
ters often contained in these models. Recently,
simpler model architectures have been proposed
that greatly reduce the number of parameters while
maintaining high performance (e.g., Iyyer et al.,
2015; Chen et al., 2016; Parikh et al., 2016). We
take inspiration from this trend and propose a sim-
ple neural architecture for our task to offset the
limited available training data.

Another way to mitigate sparse training data
is to include higher-level explicit features. Like
Sachan et al. (2016), we make use of explicit fea-
tures alongside features from distributed represen-
tations to capture connections between questions,
answers, and supporting text. However, we use a
simpler set of features and while they use struc-
tured and semi-structured knowledge bases, we
use only free-text.

Our approach to learning justification reranking
end-to-end with answer selection is similar to the
Jansen et al. (2017) latent reranking perceptron,
which also operates over free text. However, our
approach does not require decomposing the text
into an intermediate representation, allowing our
technique to more easily extend to larger textual
knowledge bases.

The way we have formulated our justification
selection (as a re-ranking of knowledge base sen-
tences) is related to, but distinct from the task of
answer sentence selection (Wang and Manning,
2010; Severyn and Moschitti, 2012, 2013; Sev-
eryn et al., 2013; Severyn and Moschitti, 2015;
Wang and Nyberg, 2015, inter alia). Answer sen-
tence selection is typically framed as a fully or
semi-supervised task for factoid questions, where

Qu estion

Te:aual
Candld ate
Answer

/ Fealure Extractor

Justification
Scores

Candidate
Answer
Score

Candidate
Justifications

Justification
Feature
Vectors

- /

Figure 1: Architecture of our question answering approach.
Given a question, candidate answer, and a free-text knowl-
edge base as inputs, we generate a pool of candidate justifica-
tions, from which we extract feature vectors. We use a neural
network to score each and then use max-pooling to select the
current best justification. This serves as the score for the can-
didate answer itself. The red border indicates the components
that are trained online.

a correctly selected sentence fully contains the an-
swer text. Here, we have a variety of questions,
many of which are non-factoid. Additionally, we
have no direct supervision for our justification se-
lection (i.e., no labels as to which sentences are
good justifications for our answers), motivating
our distant supervision approach where the per-
formance on our QA task serves as supervision
for selecting good justifications. Further, we are
not actually looking for sentences that contain
the answer choice, as with answer sentence selec-
tion, but rather sentences which close the “’lexical
chasm” (Berger et al., 2000) between question and
answer. This distinction is demonstrated in the ex-
ample in Table 1, where the correct answer does
not overlap lexically with the question and only
minimally with the justification. Instead, the jus-
tification serves as a bridge between the question
and answer, filling in the missing information for
the required inference.

3 Approach

One of the primary difficulties with the explain-
able QA task addressed here is that, while we have
supervision for the correct answer, we do not have
annotated answer justifications. Here we tackle
this challenge by using the QA task performance
as supervision for the justification reranking, al-
lowing us to learn to choose both the correct an-
swer and a compelling, human-readable justifica-
tion for that answer.

71

Additionally, similar to the strategy Chen and
Manning (2014) applied to parsing, we combine
representation-based features with explicit fea-
tures that capture additional information that is
difficult to model through embeddings, especially
with limited training data.

The architecture of our approach is summarized
in Figure 1. Given a question and a candidate an-
swer, we first query an textual knowledge base
(KB) to retrieve a pool of potential justifications
for that answer candidate. For each justification,
we extract a set of features designed to model the
relations between questions, answers, and answer
justifications based on word embeddings, lexical
overlap with the question and answer candidate,
discourse, and information retrieval (IR) (Section
4.2). These features are passed into a simple neu-
ral network to generate a score for each justifica-
tion, given the current state of the model. A final
max-pooling layer selects the top-scoring justifi-
cation for the candidate answer and this max score
is used also as the score for the answer candidate.
The system is trained using correct-incorrect an-
swer pairs with a pairwise margin ranking loss ob-
jective function to enforce that the correct answer
be ranked higher than any of the incorrect answers.

With this end-to-end approach, the model learns
to select justifications that allow it to correctly an-
swer questions. We hypothesize that this approach
enables the model to indirectly learn to choose
justifications that provide good explanations as to
why the answer is correct. We empirically test this
hypothesis in Section 6, where we show that in-
deed the model learns to correctly answer ques-
tions, as well as to select high-quality justifications
for those answers.

4 Model and Features

Our approach consists of three main components:
(a) the retrieval of a pool of candidate answer jus-
tifications (Section 4.1); (b) the extraction of fea-
tures for each (Section 4.2); and (c) the scoring
of the answer candidate itself based on this pool
of justifications (Section 4.3). The architecture of
this latter scoring component is shown in Figure 2.

4.1 Candidate Justification Retrieval

The first step in our process is to use standard in-
formation retrieval (IR) methods to retrieve a set of
candidate justifications for each candidate answer
to a given question. To do this, we build a bag-of-

Justification Score

T
LLLITITTTIIT]

S

Fully-
Connected
Layers

-

LT

e
Representation-Based Features

5 5 5 5 5
f—lﬁ

Encoder

LI

IR-Based
Features

Semi-
Lexicalized
Discourse
Features

Lexical
Overlap
Features

Encoder Encoder

a an a am It P

Justification
Words

Answer
Words

Question
Words

Figure 2: Detailed architecture of the model’s scoring com-
ponent. The question, candidate answer, and justification are
encoded (by summing their word embeddings) to create vec-
tor representations of each. These representations are com-
bined in several ways to create a set of representation-based
similarity features that are concatenated to additional explicit
features capturing lexical overlap, discourse and IR informa-
tion and fed into a feed-forward neural network. The output
layer of the network is a single node that represents the score
of the justification candidate.

words (BOW) query using the content lemmas for
the question and answer candidate, boosting the
answer lemmas to have four times more weight!.
We used Lucene? with a #f-idf based scoring func-
tion to return the top-scoring documents from the
KB. Each of these indexed documents consists of
a single sentence from our corpora, and serves as
one potential justification.

4.2 Feature Extraction

For each retrieved candidate justification, we ex-
tract a set of features based on (a) distributed rep-
resentations of the question, candidate answer, and
justification terms; (b) strict lexical overlap; (c)
discourse relations present in the justification; and
(d) the IR scores for the justification.

Representation-based features (Emb): To
model the similarity between the text of each ques-
tion (QQ), candidate answer (A), and candidate jus-
tification (J), we include a set of features that uti-
lize distributed representations of the words found
in each. First we encode each by summing the
vectors for each of their words.>. We then com-
pute sim(Q,A), sim(Q,J), and sim(A,J) us-

"We empirically found this answer term boosting to en-
sure retrieval of documents which were relevant to the partic-
ular answer candidate.

https://lucene.apache.org

3While this BOW approach is not ideal in many ways, it
performed equivalently to far more complicated approaches
such as LSTMs and GRUs, also noted by (Iyyer et al., 2015),
likely due to the limited training data in this domain.

N

72

ing cosine similarity. Using another vector repre-
sentation of only the unigue words in the justifica-
tion, i.e., the words that do not occur in either the
question or the candidate answer, we also compute
sim(Q, uniqueJ) and sim(A, uniquel).

To create a feature which captures the relation-
ship between the question, answer, and justifica-
tion, we take inspiration from TransE, a popu-
lar relation extraction framework (Bordes et al.,
2013). TransE is based on the premise that if two
entities, e; and es are related by a relation r, then
a mapping into k dimensions, m(z) € R* can
be learned such that m(e;) + m(r) ~ m(ez).
Here, we modify this intuition for QA by sug-
gesting that given the vectorized representations
of the question, answer candidate, and justifica-
tion above, Q + J ~ A, i.e., a question combined
with a strong justification will point towards an an-
swer. Here we model this as an explicit feature,
the euclidean distance between () + J and A, and
hypothesize that as a consequence the model will
learn to select passages that maximize the quality
of the justifications. This makes a total of six fea-
tures based on distributed representations.

Lexical overlap features (LLO): We additionally
characterize each justification in terms of a simple
set of explicit features designed to capture the size
of the justification, as well as the lexical overlap
(and difference) between the justification and the
question and answer candidate. We include these
five features: the proportion of question words, of
answer words, and of the combined set of question
and answer words that also appear in the justifica-
tion; the proportion of justification words that do
not appear in either the question or the answer; and
the length of the justification in words.*

Semi-Lexicalized Discourse features (lexDisc):
These features use the discourse structure of the
justification text, which has been shown to be use-
ful for QA (Jansen et al., 2014; Sharp et al., 2015;
Sachan et al., 2016).

We use the discourse parser of Surdeanu et al.
(2015) to fragment the text into elementary dis-
course units (EDUs) and then recursively con-
nect neighboring EDUs with binary discourse re-
lations. For each of the 18 possible relation la-
bels, we create a set of semi-lexicalized discourse
features that indicate the presence of a given dis-
course relation as well as whether or not the head

“We normalized this value by the maximum justification
length.

and modifier texts contain words from the question
and/or the answer.

For example, for the question Q: What makes
water a good solvent...? A: strong polarity, with
a discourse-parsed justification [Water is an effi-
cient solvent).1 [because of this polarity.]ca, we
create the semi-lexicalized feature Q_cause_A, be-
cause there is a Cause relation between EDUs el
and e2, el overlaps with the question, and e2 over-
laps with the answer. Since there are 18 possible
discourse relation labels, and the prefix and suffix
can be any of O, A, QA or None, this creates a set
of 288 indicator features.

IR-based features (IR*"): Finally, we also use
a set of four IR-based features which are assigned
at the level of the answer candidate (i.e., these fea-
tures are identical for each of the candidate justi-
fications for that answer choice). Using the same
query method as described in Section 4.1, for each
question and answer candidate we retrieve a set
of indexed documents. Using the #f-idf based re-
trieval scores of these returned documents, s(d;)
for d; € D, we rank the answer candidates using
two methods:

e by the maximum retrieved document score
for each candidate, and

e by the weighted sum of all retrieved docu-

ment scores”:
&)

We repeat this process using an unboosted query
as well, for a total of four rankings of the answer
candidates. We then use these rankings to make
a set of four reciprocal rank features, IR(T o,
IR:}H, for each answer candidate (i.e., IRar T=1.0
for the top-ranked candidate in the first ranking,
IR$™ = 0.5 for the next candidate, etc.)

4.3 Neural Network

As shown in Figure 2, the extracted features for
each candidate justification are concatenated and
passed into a fully-connected feed-forward neural
network (NN). The output layer is a single node
representing the justification score. We then use
max-pooling over these scores to select the current
best justification for the answer candidate, and use
its score as the score for the answer candidate it-
self. For training, the correct answer for a given

>Weighted sum was based on the IR scores used in the

winning Kaggle system from user Cardal (https://github.
com/Cardal/Kaggle_AllenAIscience)

73

question is paired with each of the incorrect an-
swers, and each are scored as above. We compute
the pair-wise margin ranking loss for each training
pair:

L =max(0,m — F(a™) + F(a™)))

where F'(a™) and F'(a™) are the model scores for
a correct and incorrect answer candidate and m is
the margin, and backpropagate the gradients. At
testing time, we use the trained model to score
each answer choice (again using the maximum
justification score) and select the highest-scoring.

As we are interested in not only correctly an-
swering questions, but also selecting valid justi-
fication for those answers, we keep track of the
scores of all justifications and use this information
to return the top £ justifications for each answer
choice. These are evaluated along with the answer
selection performance in Section 6.

5 Experiments

5.1 Data and Setup

We evaluated our model on the set of 8th grade
science questions that was provided by the Allen
Institute for Artificial Intelligence (AI2) for a re-
cent Kaggle challenge. The training set contained
2,500 question, each with 4 answer candidates.
For our test set, we used the 800 publicly-released
questions that were used as the validation set in the
actual evaluation.® We tuned our model architec-
tures and hyper-parameters on the training data us-
ing five-fold cross-validation (training on 4 folds,
validating on 1). During testing, we froze the
model architecture and all hyperparameters and
re-trained on all the training data, setting aside
a random 15% of training questions to facilitate
early stopping.

5.2 Baselines

In addition to previous work, we compare our
model against two strong IR baselines:

e IR Baseline: For this baseline, we rank an-
swer candidates by the maximum ¢f.idf doc-
ument retrieval score using an unboosted
query of question and answer terms (see Sec-
tion 4.1 for retrieval details).

e IR : This baseline uses the same architec-
ture as the full model, as described in Section
4.3, but with only the IR™ " feature group.

®The official testing dataset is not publicly available.

5.3 Corpora

For our pool of candidate justifications (as well
as the scores for our IR baselines) we used the
corpora that were cited as being most helpful to
the top-performing systems of the Kaggle chal-
lenge. These consisted of short, flash-card style
texts gathered from two online resources: about
700K sentences from StudyStack’ and 25K sen-
tences from Quizlet®. From these corpora, we use
the top 50 sentences retrieved by the IR model
as our set of candidate justifications. All of our
corpora were annotated using using the Stanford
CoreNLP toolkit (Manning et al., 2014), the de-
pendency parser of Chen and Manning (2014), and
the discourse parser of Surdeanu et al. (2015).

While our model is able to learn a set of em-
beddings, we found performance was improved
when using pre-trained embeddings, and in this
low-data domain, fixing these embeddings to not
update during training substantially reduced the
amount of model over-fitting. In order to pre-
train domain-relevant embeddings for our vocabu-
lary, we used the documents from the StudyStack
and Quizlet corpora, supplemented by the newly
released Aristo MINT corpus (December 2016 re-
lease)’, which contains 1.2M science-related sen-
tences from various web sources. The training was
done using the word2vec algorithm (Mikolov
et al., 2010, 2013) as implemented by Levy and
Goldberg (2014), such that the context for each
word in a sentence is composed of all the other
words in the same sentence. We used embeddings
of size 50 as we did not see a performance im-
provement with higher dimensionality.

5.4 Model Tuning

The neural model was implemented in Keras
(Chollet, 2015) using the Theano (Theano De-
velopment Team, 2016) backend. For our feed-
forward component, we use a shallow neural net-
work that we lightly tuned to have a single fully-
connected layer containing 10 nodes, glorot uni-
form initialization, a tanh activation, and an L2-
regularization of 0.1. We trained with the RM-
SProp optimizer (Tieleman and Hinton, 2012), a
learning rate of 0.001, 100 epochs, a batch size of
32, and early stopping with a patience of 5 epochs.
Our loss function used a margin of 1.0.

7https ://www.studystack.com/
8https ://quizlet.com/
9http ://allenai.org/

74

Model P@1 Val P@]1 Test
1 Random 25 25

2 IR Baseline 47.2 47

3 IRt 50.7** 36.35

4 lyyeretal. (2015) - 32.52

5 Khotetal. (2017) - 46.17

6 Our approach w/o IR~ 50.54" 48.66

7 Our approach 54,071t 53,3+

Table 2: Performance on the AI2 Kaggle questions, measured
by precision-at-one (P@1). *s indicate that the difference be-
tween the corresponding model and the IR baseline is sta-
tistically significant (* indicates p < 0.05 and ** indicates
p < 0.001) and s indicate significance compared to IRT™,
All significance values were determined through a one-tailed
bootstrap resampling test with 100,000 iterations.

Ablated Model P@1 Val
IRt +LO 53.4**TT
IRT" + LO + lexDisc 53.6**1f
Full Model (IRt 4+ LO + lexDisc + Emb) ~ 54.0**T1

Table 3: Ablation of feature groups results, measured by
precision-at-one (P@1) on validation data. Significance is
indicated as in Table 2.

We experimented with burn-in, i.e., using the
best justification chosen by the IR model for the
first mini-batches, but found that models without
burn-in performed better, indicating that the model
benefited from being able to select its own justifi-
cation.

6 Results

Rather than seeking to outperform all other sys-
tems at selecting the correct answer to a question,
here we aimed to construct a system system that
can produce substantially better justifications for
why the answer choice is correct to a human user,
without unduly sacrificing accuracy on the answer
selection task. Accordingly, we evaluate our sys-
tem both in terms of it’s ability to correctly answer
questions (Section 6.1), as well as provide high-
quality justifications for those answers (6.2). Ad-
ditionally, we perform an error analysis (Section
6.3), taking advantage of the insight the reranked
justifications provide into what the model is learn-
ing.

6.1 QA Performance

We evaluated the accuracy of our system as well
as the baselines on the held-out 800 set of test
questions. Performance, measured in precision at
1 (P@1)(Manning et al., 2008), is shown in Ta-
ble 2 for both the validation (i.e., cross validation
on training) and test partitions. Because NNs are
sensitive to initialization, each experimental result

shown is the average performance across five runs,
each using different random seeds.

The best performing baseline on the validation
data was a model using only IR™™" features (line
3), but its performance dropped substantially when
evaluated on test due to the failure of several ran-
dom seed initializations to learn. For this reason,
we assessed significance of our model combina-
tions with respect to both the IR baseline as well
as the IR™ (indicated by * and s, respectively).

Our full model that combines IRTT, lexical
overlap, discourse, and embeddings-based fea-
tures, has a P@1 of 53.3% (line 7), an absolute
gain of 6.3% over the strong IR baseline despite
using the same background knowledge.

Comparison to Previous Work: We compared
our performance against another model that
achieves state of the art performance on a differ-
ent set of 8th grade science questions, TUPLE-
INF(T+T’) (Khot et al., 2017). TUPLEINF(T+T")
uses Integer Linear Programming to find support
for questions via tuple representations of KB sen-
tences'?. On our test data, TUPLEINF(T+T")
achieves 46.17% P@1 (line 5). As this model is
independent of an IR component, we compare its
performance against our full system without the
IR-based features (line 6), whose performance is
48.66% P@1, an absolute improvement of 2.49%
P@1 (5.4% relative) despite our unstructured text
inputs and the far smaller size of our knowledge
base (three orders of magnitude).

Sachan et al. (2016) also tackle the AI2 Kag-
gle question set with an approach that learns align-
ments between questions and structured and semi-
structured KB data. They use only the training
questions (splitting them into training, validation,
and testing partitions), supplemented by questions
found in online study guides, and report an accu-
racy of 47.84%. By way of a loose comparison
(since we are evaluating on different data parti-
tions), our model has approximately 5% higher
performance despite our simpler set of features
and unstructured KB.

We also compare our model to our implementa-
tion of the basic Deep-Averaged Network (DAN)
Architecture of Iyyer et al. (2015). We used the
same 50-dimensional embeddings in both models,
so with the reduced embedding dimension, we re-

1Notably, one portion of the tuple KB used was con-
structed based on a different 8th grade question set than the
one we use here.

75

duced the size of each of the DAN dense layer to
50 as well. For simplicity, we also did not im-
plement their word-dropout, a feature that they re-
ported as providing a performance boost. Using
this implementation, the performance on the test
set was 31.50% P@1. To help with observed over-
fitting, we tried removing the dense layers and re-
ceived a small boost to 32.52% P@1 (line 4). The
lower performance of their model, which relies
exclusively on latent representations of the data,
underscores the benefit of including explicit fea-
tures alongside latent features in a deep-learning
approach for this domain'.

In comparison to other systems that competed
in the Kaggle challenge, our system comes in
in 7th place out of 170 competitors (top 4%).'?
Compared with the systems which disclosed their
methods, we use a subset of their corpora and sub-
stantially less hyperparameter tuning, and yet we
achieve competitive results.

Feature Ablation: To evaluate the contribution
of the individual feature groups, we additionally
performed an ablation experiment (see Table 3).
Each of our ablated models performed signifi-
cantly better than the IR baseline on the validation
set, including our simplest model, IRTT+LO.

6.2 Justification Performance

One of our key claims is that our approach ad-
dresses the related, but more challenging prob-
lem of performing explainable question answer-
ing, i.e., providing a high-quality, compelling jus-
tification for the chosen answer. To evaluate this
claim, we evaluated a random set of 100 test ques-
tions that both the IR baseline and our full sys-
tem answered correctly. For each question, we as-
sessed the quality of each of the top five justifica-
tions. For IR, these were the highest-scoring re-
trieved documents, and for our system, these were

" Another difference between our system and that of the
DAN baseline is our usage of a text justification. However,
we suspect this difference is not the source of the perfor-
mance difference: see Jansen et al. (2017), where a variant
of the DAN baseline that included an averaged representa-
tion of a justification alongside the averaged representations
of the question and answer failed to show a performance in-
crease.

12Based on the public leaderboard (nttps://www.kaggle.
com/c/the-allen-ai-science-challenge/leaderboard).
The best scoring submission had an accuracy of 59.38%.
Note that for the systems that participated, this set served as
validation while for us it was test, and thus it is likely that
these scores are slightly overfitted to this dataset, but for us it
was blind. As such this is a conservative comparison, and in
reality the difference is likely to be smaller.

Question
Q: Scientists use ice cores to help predict the impact of
future atmospheric changes on climate. Which property
of ice cores do these scientists use?
A: The composition of ancient materials trapped in air
bubbles

Rating
Good

Example Justification
Ice cores: cylinders of ice that scientist use to
study trapped atmospheric gases and particles
frozen with in the ice in air bubbles

Half Ice core: sample from the accumulation of snow
and ice over many years that have recrystallized
and have trapped air bubbles from previous time
periods

Topical Vesicular texture formation [has] trapped air
bubbles.

Off- Physical change: change during which some

topic properties of material change but ...

Table 4: Example justifications from the our model and their
associated ratings.

Model Good@1 Good@5 NDCG@5
IR Baseline 0.52 0.64 0.55
Our Approach 0.61 0.74 0.62*"

Table 5: Percentage of questions that have at least one
good justification within the top 1 (Good@1) and the top
5 (Good@5) justifications, as well as the normalized dis-
counted cumulative gain at 5 (NDCG@5) of the ranked justi-
fications. Significance indicated as in Table 2.

the top-scoring justifications as re-ranked by our
model. Each of these justifications was composed
of a single sentence from our corpus, though a fu-
ture version could use multi-sentence passages, or
aggregate several sentences together, as in Jansen
etal. (2017).

Following the methodology of Jansen et al.
(2017), each justification received a rating of ei-
ther Good (if the connection between the question
and correct answer was fully covered), Half (if
there was a missing link), Topical (if the justifi-
cation was simply of the right topic), or Off-Topic
(if the justification was completely unrelated to the
question). Examples of each rating are provided in
Table 4.

Results of this analysis are shown using three
evaluation metrics in Table 5. The first two
columns show the percentage of questions which
had a Good justification at position 1 (Good@1),
and within the top 5 (Good @5). Note that 61% of
the top-ranked justifications from our system were
rated as Good as compared to 52% from the IR
baseline (a gain of 9%), despite the systems using
identical corpora.

We also evaluated the justification ratings us-
ing normalized discounted cumulative gain at 5
(NDCG@5) (as formulated in Manning et al.

76

Number of Justification Changes by Epoch
2000

1500

1000

500

Number of Justification Changes

2 4 6 8

Epoch

Figure 3: Number of questions for which our complete model
chooses a new justification at each epoch during training.
While this is for a single random seed, we see essentially
identical graphs for each random initialization.

(2008), p.163), where we assigned Good justifi-
cations a gain of 3.0, Half a gain of 2.0, Topical a
gain of 1.0, and Off-Topic a gain of 0.0. With this
formulation, our system had a NDCG@5 of 0.62
while the IR baseline had a significantly lower
NDCG@5 of 0.55 (p < 0.001), shown in the third
column of Table 5.

Contribution of Learning to Rerank Justifica-
tions: The main assertion of this work is that
through learning to rank answers and justifications
for those answer candidates in an end-to-end man-
ner, we both answer questions correctly and pro-
vide compelling justifications as to why the an-
swer is correct. To confirm that this is the case, we
also ran a version of our system that does not re-
rank justifications, but uses the top-ranked justifi-
cation retrieved by IR. This configuration dropped
our performance on test to 48.7% P@1, a decrease
of 4.6%, and we additionally lose all justification
improvements from our system (see Section 6.2),
demonstrating that learning this reranking is key
to our approach.

Additionally, we tracked the number of times
a new justification was chosen by the model as it
trained. We found that our system converges to a
stable set of justifications during training, shown
in Figure 3.

6.3 Error Analysis

To better understand the limitations of our current
system, we performed an error analysis of 30 in-
correctly answered questions. We examined the
top 5 justifications returned for both the correct
and chosen answers. Notably, 50% of the ques-
tions analyzed had one or more good justifications

Error Type Percent
Short justification/High lexical overlap 53.3%
Complex inference required 43.3%
Knowledge Base Noise 6.7%
Word order necessary 6.7%
Coverage 6.7%
Negation 3.3%
Other 6.7%

Table 6: Summary of the findings of the 30 question error
analysis. Note that a given question may fall into more than
one category.

Type: Short justification/High lexical overlap

Question: The length of time between night and day on
Earth varies throughout the year. This time vari-
ance is explained primarily by
Earth ’s angle of tilt

... the days are very short in the winter because
the sun’s rays hit the earth at an extreme angle
... due to the tilt of the earth’s axis.

Earth ’s distance from the Sun

Is light year time or distance? Distance

Correct:

Chosen:

Table 7: Example of the system preferring a justification for
which all the terms were found in either the question or an-
swer candidate. (Justifications shown in italics)

in the top 5 returned by our system, but for a vari-
ety of reasons, summarized in Table 6, the system
incorrectly ranked another justification higher.

The table shows that the most common form of
error was the system’s preference for short justifi-
cations with a large degree of lexical overlap with
the question and answer choice itself, shown by
the example in Table 7. The effect was magnified
when the correct answer required more explana-
tion to connect the question to the answer. This
suggests that the system has learned that generally
many unmatched words are indicative of an incor-
rect answer. While this may typically be true, ex-
tending the system to be able to prefer the opposite
with certain types of questions would potentially
help with these errors.

Type: Complex inference required

Question: Mr. Harris mows his lawn twice each month.
He claims that it is better to leave the clippings
on the ground. Which long term effect will this
most likely have on his lawn?

Correct: It will provide the lawn with needed nutrients.

Table 8: Example of a question for which complex inference
is required. In order to answer the question, you would need
to assemble the event chain: cut grass left on the ground
— grass decomposes — decomposed material provides nu-
trients.

The second largest source of errors came from
questions requiring complex inference (causal,
process, quantitative, or model-based reasoning)
as with the question shown in Table 8. This
demonstrates not only the difficulty of the ques-

77

Type: Knowledge base noise

Question: If an object traveling to the right is acted upon
by an unbalanced force from behind it the object
will

Correct: speed up

Chosen change direction

Unbalanced force: force that acts on an object
that will change its direction

Table 9: Example of a question for which knowledge base
noise (here, in the form of over-generalization) was an issue.

tion set but also the need for systems that can ro-
bustly handle a variety of question types and their
corresponding information needs.

Aside from these primary sources of error, there
were some smaller trends: 7% of the incorrectly
chosen answers actually had justifications which
“validated” them due to noise in the knowledge
base (e.g., the example shown in Table 9), 7% re-
quired word-order to answer (e.g., mass divided
by acceleration vs. acceleration divided by mass),
another 7% of questions suffered from lack of cov-
erage of the question concept in the knowledge
base, and 3% failed to appropriately handle nega-
tion (i.e., questions of the format Which of the fol-
lowing are NOT ...).

7 Conclusion

Here we propose an end-to-end question answer-
ing (QA) model that learns to correctly answer
questions as well as provide compelling, human-
readable justifications for its answers, despite not
having access to labels for justification quality. We
do this by using the question answering task as a
form of distant supervision for learning justifica-
tion re-ranking. We show that our accuracy and
justification quality are significantly better than a
strong IR baseline, while maintaining near state-
of-the-art performance for the answer selection
task as well.

Acknowledgments

We thank the Allen Institute for Artificial In-
telligence for funding this work. Additionally,
this work was partially funded by the Defense
Advanced Research Projects Agency (DARPA)
Big Mechanism program under ARO contract
WOI11INF-14-1-0395. Dr. Mihai Surdeanu dis-
closes a financial interest in Lum.ai. This inter-
est has been disclosed to the University of Ari-
zona Institutional Review Committee and is being
managed in accordance with its conflict of interest
policies.

References

Adam Berger, Rich Caruana, David Cohn, Dayne Frey-
tag, and Vibhu Mittal. 2000. Bridging the lexical
chasm: Statistical approaches to answer finding. In
Proceedings of the 23rd Annual International ACM
SIGIR Conference on Research & Development on
Information Retrieval. Athens, Greece.

Antoine Bordes, Nicolas Usunier, Sumit Chopra, and
Jason Weston. 2015. Large-scale simple ques-
tion answering with memory networks. CoRR
abs/1506.02075.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Duran, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. In NIPS.

Dangi Chen, Jason Bolton, and Christopher D. Man-
ning. 2016. A thorough examination of the
cnn/daily mail reading comprehension task. In As-
sociation for Computational Linguistics (ACL).

Dangi Chen and Christopher D Manning. 2014. A fast
and accurate dependency parser using neural net-
works. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Process-
ing. pages 740-750.

F. Chollet. 2015. Keras. https://github.com/
fchollet/keras.

Peter Clark. 2015. Elementary school science and math
tests as a driver for Al: take the Aristo challenge! In
Blai Bonet and Sven Koenig, editors, Proceedings
of the Twenty-Ninth AAAI Conference on Artificial
Intelligence, January 25-30, 2015, Austin, Texas,
USA.. AAAI Press, pages 4019-4021.

Peter Clark, Philip Harrison, and Niranjan Balasubra-
manian. 2013. A study of the knowledge base re-
quirements for passing an elementary science test.
In Proceedings of the 2013 Workshop on Automated
Knowledge Base Construction. AKBC’13, pages
37-42.

Mark W Craven and Jude W Shavlik. 1996. Extracting
tree-structured representations of trained networks.
Advances in neural information processing systems
pages 24-30.

Li Dong, Furu Wei, Ming Zhou, and Ke Xu.
2015. Question answering over freebase with multi-
column convolutional neural networks. In Proceed-
ings of Association for Computational Linguistics.
pages 260-269.

Xiaodong He and David Golub. 2016. Character-
level question answering with attention. In Pro-
ceedings of the 2016 Conference on Empirical Meth-
ods in Natural Language Processing. Association
for Computational Linguistics, pages 1598-1607.

78

Karl Moritz Hermann, Tomd$ Kocisky, Edward
Grefenstette, Lasse Espeholt, Will Kay, Mustafa Su-
leyman, and Phil Blunsom. 2015. Teaching ma-
chines to read and comprehend. In Advances in Neu-
ral Information Processing Systems (NIPS).

Mohit Iyyer, Varun Manjunatha, Jordan Boyd-Graber,
and Hal Daumé III. 2015. Deep unordered compo-
sition rivals syntactic methods for text classification.
In Association for Computational Linguistics.

Peter Jansen, Niranjan Balasubramanian, Mihai Sur-
deanu, and Peter Clark. 2016. What’s in an expla-
nation? characterizing knowledge and inference re-
quirements for elementary science exams. In Pro-
ceedings of COLING 2016, the 26th International
Conference on Computational Linguistics: Techni-
cal Papers. The COLING 2016 Organizing Commit-
tee, Osaka, Japan, pages 2956-2965.

Peter Jansen, Rebecca Sharp, Mihai Surdeanu, and Pe-
ter Clark. 2017. Framing qa as building and ranking
intersentence answer justifications. Computational
Linguistics .

Peter Jansen, Mihai Surdeanu, and Peter Clark. 2014.
Discourse complements lexical semantics for non-
factoid answer reranking. In Proceedings of the
52nd Annual Meeting of the Association for Com-
putational Linguistics (ACL).

Tushar Khot, Ashish Sabharwal, and Peter Clark. 2017.
Answering complex questions using open informa-
tion extraction. In Proceedings of Association for
Computational Linguistics (ACL).

Been Kim, Julie A. Shah, and Finale Doshi-Velez.
2015. Mind the gap: A generative approach to inter-
pretable feature selection and extraction. In NIPS.

Tao Lei, Regina Barzilay, and Tommi S. Jaakkola.
2016. Rationalizing neural predictions. In Proceed-
ings of the 2016 Conference on Empirical Methods
in Natural Language Processing.

Benjamin Letham, Cynthia Rudin, Tyler H Mc-
Cormick, David Madigan, et al. 2015. Interpretable
classifiers using rules and bayesian analysis: Build-
ing a better stroke prediction model. The Annals of
Applied Statistics 9(3):1350-1371.

O. Levy and Y. Goldberg. 2014. Dependency-based
word embeddings. In Proceedings of the 52nd An-
nual Meeting of the Association for Computational
Linguistics (ACL). pages 302-308.

Jiwei Li, Xinlei Chen, Eduard Hovy, and Dan Juraf-
sky. 2016. Visualizing and understanding neural
models in nlp. In Proceedings of the 2016 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies. Association for Computational
Linguistics, pages 681-691.

Christopher D. Manning, Prabhakar Raghavan, and
Hinrich Schiitze. 2008. Introduction to Information
Retrieval. Cambridge University Press.

Christopher D Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J Bethard, and David Mc-
Closky. 2014. The stanford corenlp natural language
processing toolkit. In Proceedings of 52nd Annual
Meeting of the Association for Computational Lin-
guistics: System Demonstrations. pages 55-60.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. In Proceedings of the Inter-
national Conference on Learning Representations
(ICLR).

Tomas Mikolov, Martin Karafiat, Lukas Burget, Jan
Cernocky, and Sanjeev Khudanpur. 2010. Recurrent
neural network based language model. In Proceed-
ings of the 11th Annual Conference of the Interna-
tional Speech Communication Association (INTER-
SPEECH 2010).

Ankur P. Parikh, Oscar Téckstrém, Dipanjan Das, and
Jakob Uszkoreit. 2016. A decomposable attention
model for natural language inference. In Proceed-
ings of the 2016 Conference on Empirical Methods
in Natural Language Processing.

Marco Ribeiro, Sameer Singh, and Carlos Guestrin.
2016. “Why Should I Trust You?”’: Explaining
the predictions of any classifier. In Proceedings of
the 2016 Conference of the North American Chap-
ter of the Association for Computational Linguis-
tics: Demonstrations. Association for Computa-
tional Linguistics, pages 97-101.

Mrinmaya Sachan, Avinava Dubey, and Eric P Xing.
2016. Science question answering using instruc-
tional materials. In The 54th Annual Meeting of
the Association for Computational Linguistics. page
467.

Aliaksei Severyn and Alessandro Moschitti. 2012.
Structural relationships for large-scale learning of
answer re-ranking. In Proceedings of the 35th Inter-
national ACM SIGIR Conference on Research and
Development in Information Retrieval.

Aliaksei Severyn and Alessandro Moschitti. 2013. Au-
tomatic feature engineering for answer selection and
extraction. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing
(EMNLP).

Aliaksei Severyn and Alessandro Moschitti. 2015.
Learning to rank short text pairs with convolutional
deep neural networks. In Proceedings of the 38th
International ACM SIGIR Conference on Research
and Development in Information Retrieval.

Aliaksei Severyn, Massimo Nicosia, and Alessandro
Moschitti. 2013. Learning adaptable patterns for
passage reranking. In Proceedings of the Seven-
teenth Conference on Computational Natural Lan-
guage Learning (CoNLL).

79

Rebecca Sharp, Peter Jansen, Mihai Surdeanu, and Pe-
ter Clark. 2015. Spinning straw into gold: Using
free text to train monolingual alignment models for
non-factoid question answering. In Proceedings of
the 2015 Conference of the North American Chap-
ter of the Association for Computational Linguis-
tics: Human Language Technologies. Association
for Computational Linguistics, Denver, Colorado,
pages 231-237.

Mihai Surdeanu, Thomas Hicks, and Marco A.
Valenzuela-Escarcega. 2015. Two practical rhetor-
ical structure theory parsers. In Proceedings of
the North American Chapter of the Association
for Computational Linguistics (NAACL): Software
Demonstrations.

Ming Tan, Cicero dos Santos, Bing Xiang, and Bowen
Zhou. 2016. Improved representation learning for
question answer matching. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers). As-
sociation for Computational Linguistics, pages 464—
473.

Theano Development Team. 2016. Theano: A Python
framework for fast computation of mathematical ex-
pressions. arXiv e-prints abs/1605.02688.

Tijmen Tieleman and Geoffrey Hinton. 2012. Lecture
6.5-rmsprop: Divide the gradient by a running aver-
age of its recent magnitude. COURSERA: Neural
Networks for Machine Learning.

Di Wang and Eric Nyberg. 2015. A long short-term
memory model for answer sentence selection in
question answering. In Proceedings of the 53rd An-
nual Meeting of the Association for Computational
Linguistics and the 7th International Joint Confer-
ence on Natural Language Processing (Volume 2:
Short Papers). Association for Computational Lin-
guistics, pages 707-712.

Mengqiu Wang and Christopher Manning. 2010. Prob-
abilistic tree-edit models with structured latent vari-
ables for textual entailment and question answering.
In Proceedings of the 23rd International Conference
on Computational Linguistics (Coling 2010). Coling
2010 Organizing Committee, pages 1164—1172.

Matthew D. Zeiler and Rob Fergus. 2014. Visual-
izing and Understanding Convolutional Networks,
Springer International Publishing, Cham, pages
818-833.

CoNLL’17

Learning What is Essential in Questions

Daniel Khashabi'
Univ. of Pennsylvania

danielkh@cis.upenn.edu

Tushar Khot

Abstract

Question answering (QA) systems are eas-
ily distracted by irrelevant or redundant
words in questions, especially when faced
with long or multi-sentence questions in
difficult domains. This paper introduces
and studies the notion of essential ques-
tion terms with the goal of improving
such QA solvers. We illustrate the im-
portance of essential question terms by
showing that humans’ ability to answer
questions drops significantly when essen-
tial terms are eliminated from questions.
We then develop a classifier that reliably
(90% mean average precision) identifies
and ranks essential terms in questions. Fi-
nally, we use the classifier to demonstrate
that the notion of question term essen-
tiality allows state-of-the-art QA solvers
for elementary-level science questions to
make better and more informed decisions,
improving performance by up to 5%.

We also introduce a new dataset of over
2,200 crowd-sourced essential terms anno-
tated science questions.

1 Introduction

Understanding what a question is really about is
a fundamental challenge for question answering
systems that operate with a natural language in-
terface. In domains with multi-sentence ques-
tions covering a wide array of subject areas, such
as standardized tests for elementary level science,
the challenge is even more pronounced (Clark,
2015). Many QA systems in such domains

1 Most of the work was done when the first and last
authors were affiliated with the University of Illinois, Urbana-
Champaign.

Ashish Sabharwal
Allen Institute for Al

tushark, ashishs@allenai.org

80

Dan Roth'
Univ. of Pennsylvania

danroth@cis.upenn.edu

derive significant leverage from relatively shal-
low Information Retrieval (IR) and statistical cor-
relation techniques operating on large unstruc-
tured corpora (Kwok et al., 2001; Clark et al.,
2016). Inference based QA systems operating on
(semi-)structured knowledge formalisms have also
demonstrated complementary strengths, by using
optimization formalisms such as Semantic Pars-
ing (Yih et al., 2014), Integer Linear Program
(ILP) (Khashabi et al., 2016), and probabilistic
logic formalisms such as Markov Logic Networks
(MLNs) (Khot et al., 2015).

These QA systems, however, often struggle
with seemingly simple questions because they are
unable to reliably identify which question words
are redundant, irrelevant, or even intentionally dis-
tracting. This reduces the systems’ precision and
results in questionable “reasoning” even when the
correct answer is selected among the given alter-
natives. The variability of subject domain and
question style makes identifying essential question
words challenging. Further, essentiality is context
dependent—a word like ‘animals’ can be critical
for one question and distracting for another. Con-
sider the following example:

One way animals usually respond to a sudden drop in tem-
perature is by (A) sweating (B) shivering (C) blinking (D)
salivating.

A state-of-the-art optimization based QA system
called TableILP (Khashabi et al., 2016), which
performs reasoning by aligning the question to
semi-structured knowledge, aligns only the word
‘animals’ when answering this question. Not sur-
prisingly, it chooses an incorrect answer. The issue
is that it does not recognize that “drop in tempera-
ture” is an essential aspect of the question.
Towards this goal, we propose a system that can
assign an essentiality score to each term in the
question. For the above example, our system gen-

Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017), pages 8089,
Vancouver, Canada, August 3 - August 4, 2017. (©2017 Association for Computational Linguistics

0.75
0.5
0.25

One
way
animals
usually
respond
sudden
drop

in
temperature
is

by

Figure 1: Essentiality scores generated by our
system, which assigns high essentiality to “drop”
and “temperature”.

erates the scores shown in Figure 1, where more
weight is put on “temperature” and “sudden drop”.
A QA system, when armed with such information,
is expected to exhibit a more informed behavior.

We make the following contributions:

(A) We introduce the notion of question term
essentiality and release a new dataset of 2,223
crowd-sourced essential term annotated questions
(total 19K annotated terms) that capture this con-
cept.! We illustrate the importance of this con-
cept by demonstrating that humans become sub-
stantially worse at QA when even a few essential
question terms are dropped.

(B) We design a classifier that is effective at pre-
dicting question term essentiality. The F1 (0.80)
and per-sentence mean average precision (MAP,
0.90) scores of our classifier supercede the closest
baselines by 3%-5%. Further, our classifier gener-
alizes substantially better to unseen terms.

(C) We show that this classifier can be used
to improve a surprisingly effective IR based QA
system (Clark et al., 2016) by 4%-5% on previ-
ously used question sets and by 1.2% on a larger
question set. We also incorporate the classifier
in TableILP (Khashabi et al., 2016), resulting in
fewer errors when sufficient knowledge is present
for questions to be meaningfully answerable.

1.1 Related Work

Our work can be viewed as the study of an inter-
mediate layer in QA systems. Some systems im-
plicitly model and learn it, often via indirect sig-
nals from end-to-end training data. For instance,
Neural Networks based models (Wang et al., 2016;
Tymoshenko et al., 2016; Yin et al., 2016) implic-
itly compute some kind of attention. While this is
intuitively meant to weigh key words in the ques-
tion more heavily, this aspect hasn’t been system-

! Annotated dataset and classifier available at https:
//github.com/allenai/essential-terms

81

atically evaluated, in part due to the lack of ground
truth annotations.

There is related work on extracting question
type information (Li and Roth, 2002; Li et al.,
2007) and applying it to the design and analysis of
end-to-end QA systems (Moldovan et al., 2003).
The concept of term essentiality studied in this
work is different, and so is our supervised learn-
ing approach compared to the typical rule-based
systems for question type identification.

Another line of relevant work is sentence com-
pression (Clarke and Lapata, 2008), where the
goal is to minimize the content while maintain-
ing grammatical soundness. These approaches
typically build an internal importance assignment
component to assign significance scores to various
terms, which is often done using language models,
co-occurrence statistics, or their variants (Knight
and Marcu, 2002; Hori and Sadaoki, 2004). We
compare against unsupervised baselines inspired
by such importance assignment techniques.

In a similar spirit, Park and Croft (2015) use
translation models to extract key terms to prevent
semantic drift in query expansion.

One key difference from general text summa-
rization literature is that we operate on questions,
which tend to have different essentiality charac-
teristics than, say, paragraphs or news articles. As
we discuss in Section 2.1, typical indicators of es-
sentiality such as being a proper noun or a verb
(for event extraction) are much less informative for
questions. Similarly, while the opening sentence
of a Wikipedia article is often a good summary, it
is the last sentence (in multi-sentence questions)
that contains the most pertinent words.

In parallel to our effort, Jansen et al. (2017) re-
cently introduced a science QA system that uses
the notion of focus words. Their rule-based system
incorporates grammatical structure, answer types,
etc. We take a different approach by learning a
supervised model using a new annotated dataset.

2 Essential Question Terms

In this section, we introduce the notion of essential
question terms, present a dataset annotated with
these terms, and describe two experimental studies
that illustrate the importance of this notion—we
show that when dropping terms from questions,
humans’ performance degrades significantly faster
if the dropped terms are essential question terms.
Given a question g, we consider each non-

stopword token in ¢ as a candidate for being an
essential question term. Precisely defining what
is essential and what isn’t is not an easy task and
involves some level of inherent subjectivity. We
specified three broad criteria: 1) altering an es-
sential term should change the intended meaning
of ¢, 2) dropping non-essential terms should not
change the correct answer for ¢, and 3) grammat-
ical correctness is not important. We found that
given these relatively simple criteria, human anno-
tators had a surprisingly high agreement when an-
notating elementary-level science questions. Next
we discuss the specifics of the crowd-sourcing task
and the resulting dataset.

2.1 Crowd-Sourced Essentiality Dataset

We collected 2,223 elementary school science
exam questions for the annotation of essential
terms. This set includes the questions used by
Clark et al. (2016)? and additional ones obtained
from other public resources such as the Internet
or textbooks. For each of these questions, we
asked crowd workers® to annotate essential ques-
tion terms based on the above criteria as well as a
few examples of essential and non-essential terms.
Figure 2 depicts the annotation interface.

The questions were annotated by 5 crowd work-
ers,* and resulted in 19,380 annotated terms. The
Fleiss’” kappa statistic (Fleiss, 1971) for this task
was x = 0.58, indicating a level of inter-annotator
agreement very close to ‘substantial’. In particu-
lar, all workers agreed on 36.5% of the terms and
at least 4 agreed on 69.9% of the terms. We use
the proportion of workers that marked a term as
essential to be its annotated essentiality score.

On average, less than one-third (29.9%) of the
terms in each question were marked as essential
(i.e., score > 0.5). This shows the large propor-
tion of distractors in these science tests (as com-
pared to traditional QA datasets), further showing
the importance of this task. Next we provide some
insights into these terms.

We found that part-of-speech (POS) tags are not
a reliable predictor of essentiality, making it diffi-
cult to hand-author POS tag based rules. Among

These are the only publicly available state-level science
exams. http://www.nysedregents.org/Grade4/Science/

3We use Amazon Mechanical Turk for crowd-sourcing.

4A few invalid annotations resulted in about 1% of the
questions receiving fewer annotations. 2,199 questions re-
ceived at least 5 annotations (79 received 10 annotations due
to unintended question repetition), 21 received 4 annotations,
and 4 received 3 annotations.

82

the proper nouns (NNP, NNPS) mentioned in the
questions, fewer than half (47.0%) were marked
as essential. This is in contrast with domains such
as news articles where proper nouns carry per-
haps the most important information. Nearly two-
thirds (65.3%) of the mentioned comparative ad-
jectives (JJR) were marked as essential, whereas
only a quarter of the mentioned superlative ad-
jectives (JJIS) were deemed essential. Verbs were
marked essential less than a third (32.4%) of the
time. This differs from domains such as math
word problems where verbs have been found to
play a key role (Hosseini et al., 2014).

The best single indicator of essential terms, not
surprisingly, was being a scientific term> (such as
precipitation and gravity). 76.6% of such terms
occurring in questions were marked as essential.

In summary, we have a term essentiality an-
notated dataset of 2,223 questions. We split this
into train/development/test subsets in a 70/9/21 ra-
tio, resulting in 483 test sentences used for per-
question evaluation.

We also derive from the above an annotated
dataset of 19,380 terms by pooling together all
terms across all questions. Each term in this larger
dataset is annotated with an essentiality score in
the context of the question it appears in. This
results in 4,124 test instances (derived from the
above 483 test questions). We use this dataset for
per-term evaluation.

2.2 The Importance of Essential Terms

Here we report a second crowd-sourcing experi-
ment that validates our hypothesis that the ques-
tion terms marked above as essential are, in fact,
essential for understanding and answering the
questions. Specifically, we ask: Is the question
still answerable by a human if a fraction of the
essential question terms are eliminated? For in-
stance, the sample question in the introduction is
unanswerable when “drop” and “temperature” are
removed from the question: One way animals usu-
ally respond to a sudden * in *is by ___?

To this end, we consider both the annotated es-
sentiality scores as well as the score produced by
our trained classifier (to be presented in Section
3). We first generate candidate sets of terms to
eliminate using these essentiality scores based on a
threshold £ € {0,0.2,...,1.0}: (a) essential set:
terms with score > &; (b) non-essential set: terms

SWe use 9,144 science terms from Khashabi et al. (2016).

correct answer option, keeping in mind that:
« Essential phrase will change the core meaning.
« Non-essential item will not change the answer.
« Grammatical correctness is not important.

Examples

environment (C) attract a mate (D) search for food

Below is an elementary science question along with a few answer options. Using checkboxes, tell us which words or phrases of the question are essential for choosing the

1. Which type of energy does a person use to pedal a bicycle? (A) light (B) sound (C) mechanical (D) electrical
2. A turtle eating worms is an example of (A) breathing (B) reproducing (C) eliminating waste (D) taking in nutrients

3. A duck's feathers are covered with a natural oil that keeps the duck dry. This is a special feature ducks have that helps them (A) feed their young (B) adapt to the

Mark the essential words:

How does the length of daylight in New York State change from summer to fall 1) It decreases. 2) It increases. 3) It remains the same.

Figure 2: Crowd-sourcing interface for annotating essential terms in a question, including the criteria for

essentiality and sample annotations.

In this experiment we will answer a simple science questions.

For each question, we intentionally drop a couple of terms and replace them with ***, in order to assess the importance of terms dropped or remained.
Note that depending on the experiment, very few or all the words might be dropped.

Clearly if terms dropped are important, the modified question will be impossible to asnwer.

Please indicate the correct answer (and if it is not answerable, choose the last option "l don't know; the information is not enough").

material *** food?
KA) cockroach (B) tree (C) snake (D) robi

Selected Anwer: | (A) 9

Scientists *** several different organisms ** ok ekx sokok skokok ook dokk xokok kokk grganisms *xk kkk kekx xkck depend *** dead plant *** animal

Figure 3: Crowd-sourcing interface for verifying the validity of essentiality annotations generated by the
first task. Annotators are asked to answer, if possible, questions with a group of terms dropped.

with score < £. We then ask crowd workers to try
to answer a question after replacing each candidate
set of terms with “***”_ In addition to four orig-
inal answer options, we now also include “I don’t
know. The information is not enough” (cf. Fig-
ure 3 for the user interface).® For each value of &,
we obtain 5 X 269 annotations for 269 questions.
We measure how often the workers feel there is
sufficient information to attempt the question and,
when they do attempt, how often do they choose
the right answer.

Each value of £ results in some fraction of terms
to be dropped from a question; the exact num-
ber depends on the question and on whether we

®Tt is also possible to directly collect essential term groups
using this task. However, collecting such sets of essential
terms would be substantially more expensive, as one must
iterate over exponentially many subsets rather than the linear
number of terms used in our annotation scheme.

&3

use annotated scores or our classifier’s scores. In
Figure 4, we plot the average fraction of terms
dropped on the horizontal axis and the correspond-
ing fraction of questions attempted on the verti-
cal axis. Solid lines indicate annotated scores and
dashed lines indicate classifier scores. Blue lines
(bottom left) illustrate the effect of eliminating es-
sential sets while red lines (top right) reflect elim-
inating non-essential sets.

We make two observations. First, the solid blue
line (bottom-left) demonstrates that dropping even
a small fraction of question terms marked as es-
sential dramatically reduces the QA performance
of humans. E.g., dropping just 12% of the terms
(with high essentiality scores) makes 51% of the
questions unanswerable. The solid red line (top-
right), on the other hand, shows the opposite trend
for terms marked as not-essential: even after drop-

0.8

0.6 \

0.4}

—— Annotation:drop-essentials-above-x
Annotation:drop-essentials-below-x

= == Classifier:drop-essentials-above-x

Classifier:drop-essentials-below-x

fraction of questions attempted

0.2 0.3 0.5
fraction of question terms dropped

0 I
0 0.1

Figure 4: The relationship between the frac-
tion of question words dropped and the fraction
of the questions attempted (fraction of the ques-
tions workers felt comfortable answering). Drop-
ping most essential terms (blue lines) results in
very few questions remaining answerable, while
least essential terms (red lines) allows most ques-
tions to still be answerable. Solid lines indicate
human annotation scores while dashed lines indi-
cate predicted scores.

ping 80% of such terms, 65% of the questions re-
mained answerable.

Second, the dashed lines reflecting the results
when using scores from our ET classifier are very
close to the solid lines based on human annotation.
This indicates that our classifier, to be described
next, closely captures human intuition.

3 Essential Terms Classifier

Given the dataset of questions and their terms an-
notated with essential scores, is it possible to learn
the underlying concept? Towards this end, given a
question g , answer options a, and a question term
q;, we seek a classifier that predicts whether ¢; is
essential for answering q. We also extend it to pro-
duce an essentiality score et(q;, q,a) € [0,1].” We
use the annotated dataset from Section 2, where
real-valued essentiality scores are binarized to 1 if
they are at least 0.5, and to 0 otherwise.

We train a linear SVM classifier (Joachims,
1998), henceforth referred to as ET classifier.
Given the complex nature of the task, the fea-
tures of this classifier include syntactic (e.g., de-
pendency parse based) and semantic (e.g., Brown

"The essentiality score may alternatively be defined as
et(q, q), independent of the answer options a. This is more
suitable for non-multiple choice questions. Our system uses
a only to compute PMI-based statistical association features
for the classifier. In our experiments, dropping these features
resulted in only a small drop in the classifier’s performance.

84

cluster representation of words (Brown et al.,
1992), alist of scientific words) properties of ques-
tion words, as well as their combinations. In total,
we use 120 types of features (cf. Appendix ?? of
our Extended edition (Khashabi et al., 2017)).

Baselines. To evaluate our approach, we devise
a few simple yet relatively powerful baselines.

First, for our supervised baseline, given
(g1, q,a) as before, we ignore ¢ and compute how
often is ¢; annotated as essential in the entire
dataset. In other words, the score for ¢; is the
proportion of times it was marked as essential in
the annotated dataset. If the instance is never ob-
server in training, we choose an arbitrary label
as prediction. We refer to this baseline as la-
bel proportion baseline and create two variants of
it: PROPSURF based on surface string and PRO-
PLEM based on lemmatizing the surface string.
For unseen g, this baseline makes a random guess
with uniform distribution.

Our unsupervised baseline is inspired by work
on sentence compression (Clarke and Lapata,
2008) and the PMI solver of Clark et al. (2016),
which compute word importance based on co-
occurrence statistics in a large corpus. In a cor-
pus C of 280 GB of plain text (5 x 100 to-
kens) extracted from Web pages,® we identify un-
igrams, bigrams, trigrams, and skip-bigrams from
q and each answer option a;. For a pair (x,y)
of n-grams, their pointwise mutual information
(PMI) (Church and Hanks, 1989) in C is defined
as log pz(jg(cg)i’f@) where p(z,y) is the co-occurrence
frequency of x and y (within some window) in C.
For a given word x, we find all pairs of question n-
grams and answer option n-grams. MAXPMI and
SUMPMI score the importance of a word = by
max-ing or summing, resp., PMI scores p(x,y)
across all answer options y for q. A limitation of
this baseline is its dependence on the existence of
answer options, while our system makes essential-
ity predictions independent of the answer options.

We note that all of the aforementioned baselines
produce real-valued confidence scores (for each
term in the question), which can be turned into bi-
nary labels (essential and non-essential) by thresh-
olding at a certain confidence value.

8Collected by Charles Clarke at the University of Water-
loo, and used previously by Turney (2013).

3.1 Evaluation

We consider two natural evaluation metrics for es-
sentiality detection, first treating it as a binary pre-
diction task at the level of individual terms and
then as a task of ranking terms within each ques-
tion by the degree of essentiality.

Binary Classification of Terms. We consider
all question terms pooled together as described
in Section 2.1, resulting in a dataset of 19,380
terms annotated (in the context of the correspond-
ing question) independently as essential or not.
The ET classifier is trained on the train subset, and
the threshold is tuned using the dev subset.

AUC Acc P R F1
MaXPMI | 074 067 | 0.88 0.65 0.75
SumPMI 0.74 0.67 | 0.88 0.65 0.75
PROPSURF 0.79 061 | 0.68 0.64 0.66
PROPLEM 0.80 063 | 076 0.64 0.69
ET Classifier | 0.79 0.75 | 091 0.71 0.80

Table 1: Effectiveness of various methods for
identifying essential question terms in the test set,
including area under the PR curve (AUC), accu-
racy (Acc), precision (P), recall (R), and F1 score.
ET classifier substantially outperforms all super-
vised and unsupervised (denoted with 1) baselines.

For each term in the corresponding test set of
4,124 instances, we use various methods to pre-
dict whether the term is essential (for the corre-
sponding question) or not. Table 1 summarizes
the resulting performance. For the threshold-based
scores, each method was tuned to maximize the
F1 score based on the dev set. The ET classifier
achieves an F1 score of 0.80, which is 5%-14%
higher than the baselines. Its accuracy at 0.75 is
statistically significantly better than all baselines
based on the Binomial® exact test (Howell, 2012)
at p-value 0.05.

As noted earlier, each of these essentiality iden-
tification methods are parameterized by a thresh-
old for balancing precision and recall. This allows
them to be tuned for end-to-end performance of
the downstream task. We use this feature later
when incorporating the ET classifier in QA sys-
tems. Figure 5 depicts the PR curves for vari-
ous methods as the threshold is varied, highlight-
ing that the ET classifier performs reliably at var-
ious recall points. Its precision, when tuned to
optimize F1, is 0.91, which is very suitable for

Each test term prediction is assumed to be a binomial.

85

MaxPMI
095 SumPMI
PropSurf
0.9 PropLemma | |
0.85 ET
=
.g 0.8
2
£ 075
a9}
0.7
0.65
06
0.55 1 1 1 1
0 0.2 0.4 0.6 0.8 1
Recall
Figure 5: Precision-recall trade-off for various

classifiers as the threshold is varied. ET classifier
(green) is significantly better throughout.

AUC Acc P R F1

MAXPMI 075 063] 0.81 065 072

SumPMI 075 063 | 0.80 0.66 0.72

PROPSURF 0.57 051 | 049 0.61 0.54

PROPLEM 058 049 | 050 0.59 054

ET Classifier | 0.78 0.71 | 0.88 0.71 0.78
Table 2: Generalization to unseen terms: Effec-

tiveness of various methods, using the same met-
rics as in Table 1. As expected, supervised meth-
ods perform poorly, similar to a random baseline.
Unsupervised methods generalize well, but the ET
classifier again substantially outperforms them.

high-precision applications. It has a 5% higher
AUC (area under the curve) and outperforms base-
lines by roughly 5% throughout the precision-
recall spectrum.

As a second study, we assess how well our clas-
sifier generalizes to unseen terms. For this, we
consider only the 559 test terms that do not appear
in the train set.'” Table 2 provides the resulting
performance metrics. We see that the frequency
based supervised baselines, having never seen the
test terms, stay close to the default precision of
0.5. The unsupervised baselines, by nature, gener-
alize much better but are substantially dominated
by our ET classifier, which achieves an F1 score
of 78%. This is only 2% below its own F1 across
all seen and unseen terms, and 6% higher than the
second best baseline.

Ranking Question Terms by Essentiality.
Next, we investigate the performance of the ET
classifier as a system that ranks all terms within
a question in the order of essentiality. Thus,

'%In all our other experiments, test and train questions are
always distinct but may have some terms in common.

System MAP
MAXPMI T 0.87
SUMPMI | 0.85
PROPSURF 0.85
PROPLEM 0.86
ET Classifier 0.90

Table 3: Effectiveness of various methods for
ranking the terms in a question by essentiality.
T indicates unsupervised method. Mean-Average
Precision (MAP) numbers reflect the mean (across
all test set questions) of the average precision of
the term ranking for each question. ET classifier
again substantially outperforms all baselines.

unlike the previous evaluation that pools terms
together across questions, we now consider each
question as a unit. For the ranked list produced by
each classifier for each question, we compute the
average precision (AP).!! We then take the mean
of these AP values across questions to obtain
the mean average precision (MAP) score for the
classifier.

The results for the test set (483 questions) are
shown in Table 3. Our ET classifier achieves a
MAP of 90.2%, which is 3%-5% higher than the
baselines, and demonstrates that one can learn to
reliably identify essential question terms.

4 Using ET Classifier in QA Solvers

In order to assess the utility of our ET classifier,
we investigate its impact on two end-to-end QA
systems. We start with a brief description of the
question sets.

Question Sets. We use three question sets of 4-
way multiple choice questions.!> REGENTS and
AI2PUBLIC are two publicly available elementary
school science question set. REGENTS comes with
127 training and 129 test questions; AI2PUBLIC
contains 432 training and 339 test questions that
subsume the smaller question sets used previ-
ously (Clark et al., 2016; Khashabi et al., 2016).
REGTSPERTD set, introduced by Khashabi et al.
(2016), has 1,080 questions obtained by automat-
ically perturbing incorrect answer choices for 108
New York Regents 4th grade science questions.

""We rank all terms within a question based on their es-
sentiality scores. For any true positive instance at rank k, the
precision at k is defined to be the number of positive instances
with rank no more than k, divided by k. The average of all
these precision values for the ranked list for the question is
the average precision.

12 Available at http: //allenai.org/data.html

86

We split this into 700 train and 380 test questions.

For each question, a solver gets a score of 1 if it
chooses the correct answer and 1/k if it reports a
k-way tie that includes the correct answer.

QA Systems. We investigate the impact of
adding the ET classifier to two state-of-the-art
QA systems for elementary level science ques-
tions. Let ¢ be a multiple choice question with
answer options {a;}. The IR Solver from Clark
et al. (2016) searches, for each a;, a large corpus
for a sentence that best matches the (g, a;) pair.
It then selects the answer option for which the
match score is the highest. The inference based
TablelLP Solver from Khashabi et al. (2016), on
the other hand, performs QA by treating it as
an optimization problem over a semi-structured
knowledge base derived from text. It is designed
to answer questions requiring multi-step inference
and a combination of multiple facts.

For each multiple-choice question (g, a), we use
the ET classifier to obtain essential term scores s;
for each token ¢; in q; s; = et(q;, ¢, a). We will be
interested in the subset w of all terms 7}, in ¢ with
essentiality score above a threshold &: w(&;q) =
{leTy|s > &} Letw(§; q) = Ty \ w(&; q). For
brevity, we will write w(&) when ¢ is implicit.

4.1 IR solver + ET

To incorporate the ET classifier, we create a pa-
rameterized IR system called IR + ET(£) where,
instead of querying a (q,a;) pair, we query
(w(g; Q)7 ai)'

While IR solvers are generally easy to imple-
ment and are used in popular QA systems with
surprisingly good performance, they are often also
sensitive to the nature of the questions they re-
ceive. Khashabi et al. (2016) demonstrated that
a minor perturbation of the questions, as embod-
ied in the REGTSPERTD question set, dramatically
reduces the performance of IR solvers. Since the
perturbation involved the introduction of distract-
ing incorrect answer options, we hypothesize that
a system with better knowledge of what’s impor-
tant in the question will demonstrate increased ro-
bustness to such perturbation.

Table 4 validates this hypothesis, showing the
result of incorporating ET in IR, as IR + ET(§ =
0.36), where £ was selected by optimizing end-to-
end performance on the training set. We observe a
5% boost in the score on REGTSPERTD, showing
that incorporating the notion of essentiality makes

Dataset Basic IR IR +ET
REGENTS 59.11 60.85
AI2PUBLIC 57.90 59.10
REGTSPERTD 61.84 66.84

Table 4: Performance of the IR solver without
(Basic IR) and with (IR + ET) essential terms. The
numbers are solver scores (%) on the test sets of
the three datasets.

the system more robust to perturbations.

Adding ET to IR also improves its performance
on standard test sets. On the larger AI2PUBLIC
question set, we see an improvement of 1.2%.
On the smaller REGENTS set, introducing ET
improves IRsolver’s score by 1.74%, bringing
it close to the state-of-the-art solver, TableILP,
which achieves a score of 61.5%. This demon-
strates that the notion of essential terms can be
fruitfully exploited to improve QA systems.

4.2 TablelLP solver + ET

Our essentiality guided query filtering helped the
IR solver find sentences that are more relevant to
the question. However, for TableILP an added
focus on essential terms is expected to help only
when the requisite knowledge is present in its rel-
atively small knowledge base. To remove con-
founding factors, we focus on questions that are,
in fact, answerable.

To this end, we consider three (implicit) require-
ments for TableILP to demonstrate reliable behav-
ior: (1) the existence of relevant knowledge, (2)
correct alignment between the question and the
knowledge, and (3) a valid reasoning chain con-
necting the facts together. Judging this for a ques-
tion, however, requires a significant manual effort
and can only be done at a small scale.

Question Set. We consider questions for which
the TablelLLP solver does have access to the req-
uisite knowledge and, as judged by a human, a
reasoning chain to arrive at the correct answer.
To reduce manual effort, we collect such ques-
tions by starting with the correct reasoning chains
(‘support graphs’) provided by TableILP. A human
annotator is then asked to paraphrase the corre-
sponding questions or add distracting terms, while
maintaining the general meaning of the question.
Note that this is done independent of essentiality
scores. For instance, the modified question below
changes two words in the question without affect-
ing its core intent:

87

Original question: A fox grows thicker fur as a season
changes. This adaptation helps the fox to (A) find food(B)
keep warmer(C) grow stronger(D) escape from predators
Generated question: An animal grows thicker hair as a
season changes. This adaptation helps to (A) find food(B)
keep warmer(C) grow stronger(D) escape from predators

While these generated questions should ar-
guably remain correctly answerable by TableILP,
we found that this is often not the case. To in-
vestigate this, we curate a small dataset (Jp with
12 questions (cf. Appendix C of the extended ver-
sion (Khashabi et al., 2017)) on each of which, de-
spite having the required knowledge and a plausi-
ble reasoning chain, TableILP fails.

Modified Solver. To incorporate question term
essentiality in the TableILP solver while maintain-
ing high recall, we employ a cascade system that
starts with a strong essentiality requirement and
progressively weakens it.

Following the notation of Khashabi et al.
(2016), let z(q;) be a binary variable that denotes
whether or not the /-th term of the question is used
in the final reasoning graph. We enforce that terms
with essentiality score above a threshold £ must be
used: z(q;) = 1, VI € w(§). Let TableILP+ET(¢)
denote the resulting system which can now be used
in a cascading architecture.

TableILP+ET(&1) — TableILP+ET(£2) —

where £ < & < < & is a sequence of

thresholds. Questions unanswered by the first
system are delegated to the second, and so on. The
cascade has the same recall as TableILP, as long as
the last system is the vanilla TableILP. We refer to
this configuration as CASCADES ({1, &o, - . ., k).

This can be implemented via repeated calls to
TableILP+ET(&;) with j increasing from 1 to k,
stopping if a solution is found. Alternatively, one
can simulate the cascade via a single extended ILP
using k new binary variables z; with constraints:
]w(gj)] * Zj < Zlau(fj) I’(ql) for j € {1, ceey k‘},
and adding M * Z?:l zj to the objective function,
for a sufficiently large constant M.

We evaluate CASCADES(0.4,0.6,0.8,1.0) on
our question set, Qr. By employing essential-
ity information provided by the ET classifier,
CASCADES corrects 41.7% of the mistakes made
by vanilla TableILP. This error-reduction illus-
trates that the extra attention mechanism added
to TablelLLP via the concept of essential question
terms helps it cope with distracting terms.

5 Conclusion

We introduced the concept of essential question
terms and demonstrated its importance for ques-
tion answering via two empirical findings: (a)
humans becomes substantially worse at QA even
when a few essential question terms are dropped,
and (b) state-of-the-art QA systems can be im-
proved by incorporating this notion. While text
summarization has been studied before, questions
have different characteristics, requiring new train-
ing data to learn a reliable model of essentiality.
We introduced such a dataset and showed that our
classifier trained on this dataset substantially out-
performs several baselines in identifying and rank-
ing question terms by the degree of essentiality.

Acknowledgments

The authors would like to thank Peter Clark,
Oyvind Tafjord, and Peter Turney for valuable dis-
cussions and insights.

This work is supported by DARPA under agree-
ment number FA8750-13-2-0008. The U.S. Gov-
ernment is authorized to reproduce and distribute
reprints for Governmental purposes notwithstand-
ing any copyright notation thereon. The views and
conclusions contained herein are those of the au-
thors and should not be interpreted as necessarily
representing the official policies or endorsements,
either expressed or implied, of DARPA or the U.S.
Government.

References

P. F. Brown, P. V. Desouza, R. L. Mercer, V. J. D.
Pietra, and J. C. Lai. 1992. Class-based n-gram
models of natural language. Computational linguis-
tics 18(4):467-479.

K. W. Church and P. Hanks. 1989. Word association
norms, mutual information and lexicography. In
27th Annual Meeting of the Association for Compu-
tational Linguistics. pages 76—83.

Clark. 2015. Elementary school science and math
tests as a driver for Al: take the Aristo challenge! In
29th AAAI/IAAI. Austin, TX, pages 4019-4021.

P. Clark, O. Etzioni, T. Khot, A. Sabharwal, O. Tafjord,
P. Turney, and D. Khashabi. 2016. Combining re-
trieval, statistics, and inference to answer elemen-
tary science questions. In 30th AAAI.

. Clarke and M. Lapata. 2008. Global inference for
sentence compression: An integer linear program-
ming approach. Journal of Artificial Intelligence Re-
search 31:399-429.

88

J. L. Fleiss. 1971. Measuring nominal scale agree-

ment among many raters. Psychological bulletin
76(5):378.

C. Hori and F. Sadaoki. 2004. Speech summarization:
an approach through word extraction and a method
for evaluation. IEICE TRANSACTIONS on Informa-
tion and Systems 87(1):15-25.

Mohammad Javad Hosseini, Hannaneh Hajishirzi,
Oren Etzioni, and Nate Kushman. 2014. Learning
to solve arithmetic word problems with verb catego-
rization. In 2014 EMNLP. pages 523-533.

D. Howell. 2012. Statistical methods for psychology.
Cengage Learning.

P. Jansen, R. Sharp, M. Surdeanu, and P. Clark. 2017.
Framing qa as building and ranking intersentence
answer justifications. Computational Linguistics .

T. Joachims. 1998. Text categorization with support
vector machines: Learning with many relevant fea-
tures. Machine learning: ECML-98 pages 137-142.

D. Khashabi, T. Khot, A. Sabharwal, P. Clark, O. Et-
zioni, and D. Roth. 2016. Question answering via
integer programming over semi-structured knowl-
edge (extended version). In Proc. 25th Int. Joint
Conf. on Artificial Intelligence (IJCAI).

D. Khashabi, T. Khot, A. Sabharwal, and D. Roth.
2017. Learning what is essential in questions (ex-
tended version).

T. Khot, N. Balasubramanian, E. Gribkoff, A. Sab-
harwal, P. Clark, and O. Etzioni. 2015. Exploring
Markov logic networks for question answering. In
2015 EMNLP. Lisbon, Portugal.

K. Knight and D. Marcu. 2002. Summarization be-
yond sentence extraction: A probabilistic approach
to sentence compression. Artificial Intelligence
139(1):91-107.

C. Kwok, O. Etzioni, and D. S. Weld. 2001. Scaling
question answering to the web. In WWW.

F.Li, X. Zhang, J. Yuan, and X. Zhu. 2007. Classifying
what-type questions by head noun tagging. In Proc.
22nd Int. Conf. on Comput. Ling. (COLING).

X. Li and D. Roth. 2002. Learning question classi-
fiers. In Proceedings of the 19th International Con-
ference on Computational Linguistics - Volume 1.
Association for Computational Linguistics, Strouds-
burg, PA, USA, COLING ’02, pages 1-7.

D. Moldovan, M. Pasca, S. Harabagiu, and M. Sur-
deanu. 2003. Performance issues and error analy-
sis in an open-domain question answering system.
ACM Transactions on Information Systems (TOIS)
21(2):133-154.

J. H. Park and W. B. Croft. 2015. Using key concepts
in a translation model for retrieval. In Proceedings
of the 38th International ACM SIGIR Conference
on Research and Development in Information Re-
trieval. ACM, pages 927-930.

P. D. Turney. 2013. Distributional semantics beyond
words: Supervised learning of analogy and para-
phrase. TACL 1:353-366.

Kateryna Tymoshenko, Daniele Bonadiman, and
Alessandro Moschitti. 2016. Convolutional neural
networks vs. convolution kernels: Feature engineer-
ing for answer sentence reranking. In HLT-NAACL.

B. Wang, K. Liu, and J. Zhao. 2016. Inner attention
based recurrent neural networks for answer selec-
tion. In ACL.

W.-t. Yih, X. He, and C. Meek. 2014. Semantic pars-
ing for single-relation question answering. In Proc.
52nd Annual Meeting of the Ass. for Comp. Linguis-
tics (ACL). pages 643-648.

W. Yin, S. Ebert, and H. Schiitze. 2016. Attention-
based convolutional neural network for machine
comprehension. In NAACL HCQA Workshop.

&9

Top-Rank Enhanced Listwise Optimization
for Statistical Machine Translation

Huadong Chen,' Shujian Huang,'* David Chiang,’ Xinyu Dai,” Jiajun Chen'
fState Key Laboratory for Novel Software Technology, Nanjing University
{chenhd, huangsj,daixinyu, chenjj}@nlp.nju.edu.cn
tDepartment of Computer Science and Engineering, University of Notre Dame

dchiang@nd.edu

Abstract

Pairwise ranking methods are the basis
of many widely used discriminative train-
ing approaches for structure prediction
problems in natural language processing
(NLP). Decomposing the problem of rank-
ing hypotheses into pairwise comparisons
enables simple and efficient solutions.
However, neglecting the global ordering
of the hypothesis list may hinder learning.
We propose a listwise learning framework
for structure prediction problems such as
machine translation. Our framework di-
rectly models the entire translation list’s
ordering to learn parameters which may
better fit the given listwise samples. Fur-
thermore, we propose top-rank enhanced
loss functions, which are more sensitive to
ranking errors at higher positions. Exper-
iments on a large-scale Chinese-English
translation task show that both our list-
wise learning framework and top-rank en-
hanced listwise losses lead to significant
improvements in translation quality.

1 Introduction

Discriminative training methods for structured
prediction in natural language processing (NLP)
aim to estimate the parameters of a model that as-
signs a score to each hypothesis in the (possibly
very large) search space. For example, in statisti-
cal machine translation (SMT), the model assigns
a score to each possible translation, and in syn-
tactic parsing, the function assigns a score to each
possible syntactic tree. Ideally, the model should
assign scores that rank hypotheses according to
their true quality. In this paper, we consider the
problem of discriminative training for SMT.

*Corresponding author.

90

Traditional SMT systems use log-linear models
with only about a dozen features, such as trans-
lation probabilities and language model probabil-
ities (Yamada and Knight, 2001; Koehn et al.,
2003; Chiang, 2005; Liu et al., 2006). These mod-
els can be tuned by minimum error rate training
(MERT) (Och, 2003), which directly optimizes
BLEU using coordinate ascent combined with a
global line search.

To enable training of modern SMT systems,
which can have thousands of features or more,
many research efforts have been made towards
scalable discriminative training methods (Chiang
et al., 2008; Hopkins and May, 2011; Bazrafshan
et al., 2012). Most of these methods either de-
fine loss functions that push the model to correctly
compare pairs of hypotheses, or use approximate
optimization methods that effectively do the same.
For practical reasons, only a subset of the pairs are
considered; these pairs are selected by either sam-
pling (Hopkins and May, 2011) or heuristic meth-
ods (Watanabe et al., 2007; Chiang et al., 2008).

But this pairwise approach neglects the global
ordering of the list of hypotheses, which may
lead to problems trying to learn good parameter
values. Inspired by research in information re-
trieval (IR) (Cao et al., 2007; Xia et al., 2008),
we propose to directly model the ordering of the
whole translation list, instead of decomposing it
into translation pairs.

Previous research has tried to integrate listwise
methods into SMT, but almost all of them focus
on the reranking task, which aims to rescore the
fixed translation lists generated by a baseline sys-
tem. They try to either use listwise approaches
to training the reranking model (Li et al., 2013;
Niehues et al., 2015) or replace the pointwise
ranking function, i.e. the log-linear model, with
a listwise ranking function by introducing listwise
features (Zhang et al., 2016). In this paper, we

Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017), pages 90-99,
Vancouver, Canada, August 3 - August 4, 2017. (©2017 Association for Computational Linguistics

focus on listwise approaches that can learn bet-
ter discriminative models for SMT. We present a
listwise learning framework for tuning translation
systems that uses two listwise ranking objectives
originally developed for IR, ListNet (Cao et al.,
2007) and ListMLE (Xia et al., 2008). But un-
like standard IR problems, structured prediction
problems usually have a huge search space, and
at each training iteration, the list of search results
can vary. The usual strategy is to form the union
of all lists of search results, but this can lead to a
“patchy” list that doesn’t represent the full search
space well. The listwise approaches always based
on the permutation probability distribution over
the list. Modeling the distribution over a “patchy”
list, whose elements were generated by different
parameters will affect listwise approaches’ per-
formance. To address this issue, we design an
instance-aggregating method: Instead of treating
the data as a fixed-size set of lists that each grow
over time as new translations are added at each it-
eration, we treat the data as a growing set of lists;
each time a sentence is translated, the k-best list of
translations is added as a new list.

We also extend standard listwise training by
considering the importance of different instances
in the list. Based on the intuition that instances
at the top may be more important for ranking, we
propose top-rank enhanced loss functions, which
incorporate a position-dependent cost that penal-
izes errors occurring at the top of the list more
strongly.

We conduct large-scale Chinese-to-English
translation experiments showing that our top-rank
enhanced listwise learning methods significantly
outperform other tuning methods with high di-
mensional feature sets. Additionally, even with
a small basic feature set, our methods still obtain
better results than MERT.

2 Background

2.1 Log-linear models

In this paper, we assume a log-linear model, which
defines a scoring function on target translation hy-
potheses e, given a source sentence f:

_ exps(e,f)
Pr(e|f) = S exps(e, f) (1
s(e,f)=w-h(e|f) (2)

where h(e | f) is the feature vector and w is the
feature weight vector.

91

ToBDE

Figure 1: An example of word-phrase features for
a phrase translation. The f; and e; represent the -
th in the source phrase and j-th word in the target
phrase, respectively.

The process of training a SMT system includes
both learning the sub-models, which are included
in the feature vector h, and learning the weight
vector w.

Then the decoding of SMT systems can be for-
mulated as a search for the translation & with the
highest model score:

3)

é = argmaxs(e, f
geeg(’)

where £ is the set of all reachable hypotheses.

2.2 SMT Features

In this paper, we use a hierarchical phrase based
translation system (Chiang, 2005). For convenient
comparison, we divide features of SMT into the
following three sets.

Basic Features: The basic features are those
commonly used in hierarchical phrase based trans-
lation systems, including a language model, four
translation model features, word, phrase and rule
penalties, and penalties for unknown words, the
glue rule and null translations.

Extended Features: Inspired by Chen et al.
(2013), we manually group the parallel training
data into 15 sets, according to their genre and ori-
gin. The translation models trained on each set are
used as separate features. We also add an indica-
tor feature for each individual training set to mark
where the translation rule comes from. The ex-
tended features provide additional 60 translation
model features and 16 indicator features, which is
too many to be tuned with MERT.

Sparse Features: We use word-phrase pair
features as our sparse features, which reflect
the word-phrase correspondence in a hierarchical
phrase (Watanabe et al., 2007). Figure 1 illustrates
an example of word-phrase pair features for a
phrase translation pair f;, ..., fiy3 and ej, ..., € 14.
Word-phrase pair features (f;,ejt1), (fi+1,€;)s
(fi+2, 6j+2€j+3), (fi+3, €j+4) will be fired for the
translation rule with the given word alignment. In

practice, these feature only fire when all the source
and target words in the feature are both in the top
100 most frequent words.

2.3 Tuning via Pairwise Ranking

The beam search strategy for SMT decoding pro-
cess makes it convenient to get a k-best transla-
tion list for each source sentence. Given a set of
source sentences and their corresponding transla-
tion lists, the tuning problem could be regarded
as a ranking task. Many recently proposed SMT
tuning methods are based on the pairwise rank-
ing framework (Chiang et al., 2008; Hopkins and
May, 2011; Bazrafshan et al., 2012).

Pairwise ranking optimization (PRO) (Hopkins
and May, 2011) is a commonly used tuning
method. The idea of PRO is to sample pairs (e, €’)
from the k-best list, and train a linear binary clas-
sifier to predict whether eval(e) > eval(e’) or
eval(e) < eval(e’), where eval(-) is an extrinsic
metric like BLEU. In this paper, we use sentence-
level BLEU with add-one smoothing (Lin and
Och, 2004).

The method gets a comparable BLEU score to
MERT and MIRA (Chiang et al., 2008), and scales
well on large feature sets. Other pairwise ranking
methods employ similar procedures.

3 Listwise Learning Framework

Although ranking methods have shown their effec-
tiveness in tuning for SMT systems (Hopkins and
May, 2011; Watanabe, 2012; Dreyer and Dong,
2015), most proposed ranking approaches view
tuning as pairwise ranking. These approaches de-
compose the ranking of the hypothesis list into
pairs, which might limit the training method’s
ability to learn better parameters. To preserve the
ranking information, we first formulate training as
an instance of the listwise ranking problem. Then
we propose a learning method based on the iter-
ative learning framework of SMT tuning and fur-
ther investigate the top-rank enhanced losses.

3.1 Training Objectives
3.1.1 The Permutation Probability Model

In order to directly model the translation list,
we first introduce a probabilistic model proposed
by Guiver and Snelson (2009). A ranking of a list
of k translations can be thought of as a function 7
from [1, k] to translations, where each 7 (t) is the
t-th translation candidate in the ranking. A scoring

92

function z (which could be either the model score,
s, or the BLEU score, eval) induces a probability
distribution over rankings:

s

7j=1

exp z(m (7))
>t expz(n(t)

3.1.2 Loss Functions

P,(7) =

“4)

Based on the probabilistic model above, the loss
function can be defined as the difference between
the distribution over the ranking according to
eval(-) and s(-). Thus, we introduce the follow-
ing two standard listwise losses.

ListNet: The ListNet loss is the cross entropy
between the distributions calculated from eval(-)
and s(+), respectively, over all permutations.

Due to the exponential number of permutations,
Cao et al. (2007) propose a top-one loss instead.
Given the function eval(-) and s(-), the top-one
loss is defined as:

k
LNet—T = - Z Peval(eJ) IOgP (eJ)
j=1
/ exp z(e;)
P (ej) =

k
Zi:l exp Z(ei)

where e; is the j-th element in the k-best list,
and P,(e;) is the probability that translation e; is
ranked at the top by the function z.

ListMLE: The ListMLE loss is the negative
log-likelihood of the permutation probability of
the correct ranking m.,q;, calculated according
to s(-) (Xia et al., 2008):

LMLE = - IOgP (ﬂ-eval)

_Zl

j=1

€exXp s 7Teval (])) (5)

Zt =j exXp S(Treval (t)) ‘

The training objective, which we want to min-
imize, is simply the total loss over all the lists in
the tuning set.

3.2 Training with Instance Aggregating

Because there can be exponentially many possi-
ble translations of a sentence, it’s only feasible to
rank the k best translations rather than all of them;
because the feature weights change at each itera-
tion, we have a different k-best list to rank at each
iteration. This is different from standard ranking
problems in which the training instances stay the
same each iteration.

Algorithm 1 MERT-like tuning algorithm

Algorithm 2 Listwise Optimization Algorithm

Require: Training sentences {f}, maximum

number of iterations I, randomly initialized

model parameters w.

1: fori =0to I do

2: for source sentences f do

3 Decode f: £ = KbestDecoder(f, w?)
4: T—TU {5;-}

5: end for

6: Training: wi™! = Optimization(7, w*)
7

: end for

Many previous tuning methods address this
problem by merging the k-best list at the current
iteration with the k-best lists at all previous itera-
tions into a single list (Hopkins and May, 2011).
We call this k-best merging. More formally, if 5}
is the k-best list of source sentence f at iteration 4,
then at each iteration, the model is trained on the
set of lists:

— U &l
§=0
T = {& | vf}

For each source sentence f, T has only one train-
ing sample, which is a better and better approxi-
mation to the full hypothesis set of f as more iter-
ations pass.

Unlike previous tuning methods, our tuning
method focuses on the distribution over permuta-
tion of the whole list. Moreover, unlike with list-
wise optimization methods used in IR, the k-best
list produced for a source sentence at one iteration
can differ dramatically from the k-best list pro-
duced at the next iteration. Merging k-best lists
across iterations, each of which represents only a
tiny fraction of the full search space, will lead to
a “patchy” list that may hurt the learning perfor-
mance of the listwise optimization algorithms.

To address this challenge, we propose instance
aggregating: instead of merging k-best lists across
different iterations, we view the translation lists
from different iterations as individual training in-
stances:

T ={&|Vt,0<j<i}.

With this method, each source sentence f has 7
training instances at the i-th training iteration. In
this way, we avoid “patchy” lists and obtain a bet-
ter set of instances for tuning.

93

Require: Training instances 7', model parameters
w, maximum number of epochs J, batch size
b, number of batches B
1: for j =0to J do
2. for i =0to Bdo
3: Sample a minibatch of b lists from T
without replacement
Calculate loss function L
Calculate gradient VL
w1 = AdaDelta(wy, L, Aw)
end for
end for
9: w = BestBLEU([E]T")

4
5
6:
7
8:

The above instance aggregating method can be
used in a MERT-like iterative tuning algorithm as
shown in Algorithm 1, which can be easily inte-
grated into current open source systems. The two
standard listwise losses can be easily optimized
using gradient-based methods (Algorithm 2); both
losses are convex, so convergence to a global opti-
mum is guaranteed. The gradients of ListNET and
ListMLE with respect to the parameters w for a
single sentence are:

s(ey)

= Z eval (ow

as(ej)>

exp s(e;)
) ow

Z?’:1 exp s(e;

3

8LNet T

—i

J=1

OLmie
ow

. |

For optimization, we use a mini-batch stochas-
tic gradient descent (SGD) algorithm together
with AdaDelta (Zeiler, 2012) algorithm to adap-
tively set the learning rate.

as(ﬂeval (.7))
ow

-y
j=1
08(Tewal(t))
ow

eXp s 7TevaLl (t))
Zt’—] exp 8(Teval (t'))

4 Top-Rank Enhanced Losses

In evaluating an SMT system, one naturally cares
much more about the top-ranked results than the
lower-ranked results. Therefore, we think that get-
ting the ranking right at the top of a list is more rel-
evant for tuning. Therefore, we should pay more

attention to the top-ranked translations instead of
forcing the model to rank the entire list correctly.
Position-dependent Attention: To do this, we
assign a higher cost to ranking errors that occur at
the top and a lower cost to errors at the bottom. To
make the cost sensitive to position, we define it as:

k—j+1
St
where j is the position in the ranking and & is the
size of the list.
Based on this cost function, we propose simple
top-rank enhanced listwise losses as extensions of

both the ListNet loss and the ListMLE loss. The
loss functions are defined as follows:

c(j) = (6)

exp 8(Teval(j))

c(7) 1o
(]) g Zfzj exp S(ﬂ'eval(t))

Mw

LNC[—TE - — Z e’ual C log q]
VreQy]:1
4i(m) = exp 2(7(j))
J - k .
> i—j exp 2(m(t))

Along similar lines, Xia et al. (2008) also pro-
posed a top-n ranking method, which assumes
that only the correct ranking of top-n hypothe-
ses is useful. Compared to our top-rank enhanced
losses, it may be too harsh to discard informa-
tion about the rest of the ordering altogether; our
method retains the whole ordering but weights it
by position.

5 Experiments and Results

5.1 Data and Preparation

We conduct experiments on a large scale Chinese-
English translation task. The parallel data comes
from LDC corporal, which consists of 8.2 million
of sentence pairs. Monolingual data includes Xin-
hua portion of Gigaword corpus. We use NIST
MTO03 evaluation test data as the development set,
MTO02, MTO04 and MTOS5 as the test set.

The Chinese side of the corpora is word seg-
mented using ICTCLAS?. Word alignments of the

"The corpora include LDC2002E18, LDC2003E14,
LDC2004E12, LDC2004T08, LDC2005T10 and
LDC2007T09

http://ictclas.nlpir.org/

94

Data Usage Sents.
LDC TM train | 8,260,093
Gigaword | LM train | 14,684,074
MTO03 train 919
MTO02 test 878
MTO04 test 1,788
MTO05 test 1,082

Table 1: Experimental data and statistics.

parallel data are learned by running GIZA++ (Och
and Ney, 2003) in both directions and refined un-
der the “grow-diag-final-and” method. We train a
5-gram language model on the monolingual data
with Modified Kneser-Ney smoothing(Chen and
Goodman, 1999). Throughout the experiments,
our translation system is an in-house implemen-
tation of the hierarchical phrase-based translation
system (Chiang, 2005). The translation quality is
evaluated by 4-gram case-insensitive BLEU (Pa-
pineni et al., 2002). Statistical significance test-
ing between systems is conducted by bootstrap re-
sampling implemented by Clark et al. (2011).

5.2 Tuning Settings

We build baselines for extended and sparse fea-
ture sets with two different tuning methods. First,
we tune with PRO (Hopkins and May, 2011). As
reported by Cherry and Foster (2012), it’s hard
to find the setting that performs well in general.
We use MegaM version (Daumé 111, 2004) with
30 iterations for basic feature set and 100 itera-
tions for extended and sparse feature sets. Second,
we run the k-best batch MIRA (KB-MIRA) which
shows comparable results with online version of
MIRA (Cherry and Foster, 2012; Green et al.,
2013). In our experiments, we run KB-MIRA with
standard settings in Moses>. For the basic feature
set, the baseline is tuned with MERT (Och, 2003).

For all our listwise tuning methods, we set batch
size to 10. In our experiments, we can’t find
a epoch size perform well in general, so we set
epoch size to 100 for ListMLE with basic features,
200 for ListMLE with extended and sparse fea-
tures, and 300 for ListNet. These values are set to
achieve the best performance on the development
set.

We set beam size to 20 throughout our exper-
iments unless otherwise noted. Following Clark
et al. (2011), we run the same training procedure
3 times and present the average results for stabil-
ity. All tuning methods are executed for 40 iter-

*http://www.statmt.org/moses/

Methods | MT02 | MT04 | MTO05 AVG

Net,, 40.36 | 38.30 | 37.93 | 38.86(+0.00)
ListNet 40.75 | 38.69 | 38.31 | 39.25(+0.39)
MLE,, 39.82 | 37.88 | 37.65 | 38.45(+0.00)
ListMLE | 40.40 | 38.21 38.04 | 38.88(+0.43)

Table 2: The comparison of instances aggre-
gating and k-best merging on the extended fea-
ture set.(Net,, and MLE,, denote ListNet and
ListMLE with k-best merging respectively.)

41.5

e—e Dev03
@ Test02

&4 Test03
4 Test04
41.0F

40.5¢

40.0

BLEU

39.5r

39.0F

“ 57%

38.0

Figure 2: Effect of different n for Top-n ListMLE.
We investigate the effect on the extended feature
set.

ations of the outer loop and returned the weights
that achieve the best development BLEU scores.
For all tuning methods on sparse feature set, we
use the weight vector tuned by PRO on the ex-
tended feature set as initial weights.

5.3 Experiments of Listwise Learning
Framework

We first investigate the effectiveness of our in-
stance aggregating training procedure. The results
are presented in Table 2. The table compare train-
ing with instance aggregating and k-best merging.
As the result suggested, with the instance aggre-
gating method, the performance improves on both
listwise tuning approaches. For the rest of this pa-
per, we use the instance aggregating as standard
setting for listwise tuning approaches.

To verify the performance of our proposed list-
wise learning framework, we first compare sys-
tems with standard listwise losses to the baseline
systems. The first four rows in Table 3 show
the results. ListNet can outperform PRO by 0.55
BLEU score and 0.26 BLEU score on extended
feature set and sparse feature set, respectively. Its
main reason is that our listwise methods can obtain
structured order information when we take com-

95

plete translation list as instance.

We also observe that ListMLE can only get
a modest performance compare to ListNet. We
think the objective function of standard ListMLE
which forces the whole list ranking in a correct or-
der is too hard. ListNet mainly benefits from its
top one permutation probability which only con-
cerns the permutation with the best object ranked
first.

5.4 Effect of Top-rank Enhanced Losses

To verify our assumption that the correct rank in
the top portion of a list is more informative, we
conduct this set of experiments. Figure 2 shows
the results of top-n ListMLE with different n.
Compared to ListMLE in Table 2, we find top-
n ListMLE can make significant improvements,
which means that the top rank is more important.
We can observe an improvement in all test sets
when we set n from 1 to 5, but when we further
increase n, the results dropped. This situation in-
dicates that the correct ranking at the top of the list
is more informative and forcing the model to rank
the bottom correctly as important as the top will
sacrifice the ability to guide better search.

In Table 3, top-5 ListMLE which only aims to
rank the top five translations correctly can out-
perform the baseline and standard ListMLE. With
our position-dependent attention, the top-rank en-
hanced ListMLE can make further improvement
over the baseline system(+1.07 and +0.73 on ex-
tended and sparse feature sets, respectively.) and
achieves the best performance.

The top-n loss might be too loose as an approxi-
mation of the measure of BLEU. Compared to top-
n ListMLE, our top-rank enhanced ListMLE can
further utilize the different portions of the list by
different weights. To verify the claim, we further
examined the learning processes of the two losses.
For simplicity, the experiment is conducted on a
translation list generated by random parameters.
The results are shown in Figure 3. We can see that
our top-rank enhanced loss almost completely in-
versely correlates with BLEU after iteration 70. In
contrast, after iteration 150, although top-5 loss is
still decreasing, BLEU starts to drop.

Due to the high computation cost of ListNet, we
only perform the top-rank enhanced ListMLE in
this paper. Our preliminary experiments indicate
that the performance of ListNet can be further im-
proved with a top-2 loss. We think our top-rank

Method Extended Features Sparse Features
MTO02 | MT04 | MTO05 AVG MTO02 | MT04 | MTO05 AVG

PRO 4030 | 38.12 | 37.69 | 38.70(+0.00) | 40.63 38.46 | 3824 | 39.11(+0.00)
KB-MIRA 4048 | 3771 3737 | 38.52(-0.18) | 40.67 | 38.48 | 3821 | 39.12(+0.01)
ListNet 40.75% | 38.697 | 38.31° | 39.25(+0.55) | 40.91* | 38.77° | 38.42 | 39.37(+0.26)
ListMLE 4040 | 3821 38.04 | 38.88(+0.18) | 40.63 38.68 | 3824 | 39.18(+0.07)
ListMLE-T5 | 41.02* [38.847 | 38.79T7 [39.55(+0.85) | 41.12* | 38.91* [38.89* [39.64(+0.53)
ListMLE-TE | 41.157 | 39.017 | 39.167 | 39.77(+1.07) | 41.257 | 39.007 | 39.277 | 39.84(+0.73)

Table 3: BLEU4 in percentage for comparing of baseline systems and systems with listwise losses. *, *
marks results that are significant better than the baseline system with p < 0.01 and p < 0.05. (ListMLE-
T5 and ListMLE-TE refer to top-5 LisMLE and our top-rank enhanced ListMLE, respectively.)

26.7 41.3 26.8
— BLEU — BLEU
4.2 4.0
26.6f| — Loss 26.6f — Lossfﬁ/‘/‘ﬂf
41.1
26.5 26.4
41.0 113.8
> 26.4 0.9 0 522 o
w 1] w 1]
— o —_ o]
@0 2.3 40.8 - @ 960 13. 6
40.7
26.2 25.8
40.6 113.4
26.1 40.5 25.6
26.05 50 100 150 200> 4 2545 50 100 150 200> 2
Epoch number Epoch number
(@) (b)
Figure 3: Listwise losses v.s. BLEU in (a) top-5 ListMLE and (b) top-rank enhanced ListMLE
Methods | MT02 | MT04 | MT05 AVG . .
RO 7090 | 3884 | 3860 | 39640:000) Net and top-5 ListMLE, we observe that the im-
KB-MIRA 41.09 | 3849 | 3862 | 39.40(-0.06) provements over baseline is smaller than size 20.
ListNet 41.49% | 3925% | 3917 | 39.97(+051) . . .
ListMLE-TS | 4126° | 39.63* | 3932* | 40.07(+0.61) This results show that the order information loss
: + + + . :
LisMLE-TE | 41857 | 39967 | 39887 | 40.56(+1.10) caused by directly drop the bottom is aggravated

Table 4: Comparison of baselines and listwise ap-
proaches with a larger k-best list on extended fea-
ture set.

enhanced method is also useful for ListNet, but
due to its computational demands it needs to be
further investigated.

5.5 Impact of the Size of Candidate Lists

Our listwise tuning methods directly model the or-
der of the translation list, it is clear that the choice
of the translation list size k& has an impact on our
methods. A larger candidate list size may result in
the availability of more information during tuning.
In order to verify our tuning methods’ capability of
handling the larger translation list, we increase k
from 20 to 100. The comparison results are shown
in Table 4. With a larger size k, our tuning meth-
ods also perform better than baselines. For List-

96

with larger list size. However, our top-rank en-
hanced method still get a slight better result than
size 20 and significant improvement over baseline
by 1.1 BLEU score. This indicate that our top-
rank enhanced method is more stable and can still
effectively exploit the larger size translation list.

5.6 Performance on Basic Feature Set

Since the effectiveness of high dimensional fea-
ture set, recent work pays more attention to this
scenario. Although previous discriminative tun-
ing methods can effectively handle high dimen-
sional feature set, MERT is still the dominant tun-
ing method for basic features. Here, we investigate
our top-rank enhanced tuning methods’ capabil-
ity of handling basic feature set. Table 5 summa-
rizes the comparison results. Firstly, we observe
that ListNet and ListMLE can perform compara-
ble with MERT. With our top-ranked enhanced
method, we can get a better performance than

Methods MTO02 | MT04 | MTO05 AVG
MERT 37.72 37.13 36.77 37.21(+0.00)
PRO 37.85 37.21 36.68 37.24(+0.03)
KB-MIRA 37.97 37.28 36.58 37.28(+0.07)
ListNet 37.71 3747 36.78 37.32(+0.11)
ListMLE 37.54 37.54 36.65 37.24(+0.03)
ListMLE-T5 37.90 37.32 36.84 37.35(+0.14)
ListMLE-TE 38.03 37.49* 36.85 37.46(+0.25)

Table 5: Comparison of baseline and liswise ap-
proaches on basic feature set.

MERT by 0.25 BLEU score. These results show
that our top-ranked enhanced tuning method can
learn more informations of translation list even
with a basic feature set.

6 Related Work

The ranking problem is well studied in IR com-
munity. There are many methods been pro-
posed, including pointwise (Nallapati, 2004), pair-
wise (Herbrich et al., 1999; Burges et al., 2005)
and listwise (Cao et al., 2007; Xia et al., 2008) al-
gorithms. Experiment results show that listwise
methods deliver better performance than point-
wise and pairwise methods in general (Liu, 2010).

Most NLP researches take ranking as an extra
step after searching from its output space (Char-
niak and Johnson, 2005; Collins and Terry Koo,
2005; Duh, 2008). In SMT research, listwise ap-
proaches also have been employed for the rerank-
ing tasks. For example, Li et al. (2013) uti-
lized two listwise approaches to rerank the trans-
lation outputs and achieved the best segment-
level correlation with human judgments. Niehues
et al. (2015) employed ListNet to rescore the k-
best translations, which significantly outperforms
MERT, KB-MIRA and PRO. Zhang et al. (2016)
viewed the log-linear model as a pointwise rank-
ing function and shifted it to listwise ranking func-
tion by introducing listwise features and outper-
formed the log-linear model. Compared to these
efforts, our method takes a further step by inte-
grating listwise ranking methods into the iterative
training.

There are also some researches use ranking
methods for tuning to guide better search. In SMT,
previous attempts on using ranking as a tuning
methods usually perform pairwise comparisons on
a subset of translation pairs (Chiang et al., 2008;
Hopkins and May, 2011; Watanabe, 2012; Bazraf-
shan et al., 2012; Guzman et al., 2015). Dreyer
and Dong (2015) even took all translation pairs of
the k-best list as training instances, which only ob-

97

tained a comparable result with PRO and the im-
plementation is more complicate. In this paper,
we model the entire list as a whole unit, and pro-
pose training objectives that are sensitive to differ-
ent parts of the list.

7 Conclusion

In this paper, we propose a listwise learning
framework for statistical machine translation. In
order to adapt listwise approaches, we use an iter-
ative training framework in which instances from
different iterations are aggregated into the train-
ing set. To emphasize the top order of the list, we
further propose top-rank enhanced listwise learn-
ing losses. Compared to previous efforts in SMT
tuning, our method directly models the order in-
formation of the complete translation list. Experi-
ments show our method could lead to significant
improvements of translation quality in different
feature sets and beam size.

Our current work focuses on the traditional
SMT task. For future work, it will be interesting to
integrate our methods to modern neural machine
translation systems or other structure prediction
problems. It may also be interesting to explore
more methods on listwise tuning framework, such
as investigating different methods to enhance top
order of translation list directly w.r.t a given eval-
uation metric.

Acknowledgments

The authors would like to thank the anonymous re-
viewers for their valuable comments. This work is
supported by the National Science Foundation of
China (No. 61672277, 61300158 and 61472183).
Part of Huadong Chen’s contribution was made
while visiting University of Notre Dame. His visit
was supported by the joint PhD program of China
Scholarship Council.

References

Marzieh Bazrafshan, Tagyoung Chung, and Daniel
Gildea. 2012. Tuning as linear regression. In Pro-
ceedings of the 2012 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies. Asso-
ciation for Computational Linguistics, pages 543—
547. http://aclweb.org/anthology/N12-1062.

Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier,
Matt Deeds, Nicole Hamilton, and Greg Hul-
lender. 2005. Learning to rank using gradient

descent. In Proceedings of the 22Nd Interna-
tional Conference on Machine Learning. ACM,
New York, NY, USA, ICML °05, pages 89-96.
https://doi.org/10.1145/1102351.1102363.

Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai,
and Hang Li. 2007. Learning to rank: From
pairwise approach to listwise approach. In
Proceedings of the 24th International Con-
ference on Machine Learning. ACM, New
York, NY, USA, ICML °07, pages 129-136.
https://doi.org/10.1145/1273496.1273513.

Eugene Charniak and Mark Johnson. 2005. Coarse-
to-fine n-best parsing and maxent discrimina-
tive reranking. In Proceedings of the 43rd
Annual Meeting of the Association for Com-
putational — Linguistics (ACL’05). Association
for Computational Linguistics, pages 173-180.
http://aclweb.org/anthology/P05-1022.

Boxing Chen, Roland Kuhn, and George Foster. 2013.
Vector space model for adaptation in statistical ma-
chine translation. In Proceedings of the 51st An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). Association
for Computational Linguistics, pages 1285-1293.
http://aclweb.org/anthology/P13-1126.

Stanley F Chen and Joshua Goodman. 1999. An
empirical study of smoothing techniques for lan-
guage modeling. Computer Speech & Language
13(4):359-394.

Colin Cherry and George Foster. 2012. Batch tuning
strategies for statistical machine translation. In Pro-
ceedings of the 2012 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies. Asso-
ciation for Computational Linguistics, pages 427—
436. http://aclweb.org/anthology/N12-1047.

David Chiang. 2005. A hierarchical phrase-based
model for statistical machine translation. In Pro-
ceedings of the 43rd Annual Meeting of the Associ-
ation for Computational Linguistics (ACL’05). As-
sociation for Computational Linguistics, pages 263—
270. http://aclweb.org/anthology/P05-1033.

David Chiang, Yuval Marton, and Philip Resnik.
2008. Online large-margin training of syntac-
tic and structural translation features. In Pro-
ceedings of the 2008 Conference on Empirical
Methods in Natural Language Processing. Associa-
tion for Computational Linguistics, pages 224-233.
http://aclweb.org/anthology/D08-1024.

H. Jonathan Clark, Chris Dyer, Alon Lavie, and
A. Noah Smith. 2011. Better hypothesis testing for
statistical machine translation: Controlling for opti-
mizer instability. In Proceedings of the 49th Annual
Meeting of the Association for Computational Lin-
guistics: Human Language Technologies. Associa-
tion for Computational Linguistics, pages 176—181.
http://aclweb.org/anthology/P11-2031.

98

Collins and Michael Terry Koo. 2005. Discrimina-
tive reranking for natural language parsing. Compu-
tational Linguistics, Volume 31, Number 1, March
2005 http://aclweb.org/anthology/J05-1003.

Hal Daumé III. 2004. Notes on CG and LM-BFGS
optimization of logistic regression.

Markus Dreyer and Yuanzhe Dong. 2015. Apro: All-
pairs ranking optimization for mt tuning. In Pro-
ceedings of the 2015 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies. Asso-
ciation for Computational Linguistics, pages 1018—
1023. https://doi.org/10.3115/v1/N15-1106.

Kevin Duh. 2008. Ranking vs. regression in machine
translation evaluation. In Proceedings of the
Third Workshop on Statistical Machine Transla-
tion. Association for Computational Linguistics,
Stroudsburg, PA, USA, StatMT 08, pages 191-194.
http://dl.acm.org/citation.cfm?id=1626394.1626425.

Spence Green, Sida Wang, Daniel Cer, and D. Christo-
pher Manning. 2013. Fast and adaptive online train-
ing of feature-rich translation models. In Proceed-
ings of the 51st Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers). Association for Computational Linguistics,
pages 311-321. http://aclweb.org/anthology/P13-
1031.

John Guiver and Edward Snelson. 2009. Bayesian
inference for plackett-luce ranking models. In
Proceedings of the 26th Annual International
Conference on Machine Learning. ACM, New
York, NY, USA, ICML °09, pages 377-384.
https://doi.org/10.1145/1553374.1553423.

Francisco Guzman, Preslav Nakov, and Stephan
Vogel. 2015. Analyzing optimization for sta-
tistical machine translation: Mert learns ver-
bosity, pro learns length. In Proceedings of the
Nineteenth Conference on Computational Natu-
ral Language Learning. Association for Compu-
tational Linguistics, Beijing, China, pages 62-72.
http://www.aclweb.org/anthology/K15-1007.

Ralf Herbrich, Thore Graepel, and Klaus Obermayer.
1999. Support vector learning for ordinal regres-
sion. In Artificial Neural Networks, 1999. ICANN
99. Ninth International Conference on (Conf. Publ.
No. 470). IET, volume 1, pages 97-102.

Mark Hopkins and Jonathan May. 2011. Tun-
ing as ranking. In Proceedings of the 2011

Conference on Empirical Methods in Nat-
ural Language Processing. Association for
Computational Linguistics, pages 1352-1362.

http://aclweb.org/anthology/D11-1125.

Philipp Koehn, Franz J. Och, and Daniel Marcu.
2003. Statistical phrase-based translation. In Pro-
ceedings of the 2003 Human Language Technol-
ogy Conference of the North American Chapter

of the Association for Computational Linguistics.
http://aclweb.org/anthology/N03-1017.

Maoxi Li, Aiwen Jiang, and Mingwen Wang. 2013.
Listwise approach to learning to rank for automatic
evaluation of machine translation. Proceedings of
the XIV Machine Translation Summit .

Chin-Yew Lin and Franz Josef Och. 2004. ORANGE:
A method for evaluating automatic evaluation met-
rics for machine translation. In Proceedings of
the 20th International Conference on Computational
Linguistics.

Tie-Yan Liu. 2010. Learning to rank for informa-
tion retrieval. In Proceedings of the 33rd In-
ternational ACM SIGIR Conference on Research
and Development in Information Retrieval. ACM,
New York, NY, USA, SIGIR 10, pages 904-904.
https://doi.org/10.1145/1835449.1835676.

Yang Liu, Qun Liu, and Shouxun Lin. 2006. Tree-
to-string alignment template for statistical ma-
chine translation. In Proceedings of the 2lst
International Conference on Computational Lin-
guistics and 44th Annual Meeting of the Asso-
ciation for Computational Linguistics. Associa-
tion for Computational Linguistics, pages 609-616.
http://aclweb.org/anthology/P06-1077.

Ramesh Nallapati. 2004. Discriminative models for in-
formation retrieval. In Proceedings of the 27th An-
nual International ACM SIGIR Conference on Re-
search and Development in Information Retrieval.
ACM, New York, NY, USA, SIGIR 04, pages 64—
71. https://doi.org/10.1145/1008992.1009006.

Jan Niehues, Quoc-Khanh DO, Alexandre Allauzen,
and Alex Waibel. 2015. Listnet-based mt rescor-
ing. In Proceedings of the Tenth Workshop
on Statistical Machine Translation. Association
for Computational Linguistics, pages 248-255.
http://aclweb.org/anthology/W15-3030.

Franz Josef Och. 2003.
ing in statistical machine translation.

Minimum error rate train-
In ACL

'03: Proceedings of the 41st Annual Meeting
on Association for Computational Linguis-
tics. Association for Computational Linguis-
tics, Morristown, NJ, USA, pages 160-167.

Taro Watanabe. 2012. Optimized online rank learn-
ing for machine translation. In Proceedings of
the 2012 Conference of the North American Chap-
ter of the Association for Computational Linguis-
tics: Human Language Technologies. Associa-
tion for Computational Linguistics, pages 253-262.
http://aclweb.org/anthology/N12-1026.

Taro Watanabe, Jun Suzuki, Hajime Tsukada, and
Hideki Isozaki. 2007. Online large-margin train-
ing for statistical machine translation. In Proceed-
ings of the 2007 Joint Conference on Empirical
Methods in Natural Language Processing and Com-
putational Natural Language Learning (EMNLP-
CoNLL). http://aclweb.org/anthology/D07-1080.

Fen Xia, Tie-Yan Liu, Jue Wang, Wensheng
Zhang, and Hang Li. 2008. Listwise ap-
proach to learning to rank: Theory and algo-
rithm. In Proceedings of the 25th International
Conference on Machine Learning. ACM, New
York, NY, USA, ICML °08, pages 1192-1199.
https://doi.org/10.1145/1390156.1390306.

Kenji Yamada and Kevin Knight. 2001. A
syntax-based statistical translation model. In
Proceedings of the 39th Annual Meeting of

the Association for Computational Linguistics.
http://aclweb.org/anthology/P01-1067.

Matthew D Zeiler. 2012. Adadelta: An adaptive learn-
ing rate method. arXiv preprint arXiv:1212.5701 .

M. Zhang, Y. Liu, H. Luan, and M. Sun. 2016. Listwise
ranking functions for statistical machine transla-
tion. IEEE/ACM Transactions on Audio, Speech,
and Language Processing 24(8):1464-1472.
https://doi.org/10.1109/TASLP.2016.2560527.

https://doi.org/http://dx.doi.org/10.3115/1075096.1075117.

Franz Josef Och and Hermann Ney. 2003. A
systematic comparison of various statistical
alignment models. Comput. Linguist. 29(1):19-51.

https://doi.org/http://dl.acm.org/citation.cfm?id=778824.

Kishore Papineni, Salim Roukos, Todd Ward, and
Wei-Jing Zhu. 2002. Bleu: a method for au-
tomatic evaluation of machine translation. In
Proceedings of the 40th Annual Meeting of
the Association for Computational Linguistics.
http://aclweb.org/anthology/P02-1040.

99

Embedding Words and Senses Together
via Joint Knowledge-Enhanced Training

Massimiliano Mancini*, Jose Camacho-Collados*, Ignacio Iacobacci and Roberto Navigli
Department of Computer Science
Sapienza University of Rome
mancini@dis.uniromal.it
{collados, iacobacci,navigli}@di.uniromal.it

Abstract

Word embeddings are widely used in Nat-
ural Language Processing, mainly due to
their success in capturing semantic infor-
mation from massive corpora. However,
their creation process does not allow the
different meanings of a word to be auto-
matically separated, as it conflates them
into a single vector. We address this issue
by proposing a new model which learns
word and sense embeddings jointly. Our
model exploits large corpora and knowl-
edge from semantic networks in order to
produce a unified vector space of word
and sense embeddings. We evaluate the
main features of our approach both qual-
itatively and quantitatively in a variety of
tasks, highlighting the advantages of the
proposed method in comparison to state-
of-the-art word- and sense-based models.

1 Introduction

Recently, approaches based on neural networks
which embed words into low-dimensional vector
spaces from text corpora (i.e. word embeddings)
have become increasingly popular (Mikolov et al.,
2013; Pennington et al., 2014). Word embeddings
have proved to be beneficial in many Natural Lan-
guage Processing tasks, such as Machine Transla-
tion (Zou et al., 2013), syntactic parsing (Weiss
et al., 2015), and Question Answering (Bordes
et al., 2014), to name a few. Despite their suc-
cess in capturing semantic properties of words,
these representations are generally hampered by
an important limitation: the inability to discrimi-
nate among different meanings of the same word.

Authors marked with an asterisk (*) contributed equally.

100

Previous works have addressed this limita-
tion by automatically inducing word senses from
monolingual corpora (Schiitze, 1998; Reisinger
and Mooney, 2010; Huang et al., 2012; Di Marco
and Navigli, 2013; Neelakantan et al., 2014; Tian
et al.,, 2014; Li and Jurafsky, 2015; Vu and
Parker, 2016; Qiu et al., 2016), or bilingual par-
allel data (Guo et al., 2014; Ettinger et al., 2016;
Suster et al., 2016). However, these approaches
learn solely on the basis of statistics extracted
from text corpora and do not exploit knowl-
edge from semantic networks. Additionally, their
induced senses are neither readily interpretable
(Panchenko et al., 2017) nor easily mappable to
lexical resources, which limits their application.
Recent approaches have utilized semantic net-
works to inject knowledge into existing word rep-
resentations (Yu and Dredze, 2014; Faruqui et al.,
2015; Goikoetxea et al., 2015; Speer and Lowry-
Duda, 2017; Mrksic et al., 2017), but without solv-
ing the meaning conflation issue. In order to ob-
tain a representation for each sense of a word,
a number of approaches have leveraged lexical
resources to learn sense embeddings as a result
of post-processing conventional word embeddings
(Chen et al., 2014; Johansson and Pina, 2015;
Jauhar et al., 2015; Rothe and Schiitze, 2015; Pile-
hvar and Collier, 2016; Camacho-Collados et al.,
2016).

Instead, we propose SW2V (Senses and Words
to Vectors), a neural model that exploits knowl-
edge from both text corpora and semantic net-
works in order to simultaneously learn embed-
dings for both words and senses. Moreover, our
model provides three additional key features: (1)
both word and sense embeddings are represented
in the same vector space, (2) it is flexible, as it can
be applied to different predictive models, and (3)
it is scalable for very large semantic networks and
text corpora.

Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017), pages 100-111,
Vancouver, Canada, August 3 - August 4, 2017. (©2017 Association for Computational Linguistics

2 Related work

Embedding words from large corpora into a low-
dimensional vector space has been a popular task
since the appearance of the probabilistic feed-
forward neural network language model (Ben-
gio et al., 2003) and later developments such as
word2vec (Mikolov et al., 2013) and GloVe (Pen-
nington et al., 2014). Howeyver, little research has
focused on exploiting lexical resources to over-
come the inherent ambiguity of word embeddings.

Tacobacci et al. (2015) overcame this limitation
by applying an off-the-shelf disambiguation sys-
tem (i.e. Babelfy (Moro et al., 2014)) to a cor-
pus and then using word2vec to learn sense em-
beddings over the pre-disambiguated text. How-
ever, in their approach words are replaced by their
intended senses, consequently producing as out-
put sense representations only. The representation
of words and senses in the same vector space
proves essential for applying these knowledge-
based sense embeddings in downstream applica-
tions, particularly for their integration into neural
architectures (Pilehvar et al., 2017). In the litera-
ture, various different methods have attempted to
overcome this limitation. Chen et al. (2014) pro-
posed a model for obtaining both word and sense
representations based on a first training step of
conventional word embeddings, a second disam-
biguation step based on sense definitions, and a fi-
nal training phase which uses the disambiguated
text as input. Likewise, Rothe and Schiitze (2015)
aimed at building a shared space of word and
sense embeddings based on two steps: a first train-
ing step of only word embeddings and a second
training step to produce sense and synset em-
beddings. These two approaches require multiple
steps of training and make use of a relatively small
resource like WordNet, which limits their cov-
erage and applicability. Camacho-Collados et al.
(2016) increased the coverage of these WordNet-
based approaches by exploiting the complemen-
tary knowledge of WordNet and Wikipedia along
with pre-trained word embeddings. Finally, Wang
et al. (2014) and Fang et al. (2016) proposed a
model to align vector spaces of words and en-
tities from knowledge bases. However, these ap-
proaches are restricted to nominal instances only
(i.e. Wikipedia pages or entities).

In contrast, we propose a model which learns
both words and sense embeddings from a single
joint training phase, producing a common vector

101

space of words and senses as an emerging feature.

3 Connecting words and senses in
context

In order to jointly produce embeddings for words
and senses, SW2V needs as input a corpus where
words are connected to senses' in each given con-
text. One option for obtaining such connections
could be to take a sense-annotated corpus as input.
However, manually annotating large amounts of
data is extremely expensive and therefore imprac-
tical in normal settings. Obtaining sense-annotated
data from current off-the-shelf disambiguation and
entity linking systems is possible, but generally
suffers from two major problems. First, supervised
systems are hampered by the very same prob-
lem of needing large amounts of sense-annotated
data. Second, the relatively slow speed of current
disambiguation systems, such as graph-based ap-
proaches (Hoffart et al., 2012; Agirre et al., 2014;
Moro et al., 2014), or word-expert supervised sys-
tems (Zhong and Ng, 2010; Iacobacci et al., 2016;
Melamud et al., 2016), could become an obstacle
when applied to large corpora.

This is the reason why we propose a simple yet
effective unsupervised shallow word-sense con-
nectivity algorithm, which can be applied to vir-
tually any given semantic network and is linear on
the corpus size. The main idea of the algorithm is
to exploit the connections of a semantic network
by associating words with the senses that are most
connected within the sentence, according to the
underlying network.

Shallow word-sense connectivity algorithm.
Formally, a corpus and a semantic network are
taken as input and a set of connected words and
senses is produced as output. We define a seman-
tic network as a graph (.S, F') where the set S con-
tains synsets (nodes) and E' represents a set of
semantically connected synset pairs (edges). Al-
gorithm 1 describes how to connect words and
senses in a given text (sentence or paragraph) 7.
First, we gather in a set St all candidate synsets
of the words (including multiwords up to trigrams)
in T" (lines 1 to 3). Second, for each candidate
synset s we calculate the number of synsets which
are connected with s in the semantic network
and are included in S, excluding connections of
synsets which only appear as candidates of the

'In this paper we focus on senses but other items con-
nected to words may be used (e.g. supersenses or images).

Algorithm 1 Shallow word-sense connectivity

Input: Semantic network (S, F) and text T represented as a
bag of words
Output: Set of connected words and senses 7" C T x S

1: Set of synsets ST < 0

2: for each wordw € T

3: St «— St U Sy (Sw: set of candidate synsets of w)
4: Minimum connections threshold 6 « W

5: Output set of connections T « ()

6: foreachw € T

7: Relative maximum connections max = 0

8: Set of senses associated with w, Cy, < 0

9: for each candidate synset s € S,
10: Number of edges n = |s' € Sy : (s,s') € E &

Jw eT:w' 4w & s’ € Sy

11: if n > maxr & n > 0 then

12: if n > max then
13: Cw — {(w,s)}

14: max <— n
15: else

16: Cw — Cuw U{(w,s)}
17: T —T*UCy

18: return Output set of connected words and senses T

same word (lines 5 to 10). Finally, each word is
associated with its top candidate synset(s) accord-
ing to its/their number of connections in context,
provided that its/their number of connections ex-
ceeds a threshold 8 = W (lines 11 to 17).2
This parameter aims to retain relevant connectivity
across senses, as only senses above the threshold
will be connected to words in the output corpus. 6
is proportional to the reciprocal of a parameter ¢,
and directly proportional to the average text length
and number of candidate synsets within the text.
The complexity of the proposed algorithm is
N + (N x «), where N is the number of words
of the training corpus and « is the average poly-
semy degree of a word in the corpus according to
the input semantic network. Considering that non-
content words are not taken into account (i.e. pol-
ysemy degree 0) and that the average polysemy
degree of words in current lexical resources (e.g.
WordNet or BabelNet) does not exceed a small
constant (3) in any language, we can safely assume
that the algorithm is linear in the size of the train-
ing corpus. Hence, the training time is not signif-
icantly increased in comparison to training words

2 As mentioned above, all unigrams, bigrams and trigrams
present in the semantic network are considered. In the case
of overlapping instances, the selection of the final instance is
performed in this order: mention whose synset is more con-
nected (i.e. n is higher), longer mention and from left to right.

3Higher values of § lead to higher recall, while lower val-
ues of § increase precision but lower the recall. We set the
value of § to 100, as it was shown to produce a fine bal-
ance between precision and recall. This parameter may also
be tuned on downstream tasks.

102

only, irrespective of the corpus size. This enables
a fast training on large amounts of text corpora,
in contrast to current unsupervised disambiguation
algorithms. Additionally, as we will show in Sec-
tion 5.2, this algorithm does not only speed up sig-
nificantly the training phase, but also leads to more
accurate results.

Note that with our algorithm a word is allowed
to have more than one sense associated. In fact,
current lexical resources like WordNet (Miller,
1995) or BabelNet (Navigli and Ponzetto, 2012)
are hampered by the high granularity of their sense
inventories (Hovy et al., 2013). In Section 6.2 we
show how our sense embeddings are particularly
suited to deal with this issue.

4 Joint training of words and senses

The goal of our approach is to obtain a shared
vector space of words and senses. To this end,
our model extends conventional word embedding
models by integrating explicit knowledge into its
architecture. While we will focus on the Con-
tinuous Bag Of Words (CBOW) architecture of
word2vec (Mikolov et al., 2013), our extension
can easily be applied similarly to Skip-Gram, or to
other predictive approaches based on neural net-
works. The CBOW architecture is based on the
feedforward neural network language model (Ben-
gio et al., 2003) and aims at predicting the current
word using its surrounding context. The architec-
ture consists of input, hidden and output layers.
The input layer has the size of the word vocabulary
and encodes the context as a combination of one-
hot vector representations of surrounding words of
a given target word. The output layer has the same
size as the input layer and contains a one-hot vec-
tor of the target word during the training phase.
Our model extends the input and output layers
of the neural network with word senses* by ex-
ploiting the intrinsic relationship between words
and senses. The leading principle is that, since a
word is the surface form of an underlying sense,
updating the embedding of the word should pro-
duce a consequent update to the embedding rep-
resenting that particular sense, and vice-versa. As
a consequence of the algorithm described in the
previous section, each word in the corpus may be
connected with zero, one or more senses. We re-

*Our model can also produce a space of words and synset
embeddings as output: the only difference is that all synonym
senses would be considered to be the same item, i.e. a synset.

Output Layer [0 0.8 o] © 0. @®..@®.-0]|
\V_ — ~— //j/’
~— T~
Hidden Layer | |
/'//’ \\«__
./'/’/ ‘\\
Input Layer BN YoX 1Y 1 .\ ce - @ . Q- Ol
\
\
e R o o @

Figure 1: The SW2V architecture on a sample training instance using four context words. Dotted lines
represent the virtual link between words and associated senses in context. In this example, the input layer
consists of a context of two previous words (w;_2, w;—1) and two subsequent words (w¢y1, Wey2) With
respect to the target word w;. Two words (w;_1, ws42) do not have senses associated in context, while
wy—9, wy4+1 have three senses (s;_;, s7_1, s;_;) and one sense associated (s; ;) in context, respectively.
The output layer consists of the target word w;, which has two senses associated (s}, s7) in context.

fer to the set of senses connected to a given word
within the specific context as its associated senses.
Formally, we define a training instance as a se-

quence of words W = wi_pn, ..., Wty ..., Wepp
(being w; the target word) and S =

k;
St—ny ey Sty eeeey Styn, Where S; = sl-l,...,si

is the sequence of all associated senses in context
of w; € W. Note that S; might be empty if the
word w; does not have any associated sense.
In our model each target word takes as context
both its surrounding words and all the senses
associated with them. In contrast to the original
CBOW architecture, where the training criterion
is to correctly classify w;, our approach aims to
predict the word w; and its set S; of associated
senses. This is equivalent to minimizing the
following loss function:

E = —log(p(w[W",5"))=> " log(p(s|W", 5%))
sESt

where Wt = w;_p,...,ws_1,Wig1, ..., Wiyp and

St = St_n,...,St_1,5t+1,...,St+n. Figure 1

shows the organization of the input and the out-
put layers on a sample training instance. In what
follows we present a set of variants of the model
on the output and the input layers.

4.1 Output layer alternatives

Both words and senses. This is the default case
explained above. If a word has one or more
associated senses, these senses are also used
as target on a separate output layer.

103

Only words. In this case we exclude senses as
target. There is a single output layer with the
size of the word vocabulary as in the original
CBOW model.

Only senses. In contrast, this alternative excludes
words, using only senses as target. In this
case, if a word does not have any associated
sense, it is not used as target instance.

4.2 Input layer alternatives

Both words and senses. Words and their associ-
ated senses are included in the input layer and
contribute to the hidden state. Both words and
senses are updated as a consequence of the
backpropagation algorithm.

Only words. In this alternative only the surround-
ing words contribute to the hidden state, i.e.
the target word/sense (depending on the alter-
native of the output layer) is predicted only
from word features. The update of an input
word is propagated to the embeddings of its
associated senses, if any. In other words, de-
spite not being included in the input layer,
senses still receive the same gradient of the
associated input word, through a virtual con-
nection. This configuration, coupled with the
only-words output layer configuration, corre-
sponds exactly to the default CBOW archi-
tecture of word2vec with the only addition of
the update step for senses.

Only senses. Words are excluded from the input
layer and the target is predicted only from
the senses associated with the surrounding
words. The weights of the words are updated
through the updates of the associated senses,
in contrast to the only-words alternative.

S Analysis of Model Components

In this section we analyze the different compo-
nents of SW2V, including the nine model configu-
rations (Section 5.1) and the algorithm which gen-
erates the connections between words and senses
in context (Section 5.2). In what follows we de-
scribe the common analysis setting:

e Training model and hyperparameters. For
evaluation purposes, we use the CBOW
model of word2vec with standard hyperpa-
rameters: the dimensionality of the vectors is
set to 300 and the window size to 8, and hi-
erarchical softmax is used for normalization.
These hyperparameter values are set across
all experiments.

Corpus and semantic network. We use a
300M-words corpus from the UMBC project
(Han et al., 2013), which contains English
paragraphs extracted from the web.’ As se-
mantic network we use BabelNet 3.0°, a large
multilingual semantic network with over 350
million semantic connections, integrating re-
sources such as Wikipedia and WordNet. We
chose BabelNet owing to its wide coverage of
named entities and lexicographic knowledge.

Benchmark. Word similarity has been one
of the most popular benchmarks for in-vitro
evaluation of vector space models (Penning-
ton et al, 2014; Levy et al., 2015). For
the analysis we use two word similarity
datasets: the similarity portion (Agirre et al.,
2009, WS-Sim) of the WordSim-353 dataset
(Finkelstein et al., 2002) and RG-65 (Ruben-
stein and Goodenough, 1965). In order to
compute the similarity of two words using
our sense embeddings, we apply the standard
closest senses strategy (Resnik, 1995; Bu-
danitsky and Hirst, 2006; Camacho-Collados
Shttp://ebiquity.umbc.
edu/blogger/2013/05/01/

umbc-webbase-corpus-of-3b-english-words/
*http://babelnet.org

104

et al., 2015), using cosine similarity (cos) as
comparison measure between senses:

ey

max

cos(51, 52)
SESuwy 18/ € Suy

sim(wy,wy) =
where S, represents the set of all candidate
senses of w; and §; refers to the sense vector
representation of the sense s;.

51

In this section we analyze the different configu-
rations of our model in respect of the input and
the output layer on a word similarity experiment.
Recall from Section 4 that our model could have
words, senses or both in either the input and output
layers. Table 1 shows the results of all nine config-
urations on the WS-Sim and RG-65 datasets.

As shown in Table 1, the best configuration ac-
cording to both Spearman and Pearson correla-
tion measures is the configuration which has only
senses in the input layer and both words and senses
in the output layer.” In fact, taking only senses as
input seems to be consistently the best alternative
for the input layer. Our hunch is that the knowl-
edge learned from both the co-occurrence infor-
mation and the semantic network is more balanced
with this input setting. For instance, in the case
of including both words and senses in the input
layer, the co-occurrence information learned by
the network would be duplicated for both words
and senses.

Model configurations

5.2 Disambiguation / Shallow word-sense
connectivity algorithm

In this section we evaluate the impact of our shal-
low word-sense connectivity algorithm (Section
3) by testing our model directly taking a pre-
disambiguated text as input. In this case the net-
work exploits the connections between each word
and its disambiguated sense in context. For this
comparison we used Babelfy® (Moro et al., 2014),
a state-of-the-art graph-based disambiguation and
entity linking system based on BabelNet. We com-
pare to both the default Babelfy system which

"In this analysis we used the word similarity task for
optimizing the sense embeddings, without caring about the
performance of word embeddings or their interconnectivity.
Therefore, this configuration may not be optimal for word
embeddings and may be further tuned on specific applica-
tions. More information about different configurations in the
documentation of the source code.

$http://babelfy.org

Output
Words Senses Both
WS-Sim RG-65 WS-Sim RG-65 WS-Sim RG-65
r p r p r p r p r p r p
« | Words | 0.49 | 0.48 | 0.65 | 0.66 || 0.56 | 0.56 | 0.67 | 0.67 || 0.54 | 0.53 | 0.66 | 0.65
:n-‘ Senses | 0.69 | 0.69 | 0.70 | 0.71 || 0.69 | 0.70 | 0.70 | 0.74 || 0.72 | 0.71 | 0.71 | 0.74
= | Both | 0.60 | 0.65 | 0.67 | 0.70 || 0.62 | 0.65 | 0.66 | 0.67 || 0.65 | 0.71 | 0.68 | 0.70

Table 1: Pearson (r) and Spearman (p) correlation performance of the nine configurations of SW2V

WS-Sim RG-65

r p T p
Shallow | 0.72 | 0.71 || 0.71 | 0.74
Babelfy | 0.65 | 0.63 || 0.69 | 0.70
Babelfy* | 0.63 | 0.61 || 0.65 | 0.64

Table 2: Pearson (r) and Spearman (p) correla-
tion performance of SW2V integrating our shal-
low word-sense connectivity algorithm (default),
Babelfy, or Babelfy*.

uses the Most Common Sense (MCS) heuristic as a
back-off strategy and, following (Iacobacci et al.,
2015), we also include a version in which only
instances above the Babelfy default confidence
threshold are disambiguated (i.e. the MCS back-
off strategy is disabled). We will refer to this latter
version as Babelfy* and report the best configura-
tion of each strategy according to our analysis.

Table 2 shows the results of our model using
the three different strategies on RG-65 and WS-
Sim. Our shallow word-sense connectivity algo-
rithm achieves the best overall results. We believe
that these results are due to the semantic connec-
tivity ensured by our algorithm and to the pos-
sibility of associating words with more than one
sense, which seems beneficial for training, mak-
ing it more robust to possible disambiguation er-
rors and to the sense granularity issue (Erk et al.,
2013). The results are especially significant con-
sidering that our algorithm took a tenth of the time
needed by Babelfy to process the corpus.

6 Evaluation

We perform a qualitative and quantitative evalua-
tion of important features of SW2V in three dif-
ferent tasks. First, in order to compare our model
against standard word-based approaches, we eval-
uate our system in the word similarity task (Sec-
tion 6.1). Second, we measure the quality of our
sense embeddings in a sense-specific application:

sense clustering (Section 6.2). Finally, we evalu-
ate the coherence of our unified vector space by
measuring the interconnectivity of word and sense
embeddings (Section 6.3).

Experimental setting. Throughout all the ex-
periments we use the same standard hyperparam-
eters mentioned in Section 5 for both the origi-
nal word2vec implementation and our proposed
model SW2V. For SW2V we use the same opti-
mal configuration according to the analysis of the
previous section (only senses as input, and both
words and senses as output) for all tasks. As train-
ing corpus we take the full 3B-words UMBC web-
base corpus and the Wikipedia (Wikipedia dump
of November 2014), used by three of the compari-
son systems. We use BabelNet 3.0 (SW2Vpy) and
WordNet 3.0 (SW2Vwy) as semantic networks.

Comparison systems. We compare with the
publicly available pre-trained sense embeddings
of four state-of-the-art models: Chen et al. (2014)°
and AutoExtend'” (Rothe and Schiitze, 2015)
based on WordNet, and SensEmbed'! (Iacobacci
et al.,, 2015) and NASARI'? (Camacho-Collados
et al., 2016) based on BabelNet.

6.1 Word Similarity

In this section we evaluate our sense represen-
tations on the standard SimLex-999 (Hill et al.,
2015) and MEN (Bruni et al., 2014) word simi-
larity datasets'®. SimLex and MEN contain 999
and 3000 word pairs, respectively, which consti-
tute, to our knowledge, the two largest similar-

http://pan.baidu.com/s/leQcPK8i

OWe used the AutoExtend code (http://cistern.
cis.lmu.de/~sascha/AutoExtend/) to obtain
sense vectors using W2V embeddings trained on UMBC
(GoogleNews corpus used in their pre-trained models is
not publicly available). We also tried the code to include
BabelNet as lexical resource, but it was not easily scalable
(BabelNet is two orders of magnitude larger than WordNet).

"http://lcl.uniromal.it/sensembed/

Phttp://1lcl.uniromal.it/nasari/

3To enable a fair comparison we did not perform experi-
ments on the small datasets used in Section 5 for validation.

105

SimLex-999 MEN
System Corpus r p r P
SW2VpnN UMBC 049 | 047 | 0.75 | 0.75
SW2VwnN UMBC 046 | 045 | 0.76 | 0.76
AutoExtend UMBC 0.47 | 045 | 0.74 | 0.75
Senses AutoExtend Google-News | 0.46 | 0.46 | 0.68 | 0.70
SW2VpN Wikipedia 0.47 | 043 | 0.71 | 0.73
SW2VwN Wikipedia 047 | 043 | 0.71 | 0.72
SensEmbed Wikipedia 043 | 0.39 | 0.65 | 0.70
Chen et al. (2014) Wikipedia 046 | 043 | 0.62 | 0.62
Word2vec UMBC 0.39 | 039 | 0.75 | 0.75
Retrofittinggn UMBC 047 | 046 | 0.75 | 0.76
Words Retrofittingwn UMBC 047 | 046 | 0.76 | 0.76
Word2vec Wikipedia 0.39 | 0.38 | 0.71 | 0.72
Retrofittinggy Wikipedia 0.35 | 0.32 | 0.66 | 0.66
Retrofittingwn Wikipedia 047 | 044 | 0.73 | 0.73

Table 3: Pearson (r) and Spearman (p) correlation performance on the SimLex-999 and MEN word

similarity datasets.

ity datasets comprising a balanced set of noun,
verb and adjective instances. As explained in Sec-
tion 5, we use the closest sense strategy for the
word similarity measurement of our model and
all sense-based comparison systems. As regards
the word embedding models, words are directly
compared by using cosine similarity. We also in-
clude a retrofitted version of the original word2vec
word vectors (Faruqui et al., 2015, Retrofitting!4)
using WordNet (Retrofittingwy) and BabelNet
(Retrofittinggn) as lexical resources.

Table 3 shows the results of SW2V and all com-
parison models in SimLex and MEN. SW2V con-
sistently outperforms all sense-based comparison
systems using the same corpus, and clearly per-
forms better than the original word2vec trained on
the same corpus. Retrofitting decreases the perfor-
mance of the original word2vec on the Wikipedia
corpus using BabelNet as lexical resource, but sig-
nificantly improves the original word vectors on
the UMBC corpus, obtaining comparable results
to our approach. However, while our approach
provides a shared space of words and senses,
Retrofitting still conflates different meanings of a
word into the same vector.

Additionally, we noticed that most of the score
divergences between our system and the gold stan-
dard scores in SimLex-999 were produced on

“https://github.com/mfaruqui/
retrofitting

106

antonym pairs, which are over-represented in this
dataset: 38 word pairs hold a clear antonymy re-
lation (e.g. encourage-discourage or long-short),
while 41 additional pairs hold some degree of
antonymy (e.g. new-ancient or man-woman)."> In
contrast to the consistently low gold similarity
scores given to antonym pairs, our system varies
its similarity scores depending on the specific na-
ture of the pair'®. Recent works have managed
to obtain significant improvements by tweaking
usual word embedding approaches into provid-
ing low similarity scores for antonym pairs (Pham
et al., 2015; Schwartz et al., 2015; Nguyen et al.,
2016; Mrksic et al., 2017), but this is outside the
scope of this paper.

6.2 Sense Clustering

Current lexical resources tend to suffer from the
high granularity of their sense inventories (Palmer
et al., 2007). In fact, a meaningful clustering of
their senses may lead to improvements on down-
stream tasks (Hovy et al., 2013; Flekova and
Gurevych, 2016; Pilehvar et al., 2017). In this sec-
tion we evaluate our synset representations on the
Wikipedia sense clustering task. For a fair com-
parison with respect to the BabelNet-based com-

5Two annotators decided the degree of antonymy between
word pairs: clear antonyms, weak antonyms or neither.

!SFor instance, the pairs sunset-sunrise and day-night are
given, respectively, 1.88 and 2.47 gold scores in the 0-10
scale, while our model gives them a higher similarity score.
In fact, both pairs appear as coordinate synsets in WordNet.

Accuracy | F-Measure
SwW2v 87.8 63.9
SensEmbed 82.7 40.3
NASARI 87.0 62.5
Multi-SVM 85.5 -
Mono-SVM 83.5 -
Baseline 17.5 29.8

Table 4: Accuracy and F-Measure percentages of
different systems on the SemEval Wikipedia sense
clustering dataset.

parison systems that use the Wikipedia corpus for
training, in this experiment we report the results of
our model trained on the Wikipedia corpus and us-
ing BabelNet as lexical resource only. For the eval-
uation we consider the two Wikipedia sense clus-
tering datasets (500-pair and SemEval) created by
Dandala et al. (2013). In these datasets sense clus-
tering is viewed as a binary classification task in
which, given a pair of Wikipedia pages, the system
has to decide whether to cluster them into a single
instance or not. To this end, we use our synset em-
beddings and cluster Wikipedia pages!” together
if their similarity exceeds a threshold . In order
to set the optimal value of ~, we follow Dandala
et al. (2013) and use the first 500-pairs sense clus-
tering dataset for tuning. We set the threshold
to 0.35, which is the value leading to the highest
F-Measure among all values from 0 to 1 with a
0.05 step size on the 500-pair dataset. Likewise,
we set a threshold for NASARI (0.7) and SensEm-
bed (0.3) comparison systems.

Finally, we evaluate our approach on the Se-
mEval sense clustering test set. This test set con-
sists of 925 pairs which were obtained from a
set of highly ambiguous words gathered from
past SemEval tasks. For comparison, we also in-
clude the supervised approach of Dandala et al.
(2013) based on a multi-feature Support Vector
Machine classifier trained on an automatically-
labeled dataset of the English Wikipedia (Mono-
SVM) and Wikipedia in four different languages
(Multi-SVM). As naive baseline we include the
system which would cluster all given pairs.

Table 4 shows the F-Measure and accuracy re-
sults on the SemEval sense clustering dataset.
SW2V outperforms all comparison systems ac-
cording to both measures, including the sense rep-

17Since Wikipedia is a resource included in BabelNet, our
synset representations are expandable to Wikipedia pages.

107

resentations of NASARI and SensEmbed using the
same setup and the same underlying lexical re-
source. This confirms the capability of our system
to accurately capture the semantics of word senses
on this sense-specific task.

6.3 Word and sense interconnectivity

In the previous experiments we evaluated the ef-
fectiveness of the sense embeddings. In contrast,
this experiment aims at testing the interconnec-
tivity between word and sense embeddings in the
vector space. As explained in Section 2, there have
been previous approaches building a shared space
of word and sense embeddings, but to date lit-
tle research has focused on testing the semantic
coherence of the vector space. To this end, we
evaluate our model on a Word Sense Disambigua-
tion (WSD) task, using our shared vector space of
words and senses to obtain a Most Common Sense
(MCS) baseline. The insight behind this experi-
ment is that a semantically coherent shared space
of words and senses should be able to build a rel-
atively strong baseline for the task, as the MCS
of a given word should be closer to the word
vector than any other sense. The MCS baseline
is generally integrated into the pipeline of state-
of-the-art WSD and Entity Linking systems as a
back-off strategy (Navigli, 2009; Jin et al., 2009;
Zhong and Ng, 2010; Moro et al., 2014; Raganato
et al., 2017) and is used in various NLP applica-
tions (Bennett et al., 2016). Therefore, a system
which automatically identifies the MCS of words
from non-annotated text may be quite valuable,
especially for resource-poor languages or large
knowledge resources for which obtaining sense-
annotated corpora is extremely expensive. More-
over, even in a resource like WordNet for which
sense-annotated data is available (Miller et al.,
1993, SemCor), 61% of its polysemous lemmas
have no sense annotations (Bennett et al., 2016).
Given an input word w, we compute the cosine
similarity between w and all its candidate senses,
picking the sense leading to the highest similarity:

MCS(w) = argmax cos(w, 5)
5€ESw

2

where cos(w, §) refers to the cosine similarity be-
tween the embeddings of w and s. In order to as-
sess the reliability of SW2V against previous mod-
els using WordNet as sense inventory, we test our
model on the all-words SemEval-2007 (task 17)
(Pradhan et al., 2007) and SemEval-2013 (task

SemEval-07 | SemEval-13
SW2v 39.9 54.0
AutoExtend 17.6 31.0
Baseline 24.8 34.9

Table 5: F-Measure percentage of different MCS
strategies on the SemEval-2007 and SemEval-

2013 WSD datasets.

12) (Navigli et al., 2013) WSD datasets. Note that
our model using BabelNet as semantic network
has a far larger coverage than just WordNet and
may additionally be used for Wikification (Mihal-
cea and Csomai, 2007) and Entity Linking tasks.
Since the versions of WordNet vary across datasets
and comparison systems, we decided to evaluate
the systems on the portion of the datasets covered
by all comparison systems'® (less than 10% of in-
stances were removed from each dataset).

Table 5 shows the results of our system and
AutoExtend on the SemEval-2007 and SemEval-
2013 WSD datasets. SW2V provides the best
MCS results in both datasets. In general, AutoEx-
tend does not accurately capture the predominant
sense of a word and performs worse than a base-
line that selects the intended sense randomly from
the set of all possible senses of the target word.

In fact, AutoExtend tends to create clusters
which include a word and all its possible senses.
As an example, Table 6 shows the closest word and
sense'® embeddings of our SW2V model and Au-
toExtend to the military and fish senses of, respec-
tively, company and school. AutoExtend creates
clusters with all the senses of company and school
and their related instances, even if they belong to
different domains (e.g., firm? or business}, clearly
concern the business sense of company). Instead,
SW2V creates a semantic cluster of word and
sense embeddings which are semantically close to
the corresponding company? and school, senses.

7 Conclusion and Future Work

In this paper we proposed SW2V (Senses and
Words to Vectors), a neural model which learns
vector representations for words and senses in a
joint training phase by exploiting both text corpora
and knowledge from semantic networks. Data (in-

'8We were unable to obtain the word embeddings of Chen
et al. (2014) for comparison even after contacting the authors.

19Following Navigli (2009), word?, is the nt" sense of
word with part of speech p (using WordNet 3.0).

108

company% (military unit)

school?, (group of fish)

AutoExtend Swa2v AutoExtend | SW2V
company?, battalion, school schools’
company battalion school? sharks),

company regiment, school® sharks
company® | detachment? school} shoals?
company,, platoon, school? fishl,
company}, brigade, elementary | dolphins},
firm regiment schools pods3
business), corps} elementary? eels
firm? brigade school? dolphins
company), platoon elementary) | whales?

Table 6: Ten closest word and sense embeddings
to the senses company? (military unit) and school,
(group of fish).

cluding the preprocessed corpora and pre-trained
embeddings used in the evaluation) and source
code to apply our extension of the word2vec ar-
chitecture to learn word and sense embeddings
from any preprocessed corpus are freely avail-
able at http://lcl.uniromal.it/sw2v.
Unlike previous sense-based models which re-
quire post-processing steps and use WordNet as
sense inventory, our model achieves a semantically
coherent vector space of both words and senses
as an emerging feature of a single training phase
and is easily scalable to larger semantic networks
like BabelNet. Finally, we showed, both quantita-
tively and qualitatively, some of the advantages of
using our approach as against previous state-of-
the-art word- and sense-based models in various
tasks, and highlighted interesting semantic prop-
erties of the resulting unified vector space of word
and sense embeddings.

As future work we plan to integrate a WSD and
Entity Linking system for applying our model on
downstream NLP applications, along the lines of
Pilehvar et al. (2017). We are also planning to ap-
ply our model to languages other than English and
to study its potential on multilingual and cross-
lingual applications.

Acknowledgments

The authors gratefully acknowledge
c the support of the ERC Consolidator
Grant MOUSSE No. 726487.

Jose Camacho-Collados is supported by a
Google Doctoral Fellowship in Natural Language
Processing. We would also like to thank Jim Mc-
Manus for his comments on the manuscript.

References

Eneko Agirre, Enrique Alfonseca, Keith Hall, Jana
Kravalova, Marius Pagca, and Aitor Soroa. 2009. A
study on similarity and relatedness using distribu-
tional and WordNet-based approaches. In Proceed-
ings of NAACL. pages 19-27.

Eneko Agirre, Oier Lopez de Lacalle, and Aitor Soroa.
2014. Random walks for knowledge-based word
sense disambiguation. Computational Linguistics
40(1):57-84.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Janvin. 2003. A Neural Probabilistic Lan-
guage Model. The Journal of Machine Learning Re-
search 3:1137-1155.

Andrew Bennett, Timothy Baldwin, Jey Han Lau, Di-
ana McCarthy, and Francis Bond. 2016. Lexsemtm:
A semantic dataset based on all-words unsupervised
sense distribution learning. In Proceedings of ACL.
pages 1513-1524.

Antoine Bordes, Sumit Chopra, and Jason Weston.
2014. Question answering with subgraph embed-
dings. In Proceedings of EMNLP. pages 615-620.

Elia Bruni, Nam-Khanh Tran, and Marco Baroni. 2014.
Multimodal distributional semantics. J. Artif. Intell.
Res.(JAIR) 49(1-47).

Alexander Budanitsky and Graeme Hirst. 2006. Evalu-
ating WordNet-based measures of Lexical Semantic
Relatedness. Computational Linguistics 32(1):13—
47.

José Camacho-Collados, Mohammad Taher Pilehvar,
and Roberto Navigli. 2015. A Unified Multilingual
Semantic Representation of Concepts. In Proceed-
ings of ACL. Beijing, China, pages 741-751.

José Camacho-Collados, Mohammad Taher Pilehvar,
and Roberto Navigli. 2016. Nasari: Integrating ex-
plicit knowledge and corpus statistics for a multilin-
gual representation of concepts and entities. Artifi-
cial Intelligence 240:36-64.

Xinxiong Chen, Zhiyuan Liu, and Maosong Sun. 2014.
A unified model for word sense representation and
disambiguation. In Proceedings of EMNLP. Doha,
Qatar, pages 1025-1035.

Bharath Dandala, Chris Hokamp, Rada Mihalcea, and
Razvan C. Bunescu. 2013. Sense clustering using
Wikipedia. In Proc. of RANLP. Hissar, Bulgaria,
pages 164—171.

Antonio Di Marco and Roberto Navigli. 2013. Cluster-
ing and diversifying web search results with graph-

based word sense induction. Computational Lin-
guistics 39(3):709-754.

Katrin Erk, Diana McCarthy, and Nicholas Gaylord.
2013. Measuring word meaning in context. Com-
putational Linguistics 39(3):511-554.

109

Allyson Ettinger, Philip Resnik, and Marine Carpuat.
2016. Retrofitting Sense-Specific Word Vectors Us-
ing Parallel Text. In Proceedings of NAACL-HLT.
pages 1378-1383.

Wei Fang, Jianwen Zhang, Dilin Wang, Zheng Chen,
and Ming Li. 2016. Entity disambiguation by
knowledge and text jointly embedding. In Proceed-
ings of CoNLL. pages 260-269.

Manaal Faruqui, Jesse Dodge, Sujay K. Jauhar, Chris
Dyer, Eduard Hovy, and Noah A. Smith. 2015.
Retrofitting word vectors to semantic lexicons. In
Proceedings of NAACL. pages 1606-1615.

Lev Finkelstein, Gabrilovich Evgeniy, Matias Yossi,
Rivlin Ehud, Solan Zach, Wolfman Gadi, and Rup-
pin Eytan. 2002. Placing search in context: The con-
cept revisited. ACM Transactions on Information
Systems 20(1):116-131.

Lucie Flekova and Iryna Gurevych. 2016. Supersense
embeddings: A unified model for supersense inter-
pretation, prediction, and utilization. In Proceedings
of ACL. pages 2029-2041.

Josu Goikoetxea, Aitor Soroa, Eneko Agirre, and
Basque Country Donostia. 2015. Random walks
and neural network language models on knowledge
bases. In Proceedings of NAACL. pages 1434—1439.

Jiang Guo, Wanxiang Che, Haifeng Wang, and Ting
Liu. 2014. Learning sense-specific word embed-
dings by exploiting bilingual resources. In Proceed-
ings of COLING. pages 497-507.

Lushan Han, Abhay Kashyap, Tim Finin, James
Mayfield, and Jonathan Weese. 2013. UMBC
EBIQUITY-CORE: Semantic textual similarity sys-
tems. In Proceedings of the Second Joint Confer-
ence on Lexical and Computational Semantics. vol-
ume 1, pages 44-52.

Felix Hill, Roi Reichart, and Anna Korhonen. 2015.
Simlex-999: Evaluating semantic models with (gen-
uine) similarity estimation. Computational Linguis-
tics .

Johannes Hoffart, Stephan Seufert, Dat Ba Nguyen,
Martin Theobald, and Gerhard Weikum. 2012.
Kore: keyphrase overlap relatedness for entity dis-
ambiguation. In Proceedings of CIKM. pages 545—
554.

Eduard H. Hovy, Roberto Navigli, and Simone Paolo
Ponzetto. 2013. Collaboratively built semi-
structured content and Artificial Intelligence: The
story so far. Artificial Intelligence 194:2-27.

Eric H. Huang, Richard Socher, Christopher D. Man-
ning, and Andrew Y. Ng. 2012. Improving word
representations via global context and multiple word
prototypes. In Proc. of ACL. Jeju Island, Korea,
pages 873-882.

Ignacio Tacobacci, Mohammad Taher Pilehvar, and
Roberto Navigli. 2015. Sensembed: Learning sense
embeddings for word and relational similarity. In
Proceedings of ACL. Beijing, China, pages 95-105.

Ignacio Iacobacci, Mohammad Taher Pilehvar, and
Roberto Navigli. 2016. Embeddings for Word Sense
Disambiguation: An Evaluation Study. In Proceed-
ings of ACL. pages 897-907.

Sujay Kumar Jauhar, Chris Dyer, and Eduard Hovy.
2015. Ontologically grounded multi-sense represen-
tation learning for semantic vector space models. In
Proceedings of NAACL.

Peng Jin, Diana McCarthy, Rob Koeling, and John Car-
roll. 2009. Estimating and exploiting the entropy of
sense distributions. In Proceedings of NAACL (2).
pages 233-236.

Richard Johansson and Luis Nieto Pina. 2015. Embed-
ding a semantic network in a word space. In Pro-
ceedings of NAACL. pages 1428-1433.

Omer Levy, Yoav Goldberg, and Ido Dagan. 2015. Im-
proving distributional similarity with lessons learned
from word embeddings. TACL 3:211-225.

Jiwei Li and Dan Jurafsky. 2015. Do multi-sense em-
beddings improve natural language understanding?
In Proceedings of EMNLP. Lisbon, Portugal.

Oren Melamud, Jacob Goldberger, and Ido Dagan.
2016. context2vec: Learning Generic Context Em-
bedding with Bidirectional LSTM. In Proc. of
CONLL. pages 51-61.

Rada Mihalcea and Andras Csomai. 2007. Wikify!
Linking documents to encyclopedic knowledge. In
Proceedings of the Sixteenth ACM Conference on
Information and Knowledge management. Lisbon,
Portugal, pages 233-242.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. CoRR abs/1301.3781.

George A Miller. 1995. Wordnet: a lexical database for
english. Communications of the ACM 38(11):39—
41.

George A. Miller, Claudia Leacock, Randee Tengi, and
Ross Bunker. 1993. A semantic concordance. In
Proceedings of the 3rd DARPA Workshop on Human
Language Technology. Plainsboro, N.J., pages 303—
308.

Andrea Moro, Alessandro Raganato, and Roberto Nav-
igli. 2014. Entity Linking meets Word Sense Disam-
biguation: a Unified Approach. TACL 2:231-244.

Nikola Mrksic, Ivan Vuli¢, Diarmuid O Séaghdha, Ira
Leviant, Roi Reichart, Milica Gai, Anna Korhonen,
and Steve Young. 2017. Semantic Specialisation of
Distributional Word Vector Spaces using Monolin-
gual and Cross-Lingual Constraints. TACL .

110

Roberto Navigli. 2009. Word Sense Disambiguation:
A survey. ACM Computing Surveys 41(2):1-69.

Roberto Navigli, David Jurgens, and Daniele Vannella.
2013. SemEval-2013 Task 12: Multilingual Word
Sense Disambiguation. In Proceedings of SemEval
2013. pages 222-231.

Roberto Navigli and Simone Paolo Ponzetto. 2012.
BabelNet: The automatic construction, evaluation
and application of a wide-coverage multilingual se-
mantic network. AlJ 193:217-250.

Arvind Neelakantan, Jeevan Shankar, Alexandre Pas-
sos, and Andrew McCallum. 2014. Efficient non-
parametric estimation of multiple embeddings per
word in vector space. In Proceedings of EMNLP.
Doha, Qatar, pages 1059-1069.

Kim Anh Nguyen, Sabine Schulte im Walde, and
Ngoc Thang Vu. 2016. Integrating distributional
lexical contrast into word embeddings for antonym-
synonym distinction. In Proceedings of ACL. pages
454-459.

Martha Palmer, Hoa Dang, and Christiane Fellbaum.
2007. Making fine-grained and coarse-grained
sense distinctions, both manually and automatically.
Natural Language Engineering 13(2):137-163.

Alexander Panchenko, Eugen Ruppert, Stefano Faralli,
Simone Paolo Ponzetto, and Chris Biemann. 2017.
Unsupervised does not mean uninterpretable: The
case for word sense induction and disambiguation.
In Proceedings of EACL. pages 86-98.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. GloVe: Global vectors for word
representation. In Proceedings of EMNLP. pages
1532-1543.

Nghia The Pham, Angeliki Lazaridou, and Marco Ba-
roni. 2015. A multitask objective to inject lexical
contrast into distributional semantics. In Proceed-
ings of ACL. pages 21-26.

Mohammad Taher Pilehvar, Jose Camacho-Collados,
Roberto Navigli, and Nigel Collier. 2017. Towards
a Seamless Integration of Word Senses into Down-
stream NLP Applications. In Proceedings of ACL.
Vancouver, Canada.

Mohammad Taher Pilehvar and Nigel Collier. 2016.
De-conflated semantic representations. In Proceed-
ings of EMNLP. Austin, TX.

Sameer Pradhan, Edward Loper, Dmitriy Dligach, and
Martha Palmer. 2007. SemEval-2007 task-17: En-
glish lexical sample, SRL and all words. In Pro-
ceedings of SemEval. pages 87-92.

Lin Qiu, Kewei Tu, and Yong Yu. 2016. Context-
dependent sense embedding. In Proceedings of
EMNLP. Austin, Texas, pages 183—-191.

Alessandro Raganato, Jose Camacho-Collados, and
Roberto Navigli. 2017. Word Sense Disambigua-
tion: A Unified Evaluation Framework and Empir-
ical Comparison. In Proceedings of EACL. pages
99-110.

Joseph Reisinger and Raymond J. Mooney. 2010.
Multi-prototype vector-space models of word mean-
ing. In Proceedings of ACL. pages 109—117.

Philip Resnik. 1995. Using information content to
evaluate semantic similarity in a taxonomy. In Pro-
ceedings of IJCAI. pages 448-453.

Sascha Rothe and Hinrich Schiitze. 2015. AutoEx-
tend: Extending Word Embeddings to Embeddings
for Synsets and Lexemes. In Proceedings of ACL.
Beijing, China, pages 1793-1803.

Herbert Rubenstein and John B. Goodenough. 1965.
Contextual correlates of synonymy. Commun. ACM
8(10):627-633.

Hinrich Schiitze. 1998. Automatic word sense discrim-
ination. Computational linguistics 24(1):97-123.

Roy Schwartz, Roi Reichart, and Ari Rappoport. 2015.
Symmetric pattern based word embeddings for im-
proved word similarity prediction. In Proceedings
of CoNLL. pages 258-267.

Robert Speer and Joanna Lowry-Duda. 2017. Con-
ceptnet at semeval-2017 task 2: Extending word em-
beddings with multilingual relational knowledge. In
Proceedings of the 11th International Workshop on
Semantic Evaluation (SemEval-2017). pages 76-80.

Simon §uster, Ivan Titov, and Gertjan van Noord. 2016.
Bilingual learning of multi-sense embeddings with
discrete autoencoders. In Proceedings of NAACL-
HLT. pages 1346—-1356.

Fei Tian, Hanjun Dai, Jiang Bian, Bin Gao, Rui Zhang,
Enhong Chen, and Tie-Yan Liu. 2014. A probabilis-
tic model for learning multi-prototype word embed-
dings. In Proceedings of COLING. pages 151-160.

Thuy Vu and D Stott Parker. 2016. K-embeddings:
Learning conceptual embeddings for words using
context. In Proceedings of NAACL-HLT. pages
1262-1267.

Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng
Chen. 2014. Knowledge graph and text jointly em-
bedding. In Proceedings of EMNLP. pages 1591—
1601.

David Weiss, Chris Alberti, Michael Collins, and Slav
Petrov. 2015. Structured training for neural network
transition-based parsing. In Proceedings of ACL.
Beijing, China, pages 323-333.

Mo Yu and Mark Dredze. 2014. Improving lexical em-
beddings with semantic knowledge. In Proceedings
of ACL (2). pages 545-550.

111

Zhi Zhong and Hwee Tou Ng. 2010. It Makes Sense: A
wide-coverage Word Sense Disambiguation system
for free text. In Proc. of ACL System Demonstra-
tions. pages 78-83.

Will Y. Zou, Richard Socher, Daniel M Cer, and
Christopher D Manning. 2013. Bilingual word em-
beddings for phrase-based machine translation. In
Proceedings of EMNLP. pages 1393—1398.

Automatic Selection of Context Configurations for Improved
Class-Specific Word Representations

Ivan Vuli¢!, Roy Schwartz

2,3

, Ari Rappoport*

Roi Reichart®, Anna Korhonen'!
! Language Technology Lab, DTAL, University of Cambridge
2 CS & Engineering, University of Washington and 3Allen Institute for Al
4 Institute of Computer Science, The Hebrew University of Jerusalem
5 Faculty of Industrial Engineering and Management, Technion, IIT
roysch@cs.washington.edu

{iv250,alk23}@cam.ac.uk
arir@cs.huji.ac.il

Abstract

This paper is concerned with identifying
contexts useful for training word represen-
tation models for different word classes
such as adjectives (A), verbs (V), and
nouns (N). We introduce a simple yet ef-
fective framework for an automatic selec-
tion of class-specific context configurations.
We construct a context configuration space
based on universal dependency relations
between words, and efficiently search this
space with an adapted beam search algo-
rithm. In word similarity tasks for each
word class, we show that our framework is
both effective and efficient. Particularly, it
improves the Spearman’s p correlation with
human scores on SimLex-999 over the best
previously proposed class-specific contexts
by 6 (A), 6 (V) and 5 (N) p points. With our
selected context configurations, we train on
only 14% (A), 26.2% (V), and 33.6% (N)
of all dependency-based contexts, resulting
in a reduced training time. Our results gen-
eralise: we show that the configurations our
algorithm learns for one English training
setup outperform previously proposed con-
text types in another training setup for En-
glish. Moreover, basing the configuration
space on universal dependencies, it is possi-
ble to transfer the learned configurations to
German and Italian. We also demonstrate
improved per-class results over other con-
text types in these two languages.

1 Introduction

Dense real-valued word representations (embed-
dings) have become ubiquitous in NLP, serving
as invaluable features in a broad range of tasks
(Turian et al., 2010; Collobert et al., 2011; Chen

112

roiri@ie.technion.ac.1l

and Manning, 2014). The omnipresent word2vec
skip-gram model with negative sampling (SGNS)
(Mikolov et al., 2013) is still considered a ro-
bust and effective choice for a word representation
model, due to its simplicity, fast training, as well as
its solid performance across semantic tasks (Baroni
etal., 2014; Levy et al., 2015). The original SGNS
implementation learns word representations from
local bag-of-words contexts (BOW). However, the
underlying model is equally applicable with other
context types (Levy and Goldberg, 2014a).

Recent work suggests that “not all contexts are
created equal”. For example, reaching beyond stan-
dard BOW contexts towards contexts based on de-
pendency parses (Bansal et al., 2014; Melamud
et al., 2016) or symmetric patterns (Schwartz et al.,
2015, 2016) yields significant improvements in
learning representations for particular word classes
such as adjectives (A) and verbs (V). Moreover,
Schwartz et al. (2016) demonstrated that a subset
of dependency-based contexts which covers only
coordination structures is particularly effective for
SGNS training, both in terms of the quality of the
induced representations and in the reduced training
time of the model. Interestingly, they also demon-
strated that despite the success with adjectives and
verbs, BOW contexts are still the optimal choice
when learning representations for nouns (N).

In this work, we propose a simple yet effec-
tive framework for selecting context configurations,
which yields improved representations for verbs,
adjectives, and nouns. We start with a definition of
our context configuration space (Sect. 3.1). Our ba-
sic definition of a context refers to a single typed (or
labeled) dependency link between words (e.g., the
amod link or the dob 7 link). Our configuration
space then naturally consists of all possible sub-
sets of the set of labeled dependency links between
words. We employ the universal dependencies (UD)
scheme to make our framework applicable across

Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017), pages 112-122,
Vancouver, Canada, August 3 - August 4, 2017. (©2017 Association for Computational Linguistics

languages. We then describe (Sect. 3.2) our adapted
beam search algorithm that aims to select an opti-
mal context configuration for a given word class.

We show that SGNS requires different context
configurations to produce improved results for each
word class. For instance, our algorithm detects that
the combination of amod and conj contexts is
effective for adjective representation. Moreover,
some contexts that boost representation learning for
one word class (e.g., amod contexts for adjectives)
may be uninformative when learning representa-
tions for another class (e.g., amod for verbs). By
removing such dispensable contexts, we are able
both to speed up the SGNS training and to improve
representation quality.

We first experiment with the task of predicting
similarity scores for the A/V/N portions of the
benchmarking SimLex-999 evaluation set, running
our algorithm in a standard SGNS experimental
setup (Levy et al., 2015). When training SGNS with
our learned context configurations it outperforms
SGNS trained with the best previously proposed
context type for each word class: the improvements
in Spearman’s p rank correlations are 6 (A), 6 (V),
and 5 (N) points. We also show that by building
context configurations we obtain improvements on
the entire SimLex-999 (4 p points over the best
baseline). Interestingly, this context configuration
is not the optimal configuration for any word class.

We then demonstrate that our approach is ro-
bust by showing that transferring the optimal con-
figurations learned in the above setup to three
other setups yields improved performance. First,
the above context configurations, learned with the
SGNS training on the English Wikipedia corpus,
have an even stronger impact on SimLex999 per-
formance when SGNS is trained on a larger corpus.
Second, the transferred configurations also result
in competitive performance on the task of solv-
ing class-specific TOEFL questions. Finally, we
transfer the learned context configurations across
languages: these configurations improve the SGNS
performance when trained with German or Italian
corpora and evaluated on class-specific subsets of
the multilingual SimLex-999 (Leviant and Reichart,
2015), without any language-specific tuning.

2 Related Work

Word representation models typically train on
(word, context) pairs. Traditionally, most models
use bag-of-words (BOW) contexts, which represent

a word using its neighbouring words, irrespective
of the syntactic or semantic relations between them
(Collobert et al., 2011; Mikolov et al., 2013; Mnih
and Kavukcuoglu, 2013; Pennington et al., 2014, in-
ter alia). Several alternative context types have been
proposed, motivated by the limitations of BOW
contexts, most notably their focus on topical rather
than functional similarity (e.g., coffee:cup vs. cof-
fee:tea). These include dependency contexts (Padé
and Lapata, 2007; Levy and Goldberg, 2014a), pat-
tern contexts (Baroni et al., 2010; Schwartz et al.,
2015) and substitute vectors (Yatbaz et al., 2012;
Melamud et al., 2015).

Several recent studies examined the effect of con-
text types on word representation learning. Mela-
mud et al. (2016) compared three context types on
a set of intrinsic and extrinsic evaluation setups:
BOW, dependency links, and substitute vectors.
They show that the optimal type largely depends on
the task at hand, with dependency-based contexts
displaying strong performance on semantic similar-
ity tasks. Vuli¢ and Korhonen (2016) extended the
comparison to more languages, reaching similar
conclusions. Schwartz et al. (2016), showed that
symmetric patterns are useful as contexts for V and
A similarity, while BOW still works best for nouns.
They also indicated that coordination structures,
a particular dependency link, are more useful for
verbs and adjectives than the entire set of dependen-
cies. In this work, we generalise their approach: our
algorithm systematically and efficiently searches
the space of dependency-based context configura-
tions, yielding class-specific representations with
substantial gains for all three word classes.

Previous attempts on specialising word represen-
tations for a particular relation (e.g., similarity vs
relatedness, antonyms) operate in one of two frame-
works: (1) modifying the prior or the regularisation
of the original training procedure (Yu and Dredze,
2014; Wieting et al., 2015; Liu et al., 2015; Kiela
etal., 2015; Ling et al., 2015b); (2) post-processing
procedures which use lexical knowledge to refine
previously trained word vectors (Faruqui et al.,
2015; Wieting et al., 2015; MrkSi¢ et al., 2017).
Our work suggests that the induced representations
can be specialised by directly training the word rep-
resentation model with carefully selected contexts.

3 Context Selection: Methodology

The goal of our work is to develop a methodology
for the identification of optimal context configura-

113

nmod

amod nsubj dobj case
Australian scientist discovers stars with telescope
nsubj nmod
amod
< obj case
Scienziato australiano scopre stelle con telescopio
nmod
amod nsubj
case
Australian scientist discovers stars with telescope

prep:with

Figure 1: Extracting dependency-based contexts.
Top: An example English sentence from (Levy and
Goldberg, 2014a), now UD-parsed. Middle: the
same sentence in Italian, UD-parsed. Note the sim-
ilarity between the two parses which suggests that
our context selection framework may be extended
to other languages. Bottom: prepositional arc col-
lapsing. The uninformative short-range case arc
is removed, while a “pseudo-arc” specifying the
exact link (prep:with) between discovers and
telescope is added.

tions for word representation model training. We
hope to get improved word representations and,
at the same time, cut down the training time of
the word representation model. Fundamentally, we
are not trying to design a new word representation
model, but rather to find valuable configurations
for existing algorithms.

The motivation to search for such training con-
text configurations lies in the intuition that the dis-
tributional hypothesis (Harris, 1954) should not
necessarily be made with respect to BOW contexts.
Instead, it may be restated as a series of statements
according to particular word relations. For example,
the hypothesis can be restated as: “two adjectives
are similar if they modify similar nouns”, which
is captured by the amod typed dependency rela-
tion. This could also be reversed to reflect noun
similarity by saying that “two nouns are similar
if they are modified by similar adjectives”. In an-
other example, “two verbs are similar if they are
used as predicates of similar nominal subjects” (the
nsubj and nsubjpass dependency relations).

First, we have to define an expressive context
configuration space that contains potential train-
ing configurations and is effectively decomposed
so that useful configurations may be sought algo-
rithmically. We can then continue by designing a
search algorithm over the configuration space.

114

3.1 Context Configuration Space

We focus on the configuration space based on
dependency-based contexts (DEPS) (Pad6 and La-
pata, 2007; Utt and Pado, 2014). We choose this
space due to multiple reasons. First, dependency
structures are known to be very useful in captur-
ing functional relations between words, even if
these relations are long distance. Second, they have
been proven useful in learning word embeddings
(Levy and Goldberg, 2014a; Melamud et al., 2016).
Finally, owing to the recent development of the
Universal Dependencies (UD) annotation scheme
(McDonald et al., 2013; Nivre et al., 2016)! it is
possible to reason over dependency structures in a
multilingual manner (e.g., Fig. 1). Consequently,
a search algorithm in such DEPS-based configura-
tion space can be developed for multiple languages
based on the same design principles. Indeed, in this
work we show that the optimal configurations for
English translate to improved representations in
two additional languages, German and Italian.
And so, given a (UD-)parsed training corpus,
for each target word w with modifiers my, ..., mg
and a head h, the word w is paired with context el-
ements my_r1,...,Mg_Tk, h_rﬁl, where 7 is the
type of the dependency relation between the head
and the modifier (e.g., amod), and r—1 denotes
an inverse relation. To simplify the presentation,
we adopt the assumption that all training data for
the word representation model are in the form of
such (word, context) pairs (Levy and Goldberg,
2014a,c), where word is the current target word,
and context is its observed context (e.g., BOW,
positional, dependency-based). A naive version of
DEPS extracts contexts from the parsed corpus
without any post-processing. Given the example
from Fig. 1, the DEPS contexts of discovers are:
scientist_nsubj, stars_dobj, telescope_nmod.
DEPS not only emphasises functional similar-
ity, but also provides a natural implicit grouping
of related contexts. For instance, all pairs with
the shared relation r and r~! are taken as an r-
based context bag, e.g., the pairs {(scientist, Aus-
tralian_amod), (Australian, scientist_amod !)}
from Fig. 1 are inserted into the amod con-
text bag, while {(discovers, stars_dobj), (stars,
discovers_dobj ")} are labelled with dob j.
Assume that we have obtained M distinct depen-
dency relations r1q, . . ., rps after parsing and post-
processing the corpus. The j-th individual context

"http://funiversaldependencies.org/ (V1.4 used)

E(REg) < E(RPo") E(RE!) > E(RPo")

CRPI)<ERPI

~gioT

CCO
O e e e

Figure 2: An illustration of Alg. 1. The search space
is presented as a DAG with direct links between
origin configurations (e.g., 7; + r; + 71) and all
its children configurations obtained by removing
exactly one individual bag from the origin (e.g., r;+
rj, rj +). After automatically constructing the
initial pool (line 1), the entry point of the algorithm
is the RFo configuration (line 2). Thicker blue
circles denote visited configurations, while the gray
circle denotes the best configuration found.

bag,j =1,...,M,labelled r;, is a bag (or a mul-
tiset) of (word, context) pairs where context has
one of the following forms: v_r; or v_r;l, where v
is some vocabulary word. A context configuration
is then simply a set of individual context bags, e.g.,
R = {ry,rj,r}, also labelled as R: r; + r;j + 7.
We call a configuration consisting of K individual
context bags a K-set configuration (e.g., in this
example, R is a 3-set configuration).

Although a brute-force exhaustive search over
all possible configurations is possible in theory and
for small pools (e.g., for adjectives, see Tab. 2), it
becomes challenging or practically infeasible for
large pools and large training data. For instance,
based on the pool from Tab. 2, the search for the
optimal configuration would involve trying out
210 _1 = 1023 configurations for nouns (i.e., train-
ing 1023 different word representation models).
Therefore, to reduce the number of visited con-
figurations, we present a simple heuristic search
algorithm inspired by beam search (Pearl, 1984).

2A note on the nomenclature and notation: Each context
configuration may be seen as a set of context bags, as it does
not allow for repetition of its constituent context bags. For
simplicity and clarity of presentation, we use dependency
relation types (e.g., 7; = amod, r; = acl) as labels for context
bags. The reader has to be aware that a configuration R =
{ri,r;,rx} is not by any means a set of relation types/names,
but is in fact a multiset of all (word, context) pairs belonging
to the corresponding context bags labelled with r;, r;, 7.

115

Algorithm 1: Best Configuration Search
Input

:Set of M individual context bags:

S = {rllaréw "7T;bf}

1 build: pool of those K < M candidate individual
context bags {r1, ..., 7k} for which
E(r;) >=threshold,i € {1,..., M}, where E(-) is
a fitness function.

2 build: K-set configuration RPeol — {ri,...

3 initialize: (1) set of candidate configurations
R = {RF°°"} ; (2) current level | = K ; (3) best
configuration R, = 0 ;

77"K};

4 search:
5 repeat
6 R, «0;
7 R, «— argmax E(R);
RERU{R,}
8 foreach R € R do
9 foreach r; € R do
10 build new (I — 1)-set context
configuration R—,, = R — {r;};
1 if E(R-r,) > E(R) then
12 | Rn <~ RnU{R-};
13 l—1-1;
14 R <~ Ry,

s untill == 0or R == 0;
Output : Best configuration R,

—

3.2 Class-Specific Configuration Search

Alg. 1 provides a high-level overview of the al-
gorithm. An example of its flow is given in Fig. 2.
Starting from .9, the set of all possible M individual
context bags, the algorithm automatically detects
the subset S C S, |Sk| = K, of candidate indi-
vidual bags that are used as the initial pool (line 1
of Alg. 1). The selection is based on some fitness
(goal) function E. In our setup, E(R) is Spear-
man’s p correlation with human judgment scores
obtained on the development set after training the
word representation model with the configuration
R. The selection step relies on a simple threshold:
we use a threshold of p > 0.2 without any fine-
tuning in all experiments with all word classes.

We find this step to facilitate efficiency at a minor
cost for accuracy. For example, since amod denotes
an adjectival modifier of a noun, an efficient search
procedure may safely remove this bag from the
pool of candidate bags for verbs.

The search algorithm then starts from the full
K-set RFool configuration (line 3) and tests K
(K — 1)-set configurations where exactly one in-
dividual bag r; is removed to generate each such
configuration (line 10). It then retains only the set
of configurations that score higher than the origin
K -set configuration (lines 11-12, see Fig. 2). Us-
ing this principle, it continues searching only over
lower-level (I — 1)-set configurations that further

improve performance over their /-set origin config-
uration. It stops if it reaches the lowest level or if
it cannot improve the goal function any more (line
15). The best scoring configuration is returned (n.b.,
not guaranteed to be the global optimum).

In our experiments with this heuristic, the search
for the optimal configuration for verbs is performed
only over 13 1-set configurations plus 26 other con-
figurations (39 out of 133 possible configurations).?
For nouns, the advantage of the heuristic is even
more dramatic: only 104 out of 1026 possible con-
figurations were considered during the search.*

4 Experimental Setup

4.1 Implementation Details

Word Representation Model We experiment
with SGNS (Mikolov et al., 2013), the standard
and very robust choice in vector space modeling
(Levy et al., 2015). In all experiments we use
word2vecft, a reimplementation of word2vec
able to learn from arbitrary (word,context)
pairs.’ For details concerning the implementation,
we refer the reader to (Goldberg and Levy, 2014;
Levy and Goldberg, 2014a).

The SGNS preprocessing scheme was replicated
from (Levy and Goldberg, 2014a; Levy et al., 2015).
After lowercasing, all words and contexts that ap-
peared less than 100 times were filtered. When
considering all dependency types, the vocabulary
spans approximately 185K word types.® Further,
all representations were trained with d = 300 (very
similar trends are observed with d = 100, 500).

The same setup was used in prior work
(Schwartz et al., 2016; Vuli¢ and Korhonen, 2016).
Keeping the representation model fixed across ex-
periments and varying only the context type allows
us to attribute any differences in results to a sole
factor: the context type. We plan to experiment with
other representation models in future work.

3The total is 133 as we have to include 6 additional 1-set
configurations that have to be tested (line 1 of Alg. 1) but are
not included in the initial pool for verbs (line 2).

*We also experimented with a less conservative variant
which does not stop when lower-level configurations do not
improve F; it instead follows the path of the best-scoring
lower-level configuration even if its score is lower than that of
its origin. As we do not observe any significant improvement
with this variant, we opt for the faster and simpler one.

Shttps://bitbucket.org/yoavgo/word2vect

SSGNS for all models was trained using stochastic gradient
descent and standard settings: 15 negative samples, global
learning rate: 0.025, subsampling rate: 1e — 4, 15 epochs.

Universal Dependencies as Labels The
adopted UD scheme leans on the universal
Stanford dependencies (de Marnefte et al., 2014)
complemented with the universal POS tagset
(Petrov et al., 2012). It is straightforward to
“translate” previous annotation schemes to UD
(de Marneffe et al., 2014). Providing a consistently
annotated inventory of categories for similar
syntactic constructions across languages, the
UD scheme facilitates representation learning in
languages other than English, as shown in (Vuli¢
and Korhonen, 2016; Vuli¢, 2017).

Individual Context Bags Standard post-parsing
steps are performed in order to obtain an initial
list of individual context bags for our algorithm:
(1) Prepositional arcs are collapsed ((Levy and
Goldberg, 2014a; Vuli¢ and Korhonen, 2016), see
Fig. 1). Following this procedure, all pairs where
the relation r has the form prep: X (where X is
a preposition) are subsumed to a context bag la-
belled prep; (2) Similar labels are merged into a
single label (e.g., direct (dobj) and indirect ob-
jects (1obj) are merged into ob j); (3) Pairs with
infrequent and uninformative labels are removed
(e.g., punct, goeswith, cc).

Coordination-based contexts are extracted as in
prior work (Schwartz et al., 2016), distinguishing
between left and right contexts extracted from the
conj relation; the label for this bag is conjlr.
We also utilise the variant that does not make the
distinction, labeled conj11. If both are used, the
label is simply conj=conjlr+conjll.’

Consequently, the individual context bags we
use in all experiments are: subj, obj, comp,
nummod, appos, nmod, acl, amod, prep,
adv, compound, conjlr, conjll.

4.2 Training and Evaluation

We run the algorithm for context configuration se-
lection only once, with the SGNS training setup
described below. Our main evaluation setup is pre-
sented below, but the learned configurations are
tested in additional setups, detailed in Sect. 5.

Training Data Our training corpus is the cleaned
and tokenised English Polyglot Wikipedia data
(Al-Rfou et al., 2013),% consisting of approxi-

"Given the coordination structure boys and girls,
conjlr training pairs are (boys, girls_conj), (girls,
boys_conj _1), while conj11 pairs are (boys, girls_conj),
(girls, boys_conyj).

8https://sites.google.com/site/rmyeid/projects/polyglot

116

mately 75M sentences and 1.7B word tokens. The
Wikipedia data were POS-tagged with universal
POS (UPOS) tags (Petrov et al., 2012) using the
state-of-the art TurboTagger (Martins et al., 2013).°
The parser was trained using default settings (SVM
MIRA with 20 iterations, no further parameter tun-
ing) on the TRAIN+DEV portion of the UD treebank
annotated with UPOS tags. The data were then
parsed with UD using the graph-based Mate parser
v3.61 (Bohnet, 2010)'° with standard settings on
TRAIN+DEV of the UD treebank.

Evaluation We experiment with the verb pair
(222 pairs), adjective pair (111 pairs), and noun
pair (666 pairs) portions of SimLex-999. We re-
port Spearman’s p correlation between the ranks
derived from the scores of the evaluated models
and the human scores. Our evaluation setup is bor-
rowed from Levy et al. (2015): we perform 2-fold
cross-validation, where the context configurations
are optimised on a development set, separate from
the unseen test data. Unless stated otherwise, the
reported scores are always the averages of the 2
runs, computed in the standard fashion by apply-
ing the cosine similarity to the vectors of words
participating in a pair.

4.3 Baselines

Baseline Context Types We compare the con-
text configurations found by Alg. 1 against baseline
contexts from prior work:

- BOW: Standard bag-of-words contexts.

- POSIT: Positional contexts (Schiitze, 1993; Levy
and Goldberg, 2014b; Ling et al., 2015a), which
enrich BOW with information on the sequential
position of each context word. Given the example
from Fig. 1, POSIT with the window size 2 extracts
the following contexts for discovers: Australian_-2,
scientist_-1, stars_+2, with_+1.

- DEPS-AIIL: All dependency links without any con-
text selection, extracted from dependency-parsed
data with prepositional arc collapsing.

- COORD: Coordination-based contexts are used
as fast lightweight contexts for improved repre-
sentations of adjectives and verbs (Schwartz et al.,
2016). This is in fact the conjlr context bag, a
subset of DEPS-AII.

- SP: Contexts based on symmetric patterns (SPs,
(Davidov and Rappoport, 2006; Schwartz et al.,
2015)). For example, if the word X and the word

“http://www.cs.cmu.edu/~ark/TurboParser/
"https://code.google.com/archive/p/mate-tools/

Context Group Adj Verb Noun
conjlr (A+N+V) 0.415 0.281 0.401
obj (N+V) -0.028 0.309 0.390
prep (N+V) 0.188 0.344 0.387
amod (A+N) 0.479 0.058 0.398
compound (N) -0.124 -0.019 0.416
adv (V) 0.197 0.342 0.104
nummod (-) -0.142 -0.065 0.029

Table 1: 2-fold cross-validation results for an illus-
trative selection of individual context bags. Results
are presented for the noun, verb and adjective sub-
sets of SimLex-999. Values in parentheses denote
the class-specific initial pools to which each context
is selected based on its p score (line 1 of Alg. 1).

Adjectives Verbs Nouns

amod, prep, amod, prep,

conjlr, acl, obj, compound, subij,

conjll comp, adv, obj, appos, acl,
conjlr, nmod, conijlr,
conjll conjll

Table 2: Automatically constructed initial pools of
candidate bags for each word class (Sect. 3.2).

Y appear in the lexico-syntactic symmetric pattern
“X or Y” in the SGNS training corpus, then Y is an
SP context instance for X, and vice versa.

The development set was used to tune the win-
dow size for BOW and POSIT (to 2) and the pa-
rameters of the SP extraction algorithm.!!

Baseline Greedy Search Algorithm We also
compare our search algorithm to its greedy vari-
ant: at each iteration of lines 8-12 in Alg. 1, R,
now keeps only the best configuration of size | — 1
that perform better than the initial configuration of
size [, instead of all such configurations.

5 Results and Discussion

5.1 Main Evaluation Setup

Not All Context Bags are Created Equal First,
we test the performance of individual context bags
across SimLex-999 adjective, verb, and noun sub-
sets. Besides providing insight on the intuition be-
hind context selection, these findings are important
for the automatic selection of class-specific pools
(line 1 of Alg. 1). The results are shown in Tab. 1.

The experiment supports our intuition (see
Sect. 3.2): some context bags are definitely not
useful for some classes and may be safely removed

"'"The SP extraction algorithm is available online:
homes.cs.washington.edu/~roysch/software/dr06/dr06.html

117

Baselines (Verbs) Baselines (Nouns)
BOW (win=2) 0.336 BOW (win=2) 0.435
POSIT (win=2) 0.345 POSIT (win=2) 0.437
COORD (conjlr) 0.283 COORD (conjlr) 0.392
SP 0.349 Sp 0.372
DEPS-All 0.344 DEPS-All 0.441
Configurations: Verbs Configurations: Nouns

POOL-ALL 0.379 POOL-ALL 0.469
prep+acl+obj+adv+conj 0.393 amod+subj+obj+tappos+compound+nmod+con]j 0.478
prep+acl+obj+comp+con 0.344 amod+subj+obj+appos+compound+con 0.487
prep+obj+comp+adv+conj 0.39]Jr amod+subj+obj+appos+compound+conilr 0.476Jr
prept+acl+adv+conj (BEST) 0.409 amod+subj+obj+compound+conj (BEST) 0.491
prept+acl+obj+adv 0.392 amod+subj+objtappos+conj 0.470
preptacl+adv 0.407 subj+obj+compound+coni 0.479
prept+acl+conj 0.390 amod+subj+compound+conj 0.481
acl+obj+adv+conj 0.345 amod+subj+obj+compound 0.478
acl+obj+adv 0.385 amod+ob j+compound+conj 0.481

Table 3: Results on the SimLex-999 test data over (a) verbs and (b) nouns subsets. Only a selection
of context configurations optimised for verb and noun similarity are shown. POOL-ALL denotes a
configuration where all individual context bags from the verbs/nouns-oriented pools (see Table 2) are
used. BEST denotes the best performing configuration found by Alg. 1. Other configurations visited by
Alg. 1 that score higher than the best scoring baseline context type for each word class are in gray. Scores
obtained using a greedy search algorithm instead of Alg. 1 are in italic, marked with a cross (7).

Baselines (Adjectives)
BOW (win=2) 0.489
POSIT (win=2) 0.460
COORD (conijlr) 0.407
SP 0.395
DEPS-AIl 0.360
Configurations: Adjectives

POOL-ALL: amod+conj (BEST) 0.546"
amod+conjlr 0.527
amod+conjll 0.531
conj 0.470

Table 4: Results on the SimLex-999 adjectives sub-
set with adjective-specific configurations.

when performing the class-specific SGNS training.
For instance, the amod bag is indeed important for
adjective and noun similarity, and at the same time
it does not encode any useful information regarding
verb similarity. compound is, as expected, use-
ful only for nouns. Tab. 1 also suggests that some
context bags (e.g., nummod) do not encode any in-
formative contextual evidence regarding similarity,
therefore they can be discarded. The initial results
with individual context bags help to reduce the pool
of candidate bags (line 1 in Alg. 1), see Tab. 2.

Searching for Improved Configurations Next,
we test if we can improve class-specific represen-
tations by selecting class-specific configurations.
Results are summarised in Tables 3 and 4. Indeed,
class-specific configurations yield better represen-
tations, as is evident from the scores: the improve-

118

ments with the best class-specific configurations
found by Alg. 1 are approximately 6 p points for ad-
jectives, 6 points for verbs, and 5 points for nouns
over the best baseline for each class.

The improvements are visible even with config-
urations that simply pool all candidate individual
bags (POOL-ALL), without running Alg. 1 beyond
line 1. Howeyver, further careful context selection,
i.e., traversing the configuration space using Alg. 1
leads to additional improvements for V and N
(gains of 3 and 2.2 p points). Very similar improved
scores are achieved with a variety of configurations
(see Tab. 3), especially in the neighbourhood of the
best configuration found by Alg. 1. This indicates
that the method is quite robust: even sub-optimal'?
solutions result in improved class-specific repre-
sentations. Furthermore, our algorithm is able to
find better configurations for verbs and nouns com-
pared to its greedy variant. Finally, our algorithm
generalises well: the best scoring configuration on
the dev set is always the best one on the test set.

Training: Fast and/or Accurate? Carefully se-
lected configurations are also likely to reduce
SGNS training times. Indeed, the configuration-
based model trains on only 14% (A), 26.2% (V),
and 33.6% (N) of all dependency-based contexts.
The training times and statistics for each con-
text type are displayed in Tab. 5. All models

12The term optimal here and later in the text refers to the
best configuration returned by our algorithm.

Context Type Training Time # Pairs Context Type Adj Verbs Nouns All
BOW (win=2) 179mins 27s 5.974G BOW (win=2) 0.604 0307 0.501 0.464
POSIT (win=2) 190mins 12s 5.974G POSIT (win=2) 0.585 0400 0471 0.469
COORD (conjlr) 4mins 118 129.6OM COORD (conjlr) 0.629 0413 0.428 0.430
SP Imins 29s 46.37TM SP 0.649 0458 0414 0444
DEPS-All 103mins 35s 3.165G DEPS-All 0.574 0.389 0492 0.464
BEST-ADJ 14mins 5s 447.4M BEST-ADIJ 0.671 0.348 0.504 0.449
BEST-VERBS 29mins 48s 828.55M BEST-VERBS 0392 0455 0478 0.448
BEST-NOUNS 41mins 14s 1.063G BEST-NOUNS 0.581 0.327 0.535 0.489
BEST-ALL 0.616 0402 0.519 0.506

Table 5: Training time (wall-clock time reported) in
minutes for SGNS (d = 300) with different context
types. BEST-* denotes the best scoring configura-
tion for each class found by Alg. 1. #Pairs shows
a total number of pairs used in SGNS training for
each context type.

were trained using parallel training on 10 Intel(R)
Xeon(R) E5-2667 2.90GHz processors. The results
indicate that class-specific configurations are not
as lightweight and fast as SP or COORD contexts
(Schwartz et al., 2016). However, they also suggest
that such configurations provide a good balance
between accuracy and speed: they reach peak per-
formances for each class, outscoring all baseline
context types (including SP and COORD), while
training is still much faster than with “heavyweight”
context types such as BOW, POSIT or DEPS-AIIL.

Now that we verified the decrease in training
time our algorithm provides for the final training,
it makes sense to ask whether the configurations it
finds are valuable in other setups. This will make
the fast training of practical importance.

5.2 Generalisation: Configuration Transfer

Another Training Setup We first test whether
the context configurations learned in Sect. 5.1 are
useful when SGNS is trained in another English
setup (Schwartz et al., 2016), with more training
data and other annotation and parser choices, while
evaluation is still performed on SimLex-999.

In this setup the training corpus is the 8B words
corpus generated by the word2vec script.!* A
preprocessing step now merges common word
pairs and triplets to expression tokens (e.g.,
Bilbo_Baggins). The corpus is parsed with labelled
Stanford dependencies (de Marneffe and Manning,
2008) using the Stanford POS Tagger (Toutanova
et al., 2003) and the stack version of the MALT
parser (Goldberg and Nivre, 2012). SGNS prepro-
cessing and parameters are also replicated; we now

B3code.google.com/p/word2vec/source/browse/trunk/

119

Table 6: Results on the A/V/N SimLex-999 sub-
sets, and on the entire set (All) in the setup from
Schwartz et al. (2016). d = 500. BEST-* are again
the best class-specific configs returned by Alg. 1.

train 500-dim embeddings as in prior work.'*

Results are presented in Tab. 6. The imported
class-specific configurations, computed using a
much smaller corpus (Sect. 5.1), again outperform
competitive baseline context types for adjectives
and nouns. The BEST-VERBS configuration is
outscored by SP, but the margin is negligible. We
also evaluate another configuration found using
Alg. 1 in Sect. 5.1, which targets the overall im-
proved performance without any finer-grained di-
vision to classes (BEST-ALL). This configuration
(amod+subj+obj+compound+prep+adv+conj) out-
performs all baseline models on the entire bench-
mark. Interestingly, the non-specific BEST-ALL
configuration falls short of A/V/N-specific configu-
rations for each class. This unambiguously implies
that the “trade-off” configuration targeting all three
classes at the same time differs from specialised
class-specific configurations.

Experiments on Other Languages We next test
whether the optimal context configurations com-
puted in Sect. 5.1 with English training data are
also useful for other languages. For this, we train
SGNS models on the Italian (IT) and German (DE)
Polyglot Wikipedia corpora with those configura-
tions, and evaluate on the IT and DE multilingual
SimLex-999 (Leviant and Reichart, 2015).13

Our results demonstrate similar patterns as for
English, and indicate that our framework can be
easily applied to other languages. For instance, the
BEST-ADJ configuration (the same configuration
as in Tab. 4 and Tab. 7) yields an improvement of 8

“The “translation” from labelled Stanford dependencies
into UD is performed using the mapping from de Marneffe
etal. (2014), e.g., nn is mapped into compound, and rcmod,
partmod, infmod are all mapped into one bag: acl.

"Shttp://leviants.com/ira.leviant/Multilingual V SMdata html

Context Type Adj-Q Verb-Q Noun-Q
BOW (win=2) 31/41 14/19 16/19
POSIT (win=2) 32/41 13/19 15/19
COORD (conjlr) 26/41 11/19 8/19
SP 26/41 11/19 12/19
DEPS-All 31/41 14/19 16/19
BEST-ADJ 32/41 12/19 15/19
BEST-VERBS 24/41 15/19 16/19
BEST-NOUNS 30/41 14/19 17/19

Table 7: Results on the A/V/N TOEFL question
subsets. The reported scores are in the following
form: correct_answers/overall_questions. Adj-Q
refers to the subset of TOEFL questions targeting
adjectives; similar for Verb-Q and Noun-Q. BEST-*
refer to the best class-specific configurations from
Tab. 3 and Tab. 4.

p points and 4 p points over the strongest adjectives
baseline in IT and DE, respectively. We get similar
improvements for nouns (IT: 3 p points, DE: 2 p
points), and verbs (IT: 2, DE: 4).

TOEFL Evaluation We also verify that the se-
lection of class-specific configurations (Sect. 5.1) is
useful beyond the core SimLex evaluation. For this
aim, we evaluate on the A, V, and N TOEFL ques-
tions (Landauer and Dumais, 1997). The results are
summarised in Tab. 7. Despite the limited size of
the TOEFL dataset, we observe positive trends in
the reported results (e.g., V-specific configurations
yield a small gain on verb questions), showcasing
the potential of class-specific training in this task.

6 Conclusion and Future Work

We have presented a novel framework for select-
ing class-specific context configurations which
yield improved representations for prominent word
classes: adjectives, verbs, and nouns. Its design
and dependence on the Universal Dependencies
annotation scheme makes it applicable in differ-
ent languages. We have proposed an algorithm that
is able to find a suitable class-specific configura-
tion while making the search over the large space
of possible context configurations computation-
ally feasible. Each word class requires a different
class-specific configuration to produce improved
results on the class-specific subset of SimLex-999
in English, Italian, and German. We also show that
the selection of context configurations is robust as
once learned configuration may be effectively trans-
ferred to other data setups, tasks, and languages
without additional retraining or fine-tuning.

120

In future work, we plan to test the framework
with finer-grained contexts, investigating beyond
POS-based word classes and dependency links. Ex-
ploring more sophisticated algorithms that can ef-
ficiently search richer configuration spaces is also
an intriguing direction. Another research avenue
is application of the context selection idea to other
representation models beyond SGNS tested in this
work, and experimenting with assigning weights to
context subsets. Finally, we plan to test the porta-
bility of our approach to more languages.

Acknowledgments

This work is supported by the ERC Consolidator
Grant LEXICAL: Lexical Acquisition Across Lan-
guages (no 648909). Roy Schwartz was supported
by the Intel Collaborative Research Institute for
Computational Intelligence (ICRI-CI). The authors
are grateful to the anonymous reviewers for their
helpful and constructive suggestions.

References

Rami Al-Rfou, Bryan Perozzi, and Steven Skiena.
2013. Polyglot: Distributed word representations
for multilingual NLP. In CoNLL. pages 183-192.
http://www.aclweb.org/anthology/W13-3520.

Mohit Bansal, Kevin Gimpel, and Karen Livescu.
2014. Tailoring continuous word representations
for dependency parsing. In ACL. pages 809-815.
http://www.aclweb.org/anthology/P14-2131.

Marco Baroni, Georgiana Dinu, and Germén
Kruszewski. 2014. Don’t count, predict! A
systematic comparison of context-counting vs.
context-predicting semantic vectors. In ACL. pages
238-247. http://www.aclweb.org/anthology/P14-
1023.

Marco Baroni, Brian Murphy, Eduard Barbu, and
Massimo Poesio. 2010. Strudel: A corpus-

based semantic model based on properties
and types. Cognitive Science pages 222-254.
https://doi.org/10.1111/j.1551-6709.2009.01068.x.
Bernd Bohnet. 2010. Top accuracy and
fast dependency parsing is not a con-
tradiction. In COLING. pages 89-97.

http://www.aclweb.org/anthology/C10-1011.

Dangi Chen and Christopher D. Manning. 2014.
A fast and accurate dependency parser using
neural networks. In EMNLP. pages 740-750.
http://www.aclweb.org/anthology/D14-1082.

Jason Weston, Léon Bottou,
Koray Kavukcuoglu, and

Ronan Collobert,
Michael Karlen,

Pavel P. Kuksa. 2011. Natural language pro-
cessing (almost) from scratch. Journal of
Machine Learning Research — 12:2493-2537.
http://dl.acm.org/citation.cfm?id=1953048.2078186.

Dmitry Davidov and Ari Rappoport. 2006. Ef-
ficient unsupervised discovery of word cat-
egories using symmetric patterns and high
frequency words. In ACL. pages 297-304.
http://www.aclweb.org/anthology/P06-1038.

Marie-Catherine de Marneffe, Timothy Dozat, Natalia
Silveira, Katri Haverinen, Filip Ginter, Joakim
Nivre, and Christopher D. Manning. 2014. Univer-
sal Stanford dependencies: A cross-linguistic typol-
ogy. In LREC. pages 4585-4592. http://www.lrec-

conf.org/proceedings/lrec2014/summaries/1062.html.

Marie-Catherine de Marneffe and Christopher D. Man-
ning. 2008. The Stanford typed dependencies repre-
sentation. In Proceedings of the Workshop on Cross-
Framework and Cross-Domain Parser Evaluation.
pages 1-8. http://www.aclweb.org/anthology/WO08-
1301.

Manaal Faruqui, Jesse Dodge, Sujay Kumar Jauhar,
Chris Dyer, Eduard Hovy, and Noah A. Smith.
2015. Retrofitting word vectors to semantic
lexicons. In NAACL-HLT. pages 1606-1615.
http://www.aclweb.org/anthology/N15-1184.

Yoav Goldberg and Omer Levy. 2014. Word2vec ex-
plained: Deriving Mikolov et al.’s negative-sampling
word-embedding method. CoRR abs/1402.3722.
http://arxiv.org/abs/1402.3722.

Yoav Goldberg and Joakim Nivre. 2012. A
dynamic oracle for arc-eager dependency
parsing. In COLING. pages 959-976.
http://www.aclweb.org/anthology/C12-1059.

Zellig S. Harris. 1954. Distributional
structure. Word 10(23):146-162.

https://doi.org/10.1080/00437956.1954.11659520.

Douwe Kiela, Felix Hill, and Stephen Clark. 2015.
Specializing word embeddings for similarity or
relatedness. In EMNLP. pages 2044-2048.
http://aclweb.org/anthology/D15-1242.

Thomas K. Landauer and Susan T. Dumais. 1997.
Solutions to Plato’s problem: The Latent Seman-
tic Analysis theory of acquisition, induction, and
representation of knowledge. Psychological Re-
view 104(2):211-240. https://doi.org/10.1037/0033-
295X.104.2.211.

Ira Leviant and Roi Reichart. 2015. Separated by
an un-common language: Towards judgment lan-

guage informed vector space modeling. CoRR
abs/1508.00106. http://arxiv.org/abs/1508.00106.

Omer Levy and Yoav Goldberg. 2014a. Dependency-
based word embeddings. In ACL. pages 302-308.
http://www.aclweb.org/anthology/P14-2050.

121

Omer Levy and Yoav Goldberg. 2014b. Lin-
guistic regularities in sparse and explicit word
representations. In CoNLL. pages 171-180.
http://www.aclweb.org/anthology/W14-1618.

Omer Levy and Yoav Goldberg. 2014c. Neu-
ral word embedding as implicit matrix fac-
torization. In NIPS. pages 2177-2185.
http://papers.nips.cc/paper/5477.pdf.

Omer Levy, Yoav Goldberg, and Ido Dagan. 2015. Im-
proving distributional similarity with lessons learned
from word embeddings. Transactions of the ACL

3:211-225.

Wang Ling, Chris Dyer, Alan W. Black, and
Isabel Trancoso. 2015a. Two/too simple
adaptations of Word2Vec for syntax prob-
lems. In NAACL-HLT. pages 1299-1304.

http://www.aclweb.org/anthology/N15-1142.

Wang Ling, Yulia Tsvetkov, Silvio Amir, Ramon Fer-
mandez, Chris Dyer, Alan W Black, Isabel Tran-
coso, and Chu-Cheng Lin. 2015b. Not all contexts
are created equal: Better word representations with
variable attention. In EMNLP. pages 1367-1372.
http://aclweb.org/anthology/D15-1161.

Quan Liu, Hui Jiang, Si Wei, Zhen-Hua Ling,
and Yu Hu. 2015. Learning semantic word
embeddings based on ordinal knowledge
constraints. In ACL. pages 1501-1511.
http://www.aclweb.org/anthology/P15-1145.

André F. T. Martins, Miguel B. Almeida, and Noah A.
Smith. 2013. Turning on the Turbo: Fast third-order
non-projective turbo parsers. In ACL. pages 617—
622. http://www.aclweb.org/anthology/P13-2109.

Ryan T. McDonald, Joakim Nivre, Yvonne
Quirmbach-Brundage, Yoav Goldberg, Dipan-
jan Das, Kuzman Ganchev, Keith B. Hall, Slav
Petrov, Hao Zhang, Oscar Tickstrom, Claudia
Bedini, Nuria Bertomeu Castell6, and Jungmee
Lee. 2013. Universal dependency annotation
for multilingual parsing. In ACL. pages 92-97.
http://www.aclweb.org/anthology/P13-2017.

Oren Melamud, Ido Dagan, and Jacob Goldberger.
2015. Modeling word meaning in context with sub-
stitute vectors. In NAACL-HLT. pages 472-482.
http://www.aclweb.org/anthology/N15-1050.

Oren Melamud, David McClosky, Siddharth
Patwardhan, and Mohit Bansal. 2016. The
role of context types and dimensionality in
learning word embeddings. In NAACL-HLT.
http://www.aclweb.org/anthology/N16-1118.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S.
Corrado, and Jeffrey Dean. 2013. Distributed repre-
sentations of words and phrases and their composi-
tionality. In NIPS. pages 3111-3119.

Andriy Mnih and Koray Kavukcuoglu. 2013. Learning
word embeddings efficiently with noise-contrastive
estimation. In NIPS. pages 2265-2273.

Nikola Mrkgi¢, Ivan Vuli¢, Diarmuid O Séaghdha, Ira
Leviant, Roi Reichart, Milica Gas$i¢, Anna Korho-
nen, and Steve Young. 2017. Semantic specialisa-
tion of distributional word vector spaces using mono-
lingual and cross-lingual constraints. Transactions
of the ACL https://arxiv.org/abs/1706.00374.

Joakim Nivre et al. 2016. Universal Dependencies 1.4.
LINDAT/CLARIN digital library at Institute of For-
mal and Applied Linguistics, Charles University in
Prague.

Sebastian Pad6 and Mirella Lapata. 2007. Dependency-
based construction of semantic space mod-
els. Computational Linguistics 33(2):161-199.
https://doi.org/10.1162/c0li.2007.33.2.161.

Judea Pearl. 1984. Heuristics: Intelligent search strate-
gies for computer problem solving .

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In EMNLP. pages 1532-1543.
http://www.aclweb.org/anthology/D14-1162.

Slav Petrov, Dipanjan Das, and Ryan T. McDon-
ald. 2012. A universal part-of-speech tagset.
In LREC. pages 2089-2096. http://www.Irec-
conf.org/proceedings/lrec2012/summaries/274.html.

Hinrich Schiitze. 1993. Part-of-speech induc-
tion from scratch. In ACL. pages 251-258.
http://www.aclweb.org/anthology/P93-1034.

Roy Schwartz, Roi Reichart, and Ari Rappoport. 2015.
Symmetric pattern based word embeddings for im-
proved word similarity prediction. In CoNLL. pages
258-267. http://www.aclweb.org/anthology/K15-
1026.

Roy Schwartz, Roi Reichart, and Ari Rappoport.
2016. Symmetric patterns and coordinations:
Fast and enhanced representations of verbs and
adjectives. In NAACL-HLT. pages 499-505.
http://www.aclweb.org/anthology/N16-1060.

Kristina Toutanova, Dan Klein, Christopher D. Man-
ning, and Yoram Singer. 2003. Feature-rich
part-of-speech tagging with a cyclic dependency
network. In NAACL-HLT. pages 173-180.
http://aclweb.org/anthology/N/N03/.

Joseph P. Turian, Lev-Arie Ratinov, and
Yoshua Bengio. 2010. Word representa-
tions: A simple and general method for semi-
supervised learning. In ACL. pages 384-394.
http://www.aclweb.org/anthology/P10-1040.

Jason Utt and Sebastian Pad6. 2014. Crosslingual
and multilingual construction of syntax-based vector
space models. Transactions of the ACL 2:245-258.

Ivan Vulié¢. 2017. Cross-lingual syntactically informed
distributed word representations. In EACL. pages
408-414. http://www.aclweb.org/anthology/E17-
2065.

122

Ivan Vuli¢ and Anna Korhonen. 2016. Is “universal
syntax” universally useful for learning distributed
word representations? In ACL. pages 518-524.
http://anthology.aclweb.org/P16-2084.

John Wieting, Mohit Bansal,
and Karen Livescu. 2015. From paraphrase
database to compositional paraphrase model
and back. Transactions of the ACL 3:345-358.
http://aclweb.org/anthology/Q15-1025.

Kevin Gimpel,

Mehmet Ali Yatbaz, Enis Sert, and Deniz Yuret. 2012.
Learning syntactic categories using paradigmatic
representations of word context. In EMNLP. pages
940-951. http://www.aclweb.org/anthology/D12-
1086.

Mo Yu and Mark Dredze. 2014. Improving lexical em-
beddings with semantic knowledge. In ACL. pages
545-550. http://www.aclweb.org/anthology/P14-
2089.

Modeling Context Words as Regions:
An Ordinal Regression Approach to Word Embedding

Shoaib Jameel and Steven Schockaert
School of Computer Science and Informatics
Cardiff University
{Jameelsl, SchockaertSl}@cardiff.ac.uk

Abstract

Vector representations of word meaning
have found many applications in the field
of natural language processing. Word vec-
tors intuitively represent the average con-
text in which a given word tends to oc-
cur, but they cannot explicitly model the
diversity of these contexts. Although re-
gion representations of word meaning of-
fer a natural alternative to word vectors,
only few methods have been proposed that
can effectively learn word regions. In this
paper, we propose a new word embedding
model which is based on SVM regression.
We show that the underlying ranking in-
terpretation of word contexts is sufficient
to match, and sometimes outperform, the
performance of popular methods such as
Skip-gram. Furthermore, we show that
by using a quadratic kernel, we can effec-
tively learn word regions, which outper-
form existing unsupervised models for the
task of hypernym detection.

1 Introduction

Word embedding models such as Skip-gram
(Mikolov et al., 2013b) and GloVe (Pennington
et al., 2014) represent words as vectors of typi-
cally around 300 dimensions. The relatively low-
dimensional nature of these word vectors makes
them ideally suited for representing textual in-
put to neural network models (Goldberg, 2016;
Nayak, 2015). Moreover, word embeddings have
been found to capture many interesting regulari-
ties (Mikolov et al., 2013b; Kim and de Marn-
effe, 2013; Gupta et al., 2015; Rothe and Schiitze,
2016), which makes it possible to use them as
a source of semantic and linguistic knowledge,
and to align word embeddings with visual features

123

(Frome et al., 2013) or across different languages
(Zou et al., 2013; Faruqui and Dyer, 2014).

Notwithstanding the practical advantages of
representing words as vectors, a few authors have
advocated the idea that words may be better repre-
sented as regions (Erk, 2009), possibly with grad-
ual boundaries (Vilnis and McCallum, 2015). One
important advantage of region representations is
that they can distinguish words with a broad mean-
ing from those with a more narrow meaning, and
should thus in principle be better suited for tasks
such as hypernym detection and taxonomy learn-
ing. However, it is currently not well understood
how such region based representations can best be
learned. One possible approach, suggested in (Vil-
nis and McCallum, 2015), is to learn a multivari-
ate Gaussian for each word, essentially by requir-
ing that words which frequently occur together
are represented by similar Gaussians. However,
for large vocabularies, this is computationally only
feasible with diagonal covariance matrices.

In this paper, we propose a different approach to
learning region representations for words, which
is inspired by a geometric view of the Skip-gram
model. Essentially, Skip-gram learns two vectors
Pw and p,, for each word w, such that the prob-
ability that a word ¢ appears in the context of a
target word ¢ can be expressed as a function of
Pt - Pe (see Section 2). This means that for each
threshold A € [—1,1] and context word c, there
is a hyperplane HY which (approximately) sepa-
rates the words ¢ for which p; - p. > A from the
others. Note that this hyperplane is completely de-
termined by the vector p. and the choice of A\. An
illustration of this geometric view is shown in Fig-
ure 1(a), where e.g. the word c is strongly related
to a (i.e. a has a high probability of occurring in
the context of c) but not closely related to b. Note
in particular that there is a half-space containing
those words which are strongly related to a (w.r.t.

Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017), pages 123—-133,
Vancouver, Canada, August 3 - August 4, 2017. (©2017 Association for Computational Linguistics

a given threshold \).

Our contribution is twofold. First, we empir-
ically show that effective word embeddings can
be learned from purely ordinal information, which
stands in contrast to the probabilistic view taken
by e.g. Skip-gram and GloVe. Specifically, we
propose a new word embedding model which uses
(a ranking equivalent of) max-margin constraints
to impose the requirement that p; - p. should be
a monotonic function of the probability P(c|t)
of seeing c in the context of ¢. Geometrically,
this means that, like Skip-gram, our model asso-
ciates with each context word a number of paral-
lel hyperplanes. However, unlike in the Skip-gram
model, only the relative position of these hyper-
planes is imposed (i.e. if \; < Ay < A3 then H?
should occur between H2' and H23). Second, by
using a quadratic kernel for the max-margin con-
straints, we obtain a model that can represent con-
text words as a set of nested ellipsoids, as illus-
trated in Figure 1(b). From these nested ellipsoids
we can then estimate a Gaussian which acts as a
convenient region based word representation.

Note that our model thus jointly learns a vector
representation for each word (i.e. the target word
representations) as well as a region based repre-
sentation (i.e. the nested ellipsoids representing
the context words). We present experimental re-
sults which show that the region based represen-
tations are effective for measuring synonymy and
hypernymy. Moreover, perhaps surprisingly, the
region based modeling of context words also ben-
efits the target word vectors, which match, and
in some cases outperform the vectors obtained
by standard word embedding models on various
benchmark evaluation tasks.

2 Background and Related Work

2.1 Word Embedding

Various methods have already been proposed for
learning vector space representations of words,
e.g. based on matrix factorization (Turney and
Pantel, 2010) or neural networks. Here we briefly
review Skip-gram and GloVe, two popular models
which share some similarities with our model.
The basic assumption of Skip-gram (Mikolov
et al., 2013b) is that the probability P(c|t) of see-
ing word c in the context of word ¢ is given as:

Dbt 'ﬁc

Plelt) = > bt D
c c/

124

*Pc

(a) Linear kernel

(b) Quadratic kernel

Figure 1: The (dark) green region covers words
that are (strongly) related to a. Similarly, the
(dark) blue region expresses relatedness to b.

In principle, based on this view, the target vec-
tors p,, and context vectors p,, could be learned
by maximizing the likelihood of a given corpus.
Since this is computationally not feasible, how-
ever, it was proposed in (Mikolov et al., 2013b)
to instead optimize the following objective:

N
> " log(o(pu, Be))+ D log(—0 (pu, Ber))

i=1 ¢'eC; el

where the left-most summation is over all N word
occurrences in the corpus, w; is the i** word in the
corpus, C; are the words appearing in the context
of w; and C; consists of k - |C;| randomly chosen
words, called the negative samples for w;. The
context C; contains the ¢; words immediately pre-
ceding and succeeding w;, where t; is randomly
sampled from {1, ..., ¢, } for each i (Goldberg
and Levy, 2014). The probability of choosing
word w as a negative sample is proportional to

0.75
oce(w) , with occ(w) the number of occur-

rences of word w in the corpus. Finally, to reduce
the impact of frequent words, some word occur-
rences are removed from the corpus before apply-
ing the model, with the probability of removing an

occurrence of word w being 1 — / %Ew)' Default

parameter values are ¢,,,, = 5 and § = 1075,
GloVe is another popular model for word em-
bedding (Pennington et al., 2014). Rather than
explicitly considering all word occurrences, it di-
rectly uses a global co-occurrence matrix X
(xi5) where z;; is the number of times the word
w; appears in the context of w;. Like Skip-gram,
it learns both a target vector p,, and context vec-
tor p,, for each word w, but instead learns these
vectors by optimizing the following objective:

tog

where b,,, and ij are bias terms, and f is a
weighting function to reduce the impact of very
rare terms, defined as:

fij) = {(

1
The default values are x,,, = 100 and o« = 0.75.

)a if Tij < Tmax

Lmax

otherwise

2.2 Region Representations

The idea of representing words as regions was
advocated in (Erk, 2009), as a way of model-
ing the diversity of the contexts in which a word
appears. It was argued that such regions could
be used to more accurately model the meaning
of polysemous words and to model lexical en-
tailment. Rather than learning region represen-
tations directly, it was proposed to use a vector
space representation of word occurrences. Two
alternatives were investigated for estimating a re-
gion from these occurrence vectors, respectively
inspired by prototype and exemplar based mod-
els of categorization. The first approach defines
the region as the set of points whose weighted dis-
tance to a prototype vector for the word is within a
given radius, while the second approach relies on
the k-nearest neighbor principle.

In contrast, (Vilnis and McCallum, 2015) pro-
posed a method that directly learns a representa-
tion in which each word corresponds to a Gaus-
sian. The model uses an objective function which
requires the Gaussians of words that co-occur to be
more similar than the Gaussians of words of neg-
ative samples (which are obtained as in the Skip-
gram model). Two similarity measures are consid-
ered: the inner product of the Gaussians and the
KL-divergence. It is furthermore argued that the

125

asymmetric nature of KL-divergence makes it a
natural choice for modeling hypernymy. In partic-
ular, it is proposed that the word embeddings could
be improved by imposing that words that are in a
hypernym relation have a low KL-divergence, al-
lowing for a natural way to combine corpus statis-
tics with available taxonomies.

Finally, another model that represents words
using probability distributions was proposed in
(Jameel and Schockaert, 2016). However, their
model is aimed at capturing the uncertainty about
vector representations, rather than at modeling the
diversity of words. They show that capturing
this uncertainty leads to vectors that outperform
those of the GloVe model, on which their model
is based. However, the resulting distributions are
not suitable for modeling hypernymy. For exam-
ple, since more information is available for general
terms than for narrow terms, the distributions asso-
ciated with general terms have a smaller variance,
whereas approaches that are aimed at modeling the
diversity of words have the opposite behavior.

2.3 Ranking Embedding

The model we propose only relies on the rank-
ings induced by each context word, and tries to
embed these rankings in a vector space. This
problem of “ranking embedding” has already been
studied by a few authors. An elegant approach
for embedding a given set of rankings, based on
the product order, is proposed in (Vendrov et al.,
2016). However, this method is specifically aimed
at completing partially ordered relations (such as
taxonomies), based on observed statistical corre-
lations, and would not be directly suitable as a ba-
sis for a word embedding method. The computa-
tional complexity of the ranking embedding prob-
lem was characterized in (Schockaert and Lee,
2015), where the associated decision problem was
shown to be complete for the class 3R (which sits
between NP and PSPACE).

Note that the problem of ranking embedding
is different from the learning-to-rank task (Liu,
2009). In the former case we are interested
in learning a vector space representation that is
somehow in accordance with a given completely
specified set of rankings, whereas in the latter case
the focus is on representing incompletely specified
rankings in a given vector space representation.

3 Ordinal Regression Word Embedding
3.1 Learning the Embedding

In this section we explain how a form of ordinal
regression can be used to learn both word vectors
and word regions at the same time. First we intro-
duce some notations.

Recall that the Positive Pointwise Mutual In-
formation (PPMI) between two words w; and w;
is defined as PPMI(w;, w;) = max(0, PMI(w;,
wy)), with PMI(w;, w;) given by:

n(wi, ;) - (Dwew 2wew MW, w'))
o ((Zwew n(wi, w)) - (3 pew n(w, wj)))

where we write n(w;, w;) for the number of times
word w; occurs in the context of w;, and W repre-
sents the vocabulary. For each word w;, we write
Wg s ey Wﬂj for the stratification of the words in
the vocabulary according to their PPMI value with
wj, i.e. we have that:

1. PPMI(w,w;) = 0 for w € W{;

2. PPMI(w,w;) < PPMI(w',w;) for w € W

and w’ € W,ﬁ with 7 < k; and
3. PPMI(w,w;) = PPMI(w',w;) for w,w' €

As a toy example, suppose W = {wy, wa, w3, w4,
ws } and:

PPMI(w2,w1) = 3.4 PPMI(ws,w;) = 4.1
PPMI(wy,w1) =0 PPMI(ws,w;) =0
PPMI(wy,w;) =0

Then we would have VVO1 = {wy, wy, ws}, Wi =
{’LUQ} and W21 = {wg}.

To learn the word embedding, we use the fol-
lowing objective function, which requires that for
each context word w; there is a sequence of par-
allel hyperplanes that separate the representations
of the words in W7 _, from the representations of

the words in WZJ (te{l,...n;}):

5
pos(j,i — 1) + neg(j,1) _
Y - - + B, ||
(Wi W/

i \i=1

where

pOS(j,i - 1) = Z [1 - (‘b(pw) : ﬁwj_"b;)]i
wEWL1

neg(4,1) = > (14 (d(pw) - Pu,+)13

weWij

subject to' b} < .. < b?j for each j. Note
that we write [z]; for max(0,x) and ¢ denotes
the feature map of the considered kernel function.
In this paper, we will in particular consider linear
and quadratic kernels. If a linear kernel is used,
then ¢ is simply the identity function. Using a
quadratic kernel leads to a quadratic increase in the
dimensionality of ¢(p,,) and py,. In practice, we
found our model to be about 3 times slower when
a quadratic kernel is used, when the word vectors
P are chosen to be 300-dimensional. Note that
Pw; and b; define a hyperplane, separating the ker-
nel space into a positive and a negative half-space.
The constraints of the form pos(j,i — 1) essen-
tially encode that the elements from W;_; should
be represented in the positive half-space, whereas
the constraints of the form neg(j,4) encode that
the elements from W; should be represented in the
negative half-space.

When using a linear kernel, the model is simi-
lar in spirit to Skip-gram, in the sense that it as-
sociates with each context word a sequence of
parallel hyperplanes. In our case, however, only
the ordering of these hyperplanes is specified,
i.e. the specific offsets bé- are learned. In other
words, we make the assumption that the higher
PPMI(w,wj) the stronger w is related to w;, but
we do not otherwise assume that the numerical
value of PPMI(w, wj;) is relevant. When using a
quadratic kernel, each context word is essentially
modeled as a sequence of nested ellipsoids. This
gives the model a lot more freedom to satisfy the
constraints, which may potentially lead to more in-
formative vectors.

The model is similar in spirit to the fixed margin
variant for ranking with large-margin constraints
proposed in (Shashua and Levin, 2002), but with
the crucial difference that we are learning word
vectors and hyperplanes at the same time, rather
than finding hyperplanes for a given vector space
representation. We use stochastic gradient descent
to optimize the proposed objective. Note that we
use a squared hinge loss, which makes optimizing
the objective more straightforward. As usual, the
parameter A controls the trade-off between main-
taining a wide margin and minimizing classifica-

"While it may seem at first glance that this constraint is

redundant, this is not actually the case; see (Chu and Keerthi,
2005) for a counterexample in a closely related framework.

126

tion errors. Throughout the experiments we have
kept A at a default value of 0.5. We have also
added L2 regularization for the word vectors wy
with a weight of 0.01, which was found to increase
the stability of the model. In practice, W] is typ-
ically very large (containing most of the vocabu-
lary), which would make the model too inefficient.
To address this issue, we replace it by a small sub-
sample, which is similar in spirit to the idea of
negative sampling in the Skip-gram model. In our
experiments we use 2k randomly sampled words
from W, where k = 577, |[W7/| is the total num-
ber of positive samples. We simply use a uniform
distribution to obtain the negative samples, as ini-
tial experiments showed that using other sampling
strategies had almost no effect on the result.

3.2 Using Region Representations

When using a quadratic kernel, the hyperplanes
defined by the vector p,,; and offsets b; define a se-
quence of nested ellipsoids. To represent the word
wj, we estimate a Gaussian from these nested el-
lipsoids. The use of Gaussian representations is
computationally convenient and intuitively acts as
a form of smoothing. In Section 3.2.1 we first
explain how these Gaussians are estimated, after
which we explain how they are used for measur-
ing word similarity in Section 3.2.2

3.2.1 Estimating Gaussians

Rather than estimating the Gaussian representa-
tion of a given word w; from the vector p,,; and
offsets b’ directly, we will estimate it from the lo-
cations of the words that are inside the correspond-
ing ellipsoids. In this way, we can also take into
account the distribution of words within each el-
lipsoid. In particular, for each word w;, we first
determine a set of words w whose vector p,, is in-
side these ellipsoids. Specifically, for each word w
that occurs at least once in the context of wj, or is
among the 10 closest neighbors in the vector space
of such a word, we test whether ¢(py)-pu; < —b},
i.e. whether w is in the outer ellipsoid for wj.
Let M,,; be the set of all words w for which this
is the case. We then represent w; as the Gaus-
sian G'(-; fhw, Cw].), where j1,), and C,,; are esti-
mated as the sample mean and covariance of the
set {pw | w € My, }.

We also consider a variant in which each word
w from M, is weighted as follows. First, we
determine the largest k in {1,...,n;} for which
A(Pw) * Pu; < —b;‘?; note that since w € My,

127

such a k exists. The weight \,, of w is defined as
the PPMI value that is associated with the set Wf .
When using this weighted setting, the mean i,
and covariance matrix C’wj are estimated as:

Zwe]ww. AwPuw
— J
fow; = <=3

Z”LUEij >\’LU
. Yowety, Mu(Pw = 1) (pw = 1)"
wj B Zweij Aw

Note that the two proposed methods to estimate
the Gaussian G/(.; 1y, , Ciy;) do not depend on the
choice of kernel, hence they could also be applied
in combination with a linear kernel. However,
given the close relationships between Gaussians
and ellipsoids, we can expect quadratic kernels to
lead to higher-quality representations. This will be
confirmed experimentally in Section 4.

3.2.2 Measuring similarity

To compute the similarity between w and w’,
based on the associated Gaussians, we consider
two alternatives. First, following (Vilnis and Mc-
Callum, 2015), we consider the inner product, de-
fined as follows:

E(w,w'") = /G(x;uw, Cw)G (x5 poyr , Copr)dz
= G(Oa Hw — K Cw + Cw/)

The second alternative is the Jensen-Shannon di-
vergence, given by:

JS(U)JU/) = KL(wafw’) + KL(fw’”fw)

with fi, = G(;; pw, Cw)s fur = G5 pwr, Cur),
and KL the Kullback-Leibler divergence. When
computing the KL-divergence we add a small
value ¢ to the diagonal elements of the covariance
matrices, following (Vilnis and McCallum, 2015);
we used 0.01. This is needed, as for rare words,
the covariance matrix may otherwise be singular.

Finally, to measure the degree to which w en-
tails w’, we use KL-divergence, again in accor-
dance with (Vilnis and McCallum, 2015).

4 Experiments

In this section we evaluate both the vector and
region representations produced by our model.
In our experiments, we have used the Wikipedia
dump from November 2nd, 2015 consisting of
1,335,766,618 tokens. We used a basic text

preprocessing strategy, which involved remov-
ing punctuations, removing HTML/XML tags and
lowercasing all tokens. We have removed words
with less than 10 occurrences in the entire cor-
pus. We used the Apache sentence segmentation
tool” to detect sentence boundaries. In all our ex-
periments, we have set the number of dimensions
as 300, which was found to be a good choice in
previous work, e.g. (Pennington et al., 2014). We
use a context window of 10 words before and af-
ter the target word, but without crossing sentence
boundaries. The number of iterations for SGD
was set to 20. The results of all baseline mod-
els have been obtained using their publicly avail-
able implementations. We have used 10 negative
samples in the word2vec code, which gave better
results than the default value of 5. For the base-
line models, we have used the default settings,
apart from the D-GloVe model for which no de-
fault values were provided by the authors. For
D-GloVe, we have therefore tuned the parameters
using the ranges discussed in (Jameel and Schock-
aert, 2016). Specifically we have used the parame-
ters that gave the best results on the Google Anal-
ogy Test Set (see below).

As baselines we have used the following stan-
dard word embedding models: the Skip-gram
(SG) and Continuous Bag-of-Words (CBOW)
models?, proposed in (Mikolov et al., 2013a), the
GloVe model*, proposed in (Pennington et al.,
2014), and the D-GloVe model®> proposed in
(Jameel and Schockaert, 2016). We have also
compared against the Gaussian word embedding
model® from (Vilnis and McCallum, 2015), using
the means of the Gaussians as vector representa-
tions, and the Gaussians themselves as region rep-
resentations. As in (Vilnis and McCallum, 2015),
we consider two variants: one with diagonal co-
variance matrices (Gauss-D) and one with spheri-
cal covariance matrices (Gauss-S). For our model,
we will consider the following configurations:

Reg-li-cos word vectors, obtained using linear
kernel, compared using cosine similarity;

thtps://opennlp.apache.org/
documentation/1.5.3/manual/opennlp.html#
tools.sentdetect
*https://code.google.com/archive/p/
word2vec/
4https://nlp.stanford.edu/projects/
glove/
Shttps://github.com/bashthebuilder/
pGlove
*https://github.com/seomoz/word2gauss

Table 1: Results for the analogy completion task
(accuracy). Reg-li-* and Reg-qu-* are our models
with a linear and quadratic kernel.

Gsem Gsyn MSR
SG 71.5 642 68.6
CBOW 74.2 623 662
GloVe 802 580 503
D-GloVe 814 59.1 59.6

Gauss-D-cos 61.5 53.6 50.7
Gauss-D-eucl 61.5 53.6 50.7
Gauss-S-cos 61.2 53.2 49.8
Gauss-S-eucl 61.4 53.3 49.8
Reg-li-cos 718 624 62.6
Reg-li-eucl 779 62.6 62.6
Reg-qu-cos 78.6 65.7 635
Reg-qu-eucl 78.7 65.7 63.6

Reg-li-eucl word vectors, obtained using linear
kernel, compared using Euclidean distance;

Reg-qu-cos word vectors, obtained using
quadratic kernel, compared using cosine
similarity;

Reg-qu-eucl word vectors, obtained using
quadratic kernel, compared using Euclidean
distance;

Reg-li-prod Gaussian word regions, obtained us-
ing linear kernel, compared using the inner
product F;

Reg-li-wprod Gaussian word regions estimated
using the weighted variant, obtained using
linear kernel, compared using the inner prod-
uct F;

Reg-li-JS Gaussian word regions, obtained us-
ing linear kernel, compared using the Jensen-
Shannon divergence;

Reg-li-wJS Gaussian word regions estimated us-
ing the weighted variant, obtained using lin-
ear kernel, compared using Jensen-Shannon
divergence.

4.1 Analogy Completion

Analogy completion is a standard evaluation task
for word embeddings. Given a pair (w;,wsz) and
a word ws the goal is to find the word w, such
that w3 and wy are related in the same way as w;
and wa. To solve this task, we predict the word w;y
which is most similar to wy — wy + ws, either in
terms of cosine similarity or Euclidean distance.
The evaluation metric is accuracy. We use two
popular benchmark data sets: the Google Analogy

Test Set’ and the Microsoft Research Syntactic
Analogies Dataset®. The former contains both se-
mantic and syntactic relations, for which we show
the results separately, respectively referred to as
Gsem and Gsyn; the latter only contains syntactic
relations and will be referred to as MSR. The re-
sults are shown in Table 1. Recall that the param-
eters of D-GloVe were tuned on the Google Anal-
ogy Test Set, hence the results reported for this
model for Gsem and Gsyn might be slightly higher
than what would normally be obtained. Note that
for our model, we can only use word vectors for
this task.

We outperform SG and CBOW for Gsem and
Gsyn but not for MSR, and we outperform GloVe
and D-Glo Ve for Gsyn and MSR but not for Gsem.
The vectors from the Gaussian embedding model
are not competitive for this task. For our model,
using Euclidean distance slightly outperforms us-
ing cosine. For GloVe, SG and CBOW, we only
show results for cosine, as this led to the best re-
sults. For D-GloVe, we used the likelihood-based
similarity measure proposed in the original paper,
which was found to outperform both cosine and
Euclidean distance for that model.

For our model, the quadratic kernel leads to bet-
ter results than the linear kernel, which is some-
what surprising since this task evaluates a kind
of linear regularity. This suggests that the ad-
ditional flexibility that results from the quadratic
kernel leads to more faithful context word repre-
sentations, which in turn improves the quality of
the target word vectors.

4.2 Similarity Estimation

To evaluate our model’s ability to measure sim-
ilarity we use 12 standard evaluation sets’, for
which we will use the following abbreviations: S1:
MTurk-287, S2:RG-65, S3:MC-30, S4:WS-353-
REL, S5:WS-353-ALL, S6:RW-STANFORD, S7:
YP-130, S8:SIMLEX-999, S9:VERB-143, S10:
WS-353-SIM, S11:MTurk-771, S12:MEN-TR-
3K. Each of these datasets contains similarity
judgements for a number of word pairs. The task
evaluates to what extent the similarity scores pro-
duced by a given word embedding model lead to

7https://nlp.stanford.edu/projects/
glove/

$http://research.microsoft.com/en—-us/
um/people/gzweig/Pubs/myz_naacll3_test_
set.tgz

‘https://github.com/mfaruqui/
eval-word-vectors

129

the same ordering of the word pairs as the pro-
vided ground truth judgments. The evaluation
metric is the Spearman p rank correlation coeffi-
cient. For this task, we can either use word vectors
or word regions. The results are shown in Table 2.

For our model, the best results are obtained
when using word vectors and the Euclidean dis-
tance (Reg-qu-eucl), although the differences with
the word regions (Reg-qu-wprod) are small. We
use prod to refer to the configuration where simi-
larity is estimated using the inner product, whereas
we write JS for the configurations that use Jensen-
Shannon divergence. Moreover, we use wprod and
wlJS to refer to the weighted variant for estimating
the Gaussians. We can again observe that using
a quadratic kernel leads to better results than us-
ing a linear kernel. As the weighted versions for
estimating the Gaussians do not lead to a clear im-
provement, for the remainder of this paper we will
only consider the unweighted variant.

With the exception of S9, our model substan-
tially outperforms the Gaussian word embedding
model. Of the standard models SG and D-GloVe
obtain the strongest performance. Compared to
our model, these baseline models achieve similar
results for S2, S10, S11 and S12, worse results for
S1, S3, S4, S5, S6 and better results for S7, S8
and S9. Two general trends can be observed. First,
the data sets where our model performs better tend
to be datasets which describe semantic relatedness
rather than pure synonymy. Second, the standard
models appear to perform better on data sets that
contain verbs and adjectives, as opposed to nouns.

4.3 Modeling properties

In (Rubinstein et al., 2015), it was analysed to
what extent word embeddings can be used to iden-
tify concepts that satisfy a given attribute. While
good results were obtained for taxonomic prop-
erties, attributive properties such as ‘dangerous’,
‘round’, or ‘blue’ proved to be considerably more
problematic. We may expect region-based mod-
els to perform well on this task, since each of
these attributes then explicitly corresponds to a re-
gion in space. To test this hypothesis, Table 3
shows the results for the same 7 taxonomic prop-
erties and 13 attributive properties as in (Rubin-
stein et al., 2015), where the positive and nega-
tive examples for all 20 properties are obtained
from the McRae feature norms data (McRae et al.,
2005). Following (Rubinstein et al., 2015), we use

Table 2: Results for similarity estimation (Spearman p). Reg-li-* and Reg-qu-* are our models with a
linear and quadratic kernel.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12
SG 0.656 0.773 0.789 0.648 0.709 0.459 0.500 0.415 0435 0.773 0.655 0.731
CBOW 0.644 0.768 0.740 0.532 0.622 0419 0341 0361 0343 0.707 0.597 0.693
GloVe 0595 0.755 0.746 0.515 0577 0318 0.533 0382 0354 0.690 0.652 0.724
D-GloVe 0.659 0.788 0.785 0.555 0.651 0401 0.535 0413 0388 0.778 0.656 0.746
Gauss-D-cos 0.591 0.622 0.661 0403 0.501 0249 0.388 0337 0411 0.640 0.599 0.643
Gauss-D-eucl | 0.591 0.623 0.661 0.403 0.501 0.250 0.388 0.338 0.411 0.641 0599 0.643
Gauss-D-prod | 0.588 0.618 0.658 0399 0498 0.213 0356 0326 0409 0.631 0.588 0.633
Gauss-D-JS 0.598 0.619 0.665 0403 0.532 0.288 0.381 0339 0410 0.643 0.599 0.644
Gauss-S-cos 0.593 0.632 0.681 0.409 0506 0256 0.392 0337 0416 0.649 0.601 0.644
Gauss-S-eucl | 0.593 0.632 0.681 0.409 0.507 0.356 0393 0337 0416 0.649 0.603 0.644
Gauss-S-prod | 0.591 0.619 0.659 0.403 0505 0.312 0389 0328 0412 0.633 0591 0.633
Gauss-S-JS 0.598 0.622 0.667 0405 0.533 0288 0.385 0.349 0410 0.643 0.601 0.644
Reg-li-cos 0.666 0.764 0.821 0.652 0.713 0489 0469 0.354 0361 0.734 0.642 0.739
Reg-li-eucl 0.668 0.766 0.821 0.654 0.715 0489 0469 0359 0361 0.734 0.643 0.739
Reg-li-prod 0.661 0.759 0818 0.634 0.710 0.481 0445 0358 0360 0.724 0.641 0.729
Reg-li-wprod | 0.663 0.761 0.819 0.638 0.711 0482 0446 0.359 0361 0.725 0.642 0.731
Reg-li-JS 0.663 0.758 0.815 0.638 0.709 0479 0443 0359 0361 0.723 0.641 0.729
Reg-li-wJS 0.665 0.760 0.816 0.638 0.710 0.481 0445 0359 0361 0.725 0.641 0.731
Reg-qu-cos 0.684 0.781 0.839 0.662 0.723 0.505 0479 0367 0368 0.777 0.656 0.744
Reg-qu-eucl 0.685 0.781 0.839 0.664 0.723 0.509 0479 0367 0368 0.779 0.656 0.744
Reg-qu-prod 0.681 0.780 0.831 0.658 0.719 0501 0478 0355 0331 0.778 0.653 0.741
Reg-qu-wprod | 0.684 0.788 0.831 0.663 0.721 0.501 0.475 0370 0.365 0.778 0.653 0.739
Reg-qu-JS 0.680 0.781 0.826 0.661 0.715 0497 0471 0328 0355 0.771 0.649 0.721
Reg-qu-wJS 0.678 0.782 0.824 0.662 0.712 0498 0469 0326 0351 0.771 0.644 0.720

Table 3: Results for McRae feature norms (F1).
Reg-li and Reg-qu are our models with a linear and
quadratic kernel.

man et al., 2010), H4 (Levy et al., 2014) and H5
(Turney and Mohammad, 2015). Each of the data
sets contains positive and negative examples, i.e.

Taxonomic Attributive

lin quad lin quad
SG 0.781 0.784 | 0.365 0.378
CBOW 0.775 0.781 | 0.361 0.371
GloVe 0.785 0.786 | 0.364 0.377
D-GloVe | 0.743 0.749 | 0.342 0.364
Gauss-D | 0.787 0.789 | 0.406 0.414
Gauss-S | 0.781 0.784 | 0.401 0.406
Reg-li 0.791 0.796 | 0.399 0.406
Reg-qu 0.795 0.799 | 0.411 0.421

5-fold cross-validation to train a binary SVM for
each property and compute the average F-score
due to unbalanced class label distribution. We
separately present results for SVMs with a linear
and a quadratic kernel. The results indeed support
the hypothesis that region-based models are well-
suited for this task, as both the Gaussian embed-
ding model and our model outperform the standard
word embedding models.

4.4 Hypernym Detection

For hypernym detection, we have used the follow-
ing 5 benchmark data sets'?: H1 (Baroni et al.,
2012), H2 (Baroni and Lenci, 2011), H3 (Kotler-

Ohttps://github.com/stephenroller/
emnlp2016

130

word pairs that are in a hypernym relation and
word pairs that are not. Rather than treating this
problem as a classification task, which would re-
quire selecting a threshold in addition to producing
a score, we treat it as a ranking problem. In other
words, we evaluate to what extent the word pairs
that are in a valid hypernym relation are the ones
that receive the highest scores. We use average
precision as our evaluation metric.

Apart from our model, the Gaussian embedding
model is the only word embedding model that can
by design support unsupervised hyperynym detec-
tion. As an additional baseline, however, we also
show how Skip-gram performs when using cosine
similarity. While such a symmetric measure can-
not faithfully model hypernyny, it was nonetheless
found to be a strong baseline for hypernymy mod-
els (Vuli¢ et al., 2016), due to the inherent diffi-
culty of the task. We also compare with a num-
ber of standard bag-of-words based models for de-
tecting hypernyms: WeedsPrec (Kotlerman et al.,
2010), ClarkeDE (Clarke, 2009) and invCL (Lenci
and Benotto, 2012). These latter models take as
input the PPMI weighted co-occurrence counts.

The results are shown in Table 4, where Reg-li-
KL and Reg-qu-KL refer to variants of our model

Table 4: Results for hypernym detection (AP).
Reg-li-* and Reg-qu-* are our models with a lin-
ear and quadratic kernel.

Model H1 H2 H3 H4 H5
WeedsPrec 0.565 0.376 0.611 0.414 0.685
ClarkeDE 0.588 0.397 0.621 0.426 0.699

invCL 0.603 0.416 0.693 0.439 0.756

SG 0.682 0.434 0.712 0.455 0.789
Gauss-D-KL | 0.865 0.505 0.806 0.515 0.815
Gauss-S-KL. 0.823 0.498 0.801 0.507 0.789
Gauss-D-Cos | 0.846 0.499 0.801 0.509 0.811
Gauss-S-Cos | 0.813 0.484 0.799 0.501 0.778
Gauss-D-KLC | 0.868 0.511 0.809 0.519 0.815
Gauss-S-KLL.C | 0.835 0.501 0.804 0.511 0.795

Reg-li-KL 0.867 0.501 0.805 0.505 0.801
Reg-qu-KL 0.871 0.512 0.811 0.521 0.814
Reg-li-Cos 0.871 0.502 0.807 0.508 0.804
Reg-qu-Cos 0.873 0.513 0.818 0.525 0.819
Reg-li-KLC 0.874 0.509 0.812 0.511 0.806
Reg-qu-KLC | 0.878 0.519 0.825 0.531 0.823

in which Kullback-Leibler divergence is used to
compare word regions. Surprisingly, both for our
model and for the Gaussian embedding model,
we find that using cosine similarity between the
word vectors outperforms using the word regions
with KL-divergence. In general, our model out-
performs the Gaussian embedding model and the
other baselines. Given the effectiveness of the co-
sine similarity, we have also experimented with
the following metric:

hyp(w1, w2) = (1 = cos(wy, wa)) - KL(fu|| fun)

The results are referred to as Reg-1i-KLC and Reg-
qu-KLC in Table 4. These results suggest that the
word regions can indeed be useful for detecting
hypernymy, when used in combination with cosine
similarity. Intuitively, for ws to be a hypernym of
w1, both words need to be similar and wo needs
to be more general than w;. While word regions
are not needed for measuring similarity, they seem
essential for modeling generality (in an unsuper-
vised setting).

The datasets considered so far all treat hyper-
nyms as a binary notion. In (Vuli¢ et al., 2016)
a evaluation set was introduced which contains
graded hypernym pairs. The underlying intuition
is that e.g. cat and dog are more typical/natural hy-
ponyms of animal than dinosaur or amoeba. The
results for this data set are shown in Table 5. In
this case, we use Spearman p as an evaluation met-
ric, measuring how well the rankings induced by
different models correlate with the ground truth.
Following (Vuli¢ et al., 2016), we separately men-
tion results for nouns and verbs. In the case of

131

Table 5: Results for HyperLex (Spearman p). Reg-
li-* and Reg-qu-* are our models with a linear and
quadratic kernel.

Model All Nouns Verbs
WeedsPrec 0.166 0.153 0.201
ClarkeDE 0.165 0.151 0.189
invCL 0.168 0.154 0.198

SG 0.158 0.164 0.297
Gauss-D-KL | 0.185 0.171 0.198
Gauss-S-KL 0.181 0.168 0.184
Gauss-D-Cos | 0.179 0.158 0.161
Gauss-S-Cos 0.166 0.151 0.158
Gauss-D-KLC | 0.191 0.177 0.199
Gauss-S-KLC | 0.189 0.171 0.189
Reg-li-KL 0.181 0.165 0.179
Reg-qu-KL. 0.188 0.169 0.191
Reg-li-Cos 0.184 0.168 0.181
Reg-qu-Cos 0.190 0.180 0.196
Reg-li-KLC 0.189 0.171 0.185
Reg-qu-KLC | 0.208 0.188 0.201

nouns, our findings here are broadly in agreement
with those from Table 4 Interesting, for verbs we
find that Skip-gram substantially outperforms the
region based models, which is in accordance with
our findings in the word similarity experiments.

5 Conclusions

We have proposed a new word embedding model,
which is based on ordinal regression. The input to
our model consists of a number of rankings, cap-
turing how strongly each word is related to each
context word in a purely ordinal way. Word vec-
tors are then obtained by embedding these rank-
ings in a low-dimensional vector space. Despite
the fact that all quantitative information is disre-
garded by our model (except for constructing the
rankings), it is competitive with standard methods
such as Skip-gram, and in fact outperforms them
in several tasks. An important advantage of our
model is that it can be used to learn region repre-
sentations for words, by using a quadratic kernel.
Our experimental results suggest that these regions
can be useful for modeling hypernymy.

Acknowledgments

This work was supported by ERC Starting Grant
637277. This work was performed using the
computational facilities of the Advanced Research
Computing @Cardiff (ARCCA) Division, Cardiff
University. The authors would like to thank the
anonymous reviewers for their insightful com-
ments.

References

Marco Baroni, Raffaella Bernardi, Ngoc-Quynh Do,
and Chung-chieh Shan. 2012. Entailment above the
word level in distributional semantics. In Proceed-
ings of the 13th Conference of the European Chap-
ter of the Association for Computational Linguistics.
pages 23-32.

Marco Baroni and Alessandro Lenci. 2011. How we
blessed distributional semantic evaluation. In Pro-
ceedings of the GEMS 2011 Workshop on GEomet-
rical Models of Natural Language Semantics. Asso-
ciation for Computational Linguistics, pages 1-10.

Wei Chu and S Sathiya Keerthi. 2005. New approaches
to support vector ordinal regression. In /ICML. pages
145-152.

Daoud Clarke. 2009. Context-theoretic semantics for
natural language: an overview. In Proceedings of
the Workshop on Geometrical Models of Natural
Language Semantics. pages 112-119.

Katrin Erk. 2009. Representing words as regions in
vector space. In Proceedings of the Thirteenth Con-
ference on Computational Natural Language Learn-
ing. pages 57-65.

Manaal Faruqui and Chris Dyer. 2014. Improving vec-
tor space word representations using multilingual
correlation. In Proceedings of the 14th Conference
of the European Chapter of the Association for Com-
putational Linguistics. pages 462—471.

Andrea Frome, Gregory S. Corrado, Jonathon Shlens,
Samy Bengio, Jeffrey Dean, Marc’ Aurelio Ranzato,
and Tomas Mikolov. 2013. Devise: A deep visual-
semantic embedding model. In Proc. NIPS. pages
2121-2129.

Yoav Goldberg. 2016. A primer on neural network
models for natural language processing. Journal of
Artificial Intelligence Research 57:345-420.

Yoav Goldberg and Omer Levy. 2014. word2vec
explained: Deriving mikolov et al’s negative-
sampling word-embedding method. arXiv preprint
arXiv:1402.3722 .

Abhijeet Gupta, Gemma Boleda, Marco Baroni, and
Sebastian Padé. 2015. Distributional vectors encode
referential attributes. In Proc. EMNLP. pages 12—
21.

Shoaib Jameel and Steven Schockaert. 2016. D-glove:
A feasible least squares model for estimating word
embedding densities. In Proceedings of the 26th In-
ternational Conference on Computational Linguis-
tics. pages 1849-1860.

Joo-Kyung Kim and Marie-Catherine de Marneffe.
2013. Deriving adjectival scales from continuous
space word representations. In Proc. EMNLP. pages
1625-1630.

132

Lili Kotlerman, Ido Dagan, Idan Szpektor, and Maayan
Zhitomirsky-Geffet. 2010. Directional distribu-
tional similarity for lexical inference. Natural Lan-
guage Engineering 16:359-389.

Alessandro Lenci and Giulia Benotto. 2012. Identify-
ing hypernyms in distributional semantic spaces. In
Proceedings of *SEM. pages 75-79.

Omer Levy, Yoav Goldberg, and Israel Ramat-Gan.
2014. Linguistic regularities in sparse and explicit
word representations. In Proc. CoNLL. pages 171—
180.

Tie-Yan Liu. 2009. Learning to rank for information
retrieval. Foundations and Trends in Information
Retrieval 3:225-331.

Ken McRae, George S Cree, Mark S Seidenberg, and
Chris McNorgan. 2005. Semantic feature produc-
tion norms for a large set of living and nonliving
things. Behavior Research Methods 37:547-559.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013a. Efficient estimation of word represen-
tations in vector space. In International Conference
on Learning Representations.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S.
Corrado, and Jeffrey Dean. 2013b. Distributed rep-
resentations of words and phrases and their compo-
sitionality. In Proceedings of the 27th Annual Con-
ference on Neural Information Processing Systems.
pages 3111-3119.

Neha Nayak. 2015. In learning hyperonyms over word
embeddings. Technical report, Student technical re-
port.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In Proc. EMNLP. pages 1532—
1543.

Sascha Rothe and Hinrich Schiitze. 2016. Word
embedding calculus in meaningful ultradense sub-
spaces. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguis-
tics. pages 512-517.

Dana Rubinstein, Effi Levi, Roy Schwartz, and Ari
Rappoport. 2015. How well do distributional mod-
els capture different types of semantic knowledge?
In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics. pages

726-730.

Steven Schockaert and Jae Hee Lee. 2015. Qualita-
tive reasoning about directions in semantic spaces.
In Proceedings of the International Joint Conference
on Artificial Intelligence. pages 3207-3213.

Amnon Shashua and Anat Levin. 2002. Ranking with
large margin principle: Two approaches. In NIPS.
pages 937-944.

P. D. Turney and P. Pantel. 2010. From frequency to
meaning: Vector space models of semantics. Jour-
nal of Artificial Intelligence Research 37:141-188.

Peter D Turney and Saif M Mohammad. 2015. Ex-
periments with three approaches to recognizing lex-
ical entailment. Natural Language Engineering
21(03):437-476.

Ivan Vendrov, Ryan Kiros, Sanja Fidler, and Raquel
Urtasun. 2016. Order-embeddings of images and
language. In International Conference on Learning
Representations.

Luke Vilnis and Andrew McCallum. 2015. Word rep-
resentations via gaussian embedding. In Proceed-
ings of the International Conference on Learning
Representations.

Ivan Vuli¢, Daniela Gerz, Douwe Kiela, Felix Hill,
and Anna Korhonen. 2016. Hyperlex: A large-scale
evaluation of graded lexical entailment. arXiv .

Will Y Zou, Richard Socher, Daniel M Cer, and
Christopher D Manning. 2013. Bilingual word em-
beddings for phrase-based machine translation. In
Proc. EMNLP. pages 1393-1398.

133

An Artificial Language Evaluation of Distributional Semantic Models

Fatemeh Torabi Asr
Cognitive Science Program
Indiana University, Bloomington
fatorabi@indiana.edu

Abstract

Recent studies of distributional semantic
models have set up a competition
between word embeddings obtained from
predictive neural networks and word
vectors obtained from count-based
models. This paper is an attempt to reveal
the underlying contribution of additional
training data and post-processing steps on
each type of model in word similarity and
relatedness inference tasks. We do so by
designing an artificial language, training a
predictive and a count-based model on
data sampled from this grammar, and
evaluating the resulting word vectors in
paradigmatic and syntagmatic tasks
defined with respect to the grammar.

1 Introduction

The distributional tradition in linguistics (e.g.,
Harris, 1954) classically posits that a word’s
meaning can be estimated by its pattern of co-
occurrence with other words. Modern
distributional semantic models (DSMs) formalize
this process to construct vector representations
for word meaning from statistical regularities in
large-scale corpora. A typical approach in NLP
has been to apply dimensional reduction
algorithms borrowed from linear algebra to a
word-by-context frequency matrix representation
of a text corpus (Deerwester et al. 1990,
Landauer & Dumais, 1997). Words that
frequently appear in similar contexts will have
similar patterns across resulting latent
components, even if they never directly co-occur
(for reviews, see Jones, Willits, & Dennis, 2015;
Turney & Pantel, 2010). These models
dominated the literature over direct count
methods for over two decades (Bullinaria &
Levy, 2007, 2012). Recently, DSMs based on
neural networks have rapidly grown in popularity
(e.g., Bengio et al., 2003; Collobert et al., 2011;
Mikolov et al., 2013). Given a word, the model

134

Michael N. Jones
Psychological and Brain Sciences
Indiana University, Bloomington

jonesmn@indiana.edu

attempts to predict the context words that it
occurs with, or vice-versa. After training on a text
corpus, the pattern of elements across the model’s
hidden layer come to reflect semantic similarities,
i.e., will be similar for words that predict similar
contexts even if those words do not predict each
other. In this sense, neural embedding models
come to a distributed vector representation of
word meaning that is reminiscent of traditional
dimensional reduction DSMs, albeit with a
considerably different learning algorithm.

Mikolov et al. (2013a, 2013b) have
demonstrated state-of-the-art performance using a
neural embedding model with an efficient
objective function called word2vec. This
model rapidly emerged as the leader of the DSM
pack, outperforming other models on a broad
range of lexical semantic tasks (Baroni et al.
2014). However, since the early surge in
excitement for word2vec, the literature has now
become more focused on trying to understand the
conditions under which embedding or traditional
DSMs are optimal. Levy and Goldberg (2014)
demonstrated analytically that word2vec is
implicitly factorizing a word-by-context matrix
whose cell values are shifted PMI values. In other
words, the objective function and the input to
word2vec are formally equivalent to traditional
DSMs; thus the models should behave alike in
the limit. The distinction is really one of process
and parameterization. With optimum
parameterization of traditional DSMs, more
recent research is finding insignificant
performance differences between word2vec
and SVD factorizations of a PMI matrix
(Sahlgren & Lenci, 2016). Levy et al. (2015)
even found a slight advantage for a factorization
of the bias shifted log-count matrix and for
traditional PPMI over word2vec on some tasks
when hyperparameters were optimized.

One general distinction between the two types
of models is that neural embedding models such
as word2vec seem to underperform when the
training corpus is small, particularly for low-
frequency words (Asr et al., 2016; Sahlgren &

Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017), pages 134—-142,
Vancouver, Canada, August 3 - August 4, 2017. (©2017 Association for Computational Linguistics

Lenci, 2016). Levy et al. (2015) note that there is
often a benefit in word2vec of tuning a larger
parameter space over using a larger training
corpus. With limited-data mining scenarios
becoming more common, a better understanding
of how model type and corpus size interact with
optimal parameterization is an important topic of
inquiry.

Secondly, interest has shifted from trying to
determine the best overall model towards a better
understanding of what kinds of word relations
each model is best at learning, and under what
parameterizations. Count-based PMI models are
very good at representing first-order statistical
patterns that reflect syntagmatic relationships in
language (aka “relatedness” data). In contrast, the
training scheme used by word2vec attempts to
optimize it for detecting second-order statistical
patterns that reflect paradigmatic relationships
in language (aka “similarity” data). Indeed, this
was the pattern demonstrated by Levy et al
(2015): After tuning hyperparameters,
word2vec performed best on similarity-based
tasks while PPMI performed best on relatedness
tasks. SVD-based models attempt to represent
both statistical patterns. This count-based model
outperformed both word2vec and PPMI in
Levy et al. on both types of relations when
standard parameter sets were used; however, the
advantage disappeared when hyperparameters
were tuned. Standard word2vec is optimized
for paradigmatic tasks but architectural
adaptations exist to make the model better suited
for syntagmatic tasks (e.g., Kiela et al., 2015;
Ling et al., 2015). Making a model better at one
type of task might come at the cost of making it
worse at the other if the two types of word
relations are orthogonal (Andreas & Klein, 2014;
Mitchell & Steedman, 2015). Optimizing for a
particular task is also closely tied to the issue of
training data size (Melamud et al., 2016).

Finally, both of these issues are intricately tied
to post-processing of the embeddings. Levy et al.
(2015) inspired by Pennington et al., (2014)
pointed out an important parametrization of the
word2vec model, where co-occurrence
information encoded between hidden and output
layers (context vectors) are used as well as
weighs between the input and hidden layers
(word vectors) to construct the final word
embeddings (w+c representation). When
calculating word similarity based on this
composite representation, a mixture between
first- and second-order coocurrence information
are considered. This is remarkably similar to
cognitive models that construct composite

135

memory representations from both paradigmatic
and syntagmatic information (Jones & Mewhort,
2007). Recent empirical studies in developmental
psychology have found that children learn word
relations that have both sources of information
before relations with either source alone (Unger
etal., 2016). Levy et al. (2015) found a consistent
benefit for word2vec and PPMI when the w+c
post-processing combination was applied. Even
though, this is an efficient adaptation in that the
scheme does not require retraining, most studies
on word similarity and relatedness have only
employed the default word2vec setting (i.e.,
only using word vectors) and the usefulness of
context vectors has been left underexplored.

It is very plausible to assume that the above
three issues (corpus size, relation type, post-
processing) interact: Higher-order paradigmatic
word relations likely require more training data to
discover, and the merging of w+c blends
different relation types. The goal of this paper is
to elaborate on the effect of corpus size and post-
processing on the reflection of syntagmatic and
paradigmatic relations between words within the
resulting vector space. It has proven impossible
in psycholinguistics to select real words that
cleanly separate paradigmatic and syntagmatic
relations (McNamara, 2005). Hence, we opted to
bring the statistical structure of the language
under experimental control using an artificial
language adapted from Elman (1990). Unlike in
natural language corpora, the sources are
independent: e.g., dog never directly appears with
cat, and hence any learned relation between them
could not be due to first-order information. Thus
by defining crisp semantic categories and
sentence frames, we investigate how first and
second-order co-occurrence information sources
are consumed and represented in terms of
similarity between words by count-based and
predictive DSMs. Given current uncertainty in
the literature on the role of corpus size, relation
type, and w+c post-processing regarding the
performance of various DSM architectures, this
approach affords experimental control to evaluate
relative performance as a factorial combination of
information sources and parameters while
controlling for the many confounding factors that
exist in natural language corpora; including the
ambiguity of similarity vs. relatedness of two
words in evaluation datasets. Section 2 describes
our framework in details, and section 3 presents
several experiments exploring the capacity of
count vs. predict DSMs in modeling relations
between words.

2 Experiment Setup

2.1 Creation of Corpus

The artificial language grammar that we use for
generating sentences in our test corpora is
depicted in Table 1. This grammar was first
introduced by Elman (1990) in his exploration of
language modeling by Recurrent Neural
Networks (RNNs). The language consists of a
small vocabulary, a set of explicitly defined
semantic categories on top of the vocabulary, and
finally, a set of syntactic rules or possible
sentence frames, which specifies how words can
be put together in a sentence with regard to their
semantic categories. The language generation
algorithm enumerates all possible sentences in
the language and the corpus generator returns a
random sample of the language using a uniform
distribution across sentence types. The corpus
size is a variable in our experiments, and we
mention explicitly when we repeat an experiment
by re-sampling a corpus to validate the results on
the semantic similarity tasks.

2.2 Semantic Similarity Tasks

All experiments in the current paper are centered
on the idea that, at least, two types of semantic
similarity can be identified for word pairs.

Table 1. Artificial language grammar (Elman 1990)

Sentence Frames Example

NOUN-HUM VERB-EAT NOUN-FOOD
NOUN-HUM VERB-PERCEPT NOUN-INANIM
NOUN-HUM VERB-DESTROY NOUN-FRAG
NOUN-HUM VERB-INTRAN

NOUN-HUM VERB-TRAN NOUN-HUM
NOUN-HUM VERB-AGPAT NOUN-INANIM
NOUN-HUM VERB-AGPAT

NOUN-ANIM VERB-EAT NOUN-FOOD
NOUN-ANIM VERB-TRAN NOUN-ANIM
NOUN-ANIM VERB-AGPAT NOUN-INANIM
NOUN-ANIM VERB-AGPAT

man eat cookie
woman see book
man smash glass
woman sleep

man chase woman
woman brake book
man move

cat eat cookie
mouse see cat

cat chase mouse
mouse move

NOUN-INANIM VERB-AGPAT rock move
NOUN-AGRESS VERB-DESTROY NOUN-FRAG dragon brake plate
NOUN-AGRESS VERB-EAT NOUN-HUM monster eat man

NOUN-AGRESS VERB-EAT NOUN-ANIM
NOUN-AGRESS VERB-EAT NOUN-FOOD

dragon eat cat
monster eat cookie

Semantic Categories

NOUN-HUM: [man, woman]
NOUN-ANIM: [cat, mouse]
NOUN-AGRESS: [dragon, monster]
NOUN-INANIM: [book, rock]
NOUN-FRAG: [glass, plate]
NOUN-FOOD: [cookie, sandwich]
VERB-INTRAN: [think, sleep]
VERB-TRAN: [see, chase]
VERB-PERCEPT: [smell, see]
VERB-AGPAT: [move, break]
VERB-DESTROY: [break, smash]
VERB-EAT: [eat]

136

Thus, we define two distinct methods to evaluate
performance of the DSMs in learning semantic
similarity from our artificial language—the
syntagmatic task and the paradigmatic task.

Syntagmatic task: the objective of this task is to
identify word pairs that can occur in context
together (here the scope of a sentence). For
example, the word pair smash and cookie cannot
appear in each other’s context according to the
grammar in Table 1, because no legal sentence
frame includes the semantic category of both
words. Conversely, the word pair eat and cookies
are related in the sense that the two words can co-
occur within a sentence. Evaluation of the vectors
produced by different DSMs in this task is based
on the cosine similarity between words occurring
in common vs. different context frames and is
calculated by the following accuracy measure:

Accuracyg,, = Avg sim(wi, Wj)
— Avg sim(wy, wy)

where (w;, w)) is indicative of the word pairs in
the vocabulary that appear together in at least one
sentence frame, and (wy, w;) is indicative of word
pairs that do not appear in any common frame
given their semantic categories (e.g., glass and
chase belong to NOUN-FRAG and VERB-
TRANS, respectively, which never co-occur
within a sentence).

The syntagmatic task is a strict version of
finding first-order related, directly co-occurring,
or similar topic words in a natural language.
Since word pairs are exclusively labeled as co-
occurring vs. non-co-occurring based on the
grammar of the artificial language, we will have
the possibility to look into the performance of the
DSM models in drawing syntagmatic similarities
without having to deal with other confounds
present in natural languages. This type of
evaluation is almost impossible in a natural
language given the openness of the semantic
categories and enormous grammar size. In our
modeling framework, if words are distributed in a
DSM mostly based on first-order co-occurrence
information, accuracy of the syntagmatic task
would be high.

Paradigmatic task: two words should be similar
if they tend to occur in similar contexts even if
they never co-occur in the same sentence. Our
paradigmatic task is defined based on this
intuition, and the idea of taxonomically similar
words in natural languages. According to Table

1, if two words come from the same semantic
category (e.g., man and woman) they appear in
similar sentence frames, thus ideally (when all
possible sentence formulations exist in the
generated sample of the language) they should be
found as fully substitutable words. The
paradigmatic task evaluates the quality of word
vectors generated by a DSM by calculating the
cosine similarity of word pairs belonging to same
vs. different sematic categories.

Accuracypq, = Avg sim(wi, wj)
— Avg sim(wy, wy)

where (w;, w;) indicates all word pairs coming
from same semantic categories, and (wy , wy)
indicates word pairs belong to different semantic
categories. Based on this formulation, the
paradigmatic accuracy of a model emphasizing
second-order information would be higher than a
model favoring first-order information to
distribute words in the vector space. The reason
is that, in the former model, the cosine similarity
between vectors of interchangeable words like
man and woman would converge to 1, or will be
at least higher than similarity between other word
vectors.' Both Accuracysy, and Accuracypq, are
bounded measures within the range of [-2, 2]; in
practice though, they tend to come out within the
range of [0, 1].

The above two tasks define the basics of our
discriminative approach to investigate which
models or parameter settings work best for each
type of semantic similarity induction.

2.3 Distributional Methods

In our experiments, we use the implementations
of word2vec Skip-Gram with Negative
Sampling (SGNS) and PMI matrix factorization
via Singular Value Decomposition (SVD) by
Levy et al. (2015).

The Skip-gram model (SGNS) is one of the two
word2vec architectures that predicts based on
a target word one of its context words at a time.
Error of prediction is calculated in the output via
softmax and back-propagated to update two

" The paradigmatic task can also be defined based on higher-
level taxonomic relations. For example, given the grammar
in Table 1, we expect models to cluster Verbs and Nouns
because each of these higher-level word types share some
within-category contextual similarities and between-
category differences (e.g., all nouns in the grammar have a
verb in context, whereas verbs don’t have verbs in their
context). In section 3.5 where semantic spaces are visualized
we will return to this important point, but for the rest of our
experiments model performance is evaluated based on the
two basic tasks defined above.

137

weight matrices: the context matrix (CM)
between the output and the hidden layer [],q4, and
the word matrix (WM) between the input and the
hidden layer [].q ,where v is the vocabulary size
and d is the size of the hidden layer, thus
dimensionality of the final word vectors. In the
majority of previous work, the word matrix was
used as the final output of the model. When
context words are sampled from the same
vocabulary as that of target words, the final CM
will have the same dimensionality as WM, thus it
can also be used as a semantic representation of
the words. Averaging both matrices for a final
word representation, rather than just the WM, is
an optional post-processing method indicated by
wtc.

Singular Value Decomposition (SVD) is a
classic representation learning technique for
projecting data into a new, and usually, smaller
feature space. Other similar techniques in
machine learning include eigenvalue
decomposition, the basis of Principle Component
Analysis. The SVD model in our study is
representative of the count-based distributional
semantic models. It begins by calculating a v*v
matrix of point-wise mutual information between
word-context pairs. The matrix is then factorized
and reduced to a v*d matrix, where each row will
be a word vector in the new semantic space.

2.4 Implementation and Parameter

Balancing

In all our experiments, we try to equate the two
models by keeping the common parameters
constant and iterating over different values of the
method-specific parameters to obtain the best
performance for each.

Fixed parameters: parameters that we keep
constant throughout all experimental conditions
are the context window size (set to 2, in order to
cover all words within a sentence in the artificial
grammar), subsampling & dynamic context (set
to off, no frequency-based smoothing or
prioritization is applied to co-occurrence counts),
rare word removal (set to off, no minimum cut-
off is applied to context words). Therefore, in all
experimental conditions that result from
manipulating other parameters exactly the same
word-context population is extracted from a
given corpus and fed as input data to the SGNS
and SVD models. We also use one iteration
(epoch) in SGNS to keep it equated with SVD,
and examine the effect of re-occurrences by
manipulating the corpus size instead.

Variable parameters: for comparative
experiments on small vs. big data, we generate 5

independent corpora of each size (between 1K
and 30K sentences) according to the sampling
procedure described in Section 2.1. There are
three important parameters that strongly affect
the performance of the models, but since they are
not the focus of our study we chose their values
through a performance maximization procedure
in all our experiments. One parameter called dim
is the number of reduced dimensions or the size
of final vectors, which is enumerated between 2
and 14 in our experiments. The other parameter
neg is only applicable to SGNS and indicates the
number of negative samples (we try between zero
and 6 negative samples). Finally, a parameter in
SVD determines the asymmetry of factorization,
which was simulated with 0, 0.5 and 1 eig (for
more details refer to Levy et al., 2015).

3 Results

3.1 Vanilla Comparison

Our first comparison explores the overall
performance of the two DSMs with their
common post-processing practice. We only use
the W matrix to construct the word vectors after
training SGNS, and the SVD factorization is also
performed in its default manner. As explained in
2.4, we sampled five corpora of each size and
measured the maximum likelihood of a model’s
performance by manipulating the variable
parameters.

Table 2 shows that both models had very low
overall accuracies in grouping syntagmatically
related words. This observation indicates that, by
default, both SVD and SGNS consume first-order
co-occurrence information but infer second-order
information, i.e., paradigmatic similarities
between words by generalizing over context
types in which two words can be seen. This
finding suggests that neither of the models with
its default configuration 1is suitable for
performing word relatedness tasks. Reported best
performances in the table for SVD were obtained
at eig = 0.0, and for SGNS at neg = 1. Optimal
dimensionality was variable but always above 5.

Table 2. Vanilla setup accuracy in paradigmatic and
syntagmatic tasks with different size training corpuses.

Corpus | Method | Paradigmatic | Syntagmati

size c

1K SVD 0.828 0.253
SGNS 0.535 0.113

10K SVD 0.832 0.258
SGNS 0.775 0.092

138

3.2 Corpus Size

Accuracy scores in Table 2 suggest that, even
with small training data SVD can produce good
vectors for the paradigmatic task. However, the
performance of SGNS increases with more
training data. This quick observation is consistent
with previous findings regarding the superior
performance of count models on word similarity
and categorization tasks when models were
trained on small corpora and with their default
post-processing setting (Asr et al, 2016;
Sahlgren & Lenci, 2016). The main reason stated
in the literature is that SGNS requires tuning a
large number of parameters and seeing more and
more data (either through extra epochs or by
feeding in a larger corpus of the same distribution
of words and sentences) helps the model to
converge. In the next sections we will see how
otherwise we could enhance this model’s
performance, possibly in both syntagmatic and
paradigmatic tasks.

3.3 Inclusion of Context Vectors

We hypothesized that using a post-processing
setup emphasizing first-order information should
enhance models’ performance in the syntagmatic
task. To test this, we repeated experiments on
training corpora of size 1K to 30K with the
alternative post-processing approaches (inclusion
of context vectors, i.e., w+c vs. w, which was the
default setting).

Figure 1 shows that the inclusion of context
vectors enhances the accuracy of both models in
the syntagmatic task (red lines are on top of the
blue lines). This enhancement is more
pronounced in the SGNS model: more data
increases the accuracy of syntagmatic similarity
inference consistently when the w+c option is
used. SVD also benefits from a w+c equivalent
setting proposed by Levy & Goldberg (2015) in
performing the syntagmatic task, however the
enhancement is tightly bounded for this model.

For the paradigmatic task, we expected an
inverse pattern: explicit inclusion of first-order
co-occurrence information in similarity
measurement by considering both word and
context vectors should hurt model’s performance
because only second-order information is
important for the paradigmatic task. We can see
in Figure 2 that our hypothesis is supported for
SVD, where the accuracy declines significantly
with the inclusion of the context vectors
(compare the red and blue dotted lines).
However, the SGNS model does not exhibit a
dramatic change of performance in the

paradigmatic task with or without the w+c option
(compare the solid lines). In fact, the
performance in the paradigmatic task was slightly
enhanced too. Putting this together with what we
saw above regarding SGNS performance in the
syntagmatic task brings us to an interesting
conclusion about the “optimal parameter setting”
for this model: using the w+c option is a good
choice adding to the robustness of SGNS,
particularly when unsure of which type of
similarity inference we would like the model to
perform at the end. The SVD model, on the other
hand, does not show the capability to learn both
tasks at the same time; it gets better in one at the
expense of the other. In the next section we try to
explain this difference by looking into the way
the two models distribute words within the high
dimensional vector space.

—6— SGNS —E— SGNS w+c
-®- s - M - SVD w+c
0.8
0.6
0.4 - - .- - - -
®----- *----- *----- *----- *
0.2
0
1K Sk 10k 20k 30k

Figure 1. Accuracy of SGNS and SVD with word only
vs. word+context vectors trained on corpuses of
sentences)

different sizes in the

syntagmatic task.

(IK to 30K

—6&— SGNS —E— SGNS w+c
- ®-5svD — M = SVD w+c
0.9
0.8
0.7
0.6
0.5

1K 5k 10k 20k 30k
Figure 2. Accuracy of SGNS and SVD with word only
vs. word+context vectors trained on corpuses of
different sizes (1K to 30K sentences) in the
paradigmatic task.

139

3.4 Metric Space Expansion/Compression

The above experiments showed a lower ceiling
for SVD performance compared to SGNS in both
tasks when sufficient data was available to the
models and the parameter space was thoroughly
explored. In order to explain this observation, we
took a closer look at the vectors generated by
each model and specifically examined the range
of the similarity scores of all word pairs in the
vocabulary. We found that SVD generated
numerically closer vectors compared to SGNS.
This results in a smaller range of similarity
scores: totally interchangeable words, such as
man and woman get a cosine similarity score
close to 1.0; completely different words (that
neither appear in a sentence together, nor share
similar contexts) such as glass and chase get a
negative similarity score typically close to 0.0, or
around -0.5 in a best case scenario.

1.0 @

== SVD MIN
== SVD MAX
== SVD AVG
SGNS MIN
SGNS MAX 1
SGNS AVG |

058

L]
1
1
1
4

0.0 +

-1.0
2

1.0 (b)

== SVDMIN
== SVD MAX
-- SVDAVG
... = SGNS MIN

"""" = SGNS MAX
= SGNS AVG |]

OS5 haccanacanay

0.0

-05}

-1.0

Figure 3. Spectrum of similarity scores between words
in SVD and SGNS (10K corpus, neg = 1, eig = 0, dim
=2 to 9 on the x-axis): (a) with w and, (b) with w+c
post-processing.

Figure 3 depicts the minimum, maximum and
average similarity scores obtained for all word
pairs from the vocabulary through repeated
experiments on a 10K corpus by manipulating the
dimensionality (x-axis). It is almost the same for
SGNS and SVD when the word-only post-

processing is applied, but as soon as the context
vectors are included, the spectrum of similarity
scores widens up for SGNS. This investigation
may explain why SVD is unable to manifest
paradigmatic and syntagmatic relations at the
same time.

SVD does not get a huge benefit from more
training data or the post-processing step for
inclusion of the context vectors. The underlying
reason is that SVD always uses a sub-space of the
entire similarity spectrum [-0.5, 1.0] so
everything is squeezed — we refer to this
phenomenon as space compression, which we
hypothesize is due to the limitations of the
dimensionality reduction mechanism. On the
other hand, the distribution of words in the vector
space obtained from SGNS changes drastically
both by training on more data and considering
context vectors.

As Figure 3 shows, SGNS has the capacity to
use up the entire similarity spectrum [-1.0, 1.0],
i.e., space expansion. We conjecture that this is
due both to the design of the objective function
and to the larger number of parameters in the
neural model being updated independently,
making it a more flexible method to encode fine-
grained differences between word groups, while
keeping them in meaningful clusters. More data
helps the model fine-tune its parameters.
Furthermore, averaging the word and context
vectors provides an ensemble voting for
syntagmatic (relatedness) and paradigmatic
(similarity) at the same time.

3.5 Word Clusters in the Semantic Space

The space expansion of the SGNS model by
inclusion of the context vectors can be visualized
with a 2-dimensional projection of the vectors
obtained from w vs. w+c post-processing
conditions, depicted in Figures 4 and 5
respectively. A comparison between the two plots
shows how the vicinity of paradigmatically
similar words (interchangeable words such as cat
and mouse) can be preserved while syntagmatic
clusters are emphasized (cat and chase) by
inclusion of context vectors.

It is important, however, to note that higher-
level paradigmatic relations are negatively
affected as the model tries to bring
syntagmatically related words closer to one
another. For example, verbs and nouns (clustered
in gray ovals in Figures 4), which are
paradigmatically different, get mixed up once the
syntagmatic clusters start to shape (gray
rectangles in Figure 5). On the other hand, nouns
referring to animate categories (that have some

140

level of paradigmatic similarity) fall apart in the
w+c space (red dashed cluster in Figures 4,
distorted in Figure 5). These observations
emphasize the importance of the post-processing
choices based on the final inferences we expect
from the model. When generalized to a natural
language setting, the models depending on the
w+c parameterization would demonstrate
synonymy, similarity and associative relatedness
differently.

1.5

10t

ookies, .
¢ sandwich

f agon
> £ mg\r’\‘s?g.gt

/
/

0.5}
/I' pfargﬁeash
R | e

-0.5 ;gfhémeﬂ

1
(&at
0.0 |
\

-1.0 ‘ ‘ :
=10 -05 0.0 0.5 1.0 15

Figure 4. Paradigmatic clusters in SGNS w vector
space; Syntagmatic clusters not easily identified (10K
corpus, dim = 14, neg = 1)

15

10 smell -~
/ ayoman
s, b
]
g las:
0.5 Jock / L el
/ ap | break yﬁsgh
fpove s .
ook ; .
' 4 & ~ &
0.0 P4 SGN B i
7 N
- o e TEASEh
Ignouse ~ e
&hase / i
-0. \ 1
\ / x
/ sandwich
\ f_af Eookies
-1.0 ‘ ‘ ‘
-1.0 -0.5 0.0 0.5 1.0 1:5

Figure 5. Clear syntagmatic clusters in SGNS w+c
vector space; some paradigmatically related words are
kept together and some have fallen apart (10K corpus,
dim = 14, neg=1)

One should consider that while dimensionality
reduction to two dimensions is possible and
helpful for visualization purposes, these images
do not reflect the exact distances between words
in the high-dimension space. Therefore, these
observations should be wunderstood in

combination with other results, e.g., similarity
spectrums demonstrated in the previous section.

4 Conclusion

We proposed a methodology based on artificial
language generation for studying distributional
semantic models. This methodology was inspired
by the prominent study of Elman (1990) and we
mainly selected that to bring confound factors in
natural languages under control while assessing
the effect of model parameters on produced word
vectors.

The experiments in this paper revealed an
interaction between the training corpus size and a
variety of parameter settings of two opponent
DSMs in word similarity/relatedness evaluation.
Confirming previous findings with small training
data, we showed that SVD could easily organize
words based on paradigmatic similarities
obtained from second-order co-occurrence
information, whereas SGNS needed more data to
acquire the same type of knowledge. When it
comes to syntagmatic relatedness between words,
both models required accurate parameter settings.
In particular, the default configuration of both
SVD and SGNS aims at optimizing the space in a
way that paradigmatically similar words are put
together.

The optimal setting of the SGNS for an overall
superior performance in both paradigmatic and
syntagmatic tasks involved the inclusion of
context vectors, which is not the typically tested
setting of word2vec in previous studies. Our
analysis of similarity scores between vectors
generated for all words in the artificial language
showed that averaging word and context vectors
would result in a more organized SGNS vector
space. The equivalent post-processing of the
matrices in SVD for explicit inclusion of first-
order similarity suggested by Levy et al. (2015)
enhanced the performance of this model in the
syntagmatic (relatedness) task only in the
expense of making it worse for the paradigmatic
(similarity) task.

Our observations suggest that SVD has some
limitations in populating the distributional space
as evenly as SGNS; thus it always comes up with
vectors that are on average closer to one another.
Further study is needed to explain this finding in
a fundamental way perhaps via mathematical
derivations. The trade-off between performance
in paradigmatic and syntagmatic task, specially
for the SVD model, can explain the occasional
superiority and inferiority of this model against
the neural opponents in previous studies:

141

similarity and relatedness rankings for words in
natural languages manifest a mixture of
paradigmatic and syntagmatic relations among
words, thus a certain SVD model (with its post-
processing optimized for reflecting either type of
relation) might outperform SGNS in one task and
not in the other.

Our experiments were a first step towards
understanding the differences between classic
and neural distributional models in a more
controlled setting. The proposed methodology
can be used in future research, e.g. to assess the
effect of vocabulary and grammar size on
resulting word vectors by different models, and in
turn to select the right distributional approach in
specific research context. We hope also that our
work will initiate a general methodology for
understanding the mechanism of neural networks
employed in a variety of natural language
processing tasks.

Acknowledgement

We are thankful to our reviewers for their helpful
feedback on the initial version of the paper and
suggestions for extension of the work. This
research was funded by grant R305A140382
from the Institute of Education Sciences.

References

Andreas, J., & Klein, D. (2014). How much do word
embeddings encode about syntax? In Proceedings
of ACL (pp. 822-827).

Asr, F. T., Willits, J. A., & Jones, M. N. (2016).
Comparing Predictive and Co-occurrence Based
Models of Lexical Semantics Trained on Child-
directed Speech. In Proceedings of the Annual
Meeting of Cognitive Science Society.

Baroni, M., Dinu, G., & Kruszewski, G. (2014). Don't
count, predict! A systematic comparison of context-
counting vs. context-predicting semantic vectors. In
Proceedings of ACL (pp. 238-247).

Bengio, Y., Ducharme, R., Vincent, P., & Jauvin, C.
(2003). A neural probabilistic language
model. Machine Learning Research, 3(Feb), 1137-
1155.

Bullinaria, J. A., & Levy, J. P. (2007). Extracting
semantic representations from word co-occurrence
statistics: A computational study. Behavior
Research Methods, 39, 510-526.

Collobert, R., Weston, J., Bottou, L., Karlen, M.,
Kavukcuoglu, K., & Kuksa, P. (2011). Natural
language processing (almost) from scratch. Journal
of Machine Learning Research, 12(Aug), 2493-
2537.

Deerwester, S., Dumais, S. T., Furnas, G. W.,
Landauer, T. K., & Harshman, R. (1990). Indexing
by latent semantic analysis. Journal of the
American society for information science, 41(6),

391.

Elman, J.L. (1990). Finding structure
Cognitive Science, 14, 179-211.

in time.

Harris, Z. (1970). Distributional structure. In Papers
in Structural and Transformational Linguistics (pp.

775-794).

Kiela, D., Hill, F., & Clark, S. (2015). Specializing
word embeddings for similarity or relatedness. In
Proceedings of EMNLP.

Jones, M. N., & Mewhort, D. J. (2007). Representing
word meaning and order information in a composite

holographic lexicon. Psychological Review, 114(1),
1.

Jones, M. N., Willits, J., Dennis, S., & Jones, M.
(2015). Models of semantic memory. Oxford
Handbook of Mathematical and Computational
Psychology, 232-254

Landauer, T. K., & Dumais, S. T. (1997). A solution
to Plato's problem: The latent semantic analysis
theory of acquisition, induction, and representation
of knowledge. Psychological Review, 104(2), 211.

Levy, O., & Goldberg, Y. (2014). Neural word
embedding as implicit matrix factorization. In
Advances in Neural Information Processing
Systems (pp. 2177-2185).

Levy, O., Goldberg, Y., & Dagan, 1. (2015).
Improving distributional similarity with lessons
learned from word embeddings. Transactions of the

Association for Computational Linguistics, 3, 211-
225.

Li, J., Chen, X., Hovy, E. and Jurafsky, D. (2016).
Visualizing and Understanding Neural Models in
NLP. In Proceedings of NAACL.

Ling, W., Dyer, C., Black, A., & Trancoso, 1. (2015).
Two/too simple adaptations of word2vec for syntax
problems. In Proceedings of ACL-HLT (pp. 1299-
1304).

McNamara, T. P. (2005). Semantic priming:
Perspectives from memory and word recognition.
Psychology Press.

Melamud, O., McClosky, D., Patwardhan, S., &
Bansal, M. (2016). The role of context types and
dimensionality in learning word embeddings. arXiv
preprint arXiv:1601.00893.

Miller, G. A. (1958). Free recall of redundant strings
of letters. Journal of Experimental
Psychology, 56(6), 485.

Mitchell, J., & Steedman, M. (2015). Orthogonality of
syntax and semantics within distributional spaces.
In Proceedings of ACL.

142

Mikolov, T., Sutskever, 1., Chen, K., Corrado, G.S.
and Dean, J. (2013a). Efficient estimation of word
representations in vector space. In /CLR.

Mikolov, T., Sutskever, 1., Chen, K., Corrado, G.S.,
and Dean., J. (2013b) Distributed Representations
of Words and Phrases and their Compositionality.
In Proceedings of NIPS, 2013.

Pennington, J., Socher, R., & Manning, C. D. (2014).
Glove: Global Vectors for Word Representation.
In EMNLP (Vol. 14, pp. 1532-43).

Sahlgren, M., & Lenci, A. (2016). The Effects of Data
Size and Frequency Range on Distributional
Semantic Models. arXiv preprint
arXiv:1609.08293.

Turney, P. D., & Pantel, P. (2010). From frequency to
meaning: Vector space models of semantics.
Journal of Artificial Intelligence Research, 37(1),
141-188.

Unger, L., Fisher, A. V., Nugent, R., Ventura, S. L., &
MacLellan, C. J. (2016). Developmental changes in
semantic knowledge organization. Journal of
Experimental Child Psychology, 146, 202-222.

Learning Word Representations with Regularization
from Prior Knowledge

Yan Song
Tencent Al Lab

Abstract

Conventional word embeddings are train-
ed with specific criteria (e.g., based on
language modeling or co-occurrence) in-
side a single information source, disre-
garding the opportunity for further calibra-
tion using external knowledge. This paper
presents a unified framework that lever-
ages pre-learned or external priors, in the
form of a regularizer, for enhancing con-
ventional language model-based embed-
ding learning. We consider two types of
regularizers. The first type is derived from
topic distribution by running latent Dirich-
let allocation on unlabeled data. The sec-
ond type is based on dictionaries that are
created with human annotation efforts. To
effectively learn with the regularizers, we
propose a novel data structure, trajectory
softmax, in this paper. The resulting em-
beddings are evaluated by word similarity
and sentiment classification. Experimental
results show that our learning framework
with regularization from prior knowledge
improves embedding quality across multi-
ple datasets, compared to a diverse collec-
tion of baseline methods.

1 Introduction

Distributed representation of words (or word em-
bedding) has been demonstrated to be effec-
tive in many natural language processing (NLP)
tasks (Bengio et al., 2003; Collobert and We-
ston, 2008; Turney and Pantel, 2010; Collobert
et al.,, 2011; Mikolov et al., 2013b,d; Weston
et al., 2015). Conventional word embeddings are
trained with a single objective function (e.g., lan-
guage modeling (Mikolov et al., 2013c) or word
co-occurrence factorization (Pennington et al.,

Chia-Jung Lee
Microsoft
clksong@tencent.com cjlee@microsoft.com

143

Fei Xia
University of Washington
fxia@uw.edu

2014)), which restricts the capability of the
learned embeddings from integrating other types
of knowledge. Prior work has leveraged relevant
sources to obtain embeddings that are best suited
for the target tasks, such as Maas et al. (2011) us-
ing a sentiment lexicon to enhance embeddings for
sentiment classification. However, learning word
embeddings with a particular target makes the ap-
proach less generic, also implying that customized
adaptation has to be made whenever a new knowl-
edge source is considered.

Along the lines of improving embedding qual-
ity, semantic resources have been incorporated as
guiding knowledge to refine objective functions in
a joint learning framework (Bian et al., 2014; Xu
et al., 2014; Yu and Dredze, 2014; Nguyen et al.,
2016), or used for retrofitting based on word re-
lations defined in the semantic lexicons (Faruqui
etal., 2015; Kiela et al., 2015). These approaches,
nonetheless, require explicit word relations de-
fined in semantic resources, which is a difficult
prerequisite for knowledge preparation.

Given the above challenges, we propose a novel
framework that extends typical context learning
by integrating external knowledge sources for en-
hancing embedding learning. Compared to a well
known work by Faruqui et al. (2015) that focused
on tackling the task using a retrofitting! frame-
work on semantic lexicons, our method has an
emphasis on joint learning where two objectives
are considered for optimization simultaneously. In
the meantime, we design a general-purpose infras-
tructure which can incorporate arbitrary external
sources into learning as long as the sources can
be encoded into vectors of numerical values (e.g.
multi-hot vector according to the topic distribu-
tions from a topic model). In prior work by Yu
and Dredze (2014) and Kiela et al. (2015), the ex-

'In their study, joint learning was reported to be less ef-
fective than retrofitting.

Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017), pages 143-152,
Vancouver, Canada, August 3 - August 4, 2017. (©2017 Association for Computational Linguistics

ternal knowledge has to be clustered beforehand
according to their semantic relatedness (e.g., cold,
icy, winter, frozen), and words of similar mean-
ings are added as part of context for learning. This
may set a high bar for preparing external knowl-
edge since finding the precise word-word relations
is required. Our infrastructure, on the other hand,
is more flexible as knowledge that is learned else-
where, such as from topic modeling or even a sen-
timent lexicon, can be easily encoded and incor-
porated into the framework to enrich embeddings.

The way we integrate external knowledge is
performed by the notion of a regularizer, which is
an independent component that can be connected
to the two typical architectures, namely, continu-
ous bag-of-words (CBOW) and skip-gram (SG),
or used independently as a retrofitter. We construct
the regularizers based on the knowledge learned
from both unlabeled data and manually crafted
information sources. As an example of the for-
mer, a topic model from latent Dirichlet allocation
(LDA) (Blei et al., 2003) is first generated from
a given corpus, based on which per-word topical
distributions are then added as extra signals to aid
embedding learning. As an example of the latter,
one can encode a dictionary into the regularizer
and thus adapt the learning process with the en-
coded knowledge.

Another contribution of this paper is that we
propose a novel data structure, trajectory softmax,
to effectively learn prior knowledge in the regu-
larizer. Compared to conventional tree based hi-
erarchical softmax, trajectory softmax can greatly
reduce the space complexity when learning over a
high-dimension vector. Our experimental results
on several different tasks have demonstrated the
effectiveness of our approach compared to up-to-
date studies.

The rest of the paper is organized as follows. In
section 2, we describe in detail our framework and
show how we learn the regularizer in section 3.
Section 4 presents and analyzes our experimental
results and section 5 surveys related work. Finally,
conclusions and directions of future work are dis-
cussed in section 6.

2 Approach

Conventionally word embeddings are learned
from word contexts. In this section, we describe
our method of extending embedding learning to
incorporate other types of information sources.

Previous work has shown that many different
sources can help learn better embeddings, such as
semantic lexicons (Yu and Dredze, 2014; Faruqui
et al., 2015; Kiela et al., 2015) or topic distribu-
tions (Maas et al., 2011; Liu et al., 2015b). To
provide a more generic solution, we propose a uni-
fied framework that learns word embeddings from
context (e.g., CBOW or SG) together with the flex-
ibility of incorporating arbitrary external knowl-
edge using the notion of a regularizer. Details are
unfolded in following subsections.

2.1 The Proposed Learning Framework

Preliminaries: The fundamental principle for
learning word embeddings is to leverage word
context, with a general goal of maximizing the
likelihood that a word is predicted by its context.
For example, the CBOW model can be formulated
as maximizing

V1

mipA Zlogp wi | Y wvigy), Ywi €V
0<|jl<c
(1)

where v;; refers to the embedding of a word in

wiT¢, and c defines the window size of words ad-
jacent to the word w;. The optimization for £ over
the entire corpus is straightforward.

The left part of Figure 1 illustrates the con-
cept of such context learning. It is a typical ob-
jective function for language modeling, where w;
is learned by the association with its neighboring
words. Since context greatly affects the choice of
the current word, this modeling strategy can help
finding reasonable semantic relationships among
words.

Regularizer: To incorporate additional sources
for embedding learning, we introduce the notion
of a regularizer, which is designed to encode in-
formation from arbitrary knowledge corpora.
Given a knowledge resource W, one can en-
code the knowledge carried by a word w with
¥ (w), where 1) can be any function that maps w
to the knowledge it encapsulates. Fie)xample,

a word has a topic vector ¥ (w) = e(wi)®[1:K7:},

. —
resulting Y(w) = @y = (P10, P20 - PKw)>

where 1.k is the topic distribution matrix for
—

all words with K topics; e(*#) is the standard basis
vector with 1 at the i-th position in the vocabulary
V. Therefore, regularization for all w with given

144

context learning

prior knowledge

® —
le) Of---
Woo — of==
. pom o
o) N Mg
— NS
N
9 o
W, . W
t-1 e =-=-- < [] < £
o : o
P .
W O (4 4 O v
BEE==NE* - o}’
° or
embedding projection output

layer layer layer

Figure 1:

regularization matrix

Ilustration of joint learning word embeddings with context and regularization from prior

knowledge. The green lines refer to the prediction and the red dotted lines refer to the updating process.

a knowledge source can be conceptually used to
maximize), .- R(v), where R is the regular-
izer, defined as a function of the embedding v of a
given word w and formulated as:

R(v) =logp(¢(w)lv), Yw e V,¥ (2)

The right part of Figure 1 shows an instantiation
of a regularizer that encodes prior knowledge of
vocabulary size |V|, each with D dimensions.

Joint Learning: To extend conventional embed-
ding learning, we combine context learning from
an original corpus with external knowledge en-
coded by a regularizer, where the shared vocabu-
lary set forms a bridge connecting the two spaces.
In particular, the objective function for CBOW
with integrating the regularizer can be formulated
as maximizing

Vi

|V|Zlogp wi, h(ws) | D i) (3)

0<|jl<e

where not only w;, but also R(w;) is predicted by
the context words w;y; via their embeddings v; 4 ;.

Figure 1 as a whole illustrates this idea. Re-
call that each row of the matrix corresponds to a
vector of a word in V, representing prior knowl-
edge across D dimensions (e.g., semantic types,
classes or topics). When learning/predicting a
word within this framework, the model needs to
predict not only the correct word as shown in the
context learning part in the figure, but also the cor-
rect vector in the regularizer. In doing so, the
prior knowledge will be carried to word embed-

145

dings from regularization to context learning by
back-propagation through the gradients obtained
from the learning process based on the regulariza-
tion matrix.

Retrofitting: With joint learning as our goal,
we should emphasize that the proposed frame-
work supports simultaneous context learning and
prior knowledge retrofitting with a unified objec-
tive function. This means that the retrofitters can
be considered as a stand-alone component at dis-
posal, where the external knowledge vectors are
regarded as supervised-learning target and the em-
beddings are updated through the course of fitting
to the target. In §4, we will evaluate the perfor-
mance of both joint learner and retrofitter in detail.

2.2 Parameter Estimation

As shown in Equation 3, prior knowledge par-
ticipates in the optimization process for predict-
ing the current word and contributes to embedding
updating during training a CBOW model. Using
stochastic gradient descent (SGD), embeddings
can be easily updated by both objective functions
for language modeling and regularization through:

Uihs = Vi = AV [logp(wi| Y wvigy)+R(v])]
0<]j|<e
“4)

where R is defined as in Eq.2 for ¢(w;). For SG
model, prior knowledge is introduced in a similar
way, with the difference being that context words
are predicted instead of the current word.

Therefore, when learned from the context, em-

Wiws
Wsws,

wowy
WeWs

Figure 2: Comparison of hierarchical softmax (left) and trajectory softmax (right) based on an example of
eight words in binary coding. The bold arrow lines refer to the path for encoding ws in both hierarchical

and trajectory softmax.

beddings are updated in the same way as in nor-
mal CBOW and SG models. When learned from
the regularizer, embeddings are updated via a su-
pervised learning over ¥, on the condition that W
is appropriately encoded by 1. The details of how
it is performed will be illustrated in the next sub-
section.

2.3 Trajectory Softmax

Hierarchical softmax is a good choice for reducing
the computational complexity when training prob-
abilistic neural network language models. There-
fore, for context learning on the left part of Fig-
ure 1, we continue using hierarchical softmax
based on Huffman coding tree (Mikolov et al.,
2013a). Typically to encode the entire vocabulary,
the depth of the tree falls in a manageable range
around 15 to 18.

However, different from learning context
words, to encode a regularizer as shown on the
right part of Figure 1, using hierarchical softmax is
intractable due to exponential space demand. Con-
sider words expressed with D-dimensional vectors
in a regularizer, a tree-based hierarchical softmax
may require 2° — 1 nodes, as illustrated in the
left hand side of Figure 2. Since each node con-
tains a d-dimensional “node vector” that is to be
updated through training, the total space required
is O(2P - d) for hierarchical softmax to encode the
regularizer. When D is very large, such as D = 50
meaning that tree depth is 50, the space demand
tends to be unrealistic as the number of nodes in
the tree grows to 2.

To avoid the exponential requirement in space,
in this work, we propose a trajectory softmax acti-
vation to effectively learn over the D-dimensional
vectors. Our approach follows a grid hierarchical

146

structure along a path when conducting learning
in the regularizer. From the right hand side of Fig-
ure 2, we see that the same regularizer entry is en-
coded with a path of D nodes, using a grid struc-
ture instead of a tree one. Consequently the total
space required will be reduced to O(2 - D - d).

As a running example, Figure 2 shows that
when D = 4, the conventional hierarchical soft-
max needs at least 15 nodes to perform softmax
over the path, while trajectory softmax greatly re-
duces space to only 7 nodes. Compared to tree-
based hierarchical softmax, the paths in trajectory
softmax are not branches of a tree, but a fully
connected grid of nodes with space complexity of
D x |C] in general. Here |C| refers to the num-
ber of choices on the paths for a node to the next
node, and thus |C| 2 is the binary case. In
Figure 2, we see an activation trajectory for a se-
quence of “Root— 100" for encoding word ws. wy
is then learned and updated through the nodes on
the trajectory when ws is predicted by w;. The
learning and updating are referred by the dashed
arrow lines. Overall, trajectory softmax greatly re-
duces the space complexity than hierarchical soft-
max, especially when words sharing similar infor-
mation, in which case the paths of these words will
be greatly overlapped.

More formally, learning with trajectory softmax
in the binary case is similar to hierarchical soft-
max, which is to maximize p over the path for a
vector encoded in ¥ (w), where p is defined below
with an input vector v:

D—-1
p((w)v) = [T o([nG + DI -vfv) &)
=1

where v; is the inner vector in i-th node on the
trajectory. [n(i + 1)] = 1 or —1 when (i + 1)-th

node is encoded with 0 or 1, respectively. The final
update to word embedding v with the regularizer
is conducted by:

T

v =v—7(o(v, v) —t;) v 6)
which is applied to ¢ = 1,2,...,D — 1, where
o(x) = exp(x)/(1 + exp(z)); ti = [n(i + D]

~ is a discount learning rate.

Since the design of trajectory softmax is com-
patible with the conventional hierarchical softmax,
one can easily implement the joint learning by
concatenating its Root with the terminal node in
the hierachical tree. The learning process is thus
to traverse all the nodes from the hierarchical tree
and the trajectory path.

3 Constructing Regularizers

We consider two categories of information sources
for constructing regularizers. The first type of reg-
ularizer is built based on resources without anno-
tation. On the contrary, the second type uses text
collections with annotation. For brevity, through-
out the paper we refer to the former as unannotated
regularizer whereas the latter is recognized as an-
notated regularizer.

3.1 Unannotated Regularizer

The unannotated regularizer constructs its regular-
ization matrix based on an LDA learned topic dis-
tribution, which reflects topical salience informa-
tion of a given word from prior knowledge. Us-
ing LDA not only serves our purpose of learn-
ing according to word semantics reflected by co-
occurrences but can also bring in knowledge inex-
pensively (i.e., no annotations needed).

To start, a classic LDA is first performed on an
arbitrary base corpus for retrieving word topical
distribution, resulting in a topic model with K top-
ics. All the units in the corpus are then assigned
with a word-topic probability ¢; corresponding to
topic k, based on which a matrix is formed with all
gw, as described in §2.1. Next we convert each
& into) a 0-1 vector based on the maximum val-
ues in ®. In particular, positions with maximum
values are set to 1 and the rest are set to O (e.g.
[0.1,0.1,04,04] — [0, 0, 1, 1]). This converted
matrix functions as the final regularization matrix
as shown in right hand side of Figure 1. We set
K = 50 in our experiments.”> An in-house LDA

2We experimented with other numbers for K, and their

performance didn’t vary too much when K > 40. We didn’t
include this comparison due to the similar results.

147

implementation? is used for training 1.k, , With
1,000 iterations.

3.2 Annotated Regularizer

We use three sources for training annotated regu-
larizers in this work. Two of the sources are se-
mantic lexicons, namely, the Paraphrase Database
(PPDB)* (Ganitkevitch et al., 2013) and synonyms
in the WordNet (WN,,,,)°> (Miller, 1995). They
are used in the word similarity task. The third
source is a semantic dictionary, SentiWordNet 3.0
(SWN) (Baccianella et al., 2010), which is used
in the sentiment classification task. All of the
three sources were created with annotation efforts,
where either lexical or semantic relations were
provided by human experts beforehand.

Before constructing the regularizer, we need en-
code each word in the sources as a vector accord-
ing to its relations to other words or predefined in-
formation. For PPDB and WN,,,, we use them in
different ways for joint learning and retrofitting.
In order to optimize the efficiency in joint learn-
ing, we compress the word relations with topic
representations. We use an LDA learner to get
topic models for the lexicons®, with K 50.
Therefore, the word relations are transferred into
topic distributions that are learned from their co-
occurrences defined in the lexicon. The way we
construct regularization matrix may be lossy, risk-
ing losing information that is explicitly delivered
in the lexicon. However, it provides us effective
encodings for words, and also yields better learn-
ing performance empirically in our experiments.
In retrofitting, we directly use words’ adjacent ma-
trices extracted from their relations defined in the
lexicons, then take the adjacent vector for each
word as the regularization vector.

The SWN includes 83K words (147K words
and phrases in total). Every word in SWN has two
scores for its degree towards positive and negative
polarities. For example, the word “pretty” receives
0.625 and O for positive and negative respectively,
which means it is strongly associated with positive
sentiment. The scores range from 0 to 1 with step

31t is a Markov Chain Monte Carlo (MCMC) based LDA
using Gibbs sampling.

“We use PPDB-XL in this paper.

>We use WN,,,, because in our experiment only using
synonyms perform better than using synonyms, hypernyms
and hyponyms.

The lexicons are organized in the similar way as in
Faruqui et al. (2015), where synonyms are grouped together
and treated as a document for LDA learning.

. MEN-3k SimLex-999 | WordSim-353
Embeddings

v | »p v | »p v [op

LDA | 57.17 | 58.86 [20.39 | 22.12 | 55.48 | 54.81 |

CBOW 62.93 | 65.84 | 28.34 | 2831 | 68.50 | 66.67

+PPDB || 65.35 | 65.84 | 35.56 | 33.30 | 72.75 | 72.43

Yuand Dredze COI4) 1= 5176520 | 65.74 | 36.15 | 33.65 | 72.79 | 72.58

+LDA | 67.33 | 69.51 | 29.79 | 29.78 | 71.19 | 69.58

This work +PPDB || 65.25 | 66.87 | 36.43 | 33.28 | 69.45 | 68.89

+WN,,, || 64.42 | 66.98 | 33.86 | 33.69 | 66.13 | 67.11

SG 64.79 | 66.71 | 26.97 | 26.59 | 68.88 | 67.80

. +PPDB || 61.13 | 60.04 | 36.47 | 34.29 | 70.14 | 68.76

Kielactal. QO15) =N, [757.02 [59.84 | 29.02 | 29.99 | 6361 | 61.22

+LDA | 65.02 | 65.32 | 25.19 | 24.04 | 66.16 | 69.21

This work +PPDB || 70.83 | 71.35 | 37.10 | 35.72 | 73.94 | 73.11

¥WN,,, || 66.58 | 68.14 | 36.72 | 35.91 | 68.50 | 67.90

Table 1: Word similarity results for joint learning on three datasets in terms of Pearson’s coefficient cor-
relation () and Spearman’s rank correlation (p) in percentages. Higher score indicates better correlation
of the model with respect to the gold standard. Bold indicates the highest score for each embedding type.

of 0.125 for both positive and negative polarities.
Therefore there are 9 different degrees for a word
to be annotated for the two sentiments. For en-
coding this dictionary, we design a 18-dimension
vector, in which the first 9 dimension represents
the positive sentiment while the last 9 for negative
sentiment. A word is thus encoded into a binary
form where the corresponding dimension is set
to 1 with others 0. For the aforementioned word
“pretty”, its encoded vector will be “000001000
000000000, in which the score 0.625 of positive
activates the 6th dimension in the vector. In doing
so, we form a 83K x 18 regularization matrix for
the SWN dictionary.

4 Experiments

The resulting word embeddings based on joint
learning as well as retrofitting are evaluated in-
trinsically and extrinsically. For intrinsic evalu-
ation, we use word similarity benchmark to di-
rectly test the quality of the learned embeddings.
For extrinsic evaluation, we use sentiment analy-
sis as a downstream task with different input em-
beddings. Regularizers based on LDA, PPDB and
WN,y, are used in word similarity experiment,
while SentiWordNet regularization is used in sen-
timent analysis. The experimental results will be
discussed in §4.1 and §4.2.

We experiment with three learning paradigms,
namely CBOW, SG and GloVe. GloVe is only
tested in retrofitting since our regularizer is not

148

compatible with GloVe learning objective in joint
learning. In all of our retrofitting experiments, we
only train the regularizer with one iteration, con-
sistent with Kiela et al. (2015).

The base corpus that we used to train ini-
tial word embeddings is from the latest articles
dumped from Wikipedia and newswire’, which
contains approximately 8 billion words. When
training on this corpus, we set the dimension of
word embeddings to be 200 and cutoff threshold
of word frequency threshold to be 5 times of oc-
currence. These are common setups shared across
the following experiments.

4.1 Word Similarities Evaluation

We use the MEN-3k (Bruni et al., 2012), SimLex-
999 (Hill et al., 2015) and WordSim-353 (Finkel-
stein et al., 2002) datasets to perform quantitative
comparisons among different approaches to gen-
erating embeddings. The cosine scores are com-
puted between the vectors of each pair of words in
the datasets®. The measures adopted are Pearson’s
coefficient of product-moment correlation () and
Spearman’s rank correlation (p), which reflect how

"This corpus is constructed by the script demo-train-big-
model-vl.sh from https://storage.googleapis.com/google-
code-archive-source/v2/code.google.com/word2vec/source-
archive.zip

8For LDA embeddings (topic distributions), we tried
Jenson-Shannon divergence, which is much worse than co-
sine scores in measuring the similarity. Therefore we still use
cosine for LDA embeddings.

. MEN-3k SimLex-999 | WordSim-353
Embeddings

v | »p v | »p v [op

GloVe 66.84 | 66.97 | 28.87 | 27.52 | 59.78 | 61.46

Faruqui et al, 2015) | "FPDB_| 6698 | 67.04 2925 | 2825 | 61.44 | 6335

FWN,,, || 64.29 | 63.92 | 27.32 | 24.39 | 57.40 | 58.88

FLDA || 59.65 | 60.23 | 22.25 | 22.70 | 55.65 | 57.57

This work YPPDB | 68.99 | 68.99 | 31.35 | 29.85 | 62.31 | 63.96

FWN,,, || 66.72 | 66.84 | 29.78 | 2847 | 59.62 | 61.34

CBOW 62.93 | 65.84 | 28.34 | 2831 | 68.50 | 66.67

YPPDB | 65.08 | 65.52 | 36.16 | 34.01 | 72.75 | 72.39

Yuand Dredze QOI) 1= 765.34 [65.77 | 35.68 | 33.33 | 72.72 | 72.74

Faruqui et al, 2015) | "FPDB_| 6307 | 6755 3707 | 3502 | 7176 | 7118

FWN,,, || 63.71 | 6644 | 30.15 | 29.83 | 71.24 | 69.39

FLDA | 50.07 | 56.64 | 21.47 | 23.01 | 41.56 | 47.27

This work YPPDB | 6530 | 67.68 | 37.34 | 35.74 | 72.01 | 72.05

FWN,, | 63.80 | 66.74 | 33.96 | 33.82 | 68.70 | 66.91

SG 64.79 | 66.71 | 26.97 | 26.59 | 68.88 | 67.80

_ +PPDB | 67.38 | 69.05 | 32.49 | 31.84 | 71.59 | 69.82

Kielaetal. @015) 1= —1764.38 | 67.02 | 20.43 | 28.12 | 69.15 | 68.36

Faruqui et al, 2015) | "PPDB_| 6344 16702 3412 | 3372 | 7124 | 7031

*WN.,n || 65.65 | 66.71 | 28.25 | 27.61 | 70.21 | 69.47

FLDA | 64.02 | 65.33 | 24.64 | 2428 | 59.43 | 60.60

This work YPPDB | 67.17 | 69.09 | 34.93 | 34.57 | 72.63 | 71.15

*WN.,n || 65.62 | 67.38 | 20.96 | 29.82 | 69.70 | 68.91

Table 2: Word similarity results for retrofitting on three datasets in terms of Pearson’s coefficient corre-
lation (vy) and Spearman’s rank correlation (p) in percentages. Higher score indicates better correlation
of the model with respect to the gold standard. Bold indicates the highest score for each embedding type.

close the similarity scores to human judgments.

For both joint learning and retrofitting, we test
our approach with using PPDB and WN,,,, as the
prior knowledge applied to our regularizer. Con-
sidering that LDA can be regarded as soft cluster-
ing for words, it is very hard to present words with
deterministic relations like in PPDB and WN;,,
therefore we do not apply retrofitting on LDA re-
sults for previous studies.

The evaluation results are shown in Table 1 and
Table 2 for joint learning and retrofitting, respec-
tively. Each block in the tables indicates an em-
bedding type and its corresponding enhancement
approaches. For comparison, we also include the
results from the approaches proposed in previous
studies, i.e., Yu and Dredze (2014)° for CBOW,
Kiela et al. (2015)'° for SG and Faruiqui et al.
(2015)!"! for all initial embeddings. Their settings
are equal to that used in our approach.

“https://github.com/Gorov/JointRCM
10We re-implemented their approach in our own code.
"https://github.com/mfaruqui/retrofitting

Table 1 shows that directly using LDA topic dis-
tributions as embeddings can give reasonable re-
sults for word similarities. Because LDA captures
word co-occurrences globally so that words share
similar contexts are encoded similarly via topic
distributions. This is a good indication showing
that LDA could be a useful guidance to help our
regularize to incorporate global information.

For other joint learning results in Table 1, our
approach shows significant gain over the base-
lines, the same for the approaches from previ-
ous studies (Yu and Dredze, 2014; Faruqui et al.,
2015). However, using WNy,,, in Kiela et al.
(2015) does not help, this may owe to the fact that
using the words defined in WN,,, as contexts will
affect the real context learning and thus deviate the
joint objective function. Interestingly, using LDA
in regularizer significantly boosts the performance
on MEN-3k, even better than that with using se-
mantic lexicons. The reason might be that LDA
enhances word embeddings with the relatedness
inherited in topic distributions.

149

For retrofitting, Table 2 shows that our approach
demonstrates its effectiveness for enhancing ini-
tial embeddings with prior knowledge. It performs
consistently better than all other approaches in a
wide range of settings, including three embedding
types on three datasets, with few exceptions. Since
retrofitting only updates those words in the exter-
nal sources, e.g., LDA word list or lexicons, it is
very sensitive to the quality of the corresponding
sources. Consequently, it can be observed from
our experiment that unannotated knowledge, i.e.,
topic distributions, is not an effective source as a
good guidance. In contrast, PPDB, which is of
high quality of semantic knowledge, outperforms
other types of information in most cases.

4.2 Sentiment Classification Evaluation

We perform sentiment classification on the IMDB
review data set (Maas et al., 2011), which has 50K
labeled samples with equal number of positive and
negative reviews. The data set is pre-divided into
training and test sets, with each set containing 25K
reviews. The classifier is based on a bi-directional
LSTM model as described in Dai and Le (2015),
with one hidden layer of 1024 units. Embeddings
from different approaches are used as inputs for
the LSTM classifier. For determining the hyper-
parameters (e.g., training epoch and learning rate),
we use 15% of the training data as the validation
set and we apply early stopping strategy when the
error rate on the validation set starts to increase.
Note that the final model for testing is trained on
the entire training set.

As reported in Table 3, the embeddings trained
by our approach work effectively for sentiment
classification. Both joint learning and retrofitting
with our regularizer outperform other baseline ap-
proaches from previous studies, with joint learn-
ing being somewhat better than retrofitting. Over-
all, our joint learning with CBOW achieves the
best performance on this task. A ten-partition two-
tailed paired t-test at p < 0.05 level is performed
on comparing each score with the baseline result
for each embedding type. Considering that sen-
timent is not directly related to word meaning,
the results indicate that our regularizer is capa-
ble of incorporating different type of knowledge
for a specific task, even if it is not aligned with
the context learning. This task demonstrates the
potential of our framework for encoding external
knowledge and using it to enrich the representa-

150

’ Embeddings ‘ Accuracy ‘

| Maas et al. (2011) [88.89 |
GloVe 90.66
Faruqui et al. (2015) | +Retro 90.43
This work | +Retro 90.89
CBOW 91.29
+Joint 91.14
Yu and Dredze (2014) TRetro 9071
Faruqui et al. (2015) | +Retro 90.77
. +Joint 92.09*
This work = R ctro | 91817
SG 91.30
Faruqui et al. (2015) | +Retro 91.03
. +Joint 91.45
Kiela et al. (2015) TRetro 0114
. +Joint 92.07*
This work |0 o | 91.42

Table 3: Sentiment classification results on IMDB
data set (Maas et al., 2011). Bold indicates the
highest score for each embedding type. * indi-
cates t-test significance at p < 0.05 level when
compared with the baseline.

tions of words, without the requirement to build a
task-specific, customized model.

5 Related Work

Early research on representing words as dis-
tributed continuous vectors dates back to Rumel-
hart et al. (1986). Recent previous studies (Col-
lobert and Weston, 2008; Collobert et al., 2011)
showed that, the quality of embeddings can be im-
proved when training multi-task deep models on
task-specific corpora, domain knowledge that is
learned over the process. Yet one downside is that
huge amounts of labeled data is often required.
Another methodology is to update embeddings by
learning with external knowledge. Joint learn-
ing and retrofitting are two mainstreams of this
methodology. Leveraging semantic lexicons (Yu
and Dredze, 2014; Bian et al., 2014; Faruqui et al.,
2015; Liu et al., 2015a; Kiela et al., 2015; Wieting
et al., 2015; Nguyen et al., 2016) or word distri-
butional information (Maas et al., 2011; Liu et al.,
2015b) has been proven as effective in enhancing
word embeddings, especially for specific down-
stream tasks. Bian et al. (2014) proposed to im-
prove embedding learning with different kinds of
knowledge, such as morphological, syntactic and

semantic information. Wieting et al. (2015) im-
proves embeddings by leveraging paraphrase pairs
from the PPDB for learning phrase embeddings in
the paraphrasing task. In a similar way, Hill et
al. (2016) uses learned word embeddings as super-
vised knowledge for learning phrase embeddings.

Although our approach is conceptually similar
to previous work, it is different in several ways.
For leveraging unlabeled data, the regularizer in
this work is different from applying topic distri-
butions as word vectors (Maas et al., 2011) or
treating topics as conditional contexts (Liu et al.,
2015b). For leveraging semantic knowledge, our
regularizer does not require explicit word relations
as used in previous studies (Yu and Dredze, 2014;
Faruqui et al., 2015; Kiela et al., 2015), but takes
encoded information of words. Moreover, in order
to appropriately learn the encoded information, we
use trajectory softmax to perform the regulariza-
tion. As a result, it provides a versatile data struc-
ture to incorporate any vectorized information into
embedding learning. The above novelties make
our approach versatile so that it can integrate dif-
ferent types of knowledge.

6 Conclusion and Future Work

In this paper we proposed a regularization frame-
work for improving the learning of word embed-
dings with explicit integration of prior knowl-
edge. Our approach can be used independently
as a retrofitter or jointly with CBOW and SG to
encode prior knowledge. We proposed trajectory
softmax for learning over the regularizer, which
can greatly reduce the space complexity compared
to hierarchical softmax using the Huffman coding
tree, which enables the regularizer to learn over
a long vector. Moreover, the regularizer can be
constructed from either unlabeled data (e.g., LDA
trained from the base corpus) or manually crafted
resources such as a lexicon. Experiments on word
similarity evaluation and sentiment classification
show the benefits of our approach.

For the future work, we plan to evaluate the ef-
fectiveness of this framework with other types of
prior knowledge and NLP tasks. We also want
to explore different ways of encoding external
knowledge for regularization.

References

Stefano Baccianella, Andrea Esuli, and Fabrizio Sebas-
tiani. 2010. SentiWordNet 3.0: An Enhanced Lex-

151

ical Resource for Sentiment Analysis and Opinion
Mining. In Proceedings of the Seventh conference
on International Language Resources and Evalua-
tion (LREC’10). European Language Resources As-
sociation (ELRA), Valletta, Malta.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Janvin. 2003. A neural probabilistic lan-
guage model. J. Mach. Learn. Res. 3:1137-1155.

Jiang Bian, Bin Gao, and Tie-Yan Liu. 2014.
Knowledge-Powered Deep Learning for Word Em-
bedding. In Proceedings of the European Confer-
ence on Machine Learning and Knowledge Discov-
ery in Databases - Volume 8724. New York, NY,
USA, ECML PKDD 2014, pages 132-148.

David M. Blei, Andrew Y. Ng, and Michael 1. Jordan.
2003. Latent Dirichlet Allocation. Journal of Ma-
chine Learning Research 3:993-1022.

Elia Bruni, Gemma Boleda, Marco Baroni, and
Nam Khanh Tran. 2012. Distributional Semantics
in Technicolor. In Proceedings of the 50th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers). Jeju Island, Ko-
rea, pages 136-145.

Ronan Collobert and Jason Weston. 2008. A unified
architecture for natural language processing: Deep
neural networks with multitask learning. In Pro-
ceedings of the 25th International Conference on
Machine Learning. ACM, New York, NY, USA,
ICML ’08, pages 160-167.

Ronan Collobert, Jason Weston, LLéon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural Language Processing (Almost) from
Scratch. Journal of Machine Learning Research
12:2493-2537.

Andrew M. Dai and Quoc V. Le. 2015. Semi-
supervised Sequence Learning. In Advances in
Neural Information Processing Systems 28: Annual
Conference on Neural Information Processing Sys-
tems 2015, December 7-12, 2015, Montreal, Que-
bec, Canada. pages 3079-3087.

Manaal Faruqui, Jesse Dodge, Sujay Kumar Jauhar,
Chris Dyer, Eduard Hovy, and Noah A. Smith. 2015.
Retrofitting word vectors to semantic lexicons. In
Proceedings of the 2015 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies.
Denver, Colorado, pages 1606-1615.

Lev Finkelstein, Evgeniy Gabrilovich, Yossi Matias,
Ehud Rivlin, Zach Solan, Gadi Wolfman, and Ey-
tan Ruppin. 2002. Placing Search in Context: the
Concept Revisited. ACM Transaction on Informa-
tion Systems 20(1):116—-131.

Juri Ganitkevitch, Benjamin Van Durme, and Chris
Callison-Burch. 2013. PPDB: The Paraphrase
Database. In Proceedings of the 2013 Conference of
the North American Chapter of the Association for

Computational Linguistics: Human Language Tech-
nologies. Atlanta, Georgia, pages 758-764.

Felix Hill, KyungHyun Cho, Anna Korhonen, and
Yoshua Bengio. 2016. Learning to Understand
Phrases by Embedding the Dictionary. Transac-
tions of the Association for Computational Linguis-
tics 4:17-30.

Felix Hill, Roi Reichart, and Anna Korhonen. 2015.
Simlex-999: Evaluating Semantic Models with Gen-
uine Similarity Estimation. Computational Linguis-
tics 41(4):665-695.

Douwe Kiela, Felix Hill, and Stephen Clark. 2015.
Specializing word embeddings for similarity or re-
latedness. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Process-
ing. Lisbon, Portugal, pages 2044-2048.

Quan Liu, Hui Jiang, Si Wei, Zhen-Hua Ling, and
Yu Hu. 2015a. Learning semantic word embed-
dings based on ordinal knowledge constraints. In
Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers). Beijing,
China, pages 1501-1511.

Yang Liu, Zhiyuan Liu, Tat-Seng Chua, and Maosong
Sun. 2015b. Topical Word Embeddings. In Pro-
ceedings of the Twenty-Ninth AAAI Conference on
Artificial Intelligence. AAAT’ 15, pages 2418-2424.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,
Dan Huang, Andrew Y. Ng, and Christopher Potts.
2011. Learning Word Vectors for Sentiment Anal-
ysis. In Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics:
Human Language Technologies. Portland, Oregon,
USA, pages 142-150.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013a. Efficient Estimation of Word
Representations in Vector Space. arXiv preprint
abs/1301.3781.

Tomas Mikolov, Quoc V. Le, and Ilya Sutskever.
2013b. Exploiting Similarities among Lan-
guages for Machine Translation. arXiv preprint
abs/1309.4168.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013c. Distributed representa-
tions of words and phrases and their composition-
ality. In C.J.C. Burges, L. Bottou, M. Welling,
Z. Ghahramani, and K.Q. Weinberger, editors, Ad-
vances in Neural Information Processing Systems
26, pages 3111-3119.

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig.
2013d. Linguistic Regularities in Continuous Space
Word Representations. In Proceedings of the 2013
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies. Association for Computa-
tional Linguistics, Atlanta, Georgia, pages 746-751.

152

George A. Miller. 1995. WordNet: A Lexical Database
for English. Commun. ACM 38(11):39-41.

Kim Anh Nguyen, Sabine Schulte im Walde, and
Ngoc Thang Vu. 2016. Integrating distributional
lexical contrast into word embeddings for antonym-
synonym distinction. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers). Berlin, Ger-
many, pages 454-459.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global Vectors for Word
Representation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP). Doha, Qatar, pages 1532—
1543.

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J.
Williams. 1986. Learning Representations by Back-
propagating Errors. Nature pages 533-536.

Peter D. Turney and Patrick Pantel. 2010. From Fre-
quency to Meaning: Vector Space Models of Se-

mantics. Journal of Artificial Intelligence Research
37(1):141-188.

Jason Weston, Antoine Bordes, Sumit Chopra, and
Tomas Mikolov. 2015. Towards AI-Complete Ques-
tion Answering: A Set of Prerequisite Toy Tasks.
arXiv preprint abs/1502.05698.

John Wieting, Mohit Bansal, Kevin Gimpel, and Karen
Livescu. 2015. From Paraphrase Database to Com-
positional Paraphrase Model and Back. Transac-
tions of the Association for Computational Linguis-
tics 3:345-358.

Chang Xu, Yalong Bai, Jiang Bian, Bin Gao, Gang
Wang, Xiaoguang Liu, and Tie-Yan Liu. 2014.
RC-NET: A General Framework for Incorporating
Knowledge into Word Representations. In Proceed-
ings of the 23rd ACM International Conference on
Conference on Information and Knowledge Man-
agement. ACM, New York, NY, USA, CIKM 14,
pages 1219-1228.

Mo Yu and Mark Dredze. 2014. Improving lexical
embeddings with semantic knowledge. In Proceed-
ings of the 52nd Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Pa-
pers). Baltimore, Maryland, pages 545-550.

Attention-based Recurrent Convolutional Neural
Network for Automatic Essay Scoring

Fei Dong and Yue Zhang*and Jie Yang
Singapore University of Technology and Design
{fei dong, jie_yang}@mymail.sutd.edu.sg
yue_zhang@sutd.edu. sg

Abstract

Neural network models have recently been
applied to the task of automatic essay scor-
ing, giving promising results. Existing
work used recurrent neural networks and
convolutional neural networks to model
input essays, giving grades based on a sin-
gle vector representation of the essay. On
the other hand, the relative advantages of
RNNs and CNNs have not been compared.
In addition, different parts of the essay can
contribute differently for scoring, which is
not captured by existing models. We ad-
dress these issues by building a hierarchi-
cal sentence-document model to represent
essays, using the attention mechanism to
automatically decide the relative weights
of words and sentences. Results show that
our model outperforms the previous state-
of-the-art methods, demonstrating the ef-
fectiveness of the attention mechanism.

1 Introduction

Automatic essay scoring (AES) is the task of au-
tomatically assigning grades to student essays.
It can be highly challenging, requiring not only
knowledge on spelling and grammars, but also
on semantics, discourse and pragmatics. Tradi-
tional models use sparse features such as bag-
of-words, part-of-speech tags, grammar complex-
ity measures, word error rates and essay lengths,
which can suffer from the drawbacks of time-
consuming feature engineering and data sparsity.
Recently, neural network models have been
used for AES (Alikaniotis et al., 2016; Dong and
Zhang, 2016; Taghipour and Ng, 2016), giving
better results compared to statistical models with
handcrafted features. In particular, distributed
word representations are used for the input, and

* Corresponding author.

153

a neural network model is employed to combine
word information, resulting in a single dense vec-
tor form of the whole essay. A score is given based
on a non-linear neural layer on the representa-
tion. Without handcrafted features, neural network
models have been shown to be more robust than
statistical models across different domains (Dong
and Zhang, 2016).

Both recurrent neural networks (Williams and
Zipser, 1989; Mikolov et al., 2010) and convolu-
tional neural networks (LeCun et al., 1998; Kim,
2014) have been used for modelling input es-
says. In particular, Alikaniotis et al. (2016)
and Taghipour and Ng (2016) use a single-layer
LSTM (Hochreiter and Schmidhuber, 1997) over
the word sequence to model the essay, and Dong
and Zhang (2016) use a two-level hierarchical
CNN structure to model sentences and documents
separately. It has been commonly understood that
CNNSs can capture local ngram information effec-
tively, while LSTMs are strong in modelling long
history. No previous work has compared the ef-
fectiveness of LSTMs and CNNs under the same
settings for AES. To better understand the con-
trast, we adopt the two-layer structure of Dong and
Zhang (2016), comparing CNNs and LSTMs for
modelling sentences and documents.

Not all sentences contribute equally to the scor-
ing of a given essay, and not all words contribute
equally within a sentence. We adopt the neural
attention model (Xu et al., 2015; Luong et al.,
2015) to automatically calculate weights for con-
volution features of CNNs and hidden state val-
ues of LSTMs, which has been used for obtain-
ing the most pertinent information for machine
translation (Luong et al., 2015), sentiment analy-
sis (Shin et al., 2016; Wang et al., 2016; Liu and
Zhang, 2017) and other tasks. In our case, the at-
tention mechanism can intuitively select sentences
and grams that are more aligned with the props or
obviously incorrect. To our knowledge, no prior

Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017), pages 153-162,
Vancouver, Canada, August 3 - August 4, 2017. (©2017 Association for Computational Linguistics

work has investigated the effectiveness of atten-
tion models for AES.

Results show that CNN is relatively more ef-
fective for modelling sentences, and LSTMs are
relatively more effective for modelling documents.
This is likely because local ngram information are
more relevant to the scoring of sentence structures,
and global information is more relevant for scoring
document level coherence. In addition, attention
gives significantly more accurate results. Our fi-
nal model achieves the best result reported on the
ASAP! test set. We release our code at https:
//github.com/feidongl991/aes.

2 Automatic Essay Scoring

2.1 Task

The task of AES is usually treated as a super-
vised learning problem, typical models of which
can be divided into three categories: classification,
regression and preference ranking. In the classi-
fication scenario, scores are divided into several
categories, each score or score range is regarded
as one class and the ordinary classification mod-
els are employed such as Naive Bayes (NB) and
SVMs (Larkey, 1998; Rudner and Liang, 2002).
In the regression scenario, each score is treated as
continous values for the essay and regression mod-
els are considered, like linear regression, Bayesian
linear ridge regression (Attali and Burstein, 2004;
Phandi et al., 2015). In the preference ranking sce-
nario, AES task is considered as a ranking problem
in which pair-wise ranking and list-wise ranking
are employed (Yannakoudakis et al., 2011; Chen
and He, 2013; Cummins et al., 2016). The former
considers the ranking between each pair of essays,
while the latter considers the absolute ranking of
each essay in the whole set.

Formally, an AES model is trained to minimize
the difference between its automatically output
scores and human given scores on a set of train-
ing data:

N
min Y~ f(y7,vi),

=1

sty =g(t),i=1,2, ...

(D
, N
where [V is the total number of essays in the train-

ing set, y; and y; are the golden score assigned
by human raters and prediction score made by the

'https://www.kaggle.com/c/asap-aes/data

154

AES system of i-th essay in the set respectively,
t; is feature representation of i-th essay, f is the
metric function between golden score and predic-
tion score, such as mean square error and mean
absolute error, and g is the mapping function from
feature ¢; to score y;.

2.2 Evaluation Metric

Many measurement metrics have be adopted to as-
sess the quality of AES systems, including Pear-
son’s correlation, Spearman’s ranking correlation,
Kendall’s Tau and kappa, especially quadratic
weighted kappa (QWK). We follow the Auto-
mated Student Assessment Prize (ASAP) compe-
tition official criteria which takes QWK as evalu-
ation metric, which is also adopted as evaluation
metric in (Dong and Zhang, 2016; Taghipour and
Ng, 2016; Phandi et al., 2015).

Kappa measures inter-raters agreement on the
qualitive items, here inter-raters refer to AES
system and human rater. QWK is modified
from kappa which takes quadratic weights. The
quadratic weight matrix in QWK is defined as:

(i —)

M Ry

2
where ¢ and j are the reference rating (assigned by
a human rater) and the system rating (assigned by
an AES system), respectively, and R is the number
of possible ratings.

An observed score matrix O is calculated such
that O; ; refers to the number of essays that receive
a rating ¢ by the human rater and a rating j by the
AES system. An expected score matrix E is cal-
culated as the outer product of histogram vectors
of the two (reference and system) ratings. The ma-
trix £ needs to be normalized such that the sum of
elements in £ and the sum of elements in O keep
the same. Finally, given the three matrices W, O
and E, the QWK value is calculated according to
Equation 3:

L 2 WijOiy
2. WijEi
We evaluate our model using QWK as the metric,

and perform one-tailed ¢-test to determine the sig-
nificance of improvements.

3)

K =

3 Model

We employ a hierarchical neural model similar to
the sentence-document model of Dong and Zhang

Convolution Attention Pooling

w o l !

W2 . M} L. 0000) Sentence vector
z | 0000008) (000000 |
2 - 0000000) (000000 (000000]
2 0000000 000000
*| [@eeseee (00009

" esseeee (800609

Figure 1: Sentence representation using ConvNet
and attention pooling

(2016) who consider essay script as being com-
posed of sentence sequences rather than word se-
quences. Different from their model, our neu-
ral model learns text representation with LSTMs,
which could model the coherence and corefer-
ence among sequences of sentences (i.e. captur-
ing more global information compared to CNNs).
Besides, attention pooling is both used on words
and sentences, which aims to capture more rele-
vant words and sentences that contribute to the fi-
nal quality of essays.

We investiage two types of word represen-
tations, one being character-based embedding,
which utilizes a convolutinal layer to learn word
representations from raw characters, and the other
being word embedding.

Characters For character-based word represen-
tation, we employ a convolutional layer over char-
acters in each word, followed by max-pooling
and average-pooling layers. The concatenation of
max-pooling and average-pooling forms the final
word representation for each word.

Let cz-l, c%, ...,cl* be one-hot representation of
characters that make up the word w;, we have the
following word representation for w; using make-

up characters:

Xe; = E.c; “4)

zl, = f(We-[xl, : x4 Db) (5

X; = mjax z{;i (6)

X; = avg 2!, (7)
J

X; = X; D X, (8)

where E. is the embedding matrix, x.; is the em-
bedding vector for c;, z?, is the feature map for
j-th character in ¢-th word w; after convolutional
layer, W, b, are the weights matrix and bias
vector respectively, h specifies the window size
in the convolutional layer and f is the activation

Y

Sigmoid Layer
Attention Pooling
—_—
| LSTM |—<| LSTM l— .. LSTM
200000 000000

sy s, st

Figure 2: Document (Text) representation using
LSTM and attention pooling

function, here hyperbolic tangent function tanh
is used. x; and X; are max-pooling and average-
pooling vectors over z.,, and the final word w;’s
representation x; is the concatenation of X; and
X;.

Words Given a sentence of words sequence
W1, Wa, ..., Wy, an lookup layer map each w; into
a dense vector x;,7 = 1,2, ..., n.

x, =Ew;,i=1,2,....n 9

where w; is one-hot representation of the ¢-th
word in the sentence, E is the embedding matrix,
x; is the embedding vector of i-th word.

3.1 Sentence Representation

After obtaining the word representations x;,7 =
1,2,...,n, we employ a convolutional layer on
each sentence:

zi=f(W, [x: X)) (10)

1
where W, b, are weight matrix and bias vector,
respectively, h,, is the window size in the convo-
lutional layer and z; is the result feature represen-
tation.

Above the convolutional layer, attention pool-
ing is employed to acquire a sentence representa-
tion. The structure of a sentence representation is
depicted in Figure 1. The details of convolutional
and attention pooling layers are defined in the fol-
lowing equations.

m; = tanh(W, - z; + by,) (11
ewu~mi

Ui = S~ (12)

s=Y wuz, (13)

where W,,,, w,, are weight matrix and vector, re-
spectively, b, is the bias vector, m; and u; are
attention vector and attention weight respectively

for ¢-th word. s is the final sentence representa-
tion, which is the weighted sum of all the word
vectors.

3.2 Text Representation

A recurrent layer is used to compose a docu-
ment (text) representation similar to the models of
Alikaniotis et al. (2016) and Taghipour and Ng
(2016). The main difference is that both earlier
work treat the essay script as a sequence of words
rathter than a sequence of sentences. Alikaniotis
et al. (2016) use score-specific word embeddings
as word features and take the last hidden state of
LSTM as text representation. Taghipour and Ng
(2016) take the average value over all the hidden
states of LSTM as text representation. In contrast
to the previous LSTM models, we use LSTM to
learn from sentence sequences and attention pool-
ing on the hidden states of LSTM to obtain the
contribution of each sentence to the final quality
of essays. The structure of a text representation
using LSTM is depicted in Figure 2.

Long short-term memory units are the modi-
fied recurrent units which are proposed to han-
dle the problem of vanishing gradients effec-
tively (Hochreiter and Schmidhuber, 1997; Pas-
canu et al., 2013). LSTMs use gates to control in-
formation flow, preserving or forgetting informa-
tion for each cell units. In order to control infor-
mation flow when processing a vector sequence,
an input gate, a forget gate and an output gate are
employed to decide the passing of information at
each time step. Assuming that an essay script con-
sists of T sentences, si, So, ..., ST With s; being
the feature representation of ¢-th word s;, we have
LSTM cell units addressed in the following equa-
tions:

ir=0(W;-s;+U; -h;_1+b;)
f; = U(Wf - St +Uf “hy g +bf)
¢ =tanh(W.-s;+U.-hy_1 + b.)

. (14)
Cy :ltOCt—FftOCt,l
o =0(Wy,-st+U,-hy 1+ by,)

ht = 0t © tanh(ct),

where s; and hy are the input sentence and output
sentence vectors at time ¢, respectively. W;, W
W, W,, U;, Uy, U, and U, are weight matri-
ces and b;, by, b, and b, are bias vectors. The
symbol o denotes element-wise multiplication and
o represents the sigmoid function.

156

After obtaining the intermediate hidden states
of LSTM hy, hs, ..., hp, we use another attention
pooling layer over the sentences to learn the final
text representation. The attention pooling helps to
acuquire the weights of sentences’ contribution to
final quality of the text. The attention pooling over
sentences is addressed as:

a; = tanh(Wg - h; + b,) (15)
ewa-ai

o = W (16)

0= aihy, (17)

where W,, w,, are weight matrix and vector re-
spectively, by, is the bias vector, a; is attention vec-
tor for ¢-th sentence, and «; is the attention weight
of i-th sentence. o is the final text representation,
which is the weighted sum of all the sentence vec-
tors.

Finally, one linear layer with sigmoid function
applied on the text representation to get the final
score as described in Equation 18.

y = sigmoid(wy,o + by) (18)

where w,, b, are weight vector and bias vector, y
is the final score of the essay.

4 Training

Objective We use mean square error (MSE)
loss, which is also used in previous models. MSE
is widely used in regression tasks, which mea-
sures the average value of square error between
gold standard scores y;" and prediction scores y;
assigned by the AES system among all the essays.
Given N essays, we calculate MSE according to
Equation 19.

N

LS -)

N <
=1

(19)

mse(y,y") =

The model is trained on a fixed number of
epochs and evaluated on the development set at ev-
ery epoch. We set the batch size to 10 and the best
model is selected on the performance of quadratic
weighted kappa on the development set. The de-
tails of model hyper-parameters are listed in Table
1.

Character Embeddings The character embed-
dings are initialized with uniform distribution
from [-0.05, 0.05]. The dimension of character
embeddings is set to 30. During the training pro-
cess, character embeddings are fine-tuned.

Layer Parameter Name Parameter Value
Lookup char embeddipg dim 30
word embedding dim 50
window size 5
CNN number of filters 100
LSTM hidden units 100
Dropout dropout rate 0.5
epochs 50
batch size 10
initial learning rate n 0.001
momentum 0.9

Table 1: Hyper-parameters

Set | #Essays | Genre | Avg Len. | Range | Med.
1 1783 ARG 350 2-12 8
2 1800 ARG 350 1-6 3
3 1726 RES 150 0-3 1
4 1772 RES 150 0-3 1
5 1805 RES 150 0-4 2
6 1800 RES 150 0-4 2
7 1569 NAR 250 0-30 16
8 723 NAR 650 0-60 36
Table 2: Statistics of the ASAP dataset; Range

refers to score range and Med. refers to median
scores. For genre, ARG specifies argumentative
essays, RES means response essays and NAR de-
notes narrative essays.

Word Embeddings We take the Stanford’s pub-
licly available GloVe 50-dimensional embed-
dings? as word pretrained embeddings, which are
trained on 6 billion words from Wikipedia and
web text (Pennington et al., 2014). During the
training process, word embeddings are fine-tuned.

Optimization We use RMSprop (Dauphin et al.,
2015) as our optimizer to train the whole model.
The initial learning rate 7 is set to 0.001 and mo-
mentum is set to 0.9. Dropout regularization is
used to avoid overfitting and drop rate is 0.5.

S Experiments

5.1 Setup

Data The ASAP dataset is used as evaluation
data of our AES system. The ASAP dataset con-
sists of 8 different prompts of genres as listed in
Table 2.

There are no released labeled test data from
the ASAP competition, thus we separate test
set and development set from the training set.
The partition exactly follows the setting used by
Taghipour and Ng (2016), which adopts 5-fold
cross-validation, in each fold, 60% of the data is
used as our training set, 20% as the development

>http://nlp.stanford.edu/projects/glove/

157

set, and 20% as the test set. The data is tok-
enized with NLTK? tokenizer. All the words are
converted to lowercase and the scores are scaled
to the range [0, 1]. During evaluation phase,
the scaled scores are rescaled to original integer
scores, which are used to calculate evaluation met-
ric QWK values. The vocabulary size of the data
is set to 4000, by following Taghipour and Ng
(2016), selecting the most 4000 frequent words in
the training data and treating all other words as un-
known words.

Baseline models We take LSTM with Mean-
over-Time Pooling (LSTM-MoT) (Taghipour and
Ng, 2016) and hierarchical CNN (CNN-CNN-
MoT) (Dong and Zhang, 2016) as our baselines.
The former takes the essay script as a sequence of
words, which is text-level model and the latter re-
gards the script as a sequence of sentences, which
is sentence-level model.

LSTM-MoT uses one layer of LSTM over the
word sequences, and takes the average pooling
over all time-step states as the final text representa-
tion, which is called Mean-over-Time (MoT) pool-
ing (Taghipour and Ng, 2016). A linear layer with
sigmoid function follows the MoT layer to predict
the score of an essay script.

CNN-CNN-MoT uses two layers of CNN, in
which one layer operates over each sentence to ob-
tain representation for each sentence and the other
CNN is stacked above, followed by mean-over-
time pooling to get the final text representation.

LSTM-MoT is the current state-of-the-art neu-
ral model on the text-level and CNN-CNN-MoT is
a state-of-the-art model on the sentence-level. Be-
sides, LSTM-LSTM-MoT and LSTM-CNN-MoT
are adopted as another two baseline models. The
former model takes LSTMs to represent both sen-
tences and texts, and the latter uses CNN repre-
senting sentences and LSTM representing texts.
Both models use MoT pooling and are sentence-
level models. We compare our model (LSTM-
CNN-attent) with the baseline models to study
CNN representing sentences and LSTM represent-
ing texts.

5.2 Results

The results are listed in Table 3. Our
model LSTM-CNN-attent outperforms the base-
line model CNN-CNN-MoT by 3.0%, LSTM-
MoT by 2.2% on average quadratic weighted

*http://www.nltk.org

Prompts | LSTM- CNN- LSTM- Model Model Type Pooling | Avg
MoT CNN-MoT CNN-att QWK
1 0.818 0.805 0.822 LSTM-MoT document-level | MoT 0.742
2 0.688 0.613 0.682 LSTM-attent document-level | attention| 0.731
3 0.679 0.662 0.672 CNN-CNN- sentence-level MoT 0.734
4 0.805 0.778 0.814 MoT
5 0.808 0.800 0.803 LSTM-LSTM- | sentence-level MoT 0.758
6 0.817 0.809 0.811 MoT
7 0.797 0.758 0.801 LSTM-CNN- sentence-level MoT 0.759
8 0.527 0.644 0.705 MoT
Avg. 0.742 0.734 0.764 LSTM-LSTM- | sentence-level attention | 0.762
attent
Table 3: Comparison of quadratic weighted kappa LSTM-CNN- | sentence-level | attention| 0.764
between different models on the test data. attent

LSTM-CNN-attent | Average QWK
char 0.738
word 0.764
word + char 0.761

Table 4: Comparison of quadratic weight kappa
using different features on the test data.

kappa. The results are statistically significant with
p < 0.05 by one-tailed ¢-test. Even compared
with the ensemble model used by Taghipour and
Ng (2016), which ensembles 10 instances of CNN
and LSTM of different initializations, our model
still achieves 0.3% improvement on QWK.

5.3 Analysis

We perform several development experiments
to verify the effectiveness of sentence-document
model and text representation with LSTM and at-
tention pooling.

Characters and Words We explore a convo-
lutional layer to learn word representation from
char-based CNN to replace word embeddings. In
Table 4, we compare the performance of using
character embeddings, word embeddings and con-
catenation of two embeddings. Empirical results
show that with only character embedding features,
the performance of our model outperforms CNN-
CNN-MoT, and is close to LSTM-MoT. How-
ever, there is still a big gap between character
embedding and word embedding models, which
could come from the fact that we use pretrained
word embeddings, which helps improve the per-
formance. When both the word and character em-
beddings are used, the performance does not im-
prove. One possible explanation is that the ASAP
dataset is rather small given the model parameters,
which has a potential for overfitting if both words
and characters are used.

158

Table 5: Comparison between different model
types and pooling methods on the test data (only
word embeddings used).

Granularity The previous model LSTM-MoT
tackles the AES task by treating each essay script
as a sequence of words, which makes an es-
say an extra long sequence. The word num-
ber of one essay usually exceeds several hun-
dreds, which makes it difficult to directly use
LSTM to learn text representation if only last
hidden state is used. It has been verified by
Taghipour and Ng (2016) that LSTM with Mean-
over-Time pooling outperforms LSTM with only
last state. Though MoT pooling could alleviate
this problem by considering all the states infor-
mation, the model is still built on text-level rather
than sentence-level. Both LSTM-CNN-MoT and
LSTM-LSTM-MoT are sentence-document mod-
els. The former explores CNN for sentence rep-
resentation and LSTM for text representation, and
the latter use both LSTMs for sentence and text
representation with MoT pooling. In Table 5,
LSTM-CNN-MoT and LSTM-LSTM-MoT obtain
large improvements compared to LSTM-MoT, es-
pecially for prompt 8 essays, of which the aver-
age script length is the biggest. This shows that
sentence-document model tends to be more effec-
tive for long essays.

Local vs Global In Table 5, we compare LSTM-
CNN-MoT with CNN-CNN-MoT to analyze the
effectiveness of LSTM for text representation over
CNN. Both CNN-CNN-MoT and LSTM-CNN-
MoT learn hierarchical sentence-document repre-
sentations. The former employs two-level CNNs
for sentence representation and text representation
respectively, and mean-over-time pooling is both
used after two-level CNNs. The latter employs a
CNN to learn sentence representation at the bot-
tom, stacks one layer of LSTM above to learn

text representation, and mean-over-time pooling
is also used after CNN and LSTM. Compared
with CNN-CNN-MoT in Table 5, LSTM-CNN-
MoT gives a big improvement. We believe that on
text representation layer, LSTMs can learn more
global information, such as sentence coherence,
while CNNs learn more local features, such as n-
grams and bag-of-words. LSTM-LSTM-MoT out-
performs CNN-CNN-MoT and gets slightly worse
than LSTM-CNN-MoT, which also shows that
LSTM is relatively more effective for modeling
the documents.

Mean-over-Time vs Attention pooling We
compare the two pooling methods adopted in our
model, namely mean-over-time pooling and at-
tention pooling in Table 5. The pooling layers
are used after both CNN and LSTM layer to get
sentence representation and text representation re-
spectively. We find that by attending over words
and sentences, we achieve the best performance,
which demonstrates that attention pooling helps
find the key words and sentences that contribute to
judging quality of essays. In contrast to MoT, each
word and sentence will be treated equally, which
violates human raters’ assessing process. Since
our model is based on the sentence-level rather
than the text-level, we can exert attention pooling
to focus on pertinent words and sentences. Note
that attention can be weakened when used for an
extra long sequence, such as the scenario in the
text-level model. Taghipour and Ng (2016) tried to
attend over words on their one-layer LSTM model,
but failed to beat the baseline model that employs
mean-over-time pooling, because of that text-level
model contains a quite long sequence of words,
which may weaken the effect of attention. On the
contrary, sentence-level model contains relatively
short sequences of words, which makes attention
more effective.

In Table 6, we briefly show two prompts from
the AES data, namely Prompt 4 and Prompt 8.
Prompt 4 asks for a response based on the last
paragraph of a given story and Prompt 8 requires a
true story about laughter. Prompt 4 has few num-
ber of sentences compared with Prompt 8. For
convenience, we take Prompt 4 essays as our ex-
amples to analyze the attention mechanism on sen-
tences, and Prompt 8§ essays to analyze the atten-
tion mechanism on words n-grams. In Table 7, we
list all five sentences in order that make up of one
response essay from test set in Prompt 4. Each

159

Prompt Contents

Read the last paragraph of the story. “When
they come back, Saeng vowed silently to her-
self, in the spring, when the snows melt and the
geese return and this hibiscus is budding, then I
will take that test again.”

Write a response that explains why the author
concludes the story with this paragraph. In your
response, include details and examples from the
story that support your ideas. °

We all understand the benefits of laughter. For
example, someone once said, “Laughter is the
shortest distance between two people.” Many
other people believe that laughter is an impor-
tant part of any relationship.

Tell a true story in which laughter was one ele-
ment or part.

Prompt

Prompt

Table 6: Contents of Prompt 4 and Prompt 8

sentence is associated with its attention weight as
shown in the table. The 4-th sentence has the
biggest attention weight among the five sentence,
then followed by the 5-th sentence. Intuitively, we
know the 4-th and 5-th sentence can give strong
supporting ideas to illustrate why the author con-
cludes the story with the last paragraph. There-
fore, it proves that our attention mechanism on
sentences captures the key sentences to represent
essays indeed.

In Table 8, we list three example sentences in
one essay from the prompt 8 test data. The essay
is written by students given the prompt described
in the Table 6. The highlighted words are the 5-
grams* that have the highest attention score. It can
be easily seen that the highlighted 5-grams are the
most relevant to the prompt, which demonstrates
our attention-pooling takes an effect on learning
sentence representation.

6 Related Work

The first AES system dates back to 1960s (Page,
1968, 1994) when Project Essay Grade (PEG) was
developed. Following that, IntelliMetric 2, Intelli-
gent Essay Assessor (IEA) (Landauer et al., 1998;
Foltz et al., 1999) have come out. IEA uses La-
tent Semantic Analysis (LSA) to calculate the se-
mantic similarity between texts and assigns a score
to test text based on the score of the training text
which is most similar to the given test text. Other
commercial system, like e-rater system (Attali and

4Since we use a window size of 5 in CNN layer, the at-
tention pooling after CNN layer is attending over 5-grams
features.

5 As Prompt 4 contains a long story in the prompt descrip-
tions, we only pick up the most relevant contents here.

No. | Sentences Attention
weights
1 0.17568
2 the author wanted to show how the plant 0-20358
gave saeng a new sense of determina-
tion .
3 . . 0.19651
saeng previously was upset and tearing
the plant apart .
4 but it seemed that she realized how the 0.21264
plant was able to bud to the <unk> and
survive .
> so she now was determined to <unk> 0.21159
the <unk> as well and retake the test
she failed .

Table 7: Attention weights of sentences coming
from one student essay in Prompt 4 (The darkness
of blue indicates the relative magnitude of atten-
tion weights.

Prompt 8

Example 1 | when i1 was a young boy i used
to laugh at anythingi could , but as a
kid who did n’t ?

Example 2 | as i got older and grew more , i developed
a | great sense of humor that to my advan-
tage made me a young people <unk> .

Example3 | i grew more and more <unk> a
stronger , more confident sense of humor

Table 8: Examples of attention pooling over n-
grams features in Prompt 8 (The first row specifies
the prompt given by the essay designer).

Burstein, 2004), has been deployed in the English
language test, such as Test of English as a Foreign
Language (TOEFL) and Graduate Record Exam-
ination (GRE). Step-wise linear regression is em-
ployed in the e-rater systems along with grammat-
ical errors, lexical complexity as handcrafted fea-
tures.

In the research literature, Larkey (1998) uses
Naive Bayes model and takes AES as a classi-
fication model. Rudner and Liang (2002) ex-
plore multinomial Bernoulli Naive Bayes models
to classify texts into several categories of text qual-
ity based on content and style features. Chen et al.
(2010) formulates the AES task into a weakly su-
pervised framework and employ a voting algo-
rithm.

Other recent work formulate the task as a pref-
erence ranking problem (Yannakoudakis et al.,
2011; Phandi et al., 2015). Yannakoudakis et al.

160

(2011) formulate AES as a pairwise ranking prob-
lem by ranking the order of pair essays based on
their quality. Features consist of word n-grams,
deep linguistic features, including grammatical
complexity, POS n-grams and parsing trees fea-
tures. Chen and He (2013) formulate AES into a
list-wise ranking problem by considering the or-
der relation among the whole essays. Features
contain syntactical features, grammar and fluency
features as well as content and prompt-specific
features. Phandi et al. (2015) use correlated
Bayesian Linear Ridge Regression focusing on
domain-adaptation tasks. All these previous meth-
ods are traditional discrete models using hand-
crafted discrete features.

Recently, Alikaniotis et al. (2016) employ a
long short-term memory model to learn features
for essay scoring task automatically without any
predefined feature templates. It leverages score-
specific word embeddings (SSWEs) for word rep-
resentations, and takes the last hidden states of a
two-layer bidirectional LSTM for essay represen-
tations. Taghipour and Ng (2016) also adopt a
LSTM model for AES, but use ordinary word em-
bedding and take the average pooling value of all
the hidden states of LSTM layer as the essay repre-
sentations. Dong and Zhang (2016) develop a hi-
erarchical CNN model for regression on AES task
by processing texts into sentences and using two
layers CNN on both sentence-level and text-level
to get the final text representation. Our work con-
tributes to the research literature by systematically
investigating CNN and LSTM on sentence-level
and text-level modeling, and the effectiveness of
attention network on automatically selecting more
relevant ngrams and sentences for the task.

Our work is also inline with recent work
on building hierarchical sentence-document level
representations of documents. Li et al. (2015)
build a hierarchical LSTM auto-encoder for doc-
uments. Yang et al. (2016) build hierarchi-
cal LSTM models with attention for document
and Tang et al. (2015) use a hierarchical Gated
RNN for sentiment classification. Ren and Zhang
(2016) use hierarchical CNN-LSTM model for
spam detection. We use a hierarchical CNN-
LSTM model for essay scoring, which is a regres-
sion task.

7 Conclusion

We investigated a recurrent convolutional neural
network to learn text representation and grade es-
says automatically. Our model treated input essays
as sentence-document hierarchies, and employed
attention pooling to find the pertinent words and
sentences. Empirical results on ASAP essay data
show that our model outperforms state-of-art neu-
ral models for automatic essay scoring task, giving
the best performance. Future work explores the
advantage of neural models on cross-domain AES
task.

Acknowledgments

We thank the anonymous reviewers for their in-
sightful comments. Yue Zhang is the correspond-
ing author.

References

Dimitrios Alikaniotis, Helen Yannakoudakis, and
Marek Rei. 2016. Automatic text scoring using neu-
ral networks. arXiv preprint arXiv:1606.04289 .

Yigal Attali and Jill Burstein. 2004. Automated essay
scoring with e-rater®) v. 2.0. ETS Research Report
Series 2004(2):1-21.

Hongbo Chen and Ben He. 2013. Automated essay
scoring by maximizing human-machine agreement.
In EMNLP. pages 1741-1752.

Yen-Yu Chen, Chien-Liang Liu, Chia-Hoang Lee, Tao-
Hsing Chang, et al. 2010. An unsupervised auto-
mated essay scoring system. I[EEE Intelligent sys-
tems 25(5):61-67.

Ronan Cummins, Meng Zhang, and Ted Briscoe. 2016.
Constrained multi-task learning for automated essay
scoring. Association for Computational Linguistics.

Yann Dauphin, Harm de Vries, and Yoshua Bengio.
2015. Equilibrated adaptive learning rates for non-
convex optimization. In Advances in Neural Infor-
mation Processing Systems. pages 1504—1512.

Fei Dong and Yue Zhang. 2016. Automatic fea-
tures for essay scoring an empirical study. In
Proceedings of the 2016 Conference on Empir-
ical Methods in Natural Language Processing,
pages 968974,. Association for Computational
Linguistics, Austin, Texas, pages 1072-1077.
https://www.aclweb.org/anthology/D/D16/D16-
1115.pdf.

Peter W Foltz, Darrell Laham, and Thomas K Lan-
dauer. 1999. Automated essay scoring: Applica-
tions to educational technology. In proceedings of
EdMedia. volume 99, pages 40-64.

161

Sepp Hochreiter and Jiirgen Schmidhuber. 1997.
Long short-term memory. Neural computation
9(8):1735-1780.

Yoon Kim. 2014. Convolutional neural net-
works for sentence classification. arXiv preprint
arXiv:1408.5882 .

Thomas K Landauer, Peter W Foltz, and Darrell La-
ham. 1998. An introduction to latent semantic anal-
ysis. Discourse processes 25(2-3):259-284.

Leah S Larkey. 1998. Automatic essay grading using
text categorization techniques. In Proceedings of the
2 1st annual international ACM SIGIR conference on
Research and development in information retrieval.

ACM, pages 90-95.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner. 1998. Gradient-based learning applied to
document recognition. Proceedings of the IEEE
86(11):2278-2324.

Jiwei Li, Minh-Thang Luong, and Dan Jurafsky. 2015.
A hierarchical neural autoencoder for paragraphs
and documents. arXiv preprint arXiv:1506.01057 .

Jiangming Liu and Yue Zhang. 2017. Attention mod-
eling for targeted sentiment. EACL 2017 page 572.

Minh-Thang Luong, Hieu Pham, and Christopher D
Manning. 2015. Effective approaches to attention-
based neural machine translation. arXiv preprint
arXiv:1508.04025 .

Tomas Mikolov, Martin Karafiat, Lukas Burget, Jan
Cernocky, and Sanjeev Khudanpur. 2010. Recur-
rent neural network based language model. In Inter-
speech. volume 2, page 3.

Ellis B Page. 1968. The use of the computer in ana-
lyzing student essays. International review of edu-
cation 14(2):210-225.

Ellis Batten Page. 1994. Computer grading of student
prose, using modern concepts and software. The
Journal of experimental education 62(2):127-142.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio.
2013. On the difficulty of training recurrent neural
networks. ICML (3) 28:1310-1318.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word
representation. In EMNLP. volume 14, pages 1532—
1543.

Peter Phandi, Kian Ming A Chai, and Hwee Tou Ng.
2015. Flexible domain adaptation for automated es-
say scoring using correlated linear regression .

Yafeng Ren and Yue Zhang. 2016. Deceptive opin-
ion spam detection using neural network. In Pro-
ceedings of COLING 2016. Association for Com-
putational Linguistics, Osaka, Japan, pages 140-
150. http://www.aclweb.org/anthology/C/C16/C16-
1014.pdf.

Lawrence M Rudner and Tahung Liang. 2002. Au-
tomated essay scoring using bayes’ theorem. The
Journal of Technology, Learning and Assessment
1(2).

Bonggun Shin, Timothy Lee, and Jinho D Choi.
2016. Lexicon integrated cnn models with at-
tention for sentiment analysis. arXiv preprint
arXiv:1610.06272 .

Kaveh Taghipour and Hwee Tou Ng. 2016. A
neural approach to automated essay scor-
ing. In Proceedings of the 2016 Conference
on Empirical Methods in Natural Language
Processing, ~EMNLP 2016, Austin, Texas,
USA, November 1-4, 2016. pages 1882-1891.
http://aclweb.org/anthology/D/D16/D16-1193.pdf.

Duyu Tang, Bing Qin, and Ting Liu. 2015. Document
modeling with gated recurrent neural network for
sentiment classification. In EMNLP. pages 1422—
1432.

Yequan Wang, Minlie Huang, Li Zhao, and Xiaoyan
Zhu. 2016. Attention-based Istm for aspect-level
sentiment classification. In EMNLP. pages 606—
615.

Ronald J Williams and David Zipser. 1989. A learn-
ing algorithm for continually running fully recurrent
neural networks. Neural computation 1(2):270-280.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho,
Aaron C Courville, Ruslan Salakhutdinov, Richard S
Zemel, and Yoshua Bengio. 2015. Show, attend and
tell: Neural image caption generation with visual at-
tention. In ICML. volume 14, pages 77-81.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He,
Alex Smola, and Eduard Hovy. 2016. Hierarchical
attention networks for document classification. In
Proceedings of NAACL-HLT . pages 1480-1489.

Helen Yannakoudakis, Ted Briscoe, and Ben Medlock.
2011. A new dataset and method for automatically
grading esol texts. In Proceedings of the 49th An-
nual Meeting of the Association for Computational
Linguistics: Human Language Technologies-Volume
1. Association for Computational Linguistics, pages
180-189.

162

Feature Selection as Causal Inference:
Experiments with Text Classification

Michael J. Paul
University of Colorado
Boulder, CO 80309, USA
mpaul@colorado.edu

Abstract

This paper proposes a matching tech-
nique for learning causal associations be-
tween word features and class labels in
document classification. The goal is to
identify more meaningful and general-
izable features than with only correla-
tional approaches. Experiments with sen-
timent classification show that the pro-
posed method identifies interpretable word
associations with sentiment and improves
classification performance in a majority
of cases. The proposed feature selection
method is particularly effective when ap-
plied to out-of-domain data.

1 Introduction

A major challenge when building classifiers for
high-dimensional data like text is learning to iden-
tify features that are not just correlated with the
classes in the training data, but associated with
classes in a meaningful way that will generalize to
new data. Methods for regularization (Hoerl and
Kennard, 1970; Chen and Rosenfeld, 2000) and
feature selection (Yang and Pedersen, 1997; For-
man, 2003) are critical for obtaining good classi-
fication performance by removing or minimizing
the effects of noisy features. While empirically
successful, these techniques can only identify fea-
tures that are correlated with classes, and these as-
sociations can still be caused by factors other than
the direct relationship that is assumed.

A more meaningful association is a causal one.
In the context of document classification using
bag-of-words features, we ask the question, which
word features “cause” documents to have the class
labels that they do? For example, it might be rea-
sonable to claim that adding the word horrible to a
review would cause its sentiment to become neg-

163

ative, while this is less plausible for a word like
said. Yet, in one of our experimental datasets
of doctor reviews, said has a stronger correlation
with negative sentiment than horrible.

Inspired by methods for causal inference in
other domains, we seek to learn causal asso-
ciations between word features and document
classes. We experiment with propensity score
matching (Rosenbaum and Rubin, 1985), a tech-
nique attempts to mimic the random assignment
of subjects to treatment and control groups in a
randomized controlled trial by matching subjects
with a similar “propensity” to receive treatment.
Translating this idea to document classification,
we match documents with similar propensity to
contain a word, allowing us to compare the effect a
word has on the class distribution after controlling
for the context in which the word appears. We pro-
pose a statistical test for measuring the importance
of word features on the matched training data.

We experiment with binary sentiment classifi-
cation on three review corpora from different do-
mains (doctors, movies, products) using propen-
sity score matching to test for statistical signifi-
cance of features. Compared to a chi-squared test,
the propensity score matching test for feature se-
lection yields superior performance in a majority
of comparisons, especially for domain adaptation
and for identifying top word associations. After
presenting results and analysis in Sections 4-5, we
discuss the implications of our findings and make
suggestions for areas of language processing that
would benefit from causal learning methods.

2 Causal Inference and Confounding

A challenge in statistics and machine learning is
identifying causal relationships between variables.
Predictive models like classifiers typically learn
only correlational relationships between variables,

Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017), pages 163—-172,
Vancouver, Canada, August 3 - August 4, 2017. (©2017 Association for Computational Linguistics

and if spurious correlations are built into a model,
then performance will worsen if the underlying
distributions change.

A common cause of spurious correlations is
confounding. A confounding variable is a vari-
able that explains the association between a depen-
dent variable and independent variables. A com-
monly used example is the positive correlation of
ice cream sales and shark attacks, which are corre-
lated because they both increase in warm weather
(when more people are swimming). As far as any-
one is aware, ice cream does not cause shark at-
tacks; rather, both variables are explained by a
confounding variable, the time of year.

There are experimental methods to reduce con-
founding bias and identify causal relationships.
Randomized controlled trials, in which subjects
are randomly assigned to a group that receives
treatment versus a control group that does not, are
the gold standard for experimentation in many do-
mains. However, this type of experiment is not
always possible or feasible. (In text processing,
we generally work with documents that have al-
ready been written: the idea of assigning features
to randomly selected documents to measure their
effect does not make sense, so we cannot directly
translate this idea.)

A variety of methods exist to attempt to in-
fer causality even when direct experiments, like
randomized controlled trials, cannot be conducted
(Rosenbaum, 2002). In this work, we propose the
use of one such method, propensity score match-
ing (Rosenbaum and Rubin, 1985), for reducing
the effects of confounding when identifying im-
portant features for classification. We describe this
method, and its application to text, in Section 3.
First, we discuss why causal methods may be im-
portant for document classification, and describe
previous work in this space.

2.1 Causality in Document Classification

We now discuss where these ideas are relevant to
document classification. Our study performs sen-
timent classification in online reviews using bag-
of-words (unigram) features, so we will use exam-
ples that apply to this setting.

There are a number of potentially confounding
factors in document classification (Landeiro and
Culotta, 2016). Consider a dataset of restaurant re-
views, in which fast food restaurants have a much
lower average score than other types of restau-

164

rants. Word features that are associated with fast
food, like drive-thru, will be correlated with neg-
ative sentiment due to this association, even if the
word itself has neutral sentiment. In this case, the
type of restaurant is a confounding variable that
causes spurious associations. If we had a method
for learning causal associations, we would know
that drive-thru itself does not affect sentiment.

What does it mean for a word to have a causal
relationship with a document class? It is difficult
to give a natural explanation for a bag-of-words
model that ignores pragmatics and discourse, but
here is an attempt. Suppose you are someone who
understands bag-of-words representations of doc-
uments, and you are given a bag of words corre-
sponding to a restaurant review. Suppose some-
one adds the word terrible to the bag. If you pre-
viously recognized the sentiment to be neutral or
even positive, it is possible that the addition of this
new word would cause the sentiment to change to
negative. On the other hand, it is hard to imagine a
set of words to which adding the word drive-thru
would change the sentiment in any direction.

In this example, we would say that the word
terrible “caused” the sentiment to change, while
drive-thru did not. While most real documents
will not have a clean interpretation of a word
“causing” a change in sentiment, this may still
serve as a useful conceptual model for identify-
ing features that are meaningfully associated with
class labels.

2.2 Previous Work

Recent studies have used text data, especially so-
cial media, to make causal claims (Cheng et al.,
2015; Reis and Culotta, 2015; Pavalanathan and
Eisenstein, 2016). The technique we use in this
work, propensity score matching, has recently
been applied to user-generated text data (Rehman
et al., 2016; De Choudhury and Kiciman, 2017).
For the task of document classification specif-
ically, Landeiro and Culotta (2016) experiment
with multiple methods to make classifiers robust
to confounding variables such as gender in social
media and genre in movie reviews. This work re-
quires confounding variables to be identified and
included explicitly, whereas our proposed method
requires only the features used for classification.
Causal methods have previously been applied
to feature selection (Guyon et al., 2007; Cawley,
2008; Aliferis et al., 2010), but not with the match-

People Text

Subject | Document
Treatment Word
Outcome | Class label

Table 1: A mapping of standard terminology of
randomized controlled trials (left) to our applica-
tion of these ideas to text classification (right).

ing methods proposed in this work, and not for
document classification.

3 Propensity Score Matching for
Document Classification

Propensity score matching (PSM) (Rosenbaum
and Rubin, 1985) is a technique that attempts to
simulate the random assignment of treatment and
control groups by matching treated subjects to un-
treated subjects that were similarly likely to be in
the same group. This is centered around the idea of
a propensity score, which Rosenbaum and Rubin
(1983) define as the probability of being assigned
to a treatment group based on observed character-
istics of the subject, P(z;|x;), typically estimated
with a logistic regression model. In other words,
what is the “propensity” of a subject to obtain
treatment? Subjects that did and did not receive
treatment are matched based their propensity to re-
ceive treatment, and we can then directly compare
the outcomes of the treated and untreated groups.

In the case of document classification, we want
to measure the effect of each word feature. Using
the terminology above, each word is a “treatment”
and each document is a “subject”. Each word has
a treatment group, the documents that contain the
word, and a “control” group, the documents that
do not. The “outcome” is the document class label.

Each subject has a propensity score for a treat-
ment. In document classification, this means that
each document has a propensity score for each
word, which is the probability that the word would
appear in the document. For a word w, we define
this as the probability of the word appearing given
all other words in the document: P(w|d; — {w}),
where d; is the set of words in the ith document.
We estimate these probabilities by training a logis-
tic regression model with word features.

Using our example from the previous section,
the probability that a document contains the word
drive-thru is likely to be higher in reviews that
describe fast food that those that do not. Match-

165

ing reviews based on their likelihood of contain-
ing this word should adjust for any bias caused by
the type of restaurant (fast food) as a confounding
variable. This is done without having explicitly in-
cluded this as a variable, since it will implicitly be
learned when estimating the probability of words
associated with fast food, like drive-thru.

3.1 Creating Matched Samples

Once propensity scores have been calculated, the
next step is to match documents containing a word
to documents that do not contain the word but have
a similar score. There are a number of strategies
for matching, summarized by Austin (2011a). For
example, matching could be done one-to-one or
one-to-many, sampling either with or without re-
placement. Another approach is to group similar
scoring samples into strata (Cochran, 1968).

In this work, we perform one-to-one match-
ing without replacement using a greedy match-
ing algorithm; Gu and Rosenbaum (1993) found
no quality difference using greedy versus optimal
matching. We also experiment with thresholding
how similar two scores must be to match them.

Implementation Even greedy matching is ex-
pensive, so we use a fast approximation. We place
documents into 100 bins based on their scores
(e.g., scores between .50 and .51). For each
“treatment” document, we match it to the approx-
imate closest “control” document by pointing to
the treatment document’s bin and iterating over
bins outward until we find the first non-empty bin,
and then select a random control document from
that bin. Placing documents into bins is related to
stratification approaches (Rosenbaum and Rubin,
1984), except that we use finer bins that typical
strata and we still return one-to-one pairs.

3.1.1 Comparing Groups

Since our instances are paired (after one-to-one
matching), we can use McNemar’s test (McNe-
mar, 1947), which tests if there is a significant
change in the distribution of a variable in response
to a change in the other. The test statistic is:

(TN — CP)?
TN +CP

where T'N is the number of treatment instances
with a negative outcome (in our case, the num-
ber of documents containing the target word with
a negative sentiment label) and C'P is the number
of control instances with a positive outcome (the

2

ey

documents | #tokens | # word types
Doctors 20,000 432,636 2,422
Movies 50,000 9,420,645 3,124
Products 100,000 7,416,381 2,343

Table 2: Corpus summary.

number of documents that do not contain the word
with a positive sentiment label).

This test statistic has a chi-squared distribution
with 1 degree of freedom. This test is related to
a traditional chi-squared test used for feature se-
lection (which we compare to experimentally in
Section 4), except that it assumes paired data with
a “before” and “after” measurement. In our case,
we do not have two outcome measurements for the
same subject, but we have two subjects that have
been matched in a way that approximates this.

We perform this test for every feature (every
word in the vocabulary). The goal of the test is
to measure there is a significant difference in the
class distribution (positive versus negative, in the
case of sentiment) in documents that do and do not
contain the word (the “after” and “before” con-
ditions, respectively, when considering words as
treatments).

4 Experiments with Feature Selection

To evaluate the ability of propensity score match-
ing to identify meaningful word features, we use it
for feature selection (Yang and Pedersen, 1997) in
sentiment classification (Pang and Lee, 2004).

4.1 Datasets
We used datasets of reviews from three domains:

Doctors: Doctor reviews from RateMDs.com
(Wallace et al., 2014). Doctors are rated on a
scale from 1-5 along four different dimensions
(knowledgeability, staff, helpfulness, punctual-
ity). We averaged the four ratings for each re-
view and labeled a review positive if the average
rating was > 4 and negative if < 2.

Movies: Movie reviews from IMDB (Maas
et al., 2011). Movies are rated on a scale from
1-10. Reviews rated > 7 are labeled positive
and reviews rated < 4 are labeled negative.

Products: Product reviews from Amazon (Jin-
dal and Liu, 2008). Products are rated on a scale
from 1-5, with reviews rated > 4 labeled posi-
tive and reviews rated < 2 labeled negative.

All datasets were sampled to have an equal class
balance. We used unigram word features. For ef-

166

Training Test Corpus
Corpus Doctors Movies Products
PSM | xZ [PSM | x> [PSM | »?
Doctors | .8569 | .8560 | .6796 | .6657 | .6670 | .6367
Movies | .6510 | .5497 | .8094 | .7421 | .6658 | 4917
Products | 7799 | 7853 | .8299 | .8245 | .8234 | .8277
Table 3: Area under the feature selection curve

(see Figure 1) using Fl-score as the evaluation
metric. All differences between corresponding
PSM and x? results are statistically significant
with p < 0.01 except for (Doctors, Doctors).

ficiency reasons (a limitation that is discussed in
Section 7), we pruned the long tail of features, re-
moving words appearing in less than 0.5% of each
corpus. The sizes of the processed corpora and
their vocabularies are summarized in Table 2.

4.2 Experimental Details

For each corpus, we randomly selected 50% for
training, 25% for development, and 25% for test-
ing. The training set is used for training classifiers
as well as calculating all feature selection metrics.
We used the development set to measure clas-
sification performance for different hyperparame-
ter values. Our propensity score matching method
has two hyperparameters. First, when building lo-
gistic regression models to estimate the propensity
scores, we adjusted the ¢y regularization strength.
Second, when matching documents, we required
the difference between scores to be less than
7x.5D to count as a match, where S D is the stan-
dard deviation of the propensity scores. We per-
formed a grid search over different values of 7 and
different regularization strengths, described more
in our analysis in Section 5.2, and used the best
combination of hyperparameters for each dataset.
We used logistic regression classifiers for sen-
timent classification. ~While we experimented
with ¢ regularization for constructing propensity
scores, we used no regularization for the sentiment
classifiers. Since regularization and feature selec-
tion are both used to avoid overfitting, we did not
want to conflate the effects of the two, so by us-
ing unregularized classifiers we can directly assess
the efficacy of our feature selection methods on
held-out data. All models were implemented with
scikit-learn (Pedregosa et al., 2011).

Baseline We compare propensity score match-
ing with McNemar’s test (PSM) to a standard chi-
squared test (x2) for feature selection, one of the

Doctors

o
o
S

Movies

Products

o
@
v}

e
®
<3

F1 score
F1 score
e
9
v

4
@
S

0.70

0.75)

0.0 0.2 0.8 0.2

0.4 0.6
Percentage of feature set

0.4 0.6
Percentage of feature set

0.8 0.2 0.8

0.4 0.6
Percentage of feature set

Figure 1: F1 scores when using a varying numbers of features ranked by two feature selection tests.

most common statistical tests for features in doc-
ument classification (Manning et al., 2008). Since
both tests follow a chi-squared distribution, and
since McNemar’s test is loosely like a chi-squared
test for paired data, we believe this baseline offers
the most direct comparison.

4.3 Results

We calculated the F1 scores of the sentiment clas-
sifiers when using different numbers of features
ranked by significance. For example, when train-
ing a classifier with 1% of the feature set, this is
the most significant 1% (with the lowest p-values).
Results for varying feature set sizes on the three
test datasets are shown in Figure 1.

To summarize the curves with a concise metric,
we calculated the area under these curves (AUC).
AUC scores for each dataset can be found along
the diagonal of Table 3. We find that PSM gives
higher AUC scores than x? in two out of three
datasets, though one is not statistically significant
based on a paired t-test of the F1 scores.

PSM gives a large improvement over x? on the
Movies corpus, though the feature selection curve
is unusual in that it rises gradually and peaks much
later than y2. This appears to be because the high-
est ranking words with PSM have mostly positive
sentiment. There is a worse balance of class asso-
ciations in the top features with PSM than x?2, so
the classifier has a harder time discriminating with
few features. However, PSM eventually achieves
a higher score than the peak from x? and the per-
formance does not drop as quickly after peaking.

In the next two subsections, we examine addi-
tional settings in which PSM offers larger advan-
tages over the x? baseline.

4.3.1 Generalizability

A motivation for learning features with causal as-
sociations with document classes is to learn robust

167

Doctors Movies Products
PSM X2 PSM X2 PSM X2
great told great worst | excellent | waste
caring | great | excellent | bad || wonderful | money
rude rude | wonderful | and great great
best best best great waste worst

excellent | said love waste bad best

Table 4: The highest scoring words from the two
feature selection methods.

M=5 M =10 M =20
PSM | x> | PSM | x? | PSM | 2
Doctors | 5573 | 4806 | .6318 | .5520 | .6999 | .6503
Movies | 5211 | 4962 | .5841 | .6196 | .6171 | .6921
Products | .5388 | 3478 | .5514 | .4696 | .6031 | .5622

Table 5: Area under the feature selection curve
when using only a small number of features, M.

features that can generalize to changes in the data
distribution. To test this, we evaluated each of the
three classifiers on the other two datasets (for ex-
ample, testing the classifier trained on Doctors on
the Products dataset). The AUC scores for all pairs
of datasets are shown in Table 3.

On average, PSM improves the AUC over x>
by an average of .021 when testing on the same
domain as training, while the improvement in-
creases to an average of .053 when testing on out-
of-domain data. In thus seems that PSM may be
particularly effective at identifying features that
can be applied across domains.

4.3.2 Top Features

Having measured performance across the entire
feature set, we now focus on only the most highly
associated features. The top features are important
because these can give insights into the classifica-
tion task, revealing which features are most asso-
ciated with the target classes. Having top features
that are meaningful and interpretable will lead to
more trust in these models (Paul, 2016), and iden-

tifying meaningful features can itself be the goal
of a study (FEisenstein et al., 2011b).

We experimented with a small number of fea-
tures M € {5,10,20}. Under the assumption that
optimal hyperparameters may be different when
using such a small number of features, we retuned
the PSM parameters again for the experiments in
this subsection, using M=10.

Table 4 shows the five words with the lowest
p-values with both methods. At a glance, the top
words from PSM seem to have strong sentiment
associations; for example, excellent is a top five
feature in all three datasets using PSM, and none
of the datasets using x?. Words without obvious
sentiment associations seem to appear more often
in the top 2 features, like and.

To quantify if there is a difference in quality,
we again calculated the area under the feature se-
lection F1 curves, where the number of features
ranged from 1 to M. Results are shown in Table 5.
For M of 10 and 20, PSM does worse on Movies,
which is not surprising based on our finding above
that the top features in this dataset are not bal-
anced across the two labels, so PSM does worse
for smaller numbers of features. For the other two
datasets, PSM substantially outperforms y2. PSM
appears to be an effective method for identifying
strong feature associations.

5 Empirical Analysis

We now perform additional analyses to gain a
deeper understanding of the behavior of propen-
sity score matching applied to feature selection.

5.1 An Example

To better understand what happens during match-
ing, we examined the word said on the Doctors
corpus. This word does not have an obvious sen-
timent association, but is the fifth-highest scoring
word with 2. It is still highly ranked when us-
ing propensity score matching, but this approach
reduces its rank to ten.

Upon closer inspection, we find that reviews
tend to use this word when discussing logistical
issues, like interactions with office staff. These
issues seem to be discussed primarily in a nega-
tive context, giving said a strong association with
negative sentiment. If, however, reviews that dis-
cussed these logistical issues were matched, then
within these matched reviews, those containing
said are probably not more negative than those that

168

mEg
1D
AR i s SRR

Standardized F1 score

-2 -2
0.01 0.1 1.0 100.0 10 0.2

A
Figure 2: The distribution of the area under the
feature selection curve scores when using different
hyperparameter settings (propensity inverse regu-
larization strength A and matching threshold 7).

08 2.0
T

00

A=1.0

Standardized F1 score

-2 -2
0.01 0.1 1.0 100.0 10 0.2

A
Figure 3: The distribution of scores when using
different hyperparameter settings, restricted to the
best performing setting for each independent pa-
rameter as shown in Figure 2 (varying A with the
optimal 7, and varying 7 with the optimal)).

0.8 2.0
T

00

do not. With propensity score matching, docu-
ments are matched based on how likely they are
to contain the word said, which is meant to con-
trol for the negative context that this word has a
tendency (or propensity) to appear in.

Table 6 shows example reviews that do (the
“treatment” group) and do not (the “control”
group) contain said. We see that the higher
propensity reviews do tend to discuss issues like
receptionists and records, and controlling for this
context may explain why this method produced a
lower ranking for this word.

5.2 Hyperparameter Settings

We investigate the effect of different hyperparam-
eter settings. To do this, we first standardized
the results across the three development datasets
by converting them to z-scores so that they can
be directly compared. The distribution of scores
(specifically, the area under the F1 curve scores
from Table 3) is summarized in Figure 2.

“Treatment” “Control”
High Propensity
.8040 | She repeatedly said, “I don’t care how you feel” || .7880 | After a long, long conversation during which I tried
— | when my wife told her the medication (birth control) — | to explain that I did not have records as I was only
was causing issues. She failed to mention a positive looked at by a sport trainer, they still would not see
test result, giving a clean bill of health. me without previous records.
.6320 | I went for a checkup and he ended up waiting for || .5047 | The receptionist was able to get me in the next
— | over 2 hours just to get into the room. Then I waited + | day and really worked around my busy schedule. I
some more until he eventually came in and dedicated downloaded my paperwork off the website and had
the whole 10 minutes of his time. When I asked it ready at my appointment. I waited maybe 10 min-
what exactly is going to take place, the assistant said, utes and was in the exam room. The doctor was re-
no big deal, just a little scrape. ally nice and took the time to talk to me.
Low Propensity
2012 | I said he was on time but usually you have to wait || .1959 | For over a week I was going to the pharmacy ev-
+ | because he does procedures in all hospitals in town, — | ery day after being told by her staff that it had been
has emergencies and runs a little late. No matter how called in. Finally after a week then told she would
busy he is, he greets you warmly and chats with you. not call it in, I had to come in to see her!
.0597 | This doctor did not do what he said he would, was || .0598 | DR.Taylor is usually not around. Staff is rude and
— | massively late, unwilling to talk to us about the con- — | antagonistic. They do not care about you as a person
dition we were facing. or your children.

Table 6: Examples of reviews that were matched based on the word said. Reviews on the left contain
the word said while those on the right do not. Each row corresponds to a pair of matched documents
(edited for length). The propensity score and sentiment label (+ or —) is shown for each document.

Regularization When training the logistic re-
gression model to create propensity scores,
we experimented with the following values of
the inverse regularization parameter: X\ €
{0.01,0.1,1.0,100.0, 10°}, where A=10 is es-
sentially no regularization other than to keep the
optimal parameter values finite. We make two ob-
servations. First, high A values (less regulariza-
tion) generally result in worse scores. Second,
small A values lead to more consistent results, with
less variance in the score distribution. Based on
these results, we recommend a value of A\=1.0
based on its high median score, competitive maxi-
mum score, and low variance.

Matching We required that the scores of two
documents were within 7xSD of each other,
and experimented with the following thresholds:
7 € {0.2,0.8,2.0,00}. Austin (2011b) found that
7=0.2 was optimal for continuous features and
7=0.8 was optimal for binary features. Based on
these guidelines, 0.8 would be appropriate for our
scenario, but we also compared to a larger thresh-
old (2.0) and no threshold (co). We find that scores
consistently increase as 7 increases.

Coupling Looking at the two hyperparameters
independently does not tell the whole story, due to
interactions between the two. In particular, we ob-
serve that lower thresholds (lower 7) work better
when using heavier regularization (lower \), and

vice versa. It turns out that it is ill-advised to use
T=00, as Figure 2 would suggest, when using our
recommendation of A=1.0. Figure 3 shows the
A distribution when set to 7=occ¢ and the 7 distri-
bution when set to A=1.0. This shows that when
A=1.0, scores are much worse when 7=00. When
T=00, scores are better with higher A values.

The best combinations of hyperparameters are
(A =100.0,7 = 00) and (A = 1.0,7 = 2.0). Be-
tween these, we recommend (A = 1.0,7 = 2.0)
due to its higher median and lower variance.

5.3 P-Values

Lastly, we examine the p-values produced by Mc-
Nemar’s test on propensity score matched data
compared to the standard chi-squared test. Fig-
ure 4 shows the distribution of the log of the p-
values from both methods, using the same hyper-
parameters as in Section 4.3. We find that x? tends
to assign lower p-values, with more extreme val-
ues. This suggests that propensity score matching
yields more conservative estimates of the statisti-
cal significance of features.

6 Related Work

In addition to the prior work already discussed,
we wish to draw attention to work in related areas
with respect to text classification.

169

10¢ Doctors 10° Movies 10t Products
I PSM I PSM I PSM
2 2 2
s I X S| | X S| |
10 10 10
) 0)
k< ° °
o o o
B 2 2
G 102 G 1 G 192
210 210 210
[[v
Qo o Qo
S € £
=3 =] =3
z z =
10 10 10
il . Ml L1
~450 —400 -350 -300 -250 —200 -150 -100 -50 © ~800 -700 -600 -500 -400 -300 -200 -100 C ~800 -700 —600 -500 -400 -300 =-200 =100 ¢
Log p-value Log p-value Log p-value

Figure 4: Distribution of p-values of features from the two methods of testing. Counts are on a log scale.

Matching There have been instances of using
matching techniques to improve text training data.
Tan et al. (2014) built models to estimate the
number of retweets of Twitter messages and ad-
dressed confounding factors by matching tweets
of the same author and topic (based on posting
the same link). Zhang et al. (2016) built classi-
fiers to predict media coverage of journal articles
used matching sampling to select negative training
examples, choosing articles from the same jour-
nal issue. While motivated differently, contrastive
estimation (Smith and Eisner, 2005) is also re-
lated to matching. In contrastive estimation, nega-
tive training examples are synthesized by perturb-
ing positive instances. This strategy essentially
matches instances that have the same semantics
but different syntax.

Annotation Perhaps the work that most closely
gets at the concept of causality in document classi-
fication is work that asks for annotators to identify
which features are important. There are branches
of active learning which ask annotators to label not
only documents, but to label features for impor-
tances or relevance (Raghavan et al., 2006; Druck
etal., 2009). Work on annotator rationales (Zaidan
et al., 2007; Zaidan and Eisner, 2008) seeks to
model why annotators labeled a document a cer-
tain way—in other words, what “caused” the doc-
ument to have its label? These ideas could poten-
tially be integrated with causal inference methods
for document classification.

7 Future Work

Efficiency is a drawback of the current work. The
standard way of defining propensity scores with
logistic regression models is not designed to scale
to the large number of variables used in text clas-
sification. Our proposed method is slow because
it requires training a logistic regression model for

170

every word in the vocabulary. Perhaps documents
could instead be matched based on another met-
ric, like cosine similarity. This would match docu-
ments with similar context, which is what the PSM
method appears to be doing based on our analysis.

We emphasize that the results of the PSM sta-
tistical analysis could be used in ways other than
using it to select features ahead of training, which
is less common today than doing feature selection
directly through the training process, for exam-
ple with sparse regularization (Tibshirani, 1994;
Eisenstein et al., 2011a; Yogatama and Smith,
2014). One way to integrate PSM with regular-
ization would be to use each feature’s test statistic
to weight its regularization penalty, discouraging
features with high p-values from having large co-
efficients in a classifier.

In general, we believe this work shows the util-
ity of controlling for the context in which features
appear in documents when learning associations
between features and classes, which has not been
widely considered in text processing. Prior work
that used matching and related techniques for text
classification was generally motivated by specific
factors that needed to be controlled for, but our
study found that a general-purpose matching ap-
proach can also lead to better feature discovery.
We want this work to be seen not necessarily as a
specific prescription for one method of feature se-
lection, but as a general framework for improving
learning of text categories.

8 Conclusion

We have introduced and experimented with the
idea of using propensity score matching for doc-
ument classification. This method matches docu-
ments of similar propensity to contain a word as
a way to simulate the random assignment to treat-
ment and control groups, allowing us to more re-

liably learn if a feature has a significant, causal
effect on document classes. While the concept of
causality does not apply to document classification
as naturally as in other tasks, the methods used
for causal inference may still lead to more inter-
pretable and generalizable features. This was evi-
denced by our experiments with feature selection
using corpora from three domains, in which our
proposed approach resulted in better performance
than a comparable baseline in a majority of cases,
particularly when testing on out-of-domain data.
In future work, we hope to consider other metrics
for matching to improve the efficiency, and to con-
sider other ways of integrating the proposed fea-
ture test into training methods for text classifiers.

References

C.F. Aliferis, A. Statnikov, I. Tsamardinos, S. Mani,
and X.D. Koutsoukos. 2010. Local causal and
markov blanket induction for causal discovery and
feature selection for classification. Journal of Ma-
chine Learning Research 11:171-234.

P.C. Austin. 2011a. An introduction to propensity
score methods for reducing the effects of confound-
ing in observational studies. Multivariate Behav Res
46(3):399-424.

P.C. Austin. 2011b. Optimal caliper widths for
propensity-score matching when estimating differ-
ences in means and differences in proportions in ob-
servational studies. Pharm Stat 10(2):150-161.

G.C. Cawley. 2008. Causal & non-causal feature se-
lection for ridge regression. In Proceedings of the
Workshop on the Causation and Prediction Chal-
lenge at WCCI 2008.

S.F. Chen and R. Rosenfeld. 2000. A survey of
smoothing techniques for maximum entropy mod-
els. IEEE Transactions on Speech and Audio Pro-
cessing 8(1):37-50.

Cheng, C. Danescu-Niculescu-Mizil, and
J. Leskovec. 2015. Antisocial behavior in on-
line discussion communities. In International
Conference on Web and Social Media (ICWSM).

W.G. Cochran. 1968. The effectiveness of adjustment
by subclassification in removing bias in observa-
tional studies. Biometrics 24:295-313.

M. De Choudhury and E. Kiciman. 2017. The lan-
guage of social support in social media and its effect
on suicidal ideation risk. In International Confer-
ence on Web and Social Media (ICWSM).

G. Druck, B. Settles, and A. McCallum. 2009. Ac-
tive learning by labeling features. In Conference on
Empirical Methods in Natural Language Processing
(EMNLP).

171

. Eisenstein, A. Ahmed, and E.P. Xing. 2011a. Sparse
additive generative models of text. In International
Conference on Machine Learning (ICML).

. Eisenstein, N.A. Smith, and E.P. Xing. 2011b. Dis-
covering sociolinguistic associations with structured
sparsity. In Proceedings of the Association for Com-
putational Linguistics (ACL).

G. Forman. 2003. An extensive empirical study of fea-
ture selection metrics for text classification. Journal
of Machine Learning Research 3:1289-1305.

X.S. Gu and PR. Rosenbaum. 1993. Comparison
of multivariate matching methods: Structures, dis-

tances, and algorithms. Journal of Computational
and Graphical Statistics 2:405-420.

. Guyon, C. Aliferis, and A. Elisseeff. 2007. Causal
feature selection. In H. Liu and H. Motoda, editors,
Computational Methods of Feature Selection, Chap-
man and Hall/CRC Press.

A.E. Hoerl and R.W. Kennard. 1970. Ridge regres-
sion: Biased estimation for nonorthogonal prob-
lems. Technometrics 12:55-67.

N. Jindal and B. Liu. 2008. Opinion spam and analy-
sis. In International Conference on Web Search and
Data Mining (WSDM).

V. Landeiro and A. Culotta. 2016. Robust text classifi-
cation in the presence of confounding bias. In AAAI.

A.L. Maas, R.E. Daly, P.T. Pham, D. Huang, A.Y. Ng,
and C. Potts. 2011. Learning word vectors for senti-
ment analysis. In Annual Meeting of the Association
for Computational Linguistics (ACL).

C.D. Manning, P. Raghavan, and H. Schiitze. 2008.
Introduction to Information Retrieval. Cambridge
University Press.

Q. McNemar. 1947. Note on the sampling error of
the difference between correlated proportions or per-
centages. Psychometrika 12(2):153-157.

B. Pang and L. Lee. 2004. A sentimental education:
Sentiment analysis using subjectivity summarization
based on minimum cuts. In Proceedings of the 42nd
Annual Meeting on Association for Computational
Linguistics (ACL).

M.J. Paul. 2016. Interpretable machine learning:
lessons from topic modeling. In CHI Workshop on
Human-Centered Machine Learning.

U. Pavalanathan and J. Eisenstein. 2016. Emoticons vs.
emojis on Twitter: A causal inference approach. In
AAAI Spring Symposium on Observational Studies
through Social Media and Other Human-Generated
Content.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and

E. Duchesnay. 2011. Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research
12:2825-2830.

H. Raghavan, O. Madani, and R. Jones. 2006. Active
learning with feedback on features and instances. J.
Mach. Learn. Res. 7:1655-1686.

N.A. Rehman, J. Liu, and R. Chunara. 2016. Using
propensity score matching to understand the rela-
tionship between online health information sources
and vaccination sentiment. In AAAI Spring Sympo-
sium on Observational Studies through Social Me-
dia and Other Human-Generated Content.

V.L.D. Reis and A. Culotta. 2015. Using matched sam-
ples to estimate the effects of exercise on mental
health from Twitter. In AAAI.

PR. Rosenbaum. 2002.
Springer-Verlag.

Observational Studies.

P.R. Rosenbaum and D.B. Rubin. 1983. The central
role of the propensity score in observational studies
for causal effects. Biometrika 70:41-55.

P.R. Rosenbaum and D.B. Rubin. 1984. Reducing bias
in observational studies using subclassification on
the propensity score. Journal of the American Sta-
tistical Association 79:516-524.

PR. Rosenbaum and D.B. Rubin. 1985. Constructing a
control group using multivariate matched sampling
methods that incorporate the propensity score. The
American Statistician 39:33-38.

N.A. Smith and J. Eisner. 2005. Contrastive estima-
tion: Training log-linear models on unlabeled data.
In Proceedings of the Association for Computational
Linguistics (ACL).

C. Tan, L. Lee, and B. Pang. 2014. The effect of word-
ing on message propagation: Topic- and author-
controlled natural experiments on Twitter. In An-
nual Meeting of the Association for Computational
Linguistics (ACL).

R. Tibshirani. 1994. Regression shrinkage and selec-
tion via the lasso. Journal of the Royal Statistical
Society, Series B 58:267-288.

B.C. Wallace, M.J. Paul, U. Sarkar, T.A. Trikalinos,
and M. Dredze. 2014. A large-scale quantitative
analysis of latent factors and sentiment in online

doctor reviews. Journal of the American Medical
Informatics Association 21(6):1098—-1103.

Y. Yang and J.O. Pedersen. 1997. A comparative study
on feature selection in text categorization. In Pro-
ceedings of the Fourteenth International Conference
on Machine Learning (ICML).

D. Yogatama and N.A. Smith. 2014. Linguistic struc-
tured sparsity in text categorization. In Annual
Meeting of the Association for Computational Lin-
guistics (ACL).

172

O.F. Zaidan and J. Eisner. 2008. Modeling annotators:
A generative approach to learning from annotator ra-
tionales. In Proceedings of EMNLP 2008. pages 31—
40.

O.F. Zaidan, J. Eisner, and C. Piatko. 2007. Using “an-
notator rationales” to improve machine learning for
text categorization. In NAACL HLT 2007; Proceed-
ings of the Main Conference. pages 260-267.

Y. Zhang, E. Willis, M.J. Paul, N. Elhadad, and B.C.
Wallace. 2016. Characterizing the (perceived) news-
worthiness of health science articles: A data-driven
approach. JMIR Med Inform 4(3):e27.

A Joint Model for Semantic Sequences: Frames, Entities, Sentiments

Haoruo Peng Snigdha Chaturvedi Dan Roth
University of Illinois, Urbana-Champaign
{hpeng7, snigdha,danr}@illinois.edu

Abstract

Understanding stories — sequences of
events — is a crucial yet challenging nat-
ural language understanding task. These
events typically carry multiple aspects of
semantics including actions, entities and
emotions. Not only does each individ-
ual aspect contribute to the meaning of the
story, so does the interaction among these
aspects. Building on this intuition, we pro-
pose to jointly model important aspects
of semantic knowledge — frames, entities
and sentiments — via a semantic language
model. We achieve this by first represent-
ing these aspects’ semantic units at an ap-
propriate level of abstraction and then us-
ing the resulting vector representations for
each semantic aspect to learn a joint rep-
resentation via a neural language model.
We show that the joint semantic language
model is of high quality and can gener-
ate better semantic sequences than models
that operate on the word level. We further
demonstrate that our joint model can be
applied to story cloze test and shallow dis-
course parsing tasks with improved perfor-
mance and that each semantic aspect con-
tributes to the model.

1 Introduction

Understanding a story requires understanding se-
quences of events. It is thus vital to model se-
mantic sequences in text. This modeling process
necessitates deep semantic knowledge about what
can happen next. Since events involve actions,
participants and emotions, semantic knowledge
about these aspects must be captured and modeled.

Consider the examples in Figure 1. In Ex.1,
we observe a sequence of actions (commit, arrest,
charge, try), each corresponding to a predicate

173

Ex.1 (Actions - Frames) Steven Avery committed
murder. He was arrested, charged and tried.
Opt.1 Steven Avery was convicted of murder.
Opt.2 Steven went to the movies with friends.
Alter. Steven was held in jail during his trial.

Ex.2 (Participants - Entities) It was my first time
ever playing football and I was so nervous. During
the game, I got tackled and it did not hurt at all!
Opt.1 I then felt more confident playing football.
Opt.2 I realized playing baseball was a lot of fun.
Alter. However, I still love baseball more.

Ex.3 (Emotions - Sentiments) Joe wanted to be-
come a professional plumber. So, he applied to a
trade school. Fortunately, he was accepted.

Opt.1 It made Joe very happy.

Opt.2 It made Joe very sad.

Alter. However, Joe decided not to enroll because
he did not have enough money to pay tuition.

Figure 1: Examples of short stories requiring
different aspects of semantic knowledge. For all
stories, Opt.1 is the correct follow-up, while Opt.2
is the contrastive wrong follow-up demonstrating
the importance of each aspect. Alter. showcases
an alternative correct follow-up, which requires
considering different aspects of semantics jointly.

frame. Clearly, “convict” is more likely than “go”
to follow such sequence. This semantic knowl-
edge can be learned through modeling frame se-
quences observed in a large corpus. This phe-
nomena has already been studied in script learn-
ing works (Chatman, 1980; Chambers and Juraf-
sky, 2008b; Ferraro and Van Durme, 2016; Pi-
chotta and Mooney, 2016a; Peng and Roth, 2016).
However, modeling actions is not sufficient; par-
ticipants in actions and their emotions are also im-
portant. In Ex. 2, Opt.2 is not a plausible answer
because the story is about “football”, and it does
not make sense to suddenly change the key en-

Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017), pages 173—183,
Vancouver, Canada, August 3 - August 4, 2017. (©2017 Association for Computational Linguistics

Models Context Input Generated Ending

4-gram Steven Avery committed murder. He was | With law by the judge <UNK> ...
arrested, charged and tried.

RNNLM same as above The information under terrorism ...

Seq2Seq same as above He decided for a case.

FC-SemLM | commit.01 arrest.01 charge.05 try.01 convict.01

PER[new]-commit.01-ARG[new](NEG)
ARG[new]-arrest.01-PER[0ld](NEU)
ARG[new]-charge.05-PER[old](NEU)
ARG[new]-try.01-PER[0ld](NEG)

FES-LM ARG[new]-convict.01-PER[old](NEG)

Table 1: Comparison of generative ability for different models. For each model, we provide Ex.1 as
context and compare the generated ending. 4-gram and RNNLM models are trained on NYT news data
while Seq2Seq model is trained on the story data (details see Sec. 5). These are models operated on the
word level. We compare them with FC-SemLM (Peng and Roth, 2016), which works on frame abstrac-
tions, i.e. “predicate.sense”. For the proposed FES-LM, we further assign the arguments (subject and
object) of a predicate with NER types (“PER, LOC, ORG, MISC”) or “ARG” if otherwise. Each argu-
ment is also associated with a “[new/old]” label indicating if it is first mentioned in the sequence (decided
by entity co-reference). Additionally, the sentiment of a frame is represented as positive (POS), neural
(NEU) or negative (NEG). FES-LM can generate better endings in terms of soundness and specificity.
The FES-LM ending can be understood as “[Something] convict a person, who has been mentioned be-
fore (with an overall negative sentiment)”, which can be instantiated as ”Steven Avery was convicted.”
given current context.

tity to “baseball”. In Ex.3, one needs understand sponding to different semantic aspects. For each
that “being accepted” typically indicates a positive ~ aspect, we capture semantics via abstracting over
sentiment and that it applies to “Joe”. and disambiguating text surface forms, i.e. seman-
tic frames for predicates, entity types for seman-
tic arguments, and sentiment labels for the over-
all context. These abstractions provide the basic
vocabulary for FES-LM and are essential for cap-
turing the underlying semantics of a story. In Ta-
ble 1, we provide Ex.1 as context input (although
tions “murder”; in Ex.2, even though “football” FC-SemLM and FES-LM automatically generate

is not explicitly mentioned, there is a comparison ~ & MOre abstract representation of this input) and

between “baseball” and “football” that makes this xamine the ability of different models to generate
an ending. 4-gram, RNNLM and Seq2Seq models

operate on the word level, and the generated end-
ings are not satisfactory. FC-SemLM (Peng and
Roth, 2016) works on basic frame abstractions and
the proposed FES-LM model adds abstracted en-
tity and sentiment information into frames. The
results show that FES-LM produces the best end-
ing among all compared models in terms of se-
mantic soundness and specificity.

As importantly, we believe that modeling these
semantic aspects should be done jointly; other-
wise, it may not convey the complete intended
meaning. Consider the alternative follow-ups in
Figure 1: in Ex.1, the entity “jail” gives strong
indication that it follows the storyline that men-

continuation coherent; in Ex.3, “decided not to en-
roll” is a reasonable action after “being accepted”,
although the general sentiment of the sentence is
negative. These examples show that in order to
model semantics in a more complete way, we need
to consider interactions between frames, entities
and sentiments.

In this paper, we propose a joint semantic lan-
guage model, FES-LM, for semantic sequences,
which captures Frames, Entities and Sentiment We build the joint language model from plain
information. Just as “standard” language mod- text corpus with automatic annotation tools, re-
els built on top of words, we construct FES-LM quiring no human effort. In the empirical study,
by building language models on top of joint se- FES-LM is first built on news documents. We
mantic representations. This joint semantic rep- provide perplexity analysis of different variants of
resentation is a mixture of representations corre- FES-LM as well as for the narrative cloze test,

174

where we test the system’s ability to recover a ran-
domly dropped frame. We further show that FES-
LM improves the performance of sense disam-
biguation for shallow discourse parsing. We then
re-train the model on short commonsense stories
(with the model trained on news as initialization).
We perform story cloze test (Mostafazadeh et al.,
2017), i.e. given a four-sentence story, choose
the fifth sentence from two provided options. Our
joint model achieves the best known results in the
unsupervised setting. In all cases, our ablation
study demonstrates that each aspect of FES-LM
contributes to the model.

The main contributions of our work are: 1) the
design of a joint neural language model for seman-
tic sequences built from frames, entities and sen-
timents; 2) showing that FES-LM trained on news
is of high quality and can help to improve shallow
discourse parsing; 3) achieving the state-of-the-art
result on story cloze test in an unsupervised setting
with the FES-LM tuned on stories.

2 Semantic Aspect Modeling

This section describes how we capture different
aspects of the semantic information in a text snip-
pet via semantic frames, entities and sentiments.

2.1 Semantic Frames

Semantic frame is defined by Fillmore (1976):
frames are certain schemata or frameworks of
concepts or terms which link together as a system,
which impose structure or coherence on some as-
pect of human experience, and which may contain
elements which are simultaneously parts of other
such frameworks. In this work, we simplify it by
defining a semantic frame as a composition of a
predicate and its corresponding argument partici-
pants. The design of PropBank frames (Kingsbury
and Palmer, 2002) and FrameNet frames (Baker
et al., 1998) perfectly fits our needs. Here we re-
quire the predicate to be disambiguated to a spe-
cific sense, thus each frame can be uniquely rep-
resented by its predicate sense. These frames pro-
vide a good level of generalization as each frame
can be instantiated into various surface forms in
natural texts. For example, in Ex.1, the seman-
tic frame in Opt.1 would be abstracted as “con-
vict.01”. We associate each of these frames with
an embedding. The arguments of the frames are
modeled as entities, as described next.
Additionally, in accordance with the idea pro-

175

Ex.4 The doctor told Susan that she was busy.
The doctor told Susan that she had cancer.
Mary told Susan that she had cancer.

Figure 2: Examples of the need for different lev-
els of entity abstraction. For each sentence, one
wants to understand what the pronoun “she” refers
to, which requires different abstractions for two
underlined entity choices depending on context.

posed by Peng and Roth (2016), we also ex-
tend the frame representations to include discourse
markers since they model relationships between
frames. In this work, we only consider explicit
discourse markers between abstracted frames. We
use surface forms to represent discourse markers
because there is only a limited set. We also assign
an embedding with the same dimension as frames
to each discourse marker.

To unify the representation, we formally use
ey to represent an embedding of a disambiguated
frame/discourse marker. Such embedding would
later be learned during language model training.

2.2 Entities

We consider the subject and object of a predicate
as the essential entity information for modeling se-
mantics. To achieve a higher level of abstraction,
we model entity types instead of entity surface
forms. We choose to assign entities with labels
produced by Named Entity Recognition (NER), as
NER typing is reliable.!

In fact, it is difficult to abstract each entity into
an appropriate level since the decision is largely
affected by context. Consider the examples shown
in Figure 2. For the first sentence, to correctly un-
derstand what “she” refers to, it is enough to just
abstract both entities “the doctor” and “Susan” to
the NER type “person”, i.e. the semantic knowl-
edge being person A told person B that person A
was busy. However, when we change the context
in the second sentence, the “person” abstraction
becomes too broad as it loses key information for
this “doctor - patient” situation. The ideal seman-
tic abstraction would be “a doctor told a patient
that the patient had a disease”. For the third sen-
tence, it is ambiguous without further context from
other sentences. Thus, entity abstraction is a deli-
cate balance between specificity and correctness.

"Though there are a number works on fine-grained entity
typing (Yogatama et al., 2015; Ren et al., 2016), their perfor-
mances are between 65% and 75%, much lower than NER.

Besides type information, Ex.2 in Figure 1
shows the necessity of providing new entity infor-
mation, i.e whether or not an entity is appeared for
the first time in the whole semantic sequence. This
corresponds well with the definition of anaphroc-
ity in co-reference resolution, i.e. whether or not
the mention starts a co-reference chain. Thus, we
can encode this binary information as an addi-
tional dimension in the entity representation.

Thus, we formally define r. as the entity rep-
resentation. It is the concatenation of two entity
vectors 7,5 and 7y, for subject entity and object
entity respectively. Both 7, and r,; are con-
structed as a one hot vector® to represent an en-
tity type, plus an additional dimension indicating
whether or not it is a new entity (1 if it is new).

2.3 Sentiments

For a piece of text, we can assign a sentiment value
to it. It can either be positive, negative, or neutral.
In order to decide which one is most appropriate,
we first use a look-up table from word lexicons
to sentiment, and then count the number of words
which corresponds to positive (np,s) and negative
(nneg) sentiment respectively. If npos > npeg, we
determine the text as positive; and if npos < Npeg,
we assign the negative label; and if the two num-
bers equal, we deem the text as neutral. We use
one hot vector for three sentiment choices, and de-
fine sentiment representation as 7.

3 FES-LM - Joint Modeling

We present our joint model FES-LM and the neu-
ral language model implementation in this sec-
tion. The joint model considers frames, entities
and sentiments together to construct FES repre-
sentations in order to model semantics more com-
pletely. Moreover, we build language models on
top of such representations to reflect the sequen-
tial nature of semantics.

3.1 FES Representation

We propose FES-LM as a joint model to em-
bed frame, entity and sentiment information to-
gether. Thus for each sentence/clause (specific to
a frame), we can get individual representations for
the frame (i.e. ey), entity types and new entity in-
formation corresponds to subject and object of the
frame (i.e. r¢), and sentiment information (i.e. 7).

Each dimension of the vector indicates an entity type (bi-
nary 0/1), and the vector contains exactly one element of 1.

176

Thus, we construct the FES representation as:
reEs = €f + Were + Wirs.

We, Wy are two matrices transforming entity and
sentiment representations into the frame embed-
ding space, which are added to the correspond-
ing frame embedding. These two parameters are
shared across all FES representations. During lan-
guage model training, we learn frame embeddings
ey as well as W, and W. An overview of the FES
representation in a semantic sequence is shown in
Figure 3. Note that if the frame embedding repre-
sents a discourse marker, we set the correspond-
ing entity and sentiment representations as zero
vectors since no entity/sentiment is matched to a
discourse marker. It is our design choice to add
the entity and sentiment vectors to the frame em-
beddings, which creates a unified semantic space.
During training, the interactions between different
semantic aspects are captured by optimizing the
loss on the joint FES representations.>

3.2 Neural Language Model

To model semantic sequences and train FES repre-
sentations, we build neural language models. The-
oretically, we can utilize any existing neural lan-
guage model. We choose to implement the log-
bilinear language model (LBL) (Mnih and Hinton,
2007) as our main method since previous works
have reported best performance using it (Rudinger
et al., 2015; Peng and Roth, 2016).

For ease of explanation, we assume that a
semantic sequence of FES representations is
[FESl, FES,, FESs, . .. ,FESk], with FES; being
the 44, FES representation in the sequence. It as-
signs each token (i.e. FES representation) with
three components: a target vector v(FES), a con-
text vector v'(FES) and a bias b(FES). Thus, we
model the conditional probability of a token FES;
given its context ¢(FES;):

p(FES¢|c(FES;)) =
exp(v(FES;)Tu(c(FES¢)) + b(FES;))
> rescy €xp(v(FES)Tu(c(FES;)) + b(FES))

Here, V denotes the vocabulary (all possible FES
representations) and we define

3An alternative design choice is to concatenate the vec-
tor representations from different semantic aspects together,
but we did not get better empirical results compared to our
current design.

Sentence/Clause

Figure 3: An overview of the FES representation in a semantic sequence. Semantic frames are
represented by vector 7. The entity representation 7 is the concatenation of 7, and r,;, both consist
of two parts: an one-hot vector for entity type plus an additional dimension to indicate whether or not it
is a new entity. The sentiment representation g is also one-hot.

u(c(FES;)) =

Z q © ’U,(Ci)-

c;€c(FESy)

Note that ® represents element-wise multiplica-
tion and g; is a vector that depends only on the po-
sition of an FES representation in context, which is
also a model parameter. For language model train-
ing, we maximize the overall sequence probability
[T/_, p(FES;|c(FES,)).

4 Building FES-LM

In this section, we explain how we build FES-LM
from un-annotated plain text.

4.1 Dataset and Preprocessing

Dataset We first use the New York Times (NYT)
Corpus* (from year 1987 to 2007) to train FES-
LM. It contains over 1.8M documents in to-
tal. To fine tune the model on short sto-
ries, we re-train FES-LM on the ROCStories
dataset (Mostafazadeh et al., 2017) with the model
trained on NYT as initialization. We use the train
set of ROCStories, which contains around 100K
short stories (each consists of five sentences) °.

Preprocessing We pre-process all documents
with Semantic Role Labeling (SRL) (Punyakanok
et al., 2004) and Part-of-Speech (POS) tag-
ger (Roth and Zelenko, 1998). We also imple-
ment the explicit discourse connective identifica-
tion module of a shallow discourse parser (Song
et al., 2015). Additionally, we utilize within doc-
ument entity co-reference (Peng et al., 2015a) to
produce co-reference chains to get the new entity

4 Available at https://catalog.ldc.upenn.edu/LDC2008T19
> Available at http://cs.rochester.edu/nlp/rocstories/

177

information. To obtain all annotations, we employ
the Illinois NLP tools®.

4.2 FES Representation Generation

As shown in Sec. 3, each FES representation is
built from basic semantic units: frame / entity /
sentiment. We describe our implementation de-
tails on how we extract these units from text and
how we further construct their vector representa-
tions respectively.

Frame Abstraction and Enrichment We directly
derive semantic frames from semantic role label-
ing annotations. As the Illinois SRL package is
built upon PropBank frames, we map them to
FrameNet frames via VerbNet senses to achieve
a higher level of abstraction. The mapping is de-
terministic and partial’. For unmapped PropBank
frames, we retain their original PropBank forms.
We then enrich the frames by augmenting them to
verb phrases. We apply three heuristic rules: 1) if
a preposition immediately follows a predicate, we
append the preposition e.g. “fake over”; 2) if we
encounter the role label AM-PRD which indicates
a secondary predicate, we append it to the main
predicate e.g. “be happy”; 3) if we see the se-
mantic role label AM-NEG which indicates nega-
tion, we append “not” e.g. “not like”. We further
connect compound verbs together as they repre-
sent a unified semantic meaning. For this, we ap-
ply a rule that if the gap between two predicates
is less than two tokens, we treat them as a unified
semantic frame defined by the conjunction of the
two (augmented) semantic frames, e.g. “decide to

8 Available at http://cogcomp.org/page/software/

"We use the mapping file http://verbs.colorado.edu/verb-
index/fn/vn-fn.xml to do it. For example, “place” and “put”
with the same VerbNet sense id “9.1-2” are both mapped to
the FrameNet frame “Placing”.

Vocabulary Size Sequence Size

FES | F | E | S| #seq | #token

NYT 4iM ISK | 100 | 7 | 1.2M | 25.4M
ROCStories | 200K | 1K | 98 | 7 | 100K | 630K

Table 2: Statistics on FES-LM vocabularies and
sequences. We compare FES-LM trained on NYT
vs. ROCStories; “FES” stands for unique FES
representations while “F” for frame embeddings,
“E” for entity representations, and “S” for senti-
ment representations. “#seq” is the number of se-
quences, and “#token” is the total number of to-
kens (FES representations) used for training.

buy” being represented by “decide.01-buy.01”.

To sum up, we employ the same techniques
to deal with frames as discussed in Peng and
Roth (2016), which allows us to model more fine-
grained semantic frames. As an example of this
processing step, “He didn’t want to give up.” is
represented as “(not)want.01-give.01[up]”. Each
semantic frame (here, including discourse mark-
ers) is represented by a 200-dimensional vector e.
Entity Label Assignment For each entity (here
we refer to subject and object of the predicate), we
first extract its syntactic head using Collins’ Head
Rule. To assign entity types, we then check if the
head is inside a named entity generated by NER. If
so, we directly assign the NER label to this entity.
Otherwise, we check if the entity is a pronoun that
refers to a person i.e. I, me, we, you, he, him, she,
her; they, them; in which case, we assign “PER”
label to it. For all other cases, we simply assign
“ARG” label to indicate the type is unknown.

In order to assign “new entity” labels, we check
if the head is inside a mention identified by the co-
reference system to start a new co-reference chain.
If so, we assign 1; otherwise, we assign 0. On
ROCStories dataset, we add an additional rule that
all pronouns indicating a person will not be “new
entities”. This makes the co-reference decisions
more robust on short stories.®

The entity representation r, is eventually con-
structed as a one-hot vector for types of 5 dimen-
sions and an additional dimension for “new entity”
information. As we consider both subjects and ob-
jects of a frame, r, is of 12 dimensions in total. If
either one of the entities within a frame is missing
from SRL annotations, we set its corresponding 6
dimensions as zeros.

Sentiment Representation Generation We first

8The same rule is not applied on news, since pronouns
indicating a person can start a co-reference chain in news.

178

determine the polarity of a word by a look-up ta-
ble from two pre-trained sentiment lexicons (Liu
et al., 2005; Wilson et al., 2005). We then count
the number of positive words versus negative
words to decide the sentiment of a piece of text
as detailed in Sec. 2. This process is done on text
corresponding to each frame, i.e. a sentence or a
clause. Since we have two different lexicons, we
get two separate one-hot sentiment vectors, each
with a dimension of 3. Thus, the sentiment repre-
sentation is the concatenation of the two vectors, a
total dimension of 6.

4.3 Neural Language Model Training

For the NYT corpus, we treat each document as
a single semantic sequence while on ROCStories,
we see each story as a semantic sequence. Ad-
ditionally, we filter out rare frames which appear
less than 20 times in the NYT corpus. Statistics on
the eventual FES-LM vocabularies (unique FES
representations) and semantic sequences in both
datasets are shown in Table 2. Note that the num-
ber of unique FES representations reflects the rich-
ness of the semantic space that we model. On both
datasets, it is about 200 times over what is mod-
eled by only frame representations. At the same
time, we do not incur burden on language model
training. It is because we do not model unique
FES representations directly, and instead we are
still operating in the frame embedding space.’

We use the OxLLM toolkit (Baltescu et al., 2014)
with Noise-Constrastive Estimation (Gutmann and
Hyvarinen, 2010) to implement the LBL model.
We set the context window size to 5 and pro-
duce 200-dimension embeddings for FES repre-
sentations. In addition to learning language model
parameters, we also learn frame embeddings ey
along with parameters for W, (12x200 matrix) and
W (6x200 matrix).

5 Evaluation

We first show that our proposed FES-LM is of high
quality in terms of language modeling ability. We
then evaluate FES-LLM for shallow discourse pars-
ing on news data as well as application for story
cloze test on short common sense stories. In all
studies, we verify that each semantic aspect con-
tributes to the joint model.

The FES representation space can be seen as entity and
sentiment infused frame embedding space.

CBOW SG LBL
Perplexity
FES-LM 133.8 135.8 126.0
Narrative Cloze Test (Recall@30)
FES-LM 38.9 373 43.2
FES-LM - Entity 35.3 33.1 384
FES-LM - Sentiment ~ 34.9 32.8 36.3

Table 3: Quality comparison of neural language
models. We report results for perplexity and nar-
rative cloze test. Both evaluations are done on the
gold PropBank data (annotated with gold frames).
LBL outperforms CBOW and SG on both tests.
We carry out ablation studies for narrative cloze
test for FES-LM without entity and sentiment as-
pects respectively.

5.1 Quality of FES-LM

To evaluate the modeling ability of different neu-
ral language models, we train each variant of
FES-LM on NYT corpus and report perplex-
ity and narrative cloze test results. Here, we
choose the Skip-Gram (SG) model (Mikolov et al.,
2013b) and Continuous-Bag-of-Words (CBOW)
model (Mikolov et al., 2013a) for comparison with
the LBL model. We utilize the word2vec package
to implement both SG and CBOW. We set the con-
text window size to be 10 for SG and 5 for CBOW.
We employ the same experimental setting as de-
tailed in Peng and Roth (2016). Results are shown
in Table 3. They confirm that LBL model per-
forms the best with the lowest perplexity and high-
est recall for narrative cloze test.'” Note that the
numbers reported are not directly comparable with
those in literature (Rudinger et al., 2015; Peng and
Roth, 2016), as we model much richer semantics
even though the numbers seem inferior. We fur-
ther carry out ablation studies for narrative cloze
test for FES-LM without entity and sentiment as-
pects respectively!!. The results show that senti-
ment contributes more than entity information.

5.2 Application on News

We choose shallow discourse parsing as the task to
show FES-LM’s applicability on news. In particu-
lar, we evaluate on identifying the correct sense of
discourse connectives (both explicit and implicit

OWe also tried Neural-LSTM (Pichotta and Mooney,
2016a) and context2vec (Melamud et al., 2016) model, but
we cannot get better results.

"The ablation study is not done for perplexity test because
FES-LM with less semantic aspects yields smaller vocabu-
lary, which naturally leads to lower perplexity.

179

ones). We choose Song et al. (2015), which uses
a supervised pipeline approach, as our base sys-
tem. We follow the same experimental setting as
described in Peng and Roth (2016), i.e. we add ad-
ditional conditional probability features generated
from FES-LM into the base system. We evaluate
on CoNLL16 (Xue et al., 2016) test and blind sets,
following the train and development split from
the Shared Task, and report F1 using the official
shared task scorer.

Table 4 shows the results for shallow dis-
course parsing with added FES-LM features. We
get significant improvement over the base sys-
tem(*) (based on McNemar’s Test) and outper-
form SemLM, which only utilizes frame infor-
mation in the semantic sequences. We also ri-
val the top system (Mihaylov and Frank, 2016) in
the CoNLL16 Shared Task (connective sense clas-
sification subtask). Note that the FES-LM used
here is trained on NYT corpus. The ablation study
shows that entity aspect contributes less than sen-
timent aspect in this application.

5.3 Application on Stories

For the story cloze test on the ROCStories dataset.
We evaluate in an unsupervised setting, where we
disregard the labeled development set and directly
test on the test set'2. We believe this is a better set-
ting to reflect a system’s ability to model seman-
tic sequences compared to the supervised setting
where we simply treat the task as a binary classifi-
cation problem with a development set to tune.
We first generate a set of conditional probabil-
ity features from FES-LM. For each story, we ex-
tract semantic aspect information as described in
Sec. 2 and construct the joint FES representation
according to the learned FES-LM. We then uti-
lize the conditional probability of the fifth sen-
tence s; given previous context sentences C' as
features. Suppose the semantic information in
the fifth sentence can be represented by 7ggs.,
we can then define the features as p(s5|C) =
P(TFES K|TFES_(k-1)» TFES_(k-2) * " * » TFES_(k-), © =
1,2, , k. We get multiple features depending on
how long we go back in the context in terms of
FES representations. Note that one sentence can
contain multiple FES representations depending
on how many semantic frames it has. For simplic-
ity, we assume a single FES representation 7ggs_x

"2The test set contains 1,871 four-sentences long stories
with two fifth sentence options for each, of which only one is
correct; and we report the accuracy.

CoNLL16 Test CoNLL16 Blind
Explicit | Implicit | Overall | Explicit | Implicit | Overall
Base (Song et al., 2015)* 89.8 35.6 60.4 75.8 319 523
SemLM (Peng and Roth, 2016) 91.1 36.3 61.4 77.3 332 53.8
Top (Mihaylov and Frank, 2016) 89.8 39.2 63.3 78.2 34.5 54.6
FES-LM (this work) 91.0 37.5 61.8 78.3 344 54.5
FES-LM - Entity 90.8 37.1 61.6 77.9 34.0 54.1
FES-LM - Sentiment 90.5 36.9 61.3 71.3 33.8 53.9

Table 4: Shallow discourse parsing results. With added FES-LM features, we get significant improve-
ment (based on McNemar’s Test) over the base system(*) and outperform SemL.M, which only models
frame information. We also rival the top system (Mihaylov and Frank, 2016) in the CoNLL16 Shared

Task (connective sense classification subtask).

Baselines

Seq2Seq 58.0%
DSSM (Mostafazadeh et al., 2016) 58.5%
Seq2Seq with attention 59.1%
Individual Aspect S. M.V.
F-LM 57.8% 56.3%
E-LM 521% 52.6%
S-LM 542% 54.9%
Joint Model S. M.V.
FES-LM (this work) 623% 61.6%
FES-LM - Entity 61.5% 61.7%
FES-LM - Sentiment 61.1% 60.9%

Table 5: Accuracy results for story cloze text in
the unsupervised setting. “S.” represents the in-
ference method with the single most informative
feature while “M.V.” means majority voting. FES-
LM outperforms the strongest baseline (Seq2Seq
with attention) by 3 points. The difference is
statistically significant based on McNemar’s Test.
Additional ablation studies show that each seman-
tic aspect contributes to the joint model.

for s5. In practice, we get at most 12 FES repre-
sentations as context. We align the features by ¢,
indicating how long we consider the story context.
Thus, for each story, we generate at most 12 pairs
of conditional probability features. Evey pair of
such features can yield a decision on which ending
is more probable. Here, we test two different infer-
ence methods: a single most informative feature
(where we go with the decision made by the pair
of features which have the highest ratio) or ma-
jority voting based on all feature pairs. Note that
we need to re-train FES-LM on the stories (train
set of ROCStories, 5-sentence stories, no negative
examples provided)'3.

1t is because of domain difference, e.g. average length of
semantic sequence is different (stories are shorter while news

We compare FES-LM with Seq2Seq base-
lines (Sutskever et al., 2014). We also train the
Seq2Seq model on the train set of ROCStories,
where we set input as the 4-sentence context and
the output as the 5th ending sentence for each
story. At test time, we get probability of each op-
tion ending from the soft-max layer and choose
the higher one as the answer. We use an LSTM
encoder (300 hidden units) and decode with an
LSTM of the same size. Since it is operated on the
word level, we use pre-trained 300-dimensional
GloVe embeddings (Pennington et al., 2014) and
keep them fixed during training. In addition,
we add an attention mechanism (Bahdanau et al.,
2014) to make the Seq2Seq baseline stronger.
We also report DSSM from Mostafazadeh et al.
(2016) as the previously best reported result!*.
To study how each individual aspect affects the
performance, we develop neural language mod-
els on frames (F-LM), entities (E-LM) and sen-
timents (S-LM) as additional baseline models sep-
arately. We use the same language model train-
ing and feature generation techniques as FES-LM.
Particularly, for F-LLM, it is the same model as FC-
SemLM defined in Peng and Roth (2016). Note
that individual aspects cannot capture the seman-
tic difference between two given options for all
instances. For those instances that the baseline
model fails to handle, we set the accuracy as 50%
(expectation of random guesses).

The accuracy results are shown in Table 5.
The best result we achieve (62.3%) outperforms
the strongest baseline (Seq2Seq with attention,
59.1%). It is statistically significant based on Mc-
Nemar’s Test (o« = 0.01), illustrating the superior

are longer, see in Table 2).

“DSSM’s model parameters are trained on the ROCSto-
ries corpus while hyper parameters are determined on the de-
velopment set.

180

semantic modeling ability of FES-LM. Results are
mixed comparing the two inference methods. The
ablation study further confirms that each semantic
aspect has its worth in the joint model.

6 Related Work

Our work is built upon the previous work (Peng
and Roth, 2016). It generated a probabilistic
model on semantic frames while taking into ac-
count discourse information, and showed appli-
cations to both co-reference resolution and shal-
low discourse parsing. This line of work is
in general inspired by script learning. Early
works (Schank and Abelson, 1977; Mooney and
DelJong, 1985) tried to learn scripts via construc-
tion of knowledge bases from text. More recently,
researchers focused on utilizing statistical models
to extract high-quality scripts from large amounts
of data (Chambers and Jurafsky, 2008a; Bejan,
2008; Jans et al., 2012; Pichotta and Mooney,
2014; Granroth-Wilding et al., 2015; Rudinger
etal., 2015; Pichotta and Mooney, 2016b,a). Other
works aimed at learning a collection of structured
events (Chambers, 2013; Cheung et al., 2013; Bal-
asubramanian et al., 2013; Bamman and Smith,
2014; Nguyen et al., 2015; Inoue et al., 2016).
In particular, Ferraro and Van Durme (2016) pre-
sented a unified probabilistic model of syntactic
and semantic frames while also demonstrating im-
proved coherence. Several works have employed
neural embeddings (Modi and Titov, 2014b,a; Fr-
ermann et al., 2014; Titov and Khoddam, 2015).
Some prior works have used scripts-related ideas
to help improve NLP tasks (Irwin et al., 2011;
Rahman and Ng, 2011; Peng et al., 2015b). Most
recently, Mostafazadeh et al. (2016, 2017) pro-
posed story cloze test as a standard way to test
a system’s ability to model semantics. They re-
leased ROCStories dataset, and organized a shared
task for LSDSem’17.

7 Conclusion

This paper proposes FES-LM, a joint neural lan-
guage model for semantic sequences built upon
frames, entities and sentiments. Abstractions on
these semantic aspects enable FES-LM to generate
better semantic sequences than models working on
the word level. Evaluations show that the joint
model helps to improve shallow discourse parsing
and achieves the best result for story cloze test in
the unsupervised setting. In future work, we plan

181

to extend FES-LM to capture more semantic as-
pects and work towards building a general seman-
tic language model.

Acknowledgments

This work is supported by the US Defense Ad-
vanced Research Projects Agency (DARPA) un-
der contract HR0011-15-2-0025, and by the Army
Research Laboratory (ARL) under agreement
WI11NF-09-2-0053, and also by IBM-ILLINOIS
Center for Cognitive Computing Systems Re-
search (C3SR) - a research collaboration as part of
the IBM Cognitive Horizon Network. The views
expressed are those of the authors and do not re-
flect the official policy or position of the Depart-
ment of Defense or the U.S. Government.

References

D. Bahdanau, K. Cho, and Y. Bengio. 2014. Neural
machine translation by jointly learning to align and
translate. arXiv preprint arXiv:1409.0473 .

C. F. Baker, C. J. Fillmore, and J. B. Lowe. 1998. The
berkeley framenet project. In COLING/ACL.

N. Balasubramanian, S. Soderland, O. E. Mausam,
and O. Etzioni. 2013. Generating coherent event
schemas at scale. In EMNLP.

P. Baltescu, P. Blunsom, and H. Hoang. 2014. Oxlm