
CoNLL 2017

The 21st Conference on
Computational Natural Language Learning

Proceedings of the Conference

August 3 - August 4, 2017
Vancouver, Canada

Sponsors

c©2017 The Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ISBN 978-1-945626-54-8

ii

Introduction

The 2017 Conference on Computational Natural Language Learning (CoNLL) is the 21st in the series
of annual meetings organized by SIGNLL, the ACL special interest group on natural language learning.
CoNLL 2017 will be held on August 3–4, 2017, and is co-located with the 55th annual meeting of the
Association for Computational Linguistics (ACL) in Vancouver, Canada.

As in most previous years, in order to accommodate papers with experimental material and detailed
analysis/proofs, CoNLL 2017 invited only long papers, allowing eight pages of content plus unlimited
pages of references and supplementary material in initial submission. Final, camera-ready submissions
were allowed one additional page, so that all papers in the proceedings have a maximum of nine content
pages plus unlimited pages of references and supplementary material.

CoNLL 2017 received a record number of 280 submissions in total, out of which 2 had to be rejected
for formal reasons, and 12 were withdrawn by the authors during the review period. Of the remaining
271 papers, 50 papers were chosen to appear in the conference program, with an overall acceptance
rate of 18.7%, the lowest ever for the conference. Seven of these were withdrawn after the notification,
resulting in 43 papers for the final program: 20 selected for oral presentation, and the remaining 23
for poster presentation plus lightning oral presentation. All 43 papers appear here in the conference
proceedings.

CoNLL 2017 features two invited talks, given by Chris Dyer (Google DeepMind) and Naomi Feldman
(University of Maryland), and two shared tasks: one on Universal Morphological Reinflection and one
on Multilingual Parsing from Raw Text to Universal Dependencies. Papers accepted for the shared tasks
are published in companion volumes of the CoNLL 2017 proceedings.

We would like to thank all the authors who submitted their work to CoNLL 2017, and the program
committee for helping us select the best papers out of many high-quality submissions. We are grateful
to the many program committee members who answered positively to our late requests for reviewing
assistance due to the unexpectedly large number of submissions. For this year’s CoNLL, we allowed
simultaneous submission to other conferences, and in order to ease the burden on the community of
reviewers we implemented limited, partial cross-conference review sharing with EMNLP for papers
submitted to both conferences. We are grateful to the EMNLP chairs, Rebecca Hwa and Sebastian
Riedel, for working together with us, and to the EMNLP program committee members who participated
in this process. We are also grateful to our invited speakers and to the SIGNLL board members. In
particular, we are immensely thankful to Julia Hockenmaier for her valuable advice and assistance in
putting together this year’s program and proceedings. We also thank Ben Verhoeven, for maintaining
the CoNLL 2017 website. We are grateful to the ACL organization for helping us with the program,
proceedings and logistics. Finally, our gratitude goes to our sponsor, Google Inc., for supporting the best
paper award at CoNLL 2017.

We hope you enjoy the conference!

Roger Levy and Lucia Specia

CoNLL 2017 conference co-chairs

iii

Conference Chairs:

Lucia Specia, University of Sheffield (UK)
Roger Levy, MIT (USA)

Invited Speakers:

Chris Dyer, CMU (USA) and Google DeepMind (UK)
Naomi Feldman, Department of Linguistics and Institute for Advanced Computer Studies,
University of Maryland (USA)

Program Committee:

Steven Abney
Željko Agić
Roee Aharoni
Héctor Martínez Alonso
Waleed Ammar
Tom Anderson
Ron Artstein
Yoav Artzi
Wilker Aziz
Collin Baker
Omid Bakhshandeh
Timothy Baldwin
Miguel Ballesteros
Roy Bar-Haim
Timo Baumann
Daniel Beck
Barend Beekhuizen
Yonatan Belinkov
Dane Bell
Jonathan Berant
Yevgeni Berzak
Chandra Bhagavatula
Suma Bhat
Pushpak Bhattacharyya
Joachim Bingel
Yonatan Bisk
Johannes Bjerva
Frédéric Blain
Michael Bloodgood
Bernd Bohnet
Francesca Bonin
Chloé Braud
Chris Brockett

v

Julian Brooke
Kris Cao
Cornelia Caragea
Gracinda Carvalho
Francisco Casacuberta
Baobao Chang
Kai-Wei Chang
Snigdha Chaturvedi
Boxing Chen
Danqi Chen
Wei-Te Chen
David Chiang
Hai Leong Chieu
Eunah Cho
Yejin Choi
Christos Christodoulopoulos
Grzegorz Chrupała
Volkan Cirik
Alexander Clark
Stephen Clark
Arman Cohan
Trevor Cohn
Benoit Crabbé
Walter Daelemans
Andrew Dai
Bhavana Dalvi
Vera Demberg
Steve DeNeefe
Lingjia Deng
Nina Dethlefs
Mark Dras
Rotem Dror
Kevin Duh
Greg Durrett
Chris Dyer
Judith Eckle-Kohler
Jacob Eisenstein
Meng Fang
Geli Fei
Raquel Fernandez
José A. R. Fonollosa
George Foster
Stella Frank
Stefan L. Frank
Lea Frermann
Richard Futrell
Matt Gardner
Michaela Geierhos
Daniel Gildea
Roxana Girju

vi

Dan Goldwasser
Carlos Gómez-Rodríguez
Alvin Grissom II
Cyril Grouin
Sonal Gupta
Masato Hagiwara
Keith Hall
Jey Han Lau
Homa B. Hashemi
Hua He
Julian Hitschler
Julia Hockenmaier
Andrea Horbach
Yufang Hou
Diana Inkpen
Laura Jehl
Charles Jochim
Anders Johannsen
Sariya Karimova
Casey Kennington
Fabio Kepler
Daniel Khashabi
Tracy Holloway King
Sigrid Klerke
Roman Klinger
Philipp Koehn
Mikhail Kozhevnikov
Julia Kreutzer
Jayant Krishnamurthy
Germán Kruszewski
Sandra Kübler
Marco Kuhlmann
Jonathan K. Kummerfeld
Ophélie Lacroix
Chiraag Lala
Carolin Lawrence
Tao Lei
Alessandro Lenci
Omer Levy
Qi Li
Tal Linzen
Ting Liu
Yi Luan
Marco Lui
Franco M. Luque
Pranava Swaroop Madhyastha
Daniel Marcu
Alex Marin
Bruno Martins
Luis Marujo

vii

Yuji Matsumoto
Yevgen Matusevych
David McClosky
Kathy McKeown
Marissa Milne
Ashutosh Modi
Alessandro Moschitti
Nasrin Mostafazadeh
Skatje Myers
Preslav Nakov
Jason Naradowsky
Shashi Narayan
Jan Niehues
Joakim Nivre
Pierre Nugues
Alexis Palmer
Denis Paperno
Viktor Pekar
Nanyun Peng
Xiaochang Peng
Johann Petrak
Luis Nieto Piña
Yuval Pinter
Barbara Plank
David Powers
Nazneen Fatema Rajani
Carlos Ramisch
Roi Reichart
Corentin Ribeyre
Laura Rimell
Alan Ritter
Brian Roark
Kirk Roberts
Salvatore Romeo
Dan Roth
Michael Roth
Alla Rozovskaya
Kenji Sagae
Benoît Sagot
Bahar Salehi
Ryohei Sasano
Carolina Scarton
Shigehiko Schamoni
Marten van Schijndel
Jonathan Schler
William Schuler
Roy Schwartz
Djamé Seddah
Yee Seng Chan
Chaitanya Shivade

viii

Vered Shwartz
Khalil Simaan
Patrick Simianer
Kairit Sirts
Noah A. Smith
Anders Søgaard
Artem Sokolov
Luca Soldaini
Vivek Srikumar
Shashank Srivastava
Gabriel Stanovsky
Ian Stewart
Kevin Stowe
Simon Suster
Swabha Swayamdipta
Partha Talukdar
Chenhao Tan
Sam Thomson
James Thorne
Shubham Toshniwal
Reut Tsarfaty
Oren Tsur
Lifu Tu
Anh Tuan Luu
Marco Turchi
Marc Verhagen
Yannick Versley
Aline Villavicencio
Andreas Vlachos
Svitlana Volkova
Ivan Vulić
Ekaterina Vylomova
Zhiguo Wang
Zeerak Waseem
Taro Watanabe
Ingmar Weber
Ralph Weischedel
Michael Wiegand
John Wieting
Michael Wojatzki
Rui Xia
Berrin Yanikoglu
Marcos Zampieri
Qi Zhang
Xingxing Zhang
Hai Zhao
Muhua Zhu

ix

Table of Contents

Should Neural Network Architecture Reflect Linguistic Structure?
Chris Dyer . 1

Rational Distortions of Learners’ Linguistic Input
Naomi Feldman . 2

Exploring the Syntactic Abilities of RNNs with Multi-task Learning
Émile Enguehard, Yoav Goldberg and Tal Linzen . 3

The Effect of Different Writing Tasks on Linguistic Style: A Case Study of the ROC Story Cloze Task
Roy Schwartz, Maarten Sap, Ioannis Konstas, Leila Zilles, Yejin Choi and Noah A. Smith 15

Parsing for Grammatical Relations via Graph Merging
Weiwei Sun, Yantao Du and Xiaojun Wan . 26

Leveraging Eventive Information for Better Metaphor Detection and Classification
I-Hsuan Chen, Yunfei Long, Qin Lu and Chu-Ren Huang . 36

Collaborative Partitioning for Coreference Resolution
Olga Uryupina and Alessandro Moschitti .47

Named Entity Disambiguation for Noisy Text
Yotam Eshel, Noam Cohen, Kira Radinsky, Shaul Markovitch, Ikuya Yamada and Omer Levy . . 58

Tell Me Why: Using Question Answering as Distant Supervision for Answer Justification
Rebecca Sharp, Mihai Surdeanu, Peter Jansen, Marco A. Valenzuela-Escárcega, Peter Clark

and Michael Hammond . 69

Learning What is Essential in Questions
Daniel Khashabi, Tushar Khot, Ashish Sabharwal and Dan Roth .80

Top-Rank Enhanced Listwise Optimization for Statistical Machine Translation
Huadong Chen, Shujian Huang, David Chiang, Xin-Yu Dai and Jiajun CHEN.90

Embedding Words and Senses Together via Joint Knowledge-Enhanced Training
Massimiliano Mancini, Jose Camacho-Collados, Ignacio Iacobacci and Roberto Navigli 100

Automatic Selection of Context Configurations for Improved Class-Specific Word Representations
Ivan Vulić, Roy Schwartz, Ari Rappoport, Roi Reichart and Anna Korhonen 112

Modeling Context Words as Regions: An Ordinal Regression Approach to Word Embedding
Shoaib Jameel and Steven Schockaert .123

An Artificial Language Evaluation of Distributional Semantic Models
Fatemeh Torabi Asr and Michael Jones . 134

Learning Word Representations with Regularization from Prior Knowledge
Yan Song, Chia-Jung Lee and Fei Xia . 143

Attention-based Recurrent Convolutional Neural Network for Automatic Essay Scoring
Fei Dong, Yue Zhang and Jie Yang . 153

xi

Feature Selection as Causal Inference: Experiments with Text Classification
Michael J. Paul . 163

A Joint Model for Semantic Sequences: Frames, Entities, Sentiments
Haoruo Peng, Snigdha Chaturvedi and Dan Roth. .173

Neural Sequence-to-sequence Learning of Internal Word Structure
Tatyana Ruzsics and Tanja Samardzic .184

A Supervised Approach to Extractive Summarisation of Scientific Papers
Ed Collins, Isabelle Augenstein and Sebastian Riedel . 195

An Automatic Approach for Document-level Topic Model Evaluation
Shraey Bhatia, Jey Han Lau and Timothy Baldwin . 206

Robust Coreference Resolution and Entity Linking on Dialogues:
Character Identification on TV Show Transcripts

Henry Y. Chen, Ethan Zhou and Jinho D. Choi . 216

Cross-language Learning with Adversarial Neural Networks
Shafiq Joty, Preslav Nakov, Lluís Màrquez and Israa Jaradat . 226

Knowledge Tracing in Sequential Learning of Inflected Vocabulary
Adithya Renduchintala, Philipp Koehn and Jason Eisner . 238

A Probabilistic Generative Grammar for Semantic Parsing
Abulhair Saparov, Vijay Saraswat and Tom Mitchell . 248

Learning Contextual Embeddings for Structural Semantic Similarity using Categorical Information
Massimo Nicosia and Alessandro Moschitti . 260

Making Neural QA as Simple as Possible but not Simpler
Dirk Weissenborn, Georg Wiese and Laura Seiffe . 271

Neural Domain Adaptation for Biomedical Question Answering
Georg Wiese, Dirk Weissenborn and Mariana Neves . 281

A phoneme clustering algorithm based on the obligatory contour principle
Mans Hulden .290

Learning Stock Market Sentiment Lexicon and Sentiment-Oriented Word Vector from StockTwits
Quanzhi Li and Sameena Shah . 301

Learning local and global contexts using a convolutional recurrent network model
for relation classification in biomedical text

Desh Raj, Sunil Sahu and Ashish Anand . 311

Idea density for predicting Alzheimer’s disease from transcribed speech
Kairit Sirts, Olivier Piguet and Mark Johnson . 322

Zero-Shot Relation Extraction via Reading Comprehension
Omer Levy, Minjoon Seo, Eunsol Choi and Luke Zettlemoyer .333

The Covert Helps Parse the Overt
Xun Zhang, Weiwei Sun and Xiaojun Wan . 343

xii

German in Flux: Detecting Metaphoric Change via Word Entropy
Dominik Schlechtweg, Stefanie Eckmann, Enrico Santus, Sabine Schulte im Walde

and Daniel Hole . 354

Encoding of phonology in a recurrent neural model of grounded speech
Afra Alishahi, Marie Barking and Grzegorz Chrupała . 368

Multilingual Semantic Parsing And Code-Switching
Long Duong, Hadi Afshar, Dominique Estival, Glen Pink, Philip Cohen and Mark Johnson . . . 379

Optimizing Differentiable Relaxations of Coreference Evaluation Metrics
Phong Le and Ivan Titov . 390

Neural Structural Correspondence Learning for Domain Adaptation
Yftah Ziser and Roi Reichart . 400

A Simple and Accurate Syntax-Agnostic Neural Model for Dependency-based Semantic Role Labeling
Diego Marcheggiani, Anton Frolov and Ivan Titov . 411

Joint Prediction of Morphosyntactic Categories for Fine-Grained Arabic Part-of-Speech Tagging Ex-
ploiting Tag Dictionary Information

Go Inoue, Hiroyuki Shindo and Yuji Matsumoto . 421

Learning from Relatives: Unified Dialectal Arabic Segmentation
Younes Samih, Mohamed Eldesouki, Mohammed Attia, Kareem Darwish, Ahmed Abdelali,

Hamdy Mubarak and Laura Kallmeyer . 432

Natural Language Generation for Spoken Dialogue System using RNN Encoder-Decoder Networks
Van-Khanh Tran and Le-Minh Nguyen . 442

Graph-based Neural Multi-Document Summarization
Michihiro Yasunaga, Rui Zhang, Kshitijh Meelu, Ayush Pareek, Krishnan Srinivasan

and Dragomir Radev .452

xiii

Conference Program

Thursday, August 3, 2017

8:45–9:00 Opening Remarks

Invited Talk by Chris Dyer

9:00–10:00 Should Neural Network Architecture Reflect Linguistic Structure?
Chris Dyer

Session 1

10:00–10:15 Exploring the Syntactic Abilities of RNNs with Multi-task Learning
Émile Enguehard, Yoav Goldberg and Tal Linzen

Session 1L: Lightning Talks for Poster Session

10:15–10:17 The Effect of Different Writing Tasks on Linguistic Style:
A Case Study of the ROC Story Cloze Task
Roy Schwartz, Maarten Sap, Ioannis Konstas, Leila Zilles,
Yejin Choi and Noah A. Smith

10:17–10:19 Parsing for Grammatical Relations via Graph Merging
Weiwei Sun, Yantao Du and Xiaojun Wan

10:19–10:21 Leveraging Eventive Information for Better Metaphor Detection and Classification
I-Hsuan Chen, Yunfei Long, Qin Lu and Chu-Ren Huang

10:21–10:23 Collaborative Partitioning for Coreference Resolution
Olga Uryupina and Alessandro Moschitti

10:23–10:25 Named Entity Disambiguation for Noisy Text
Yotam Eshel, Noam Cohen, Kira Radinsky, Shaul Markovitch,
Ikuya Yamada and Omer Levy

xv

Thursday, August 3, 2017 (continued)

10:25–10:27 Tell Me Why: Using Question Answering as Distant Supervision
for Answer Justification
Rebecca Sharp, Mihai Surdeanu, Peter Jansen, Marco A. Valenzuela-Escárcega,
Peter Clark and Michael Hammond

10:27–10:29 Learning What is Essential in Questions
Daniel Khashabi, Tushar Khot, Ashish Sabharwal and Dan Roth

10:29–10:31 Top-Rank Enhanced Listwise Optimization for Statistical Machine Translation
Huadong Chen, Shujian Huang, David Chiang, Xin-Yu Dai and Jiajun Chen

10:31–11:00 Coffee Break

Session ST1: CoNLL-SIGMORPHON Shared Task

11:00–12:30 Mans Hulden, Ryan Cotterell, Christo Kirov, and John Sylak-Glassman:
Universal Morphological Reinflection in 52 Languages

12:30–2:00 Lunch Break

Session ST2: CoNLL Shared Task

2:00–3:30 Dan Zeman, Jan Hajič, et al.:
Multilingual Parsing from Raw Text to Universal Dependencies

3:30–4:00 Coffee Break

xvi

Thursday, August 3, 2017 (continued)

Session 2

4:00–4:15 Embedding Words and Senses Together via Joint Knowledge-Enhanced Training
Massimiliano Mancini, Jose Camacho-Collados, Ignacio Iacobacci
and Roberto Navigli

4:15–4:30 Automatic Selection of Context Configurations for Improved Class-Specific
Word Representations
Ivan Vulić, Roy Schwartz, Ari Rappoport, Roi Reichart and Anna Korhonen

4:30–4:45 Modeling Context Words as Regions: An Ordinal Regression Approach
to Word Embedding
Shoaib Jameel and Steven Schockaert

4:45–5:00 An Artificial Language Evaluation of Distributional Semantic Models
Fatemeh Torabi Asr and Michael Jones

5:00–5:15 Learning Word Representations with Regularization from Prior Knowledge
Yan Song, Chia-Jung Lee and Fei Xia

Session 2L: Lightning Talks for Poster Session

5:15–5:17 Attention-based Recurrent Convolutional Neural Network for Automatic
Essay Scoring
Fei Dong, Yue Zhang and Jie Yang

5:17–5:19 Feature Selection as Causal Inference: Experiments with Text Classification
Michael J. Paul

5:19–5:21 A Joint Model for Semantic Sequences: Frames, Entities, Sentiments
Haoruo Peng, Snigdha Chaturvedi and Dan Roth

5:21–5:23 Neural Sequence-to-sequence Learning of Internal Word Structure
Tatyana Ruzsics and Tanja Samardzic

5:23–5:25 A Supervised Approach to Extractive Summarisation of Scientific Papers
Ed Collins, Isabelle Augenstein and Sebastian Riedel

xvii

Thursday, August 3, 2017 (continued)

5:25–5:27 An Automatic Approach for Document-level Topic Model Evaluation
Shraey Bhatia, Jey Han Lau and Timothy Baldwin

5:27–5:29 Robust Coreference Resolution and Entity Linking on Dialogues:
Character Identification on TV Show Transcripts
Henry Y. Chen, Ethan Zhou and Jinho D. Choi

5:29–5:31 Cross-language Learning with Adversarial Neural Networks
Shafiq Joty, Preslav Nakov, Lluís Màrquez and Israa Jaradat

5:31-6:31 Business Meeting

Friday, August 4, 2017

Invited talk by Naomi Feldman
8:45–9:45 Rational Distortions of Learners’ Linguistic Input

Naomi Feldman

Session 3

9:45–10:00 Knowledge Tracing in Sequential Learning of Inflected Vocabulary
Adithya Renduchintala, Philipp Koehn and Jason Eisner

10:00–10:15 A Probabilistic Generative Grammar for Semantic Parsing
Abulhair Saparov, Vijay Saraswat and Tom Mitchell

xviii

Friday, August 4, 2017 (continued)

Session 3L: Lightning Talks for Poster Session

10:15–10:17 Learning Contextual Embeddings for Structural Semantic Similarity
using Categorical Information
Massimo Nicosia and Alessandro Moschitti

10:17–10:19 Making Neural QA as Simple as Possible but not Simpler
Dirk Weissenborn, Georg Wiese and Laura Seiffe

10:19–10:21 Neural Domain Adaptation for Biomedical Question Answering
Georg Wiese, Dirk Weissenborn and Mariana Neves

10:21–10:23 A phoneme clustering algorithm based on the obligatory contour principle
Mans Hulden

10:23–10:25 Learning Stock Market Sentiment Lexicon and Sentiment-Oriented
Word Vector from StockTwits
Quanzhi Li and Sameena Shah

10:25–10:27 Learning local and global contexts using a convolutional recurrent
network model for relation classification in biomedical text
Desh Raj, Sunil Sahu and Ashish Anand

10:27–10:29 Idea density for predicting Alzheimer’s disease from transcribed speech
Kairit Sirts, Olivier Piguet and Mark Johnson

10:29–11:00 Coffee Break

11:00–2:00 Poster Session and Lunch

xix

Friday, August 4, 2017 (continued)

Session 4

2:00–2:15 Zero-Shot Relation Extraction via Reading Comprehension
Omer Levy, Minjoon Seo, Eunsol Choi and Luke Zettlemoyer

2:15–2:30 The Covert Helps Parse the Overt
Xun Zhang, Weiwei Sun and Xiaojun Wan

2:30–2:45 German in Flux: Detecting Metaphoric Change via Word Entropy
Dominik Schlechtweg, Stefanie Eckmann, Enrico Santus,
Sabine Schulte im Walde and Daniel Hole

2:45–3:00 Encoding of phonology in a recurrent neural model of grounded speech
Afra Alishahi, Marie Barking and Grzegorz Chrupała

3:00–3:15 Multilingual Semantic Parsing And Code-Switching
Long Duong, Hadi Afshar, Dominique Estival, Glen Pink,
Philip Cohen and Mark Johnson

3:15–3:30 Optimizing Differentiable Relaxations of Coreference Evaluation Metrics
Phong Le and Ivan Titov

3:30–4:00 Coffee Break

xx

Friday, August 4, 2017 (continued)

Session 5

4:00–4:15 Neural Structural Correspondence Learning for Domain Adaptation
Yftah Ziser and Roi Reichart

4:15–4:30 A Simple and Accurate Syntax-Agnostic Neural Model for Dependency-based Se-
mantic Role Labeling
Diego Marcheggiani, Anton Frolov and Ivan Titov

4:30–4:45 Joint Prediction of Morphosyntactic Categories for Fine-Grained Arabic Part-of-
Speech Tagging Exploiting Tag Dictionary Information
Go Inoue, Hiroyuki Shindo and Yuji Matsumoto

4:45–5:00 Learning from Relatives: Unified Dialectal Arabic Segmentation
Younes Samih, Mohamed Eldesouki, Mohammed Attia, Kareem Darwish,
Ahmed Abdelali, Hamdy Mubarak and Laura Kallmeyer

5:00–5:15 Natural Language Generation for Spoken Dialogue System using
RNN Encoder-Decoder Networks
Van-Khanh Tran and Le-Minh Nguyen

5:15–5:30 Graph-based Neural Multi-Document Summarization
Michihiro Yasunaga, Rui Zhang, Kshitijh Meelu, Ayush Pareek,
Krishnan Srinivasan and Dragomir Radev

5:30–5:35 Best Paper Award

5:35–5:45 Closing Remarks

xxi

Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017), page 1,
Vancouver, Canada, August 3 - August 4, 2017. c©2017 Association for Computational Linguistics

Invited Talk

Should Neural Network Architecture
Reflect Linguistic Structure?

Chris Dyer
DeepMind/CMU

Abstract: I explore the hypothesis that conventional neural network models (e.g., recurrent neural
networks) are incorrectly biased for making linguistically sensible generalizations when learning, and
that a better class of models is based on architectures that reflect hierarchical structures for which
considerable behavioral evidence exists. I focus on the problem of modeling and representing the
meanings of sentences. On the generation front, I introduce recurrent neural network grammars
(RNNGs), a joint, generative model of phrase-structure trees and sentences. RNNGs operate via a
recursive syntactic process reminiscent of probabilistic context-free grammar generation, but decisions
are parameterized using RNNs that condition on the entire (top-down, left-to-right) syntactic derivation
history, thus relaxing context-free independence assumptions, while retaining a bias toward explaining
decisions via "syntactically local" conditioning contexts. Experiments show that RNNGs obtain better
results in generating language than models that don’t exploit linguistic structure. On the representation
front, I explore unsupervised learning of syntactic structures based on distant semantic supervision using
a reinforcement-learning algorithm. The learner seeks a syntactic structure that provides a compositional
architecture that produces a good representation for a downstream semantic task. Although the inferred
structures are quite different from traditional syntactic analyses, the performance on the downstream
tasks surpasses that of systems that use sequential RNNs and tree-structured RNNs based on treebank
dependencies. This is joint work with Adhi Kuncoro, Dani Yogatama, Miguel Ballesteros, Phil Blunsom,
Ed Grefenstette, Wang Ling, and Noah A. Smith.

Bio: Chris Dyer is a research scientist at DeepMind and an assistant professor in the School of
Computer Science at Carnegie Mellon University. In 2017, he received the Presidential Early Career
Award for Scientists and Engineers (PECASE). His work has occasionally been nominated for best paper
awards in prestigious NLP venues and has, much more occasionally, won them. He lives in London and,
in his spare time, plays cello.

1

Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017), page 2,
Vancouver, Canada, August 3 - August 4, 2017. c©2017 Association for Computational Linguistics

Invited Talk

Rational Distortions of
Learners’ Linguistic Input

Naomi Feldman
University of Maryland

Abstract: Language acquisition can be modeled as a statistical inference problem: children use
sentences and sounds in their input to infer linguistic structure. However, in many cases, children
learn from data whose statistical structure is distorted relative to the language they are learning. Such
distortions can arise either in the input itself, or as a result of children’s immature strategies for encoding
their input. This work examines several cases in which the statistical structure of children’s input differs
from the language being learned. Analyses show that these distortions of the input can be accounted for
with a statistical learning framework by carefully considering the inference problems that learners solve
during language acquisition

Bio: Naomi Feldman is an associate professor in the Department of Linguistics and the Institute for
Advanced Computer Studies at the University of Maryland. She received her PhD in Cognitive Science
from Brown University in 2011. Her research lies at the intersection of cognitive science, computer
science, and linguistics. She uses methods from machine learning to create formal models of how
people learn and represent the structure of their language, and has been developing methods that take
advantage of naturalistic speech corpora to study how listeners encode information from their linguistic
environment.

2

Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017), pages 3–14,
Vancouver, Canada, August 3 - August 4, 2017. c©2017 Association for Computational Linguistics

Exploring the Syntactic Abilities of RNNs with Multi-task Learning

Émile Enguehard1 Yoav Goldberg2 Tal Linzen3,4

1Département d’informatique, ENS, PSL Research University
2Computer Science Department, Bar Ilan University

3LSCP & IJN, CNRS, EHESS and ENS, PSL Research University
4Department of Cognitive Science, Johns Hopkins University

{emile.enguehard,tal.linzen}@ens.fr yoav.goldberg@gmail.com

Abstract

Recent work has explored the syntactic
abilities of RNNs using the subject-verb
agreement task, which diagnoses sensitiv-
ity to sentence structure. RNNs performed
this task well in common cases, but fal-
tered in complex sentences (Linzen et al.,
2016). We test whether these errors are
due to inherent limitations of the architec-
ture or to the relatively indirect supervi-
sion provided by most agreement depen-
dencies in a corpus. We trained a sin-
gle RNN to perform both the agreement
task and an additional task, either CCG su-
pertagging or language modeling. Multi-
task training led to significantly lower er-
ror rates, in particular on complex sen-
tences, suggesting that RNNs have the
ability to evolve more sophisticated syn-
tactic representations than shown before.
We also show that easily available agree-
ment training data can improve perfor-
mance on other syntactic tasks, in partic-
ular when only a limited amount of train-
ing data is available for those tasks. The
multi-task paradigm can also be leveraged
to inject grammatical knowledge into lan-
guage models.

1 Introduction

Recurrent neural networks (RNNs) have seen
rapid adoption in natural language processing ap-
plications. Since these models are not equipped
with explicit linguistic representations such as de-
pendency parses or logical forms, new methods
are needed to characterize the linguistic general-
izations that they capture. One such method is
drawn from behavioral psychology: the network
is tested on cases that are carefully selected to be

informative as to the generalizations that the net-
work has acquired.

Linzen et al. (2016) have recently applied this
methodology to evaluate how well a trained RNN
captures sentence structure, using the agreement
prediction task (Bock and Miller, 1991; Elman,
1991). The form of an English verb often de-
pends on its subject. Identifying the subject of a
given verb of requires sensitivity to sentence struc-
ture. Consequently, testing an RNN on its ability
to choose the correct form of a verb in context can
shed light on the sophistication of its syntactic rep-
resentations (see Section 2.1 for details).

RNNs trained specifically to perform the agree-
ment task can achieve very good average per-
formance on a corpus, with accuracy close to
99%. However, error rates increase substantially
on complex sentences (Linzen et al., 2016, 2017),
suggesting that the syntactic knowledge acquired
by the RNN is imperfect. Finally, when the RNN
is trained as a language model rather than specif-
ically on the agreement task, its sensitivity to
subject-verb agreement, measured as the relative
probability of the grammatical and ungrammatical
forms of the verb, degrades dramatically.

Are the limitations that RNNs showed in pre-
vious work inherent to their architecture, or can
these limitations be mitigated by stronger super-
vision? We address this question using multi-
task learning, where the same model is encour-
aged to develop representations that are simulta-
neously useful for multiple tasks. To provide the
RNN with an incentive to develop more sophis-
ticated representations, we trained it to perform
one of two tasks: the first is combinatory categor-
ical grammar (CCG) supertagging (Bangalore and
Joshi, 1999), a sequence labeling task likely to re-
quire robust syntactic representations; the second
task is language modeling.

We also investigate the inverse question: can

3

tasks such as supertagging benefit from joint train-
ing with the agreement task? This question is of
practical interest. Large training sets for the agree-
ment task are much easier to create than training
sets for supertagging, which are based on manu-
ally parsed sentences. If the training signal from
the agreement prediction task proves to be ben-
eficial for supertagging, this could lead to im-
proved supertagging (and therefore parsing) per-
formance in languages in which we only have a
small amount of parsed training sentences.

We found that multi-task learning, either with
LM or with CCG supertagging, improved the per-
formance of the RNN on the agreement prediction
task. The benefits of combined training with su-
pertagging can be quite large: accuracy in chal-
lenging relative clause sentences increased from
50.6% to 76.2%. This suggests that RNNs are
in principle capable of acquiring much better syn-
tactic representations than those they learned from
the corpus in Linzen et al. (2016).

In the other direction, joint training on the
agreement prediction task did not improve over-
all language model perplexity, but made the model
more syntax-aware: grammatically appropriate
verb forms had higher probability than grammati-
cally inappropriate ones. When a limited amount
of CCG training data was available, joint training
on agreement prediction led to improved supertag-
ging accuracy. These findings suggest that multi-
task training with auxiliary syntactic tasks such as
agreement prediction can lead to improved perfor-
mance on standard NLP tasks.

2 Background and Related Work

2.1 Agreement Prediction
English present-tense third-person verbs agree in
number with their subject: singular subjects re-
quire singular verbs (the boy smiles) and plural
subjects require plural verbs (the boys smile). Sub-
jects in English are not overtly marked, and com-
plex sentences often have multiple subjects corre-
sponding to different verbs. Identifying the subject
of a particular verb can therefore be non-trivial in
sentences that have multiple nouns:

(1) The only championship banners that are
currently displayed within the building are
for national or NCAA Championships.

Determining that the subject of the verb in bold-
face is banners rather than the singular nouns

championship and building requires an under-
standing of the structure of the sentence.

In the agreement task, the learner is given the
words leading up to a verb (a “preamble”), and is
instructed to predict whether that verb will take the
plural or singular form. This task is modeled after
a standard psycholinguistic task, which is used to
study syntactic representations in humans (Bock
and Miller, 1991; Franck et al., 2002; Staub, 2009;
Bock and Middleton, 2011).

Any English sentence with a third-person
present-tense verb can be used as a training exam-
ple for this task: all we need is a tagger that can
identify such verbs and determine whether they
are plural or singular. As such, large amounts of
training data for this task can be obtained from a
corpus.

The agreement task can often be solved using
simple heuristics, such as copying the number of
the most recent noun. It can therefore be useful to
evaluate the model using sentences in which such
a heuristic would fail because one or more nouns
of the opposite number from the subject intervene
between the subject and the verb; such nouns “at-
tract” the agreement away from the grammatical
subject. In general, the more such attractors there
are the more difficult the task is for a sequence
model that does not represent syntax (we focus on
sentences in which all of the nouns between the
subject and the verb are of the opposite number
from the subject):

(2) The number of men is not clear. (One at-
tractor)

(3) The ratio of men to women is not clear.
(Two attractors)

(4) The ratio of men to women and children is
not clear. (Three attractors)

2.2 CCG Supertagging

Combinatory Categorial Grammar (CCG) is a syn-
tactic formalism that relies on a large inventory of
lexical categories (Steedman, 2000). These cate-
gories are known as supertags, and can be thought
of as a fine-grained extension of the usual part-
of-speech tags. For example, intransitive verbs
(smile), transitive verbs (build) and raising verbs
(seem) all have different tags: S\NP, (S\NP)/NP
and (S\NP)/(S\NP), respectively.

CCG parsers typically rely on a supertagging
step where each word in a sentence is associated

4

with an appropriate tag. In fact, supertagging is
almost as difficult as finding the full CCG parse of
the sentence: once the supertags are determined,
only a small number of parses are possible. At the
same time, supertagging is simple to set up as a
machine learning problem, since at each word it
amounts to a straightforward classification prob-
lem (Bangalore and Joshi, 1999). RNNs have
shown excellent performance on this task, at least
in English (Xu et al., 2015; Lewis et al., 2016;
Vaswani et al., 2016).

In contrast with the agreement task, training
data for supertagging needs to be obtained from
parsed sentences which require expert annotation
(Hockenmaier and Steedman, 2007); the amount
of training data is therefore limited even in En-
glish, and much more sparse in other languages.

2.3 Language Modeling

The goal of a language model is to learn the dis-
tribution p̂(wj |w1, . . . , wj−1) of the j-th word in
a sentence given the j − 1 words preceding it. We
seek to minimize the mean negative log-likelihood
of all sentences si = wi,1 . . . wi,ni in our data:

L(p̂) = − 1
Z

N∑
i=1

ni∑
j=1

log p̂(wi,j |wi,1:j−1) (1)

where Z =
∑N

i=1 ni. Language modeling per-
formance is often quantified using the perplexity
2L(p̂). The effectiveness of RNNs in language
modeling, in particular LSTMs, has been demon-
strated in numerous studies (Mikolov et al., 2010;
Sundermeyer et al., 2012; Jozefowicz et al., 2016).

2.4 Multitask Learning

The benefits of multi-task learning in neural net-
works are straightforward. Neural networks often
require a large amount of training data to achieve
good performance on a task. Even with a signifi-
cant amount of training data, the signal may be too
sparse for them to pick it up given their weak in-
ductive biases. By training a network on a simple
task for which large quantities of data are avail-
able, we can encourage it to evolve representations
that would help its performance on the primary
task (Caruana, 1998; Bakker and Heskes, 2003).
This logic has been applied to various NLP tasks,
with generally encouraging results (Collobert and
Weston, 2008; Hashimoto et al., 2016; Søgaard

and Goldberg, 2016; Martínez Alonso and Plank,
2017; Bingel and Søgaard, 2017).

3 Methods

3.1 Datasets

We used two training datasets. The first is the cor-
pus of approximately 1.5 million sentences from
the English Wikipedia compiled by Linzen et al.
(2016). All sentences had at most 50 words and
contained at least one third-person present-tense
agreement dependency. Following Linzen et al.
(2016), we replaced rare words by their part-of-
speech tags, using the Penn Treebank tag set (Mar-
cus et al., 1993).1

The second data set we used is the CCG-Bank
(Hockenmaier and Steedman, 2007), a CCG ver-
sion of the Penn Treebank. This corpus con-
tained 48934 English sentences, 27299 of which
include a present tense third-person verb agree-
ment dependency. A negligible number of sen-
tences longer than 90 words were removed. We
applied the traditional split where Sections 2-21
are used for training and Section 23 for testing
(41294 and 2407 sentences respectively).2 Out
of the 1363 different supertags that occur in the
corpus, we only attempted to predict the 452 su-
pertags that occurred at least ten times; we re-
placed the rest (0.2% of the tokens) by a dummy
value.

3.2 Model

The model in all of our experiments was a standard
single-layer LSTM.3 The first layer was a vec-
tor embedding of word tokens intoD-dimensional
space. The second was a D-dimensional LSTM.
The following layers depended on the task. For
agreement, the output layers consisted of a linear
layer with a one-dimensional output and a sigmoid
activation; for language modeling, a linear layer
with anN -dimensional output, whereN is the size
of the lexicon, and a softmax activation; and for
supertagging, a linear layer with an S-dimensional

1In the LM experiments, we restricted ourselves to 10000
words, amounting to 91.2% of the all occurrences. In the
CCG supertagging experiments, we used those 12, 126 words
that occurred more than 150 times, amounting to 92.2% of
the total number of occurrences.

2For experiments using this corpus, we use 15784 words
occurring at least four times, amounting to 95.9% of occur-
rences, and replace other words by their POS tags.

3Our code and data are available at https://github.
com/emengd/multitask-agreement.

5

output, where S is the number of possible tags,
followed by a softmax activation.

The language modeling loss is the mean neg-
ative log-likelihood of the data given in Equa-
tion (1); the loss for agreement is the mean binary
cross-entropy of the classifier:

Lagr = − 1
|S|
∑
s∈S

log (q̂(num(s)|s:vb))

where q̂ is the estimated distribution of verb num-
bers, S the set of sentences, num(s) the correct
verb number in s and s:vb the sentence up to the
verb. The loss for CCG supertagging is the mean
cross-entropy of the classifiers:

LST = − 1∑
s |s|

∑
s∈S

∑
wj∈s

log
(
r̂(tag(wj)|s:wj)

)
where r̂ is the estimated distribution of CCG su-
pertags, tag(wj) is the correct tag of word wj in s,
and s:wj is the sentence s up to and including wj .

We had at most two tasks in any given exper-
iment. We considered two separate setups for
learning from those two tasks: joint training and
pre-training.

Joint training: In this setup we had parallel out-
put layers for each task. Both output layers re-
ceived the shared LSTM representations as their
input. We define the global loss L as follows:

L =
1

1 + r
L1 +

r

1 + r
L2 (2)

where L1 and L2 are the losses associated with
each task, and r is the weighting ratio of task 2
relative to task 1. This means that r is a hyperpa-
rameter that needs to be tuned. Note that sample
averaging occurs before formula (2) is applied.

Pre-training: In this setup, we first trained the
network on one of the tasks; we then used the
weights learned by the network for the embedding
layer and the LSTM layer as the initial weights of
a new network which we then trained on the sec-
ond task.

3.3 Training
All neural networks were implemented in Keras
(Chollet, 2015) and Theano (Theano Development
Team, 2016). We use the AdaGrad optimizer.
We use batch training with batch sizes 128 for
language modeling experiments and 256 for su-
pertagging experiments on supertagging.

4 Agreement and Supertagging

For the supertagging experiments we used the full
CCG corpus as well as 30% of the Wikipedia cor-
pus for the agreement task (20% for training and
10% for testing). We trained the model for 20
epochs. The accuracy figures we report are av-
eraged across three runs. We set the size of the
network D to 500 hidden units.4 We ran a single
pre-training experiment in each direction, as well
as four joint training experiments, with the weight
r of the agreement task set to 0.1, 1, 10 or 100.

We considered two baselines for the agreement
task: the last noun baseline predicts the number of
the verb based on the number of the most recent
noun, and the majority baseline always predicts
a singular verb (singular verbs are more common
than plural ones in our corpus). Our baseline for
supertagging was a majority baseline that predicts
for each word its most common supertag.

The agreement task predicts the number of the
verb based only on its left context (the preamble).
We trained our supertagging model in the same
setup. Since our model did not have access to the
right context of a word when determining its su-
pertag, we could not expect to compete with state-
of-the-art taggers that use right-context lookahead
(Xu et al., 2015) or even bidirectional RNNs that
read the entire sentence from right to left (Vaswani
et al., 2016; Lewis et al., 2016); we therefore did
not compare our accuracy to these taggers.

4.1 Overall Results

Figure 1 shows the overall results of the experi-
ment. Multi-task training with supertagging sig-
nificantly improved overall accuracy on the agree-
ment task (Figure 1a), either with pre-training or
joint training: compared to the single-task setup,
the agreement error rate decreased by up to 40%
in relative terms (from 2.04% to 1.24%). Con-
versely, multi-task training with agreement did not
improve supertagging accuracy, either in the pre-
training or in the joint training regime; supertag-
ging accuracy decreased the higher the weight of
the agreement task (Figure 1b).

Comparing the two multi-task learning regimes,
the pre-training setup performed about as well as
the joint training setup with the optimal r. In the
following supertagging experiments we dispensed
with the joint training setup, which is time con-

4In initial experiments D = 50 yielded supertagging re-
sults inferior to a majority choice baseline.

6

0.01 0.1 1.0 10.0 100.0
Weight r of agreement task

0.90

0.92

0.94

0.96

0.98

1.00

A
g
re

e
m

e
n
t

p
re

d
ic

ti
o
n
 a

cc
u
ra

cy

Joint training

Pre-training with tagging

Single-task baseline

Last noun baseline

(a) Agreement

0.01 0.1 1.0 10.0 100.0
Weight r of agreement task

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

C
C

G
 c

la
ss

if
ic

a
ti

o
n
 a

cc
u
ra

cy

Joint training

Pre-training with agreement

Single-task baseline

Majority baseline

(b) Supertagging

Figure 1: Overall results of supertagging + agree-
ment multi-task training.

suming since it requires trying multiple values of
r, and focused only on the pre-training setup.

4.2 Effect of Corpus Size

To further investigate the relative contribution of
the two supervision signals, we conducted a se-
ries of follow-up experiments in the pre-training
setup, using subsets of varying size of both cor-
pora. We also included POS tagging as an aux-
iliary task to determine to what extent the full
parse of the sentence (approximated by supertags)
is crucial to the improvements we have seen in the
agreement task. Since POS tags contain less syn-
tactic information than CCG supertags, we expect
them to be less helpful as an auxiliary task. Penn
Treebank POS tags distinguish singular and plural
nouns and verbs, but CCG supertags do not; to put
the two tasks on equal footing we removed num-
ber information from the POS tags. We trained for
15 epochs and averaged our results over 5 runs.

The results for the agreement task are shown
in Figure 2a (baseline values are always calcu-
lated over the full corpora). The figure confirms

90% agreement / 100% CCG

20% agreement / 100% CCG

1% agreement / 100% CCG

90% agreement / 10% CCG

Last noun baseline

0.80

0.85

0.90

0.95

1.00

A
g
re

e
m

e
n
t

p
re

d
ic

ti
o
n
 a

cc
u
ra

cy

Single-task agreement

POS pre-training

CCG pre-training

(a) Agreement

90% agreement / 100% CCG

20% agreement / 100% CCG

1% agreement / 100% CCG

90% agreement / 10% CCG

Majority baseline

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

C
C

G
 c

la
ss

if
ic

a
ti

o
n
 a

cc
u
ra

cy

Single-task CCG

Agreement pre-training

(b) Supertagging

Figure 2: The effect of corpus size on agreement
and supertagging accuracy in multi-task settings.

the beneficial effect of supertagging pre-training
(note that the scale starts at 0.8, not 0.9 as in Fig-
ure 1a). This effect was amplified when we used
less training data for the agreement task. Pre-
training on POS tagging yielded a similar though
slightly weaker effect. This suggests that much of
the improvement in syntactic representations due
to pre-training on supertagging can also be gained
from pre-training on POS tagging.

Finally, Figure 2b shows that pre-training on
the agreement task improved supertagging accu-
racy when we only used 10% of the CCG corpus
(increase in accuracy from 73.4% to 76.3%); how-
ever, even with agreement pre-training supertag-
ging accuracy is lower than when the model is
trained on the full CCG corpus (where accuracy
was 83.1%).

In summary, the data for each task can be used
to supplement the data for the other, but there
is a large imbalance in the amount of informa-
tion provided by each task. This is not surpris-
ing given that the CCG supertagging data is much
richer than the agreement data for any individual
sentence. Still, we showed that the syntactic sig-

7

0 1 2 3 4
Number of attractors

0.0

0.2

0.4

0.6

0.8

1.0

A
g
re

e
m

e
n
t

p
re

d
ic

ti
o
n
 a

cc
u
ra

cy

With CCG (90%)

With POS (90%)

Single-task (90%)

With CCG (1%)

With POS (1%)

Single-task (1%)

Figure 3: Agreement accuracy as a function of the
number of attractors intervening between the sub-
ject and the verb, for two different subsets of the
agreement corpus (90% and 1% of the corpus).

nal from the agreement prediction task can help
improve parsing performance when CCG train-
ing data is sparse; this weak but widely available
source of syntactic supervision may therefore have
a practical use in languages with smaller treebanks
than English.

4.3 Attraction Errors

Most sentences are syntactically simple and do not
pose particular challenges to the models: the ac-
curacy of the last noun baseline in Figure 1a was
close to 95%. To investigate the behavior of the
model on more difficult sentences, we next break
down our test sentences by the number of agree-
ment attractors (see Section 2.1).

Our results, shown in Figure 3, confirm that at-
tractors make the agreement task more difficult,
and that pre-training helps overcome this diffi-
culty. This effect is amplified when we only use
a small subset of the agreement corpus. In this
scenario, the accuracy of the single-task model on
sentences with four attractors is only 20.4%. Pre-
training makes it possible to overcome this diffi-
culty to a significant extent (though not entirely),
increasing the accuracy to 40.1% in the case of
POS tagging and 51.2% in the case of supertag-
ging. This suggests that a network that has devel-
oped sophisticated syntactic representations can
transfer its knowledge to a new syntactic task us-
ing only a moderate amount of data.

4.4 Relative Clauses

In Linzen et al. (2016), attraction errors were par-
ticularly severe when the attractor was inside a rel-

Prepositional / SP

Prepositional / PS

Relative / SP

Relative / PS

0.0

0.2

0.4

0.6

0.8

1.0

A
g
re

e
m

e
n
t

p
re

d
ic

ti
o
n
 a

cc
u
ra

cy

Single-task agreement

CCG pre-training

Figure 4: Accuracy on sentences from Bock and
Cutting (1992). Error bars indicate standard devi-
ation across runs.

ative clause. To gain a more precise understanding
of the errors and the extent to which pre-training
can mitigate them, we turn to two sets of care-
fully constructed sentences from the psycholin-
guistic literature (Linzen et al., 2017). Bock and
Cutting (1992) compared preambles with preposi-
tional phrase modifiers to closely matched relative
clause modifiers:

(5) PREPOSITIONAL: The demo tape(s) from
the popular rock singer(s)...

(6) RELATIVE: The demo tape(s) that pro-
moted the popular rock singer(s)...

They constructed 24 such sentence pairs. Each
of the sentences in each pair has four versions,
with all possible combinations of the number of
the subject and the attractor. We refer to them
as SS for singular-singular (tape, singer), SP for
singular-plural (tape, singers), and likewise PS
and PP. We replaced out-of-vocabulary words with
their POS, and further streamlined the materials by
always using that as the relativizer.

We retrained the single-task and pre-trained
models on 90% of the Wikipedia corpus. Like hu-
mans, neither model had any issues with SS and
PP sentences, which do not have an attractor. The
results for SP and PS sentences are shown in Fig-
ure 4. The comparison between prepositional and
relative modifiers shows that the single-task model
was much more likely to make errors when the at-
tractor was in a relative clause (whereas humans
are not sensitive to this distinction). This asymme-
try was substantially mitigated, though not com-
pletely eliminated, by CCG pre-training.

8

Our second set of sentences was based on the
experimental materials of Wagers et al. (2009).
We adapted them by deleting the relativizer and
creating two preambles from each sentence in the
original experiment:

(7) EMBEDDED VERB: The player(s) the
coach(es)...

(8) MAIN CLAUSE VERB: The player(s) the
coach(es) like the best...

In the first preamble, the verb is expected to agree
with the embedded clause subject (the coach(es)),
whereas in the second one it is expected to agree
with the main clause subject (the player(s)).

Figure 5 shows that both models made very
few errors predicting the embedded clause verb,
and more errors predicting the main clause verb.
The relative improvement of the pre-trained model
compared to the single-task one is more modest in
these sentences, possibly because the single-task
model does better to begin with on these sentences
than on the Bock and Cutting (1992) ones. This
in turn may be because the attractor immediately
precedes the verb in Bock and Cutting (1992) but
not in Wagers et al. (2009), and an immediately
adjacent noun may be a stronger attractor. The
Appendix contains additional figures tracking the
predictions of the network as it processes a sample
of sentences with relative clauses; it also illustrates
the activation of particular units over the course of
such a sentence.

5 Agreement and Language Modeling

We now turn our attention to the language model-
ing task. The previous experiments confirmed that

Embedded / SP

Embedded / PS

Main clause / SP

Main clause / PS

0.0

0.2

0.4

0.6

0.8

1.0

A
g
re

e
m

e
n
t

p
re

d
ic

ti
o
n
 a

cc
u
ra

cy

Single-task agreement

CCG pre-training

Figure 5: Accuracy on sentences based on Wagers
et al. (2009). Error bars indicate standard devia-
tion across runs.

0.01 0.1 1.0 10.0 100.0
Weight r of agreement task

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
g
re

e
m

e
n
t

p
re

d
ic

ti
o
n
 a

cc
u
ra

cy

Joint training

Single-task baseline

Majority baseline

Last noun baseline

(a) Agreement

0.01 0.1 1.0 10.0 100.0
Weight r of agreement task

45

50

55

60

65

70

LM
 p

e
rp

le
x
it

y

Joint training

Single-task baseline

(b) Language modeling

Figure 6: Overall results of language modeling +
agreement multi-task training (trained only on
sentences with an intervening noun).

agreement in sentences without attractors is easy
to predict. We therefore limited ourselves in the
language modeling experiments to sentences with
potential attractors. Concretely, within the subset
of 30% of the Wikipedia corpus, we trained our
language model only on sentences with at least
one noun (of any number) between the subject
and the verb. There were 60680 sentences in the
training set. We averaged our results over three
runs. Training was stopped after 10 epochs, and
the number of hidden units was set to D = 50.

5.1 Overall Results

The overall results are shown in Figure 6. Joint
training with the LM task improves the perfor-
mance of the agreement task to a significant ex-
tent, bringing accuracy up from 90.2% to 92.6% (a
relative reduction of 25% in error rate). This may
be due to the higher quality of the word representa-
tions that can be learned from the language mod-
eling signal, which in turn help the model make
more accurate syntactic predictions.

9

In the other direction, we do not obtain clear im-
provements in perplexity from jointly training the
LM with agreement. Surprisingly, visual inspec-
tion of Figure 6b suggests that the jointly trained
LM may achieve somewhat better performance
than the single-task baseline for small values of r
(that is, when the agreement task has a small effect
on the overall training loss). To assess the statis-
tical significance of this difference, we repeated
the experiment with r = 0.01 with 20 random
initializations. The standard deviation in LM loss
was about 0.018, yielding a standard deviation of
0.011 for three-run averages under Gaussian as-
sumptions. Since the difference of 0.015 between
the mean LM losses of the single-task and joint
training setups is of comparable magnitude, we
conclude that there is no clear evidence that joint
training reduces perplexity.

5.2 Grammaticality of LM Predictions

To evaluate the syntactic abilities of an RNN
trained as a language model, Linzen et al. (2016)
proposed to perform the agreement task by com-
paring the probability under the learned LM of
the correct and incorrect verb forms, under the as-
sumption that all other things being equal a gram-
matical sequence should have a higher probabil-
ity than an ungrammatical one (Lau et al., 2016;
Le Godais et al., 2017). For instance, if the sen-
tence starts with the dogs, we compute:

p̂correct =
p̂(w2 = are|w0:1 = the dogs)

p̂(w2 = are| . . .) + p̂(w2 = is| . . .)
(3)

The prediction for the agreement task is derived by
thresholding p̂correct at 0.5.

Is the LM learned in the joint training setup with
high r more aware of subject-verb agreement than
a single-task LM? Note that this is not a circular
question: we are not asking whether the explicit
agreement prediction output layer can perform the
agreement task — that would be unsurprising —
but whether joint training with this task rearranges
the probability distributions that the LM defines
over the entire vocabulary in a way that is more
consistent with English grammar.

As the method outlined in Equation 3 may be
sensitive to the idiosyncrasies of the particular
verb being predicted, we also explored an unlex-
icalized way of performing the task. Recall that
since we replace uncommon words by their POS

LM prediction (verb form)

LM prediction (POS tag)

Agreement model

Last noun baseline

0.0

0.2

0.4

0.6

0.8

1.0

A
g
re

e
m

e
n
t

p
re

d
ic

ti
o
n
 a

cc
u
ra

cy

Single-task LM

Joint training

Figure 7: Language model agreement evalua-
tion. Red bars indicate the results obtained on the
single-task LM model, blue bars those obtained in
a joint training setup with r = 100.

tags, POS tags are part of our lexicon. We can
use this fact to compare the LM probabilities of
the POS tags for the correct and incorrect verb
forms: in the example of the preamble the dogs,
the correct POS would be VBP and the incorrect
one VBZ.

The results can be seen in Figure 7. The accu-
racy of the LM predictions from the jointly trained
models is almost as high as that obtained through
the agreement model itself. Conversely, the
single-task model trained only on language mod-
eling performed only slightly better than chance,
and worse than our last noun baseline (recall that
the dataset only included sentences with an in-
tervening noun between the subject and the verb,
though possibly of the same number as the sub-
ject). Predictions based on POS tags are some-
what worse than predictions based on the specific
verb. In summary, while joint training with the ex-
plicit agreement task does not noticeably reduce
language model perplexity, it does help the LM
capture syntactic dependencies: the ranking of up-
coming words is more consistent with the con-
straints of English syntax.

6 Conclusions

Previous work has shown that the syntactic rep-
resentations developed by RNNs that are trained
on the agreement prediction task are sufficient for
the majority of sentences, but break down in more
complex sentences (Linzen et al., 2016, 2017).
These deficiencies could be due to fundamental
limitations of the architecture, which can only be
addressed by switching to more expressive archi-

10

tectures (Socher, 2014; Grefenstette et al., 2015;
Dyer et al., 2016). Alternatively, they could be
due to insufficient supervision signal in the agree-
ment prediction task, for example because relative
clauses with agreement attractors are infrequent in
a natural corpus.

We showed that additional supervision from
pre-training on syntactic tagging tasks such as
CCG supertagging can help the RNN develop
more effective syntactic representations which
substantially improve its performance on complex
sentences, supporting the second hypothesis.

The syntactic representations developed by the
RNNs were still not perfect even in the multi-
task setting, suggesting that stronger inductive bi-
ases expressed as richer representational assump-
tions may lead to further improvements in syn-
tactic performance. The weaker performance on
complex sentences in the single-task setting in-
dicates that the inductive bias inherent in RNNs
is insufficient for learning adequate syntactic rep-
resentations from unannotated strings; improve-
ments due to a stronger inductive bias are there-
fore likely to be particularly pronounced in lan-
guages for which parsed corpora are small or un-
available. Finally, the strong syntactic supervi-
sion required to promote sophisticated syntactic
representations in RNNs may limit their viabil-
ity as models of language acquisition in children
(though children may have sources of supervision
that were not available to our models).

We also explored whether multi-task training
with the agreement task can improve performance
on more standard NLP tasks. We found that it
can indeed lead to improved supertagging accu-
racy when there is a limited amount of training
data for that task; this form of weak syntactic su-
pervision can be used to improve parsers for low-
resource languages for which only small treebanks
are available.

Finally, for language modeling, multi-task
training with the agreement task did not reduce
perplexity, but did improve the grammaticality
of the predictions of the language model (as
measured by the relative ranking of grammatical
and ungrammatical verb forms); such a language
model that favors grammatical sentences may pro-
duce more natural-sounding text.

Acknowledgments

We thank Emmanuel Dupoux for discussion. This
research was supported by the European Research
Council (grant ERC-2011-AdG 295810 BOOT-
PHON), the Agence Nationale pour la Recherche
(grants ANR-10-IDEX-0001-02 PSL and ANR-
10-LABX-0087 IEC) and the Israeli Science
Foundation (grant number 1555/15).

References
Bart Bakker and Tom Heskes. 2003. Task clustering

and gating for Bayesian multitask learning. Journal
of Machine Learning Research 4:83–99.

Srinivas Bangalore and Aravind K. Joshi. 1999. Su-
pertagging: An approach to almost parsing. Com-
putational Linguistics 25(2):237–265.

Joachim Bingel and Anders Søgaard. 2017. Identify-
ing beneficial task relations for multi-task learning
in deep neural networks. In Proceedings of the 15th
Conference of the European Chapter of the Associa-
tion for Computational Linguistics: Volume 2, Short
Papers. Association for Computational Linguistics,
Valencia, Spain, pages 164–169.

Kathryn Bock and J. Cooper Cutting. 1992. Reg-
ulating mental energy: Performance units in lan-
guage production. Journal of Memory and Lan-
guage 31(1):99–127.

Kathryn Bock and Erica L. Middleton. 2011. Reaching
agreement. Natural Language & Linguistic Theory
29(4):1033–1069.

Kathryn Bock and Carol A. Miller. 1991. Broken
agreement. Cognitive Psychology 23(1):45–93.

Rich Caruana. 1998. Multitask learning. In Sebas-
tian Thrun and Lorien Pratt, editors, Learning to
learn, Kluwer Academic Publishers, Boston, pages
95–133.

François Chollet. 2015. Keras. https://github.
com/fchollet/keras.

Ronan Collobert and Jason Weston. 2008. A uni-
fied architecture for natural language processing:
Deep neural networks with multitask learning. In
Proceedings of the 25th International Conference
on Machine Learning. New York, NY, USA, pages
160–167.

Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros,
and A. Noah Smith. 2016. Recurrent neural net-
work grammars. In Proceedings of the 2016 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies. Association for Computational
Linguistics, pages 199–209.

11

Jeffrey L. Elman. 1991. Distributed representations,
simple recurrent networks, and grammatical struc-
ture. Machine Learning 7(2-3):195–225.

Julie Franck, Gabriella Vigliocco, and Janet Nicol.
2002. Subject-verb agreement errors in French and
English: The role of syntactic hierarchy. Language
and Cognitive Processes 17(4):371–404.

Edward Grefenstette, Karl Moritz Hermann, Mustafa
Suleyman, and Phil Blunsom. 2015. Learning to
transduce with unbounded memory. In Advances
in Neural Information Processing Systems 28. pages
1828–1836.

Kazuma Hashimoto, Caiming Xiong, Yoshimasa Tsu-
ruoka, and Richard Socher. 2016. A joint many-task
model: Growing a neural network for multiple NLP
tasks. In NIPS 2016 Continual Learning and Deep
Networks Workshop.

Julia Hockenmaier and Mark Steedman. 2007. CCG-
bank: A corpus of CCG derivations and dependency
structures extracted from the Penn Treebank. Com-
putational Linguistics 33(3):355–396.

Rafal Jozefowicz, Oriol Vinyals, Mike Schuster, Noam
Shazeer, and Yonghui Wu. 2016. Exploring
the limits of language modeling. arXiv preprint
arXiv:1602.02410 .

Jey Han Lau, Alexander Clark, and Shalom Lappin.
2016. Grammaticality, acceptability, and probabil-
ity: A probabilistic view of linguistic knowledge.
Cognitive Science .

Gaël Le Godais, Tal Linzen, and Emmanuel Dupoux.
2017. Comparing character-level neural language
models using a lexical decision task. In Proceedings
of the 15th Conference of the European Chapter of
the Association for Computational Linguistics: Vol-
ume 2, Short Papers. Association for Computational
Linguistics, Valencia, Spain, pages 125–130.

Mike Lewis, Kenton Lee, and Luke Zettlemoyer. 2016.
LSTM CCG parsing. In Proceedings of the 2016
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies. pages 221–231.

Tal Linzen, Emmanuel Dupoux, and Yoav Goldberg.
2016. Assessing the ability of LSTMs to learn
syntax-sensitive dependencies. Transactions of the
Association for Computational Linguistics 4:521–
535.

Tal Linzen, Yoav Goldberg, and Emmanuel Dupoux.
2017. Agreement attraction errors in neural net-
works. In Proceedings of the CUNY Conference on
Human Sentence Processing.

Mitchell P. Marcus, Mary Ann Marcinkiewicz, and
Beatrice Santorini. 1993. Building a large annotated
corpus of English: The Penn Treebank. Computa-
tional Linguistics 19(2):313–330.

Héctor Martínez Alonso and Barbara Plank. 2017.
When is multitask learning effective? Semantic se-
quence prediction under varying data conditions.
In Proceedings of the Conference of the European
Chapter of the Association for Computationl Lin-
guistics.

Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan
Cernockỳ, and Sanjeev Khudanpur. 2010. Recurrent
neural network based language model. In Proceed-
ings of Interspeech.

Richard Socher. 2014. Recursive Deep Learning for
Natural Language Processing and Computer Vision.
Ph.D. thesis, Stanford University.

Anders Søgaard and Yoav Goldberg. 2016. Deep
multi-task learning with low level tasks supervised
at lower layers. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers). Association for
Computational Linguistics, Berlin, Germany, pages
231–235.

Adrian Staub. 2009. On the interpretation of the num-
ber attraction effect: Response time evidence. Jour-
nal of Memory and Language 60(2):308–327.

Mark Steedman. 2000. The syntactic process. MIT
Press.

Martin Sundermeyer, Ralf Schlüter, and Hermann Ney.
2012. LSTM neural networks for language model-
ing. In Proceedings of the 13th Annual Conference
of the International Speech Communication Associ-
ation (INTERSPEECH). pages 194–197.

Theano Development Team. 2016. Theano: A
Python framework for fast computation of mathe-
matical expressions. arXiv e-prints abs/1605.02688.
http://arxiv.org/abs/1605.02688.

Ashish Vaswani, Yonatan Bisk, Kenji Sagae, and Ryan
Musa. 2016. Supertagging with LSTMs. In Pro-
ceedings of NAACL-HLT . pages 232–237.

Matthew W. Wagers, Ellen F. Lau, and Colin Phillips.
2009. Agreement attraction in comprehension: Rep-
resentations and processes. Journal of Memory and
Language 61(2):206–237.

Wenduan Xu, Michael Auli, and Stephen Clark. 2015.
CCG supertagging with a recurrent neural network.
In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing (Volume 2: Short Papers). Associ-
ation for Computational Linguistics, Beijing, China,
pages 250–255.

12

A Appendix

This appendix presents figures based on sen-
tences with relative clause (see Section 4.4). Fig-
ure 8 tracks the word-by-word predictions that
the single-task model and the pre-trained model
make for three sample sentences; the grammati-
cal ground truth is indicated with a dotted black
line. Overall, the pre-trained model is closer to
the ground truth than the single-task model, even
in cases where both models ultimately make the
correct prediction (Figure 8b). Figures 8a and 8c
show cases in which an attractor in an embedded
clause misleads the single-task but not the pre-
trained one. Finally, Figure 9 shows a sample of
four units that appear to track interpretable aspects
of the sentence.

the actors that directed the film

0.0

0.2

0.4

0.6

0.8

1.0

P
(p

lu
ra

l) Single-task

Pre-trained

Ground
truth

(a) Bock and Cutting (1992): PS

the philosophers

the scientist
discusses

during
the radio

program
rarely

0.0

0.2

0.4

0.6

0.8

1.0
P
(p

lu
ra

l)

Single-task

Pre-trained

Ground truth

(b) Wagers et al. (2009): PS

the philosopher

the scientists
discuss

during
the radio

program
rarely

0.0

0.2

0.4

0.6

0.8

1.0

P
(p

lu
ra

l)

Single-task

Pre-trained

Ground truth

(c) Wagers et al. (2009): SP

Figure 8: Probability of a plural prediction after
each word in the sentence for three sample sen-
tences. The black dotted line indicates the gram-
matical ground truth.

13

the philosopher(s)

the scientist(s)

discuss(es)

during
the radio

program
rarely

1.0

0.5

0.0

0.5

1.0

SS

SP

PS

PP

(a) Unit 30: approximately tracks the number of the
currently relevant subject

the philosopher(s)

the scientist(s)

discuss(es)

during
the radio

program
rarely

1.0

0.8

0.6

0.4

0.2

0.0

SS

SP

PS

PP

(b) Unit 50: only active within noun phrases

the philosopher(s)

the scientist(s)

discuss(es)

during
the radio

program
rarely

1.0

0.5

0.0

0.5

1.0

SS

SP

PS

PP

(c) Unit 73: represents of the number of the main
clause subject

the philosopher(s)

the scientist(s)

discuss(es)

during
the radio

program
rarely

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

SS

SP

PS

PP

(d) Unit 86: approximately tracks the number of the
currently relevant subject)

Figure 9: Activations of a sample of interpretable units throughout an example sentence from Wagers
et al. (2009), for all four number configurations.

14

Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017), pages 15–25,
Vancouver, Canada, August 3 - August 4, 2017. c©2017 Association for Computational Linguistics

The Effect of Different Writing Tasks on Linguistic Style:
A Case Study of the ROC Story Cloze Task

Roy Schwartz1,2, Maarten Sap1, Ioannis Konstas1,
Li Zilles1, Yejin Choi1 and Noah A. Smith1

1Paul G. Allen School of Computer Science & Engineering,
University of Washington, Seattle, WA, USA

2Allen Institute for Artificial Intelligence, Seattle, WA, USA
{roysch,msap,ikonstas,lzilles,yejin,nasmith}@cs.washington.edu

Abstract

A writer’s style depends not just on per-
sonal traits but also on her intent and
mental state. In this paper, we show
how variants of the same writing task can
lead to measurable differences in writing
style. We present a case study based on
the story cloze task (Mostafazadeh et al.,
2016a), where annotators were assigned
similar writing tasks with different con-
straints: (1) writing an entire story, (2)
adding a story ending for a given story
context, and (3) adding an incoherent end-
ing to a story. We show that a simple
linear classifier informed by stylistic fea-
tures is able to successfully distinguish
among the three cases, without even look-
ing at the story context. In addition, com-
bining our stylistic features with language
model predictions reaches state of the art
performance on the story cloze challenge.
Our results demonstrate that different task
framings can dramatically affect the way
people write.1

1 Introduction

Writing style is expressed through a range of lin-
guistic elements such as words, sentence structure,
and rhetorical devices. It is influenced by per-
sonal factors such as age and gender (Schler et al.,
2006), by personality traits such as agreeableness
and openness (Ireland and Mehl, 2014), as well as
by mental states such as sentiment (Davidov et al.,
2010), sarcasm (Tsur et al., 2010), and deception
(Feng et al., 2012). In this paper, we study the ex-
tent to which writing style is affected by the nature
of the writing task the writer was asked to perform,

1This paper extends our LSDSem 2017 shared task sub-
mission (Schwartz et al., 2017).

Story Prefix Ending
John liked a girl at his
work. He tried to get
her attention by acting
silly. She told him to
grow up. John con-
fesses he was trying
to make her like him
more.

She feels flattered
and asks John on a
date.
The girl found this
charming, and gave
him a second chance.

John was happy about
being rejected.

Table 1: Examples of stories from the story cloze
task. The table shows a story prefix with three con-
trastive endings: The original ending, a coherent
ending and a incoherent one.

since different tasks likely engage different cogni-
tive processes (Campbell and Pennebaker, 2003;
Banerjee et al., 2014).2

We show that similar writing tasks with dif-
ferent constraints on the author can lead to mea-
surable differences in her writing style. As a
case study, we present experiments based on
the recently introduced ROC story cloze task
(Mostafazadeh et al., 2016a). In this task, authors
were asked to write five-sentence self-contained
stories, henceforth original stories. Then, each
original story was given to a different author, who
was shown only the first four sentences as a story
context, and asked to write two contrasting story
endings: a right (coherent) ending, and a wrong
(incoherent) ending. Framed as a story cloze task,
the goal of this dataset is to serve as a common-
sense challenge for NLP and AI research. Table 1
shows an example of an original story, a coherent
story, and an incoherent story.

While the story cloze task was originally de-

2For the purposes of this paper, style is defined as content-
agnostic writing characteristics, such as the number of words
in a sentence.

15

signed to be a story understanding challenge, its
annotation process introduced three variants of the
same writing task: writing an original, right, or
wrong ending to a short story. In this paper, we
show that a linear classifier informed by stylistic
features can distinguish among the different end-
ings to a large degree, even without looking at the
story context (64.5–75.6% binary classification re-
sults).

Our results allow us to make a few key observa-
tions. First, people adopt a different writing style
when asked to write coherent vs. incoherent story
endings. Second, people change their writing style
when writing the entire story on their own com-
pared to writing only the final sentence for a given
story context written by someone else.

In order to further validate our method, we
also directly tackle the story cloze task. Adapt-
ing our classifier to the task, we obtain 72.4% ac-
curacy, only 2.3% below state of the art results.
We also show that the style differences captured
by our model can be combined with neural lan-
guage models to make a better use of the story
context. Our final model that combines context
with stylistic features achieves a new state of the
art—75.2%—an additional 2.8% gain.

The contributions of our study are threefold.
First, findings from our study can potentially shed
light on how different kinds of cognitive load
influence the style of written language. Sec-
ond, combined with recent similar findings of Cai
et al. (2017), our results indicate that when de-
signing new NLP tasks, special attention needs
to be paid to the instructions given to authors.
Third, we establish a new state of the art result
on the commonsense story cloze challenge. Our
code is available at https://github.com/
roys174/writing_style.

2 Background: The Story Cloze Task

To understand how different writing tasks affect
writing style, we focus on the story cloze task
(Mostafazadeh et al., 2016a). While this task was
developed to facilitate representation and learning
of commonsense story understanding, its design
included a few key choices which make it ideal
for our study. We describe the task below.

ROC stories. The ROC story corpus consists of
49,255 five-sentence stories, collected on Ama-

zon Mechanical Turk (AMT).3 Workers were in-
structed to write a coherent self-contained story,
which has a clear beginning and end. To col-
lect a broad spectrum of commonsense knowl-
edge, there was no imposed subject for the stories,
which resulted in a wide range of different topics.

Story cloze task. After compiling the story cor-
pus, the story cloze task—a task based on the
corpus—was introduced. A subset of the stories
was selected, and only the first four sentences
of each story were presented to AMT workers.
Workers were asked to write a pair of new story
endings for each story context: one right and one
wrong. Both endings were required to complete
the story using one of the characters in the story
context. Additionally, the endings were required
to be “realistic and sensible” (Mostafazadeh et al.,
2016a) when read out of context.

The resulting stories, both right and wrong,
were then individually rated for coherence and
meaningfulness by additional AMT workers. Only
stories rated as simultaneously coherent with a
right ending and neutral with a wrong ending were
selected for the task. It is worth noting that work-
ers rated the stories as a whole, not only the end-
ings.

Based on the new stories, Mostafazadeh et al.
(2016a) proposed the story cloze task. The task
is simple: given a pair of stories that differ only
in their endings, the system decides which ending
is right and which is wrong. The official train-
ing data contains only the original stories (without
alternative endings), while development and test
data consist of the revised stories with alternative
endings (for a different set of original stories that
are not included in the training set). The task was
suggested as an extensive evaluation framework:
as a commonsense story understanding task, as
the shared task for the Linking Models of Lexical,
Sentential and Discourse-level Semantics work-
shop (LSDSem 2017, Roth et al., 2017), and as a
testbed for vector-space evaluation (Mostafazadeh
et al., 2016b).

Interestingly, only very recently, one year after
the task was first introduced, the published bench-
mark on this task surpassed 60%. This comes
in contrast to other recent similar machine read-
ing tasks such as CNN/DailyMail (Hermann et al.,
2015), SNLI (Bowman et al., 2015), LAMBADA

3Recently, additional 53K stories were released, which re-
sults in roughly 100K stories.

16

(Paperno et al., 2016) and SQuAD (Rajpurkar
et al., 2016), for which results improved dramati-
cally over similar or much shorter periods of time.
This suggests that this task is challenging and that
high performance is hard to achieve.

In addition, Mostafazadeh et al. (2016a) made
substantial efforts to ensure the quality of this
dataset. First, each pair of endings was written by
the same author, which ensured that style differ-
ences between authors could not be used to solve
the task. Furthermore, Mostafazadeh et al. imple-
mented nine baselines for the task, using surface
level features as well as narrative-informed ones,
and showed that each of them reached roughly
chance-level. These results suggest that real un-
derstanding of text is required in order to solve the
task. In this paper, we show that this is not neces-
sarily the case, by demonstrating that a simple lin-
ear classifier informed with style features reaches
near state of the art results on the task—72.4%.

Different writing tasks in the story cloze task.
Several key design decisions make the task an
interesting testbed for the purpose of this study.
First, the training set for the task (ROC Stories
corpus) is not a training set in the usual sense,4

as it contains only positive (right) examples, and
not negative (wrong) ones.

On top of that, the original endings, which serve
as positive training examples, were generated dif-
ferently from the right endings, which serve as the
positive examples in the development and test sets.
While the former are part of a single coherent story
written by the same author, the latter were gener-
ated by letting an author read four sentences, and
then asking her to generate a fifth right ending.

Finally, although the right and wrong sentences
were generated by the same author, the tasks for
generating them were quite different: in one case,
the author was asked to write a right ending, which
would create a coherent five-sentence story along
with the other four sentences. In the other case, the
author was asked to write a wrong ending, which
would result in an incoherent five-sentence story.

3 Surface Analysis of the Story Cloze
Task

We begin by computing several characteristics of
the three types of endings: original endings (from

4I.e., the training instances are not drawn from a popu-
lation similar to the one that future testing instances will be
drawn from.

the ROC story corpus training set), right endings
and wrong endings (both from the story cloze task
development set). Our analysis reveals several
style differences between different groups. First,
original endings are on average longer (11 words
per sentence) than right endings (8.75 words),
which are in turn slightly longer than wrong ones
(8.47 words). The latter finding is consistent with
previous work, which has shown that sentence
length is also indicative of whether a text was de-
ceptive (Qin et al., 2004; Yancheva and Rudzicz,
2013). Although writing wrong sentences is not
the same as deceiving, it is not entirely surprising
to observe similar trends in both tasks.

Second, Figure 1a shows the distribution of five
frequent POS tags in all three groups. The fig-
ure shows that both original and right endings
use pronouns more frequently than wrong endings.
Once again, deceptive text is also characterized by
fewer pronouns compared to truthful text (New-
man et al., 2003).

Finally, Figure 1b presents the distribution of
five frequent words across the different groups.
The figure shows that original endings use co-
ordinations (“and”) more than right endings, and
substantially more than wrong ones. Furthermore,
original and right endings seem to prefer enthu-
siastic language (e.g., “!”), while wrong endings
tend to use more negative language (“hates”), sim-
ilar to deceptive text (Newman et al., 2003). Next
we show that these style differences are not anec-
dotal, but can be used to distinguish among the
different types of story endings.

4 Model

To what extent do different writing constraints
lead authors to adopt different writing styles? In
order to answer this question, we first use simple
methods that have been shown to be very effective
for recognizing style (see Section 8). We describe
our model below.

We train a logistic regression classifier to cate-
gorize an ending, either as right vs. wrong or as
original vs. new (right). Each feature vector is
computed using the words in one ending, without
considering earlier parts of the story. We use the
following style features.

• Length: the number of words in the sentence.

• Word n-grams: we use sequences of 1–5
words. Following Tsur et al. (2010) and

17

NN VBD PRP DT NNP

5

10

15
Fr

eq
ue

nc
y

in
C

or
pu

s
(%

)

(a) POS tags

to and I hates !
0

1

2

3

(b) Words

Figure 1: The distribution of five frequent POS tags (1a) and words (1b) across original endings (hori-
zontal lines) from the story cloze training set, and right (diagonal lines) and wrong (solid lines) endings,
both from the story cloze task development set.

Schwartz et al. (2013b), we distinguish be-
tween high frequency and low frequency
words. Specifically, we replace content
words (nouns, verbs, adjectives, and ad-
verbs), which are often low frequency, with
their part-of-speech tags.

• Character n-grams: character n-grams are
one of the most useful features in identifying
author style (Stamatatos, 2009). We use char-
acter 4-grams.5

5 Experiments

We design two experiments to answer our research
questions. The first is an attempt to distinguish
between right and wrong endings, the second be-
tween original endings and new (right) endings.
For completeness, we also run a third experiment,
which compares between original and wrong end-
ings.

Experiment 1: right/wrong endings. The goal
of this experiment is to measure the extent to
which style features capture differences between
the right and wrong endings. As the story cloze
task doesn’t have a training corpus for the right
and wrong endings (see Section 2), we use the de-
velopment set as our training set, holding out 10%
for development (3,366 training endings, 374 for
development). We keep the story cloze test set as
is (3,742 endings).

It is worth noting that our classification task is
slightly different from the story cloze task. In-
stead of classifying pairs of endings, one which
is right and another which is wrong, our classifier
decides about each ending individually, whether it

5Experiments with 5-grams on our development set
reached similar performance.

is right (positive instance) or wrong (negative in-
stance). By ignoring the coupling between right
and wrong pairs, we are able to decrease the im-
pact of author-specific style differences, and focus
on the difference between the styles accompanied
with right and wrong writings.

Experiment 2: original/new endings. Here the
goal is to measure whether writing the ending
as part of a story imposes different style com-
pared to writing a new (right) ending to an exist-
ing story. We use the endings of the ROC stories
as our original examples and right endings from
the story cloze task as new examples. As there
are far more original instances than new instances,
we randomly select five original sets, each with
the same number of instances as we have new in-
stances (3,366 training endings, 374 development
endings, and 3,742 test endings). We train five
classifiers, one with each of the original training
sets, and report the average classification result.

Experiment 3: original/wrong endings. For
completeness, we measure the extent to which our
classifier can discriminate between original and
wrong endings. We replicate Experiment 2, this
time replacing right endings with wrong ones.

Experimental setup. In all experiments, we add
a START symbol at the beginning of each sen-
tence.6 For computing our features, we keep n-
gram (character or word) features that occur at
least five times in the training set. All feature val-
ues are normalized to [0, 1]. For the POS features,
we tag all endings with the Spacy POS tagger.7

We use Python’s sklearn logistic regression imple-

699% of all sentences end with a period or an exclamation
mark, so we do not add a STOP symbol.

7http://spacy.io/

18

Experiment Accuracy
right vs. wrong 0.645
original vs. right 0.685
original vs. wrong 0.756

Table 2: Results of experiments 1 (right
vs. wrong), 2 (original vs. right (new)) and 3 (orig-
inal vs. wrong (new) endings). In all cases, our
setup implies a 50% random baseline.

mentation (Pedregosa et al., 2011) with L2 regu-
larization, performing grid search on the develop-
ment set to tune a single hyperparameter—the reg-
ularization parameter.

5.1 Results

Table 2 shows our results. In all experiments,
our model achieves performance well above what
would be expected under chance (50% by design).
Noting again that our model ignores the story con-
text (the preceding four sentences), our model is
unable to capture any notion of coherence. This
finding provides strong evidence that the authors’
style was affected by the writing task they were
given to perform.

5.2 Story Cloze Task

The results of Experiment 1 indicate that right
and wrong endings are characterized by different
styles. In order to further estimate the quality of
our classification results, we tackle the story cloze
task using our classifier. This classification task is
more constrained than Experiment 1, as two end-
ings are given and the question is which is right
and which is wrong. We apply the classifier from
Experiment 1 as follows: if it assigns different
labels to the two given endings, we keep them.
Otherwise, the label whose posterior probability
is lower is reversed.

Table 3 shows our results on the story cloze test
set. Our classifier obtains 72.4% accuracy, only
2.3% lower than state of the art results. Impor-
tantly, unlike previous approaches,8 our classifier
does not require the story corpus training data, and
in fact doesn’t even consider the first four sen-
tences of the story in question. These numbers
further support the claim that the styles of right
and wrong endings are indeed very different.

8One exception is the EndingsOnly system (Cai et al.,
2017), which was published in concurrence with this work,
and obtains roughly the same results.

Model Acc.
DSSM (Mostafazadeh et al., 2016a) 0.585
ukp (Mihaylov and Frank, 2017) 0.711
tbmihaylov (Mihaylov and Frank, 2017) 0.724
†EndingsOnly (Cai et al., 2017) 0.725
cogcomp 0.744
HIER,ENCPLOTEND,ATT (Cai et al., 2017) 0.747
RNN 0.677
†Ours 0.724
Combined (ours + RNN) 0.752
Human judgment 1.000

Table 3: Results on the test set of the story cloze
task. The middle block are our results. cogcomp
results and human judgement scores are taken
from Mostafazadeh et al. (2017). Methods marked
with (†) do not use the story context in order to
make a prediction.

Combination with a neural language model.
We investigate whether our model can benefit
from state of the art text comprehension models,
for which this task was designed. Specifically,
we experiment with an LSTM-based (Hochreiter
and Schmidhuber, 1997) recurrent neural network
language model (RNNLM; Mikolov et al., 2010).
Unlike the model in this paper, which only con-
siders the story endings, this language model fol-
lows the protocol suggested by the story cloze task
designers, and harnesses their ROC Stories train-
ing set, which consists of single-ending stories, as
well as the story context for each pair of endings.
We show that adding our features to this power-
ful language model gives improvements over our
classifier as well as the language model.

We train the RNNLM using a single-layer
LSTM of hidden dimension 512. We use the ROC
stories for training,9 setting aside 10% for val-
idation of the language model. We replace all
words occurring less than 3 times with an out-
of-vocabulary token, yielding a vocabulary size of
21,582. Only during training, we apply a dropout
rate of 60% while running the LSTM over all 5
sentences of the stories. Using the Adam opti-
mizer (Kingma and Ba, 2015) and a learning rate
of η = 0.001, we train to minimize cross-entropy.

To apply the language model to the classifica-
tion problem, we select as right the ending with
the higher value of

pθ(ending | story)
pθ(ending)

(1)

9We use the extended, 100K stories corpus (see Sec-
tion 2).

19

Feature Type Accuracy
Word n-grams 0.612
Character n-grams 0.639
Full model 0.645

Table 4: Results on Experiment 1 with different
subsets of features.

The intuition is that a right ending should be un-
surprising (to the model) given the four preceding
sentences of the story (the numerator), controlling
for the inherent surprisingness of the words in that
ending (the denominator).

On its own, our neural language model performs
moderately well on the story cloze test. Selecting
endings based on pθ(ending | story) (i.e., the nu-
merator of Equation 1), we obtained only 55% ac-
curacy. The ratio in Equation 1 achieves 67.7%
(see Table 3).10

We combine our linear model with the RNNLM
by adding three features to our classifier: the nu-
merator, denominator, and ratio in Equation 1, all
in log space. We retrain our linear model with the
new feature set, and gain 2.8% absolute, reaching
75.2%, a new state of the art result for the task.
These results indicate that context-ignorant style
features can be used to obtain high accuracy on the
task, adding value even when context and a large
training dataset are used.

6 Further Analysis

6.1 Most Discriminative Feature Types

A natural question that follows from this study is
which style features are most helpful in detecting
the underlying task an author was asked to per-
form. To answer this question, we re-ran Experi-
ment 1 with different sub-groups of features. Ta-
ble 4 shows our results. Results show that char-
acter n-grams are the most effective style predic-
tors, reaching within 0.6% of the full model, but
that word n-grams also capture much of the sig-
nal, yielding 61.2%, which is only 3.3% worse
than the full model. These findings are in line with
previous work that used character n-grams along
with other types of features to predict writing style
(Schwartz et al., 2013b).

10Note that taking the logarithm of the expression in Equa-
tion 1 gives the pointwise mutual information between the
story and the ending, under the language model.

6.2 Most Salient Features

A follow-up question is which individual features
contribute most to the classification process, as
these could shed light on the stylistic differences
imposed by each of the writing tasks.

In order to answer this question, we consider the
highest absolute positive and negative coefficients
in the logistic regression classifier in Experiments
1 and 2, an approach widely used as a method of
extracting the most salient features (Nguyen et al.,
2013; Burke et al., 2013; Brooks et al., 2013). It is
worth noting that its reliability is not entirely clear,
since linear models like logistic regression can as-
sign large coefficients to rare features (Yano et al.,
2012). To mitigate this concern, we consider only
features appearing in at least 5% of the endings in
our training set.

Experiment 1. Table 5a shows the most salient
features for right (coherent) and wrong (incoher-
ent) endings in Experiment 1, along with their cor-
pus frequency. The table shows a few interesting
trends. First, authors tend to structure their sen-
tences differently when writing coherent vs. inco-
herent endings. For instance, incoherent endings
are more likely to start with a proper noun and end
with a common noun, while coherent endings have
a greater tendency to end with a past tense verb.

Second, right endings make wider use of coor-
dination structures, as well as adjectives. The lat-
ter might indicate that writing coherent stories in-
spires the authors to write more descriptive text
compared to incoherent ones, as is the case in
truthful vs. deceptive text (Ott et al., 2011). Fi-
nally, we notice a few syntactic differences: right
endings more often use infinitive verb structure,
while wrong endings prefer gerunds (VBG).

Experiment 2. Table 5b shows the same analy-
sis for Experiment 2. As noted in Section 2, orig-
inal endings tend to be much longer, which is in-
deed the most salient feature for them. An inter-
esting observation is that exclamation marks are a
strong indication for an original ending. This sug-
gests that authors are more likely to show or evoke
enthusiasm when writing their own text compared
to ending an existing text.

Finally, when comparing the two groups of
salient features from both experiments, we find
an interesting trend. Several features, such as
“START NNP” and “NN .”, which indicate wrong
sentences in Experiment 1, are used to predict

20

Right Weight Freq. Wrong Weight Freq.
‘ed .’ 0.17 06.5% START NNP 0.21 54.8%
‘and ’ 0.15 13.6% NN . 0.17 47.5%

JJ 0.14 45.8% NN NN . 0.15 05.1%
to VB 0.13 20.1% VBG 0.11 10.1%
‘d th’ 0.12 10.9% START NNP VBD 0.11 41.9%

(a) Experiment 1

Right Weight Freq. Wrong Weight Freq.
length 0.81 .100.0% ‘.’ 0.74 93.0%

‘!’ 0.46 006.1% START NNP 0.40 39.2%
NN 0.35 078.9% START NNP VBD 0.23 29.0%
RB 0.34 044.7% NN . 0.20 42.3%
‘,’ 0.32 012.7% the NN . 0.20 10.6%

(b) Experiment 2

Table 5: The top 5 most heavily weighted features for predicting right vs. wrong endings (5a) and original
vs. new (right) endings (5b). length is the sentence length feature (see Section 4).

new (i.e., right) endings in Experiment 2. This
indicates that, for instance, incoherent endings
have a stronger tendency to begin with a proper
noun compared to coherent endings, which in
turn are more likely to do so than original end-
ings. This partially explains why distinguishing
between original and wrong endings is an easier
task compared to the other pairs (Section 5.1).

7 Discussion

The effect of writing tasks on mental states. In
this paper we have shown that different writing
tasks affect a writer’s writing style in easily de-
tected ways. Our results indicate that when au-
thors are asked to write the last sentence of a five-
sentence story, they will use different style to write
a right ending compared to a wrong ending. We
have also shown that writing the ending as part
of one’s own five-sentence story is very different
than reading four sentences and then writing the
fifth. Our findings hint that the nature of the writ-
ing task imposes a different mental state on the
author, which is expressed in ways that can be ob-
served using extremely simple automatic tools.

Previous work has shown that a writing task can
affect mental state. For instance, writing decep-
tive text leads to a significant cognitive burden ac-
companied by a writing style that is different from
truthful text (Newman et al., 2003; Banerjee et al.,
2014). Writing tasks can even have a long-term
effect, as writing emotional texts was observed
to benefit both physical and mental health (Lep-

ore and Smyth, 2002; Frattaroli, 2006). Campbell
and Pennebaker (2003) also showed that the health
benefits of writing emotional text are accompanied
by changes in writing style, mostly in the use of
pronouns.

Another line of work has shown that writing
style is affected by mental state. First, an author’s
personality traits (e.g., depression, neuroticism,
narcissism) affect her writing style (Schwartz
et al., 2013a; Ireland and Mehl, 2014). Sec-
ond, temporary changes, such as a romantic re-
lationship (Ireland et al., 2011; Bowen et al.,
2016), work collaboration (Tausczik, 2009; Gon-
zales et al., 2009), or negotiation (Ireland and Hen-
derson, 2014) may also affect writing style. Fi-
nally, writing style can also change from one sen-
tence to another, for instance between positive and
negative text (Davidov et al., 2010) or when writ-
ing sarcastic text (Tsur et al., 2010).

This large body of work indicates a tight con-
nection between writing tasks, mental states, and
variation in writing style. This connection hints
that the link discovered in this paper, between dif-
ferent writing tasks and resulting variation in writ-
ing style, involves differences in mental state. Ad-
ditional investigation is required in order to further
validate this hypothesis.

Design of NLP tasks. Our study also provides
important insights for the future design of NLP
tasks. The story cloze task was very carefully de-
signed. Many factors, such as topic diversity and

21

temporal and causal relation diversity, were con-
trolled for (Mostafazadeh et al., 2016a). The au-
thors also made sure each pair of endings was writ-
ten by the same author, partly in order to avoid
author-specific style effects. Nonetheless, despite
these efforts, several significant style differences
can be found between the story cloze training and
test set, as well as between the positive and nega-
tive labels.

Our findings suggest that careful attention must
be paid to instructions given to authors, especially
in unnatural tasks such as writing a wrong ending.
The COPA dataset (Roemmele et al., 2011), which
was also designed to test commonsense knowl-
edge, explicitly addressed potential style differ-
ences in their instructions. In this task, systems
are presented with premises like I put my plate in
the sink, and then decide between two alternatives,
e.g.: (a) I finished eating. and (b) I skipped dinner.
Importantly, when writing the alternatives, annota-
tors were asked to be as brief as possible and avoid
proper names, as well as slang.

Applying our story cloze classifier to this
dataset yields 53.2% classification accuracy—
close to a random baseline. While this could be
partially explained by the smaller data size of the
COPA dataset (1,000 examples compared to 3,742
in the story cloze task), this indicates that simple
instructions may help alleviate the effects of writ-
ing style found in this paper. Another way to avoid
such effects is to have people rate naturally occur-
ring sentences by parameters such as coherence
(or, conversely, the level of surprise), rather than
asking them to generate new text.

8 Related Work

Writing style. Writing style has been an active
topic of research for decades. The models used to
characterize style are often linear classifiers with
style features such as character and word n-grams
(Stamatatos, 2009; Koppel et al., 2009). Previ-
ous work has shown that different authors can be
grouped by their writing style, according to factors
such as age (Pennebaker and Stone, 2003; Arga-
mon et al., 2003; Schler et al., 2006; Rosenthal
and McKeown, 2011; Nguyen et al., 2011), gender
(Argamon et al., 2003; Schler et al., 2006; Bam-
man et al., 2014), and native language (Koppel
et al., 2005; Tsur and Rappoport, 2007; Bergsma
et al., 2012). At the extreme case, each individ-
ual author adopts a unique writing style (Mosteller

and Wallace, 1963; Pennebaker and King, 1999;
Schwartz et al., 2013b).

The line of work that most resembles our work
is the detection of deceptive text. Several re-
searchers have used stylometric features to predict
deception (Newman et al., 2003; Hancock et al.,
2007; Ott et al., 2011; Feng et al., 2012). Some
works even showed that gender affects a person’s
writing style when lying (Pérez-Rosas and Mihal-
cea, 2014a,b). In this work, we have shown that
an even more subtle writing task—writing coher-
ent and incoherent story endings—imposes differ-
ent styles on the author.

Machine reading. The story cloze task, which
is the focus of this paper, is part of a wide set of
machine reading/comprehension challenges pub-
lished in the last few years. These include datasets
like bAbI (Weston et al., 2016), SNLI (Bowman
et al., 2015), CNN/DailyMail (Hermann et al.,
2015), LAMBADA (Paperno et al., 2016) and
SQuAD (Rajpurkar et al., 2016). While these
works have presented resources for researchers,
it is often the case that these datasets suffer
from methodological problems caused by apply-
ing noisy automatic tools to generate them (Chen
et al., 2016).11 In this paper, we have pointed
to another methodological challenge in design-
ing machine reading tasks: different writing tasks
used to generated the data affect writing style, con-
founding classification problems.

9 Conclusion

Different writing tasks assigned to an author re-
sult in different writing styles for that author. We
experimented with the story cloze task, which in-
troduces two interesting comparison points: the
difference between writing a story on one’s own
and continuing someone else’s story, and the dif-
ference between writing a coherent and an inco-
herent story ending. In both cases, a simple lin-
ear model reveals measurable differences in writ-
ing styles, which in turn allows our final model to
achieve state of the art results on the story cloze
task.

The findings presented in this paper have cogni-
tive implications, as they motivate further research

11Similar problems have been shown in visual question an-
swering datasets, where simple models that rely mostly on
the question text perform competitively with state of the art
models by exploiting language biases (Zhou et al., 2015; Jabri
et al., 2016).

22

on the effects that a writing prompt has on an au-
thor’s mental state, and also her concrete response.
They also provide valuable lessons for designing
new NLP datasets.

10 Acknowledgments

The authors thank Chenhao Tan, Luke Zettle-
moyer, Rik Koncel-Kedziorski, Rowan Zellers,
Yangfeng Ji and several anonymous reviewers for
helpful feedback. This research was supported
in part by Darpa CwC program through ARO
(W911NF-15-1-0543), Samsung GRO, NSF IIS-
1524371, and gifts from Google and Facebook.

References
Shlomo Argamon, Moshe Koppel, Jonathan Fine, and

Anat Rachel Shimoni. 2003. Gender, genre, and
writing style in formal written texts. Text 23(3):321–
346.

David Bamman, Jacob Eisenstein, and Tyler Schnoe-
belen. 2014. Gender identity and lexical variation in
social media. Journal of Sociolinguistics 18(2):135–
160.

Ritwik Banerjee, Song Feng, Jun S. Kang, and Yejin
Choi. 2014. Keystroke patterns as prosody in digital
writings: A case study with deceptive reviews and
essays. In Proc. of EMNLP.

Shane Bergsma, Matt Post, and David Yarowsky. 2012.
Stylometric analysis of scientific articles. In Proc. of
NAACL.

Jeffrey D. Bowen, Lauren A. Winczewski, and
Nancy L. Collins. 2016. Language style matching
in romantic partners? conflict and support interac-
tions. Journal of Language and Social Psychology
pages 1–24.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In Proc. of EMNLP.

Michael Brooks, Katie Kuksenok, Megan K. Torkild-
son, Daniel Perry, John J. Robinson, Taylor J. Scott,
Ona Anicello, Ariana Zukowski, Paul Harris, and
Cecilia R. Aragon. 2013. Statistical affect detection
in collaborative chat. In Proc. of CSCW.

Moira Burke, Lada A. Adamic, and Karyn Marciniak.
2013. Families on facebook. In Proc. of ICWSM.

Zheng Cai, Lifu Tu, and Kevin Gimpel. 2017. Pay at-
tention to the ending: Strong neural baselines for the
ROC story cloze task. In Proc. of ACL.

R. Sherlock Campbell and James W. Pennebaker. 2003.
The secret life of pronouns flexibility in writing

style and physical health. Psychological Science
14(1):60–65.

Danqi Chen, Jason Bolton, and Christopher D. Man-
ning. 2016. A thorough examination of the
CNN/Daily Mail reading comprehension task. In
Proc. of ACL.

Dmitry Davidov, Oren Tsur, and Ari Rappoport. 2010.
Enhanced sentiment learning using Twitter hashtags
and smileys. In Proc. of COLING.

Song Feng, Ritwik Banerjee, and Yejin Choi. 2012.
Syntactic stylometry for deception detection. In
Proc. of ACL.

Joanne Frattaroli. 2006. Experimental disclosure and
its moderators: a meta-analysis. Psychological bul-
letin 132(6):823.

Amy L. Gonzales, Jeffrey T. Hancock, and James W.
Pennebaker. 2009. Language style matching as a
predictor of social dynamics in small groups. Com-
munication Research 37(1):3–19.

Jeffrey T. Hancock, Lauren E. Curry, Saurabh Goorha,
and Michael Woodworth. 2007. On lying and be-
ing lied to: A linguistic analysis of deception in
computer-mediated communication. Discourse Pro-
cesses 45(1):1–23.

Karl Moritz Hermann, Tomáš Kočiský, Edward
Grefenstette, Lasse Espeholt, Will Kay, Mustafa Su-
leyman, and Phil Blunsom. 2015. Teaching ma-
chines to read and comprehend. In Proc. of NIPS.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Computation
9(8):1735–1780.

Molly E. Ireland and Marlone D. Henderson. 2014.
Language style matching, engagement, and impasse
in negotiations. Negotiation and Conflict Manage-
ment Research 7(1):1–16.

Molly E. Ireland and Matthias R. Mehl. 2014. Natu-
ral language use as a marker of personality, Oxford
University Press, USA, pages 201–237. The Oxford
Handbook of Language and Social Psychology.

Molly E. Ireland, Richard B. Slatcher, Paul W. East-
wick, Lauren E. Scissors, Eli J. Finkel, and James W.
Pennebaker. 2011. Language style matching pre-
dicts relationship initiation and stability. Psycholog-
ical Science 22(1):39–44.

Allan Jabri, Armand Joulin, and Laurens van der
Maaten. 2016. Revisiting visual question answering
baselines. In Proc. of ECCV .

Diederik Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In Proc. of
ICLR.

Moshe Koppel, Jonathan Schler, and Shlomo Arga-
mon. 2009. Computational methods in authorship
attribution. Journal of the American Society for in-
formation Science and Technology 60(1):9–26.

23

Moshe Koppel, Jonathan Schler, and Kfir Zigdon.
2005. Determining an author’s native language by
mining a text for errors. In Proc. of KDD.

Stephen J. Lepore and Joshua M. Smyth. 2002. The
Writing Cure: How Expressive Writing Promotes
Health and Emotional Well-being. American Psy-
chological Association.

Todor Mihaylov and Anette Frank. 2017. Simple story
ending selection baselines. In Proc. of LSDSem.

Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan
Černocký, and Sanjeev Khudanpur. 2010. Recur-
rent neural network based language model. In Proc.
of Interspeech.

Nasrin Mostafazadeh, Nathanael Chambers, Xiaodong
He, Devi Parikh, Dhruv Batra, Lucy Vanderwende,
Pushmeet Kohli, and James Allen. 2016a. A cor-
pus and cloze evaluation for deeper understanding
of commonsense stories. In Proc. of NAACL.

Nasrin Mostafazadeh, Michael Roth, Annie Louis,
Nathanael Chambers, and James F. Allen. 2017. LS-
DSem 2017 shared task: The story cloze test. In
Proc. of LSDSem.

Nasrin Mostafazadeh, Lucy Vanderwende, Wen-tau
Yih, Pushmeet Kohli, and James Allen. 2016b.
Story cloze evaluator: Vector space representation
evaluation by predicting what happens next. In
Proc. of RepEval.

Frederick Mosteller and David L. Wallace. 1963. Infer-
ence in an authorship problem. Journal of the Amer-
ican Statistical Association 58(302):275–309.

Matthew L. Newman, James W. Pennebaker, Diane S.
Berry, and Jane M. Richards. 2003. Lying words:
Predicting deception from linguistic styles. Person-
ality and Social Psychology Bulletin 29(5):665–675.

Dong Nguyen, Rilana Gravel, Dolf Trieschnigg, and
Theo Meder. 2013. “How old do you think i am?”
a study of language and age in Twitter. In Proc. of
ICWSM.

Dong Nguyen, Noah A. Smith, and Carolyn P. Rosé.
2011. Author age prediction from text using linear
regression. In Proc. of LaTeCH.

Myle Ott, Yejin Choi, Claire Cardie, and Jeffrey T.
Hancock. 2011. Finding deceptive opinion spam by
any stretch of the imagination. In Proc. of ACL.

Denis Paperno, Germán Kruszewski, Angeliki Lazari-
dou, Ngoc Quan Pham, Raffaella Bernardi, San-
dro Pezzelle, Marco Baroni, Gemma Boleda, and
Raquel Fernández. 2016. The LAMBADA dataset:
Word prediction requiring a broad discourse context.
In Proc. of ACL.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron

Weiss, Vincent Dubourg, Jake Vanderplas, Alexan-
dre Passos, David Cournapeau, Matthieu Brucher,
Matthieu Perrot, and Édouard Duchesnay. 2011.
Scikit-learn: Machine learning in Python. JMLR
12:2825–2830.

James W. Pennebaker and Laura A. King. 1999. Lin-
guistic styles: language use as an individual differ-
ence. Journal of Personality and Social Psychology
77(6):1296–1312.

James W. Pennebaker and Lori D. Stone. 2003. Words
of wisdom: language use over the life span. Jour-
nal of Personality and Social Psychology 85(2):291–
301.

Verónica Pérez-Rosas and Rada Mihalcea. 2014a.
Cross-cultural deception detection. In Proc. of ACL.

Verónica Pérez-Rosas and Rada Mihalcea. 2014b.
Gender differences in deceivers writing style. Lec-
ture Notes in Computer Science 8856:163–174.

Tiantian Qin, Judee Burgoon, and Jay F. Nunamaker Jr.
2004. An exploratory study on promising cues in
deception detection and application of decision tree.
In Proc. of HICSS.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions
for machine comprehension of text. In Proc. of
EMNLP.

Melissa Roemmele, Cosmin Adrian Bejan, and An-
drew S. Gordon. 2011. Choice of plausible alter-
natives: An evaluation of commonsense causal rea-
soning. In AAAI Spring Symposium: Logical For-
malizations of Commonsense Reasoning.

Sara Rosenthal and Kathleen McKeown. 2011. Age
prediction in blogs: A study of style, content, and
online behavior in pre- and post-social media gener-
ations. In Proc. of ACL.

Michael Roth, Nasrin Mostafazadeh, Nathanael Cham-
bers, and Annie Louis, editors. 2017. Proceedings
of the 2nd Workshop on Linking Models of Lexical,
Sentential and Discourse-level Semantics. Associa-
tion for Computational Linguistics.

Jonathan Schler, Moshe Koppel, Shlomo Argamon,
and James Pennebaker. 2006. Effects of age and
gender on blogging. In AAAI Spring Symposium:
Computational Approaches to Analyzing Weblogs.

Andrew H. Schwartz, Johannes C. Eichstaedt, Mar-
garet L. Kern, Lukasz Dziurzynski, Stephanie M.
Ramones, Megha Agrawal, Achal Shah, Michal
Kosinski, David Stillwell, Martin E.P. Seligman, and
Lyle H. Unger. 2013a. Personality, gender, and
age in the language of social media: The open-
vocabulary approach. PloS one 8(9):e73791.

Roy Schwartz, Maarten Sap, Ioannis Konstas, Leila
Zilles, Yejin Choi, and Noah A. Smith. 2017. Story
cloze task: UW NLP system. In Proc. of LSDSem.

24

Roy Schwartz, Oren Tsur, Ari Rappoport, and Moshe
Koppel. 2013b. Authorship attribution of micro-
messages. In Proc. of EMNLP.

Efstathios Stamatatos. 2009. A survey of modern au-
thorship attribution methods. Journal of the Ameri-
can Society for information Science and Technology
60(3):538–556.

Yla Rebecca Tausczik. 2009. Linguistic analysis
of workplace computer-mediated communication.
Master’s thesis, University of Texas.

Oren Tsur, Dmitry Davidov, and Ari Rappoport. 2010.
ICWSM—a great catchy name: Semi-supervised
recognition of sarcastic sentences in online product
reviews. In Proc. of ICWSM.

Oren Tsur and Ari Rappoport. 2007. Using classifier
features for studying the effect of native language
on the choice of written second language words. In
Proc. of CACLA.

Jason Weston, Antoine Bordes, Sumit Chopra, Alexan-
der M Rush, Bart van Merriënboer, Armand Joulin,
and Tomas Mikolov. 2016. Towards AI-complete
question answering: A set of prerequisite toy tasks.
In Proc. of ICLR.

Maria Yancheva and Frank Rudzicz. 2013. Automatic
detection of deception in child-produced speech us-
ing syntactic complexity features. In Proc. of ACL.

Tae Yano, Noah A. Smith, and John D. Wilkerson.
2012. Textual predictors of bill survival in congres-
sional committees. In Proc. of NAACL.

Bolei Zhou, Yuandong Tian, Sainbayar Sukhbaatar,
Arthur Szlam, and Rob Fergus. 2015. Sim-
ple baseline for visual question answering.
ArXiv:1512.02167.

25

Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017), pages 26–35,
Vancouver, Canada, August 3 - August 4, 2017. c©2017 Association for Computational Linguistics

Parsing for Grammatical Relations via Graph Merging

Weiwei Sun, Yantao Du and Xiaojun Wan
Institute of Computer Science and Technology, Peking University

The MOE Key Laboratory of Computational Linguistics, Peking University
{ws,duyantao,wanxiaojun}@pku.edu.cn

Abstract

This paper is concerned with building
deep grammatical relation (GR) analysis
using data-driven approach. To deal with
this problem, we propose graph merging, a
new perspective, for building flexible de-
pendency graphs: Constructing complex
graphs via constructing simple subgraphs.
We discuss two key problems in this per-
spective: (1) how to decompose a com-
plex graph into simple subgraphs, and (2)
how to combine subgraphs into a coher-
ent complex graph. Experiments demon-
strate the effectiveness of graph merging.
Our parser reaches state-of-the-art perfor-
mance and is significantly better than two
transition-based parsers.

1 Introduction

Grammatical relations (GRs) represent functional
relationships between language units in a sen-
tence. Marking not only local but also a wide
variety of long distance dependencies, GRs en-
code in-depth information of natural language sen-
tences. Traditionally, GRs are generated as a by-
product by grammar-guided parsers, e.g. RASP
(Carroll and Briscoe, 2002), C&C (Clark and Cur-
ran, 2007b) and Enju (Miyao et al., 2007). Very
recently, by representing GR analysis using gen-
eral directed dependency graphs, Sun et al. (2014)
and Zhang et al. (2016) showed that considerably
good GR structures can be directly obtained using
data-driven, transition-based parsing techniques.
We follow their encouraging work and study the
data-driven approach for producing GR analyses.

The key challenge of building GR graphs is due
to their flexibility. Different from surface syn-
tax, the GR graphs are not constrained to trees,
which is a fundamental consideration in design-

ing parsing algorithms. To deal with this problem,
we propose graph merging, a new perspective, for
building flexible representations. The basic idea is
to decompose a GR graph into several subgraphs,
each of which captures most but not the complete
information. On the one hand, each subgraph is
simple enough to allow efficient construction. On
the other hand, the combination of all subgraphs
enables whole target GR structure to be produced.

There are two major problems in the graph
merging perspective. First, how to decompose
a complex graph into simple subgraphs in a
principled way? To deal with this problem,
we considered structure-specific properties of the
syntactically-motivated GR graphs. One key prop-
erty is their reachability: In a given GR graph,
almost every node is reachable from a same and
unique root. If a node is not reachable, it is dis-
connected from other nodes. This property en-
sures a GR graph to be successfully decomposed
into limited number of forests, which in turn can
be accurately and efficiently built via tree parsing.
We model the graph decomposition problem as an
optimization problem and employ Lagrangian Re-
laxation for solutions.

Second, how to merge subgraphs into one co-
herent structure in a principled way? The prob-
lem of finding an optimal graph that consistently
combines the subgraphs obtained through individ-
ual models is non-trivial. We treat this problem as
a combinatory optimization problem and also em-
ploy Lagrangian Relaxation to solve the problem.
In particular, the parsing phase consists of two
steps. First, graph-based models are applied to as-
sign scores to individual arcs and various tuples of
arcs. Then, a Lagrangian Relaxation-based joint
decoder is applied to efficiently produces globally
optimal GR graphs according to all graph-based
models.

We conduct experiments on Chinese GRBank

26

浦东 近年 来 颁布 实行 了 涉及 经济 领域 的 法规性 文件
Pudong recently issue practice involve economic field regulatory document

root root

comp temp

subj
prt

obj

temp

subj

prt

obj

subj*ldd

obj
nmod

comp
relative

nmod

Figure 1: An example: Pudong recently enacted regulatory documents involving the economic field.

(Sun et al., 2014). Though our parser does not
use any phrase-structure information, it produces
high-quality GR analysis with respect to depen-
dency matching. Our parsers obtain a labeled f-
score of 84.57 on the test set, resulting in an er-
ror reduction of 15.13% over Sun et al. (2014)’s
single system. and 10.86% over Zhang et al.
(2016)’s system. The remarkable parsing result
demonstrates the effectiveness of the graph merg-
ing framework. This framework can be adopted to
other types of flexible representations, e.g. seman-
tic dependency graphs (Oepen et al., 2014, 2015)
and abstract meaning representations (Banarescu
et al., 2013).

2 Background

In this paper, we focus on building GR analy-
sis for Mandarin Chinese. Mandarin is an an-
alytic language that lacks inflectional morphol-
ogy (almost) entirely and utilizes highly config-
urational ways to convey syntactic and semantic
information. This analytic nature allows to repre-
sent all GRs as bilexical dependencies. Sun et al.
(2014) showed that analysis for a variety of com-
plicated linguistic phenomena, e.g. coordination,
raising/control constructions, extraction, topical-
ization, can be conveniently encoded with directed
graphs. Moreover, such deep syntactic depen-
dency graphs can be effectively derived from Chi-
nese TreeBank (Xue et al., 2005) with very high
quality. Figure 1 is an example. In this graph,
“subj*ldd” between the word “涉及/involve” and
the word “文件/documents” represents a long-
distance subject-predicate relation. The arguments
and adjuncts of the coordinated verbs, namely “颁
布/issue” and “实行/practice,” are separately yet
distributively linked to the two heads.

By encoding GRs as directed graphs over
words, Sun et al. (2014) and Zhang et al. (2016)
showed that the data-driven, transition-based ap-

proach can be applied to build Chinese GR struc-
tures with very promising results. This architec-
ture is complementary to the traditional approach
to English GR analysis, which leverages grammar-
guided parsing under deep formalisms, such as
LFG (Kaplan et al., 2004), CCG (Clark and Curran,
2007a) and HPSG (Miyao et al., 2007). We follow
Sun et al.’s and Zhang et al.’s encouraging work
and study the discriminative, factorization models
for obtaining GR analysis.

3 The Idea

The key idea of this work is constructing a
complex structure via constructing simple partial
structures. Each partial structure is simple in the
sense that it allows efficient construction. For in-
stance, projective trees, 1-endpoint-corssing trees,
non-crossing dependency graphs and 1-endpoint-
crossing, pagenumber-2 graphs can be taken as
simple structures, given that low-degree polyno-
mial time parsing algorithms exist (Eisner, 1996;
Pitler et al., 2013; Kuhlmann and Jonsson, 2015;
Cao et al., 2017; Sun et al., 2017). To construct
each partial structure, we can employ mature pars-
ing techniques. To get the final target output, we
also require the total of all partial structures en-
ables whole target structure to be produced. In this
paper, we exemplify the above idea by designing
a new parser for obtaining GR graphs. Take the
GR graph in Figure 1 for example. It can be de-
composed into two tree-like subgraphs, shown in
Figure 2. If we can parse the sentence into sub-
graphs and combine them in a principled way, we
get the original GR graph.

Under this perspective, we need to develop a
principled method to decompose a complex struc-
ture into simple sturctures, which allows us to gen-
erate data to train simple solvers. We also need
to develop a principled method to integrate partial
structures, which allows us to produce coherent

27

浦东 近年 来 颁布 实行 了 涉及 经济 领域 的 法规性 文件
Pudong recently issue practice involve economic field regulatory document

root

root

comp

comp

temp

subj
prt

obj

temp

subj

prt

obj

subj[inverse]

obj

nmod

obj

nmod

comp
relative

nmod

nmod

Figure 2: A graph decomposition for the GR graph in Figure 1. The two subgraphs are shown on two
sides of the sentence respectively. The subgraph on the upper side of the sentence is exactly a tree,
while the one on the lower side is slightly different. The edge from the word “文件/document” to “涉
及/involve” is tagged “[inverse]” to indicate that the direction of the edge in the subgraph is in fact
opposite to that in the original graph.

structures as outputs. We are going to demonstrate
the techniques we use to solve these two problems.

4 Decomposing GR Graphs

4.1 Graph Decomposition as Optimization
Given a sentence s = w1w2 · · ·wn of length n,
we use a vector y of length n2 to denote a graph
on it. We use indices i and j to index the elements
in the vector, y(i, j) ∈ {0, 1}, denoting whether
there is an arc from wi to wj (1 ≤ i, j ≤ n).

Given a graph y, we hope to find m subgraphs
y1, ..., ym, each of which belongs to a specific
class of graphs Gk (k = 1, 2, · · · ,m). Each class
should allow efficient construction. For example,
we may need a subgraph to be a tree or a non-
crossing dependency graph. The combination of
all yk gives enough information to construct y.
Furthermore, the graph decomposition procedure
is utilized to generate training data for building
sub-models. Therefore, we hope each subgraph yk

is informative enough to train a good disambigua-
tion model. To do so, for each yk, we define a
score function sk that indicates the “goodness” of
yk. Integrating all ideas, we can formalize graph
decomposition as an optimization problem,

max.
∑

k sk(yk)
s.t. yi belongs to Gi∑

k yk(i, j) ≥ y(i, j), ∀i, j
The last condition in this optimization problem en-

sures that all edges in y appear at least in one sub-
graph.

For a specific graph decomposition task, we
should define good score functions sk and graph
classes Gk according to key properties of the tar-
get structure y.

4.2 Decomposing GR Graphs into Tree-like
Subgraphs

One key property of GR graphs is their reachabil-
ity: Every node is either reachable from a unique
root or by itself an independent connected com-
ponent. This property allows a GR graph to be
decomposed into limited number of tree-like sub-
graphs. By tree-like we mean if we treat a graph
on a sentence as undirected, it is a tree, or it is a
subgraph of some tree on the sentence. The ad-
vantage of tree-like subgraphs is that they can be
effectively built by adapting data-driven tree pars-
ing techniques. Take the sentence in Figure 1 for
example. For every word, there is at least one path
link the virtual root and this word. Furthermore,
we can decompose the graph into two tree-like
subgraphs, as shown in Figure 2. In this decom-
position, one subgraph is exactly a tree, and the
other is very close to a tree.

We restrict the number of subgraphs to 3. The
intuition is that we use one tree to capture long
distance information and the other two to capture

28

coordination information.1 In other words, we de-
compose each given graph y into three tree-like
subgraphs g1, g2 and g3. The goal is to let g1, g2

and g3 carry important information of the graph
as well as cover all edges in y. The optimization
problem can be written as

max. s1(g1) + s2(g2) + s3(g3)
s.t. g1, g2, g3 are tree-like

g1(i, j) + g2(i, j) + g3(i, j) ≥ y(i, j), ∀i, j
4.2.1 Scoring a Subgraph
We score a subgraph in a first order arc-factored
way, which first scores the edges separately and
then adds up the scores. Formally, the score func-
tion is sk(g) =

∑
ωk(i, j)gk(i, j) (k = 1, 2, 3)

where ωk(i, j) is the score of the edge from i to
j. Under this score function, we can use the Max-
imum Spanning Tree (MST) algorithm (Chu and
Liu, 1965; Edmonds, 1967; Eisner, 1996) to de-
code the tree-like subgraph with the highest score.

After we define the score function, extracting a
subgraph from a GR graph works like this: We
first assign heuristic weights ωk(i, j) (1 ≤ i, j ≤
n) to the potential edges between all the pairs of
words, then compute a best projective tree gk us-
ing the Eisner’s Algorithm:

gk = arg max
g

sk(g) = arg max
g

∑
ωk(i, j)g(i, j).

gk is not exactly a subgraph of y, because there
may be some edges in the tree but not in the graph.
To guarantee we get a subgraph of the original
graph, we add labels to the edges in trees to encode
necessary information. We label gk(i, j) with the
original label, if y(i, j) = 1; with the original la-
bel appended by “∼R” if y(j, i) = 1; with “None”
else. With this labeling, we can have a function
t2g to transform the extracted trees into tree-like
graphs. t2g(gk) is not necessary the same as the
original graph y, but must be a subgraph of it.

4.2.2 Three Variations of Scoring
With different weight assignments, we can extract
different trees from a graph, obtaining different

1 In this paper, we employ projective parsers. The mini-
mal number of sub-graphs is related to the pagenumber of GR
graphs. The pagenumber of 90.96% GR graphs is smaller
than or equal to 2, while the pagenumber of 98.18% GR
graphs is at most 3. That means 3 projective trees are perhaps
good enough to handle Chinese sentences, but 2 projective
trees are not. Due to the empirical results in Table 3, using
three projective trees can handle 99.55% GR arcs. Therefore,
we think three is suitable for our problem.

subgraphs. We devise three variations of weight
assignment: ω1, ω2, and ω3. Each ωk (k is 1,2
or 3) consists of two parts. One is shared by
all, denoted by S, and the other is different from
each other, denoted by V . Formally, ωk(i, j) =
S(i, j) + Vk(i, j) (k = 1, 2, 3 and 1 ≤ i, j ≤ n).

Given a graph y, S is defined as S(i, j) =
S1(i, j) + S2(i, j) + S3(i, j) + S4(i, j), where

S1(i, j) =
{
c1 if y(i, j) = 1 or y(j, i) = 1
0 else

S2(i, j) =
{
c2 if y(i, j) = 1
0 else

S3(i, j) = c3(n− |i− j|)
S4(i, j) = c4(n− lp(i, j))

In the definitions above, c1, c2, c3 and c4 are
coefficients, satisfying c1 � c2 � c3, and lp is a
function of i and j. lp(i, j) is the length of shortest
path from i to j that either i is a child of an ances-
tor of j or j is a child of an ancestor of i. That is
to say, the paths are in the form i ← n1 ← · · · ←
nk → j or i ← n1 → · · · → nk → j. If no such
path exits, then lp(i, j) = n. The intuition behind
the design is illustrated below.

S1 indicates whether there is an edge between i
and j, and we want it to matter mostly;

S2 indicates whether the edge is from i to j, and
we want the edge with correct direction to be
selected more likely;

S3 indicates the distance between i and j, and we
like the edge with short distance because it is
easier to predict;

S4 indicates the length of certain type of path be-
tween i and j that reflects c-commanding re-
lationships, and the coefficient remains to be
tuned.

We want the score V to capture different infor-
mation of the GR graph. In GR graphs, we have
an additional information (as denoted as “*ldd”
in Figure 1) for long distance dependency edges.
Moreover, we notice that conjunction is another
important structure, and they can be derived from
the GR graph. Assume that we tag the edges re-
lating to conjunctions with “*cjt.” The three varia-
tion scores, i.e. V1, V2 and V3, reflect long distance
and the conjunction information in different ways.

29

wp ... wc1 ... wgc2 ... wgc1 ... wc2 ... wl

X*cjt

X*cjt

X*cjt
X*ldd

Figure 3: Examples to illustrate the additional
weights.

V1. First for edges y(i, j) whose label is tagged
with *ldd, we assign V1(i, j) = d. d is a co-
efficient to be tuned on validation data.. When-
ever we come across a parent p with a set of con-
junction children cjt1, cjt2, · · · , cjtn, we find the
rightmost child gc1r of the leftmost child in con-
junction cjt1, and add d to each V1(p, cjt1) and
V1(cjt1, gc1r). The edges in conjunction that are
added additional d’s to are shown in blue in Figure
3.

V2. Different from V1, for edges y(i, j) whose
label is tagged with *ldd, we assign an V2(j, i) =
d. Then for each conjunction structure with
a parent p and a set of conjunction children
cjt1, cjt2, · · · , cjtn, we find the leftmost child
gcnl of the rightmost child in conjunction cjtn,
and add d to each V2(p, cjtn) and V2(cjtn, gcnl).
The concerned edges in conjunction are shown in
green in Figure 3.

V3. We do not assign d’s to the edges with tag
*ldd. For each conjunction with parent p and con-
junction children cjt1, cjt2, · · · , cjtn, we add an
d to V3(p, cjt1), V3(p, cjt2), · · · , and V3(p, cjtn).

4.3 Lagrangian Relaxation with
Approximation

As soon as we get three trees g1, g2 and g3, we get
three subgraphs t2g(g1), t2g(g2) and t2g(g3). As
is stated above, we want every edge in a graph y to
be covered by at least one subgraph, and we want
to maximize the sum of the edge weights of all
trees. Note that the inequality in the constrained
optimization problem above can be replaced by a
maximization, written as

max. s1(g1) + s2(g2) + s3(g3)
s.t. g1, g2, g3 are trees

max{t2g(g1)(i, j), t2g(g2)(i, j),
t2g(g3)(i, j)} = y(i, j),∀i, j

where sk(gk) =
∑
ωk(i, j)gk(i, j)

Let gm = max{t2g(g1), t2g(g2), t2g(g3)},
and by max{g1, g2, g3}we mean to take the maxi-
mum of three vectors pointwisely. The Lagrangian

Algorithm 1: The Tree Extraction Algorithm

Initialization: set u(0) to 0
for k = 0 to K do

g1 ← arg maxg1
s1(g1) + u(k)>g1

g2 ← arg maxg2
s2(g2) + u(k)>g2

g3 ← arg maxg3
s3(g3) + u(k)>g3

if max{g1, g2, g3} = y then
return g1, g2, g3

u(k+1) ←
u(k) − α(k)(max{g1, g2, g3} − y)

return g1, g2, g3

of the problem is

L(g1, g2, g3;u) = s1(g1) + s2(g2) + s3(g3)
+u>(gm − y)

where u is the Lagrangian multiplier.
Then the dual is

L(u) = max
g1,g2,g3

L(g1, g2, g3;u)

= max
g1

(s1(g1) +
1
3
u>gm)

+ max
g2

(s2(g2) +
1
3
u>gm)

+ max
g3

(s3(g3) +
1
3
u>gm)− u>y

According to the duality principle,
maxg1,g2,g3;u minu L(g1, g2, g3) = minu L(u),
so we can find the optimal solution for the
problem if we can find minu L(u). However it
is very hard to compute L(u), not to mention
minu L(u). The challenge is that gm in the three
maximizations must be consistent.

The idea is to separate the overall maximization
into three maximization problems by approxima-
tion. We observe that g1, g2, and g3 are very close
to gm, so we can approximate L(u) by

L′(u) = max
g1,g2,g3

L(g1, g2, g3;u)

= max
g1

(s1(g1) +
1
3
u>g1)

+ max
g2

(s2(g2) +
1
3
u>g2)

+ max
g3

(s3(g3) +
1
3
u>g3)− u>y

In this case, the three maximization problem can
be decoded separately, and we can try to find the
optimal u using the subgradient method.

30

4.4 The Algorithm

Algorithm 1 is our tree decomposition algorithm.
In the algorithm, we use subgradient method to
find minu L′(u) iteratively. In each iteration, we
first compute g1, g2, and g3 to find L′(u), then
update u until the graph is covered by the sub-
graphs. The coefficient 1

3 ’s can be merged into
the steps α(k), so we omit them. The three sep-
arate problems gk ← arg maxgk

sk(gk) + u>gk

(k = 1, 2, 3) can be solved using Eisner’s algo-
rithm, similar to solving arg maxgk

sk(gk). In-
tuitively, the Lagrangian multiplier u in our Al-
gorithm can be regarded as additional weights for
the score function. The update of u is to increase
weights to the edges that are not covered by any
tree-like subgraph, so that it will be more likely
for them to be selected in the next iteration.

5 Graph Merging

The extraction algorithm gives three classes of
trees for each graph. We apply the algorithm to
the graph training set, and get three training tree
sets. After that, we can train three parsing models
with the three tree sets. In this work, the parser
we use to train models and parse trees is Mate
(Bohnet, 2010), a second-order graph-based de-
pendency parser.

Let the scores the three models use be
f1, f2, f3 respectively. Then the parsers can
find trees with highest scores for a sentence.
That is solving the following optimization prob-
lems: arg maxg1

f1(g1), arg maxg2
f2(g2) and

arg maxg2
f3(g3). We can parse a given sen-

tence with the three models, obtain three trees,
and then transform them into subgraphs, and com-
bine them together to obtain the graph parse of
the sentence by putting all the edges in the three
subgraphs together. That is to say, we obtain the
graph y = max{t2g(g1), t2g(g2), t2g(g3)}. We
call this process simple merging.

However, the simple merging process omits
some consistency that the three trees extracted
from the same graph achieve, thus losing some
important information. The information is that
when we decompose a graph into three subgraphs,
some edges tend to appear in certain classes of
subgraphs at the same time. We want to retain
the co-occurrence relationship of the edges when
doing parsing and merging. To retain the hidden
consistency, we must do joint decoding instead of
decode the three models separately.

5.1 Capturing the Hidden Consistency

In order to capture the hidden consistency, we add
consistency tags to the labels of the extracted trees
to represent the co-occurrence. The basic idea is
to use additional tag to encode the relationship of
the edges in the three trees. The tag set is T =
{0, 1, 2, 3, 4, 5, 6}. Given a tag t ∈ T , t&1, t&2,
t&4 denote whether the edge is contained in g1,
g2, g3 respectively, where the operator “&” is the
bitwise AND operator. Specially, since we do not
need to consider first bit of the tags of edges in g1,
the second bit in g2, and the third bit in g3, we
always assign 0 to them. For example, if y(i, j) =
1, g1(i, j) = 1, g2(j, i) = 1, g3(i, j) = 0 and
t3(j, i) = 0, we tag g1(i, j) as 2 and g2(j, i) as 1.

When it comes to parsing, we also get labels
with consistency information. Our goal is to guar-
antee the tags in edges of the parse trees for a
same sentence are consistent while graph merg-
ing. Since the consistency tags emerge, for con-
venience we index the graph and tree vector rep-
resentation using three indices. g(i, j, t) denotes
whether there is an edge from word wi to word
wj with tag t in graph g.

The joint decoding problem can be written as a
constrained optimization problem as

max. f1(g1) + f2(g2) + f3(g3)
s.t. g′1(i, j, 2) + g′1(i, j, 6) ≤∑t g

′
2(i, j, t)

g′1(i, j, 4) + g′1(i, j, 6) ≤∑t g
′
3(i, j, t)

g′2(i, j, 1) + g′2(i, j, 5) ≤∑t g
′
1(i, j, t)

g′2(i, j, 4) + g′2(i, j, 5) ≤∑t g
′
3(i, j, t)

g′3(i, j, 1) + g′3(i, j, 3) ≤∑t g
′
1(i, j, t)

g′3(i, j, 2) + g′3(i, j, 3) ≤∑t g
′
2(i, j, t)

∀i, j

where g′k = t2g(gk)(k = 1, 2, 3).
The inequality constraints in the problem are the

consistency constraints. Each of them gives the
constraint between two classes of trees. For exam-
ple, the first inequality says that an edge in g1 with
tag t&2 6= 0 exists only when the same edge in g2

exist. If all of these constraints are satisfied, the
subgraphs achieve the consistency.

5.2 Lagrangian Relaxation with
Approximation

To solve the constrained optimization problem
above, we do some transformations and then ap-
ply the Lagrangian Relaxation to it with approxi-
mation.

31

Let a12(i, j) = g1(i, j, 2) + g1(i, j, 6), then the
first constraint can be written as an equity con-
straint

g1(:, :, 2) + g1(:, :, 6) = a12. ∗ (
∑

t

g2(:, :, t))

where “:” is to take out all the elements in the
corresponding dimension, and “.∗” is to do multi-
plication pointwisely. So can the other inequality
constraints. If we take a12,a13, · · · ,a32 as con-
stants, then all the constraints are linear. The con-
straints thus can be written as

A1g1 +A2g2 +A3g3 = 0

where A1, A2, and A3 are matrices that can be
constructed from a12,a13, · · · ,a32.

The Lagrangian of the optimization problem is

L(g1, g2, g3;u) = f1(g1) + f2(g2) + f3(g3) +
u>(A1g1 +A2g2 +A3g3)

where u is the Lagrangian multiplier. Then the
dual is

L(u) = max
g1,g2,g3

L(g1, g2, g3;u)

= max
g1

(f1(g1) + u>A1g1)

+ max
g2

(f2(g2) + u>A2g2)

+ max
g3

(f3(g3) + u>A3g3)

Again, we use the subgradient method to min-
imize L(u). During the deduction, we take
a12,a13, · · · ,a32 as constants, but unfortunately
they are not. We propose an approximation for the
a’s in each iteration: Using the a’s we got in the
previous iteration instead. It is a reasonable ap-
proximation given that the u’s in two consecutive
iterations are similar and so are the a’s.

5.3 The Algorithm
The pseudo code of our algorithm is shown in Al-
gorithm 2. We know that the score functions f1,
f2, and f3 each consist of first-order scores and
higher order scores. So they can be written as

fk(g) = s1st
k (g) + sh

k(g)

where s1st
k (g) =

∑
ωk(i, j)g(i, j) (k = 1, 2, 3).

With this property, each individual problem gk ←
arg maxgk

fk(gk)+u>Akgk can be decoded eas-
ily, with modifications to the first order weights

Algorithm 2: The Joint Decoding Algorithm

Initialization: set u(0), A1, A2, A3 to 0,
for k = 0 to K do

g1 ← arg maxg1
f1(g1) + u(k)>A1g1

g2 ← arg maxg2
f2(g2) + u(k)>A2g2

g3 ← arg maxg3
f3(g3) + u(k)>A3g3

update A1, A2, A3

if A1g1 +A2g2 +A3g3 = 0 then
return g1, g2, g3

u(k+1) ←
u(k) − α(k)(A1g1 +A2g2 +A3g3)

return g1, g2, g3

of the edges in the three models. Specifically, let
wk = u>Ak, then we can modify the ωk in sk to
ω′k, such that ω′k(i, j, t) = ωk(i, j, t)+wk(i, j, t)+
wk(j, i, t).

The update of w1, w2, w3 can be understood
in an intuitive way. When one of the constraints
is not satisfied, without loss of generality, say,
the first one for edge y(i, j). We know g1(i, j)
is tagged to represent that g2(i, j) = 1, but it
is not the case. So we increase the weight of
that edge with all kinds of tags in g2, and de-
crease the weight of the edge with tag representing
g2(i, j) = 1 in g1. After the update of the weights,
the consistency is more likely to be achieved.

5.4 Labeled Parsing

For sake of formal concision, we illustrate our al-
gorithms omitting the labels. It is straightforward
to extend the algorithms to labeled parsing. In the
joint decoding algorithm, we just need to extend
the weights w1, w2, w3 for every label that ap-
pears in the three tree sets, and the algorithm can
be deduced similarly.

6 Evaluation and Analysis

6.1 Experimental Setup

We conduct experiments on Chinese GRBank
(Sun et al., 2014), an LFG-style GR corpus for
Mandarin Chinese. Linguistically speaking, this
deep dependency annotation directly encodes in-
formation such as coordination, extraction, rais-
ing, control as well as many other long-range de-
pendencies. The selection for training, develop-
ment, test data is also according to Sun et al.
(2014)’s experiments. Gold standard POS-tags are
used for deriving features for disambiguation.

32

UP UR UF UCompl LP LR LF LCompl

SM

subgraph1 88.63 76.19 81.94 18.09 85.94 73.88 79.46 16.11
subgraph2 88.04 78.20 82.83 17.47 85.31 75.77 80.26 15.43
subgraph3 88.91 81.12 84.84 20.36 86.57 78.99 82.61 17.30

Merged 83.23 88.45 85.76 22.97 80.59 85.64 83.04 19.29

LR

subgraph1 89.76 77.48 83.17 18.60 87.17 75.25 80.77 16.39
subgraph2 89.30 79.18 83.93 18.66 86.68 76.85 81.47 16.56
subgraph3 89.42 81.55 85.31 20.53 87.09 79.43 83.08 17.81

Merged 88.07 85.14 86.58 26.32 85.55 82.70 84.10 21.61

Table 1: Results on development set. SM is for Simple Merging, and LR for Lagrangian Relaxation.

UP UR UF UCompl LP LR LF LCompl
subgraph1 89.80 76.74 82.76 18.69 87.81 75.04 80.93 17.13
subgraph2 89.34 78.66 83.66 18.46 87.26 76.84 81.72 16.97
subgraph3 89.57 81.23 85.19 20.18 87.78 79.61 83.49 18.22

Merged 88.06 85.11 86.56 26.24 86.03 83.16 84.57 22.84
Sun et al. - - - - 83.93 79.82 81.82 -

Zhang et al.[Single] - - - - 82.28 83.11 82.69 -
Zhang et al.[Ensemble] - - - - 84.92 85.28 85.10 -

Table 2: Lagrangian Relaxation Results on test set.

The measure for comparing two dependency
graphs is precision/recall of GR tokens which are
defined as 〈wh, wd, l〉 tuples, wherewh is the head,
wd is the dependent and l is the relation. Labeled
precision/recall (LP/LR) is the ratio of tuples cor-
rectly identified by the automatic generator, while
unlabeled precision/recall (UP/UR) is the ratio re-
gardless of l. F-score is a harmonic mean of pre-
cision and recall. These measures correspond to
attachment scores (LAS/UAS) in dependency tree
parsing. To evaluate our GR parsing models that
will be introduced later, we also report these met-
rics.

6.2 Results of Graph Decomposition

Table 3 shows the results of graph decomposition
on the training set. If we use simple decompo-
sition, say, directly extracting three trees from a
graph, we get three subgraphs. On the training
set, each kind of the subgraphs cover around 90%
edges and 30% sentences. When we merge them
together, they cover nearly 97% edges and over
70% sentences. This indicates that the ability of
a single tree is limited and three trees can cover
most of the edges.

When we apply Lagrangian Relaxation to the
decomposition process, both the edge coverage
and the sentence coverage gain great error reduc-

Coverage Edge Sentence

SD

subgraph1 85.52 28.73
subgraph2 88.42 28.36
subgraph3 90.40 34.37

Merged 96.93 71.66

LR

subgraph1 85.66 29.01
subgraph2 88.48 28.63
subgraph3 90.67 34.72

Merged 99.55 96.90

Table 3: Results of graph decomposition. SD is
for Simple Decomposition and LR for Lagrangian
Relaxation

tion, indicating that Lagrangian Relaxation is very
effective on the task of decomposition.

6.3 Results of Graph Merging

Table 1 shows the results of graph merging on the
development set, and Table 2 on test set. The three
training sets of trees are from the decomposition
with Lagrangian Relaxation and the models are
trained from them. In both tables, simple merging
(SM) refers to first decode the three trees for a sen-
tence then combine them by putting all the edges
together. As is shown, the merged graph achieves
higher f-score than other single models. With La-
grangian Relaxation, the performance of not only

33

the merged graph but also the three subgraphs are
improved, due to capturing the consistency infor-
mation.

When we do simple merging, though the recall
of each kind of subgraphs is much lower than the
precision of them, it is opposite of the merged
graph. This is because the consistency between
three models is not required and the models tend
to give diverse subgraph predictions. When we re-
quire the consistency between the three models,
the precision and recall become comparable, and
higher f-scores are achieved.

The best scores reported by previous work, i.e.
(Sun et al., 2014) and (Zhang et al., 2016) are
also listed in Table 2. We can see that our sub-
graphs already achieve competitive scores, and
the merged graph with Lagrangian Relaxation im-
proves both unlabeled and labeled f-scores sub-
stantially, with an error reduction of 15.13% and
10.86%. We also include Zhang et al.’s parsing re-
sult obtained by an ensemble model that integrate
six different transition-based models. We can see
that parser ensemble is very helpful for deep de-
pendency parsing and the accuracy of our graph
merging parser is sightly lower than this ensemble
model. Given that the architecture of graph merg-
ing is quite different from transition-based pars-
ing, we think system combination of our parser
and the transition-based parser is promising.

7 Conclusion

To construct complex linguistic graphs beyond
trees, we propose a new perspective, namely graph
merging. We take GR parsing as a case study and
exemplify the idea. There are two key problems
in this perspective, namely graph decomposition
and merging. To solve these two problems in a
principled way, we treat both problems as opti-
mization problems and employ combinatorial op-
timization techniques. Experiments demonstrate
the effectiveness of the graph merging framework.
This framework can be adopted to other types of
flexible representations, e.g. semantic dependency
graphs (Oepen et al., 2014, 2015) and abstract
meaning representations (Banarescu et al., 2013).

Acknowledgments

This work was supported by 863 Program of China
(2015AA015403), NSFC (61331011), and Key
Laboratory of Science, Technology and Standard
in Press Industry (Key Laboratory of Intelligent

Press Media Technology). We thank anonymous
reviewers for their valuable comments.

References
Laura Banarescu, Claire Bonial, Shu Cai, Madalina

Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract meaning representa-
tion for sembanking. In Proceedings of the
7th Linguistic Annotation Workshop and Interoper-
ability with Discourse. Association for Computa-
tional Linguistics, Sofia, Bulgaria, pages 178–186.
http://www.aclweb.org/anthology/W13-2322.

Bernd Bohnet. 2010. Top accuracy and fast depen-
dency parsing is not a contradiction. In Proceedings
of the 23rd International Conference on Computa-
tional Linguistics (Coling 2010). Coling 2010 Or-
ganizing Committee, Beijing, China, pages 89–97.
http://www.aclweb.org/anthology/C10-1011.

Junjie Cao, Sheng Huang, Weiwei Sun, and Xiao-
jun Wan. 2017. Parsing to 1-endpoint-crossing,
pagenumber-2 graphs. In Proceedings of the 55th
Annual Meeting of the Association for Computa-
tional Linguistics. Association for Computational
Linguistics.

John Carroll and Ted Briscoe. 2002. High pre-
cision extraction of grammatical relations. In
Proceedings of the 19th International Conference
on Computational Linguistics - Volume 1. As-
sociation for Computational Linguistics, Strouds-
burg, PA, USA, COLING ’02, pages 1–7.
https://doi.org/10.3115/1072228.1072241.

Y.J. Chu and T.H. Liu. 1965. On the shortest arbores-
cence of a directed graph. Science Sinica pages
14:1396–1400.

Stephen Clark and James Curran. 2007a. Formalism-
independent parser evaluation with CCG and Dep-
Bank. In Proceedings of the 45th Annual Meet-
ing of the Association of Computational Lin-
guistics. Association for Computational Linguis-
tics, Prague, Czech Republic, pages 248–255.
http://www.aclweb.org/anthology/P07-1032.

Stephen Clark and James R. Curran. 2007b.
Wide-coverage efficient statistical pars-
ing with CCG and log-linear models.
Computational Linguistics 33(4):493–552.
https://doi.org/10.1162/coli.2007.33.4.493.

J. Edmonds. 1967. Optimum branchings. Journal of
Research of the NationalBureau of Standards pages
71B:233–240.

Jason M. Eisner. 1996. Three new probabilistic models
for dependency parsing: an exploration. In Proceed-
ings of the 16th conference on Computational lin-
guistics - Volume 1. Association for Computational
Linguistics, Stroudsburg, PA, USA, pages 340–345.

34

Ron Kaplan, Stefan Riezler, Tracy H King, John T
Maxwell III, Alex Vasserman, and Richard Crouch.
2004. Speed and accuracy in shallow and deep
stochastic parsing. In Daniel Marcu Susan Du-
mais and Salim Roukos, editors, HLT-NAACL 2004:
Main Proceedings. Association for Computational
Linguistics, Boston, Massachusetts, USA, pages
97–104.

Marco Kuhlmann and Peter Jonsson. 2015. Parsing to
noncrossing dependency graphs. Transactions of the
Association for Computational Linguistics 3:559–
570.

Yusuke Miyao, Kenji Sagae, and Jun’ichi Tsu-
jii. 2007. Towards framework-independent
evaluation of deep linguistic parsers. In Ann
Copestake, editor, Proceedings of the GEAF 2007
Workshop. CSLI Publications, CSLI Studies in
Computational Linguistics Online, pages 238–258.
http://www.cs.cmu.edu/ sagae/docs/geaf07miyaoetal.pdf.

Stephan Oepen, Marco Kuhlmann, Yusuke Miyao,
Daniel Zeman, Silvie Cinková, Dan Flickinger, Jan
Hajic, and Zdenka Uresová. 2015. Semeval 2015
task 18: Broad-coverage semantic dependency pars-
ing. In Proceedings of the 9th International Work-
shop on Semantic Evaluation (SemEval 2015).

Stephan Oepen, Marco Kuhlmann, Yusuke Miyao,
Daniel Zeman, Dan Flickinger, Jan Hajic, An-
gelina Ivanova, and Yi Zhang. 2014. Semeval 2014
task 8: Broad-coverage semantic dependency pars-
ing. In Proceedings of the 8th International Work-
shop on Semantic Evaluation (SemEval 2014). As-
sociation for Computational Linguistics and Dublin
City University, Dublin, Ireland, pages 63–72.
http://www.aclweb.org/anthology/S14-2008.

Emily Pitler, Sampath Kannan, and Mitchell Mar-
cus. 2013. Finding optimal 1-endpoint-crossing
trees. TACL 1:13–24. http://www.transacl.org/wp-
content/uploads/2013/03/paper13.pdf.

Weiwei Sun, Junjie Cao, and Xiaojun Wan. 2017. Se-
mantic dependency parsing via book embedding. In
Proceedings of the 55th Annual Meeting of the Asso-
ciation for Computational Linguistics. Association
for Computational Linguistics.

Weiwei Sun, Yantao Du, Xin Kou, Shuoyang Ding, and
Xiaojun Wan. 2014. Grammatical relations in Chi-
nese: GB-ground extraction and data-driven pars-
ing. In Proceedings of the 52nd Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers). Association for Computa-
tional Linguistics, Baltimore, Maryland, pages 446–
456. http://www.aclweb.org/anthology/P14-1042.

Naiwen Xue, Fei Xia, Fu-dong Chiou, and Marta
Palmer. 2005. The penn Chinese treebank:
Phrase structure annotation of a large corpus.
Natural Language Engineering 11:207–238.
https://doi.org/10.1017/S135132490400364X.

Xun Zhang, Yantao Du, Weiwei Sun, and Xiaojun
Wan. 2016. Transition-based parsing for deep de-
pendency structures. Computational Linguistics
42(3):353–389. http://aclweb.org/anthology/J16-
3001.

35

Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017), pages 36–46,
Vancouver, Canada, August 3 - August 4, 2017. c©2017 Association for Computational Linguistics

Leveraging Eventive Information for
Better Metaphor Detection and Classification

I-Hsuan Chen1, Yunfei Long2, Qin Lu2, Chu-Ren Huang1
1Department of Chinese & Bilingual Studies, The Hong Kong Polytechnic University

{ihsuan.chen, churen.huang}@polyu.edu.hk
2Department of Computing, The Hong Kong Polytechnic University

{csylong, csluqin}@comp.polyu.edu.hk

Abstract

Metaphor detection has been both chal-
lenging and rewarding in natural language
processing applications. This study offers a
new approach based on eventive infor-
mation in detecting metaphors by leverag-
ing the Chinese writing system, which is a
culturally bound ontological system orga-
nized according to the basic concepts rep-
resented by radicals. As such, the infor-
mation represented is available in all Chi-
nese text without pre-processing. Since
metaphor detection is another culturally
based conceptual representation, we hy-
pothesize that sub-textual information can
facilitate the identification and classifica-
tion of the types of metaphoric events de-
noted in Chinese text. We propose a set of
syntactic conditions crucial to event struc-
tures to improve the model based on the
classification of radical groups. With the
proposed syntactic conditions, the model
achieves a performance of 0.8859 in terms
of F-scores, making 1.7% of improvement
than the same classifier with only Bag-of-
word features. Results show that eventive
information can improve the effectiveness
of metaphor detection. Event information
is rooted in every language, and thus this
approach has a high potential to be applied
to metaphor detection in other languages.

1 Introduction

Metaphors are a cross linguistic phenomenon in
everyday language as shown in a great amount of
corpus linguistic and experimental studies. The
Conceptual Metaphor Theory (Lakoff, 1989;
Lakoff and Johnson, 1981) shows how linguistic
expressions reflect the mapping of two conceptu-
al domains. For example, the expression I see
what you mean instantiates the conceptual meta-
phor of KNOWING IS SEEING. The phrase is

the result of mapping the source domain SEE-
ING, which is embodied daily experience onto
the target domain, KNOWING, as exemplified in
the examples of shed some light on this, an illu-
minating article, and take a close look. Due to the
pervasive use of metaphors, there is an enormous
amount of studies in the techniques of detecting
metaphors. Relevant studies of detecting meta-
phors primarily rely on contextual information.
This study provides a novel approach to detect
and classify metaphors by analyzing eventive in-
formation. Concepts can be classified into a wide
array of event types according to ontology, the
organization of knowledge (Huang et al., 2007).
Eventive information thus can be applied to the
classification of metaphors, which concern map-
pings of conceptual structures from a source do-
main to a target domain.

The classification of metaphoric and literal
senses has been approached by different methods
such as vector-space models with distributional
statistics (Hovy et al., 2013; Tsvetkov et al.,
2014) and compositional distributional semantic
models (CDSMs) (Kartsaklis and Sadrzadeh,
2013a). Most of the studies regarding metaphoric
detection have been done in English, while the
task in Chinese is at the incipient stage. The rele-
vant studies such as clustering models and simi-
larity computation in context (Fu et al., 2016;
Wang, 2010) mainly focus on the metaphoric
sense of each individual noun or adjectival phrase
because the analyses are highly dependent on
contextual information. However, metaphoric
senses of verbs are less touched because it is dif-
ficult to define regularities of their contextual in-
formation. This study deals with the challenge of
the verb category by including eventive infor-
mation, which is the basis of the classification of
metaphors.

36

Chinese is featured by its semantic-based or-
thography in the writing system. Specifically,
Chinese characters are composed of radicals and
components, which are ideographic or phonetic
symbols. Radicals, which represent core concep-
tual properties, encode eventive information of the
literal senses of characters (Huang 2009, Huang
and Hsieh, 2015). For instance, the verb 踢 ti
‘kick’ contains the radical 足 ‘foot’; the verb 吃
chi ‘eat’ has the radical 口 ‘mouth’. The radicals
clearly identify the body parts executing the ac-
tions. Chinese radicals, in particular, evoke the
whole event structure such as the initiation, the
process, and the termination of a kicking or an eat-
ing action. Also, radicals are good indicators of
different types of events. For instance, radicals can
encode the information of tools in the concept of
separation. The radical 刀 dao ‘knife’ of the char-
acter 切 qie ‘cut’ implies that the action results in
two pieces, while the radical 石 shi ‘stone’ of the
character 破 po ‘break’ emphasizing that the ac-
tion results into pieces. The radicals can thus pro-
vide detailed eventive information to identify the
source domain in the task of metaphor detection.

Event information characterizes detailed prop-
erties such as the volition of the subject and the
resulted status of the object. The properties can be
accessed by their corresponding syntactic con-
structions. We propose 17 syntactic conditions
which are appropriate to differentiate different
event types. First, we implement the algorithm of
metaphor detection based on a Support Vector
Machine (SVM) classifier. The syntactic condi-
tions serve as additional features using Bag-of-
word features as the baseline. Second, we apply
the SVM classifier to predict the senses, either lit-
eral or metaphoric, of each verb in Baidu Baike
corpus, which has 1,543,669 million entries and
7.6 billion tokens.1 We then measure the semantic
similarities among different radical groups by the
vector representation according to each sense of
each character. The similarity of vectors based on
word representation and sense representation
proves that radicals can predict semantic groups of
the literal senses. We delimit the syntactic envi-
ronments where the literal senses tend to occur.
When a sense does not occur in the defined set of
syntactic conditions, it is highly possible to be
metaphoric.

1 https://en.wikipedia.org/wiki/Baidu_Baike

In this study, NLP technology is applied to two
deeply culturally bound phenomena: (i) the Chi-
nese writing system and (ii) the classification of
metaphors. The Chinese character orthography is
an ontological system organized based on the
primitive concepts represented by radicals (Chou
and Huang, 2010). Thus, the information repre-
sented by radicals is not only cultural specific but
also available in all Chinese text without the need
for processing. Metaphor detection, as another
culturally based conceptual representation, has
been proven to be both challenging and extremely
valuable in natural language processing. Based on
their shared event information, we hypothesize
that sub-textual information can leverage the ef-
fectiveness to identify and classify different types
of metaphoric events hidden in the Chinese text.
Our experiments prove the effectiveness of even-
tive information in detecting metaphors. The ap-
proach of leveraging event type information by
radicals increases both the precision and the recall
in metaphor detection. Although this approach is
especially effective for Chinese because of the in-
formation embedded in radicals, broader implica-
tions include the possibility of leveraging eventive
information from different sources in other lan-
guages.

2 Related Work

The task of metaphor detection has been handled
in a wide variety of approaches including cluster-
ing models (Birke and Sarkar, 2006; Shutova et
al., 2010; Li and Sporleder, 2010), semantic simi-
larity graphs (Sporleder and Li, 2009), topic mod-
eling (Li et al., 2010; Heintz et al., 2013), and
compositional distributional semantic models
(CDSMs) (Gutiérrez et al. 2016). Feature-based
classification, in particular, attracts most attention
since a wide array of contextual information is in-
cluded (Sporleder and Li, 2009; Dunn., 2013;
Hovy et al., 2011; Mohler et al., 2013; Neuman et
al., 2013; Tsvetkov et al., 2013; Tsvetkov et al.,
2014). Since the studies regarding metaphor iden-
tification have primarily focused on English, there
are more available datasets in English in both
manually-tagged linguistic resources (Gedigian et
al., 2006; Krishnakumaran and Zhu, 2007;
Broadwell et al., 2013) and corpus-based ap-
proach (Birke and Sarker, 2007; Shutova et al.,
2013; Neuman et al., 2013; Hovy et al., 2013).
Metaphor detection in Chinese is at the incipient
stage. Fu et al., (2016) uses hierarchical clustering

37

for Chinese noun phrases according to their con-
textual information to recognize metaphoric
phrases. Zhou et al. (2011) use the Maximum En-
trophy model to detect the metaphoric reading of
verb phrases based on collocation with noun
phrases, and point out that there is no mature syn-
tactic and semantic tool for metaphor analysis in
Chinese. Our study will close the gap by building
a model of metaphor detection based on syntactic
conditions.

Regarding metaphor detection, most papers
emphasize on distinguishing metaphoric senses
from literal senses in a polysemy network. Dis-
ambiguation of senses has been handled by DSMs
based on the availability of contextual information
(Baroni et al., 2014; Boleda et al., 2012; Erk and
Padó, 2010; Kartsaklis and Sadrzadeh 2013).
When more contextual information is incorpo-
rated, disambiguation would be more successful.
It should be noted that the senses of one form
have different degrees of transparency to be traced
in semantics. The senses of a form which can be
chained together via overlapping semantics, as in
the case of polysemy (cut a new window in the
wall vs. the ball broke a window), are more likely
to be traced. On the contrary, when the senses of a
linguistic form are discrete as in the case of ho-
monymy (e.g. piano keys vs. key point), they may
be problematic to DSM (Baroni et al., 2014).
Gutiérrez et al. (2016) point out that the challenge
arises from the highly context-dependent property
of homonymies since the relations of senses are
not unsystematic. In contrast, the senses of a poly-
semy form a systematic system, and thus CDSM
has a better chance to detect metaphoric senses
(Gutiérrez et al. 2016). Nevertheless, how to
group a variety of senses including metonymic
and metaphoric senses as a polysemy has been a
challenge in Chinese (Fu et al., 2016). In this pa-
per, the use of Chinese radicals for grouping sens-
es can avoid the confusion of polysemy and hom-
onym because Chinese radicals stand for semantic
classification, reflecting the structure of our onto-
logical knowledge structure (Huang 2009).

Contextual information has been regarded as an
important determinant in identifying metaphors.
Previous studies thus primarily focus on the adjec-
tives or nouns as in the studies of English meta-
phors due to the abundant contextual information
from these categories. This study, instead, focuses
on the verb category and shows the literal and
metaphoric senses of a verb can be predicted by

their syntactic conditions. The event structure
evoked by a verb offers reliable information for
metaphor detection.

3 Methodology

Our task is to define the syntactic environments
where the metaphoric sense of a verb would be
more likely to occur. Each verb corresponds to a
type of event structure. Chinese radicals denote
the most profiled element in an event structure.
For example, the literal sense of 灌 guan ‘pour’,
which has a water radical 氵, specifies the materi-
al of this action is water. Based on the properties
of water, the verb emphasizes dynamic flows.
Thus the verb tends to appear in non-passive con-
structions for expressing the dynamics. The literal
meaning of 墊 dian ‘pad’, which has the mud rad-
ical 土, profiles mud as a loctum, and therefore it
tends to appear with a locative phrase in order to
specify the object to be padded. The literal sense
of 切 qie ‘cut’, which has a knife radical 刀, spec-
ifies the instrument of the separation. The verb
occurs mostly in the VO word order, as in 切蛋糕
qie diangao ‘cut cakes’ to emphasize on transitivi-
ty. In summary, each verb has its own event struc-
ture, which can be observed in the syntactic envi-
ronments where the verb frequently occurs. Since
a metaphoric sense describes a concept different
from that of a literal sense, it should have a differ-
ent event structure from that of a literal sense. Ac-
cording to corpus data, it can be observed that the
literal senses of a verb tend to occur under a set of
syntactic conditions, while the metaphoric senses
of the same verb tend to occur in the environments
deviating from the standards. For instance, the
metaphoric sense of 灌 guan ‘pour’frequently
appears in passive constructions, while the literal
sense generally occurs in non-passive construc-
tions. The metaphoric sense of 墊 dian ‘pad’ is
more likely to occur without a locative phrase,
whereas the literal senses normally occur with a
locative phrase. The metaphoric sense of 切 qie
‘cut’ as in ‘cannot cut the relationship’ occurs
more frequently in the OV word order, while the
literal sense tends to occur in the VO word order.
The change of event types is expected since the
source domain and the target domain refer to dif-
ferent settings although their underlying concep-
tual structures are organized in a similar way. For
instance, both the literal and metaphoric senses of

38

切 qie ‘cut’ refer to the concept of separation
which results in two entities, but the separation is
employed to describe different contexts. The lit-
eral one refers to the separation of an entity with a
specific instrument, while the metaphoric one re-
fers to the discontinuation of a relationship. It is
the change of event types that provides infor-
mation of predicting which sense is in use.

3.1 Syntactic conditions and Radicals

Radicals: The advantages of radical-based analy-
sis are the transparency and traceability of seman-
tic relations among different senses in a polysemy
network. The current experiments include 14
types of radicals as listed in Table 1. Each type of
radicals has two to three verbs which have high
frequency in Chinese Gigaword (Huang 2009) as
the representatives.

Syntactic conditions: We hypothesize that the
literal senses of a verb tend to appear in a set of
syntactic conditions whereas the metaphoric sens-
es tend to deviate from those conditions due to the

change of event types. To test this hypothesis, we
propose a variety of syntactic conditions to char-
acterize each sense and its relevant event struc-
ture. The conditions are selected based on the fre-
quency of where the literal senses of these verbs
occur.
(i) Word order (VO): If a verb can take an ob-

ject, the verb and its object may occur in ei-
ther VO or OV word order.

(ii) Compounding (VV): The verb may form a
compound with another verb in VV form.
The target verb is the second one.

(iii) Transitivity (Vt): The verb may be transitive
or intransitive.

(iv) Passivity (Pass): The verb may occur in a
passive construction. The indicators are the
occurrences of passive markers.

(v) Disposal constructions (Disposal): The verb
may occur with the disposal markers to
foreground the semantic patient or the direct
object.

(vi) Aspectual markers (Asp): The verb may ap-
pear with aspectual markers to specify the
status of the process.

(vii) Double-object construction (DO): The verb
may take both a direct object and an indirect
object.

(viii) Relative clauses (RC): The verbs may occur
with a relative clause. This feature is indi-
cated by the markers of a relative clause.

(ix) Numeral phrases (Num): Amounts relevant
to the event are specified by numeral-
classifier phrases.

(x) Locative phrases (Loc): Location of the
event is specified. The locative phrase can
occur either before or after the verb.

(xi) Negation (Neg): Negative markers appear
in the main clause which contains

(xii) Postpositions (Post): The verb may take a
postposition phrase.

(xiii) Prepositions (Prep): The verb may occur
with a preposition phrase. . The indicators
are the occurrences of a variety of preposi-
tions.

(xiv) Instrumental 用 yong ‘use’ (yong): The in-
struments are profiled.

(xv) 對 dui ‘to/ toward’ (dui): The goal of the
verb is profiled by this marker.

(xvi) Beneficiary/ maleficent marker 給 gei (gei):
The affectiveness of the event relevant to
the target verb is specified.

Radical Sample
Characters Radical Sample

Characters
火

huo
‘fire’

熬 ao ‘simmer’

烤 kao ‘grill’
糸
mi

‘thread’
綁 bang ‘tight’
織 zhi ‘weave’

水
shui

‘water’

灌 guan ‘pour’

沖 chong ‘flush’
力
li

‘power’

動 dong ‘move’
加 jia‘add’

土
tu

‘mud’
墊 dian ‘pad’
塞 sai ‘pack’

扌
shou

‘hand’
抱 bao ‘hug’
推 tui ‘push’

金
jin

‘gold’
釘 ding ‘pin
鑽 zuan ‘drill’

口
kou

‘mouth’
吃 chi ‘eat’
咬 yao ‘bite’

石
shi

‘stone’

砍 kan ‘chop’

破 po ‘break
碰 peng ‘clash’

辵/辶
chuo

‘interval
walk’

逃 tiao ‘escape’
追 zhui ‘chase’

刀
dao

‘knife’
刷 shua ‘brush’
切 qie ‘cut’

足
zu

‘foot’
跳 tiao ‘jump’
踢 ti ‘kick’

斤
jin

‘ax’
斬 zan ‘cut’
斷 duan ‘snap’

走
zou

‘walk’
走 zou ‘walk’
趕 gan ‘chase’

Table 1: Types of radicals and sample characters

39

(xvii) Postverbal adverbs (Vadv): The verb may
be followed by an adverb which specifies
degrees or durations of time.

3.2 Design of classification model

In order to evaluate the effectiveness of our pro-
posed syntactic conditions, we have to extract the
syntactic features which are relevant to the literal
and metaphoric senses. The task of detecting the
metaphor/literal senses is modeled as a binary
class classification. The proposed syntactic condi-
tions are implemented as additional features in
this model.

SVM are well performed in higher dimension,
particularly when targeted instances only hold a
small portion in a dataset. Since our design focus-
es on the effectiveness of syntactic conditions in
metaphor detection rather than on a classifier, we
choose SVM with linear kernel as our classifier

for its linear binary classification and use LibSVM
(Chang and Lin, 2011) as the SVM tool.

3.3 Word embedding for word similarity

Word embedding is known as a special form of
word vectors which represents a word through a
low dimensional dense vector and has been used
in different lexical tasks, such as semantic similar-
ity, word analogy, word synonym detection, and
concept categorization (Baroni, 2014), (Levy,
2015). Our goal is to increase the precision of
metaphor detection with the aid of the semantic
classification of radicals. Thus we conduct word
embedding to show how different concepts are
categorized in terms of their semantic similarities.
Based on the similarity from word embedding, we
can infer semantic distance among verbs with dif-
ferent radicals and further quantify the differences
between the metaphoric and literal senses of the
same verb.

Various models are proposed to learn the dense
vector representation of words, which are all
based on the distributional hypothesis that words
occur in similar context have similar meanings
(Harris, 1954). Among those models, the most
widely used one is the Skip-Gram model with
negative sampling (Mikolov, 2013). In our task,
word embedding is trained through the Skip-Gram
model with default parameters on the Baidu Baike
corpus2 with word segmentation performed by the
HIT LTP too13.

Since Chinese radicals encode semantic catego-
rizations, verbs which belong to the same radical
group are expected to be close semantically. In or-
der to capture the predictive power of radicals in
semantics, we use multi-dimensional vector space
to show the distribution of verbs when they are
used in their literal senses and metaphoric senses
respectively (Baroni, 2014, Levy, 2015). First, we
use our proposed classifier to predict the senses of
29 selected verbs, and treat metaphor /literal sense
of each word as an individual word. And we cal-
culate the cosine similarity between different
senses. Figure 1 shows that verbs having the same
radical are relatively similar to each other com-
pared to verbs which belong to different radical
groups. However, the grouping by radicals does
not work well in the metaphoric senses, as shown
in the lower graph. The sharp contrast supports the
claim that the metaphoric senses of a verb have a

2 http://www.nlpcn.org/resource/7
3 http://www.ltp-cloud.com/

Figure 1: Semantic closeness among different
verbs [upper graph: literal sense; lower graph:
metaphoric sense]

熬烤灌沖墊塞砍破碰釘鑽刷切斬斷綁織動加抱推吃咬逃追跳踢趕走
A1 A2 B1 B2 C1 C2 D1 D2 D3 E1 E2 F1 F2 G1 G2 H1 H2 J1 J2 K1 K2 L1 L2 M1M2 N1 N2 O1 O2

走 O2
趕 O1
踢 N2
跳 N1
追 M2
逃 M1
咬 L2
吃 L1
推 K2
抱 K1
加 J2
動 J1
織 H2
綁 H1
斷 G2
斬 G1
切 F2
刷 F1
鑽 E2
釘 E1
碰 D3
破 D2
砍 D1
塞 C2
墊 C1
沖 B2
灌 B1
烤 A2
熬 A1

-0.2

Legend
1.0
0.8
0.6
0.4
0.2
0.0

熬烤灌沖墊塞砍破碰釘鑽刷切斬斷綁織動加抱推吃咬逃追跳踢趕走
A1 A2 B1 B2 C1 C2 D1 D2 D3 E1 E2 F1 F2 G1 G2 H1 H2 J1 J2 K1 K2 L1 L2 M1M2 N1 N2 O1 O2

走 O2
趕 O1
踢 N2
跳 N1
追 M2
逃 M1
咬 L2
吃 L1
推 K2
抱 K1
加 J2
動 J1
織 H2
綁 H1
斷 G2
斬 G1
切 F2
刷 F1
鑽 E2
釘 E1
碰 D3
破 D2
砍 D1
塞 C2
墊 C1
沖 B2
灌 B1
烤 A2
熬 A1

0.4
0.2
0.0
-0.2

Legend
1.0
0.8
0.6

40

different event structure from that of the literal
senses.

4 Experiments

Experiments of feature analysis are conducted to
show whether our proposed syntactic conditions
can improve the model of metaphor detection.

4.1 Dataset

The dataset is structured based on the 29 verbs
from 14 radical groups introduced in Section 3.1.
For each verb, a random sample of 200-300 sen-
tences are collected from the Chinese Gigaword
corpus (Huang, 2009), a comprehensive archive of
newswire text data. Two Chinese native speakers
manually annotated the metaphoric and literal
senses of each token based on Hantology (Chou
and Huang, 2006), a character-based Chinese lan-
guage resource in which each character is sense-
tagged. In the 6,047 tokens, 1,738 of them are la-
beled as a metaphoric sense and 4,309 are labeled
as a literal sense. Our annotation task has kappa
statistics (Banerjee, 1999) over 0.81 indicating
strong inter-annotator consistency.

4.2 Model and analysis

We evaluate the 17 syntactic conditions using the
SVM classification model in the dataset intro-
duced in Section 4.1. In order to avoid overfitting,
we perform 10-fold cross validation. To test the
efficiency of our proposed syntactic conditions,
the 17 conditions are divided into 3 feature
groups.

• Base group: Using Bag-of-word features only
• Group1: transitivity (Vt), numeral phrases

(Num), relative clauses (RC), compounding
(VV), tense, word order (VO), and double-
object construction (DO).

• Group 2: negation (Neg), prepositions (Prep),
locative phrases (Loc), postverbal adverbial
(Vadv), passivity (Pass), and aspectual markers
(Asp).

• Group 3: disposal constructions (Disposal),
postpositions (Post), instrumental 用 yong ‘use’
(yong), 對 dui ‘to/ toward’ (dui), and benefi-
ciary/maleficient marker 給 gei (gei).

The three groups are defined based on two princi-
ples: (i) the probability of the occurrence of the
metaphoric senses in the syntactic condition in
question; (ii) the clusters of the verbs. As shown in
Figure 2, the metaphoric senses frequently occur
in a few syntactic conditions, such as Vt, VO, and
relative clauses. Regarding the principle of the
clusters, the condition which has less overlapping
data points is more effective in distinguishing dif-
ferent senses.

The results of the experiment given in Table 2
show that the proposed syntactic conditions have
improved the performance of the model. The in-
corporation of all the 17 features does improve the
classification model by 1.70% in F-score. Howev-
er, Group 1 has the best performance, outperform-
ing the result when all the 17 features are used.
However, when Group 2 and Group 3 are used
alone, they do not contribute to improving the
model. In fact, Group 3 decreases the effective-
ness of the model. The decrease in performance is
on both Precision and Recall. However, while the
model incorporates Group 1, the precision is im-
proved at the expense of a slight decrease in re-
call. This increase in precision indicates that the
features of Group 2 and Group 3 still provide use-
ful information in metaphor detection.

Figure 2: Probability of metaphoric senses in
each syntactic condition

Type Precision Recall F score

Basic 0.8824 0.8559 0.8689
All features 0.8952 0.8768 0.8859
Feature group 1 0.8925 0.8821 0.8872
Feature group 2 0.8752 0.8631 0.8691
Feature group 3 0.8705 0.8521 0.8612

Table 2: Performance in different condition
groups

41

5 Discussion

Our experimental result shows that the proposed
syntactic conditions can predict where the literal
and metaphoric senses of the same verb occur.
This is because the two senses tend to be used in
different event structure. For example, the literal
sense of the verb 灌 guan ‘pour’ as in 灌良田
guan liang tian ‘irrigating good farms’ specifies
the location right after the verb, while the meta-
phoric sense as in 灌水 guan shui pour water ‘arti-
ficially increasing the amount’ has water as the

material without specifying the location. The lit-
eral sense of 走 zhou ‘walk’ appears as an intran-
sitive verb as in 他走了 ta zhou le he-walk-ASP
‘he left’, while the metaphoric sense tends to have
a noun phrase following it as in 走好運 zhou hao
yun walk-luck ‘being lucky’. Since the metaphoric
sense describes an event different from that of the
literal sense, the syntactic properties of the meta-
phoric sense should differ from those of the literal
sense. Among our proposed syntactic conditions,
seven of them, transitivity, relative clauses, double
objects, compounds, word order, aspectual mark-
ers, and numeral phrases, are the most effective
conditions in detecting metaphors. Figure 3 shows
examples from these syntactic conditions includ-
ing transitivity, word order, and relative clauses.
The horizontal axis shows conditional probabili-
ties in metaphoric sense. The vertical axis shows
the conditional probabilities in literal sense. A
condition with a stronger predictive power has a
bigger difference in the probability between the
literal and metaphoric senses. For example, the
literal sense and metaphoric sense of the verb 切
qie ‘cut’ have saliently different probabilities in
the feature of word order. The literal sense is fre-
quently found in the VO word order, while the
metaphoric sense seldom occurs in the VO word
order. It is the difference that can serve to predict
which sense, literal or metaphoric, is in use.

Each syntactic condition is regarded as a meas-
urement. The syntactic conditions then can be
grouped to precisely identify the event types of the
literal and metaphoric senses for each verb as

Figure 3: Distribution of example literal-
metaphoric pair of verbs under individual syntac-
tic conditions.

Figure 4: Examples of metaphoric and literal
senses of verbs characterized by a core set of
syntactic conditions.

42

shown in the examples of Figure 4. The horizontal
axis shows conditional probabilities in metaphoric
sense. The vertical axis shows the conditional
probabilities in literal sense. Each condition has
different relevancy to a verb because each verb
belongs to a different event type. For example, the
condition of word order (labeled as VO) has high-
er effectiveness in the verb 吃 chi ‘eat’ than in the
verb 斷 duan ‘snap’. In other words, the senses of
each verb can be identified by the most relevant
syntactic conditions. Therefore, the syntactic envi-
ronments of where a verb occurs can be used to
predict whether it is metaphoric.

Furthermore, grouping verbs by Chinese radi-
cals can offer generalizations of the event types
associated with a particular semantic group. A
group of relevant radicals denote a higher-level
category in the ontological structure, which refers
to the organization of knowledge structure and the
representation of knowledge system in terms of
relations between concepts (Prévot et al., 2010).
For example, the radicals discussed in this paper
can be classified into four larger semantic catego-
ries, which are instruments, body parts, materials,
movements, as given in Table 3.

The differences in the distribution of the literal
and metaphoric senses of the four semantic groups
can be characterized by the rankings of the syntac-
tic conditions. As shown in Figure 5, the group of
the material radicals and the group of the move-
ment radicals have different arrangement of the

conditions. In other words, the literal sense of a
larger semantic group can also be identified by its
syntactic distribution. When a verb belonging to a
larger semantic group does not occur in the set of
syntactic conditions where the literal senses gen-
erally occur, it is highly possible to be metaphoric.
Our design shows that syntactic conditions can of-
fer informative clues in detecting metaphoric
senses based on the fact that each sense of a verb
has its own preferred syntactic environments.

The syntactic conditions can be further classi-
fied based on their effectiveness. As discussed in
Section 4.2, the syntactic conditions of Group 1 in
our model, transitivity (Vt), numeral phrases
(Num), relative clauses (RC), compounding (VV),
word order (VO), double-object construction
(DO), are proven to be more efficient. The effec-
tiveness of the conditions reflects three generaliza-
tions of where metaphoric senses tend to occur.
First, a sense tends to be non-metaphoric when a
numeral phrase is involved. The involvement of
numeral phrases specifies the exact numbers of
the object. Since the object has concrete details,
the verb is more likely to be a literal. Second, a
metaphoric sense is generally used to modify a
concept. Due to this modification property, meta-

Figure 5: Examples of the syntactic conditions
characterizing a higher-level semantic category

Category Radicals

Materials
火 huo ‘fire’
水 shui ‘water’
土 tu ‘mud’

Body parts 扌 shou ‘hand’
口 kou ‘mouth’

Instruments
走 zou ‘walk’
辵/辶 chuo ‘interval walk’
足 zu ‘foot’
力 li ‘power’

Movements
石 shi ‘stone’
刀 dao ‘knife’
斤 jin ‘ax’
糸 mi ‘thread’
金 jin ‘gold’

Table 3: Higher-level Ontological Categories
of Radicals

43

phoric senses tend to occur when there is a pres-
ence of a relative clause a relative clause, which
serves the purpose of modification. Third, due to
the changes of event types, the inherent properties
of a verb are likely to change. More specifically,
the transitivity of a verb changes when the verb is
used in its metaphoric sense. For example, when a
transitive verb becomes intransitive, the verb is
likely not to be in its literal sense. Regarding the
occurrence of compounding, the addition of an-
other verb provides additional information and
thus creates an event structure which differs from
the original one. Similarly, when a verb which
does not have two objects in its argument structure
appears in the double-object construction, it is a
sign of changing event types because the addition-
al object cannot be accommodated in the original
event structure. As for word order, it is associated
with the information structure, which is a key
component of an event structure. The change of
word order therefore indicates the change of an
event structure. Since each of the syntactic condi-
tions links to a particular aspect of a conceptual
event, its change is an informative indicator of
which sense, literal or metaphoric, is in use.

On the other hand, the conditions in Group 3 do
not contribute much to detecting senses. Although
they provide additional information, the infor-
mation is proven to be peripheral in indicating
changes of event types. In brief, our experiments
can successfully rank the relevancy of syntactic
conditions with event types. The syntactic condi-
tions which are related to the core elements of an
event structure can improve the model of detect-
ing metaphors.

6 Conclusion

This study offers an effective and precise way of
detecting metaphoric and literal senses by includ-
ing eventive information encoded in radicals. A
set of syntactic conditions core to the event struc-
ture of a verb can define where its literal senses
tend to occur. When a verb appears in the envi-
ronments deviating from the defined set, it has a
higher chance to be metaphoric. Instead of focus-
ing on individual lexemes, we offer larger general-
izations by event types encoded by radicals. Event
types correspond to larger conceptual categories.
Thus verbs of the same group have similar syntac-
tic distribution. The generalizations can increase
the efficiency of the model for metaphor detec-
tion.

Our study shows that other eventive infor-
mation parsed in the existing platforms such as
WordNet, FrameNet, and Tongyici Cilin should
also have a high potential to be leveraged in the
detecting of metaphors. The tools relevant to
eventive information such as aspectual markers
and word order can be applied to determine event
types. This new approach refocuses metaphor de-
tection in the inherent eventive information of
metaphors instead of its contextual information,
and thus it is more reliable. Our algorithm of
modeling eventive information can provide a
pathway to incorporate analysis of event types in
deep learning as future studies.

In summary, our study show that by leveraging
the Chinese writing system, culturally bound
eventive information can facilitate processing of
metaphor. This method is not only applicable to
all Sinitic languages and a small sub-set of lan-
guages sharing Chinese orthography as their cul-
tural heritage, such as Japanese and Korean.
Huang and Chou (2015) already showed that lexi-
cal processing in Japanese and others based on
Chinese orthography can be automatically boot-
strapped. This study suggests the potential appli-
cations for the use of eventive information to con-
ceptual processing such as automatic classification
of metaphor. Eventive information in many lan-
guages can be automatically or semi-automatically
extracted through the OntoLex interface approach
(Huang et al. 2010). Eventive information in turn
will be a powerful tool in the extraction of event
types for studies based on eventive structures such
as sarcasm and sentiment detection.

Acknowledgment

The work is partially supported by the following
research grants from Hong Kong Polytechnic
University: 1-YW1V, 4-ZZFE and RTVU; as well
as GRF grants (PolyU 15211/14E and PolyU
152006/16E).

44

References

Marco Baroni, Raffaela Bernardi, and Roberto Zam-
parelli. 2014. Frege in space: A program of composi-
tional distributional semantics. Linguistic Issues in
Language Technology, 9.

Marco Baroni, Georgiana Dinu, and German´
Kruszewski. 2014. Don’t count, predict! A systemat-
ic comparison of context-counting vs. context-
predicting semantic vectors. In Proceedings of the
52nd Annual Meeting of the Association for Compu-
tational Linguistics. Association for Computational
Linguistics, pages 238-247.
https:doi.org/10.3115/v1/P14-1023

George Aaron Broadwell, Umit Boz, Ignacio Cases,
Tomek Strzalkowski, Laurie Feldman, Sarah Taylor,
Samira Shaikh, Ting Liu, Kit Cho, and Nick Webb.
2013. Using imageability and topic chaining to lo-
cate metaphors in linguistic corpora. In Social Com-
puting, Behavioral-Cultural Modeling and Predic-
tion. Springer, pages 102-110.

Julia Birke and Anoop Sarkar. 2007. A clustering ap-
proach for nearly unsupervised recognition of non-
literal language. In Proceedings of the 11th Confer-
ence of the European Chapter of the Association for
Computational Linguistics, pages 329-336.

Gemma Boleda, Eva Maria Vecchi, Miquel Cornudella,
and Louise McNally. 2012. First-order vs. higher or-
der modification in distributional semantics. In Pro-
ceedings of the Joint Conference on Empirical
Methods in Natural Language Processing and Com-
putational Natural Language Learning. Association
for Computational Linguistics, pages 1223-1233.
http://www.aclweb.org/anthology/D12-1112

Yaming Chou and Chu-ren Huang. 2006. Hantology - A
linguistic resource for Chinese language processing
and studying. Paper presented at the 5th Internation-
al Conference on Language Resources and Evalua-
tion, Genoa, Italy.

Ya-Min Chou and Chu-Ren Huang. 2010. Hantology:
conceptual system discovery based on orthographic
convention. In Ontology and the Lexicon: A Natural
Language Processing Perspective. Cambridge Uni-
versity Press, page 122-143.

Jonathan Dunn. 2013. Evaluating the premises and re-
sults of four metaphor identification systems. In
Computational Linguistics and Intelligent Text Pro-
cessing. Springer, pages 471-486.

Katrin Erk and Sebastian Padó. 2010. Exemplar-based
models for word meaning in context. In Proceedings
of the ACL 2010 Conference Short Papers. Associa-
tion for Computational Linguistics, pages 92-97.

Jianhui Fu, Shi Wang, Ya Wang, Cungen Cao. 2016. A
Practical Method of Identifying Chinese Metaphor
Phrases from Corpus. In International Conference

on Knowledge Science, Engineering and Manage-
ment. Springer, pages 43-54.

Matt Gedigian, John Bryant, Srini Narayanan, and
Branimir Ciric. 2006. Catching metaphors. In Pro-
ceedings of the Third Workshop on Scalable Natural
Language Understanding. Association for Computa-
tional Linguistics, pages 41-48.

Gutiérrez Darıo, Ekaterina Shutova, Tyler Marghetis,
and Benjamin Bergen. 2016. Literal and metaphori-
cal senses in compositional distributional semantic
models. In Proceedings of the 54th Meeting of the
Association for Computational Linguistics. Associa-
tion for Computational Linguistics, pages 160-170.

Harris, Zellig, 1954. Distributional structure. Word,
10(23):146-162.

Ilana Heintz, Ryan Gabbard, Mahesh Srinivasan, David
Barner, Donald S Black, Marjorie Freedman, and
Ralph Weischedel. 2013. Automatic extraction of
linguistic metaphor with lda topic modeling. In Pro-
ceedings of the First Workshop on Metaphor in
NLP, pages 58-66.

Dirk Hovy, Shashank Srivastava, Sujay Kumar Jauhar,
Mrinmaya Sachan, Kartik Goyal, Huiying Li, Whit-
ney Sanders, and Eduard Hovy. 2013. Identifying
metaphorical word use with tree kernels. In Pro-
ceedings of the First Workshop on Metaphor in
NLP, pages 5257.

Chu-Ren Huang. 2009. Tagged Chinese Gigaword Ver-
sion 2.0, LDC2009T14. Linguistic Data Consorti-
um.

Chu-Ren Huang. 2009. Semantics as an Orthography-
Relevant Level for Mandarin Chinese. In The 17th
Annual Conference of the International Association
of Chinese Linguistics.

Chu-Ren Huang, Siaw-Fong Chung, and Kathleen
Ahrens, 2007. An ontology-based exploration of
knowledge systems for metaphor. In Ontologies
Springer, page 489-517.

Chu-Ren Huang, Nicoletta Calzolari, Aldo Gangemi,
Alessandro Lenci, Alessandro Oltramari, and Lau-
rent Prévot. 2010 (Eds.) Ontology and the lexicon: A
natural language processing perspective. Cam-
bridge: Cambridge University Press,

Chu-Ren Huang and Chou Ya-Min. 2015. Multilingual
conceptual access to lexicon based on shared orthog-
raphy: an ontology-driven study of Chinese and Jap-
anese. In Language Production, Cognition, and the
Lexicon, ed. Núria Gala, Reinhard Rapp, and Gem-
ma Bel-Enguix. Springer, pages 135-150.

Chu-Ren Huang and Shu-Kai Hsieh. 2015. Chinese
lexical semantics: from radicals to event structure. In
The Oxford Handbook of Chinese Linguistics, ed.
William S.-Y. Wang and Chao-Fen Sun. Oxford
University Press, pages 290-305.

45

Dimitri Kartsaklis and Mehrnoosh Sadrzadeh. 2013.
Prior disambiguation of word tensors for construct-
ing sentence vectors. In Proceedings of the 2013
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1590-1601.

Dimitri Kartsaklis, Mehrnoosh Sadrzadeh, and Stephen
Pulman. 2013. Separating disambiguation from
composition in distributional semantics. In Proceed-
ings of the 2013 Conference on Computational Nat-
ural Language Learning, pages 114-123.

Saisuresh Krishnakumaran and Xiaojin Zhu. 2007.
Hunting elusive metaphors using lexical resources.
In Proceedings of the Workshop on Computational
approaches to Figurative Language. Association for
Computational Linguistics, pages 13-20.

George Lakoff and Mark Johnson. 1981. Metaphors we
live by. University of Chicago Press, Chicago, IL.

George Lakoff. 1989. Some empirical results about the
nature of concepts. Mind & Language, 4(1-2): 103-
109.

Prévot, Laurent, Chu-Ren Huang, Nicoletta Calzolari,
Aldo Gangemi, Alessandro Lenci, and Alessandro
Oltramari. 2010. Ontology and the lexicon: A multi-
disciplinary perspective. In Ontology and the lexi-
con: A natural language processing perspective, eds.
Chu-Ren Huang, Nicoletta Calzolari, Aldo Gan-
gemi, Alessandro Lenci, Alessandro Oltramari, and
Laurent Prévot. Cambridge: Cambridge University
Press, pages 3-24.

Omer Levy, Yoav Goldberg, Ido Dagan, and Israel
Ramat-Gan. 2015. Improving distributional similari-
ty with lessons learned from word embeddings.
Transactions of the Association for Computational
Linguistics, 3.

Linlin Li, Benjamin Roth, and Caroline Sporleder.
2010. Topic models for word sense disambiguation
and token-based idiom detection. In Proceedings of
the 48th Annual Meeting of the Association for
Computational Linguistics. Association for Compu-
tational Linguistics, pages 1138-1147.

Linlin Li and Caroline Sporleder. 2010. Using Gaussian
mixture models to detect figurative language in con-
text. In Human Language Technologies: The 2010
Annual Conference of the North American Chapter
of the Association for Computational Linguistics.
Association for Computational Linguistics, pages
297-300.

Michael Mohler, David Bracewell, David Hinote, and
Marc Tomlinson. 2013. Semantic signatures for ex-
ample-based linguistic metaphor detection. In Pro-
ceedings of the First Workshop on Metaphor in
NLP, pages 27–35.

Yair Neuman, Dan Assaf, Yohai Cohen, Mark Last,
Shlomo Argamon, Newton Howard, and Ophir

Frieder. 2013. Metaphor identification in large texts
corpora. PLoS ONE, 8:e62343.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositionali-
ty. In Proceedings of NIPS, pages 3111-3119.

Yulia Tsvetkov, Leonid Boytsov, Anatole Gershman,
Eric Nyberg, and Chris Dyer. 2014. Metaphor detec-
tion with cross-lingual model transfer. In Proceed-
ings of the 52nd Annual Meeting of the Association
for Computational Linguistics. Association for
Computational Linguistics, pages 248-258

Ekaterina Shutova. 2010. Models of metaphor in NLP.
In Proceedings of the 48th Annual Meeting of the
Association for Computational Linguistics. Associa-
tion for Computational Linguistics, pages 688-697.

Ekaterina Shutova, Lin Sun, and Anna Korhonen. 2010.
Metaphor identification using verb and noun cluster-
ing. In Proceedings of the 23rd International Con-
ference on Computational Linguistics. Association
for Computational Linguistics, pages 1002-1010.

Ekaterina Shutova, Simone Teufel, and Anna Korho-
nen. 2013. Statistical metaphor processing. Compu-
tational Linguistics, 39(2):301-353.

Caroline Sporleder and Linlin Li. 2009. Unsupervised
recognition of literal and non-literal use of idiomatic
expressions. In Proceedings of the 12th Conference
of the European Chapter of the Association for
Computational Linguistics, pages 754-762.

Tomek Strzalkowski, George A. Broadwell, Sarah Tay-
lor, Laurie Feldman, Boris Yamrom, Samira Shaikh,
Ting Liu, Kit Cho, Umit Boz, Ignacio Cases, and
Kyle Elliot. 2013. Robust extraction of metaphors
from novel data. In Proceedings of the First Work-
shop on Metaphor in NLP. Association for Compu-
tational Linguistics, pages 67-76.

Yulia Tsvetkov, Elena Mukomel, and Anatole Gersh-
man. 2013. Cross-lingual metaphor detection using
common semantic features. In Proceedings of the
First Workshop on Metaphor in NLP. Association
for Computational Linguistics, pages 45-51.

Yulia Tsvetkov, Leonid Boytsov, Anatole Gershman,
Eric Nyberg, and Chris Dyer. 2014. Metaphor detec-
tion with cross-lingual model transfer. In Proceed-
ings of the 52nd Annual Meeting of the Association
for Computational Linguistics. Association for
Computational Linguistics, page 248-258.
http://www.aclweb.org/anthology/P14-1024

Zhao Hongyan, Qu Weiguang, Zhang Fen, and Zhou
Junsheng. 2011. Chinese verb metaphor recognition
based on machine learning and semantic knowledge.
Journal of Nanjing Normal University (Engineering
and Technology) 11(3):59-64.

46

Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017), pages 47–57,
Vancouver, Canada, August 3 - August 4, 2017. c©2017 Association for Computational Linguistics

Collaborative Partitioning for Coreference Resolution

Olga Uryupina♦ and Alessandro Moschitti
♦DISI, University of Trento 38123 Povo (TN), Italy

Qatar Computing Research Institute, HBKU, 34110, Doha, Qatar
{uryupina,amoschitti}@gmail.com

Abstract

This paper presents a collaborative par-
titioning algorithm—a novel ensemble-
based approach to coreference resolution.
Starting from the all-singleton partition,
we search for a solution close to the en-
semble’s outputs in terms of a task-specific
similarity measure. Our approach assumes
a loose integration of individual compo-
nents of the ensemble and can therefore
combine arbitrary coreference resolvers,
regardless of their models. Our experi-
ments on the CoNLL dataset show that
collaborative partitioning yields results su-
perior to those attained by the individual
components, for ensembles of both strong
and weak systems. Moreover, by applying
the collaborative partitioning algorithm on
top of three state-of-the-art resolvers, we
obtain the second-best coreference per-
formance reported so far in the literature
(MELA v08 score of 64.47).

1 Introduction
Coreference resolution has been one of the key
areas of NLP for several decades. Major mod-
eling breakthroughs have been achieved, not sur-
prisingly, following three successful shared tasks,
such as MUC (Hirschman and Chinchor, 1997),
ACE (Doddington et al., 2004) and, most recently,
CoNLL (Pradhan et al., 2011; Pradhan et al.,
2012). As of today, several high-performing sys-
tems are available publicly and, in addition, novel
algorithms are being proposed regularly, even if
without any code release. Our study aims at mak-
ing a good use of these resources through a novel
ensemble resolution method.

Coreference is a heterogeneous task that re-
quires a combination of accurate and robust pro-
cessing for relatively easy cases (e.g., name-

matching) with very complex modeling of diffi-
cult cases (e.g., nominal anaphora or some types
of pronouns). The general feeling in the commu-
nity is that we are currently approaching the upper
bound for the easy cases and our next step should
involve more complex resolution. If true, this
means that most state-of-the-art systems should
produce very similar outputs: correctly resolving
easy anaphora and failing on less trivial examples.
Table 1 scores the outputs of the three best sys-
tems from the CoNLL-2012 shared task against
each other. As it can be seen, the three systems are
rather different, each of them being only slightly
closer to each other than to the gold key.1 This
suggests that a meta-algorithm could merge their
outputs in an intelligent way, combining the cor-
rect decisions of individual systems to arrive at a
superior partition.

Although several coreference resolution toolk-
its exist for over a decade, to our knowledge, there
have been no attempts at trying to merge their out-
puts. The very few ensemble methods reported in
the literature focus on combining several resolu-
tion strategies within the same system. Following
the success of the CoNLL shared task (Pradhan et
al., 2011; Pradhan et al., 2012), however, multiple
complex approaches have been investigated, with
very different underlying models. This means that
a re-implementation of all these algorithms within
a single system requires a considerable engineer-
ing effort. In the present study, we combine the
final outputs of the individual systems, without
making any assumptions on their specifications.
This means that our approach is completely mod-
ular, allowing to combine third-party software as
black boxes.

The present study aims at finding a partition

1Across all the systems, the two most different submis-
sions are zhekova vs. li (34.10 MELA) and the two clos-
est ones are chunyang vs. shou (95.85 MELA).

47

key fernandes martschat bjorkelund
fernandes 60.64 100 66.74 67.07
martschat 57.67 100 64.22
bjorkelund 57.41 100

Table 1: Scoring top CoNLL-2012 systems
against each other, MELA v08.

combining the outputs of individual coreference
resolvers in a collaborative way. To this end,
we search the space of possible partitions, start-
ing from the all-singleton solution and incremen-
tally growing coreference entities, with the objec-
tive of getting a partition similar to the individual
outputs. As a measure of similarity, we rely on
task-specific metrics, such as, for example, MUC
or MELA scores. To our knowledge, this is the
first ensemble-based approach to coreference, op-
erating directly on the partition level. While tra-
ditional ensemble techniques, such as boosting or
co-training, have been successfully used for coref-
erence resolution before, they are applicable to
classification tasks and can only be used on lower
levels (e.g., for classifying mention pairs). Com-
bining partitions directly is a non-trivial problem
that requires an extra modeling effort.

The rest of the paper is organized as fol-
lows. In the next section, we discuss the previous
ensemble-based approaches to coreference resolu-
tion. Section 3 presents our collaborative parti-
tioning algorithm. In Section 4, we evaluate our
approach on the English portion of the OntoNotes
dataset. Section 5 summarizes our contributions
and highlights directions for future research.

2 Related Work
Only very few studies have so far investigated pos-
sibilities of using multiple resolvers for corefer-
ence. The first group of approaches aim at param-
eter optimization for choosing the best overall par-
tition from the components’ outputs. This line of
research is motivated by the fact that in most ap-
proaches to coreference, the underlying classifier
does not take into account the task metric, such
as, for example, MUC or MELA scores. For in-
stance, in the classical mention-pair model (Soon
et al., 2001), the classifier is trained to distinguish
between coreferent and non-coreferent pairs. The
output of this classifier is then processed heuris-
tically to create coreference partitions. There is
therefore no guarantee that the classifier optimized
on pairs would lead to the best-scoring partition.
One way to overcome this issue involves training a

collection of models and then picking the globally
best one on the development data (Munson et al.,
2005; Saha et al., 2011). Another possible solution
is to learn a ranker that would pick the best model
on a per-document basis, using partition-specific
features (Ng, 2005). While these approaches can
integrate arbitrary systems, they only allow to pick
the best output partition, thus, only considering a
single solution at a given time. Our algorithm, on
the contrary, builds a new partition in a collabora-
tive way, manipulating entities produced by indi-
vidual components.

The second research line involves training en-
sembles of classifiers within the same model, us-
ing bagging, boosting or co-training (Vemulapalli
et al., 2009; Ng and Cardie, 2003b; Ng and Cardie,
2003a; Kouchnir, 2004). Building upon these
studies, Rahman and Ng (2011) combine differ-
ent coreference algorithms in an ensemble-based
approach. For each mention in the document,
they run several models (mention-pair, mention-
ranking, entity-ranking) and heuristically merge
their outputs. All these approaches, however, as-
sume a very tight integration of individual com-
ponents into the ensemble. Thus, they all assume
the same set of mentions to be classified.2 More-
over, most algorithms can only make ensembles of
rather similar components, for example, varying
feature sets or parameters within the same model
of coreference. While Rahman and Ng (2011) al-
low for a combination of different models, they
do it via model-specific rules, assuming the same
set of mentions and a left-to-right per-mention res-
olution strategy—so a completely different novel
model cannot be integrated. Finally, most ensem-
bles use some internal information from their in-
dividual components, e.g., the confidence scores
for mention-pairs. In practice, these considera-
tions mean that all the individual systems should
be re-implemented in a single framework before
they can be combined in an ensemble. Our study,
on the contrary, makes no assumptions about in-
dividual components. We combine their outputs
at the partition level, without any requirements on
their internal structure. Thus, the individual sys-
tems can rely on different mention detection ap-
proaches. They can have arbitrary models. We
do not use any system-internal information, which

2The CoNLL systems differ considerably with respect to
their underlying mentions, thus, the mention detection F-
score between two systems varies from 50.11 (xinxin vs.
li) to 99.07 (chunyang vs. shou).

48

allows us to use individual components as black
boxes. Most importantly, our approach can be run
without any modification on top of any resolver,
present or future, thus benefiting from other stud-
ies on coreference and advancing the state of the
art performance.

The machine learning community offers several
algorithms combining multiple solutions for tasks
going beyond simple classification or regression.
The work of Strehl and Ghosh (2003) is of par-
ticular relevance for our problem. Thus, Strehl
and Ghosh (2003) introduce the task of ensem-
ble or consensus clustering, where the combiner
aims at creating a meta-clustering on top of sev-
eral individual solutions, without accessing their
internal representations, e.g., features. The formu-
lation of Strehl and Ghosh (2003) is identical to
ours. However, there are several important differ-
ences. Thus, Strehl and Ghosh (2003) focus on the
clustering problem, in particular, for large sets of
data points. They show that the optimal solution
to the consensus clustering problem is not com-
putationally feasible and investigate several very
greedy approaches.

Although coreference is formally a partitioning
problem, the setting is rather different from a typ-
ical clustering scenario. Thus, individual men-
tions and mention properties are very important
for coreference and should carefully be assessed
one by one. The resolution clues are very hetero-
geneous and different elements (mentions) of clus-
ters (entities) can be rather dissimilar in a strict
sense. This is why, for example, clustering evalu-
ation measures are not reliable for coreference—
and, indeed, task-specific metrics have been put
forward. While algorithms of (Strehl and Ghosh,
2003) constitute the state of the art in the ensemble
clustering in general, we propose a coreference-
specific approach. More specifically, (i) while
Strehl and Ghosh (2003) rely on task-agnostic
measures of similarity between partitions (mu-
tual information), approximating the search for
its maximum with various heuristics, we explic-
itly integrate coreference metrics, such as MUC
and MELA and (ii) since our partitions are much
smaller than typical clustering outputs, we can
afford a less greedy agglomerative search strat-
egy, again, motivated by the specifics of the final
task. In our future work, we plan to evaluate our
approach against the general-purpose algorithms
proposed in (Strehl and Ghosh, 2003).

Algorithm 1 Collaborative Partitioning
Require: P = {p1..pn}: list of partitions generated by

n systems; each partition pi is a set of entities pi =
{ei

1..e
i
kn
}, each entity is a set of mentions m

Require: coreference score: an external metric, e.g.
MUC or MELA

1: begin
2: create a list of all the mentions M = {m1..mk}
3: init the all-singleton partition p = {e1..ek}, ei = {mi}
4: while ‖p‖ > 1 do
5: current similarity = vote(p, P)
6: max = 0
7: for all ea, eb ∈ p do
8: p′ = p ∪ {ea ∪ eb} \ {ea} \ {eb}
9: cand similarity = vote(p′, P)

10: if cand similarity > max then
11: max = cand similarity,maxp = p′

12: if max < current similarity then
13: break;
14: p = maxp

15: end
16: function VOTE(p,P)
17: sim = 0
18: for all pi ∈ P do
19: sim+ = coreference score(p, pi)

20: return sim

3 Collaborative Partitioning

This section first describes our collaborative par-
titioning algorithms, summarized in Algorithm 1
and then addresses technical details essential for
running it in a practical scenario. The main idea
behind collaborative partitioning is rather straight-
forward: we aim at finding a partition that is sim-
ilar to all the outputs produced by the individual
components of the ensemble. To implement this
strategy, we have to specify two aspects: (a) the
procedure to effectively search the space of possi-
ble partitions generating outputs to be tested and
(b) the way to measure similarity between a can-
didate partition and a component’s output. In both
cases, we propose task-specific solutions.

Thus, we start with the all-singleton partition,
where each mention makes its own entity and then
try to incrementally grow our entities. At each
iteration, we try to merge two clusters, compar-
ing the similarity to the components’ outputs be-
fore and after the candidate merge. If a candi-
date merge leads to the highest voting score, we
execute this merge and proceed to the next iter-
ation. If no candidate merges improve the sim-
ilarity score for more than a predefined termina-
tion threshold, the algorithm stops. Several things
should be noted. First, when trying to build a new
partition, we only allow for merging: we never go
back and split already constructed entities. This

49

President Clinton has told a memorial service for the victims of the deadly bomb attack on the USS Cole that justice will prevail . Mr. Clinton promised the
gathering at the Norfolk Naval station Wednesday that those who carried out the deadly attack that killed 17 sailors will be found . To those who attacked them ,
we say you will not find a safe harbor , we will find you and justice will prevail . Meanwhile , in Yemen President Ali Abdul Salay said important evidence had
been uncovered in the investigation . President Salay was quoted as saying two people responsible for the blast were killed in a suicide mission and that the attack
had been planned for a long time . His comments were not immediately confirmed by US officials who are leading the investigation with Yemen ’s help .
fernandes martschat bjorkelund ensemble
[1,2]: President Clinton [1,2]: President Clinton [1,2]: President Clinton [1,2] President Clinton
[25,26] Mr. Clinton [25,26] Mr. Clinton [25,26] Mr. Clinton [25,26] Mr. Clinton
[12,15]: the deadly bomb attack [12,19]: the deadly .. Cole [12,15]: the deadly bomb attack
[115,116]: the attack [115,116]: the attack [115,116]: the attack [115,116]: the attack

[41,47]: the deadly attack .. sailors [41,47]: the deadly attack .. sailors [41,47]: the deadly attack .. sailors
[46,47]: 17 sailors [46,47]: 17 sailors [46,47]: 17 sailors

[56,56]: them [56,56] them [56,56] them [56,56] them
[37,47]: those who carried .. sailors [37,47]: those who carried .. sailors [37,47]: those who carried .. sailors
[53,56]: those who attacked them [53,56]: those who attacked them [53,56]: those who attacked them
[60,60]: you [60,60]: you [60,60]: you
[71,71]: you [71,71]: you [71,71]: you
[58,58]: we [58,58]: we [58,58]: we [58,58]: we
[68,68]: we [68,68]: we [68,68]: we [68,68]: we
[80,80]: Yemen [80,80]: Yemen [80,80]: Yemen [80,80]: Yemen
[140,141]: Yemen ’s [140,141]: Yemen ’s [140,141]: Yemen ’s [140,141]: Yemen ’s
[81,84]: President Ali Abdul Salay [81,84]: President Ali Abdul Salay [81,84]: President Ali Abdul Salay
[95,96]: President Salay [95,96]: President Salay [95,96]: President Salay [95,96]: President Salay
[125,125]: His [125,125]: His [125,125]: His [125,125]: His
[92,93]: the investigation [92,93]: the investigation [92,93]: the investigation
[137,138]: the investigation [137,142]: the inv. with Yemen ’s help [137,138]: the investigation

Table 2: Collaborative partitioning on a sample OntoNotes document: 3 top systems and their ensemble,
using MELA similarity. Each row corresponds to a mention, each (multi-row) cell corresponds to an
entity created by a specific system. Bracketed numbers indicate word ids.

decision is motivated by the cost of a single op-
eration: while there is only one way to merge two
entities, there are exponentially many ways to split
an entity in two, making the latter operation much
more computationally expensive. Second, unlike
most approaches to coreference, we do not pro-
cess the text in the left-to-right order. Instead, we
consider the whole set of mentions from the initial
iteration, doing first the merges supported by the
majority of the components in the ensemble.

To compute the voting score, we first define the
similarity between two partitions, based on coref-
erence metrics, as implemented in the CoNLL
scorer (Pradhan et al., 2014): we score our gen-
erated partitions against the outputs of the ensem-
ble components. This way we ensure that the final
partition is related to the individual outputs in the
way that is relevant for the task. There are multi-
ple ways to derive the voting score from existing
metrics. The parameters to consider here are: the
specific measure to be used (e.g., MUC vs. CEAF
vs. MELA), the granularity (e.g., whether to mea-
sure the increase/decrease of the specific metric as
a continuous or binary value) and the way to com-
bine measures from the different ensemble com-
ponents in a single score (e.g., weighted vs. un-
weighted voting). In Section 3.1 below, we dis-
cuss several practical considerations for making
this choice.

Note that our approach does not make any as-

sumptions about mention detection for individual
components: to initialize the run, we simply lump
together all the mentions. This, however, leads to
performance drops if several individual systems
suggest different boundaries for the same men-
tion: the final solution will then keep all the vari-
ants merging them into the same entity. To avoid
this issue, we implement a post-processing clean-
up step: if the final solution contains entities with
nested mentions, we keep the most popular vari-
ants (or the shorter one for the same popularity).
This post-processing helps us avoid any complex
merging machinery at the mention level.

Table 2 shows a sample OntoNotes document
with outputs of the three top systems and the par-
tition created by the collaborative ensemble. Some
entities (e.g. Yemen) are easy for all the systems.
Some entities (attack; investigation; Salay) are re-
covered fully only by two systems, probably for
the lack of required features. Note that although
each system misses some coreference relations, al-
together they resolve all the three entities, leading
to a considerable improvement in the collaborative
partition. Finally, the two entities for attackers and
sailors, central to the document, are represented
with pronominal mentions that are hard to resolve.
Not surprisingly, the systems make several spuri-
ous decisions w.r.t. these entities. The collabora-
tive partitioning algorithm, however, manages to
filter out erroneous assignments and produce the

50

correct partition.

3.1 Performance Issues
The collaborative partitioning algorithm starts
from the all-singleton solution and tries to incre-
mentally merge entities. Each candidate merge is
evaluated with the coreference scorer. This means
that, in the worst case, the system requires 0(n3)
scorer runs, where n is the total number of men-
tions: it does n merges and for each merge i, it
searches for a pair among n − i + 1 entities that
maximizes the overall similarity score, requiring
(n−i+1)∗(n−i)

2 scorer runs. This can become pro-
hibitively slow, making the approach not practical.
Below we discuss three solutions to speed up the
algorithm.

First, the voting function can be simplified.
Thus, instead of using continuous similarity values
(i.e., how much a candidate merge brings the solu-
tion closer to the components’ output via increas-
ing or decreasing the specific coreference metric),
we can rely on binary indicators: the component
up-/down- votes a merge if the metric’s value in-
creases/decreases. To compute the final score, we
use unweighted voting (or, alternatively, weighted
voting with very simple integer weights). This
way, the final score can only take a small num-
ber of values and, for each merge, we can stop
the search once the highest possible score is ob-
served, instead of assessing all the (n−i+1)∗(n−i)

2
possible pairs. This trick does not affect the worst-
case complexity, but can help a lot on the average.
Moreover, a simple voting function is necessary
for the second speed-up adjustment.

Each merge only involves two entities. Thus, at
the merge iteration i, the system observes n−i en-
tities it has already seen before and one new entity
generated at the merge iteration i−1. To speed up
the processing, we can therefore store voting val-
ues for merge attempts and reuse them at each iter-
ation. With this adjustments, the algorithm needs
only to evaluate candidate merges with the newly
constructed entity and therefore each iteration re-
quires a linear number of scoring runs, leading to
O(n2) runs overall. Two considerations should be
taken into account. Suppose we evaluate a merge
attempt for two entities, e1 and e2, at the iteration
i and store the value for the voting function. If we
then attempt to merge the same two entities at the
iteration i′, the coreference scoring functions will
be different, since they assess the whole partition.
This means that this speed-up trick only works if

the ensemble voting function is very simple and
is not affected by slight changes in the individual
coreference scores. The second consideration is
more troublesome. Hashing of voting results only
works if the underlying coreference scoring func-
tion respects certain monotonicity properties: sup-
pose a (candidate) merge of two entities, e1 and e2
at iteration i improves the coreference score with
respect to a component’s output; the same merge
should improve the coreference score also at any
later iteration i′. Intuitively speaking, this means
that two entities should or shouldn’t be merged,
according to a specific coreference metric, regard-
less of the rest of the partition. While link- or
mention-based metrics respect this property, the
CEAF scores evaluate partitions as a whole and
therefore are not monotonic.

Finally, some coreference metrics, such as B3

and, most importantly, MUC are very fast to com-
pute. The CEAF scores, on the contrary, re-
quire a computationally expensive partition align-
ment procedure. A considerable speed-up can be
achieved by opting for a faster scorer. In the exper-
imental section, we evaluate the algorithm’s per-
formance with different scoring metrics.

3.2 Algorithm adjustments for the
CoNLL/OntoNotes setting

Following the state of the art, we evaluate our ap-
proach within the CoNLL framework (Pradhan et
al., 2012): we use the OntoNotes dataset (Hovy et
al., 2006) and rely on the official release (v8) of
the scorer (Pradhan et al., 2014). Several impor-
tant adjustments should be made to our algorithm
to account for peculiarities of this set-up. In par-
ticular, (a) the OntoNotes guidelines do not pro-
vide annotations for singleton entities and (b) the
official shared task score (MELA) relies strongly
on B3 and CEAF metrics. These two properties in
combination lead to a number of counter-intuitive
effects. We refer the reader to a recent study by
Moosavi and Strube (2016) for an extensive dis-
cussion of problematic issues with the CoNLL
scoring strategy.

The following adjustments have been made to
run the algorithm in the CoNLL setting. First,
each mention has been duplicated to mitigate the
mention identification effect (Moosavi and Strube,
2016): we expand each document by several lines
and fill them with dummy mentions. This prevents
the system from making spurious merges at the
initial iterations as a result of problematic CEAF

51

values.
Second, we employ several clean-up strategies

to post-process the final partition. Thus, we re-
move mentions recognized by a single system
only, unless they are considered coreferent with
exactly one popular (recognized by multiple sys-
tems) mention. This rather inelegant solution
could be replaced with a simple requirement that
each mention should be recognized by several sys-
tems if the singletons were not removed from the
evaluation.

4 Experiments
In this section, we evaluate empirically the perfor-
mance of the collaborative partitioning approach
for a variety of ensembles. In particular, we inves-
tigate ensembles of different size and composition
with respect to the components’ quality and assess
different coreference scoring metrics as criteria for
partition similarity.

4.1 Experimental setup
In our experiments, we rely on the English portion
of the CoNLL-2012 dataset (Pradhan et al., 2012).
We use the outputs of the CoNLL submissions on
the test data, made available publicly by the orga-
nizers.

To speed up the system, we use the techniques
discussed in Section 3.1 above. In particular, we
rely on a very simple unweighted voting scheme:
each component contributes equally to the final
score. The per-component score for a candidate
merge between e1 and e2 is computed as follows:
if either e1 or e2 are not represented in a compo-
nent’s output, it abstains from voting (score =
0). Otherwise, the component upvotes candi-
date merges if the underlying coreference score
increases (score = 2) and downvotes, if it de-
creases (score = −1). The preference for positive
votes (2 vs. 1) is motivated by the fact, that most
state-of-the-art models explicitly model corefer-
ence, but not non-coreference: if two entities are
annotated as non-coreferent by the system, it can
be due to several factors, such as the lack of rel-
evant features or algorithm peculiarities that limit
the search space. The positive information in the
systems’ output is therefore more reliable than the
negative one. The specific threshold (2 : 1) has
been chosen arbitrary without any tuning. Finally,
the termination threshold has been set to 0.

4.2 Choosing the scoring metric
In our first experiment, we evaluate different ways
of defining similarity between partitions. Recall

that each merge is evaluated based on whether
it makes the constructed partition closer to the
outputs of individual components. The similar-
ity between two partitions is assessed with a task-
specific measure. Multiple metrics have been pro-
posed to evaluate coreference resolvers, we re-
fer the reader to (Luo and Pradhan, 2016) for a
detailed description and to (Moosavi and Strube,
2016) for a discussion of their problematic prop-
erties. In the present experiment, we assess
three commonly accepted metrics, MUC, B3 and
CEAFE as well as their average, MELA, used for
the official ranking of the CoNLL shared task.

Table 3 summarizes the results achieved by en-
sembles of the top-3 CoNLL systems. The upper
half of the table presents individual components,
re-evaluated with the v8 scorer. The lower part
presents the performance achieved by four differ-
ent ensembles, varying the underlying similarity
measure used for growing up the partitions. For
each performance metric, we highlight the best ap-
proach with boldface.

This experiment suggests several findings.
First, the collaborative partitioning clearly brings a
considerable improvement: depending on the un-
derlying similarity score, the ensemble performs
up to 3.5 percentage points better than the best
individual components. Moreover, all the four
created ensembles yield scores comparable to the
very best state-of-the-art systems.

Second, all the four ensembles outperform indi-
vidual components according to all the evaluation
metrics. This means that the overall improvement
(MELA) reflects a real quality increase and not
just some fortunate re-shuffling of the individual
scores to be averaged.

Third, the best overall improvement is achieved
with the voting function based on the MELA sim-
ilarity. The much faster MUC-based method per-
forms 1.5 percentage points worse. This is an am-
biguous result: on the one hand, a difference of
1.5% on the CoNLL dataset is non-negligible. On
the other hand, even the MUC-based method out-
performs each individual component.

4.3 Ensembles of top vs. bottom CoNLL
systems

The performance of different systems submitted to
CoNLL varies considerably, from 36.11 to 60.64
(MELA score, v08). In this experiment, we try to
combine different types of systems. We split all
the CoNLL systems into “tiers” of 3 submissions,

52

components MUC F CEAFE F B3 F MELA
CoNLL system outputs

fernandes 70.51 53.86 57.58 60.64
martschat 66.97 51.46 54.62 57.67
bjorkelund 67.58 50.21 54.47 57.41

Per-tier ensembles (3 systems per ensemble), score>0
fernandes, martschat,bjorkelund; MUC similarity 72.45 55.71 59.87 62.67
fernandes, martschat,bjorkelund; CEAFE similarity 71.73 58.04 61.00 63.58
fernandes, martschat,bjorkelund; B3 similarity 71.75 58.31 61.08 63.70
fernandes, martschat,bjorkelund; MELA similarity 71.96 58.95 61.35 64.08

Table 3: Collaborative partitioning with the 3 top CoNLL-2012 systems, using different coreference
metrics when assessing candidate merges. Boldface indicates the best performing system for each score.

components MUC F CEAFE F B3 F MELA
CoNLL system outputs

tier1: fernandes, martschat,bjorkelund 70.51 66.97 67.58 53.86 51.46 50.21 57.58 54.62 54.47 60.65 57.68 57.42
tier2: chang,chen,chunyang 66.38 63.71 63.82 48.94 48.10 47.58 52.99 51.76 51.21 56.10 54.52 54.20
tier3: stamborg,yuan,xu 64.26 62.55 66.18 46.60 45.99 41.25 51.66 50.11 50.30 54.17 52.88 52.57
tier4: shou,uryupina,songyang 62.91 60.89 59.83 46.66 42.93 42.36 49.44 46.24 45.90 53.00 50.02 49.36
tier5: zhekova,xinxin,li 53.52 48.27 50.84 32.16 31.90 25.21 35.66 35.73 32.29 40.44 38.63 36.11

Per-tier ensembles (3 systems per ensemble)
tier1: fernandes, martschat,bjorkelund 71.96 58.95 61.35 64.08
tier2: chang,chen,chunyang 66.35 53.54 56.11 58.66
tier3: stamborg,yuan,xu 68.60 52.98 57.89 59.22
tier4: shou,uryupina,songyang 66.75 51.25 55.10 57.70
tier5: zhekova,xinxin,li 56.18 34.67 41.51 44.12

Table 4: Ensembles of 3 classifiers for different tiers, using MELA for merging. Boldface indicates the
best performing system for each tier.

components tier MUC (R) tier MUC (P) tier MUC (F) tier MELA
CoNLL system outputs

tier1: fernandes,martschat,bjorkelund 65.83 65.21 65.23 75.91 68.83 70.10 70.51 66.97 67.58 60.64 57.67 57.41
tier2: chang,chen,chunyang 64.77 63.47 64.08 68.06 63.96 63.57 66.38 63.71 63.82 56.10 54.51 54.20
tier3: stamborg,yuan,xu 65.41 62.08 59.11 63.15 63.02 75.18 64.26 62.55 66.18 54.17 52.87 52.57
tier4: shou,uryupina,songyang 63.45 61.00 55.29 62.38 60.78 65.19 62.91 60.89 59.83 53.00 50.01 49.35
tier5: zhekova,xinxin,li 54.28 55.48 39.12 52.79 42.72 72.57 53.52 48.27 50.84 40.44 38.62 36.11

Per-tier ensembles (3 systems per ensemble)
tier1: fernandes,martschat,bjorkelund 69.60 75.55 72.45 62.67
tier2: chang,chen,chunyang 69.26 64.61 66.85 54.63
tier3: stamborg,yuan,xu 67.48 69.12 68.29 54.26
tier4: shou,uryupina,songyang 69.26 66.07 67.63 52.23
tier5: zhekova,xinxin,li 57.07 61.77 59.33 40.85

Table 5: Ensembles of 3 classifiers for different tiers, using MUC for merging. Boldface indicates the
best performing system for each tier.

based on their ranking. We do not use the system
scores; however, we rely on the ranking computed
on the same dataset.3

Tables 4 and 5 report the performance figures
for ensembles composed of systems from each
tier. The former uses MELA as a similarity mea-
sure, the latter—MUC. In both tables, the up-
per half reports performance figures for individ-
ual components (each cell in the upper half con-
tains three values for the performance of the three
systems of each tier). The lower half reports
performance figures for collaborative partitioning
with the components from each tier. The best-
performing system for each performance metric is
shown in boldface: for example, the MUC-based

3This is a rather unfortunate set-up, but there are no means
to roughly evaluate CoNLL systems without using the test
data. We assume, however, that an external evaluation, if
possible, would be able to differentiate top against bottom
submissions.

ensemble of the three tier1 systems outperforms
its individual components in MUC Recall, MUC
F and MELA (Table 5, lower half, first row), with
the scores of 69.6%, 72.45% and 62.67% respec-
tively; the best MUC Precision for tier1 (75.91%)
is, however, achieved by an individual component,
the system fernandes (Table 5, upper half, first
row).

As these two tables suggest, collaborative parti-
tioning yields improvement over individual com-
ponents, for both stronger and weaker tiers. This
suggests that collaborative partitioning can be
used on top of any systems: unlike many other
ensemble techniques, it does not suffer from the
error propagation problem when operating on en-
sembles of weaker components.

The final partition depends on the similar-
ity measure used by the collaborative algorithm.
Thus, the MELA measure, being an average of

53

components MUC R MUC P MUC F MELA
best individual component (fernandes)

fernandes 65.83 75.91 70.51 60.65
ensembles, default termination threshold (= 0)

tier1 69.60 75.55 72.45 62.67
tier1+2 74.85 61.73 67.66 52.38
tier1+2+3 75.78 56.43 64.69 43.97
tier1+2+3+4 74.85 53.34 62.29 39.58
tier1+2+3+4+5 (all) 74.08 48.02 58.27 33.10

ensembles, optimal termination threshold
tier1 69.60 75.55 72.45 62.67
tier1+2 70.53 75.93 73.13 53.60
tier1+2+3 71.54 75.24 73.35 44.41
tier1+2+3+4 68.50 77.12 72.55 49.06
tier1+2+3+4+5 (all) 65.36 80.24 72.04 45.78

Table 6: Ensembles of different sizes, using MUC
for merging.

MUC CEAFE B3 MELA
competitive upper bound, tier1 71.53 56.46 59.74 62.57
competitive upper bound, tier1+2 71.53 56.46 59.74 62.57
competitive upper bound , all 72.12 57.55 60.53 63.39
collaborative, tier1 71.96 58.95 61.35 64.08

Table 7: Competitive vs. collaborative partition-
ing, using MELA for selection (competitive) or
merging (collaborative).

MUC, B3 and CEAF, leads to more balanced fi-
nal partitions, improving on each individual score.
MUC-based ensembles, on the contrary, improve
on MUC (through a drastic increase in MUC recall
without much precision loss), but do not guarantee
any increase in B3 or CEAF, leading to mixed re-
sults on MELA.

4.4 Ensembles of different size
In this experiment, we consider ensembles of dif-
ferent sizes, starting from tier1 and adding less
performing components. Table 6 reports the re-
sults for ensembles of different size, using MUC
for measuring the similarity while growing parti-
tions. The upper half presents the results with the
default termination parameter. As it shows, the
inclusion of more lower-quality systems leads to
better MUC recall values at the cost of the sharp
deterioration in precision and the overall scores.

The lower half shows the results obtained with
the optimal value of the termination parameter. In
a practical scenario, this parameter can be tuned on
the development data. Here, the best MUC results
(F = 73.35) are achieved with the top nine sys-
tems. However, this MUC improvement comes at
a high cost in B3 and CEAF, leading to low MELA
values even with the optimal parametrization.

4.5 Collaborative vs. Competitive
Partitioning

One of the key advantages of the collaborative par-
titioning algorithm is its loose coupling approach

components MUC CEAFE B3 MELA
berkeleycoref 69.13 54.30 57.40 60.27
ims-hotcoref 70.25 55.44 58.03 61.23
LSPE 72.34 57.40 60.36 63.36
ensemble 71.98 60.01 61.44 64.47

Table 8: Collaborative partitioning for state-of-
the-art systems, using MELA for merging. Bold-
face indicates the best result for each score.

with respect to individual components. This al-
lows for straightforward integration of any coref-
erence resolver at the moment of its release. The
only other approach with the same property has
been advocated by Ng (2005), where a ranker is
learned to select the best partition from the indi-
vidual outputs. We refer to this algorithm as com-
petitive partitioning, since individual components
compete with each other for each document in-
stead of collaborating to build a new improved par-
tition.

The competitive partitioning algorithm has a
natural upper bound: by using an oracle to always
select the best-performing component for each in-
dividual document, we can get the highest perfor-
mance level possibly attainable with this model.
Table 7 shows these upper bounds for the first 3, 6
and 15 (all) CoNLL systems. Note that these num-
bers are obtained with an oracle—the results with
a real ranker will, obviously, be lower. The last
row of the table shows, for comparison, the tier1
performance for the collaborative partitioning al-
gorithm.

First, it is clear that competitive partitioning on
top of CoNLL systems is hardly promising: even
in the oracle setting, the performance improves by
only 2-3 percentage points. This is due to the
fact that CoNLL has a clear winner, the system
fernandes, yielding the best solution for more
than half of the documents and never losing too
much for the remaining half.

Second, collaborative partitioning, on the con-
trary, seems more beneficial, yielding the results
superior to the upper bound of the competitive par-
titioning algorithm. This is due to the fact that the
collaborative approach makes a better use of in-
dividual components, combining their entities to
arrive at a better new solution.

4.6 Ensembles of post-CoNLL systems
In our last experiment, we depart from the
CoNLL outputs to run the collaborative parti-
tioning algorithm on top of the state-of-the-art
coreference resolvers. In particular, we com-

54

bine three very different high-performing sys-
tems, berkeleycoref (Durrett et al., 2013),
ims-hotcoref (Björkelund and Kuhn, 2014)
and lspe (Haponchyk and Moschitti, 2017b;
Haponchyk and Moschitti, 2017a). The former re-
lies on an entity-level modeling, whereas the lat-
ter two use different structural learning approaches
to coreference. All these systems represent state-
of-the-art research in the field. Note that we do
not include the very latest deep learning based ap-
proaches (Wiseman et al., 2016; Clark and Man-
ning, 2016) to allow for a fair comparison: since,
as we have seen in the experiments above, the col-
laborative partitioning algorithm consistently im-
proves over individual ensemble components, in-
tegrating the very best systems would be a triv-
ial but not very informative way of advancing the
state of the art.

Table 8 shows the performance level of each
of these systems on the English portion of the
CoNLL-2012 dataset, individually and of the col-
laborative ensemble. The best performing sys-
tem according to each metric is shown in bold.
The numbers were obtained by running the v08
scorer on the outputs provided by the developers
(berkeleycoref, lspe) or created using the
official distribution and the provided pre-trained
model (ims-hotcoref). No adjustments have
been made to the collaborative partitioning algo-
rithm.

Similarly to the experimental findings presented
in the previous sections, the collaborative parti-
tioning algorithm outperforms the best individ-
ual components. Most importantly, it yields the
second-best results reported in the literature, out-
performing the system of Wiseman et al. (2016)
by 0.26 percentage points.

5 Conclusion
This paper presents collaborative partitioning—
a novel ensemble-based approach to coreference
resolution. Starting from the all-singleton solu-
tion, we search the space of all partitions, aiming
at finding the solution close to the components’
partitions according to a coreference-specific met-
ric. Our algorithm assumes a loose coupling of in-
dividual components within the ensemble, allow-
ing for a straightforward integration of any third
party coreference resolution system.

Our evaluation experiments on the CoNLL
dataset show that the collaborative partitioning
method improves upon individual components,

both for high and low performing ensembles. This
performance improvement is consistent across all
the metrics. Moreover, when combining three
state-of-the-art systems, the collaborative ensem-
ble achieves the second-best results reported in the
literature so far (MELA score of 64.47).

In the future, we plan to concentrate on improv-
ing the voting scheme for the ensemble. Currently,
the model relies on a very simplistic unweighted
voting strategy. This choice is motivated by practi-
cal considerations: a more complex scheme would
not make possible the necessary system speed up
techniques. The unweighted voting, however, is
problematic for ensembles that (a) contain com-
ponents of very different quality or (b) contain
some extremely similar components. This issue
has been investigated within the ensemble classifi-
cation framework, where several approaches have
been put forward to construct large ensembles that
ensure diversity of their components, e.g., through
splitting training data and/or feature sets. In our
scenario, however, we can not rely on such tech-
niques, since we build ensembles of few existing
high-quality systems, each of them being an out-
come of a considerable research and engineering
effort. We plan to overcome these issues, investi-
gating different versions of heterogeneous voting.

Another direction of our future work involves
an extensive comparison of our approach with en-
semble clustering algorithms proposed within the
machine learning and data mining community, in
particular, by Strehl and Ghosh (2003). Thus,
we plan to (i) evaluate our model against these
general-purpose techniques in terms of both accu-
racy and efficiency and (ii) investigate possibilities
of adapting the existing ensemble clustering algo-
rithms to explicitly incorporate task-specific met-
rics.

Finally, we plan to extend our approach to other
NLP tasks, investigating collaborative ensembles
for other problems with complex outputs, going
beyond simple classification-based ensemble tech-
niques.

Acknowledgments

This work has been partially supported by the EC
project CogNet, 671625 (H2020-ICT-2014-2, Re-
search and Innovation action).

55

References
Anders Björkelund and Jonas Kuhn. 2014. Learn-

ing structured perceptrons for coreference resolution
with latent antecedents and non-local features. In
Proceedings of the 52nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 47–57, Baltimore, Maryland,
June. Association for Computational Linguistics.

Kevin Clark and Christopher D. Manning. 2016. Im-
proving coreference resolution by learning entity-
level distributed representations. In Proceedings of
the 54th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 643–653, Berlin, Germany, August. Associ-
ation for Computational Linguistics.

George Doddington, Alexis Mitchell, Mark Przybocki,
Lance Ramshaw, Stephanie Strassell, and Ralph
Weischedel. 2004. The automatic content extrac-
tion (ACE) program–tasks, data, and evaluation. In
Proceedings of the Language Resources and Evalu-
ation Conference.

Greg Durrett, David Hall, and Dan Klein. 2013.
Decentralized entity-level modeling for coreference
resolution. In Proceedings of the 51st Annual Meet-
ing of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pages 114–124, Sofia,
Bulgaria, August. Association for Computational
Linguistics.

Iryna Haponchyk and Alessandro Moschitti. 2017a.
Dont understand a measure? Learn it: Structured
prediction for coreference resolution optimizing its
measures. In Proceedings of the 55th Annual Con-
ference of the Association for Computational Lin-
guistics (ACL), Vancouver, Canada, July. Associa-
tion for Computational Linguistics.

Iryna Haponchyk and Alessandro Moschitti. 2017b.
A practical perspective on latent structured predic-
tion for coreference resolution. In Proceedings of
the 15th Conference of the European Chapter of the
Association for Computational Linguistics: Volume
2, Short Papers, pages 143–149, Valencia, Spain,
April. Association for Computational Linguistics.

Lynette Hirschman and Nancy Chinchor. 1997. MUC-
7 coreference task definition. In Message Under-
standing Conference Proceedings.

Eduard Hovy, Mitchell Marcus, Martha Palmer, Lance
Ramshaw, and Ralph Weischedel. 2006. Ontonotes:
the 90% solution. In Proceedings of the human lan-
guage technology conference of the NAACL, Com-
panion Volume: Short Papers, pages 57–60. Associ-
ation for Computational Linguistics.

Beata Kouchnir. 2004. A machine learning approach
to german pronoun resolution. In Proceedings of the
ACL 2004 Workshop on Student Research, ACLstu-
dent ’04, Stroudsburg, PA, USA. Association for
Computational Linguistics.

Xiaoqiang Luo and Sameer Pradhan. 2016. Evaluation
metrics. In Anaphora Resolution, pages 141–163.
Springer Berlin Heidelberg.

Nafise Sadat Moosavi and Michael Strube. 2016.
Which coreference evaluation metric do you trust?
a proposal for a link-based entity aware metric. In
Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics, volume 1,
pages 632–642.

Art Munson, Claire Cardie, and Rich Caruana. 2005.
Optimizing to arbitrary NLP metrics using ensem-
ble selection. In Proceedings of HLT/EMNLP, pages
539–546.

Vincent Ng and Claire Cardie. 2003a. Bootstrapping
coreference classifiers with multiple machine learn-
ing algorithms. In Proceedings of the 2003 Con-
ference on Empirical Methods in Natural Language
Processing, pages 113–120. Association for Com-
putational Linguistics.

Vincent Ng and Claire Cardie. 2003b. Weakly super-
vised natural language learning without redundant
views. In Proceedings of the 2003 Conference of
the North American Chapter of the Association for
Computational Linguistics - Volume 1, pages 173–
180. Association for Computational Linguistics.

Vincent Ng. 2005. Machine learning for coreference
resolution: From local classification to global rank-
ing. In Proceedings of the 43rd Annual Meeting of
the ACL, pages 157–164.

Sameer Pradhan, Lance Ramshaw, Mitchell Marcus,
Martha Palmer, Ralph Weischedel, and Nianwen
Xue. 2011. Conll-2011 shared task: Modeling un-
restricted coreference in ontonotes. In Proceedings
of the Fifteenth Conference on Computational Nat-
ural Language Learning (CoNLL 2011), Portland,
Oregon, June.

Sameer Pradhan, Alessandro Moschitti, Nianwen Xue,
Olga Uryupina, and Yuchen Zhang. 2012. CoNLL-
2012 shared task: Modeling multilingual unre-
stricted coreference in OntoNotes. In Proceedings
of the Sixteenth Conference on Computational Nat-
ural Language Learning (CoNLL’12), Jeju, Korea.

Sameer Pradhan, Xiaoqiang Luo, Marta Recasens, Ed-
uard H Hovy, Vincent Ng, and Michael Strube.
2014. Scoring coreference partitions of predicted
mentions: A reference implementation. In ACL (2),
pages 30–35.

Altaf Rahman and Vincent Ng. 2011. Ensemble-based
coreference resolution. In Proceedings of the 22nd
International Joint Conference on Artificial Intelli-
gence, pages 1994–1889.

Sriparna Saha, Asif Ekbal, Olga Uryupina, and Mas-
simo Poesio. 2011. Single and multi-objective
optimization for feature selection in anaphora res-
olution. In Proceedings of the International Joint
Conference on Natural Language Processing (IJC-
NLP’11).

56

Wee Meng Soon, Hwee Tou Ng, and Daniel
Chung Yong Lim. 2001. A machine learning ap-
proach to coreference resolution of noun phrases.
Computational Linguistic, 27(4):521–544.

Alexander Strehl and Joydeep Ghosh. 2003. Clus-
ter ensembles — a knowledge reuse framework for
combining multiple partitions. The Journal of Ma-
chine Learning Research, 3:583–617, March.

Smita Vemulapalli, Xiaoqiang Luo, John F. Pitrelli,
and Imed Zitouni. 2009. Classifier combina-
tion techniques applied to coreference resolution.
In Proceedings of Human Language Technologies:
The 2009 Annual Conference of the North Ameri-

can Chapter of the Association for Computational
Linguistics, Companion Volume: Student Research
Workshop and Doctoral Consortium, SRWS ’09,
pages 1–6, Stroudsburg, PA, USA. Association for
Computational Linguistics.

Sam Wiseman, Alexander M. Rush, and Stuart M.
Shieber. 2016. Learning global features for coref-
erence resolution. In Kevin Knight, Ani Nenkova,
and Owen Rambow, editors, NAACL HLT 2016, The
2016 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 994–1004. The

Association for Computational Linguistics.

57

Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017), pages 58–68,
Vancouver, Canada, August 3 - August 4, 2017. c©2017 Association for Computational Linguistics

Named Entity Disambiguation for Noisy Text

Yotam Eshel1 Noam Cohen1 Kira Radinsky1,2

Shaul Markovitch1 Ikuda Yamada3 Omer Levy4

1Technion - Israel Institute of Technology, Haifa, Israel
2eBay Research, Israel

3Studio Ousia, Fujisawa, Kanagawa, Japan
4University of Washington, Seattle, WA

Abstract

We address the task of Named Entity
Disambiguation (NED) for noisy text.
We present WikilinksNED, a large-scale
NED dataset of text fragments from the
web, which is significantly noisier and
more challenging than existing news-
based datasets. To capture the limited
and noisy local context surrounding each
mention, we design a neural model and
train it with a novel method for sam-
pling informative negative examples. We
also describe a new way of initializing
word and entity embeddings that signifi-
cantly improves performance. Our model
significantly outperforms existing state-of-
the-art methods on WikilinksNED while
achieving comparable performance on a
smaller newswire dataset.

1 Introduction

Named Entity Disambiguation (NED) is the task
of linking mentions of entities in text to a given
knowledge base, such as Freebase or Wikipedia.
NED is a key component in Entity Linking (EL)
systems, focusing on the disambiguation task it-
self, independently from the tasks of Named En-
tity Recognition (detecting mention bounds) and
Candidate Generation (retrieving the set of poten-
tial candidate entities). NED has been recognized
as an important component in NLP tasks such as
semantic parsing (Berant and Liang, 2014).

Current research on NED is mostly driven by
a number of standard datasets, such as CoNLL-
YAGO (Hoffart et al., 2011), TAC KBP (Ji et al.,
2010) and ACE (Bentivogli et al., 2010). These
datasets are based on news corpora and Wikipedia,
which are naturally coherent, well-structured, and
rich in context. Global disambiguation models

(Guo and Barbosa, 2014; Pershina et al., 2015;
Globerson et al., 2016) leverage this coherency by
jointly disambiguating all the mentions in a sin-
gle document. However, domains such as web-
page fragments, social media, or search queries,
are often short, noisy, and less coherent; such do-
mains lack the necessary contextual information
for global methods to pay off, and present a more
challenging setting in general.

In this work, we investigate the task of NED
in a setting where only local and noisy context
is available. In particular, we create a dataset
of 3.2M short text fragments extracted from web
pages, each containing a mention of a named en-
tity. Our dataset is far larger than previously col-
lected datasets, and contains 18K unique mentions
linking to over 100K unique entities. We have em-
pirically found it to be noisier and more challeng-
ing than existing datasets. For example:

“I had no choice but to experiment with
other indoor games. I was born in At-
lantic City so the obvious next choice
was Monopoly. I played until I became
a successful Captain of Industry.”

This short fragment is considerably less structured
and with a more personal tone than a typical news
article. It references the entity Monopoly (Game),
however expressions such as “experiment” and
“Industry” can distract a naive disambiguation
model because they are also related the much
more common entity Monopoly (economics term).
Some sense of local semantics must be considered
in order to separate the useful signals (e.g. “indoor
games”, “played”) from the noisy ones.

We therefore propose a new model that lever-
ages local contextual information to disambiguate
entities. Our neural approach (based on RNNs
with attention) leverages the vast amount of train-
ing data in WikilinksNED to learn representations

58

for entity and context, allowing it to extract signals
from noisy and unexpected context patterns.

While convolutional neural networks (Sun
et al., 2015; Francis-Landau et al., 2016) and prob-
abilistic attention (Lazic et al., 2015) have been
applied to the task, this is the first model to use
RNNs and a neural attention model for NED.
RNNs account for the sequential nature of textual
context while the attention model is applied to re-
duce the impact of noise in the text.

Our experiments show that our model signifi-
cantly outperforms existing state-of-the-art NED
algorithms on WikilinksNED, suggesting that
RNNs with attention are able to model short and
noisy context better than current approaches. In
addition, we evaluate our algorithm on CoNLL-
YAGO (Hoffart et al., 2011), a dataset of annotated
news articles. We use a simple domain adapta-
tion technique since CoNLL-YAGO lacks a large
enough training set for our model, and achieve
comparable results to other state-of-the-art meth-
ods. These experiments highlight the difference
between the two datasets, indicating that our NED
benchmark is substantially more challenging.

Code and data used for our experiments
can be found at https://github.com/
yotam-happy/NEDforNoisyText

2 Related Work

Local vs Global NED Early work on Named
Entity Disambiguation, such as Bunescu and
Paşca (2006) and Mihalcea and Csomai (2007) fo-
cused on local approaches where each mention is
disambiguated separately using hand-crafted fea-
tures. While local approaches provide a hard-to-
beat baseline (Ratinov et al., 2011), recent work
has largely focused on global approaches. These
disambiguate all mentions within a document si-
multaneously by considering the coherency of en-
tity assignments within a document. For exam-
ple the local component of the GLOW algorithm
(Ratinov et al., 2011) was used as part of the re-
lational inference system suggested by Cheng and
Roth (2013). Similarly, Globerson et al. (2016)
achieved state-of-the-art results by extending the
local-based selective-context model of Lazic et al.
(2015) with an attention-like coherence model.

Global models can tap into highly-
discriminative semantic signals (e.g. coreference
and entity relatedness) that are unavailable to local
methods, and have significantly outperformed the

local approach on standard datasets (Guo and Bar-
bosa, 2014; Pershina et al., 2015; Globerson et al.,
2016). However, global approaches are difficult
to apply in domains where only short and noisy
text is available, as often occurs in social media,
questions and answers, and other short web docu-
ments. For example, Huang et al. (2014) collected
many tweets from the same author in order to
apply a global disambiguation method. Since this
work focuses on disambiguating entities within
short fragments of text, our algorithmic approach
tries to extract as much information from the local
context, without resorting to external signals.

Neural Approaches The first neural approach
for NED (He et al., 2013) used stacked auto-
encoders to learn a similarity measure between
mention-context structures and entity candidates.
More recently, convolutional neural networks
(CNNs) were employed for learning semantic sim-
ilarity between context, mention, and candidate
inputs (Sun et al., 2015; Francis-Landau et al.,
2016). Neural embedding techniques have also
inspired a number of works that measure entity-
context relatedness using their embeddings (Ya-
mada et al., 2016; Hu et al., 2015). In this paper,
we train a recurrent neural network (RNN) model,
which unlike CNNs and embeddings, is designed
to exploit the sequential nature of text. We also
utilize an attention mechanism, inspired by results
from Lazic et al. (2015) that successfully used a
probabilistic attention-like model for NED.

Noisy Data Chisholm and Hachey (2015)
showed that despite the noisy nature of web data,
augmenting Wikipedia-derived data with web-
links from the Wikilinks corpus (Singh et al.,
2012) can improve performance on standard
datasets. In our work, we find noisy web data to
be a unique and challenging test case for disam-
biguation. We therefore use Wikilinks to construct
a new stand-alone disambiguation benchmark that
focuses on noisy text, rather than use it for training
alone. Moreover, we differ from Chisholm at el.
by taking a neural approach that implicitly discov-
ers useful signals from contexts, instead of manu-
ally crafting features.

Commonly-used benchmarks for NED sys-
tems have mostly focused on news-based cor-
pora. CoNLL-YAGO (Hoffart et al., 2011) is
a dataset based on Reuters, created by hand-
annotating the CoNLL 2003 Named Entity Recog-

59

nition task dataset with YAGO (Suchanek et al.,
2007) entities. It contains 1, 393 documents split
into train, development and test sets. TAC KBP
2010 (Ji et al., 2010) and ACE Bentivogli et al.
(2010) are also news-based datasets that contain
only a limited amount of examples. Ratinov et al.
(2011) used a random sample of paragraphs from
Wikipedia for evaluation; however, they did not
make their sample publicly available.

Our WikilinksNED dataset is substantially dif-
ferent from currently available datasets since they
are all based on high-quality content from either
news articles or Wikipedia, while WikilinksNED
is a benchmark for noisier, less coherent, and more
colloquial text. The annotation process is signifi-
cantly different as well, as our dataset reflects the
annotation preferences of real-world website au-
thors. It is also significantly larger in size, being
over 100 times larger than CoNLL-YAGO.

Recently, a number of Twitter-based datasets
were compiled as well (Meij et al., 2012; From-
reide et al., 2014). These represent a much more
extreme case than our dataset in terms of noise,
shortness and spelling variations, and are much
smaller in size. Due to the unique nature of tweets,
proposed algorithms tend to be substantially dif-
ferent from algorithms used for other NED tasks.

3 The WikilinksNED Dataset:
Entity Mentions in the Web

We introduce WikilinksNED, a large-scale NED
dataset based on text fragments from the web.
Our dataset is derived from the Wikilinks corpus
(Singh et al., 2012), which was constructed by
crawling the web and collecting hyperlinks (men-
tions) linking to Wikipedia concepts (entities) and
their surrounding text (context). Wikilinks con-
tains 40 million mentions covering 3 million enti-
ties, collected from over 10 million web pages.

Wikilinks can be seen as a large-scale,
naturally-occurring, crowd-sourced dataset where
thousands of human annotators provide ground
truths for mentions of interest. This means that the
dataset contains various kinds of noise, especially
due to incoherent contexts. The contextual noise
presents an interesting test-case that supplements
existing datasets that are sourced from mostly co-
herent and well-formed text.

To get a sense of textual noise we have set up
a small experiment where we measure the similar-
ity between entities mentioned in WikilinksNED

and their surrounding context, and compare the
results to CoNLL-YAGO. We use state-of-the-art
word and entity embeddings obtained from Ya-
mada et al. (2016) and compute cosine similarity
between embeddings of the correct entity assign-
ment and the mean of context words. We com-
pare results from all mentions in CoNLL-YAGO
to a sample of 50000 web fragments taken from
WikilinksNED, using a window of words of size
40 around entity mentions. We find that similar-
ity between context and correct entity is indeed
lower for web mentions (0.163) than for CoNLL-
YAGO mentions (0.188), and find this result to be
statistically significant with very high probability
(p < 10−5) . This result indicates that web frag-
ments in WikilinksNED are indeed noisier com-
pared to CoNLL-YAGO documents.

We prepare our dataset from the local-context
version of Wikilinks1, and resolve ground-truth
links using a Wikipedia dump from April 20162.
We use the page and redirect tables for resolution,
and keep the database pageid column as a unique
identifier for Wikipedia entities. We discard men-
tions where the ground-truth could not be resolved
(only 3% of mentions).

We collect all pairs of mention m and entity e
appearing in the dataset, and compute the number
of times m refers to e (#(m, e)), as well as the
conditional probability of e given m: P (e|m) =
#(m, e)/

∑
e′ #(m, e′). Examining these distri-

butions reveals many mentions belong to two ex-
tremes – either they have very little ambiguity,
or they appear in the dataset only a handful of
times and refer to different entities only a couple
of times each. We deem the former to be less in-
teresting for the purpose of NED, and suspect the
latter to be noise with high probability. To filter
these cases, we keep only mentions for which at
least two different entities have 10 mentions each
(#(m, e) ≥ 10) and consist of at least 10% of
occurrences (P (e|m) ≥ 0.1). This procedure ag-
gressively filters our dataset and we are left with
3.2M mentions.

Finally, we randomly split the data into train
(80%), validation (10%), and test (10%), accord-
ing to website domains in order to minimize lexi-
cal memorization (Levy et al., 2015).

1http://www.iesl.cs.umass.edu/data/
wiki-links

2https://dumps.wikimedia.org/

60

"...indoor games. I was born in Atalantic City so the

obvious next choice was Monopoly. I played until

I became a succsesfull Capitain of Industry..."

Right
context

Classifier

GRU

Attention

Context
word vectors

Candidate

!!!

...∑

˟ ˟ ˟

...

...

ARNN output

Candidate
list

ARNN

Candidate

E
m

be
dd

in
g

Left
context ARNN

E
m

be
dd

in
g

Figure 1: The architecture of our Neural Network
model. A close-up of the Attention-RNN compo-
nent appears in the dashed box.

4 Algorithm

Our DNN model is a discriminative model which
takes a pair of local context and candidate entity,
and outputs a probability-like score for the candi-
date entity being correct. Both words and entities
are represented using embedding dictionaries and
we interpret local context as a window-of-words
to the left and right of a mention. The left and
right contexts are fed into a duo of Attention-RNN
(ARNN) components which process each side and
produce a fixed length vector representation. The
resulting vectors are concatenated and along with
the entity embedding are and then fed into a classi-
fier network with two output units that are trained
to emit a probability-like score of the candidate
being a correct or corrupt assignment.

4.1 Model Architecture

Figure 1 illustrates the main components of our ar-
chitecture: an embedding layer, a duo of ARNNs,
each processing one side of the context (left and
right), and a classifier.

Embedding The embedding layer first embeds
both the entity and the context words as vectors
(300 dimensions each).

ARNN The ARNN unit is composed from an
RNN and an attention mechanism. Equation 1 rep-
resents the general semantics of an RNN unit. An
RNN reads a sequence of vectors {vt} and main-
tains a hidden state vector {ht}. At each step a
new hidden state is computed based on the previ-
ous hidden state and the next input vector using
some function f , and an output is computed using
g. This allows the RNN to “remember” important
signals while scanning the context and to recog-
nize signals spanning multiple words.

ht = fΘ1(ht−1, vt)
ot = gΘ2(ht)

(1)

Our implementation uses a standard GRU unit
(Cho et al., 2014) as an RNN. We fit the RNN
unit with an additional attention mechanism, com-
monly used with state-of-the-art encoder-decoder
models (Bahdanau et al., 2014; Xu et al., 2015).
Since our model lacks a decoder, we use the en-
tity embedding as a control signal for the attention
mechanism.

Equation 2 details the equations governing the
attention model.

at ∈ R; at = rΘ3(ot, vcandidate)

a′t =
1∑t

i=1 exp{ai}
exp{at}

oattn =
∑

t

a′tot

(2)

The function r computes an attention value at
each step, using the RNN output ot and the can-
didate entity vcandidate. The final output vector
oattn is a fixed-size vector, which is the sum of
all the output vectors of the RNN weighted ac-
cording to the attention values. This allows the
attention mechanism to decide on the importance
of different context parts when examining a spe-
cific candidate. We follow Bahdanau et al. (2014)
and parametrize the attention function r as a single
layer NN as shown in equation 3.

rΘ3(ot, vcandidate) = Aot +Bvcandidate + b (3)

Classifier The classifier network consists of a
hidden layer3 and an output layer with two output
units in a softmax. The output units are trained by
optimizing a cross-entropy loss function.

3300 dimensions with ReLU, and p = 0.5 dropout.

61

4.2 Training
We assume our model is only given training ex-
amples for correct entity assignments and there-
fore use corrupt-sampling, where we automati-
cally generate examples of wrong assignments.
For each context-entity pair (c, e), where e is the
correct assignment for c, we produce k corrupt ex-
amples with the same context c but with a differ-
ent, corrupt entity e′. We considered two alterna-
tives for corrupt sampling and provide an empiri-
cal comparison of the two approaches (Section 5):

Near-Misses: Sampling out of the candidate set
of each mention. We have found this to be
more effective where the training data reli-
ably reflects the test-set distribution.

All-Entity: Sampling from the entire dictionary
of entities. Better suited to cases where the
training data or candidate generation does not
reflect the test-set well. Has an added benefit
of allowing us to utilize unambiguous train-
ing examples where only a single candidate
is found.

We sample corrupt examples uniformly in both
alternatives since with uniform sampling the ratio
between the number of positive and negative ex-
amples of an entity is higher for popular entities,
thus biasing the network towards popular entities.
In the All-Entity case, this ratio is approximately
proportional to the prior probability of the entity.

We note that preliminary experiments revealed
that corrupt-sampling according to the distribution
of entities in the dataset (as is done by Mikolov
at el. (2013)), rather than uniform sampling, did
not perform well in our settings due to the lack of
biasing toward popular entities.

Model optimization was carried out using stan-
dard backpropagation and an AdaGrad optimizer
(Duchi et al., 2011). We allowed the error to prop-
agate through all parts of the network and fine
tune all trainable parameters, including the word
and entity embeddings themselves. We found the
performance of our model substantially improves
for the first few epochs and then continues to
slowly converge with marginal gains, and there-
fore trained all models for 8 epochs with k = 5
for corrupt-sampling.

4.3 Embedding Initialization
Training our model implicitly embeds the vocabu-
lary of words and collection of entities in a com-

mon space. However, we found that explicitly
initializing these embeddings with vectors pre-
trained over a large collection of unlabeled data
significantly improved performance (see Section
5.3). To this end, we implemented an approach
based on the Skip-Gram with Negative-Sampling
(SGNS) algorithm by Mikolov et al. (2013) that si-
multaneously trains both word and entity vectors.

We used word2vecf4 (Levy and Goldberg,
2014a), which allows one to train word and con-
text embeddings using arbitrary definitions of
”word” and ”context” by providing a dataset of
word-context pairs (w, c), rather than a textual
corpus. In our usage, we define a context as an en-
tity e. To compile a dataset of (w, e) pairs, we con-
sider every word w that appeared in the Wikipedia
article describing entity e. We limit our vocabular-
ies to words that appeared at least 20 times in the
corpus and entities that contain at least 20 words
in their articles. We ran the process for 10 epochs
and produced vectors of 300 dimensions; other hy-
perparameters were set to their defaults.

Levy and Goldberg (2014b) showed that SGNS
implicitly factorizes the word-context PMI matrix.
Our approach is doing the same for the word-entity
PMI matrix, which is highly related to the word-
entity TFIDF matrix used in Explicit Semantic
Analysis (Gabrilovich and Markovitch, 2007).

5 Evaluation

In this section, we describe our experimental setup
and compare our model to the state of the art
on two datasets: our new WikilinksNED dataset,
as well as the commonly-used CoNLL-YAGO
dataset (Hoffart et al., 2011). We also examine the
effect of different corrupt-sampling schemes, and
of initializing our model with pre-trained word and
entity embeddings.

In all experiments, our model was trained with
fixed-size left and right contexts (20 words in each
side). We used a special padding symbol when
the actual context was shorter than the window.
Further, we filtered stopwords using NLTK’s stop-
word list prior to selecting the window in order to
focus on more informative words. Our model was
implemented using the Keras (Chollet, 2015) and
Tensorflow (Abadi et al., 2015) libraries.

4http://bitbucket.org/yoavgo/word2vecf

62

Wikilinks Test-Set Evaluation
Model Sampled Test Set (10K) Full Test Set (300K)

Baseline (MPS) 60 59.6
Cheng (2013) 50.7 -

Yamada (2016) 67.6 66.9
Our Attention-RNN 73.2 73

Our RNN, w/o Attention 72.1 72.2

Table 1: Evaluation on noisy web data (WikilinksNED)

5.1 WikilinksNED

Training we use Near-Misses corrupt-sampling
which was found to perform well due to a large
training set that represents the test set well.

Candidate Generation To isolate the effect of
candidate generation algorithms, we used the fol-
lowing simple method for all systems: given a
mention m, consider all candidate entities e that
appeared as the ground-truth entity for m at least
once in the training corpus. This simple method
yields 97% ground-truth recall on the test set.

Baselines Since we are the first to evaluate NED
algorithms on WikilinksNED, we ran a selection
of existing local NED systems and compared their
performance to our algorithm’s.

Yamada et al. (2016) created a state-of-the-art
NED system that models entity-context similar-
ity with word and entity embeddings trained us-
ing the skip-gram model. We obtained the origi-
nal embeddings from the authors, and trained the
statistical features and ranking model on the Wik-
ilinksNED training set. Our configuration of Ya-
mada et al.’s model used only their local features.

Cheng et al. (2013) have made their global
NED system publicly available5. This algorithm
uses GLOW (Ratinov et al., 2011) for local disam-
biguation. We compare our results to the ranking
step of the algorithm, without the global compo-
nent. Due to the long running time of this system,
we only evaluated their method on the smaller test
set, which contains 10,000 randomly sampled in-
stances from the full 320,000-example test set.

Finally, we include the Most Probable Sense
(MPS) baseline, which selects the entity that was
seen most with the given mention during training.

Results We used standard micro P@1 accuracy
for evaluation. Experimental results comparing

5https://cogcomp.cs.illinois.edu/page/
software_view/Wikifier

our model with the baselines are reported in Table
1. Our RNN model significantly outperforms Ya-
mada at el. on this data by over 5 points, indicating
that the more expressive RNNs are indeed benefi-
cial for this task. We find that the attention mech-
anism further improves our results by a small, yet
statistically significant, margin.

5.2 CoNLL-YAGO

Training CoNLL-YAGO has a training set with
18505 non-NIL mentions, which our experiments
showed is not sufficient to train our model on. To
fit our model to this dataset we first used a sim-
ple domain adaptation technique and then incorpo-
rated a number of basic statistical and string based
features.

Domain Adaptation We used a simple domain
adaptation technique where we first trained our
model on an available large corpus of label data
derived from Wikipedia, and then trained the
resulting model on the smaller training set of
CoNLL (Mou et al., 2016). The Wikipedia corpus
was built by extracting all cross-reference links
along with their context, resulting in over 80 mil-
lion training examples. We trained our model with
All-Entity corrupt sampling for 1 epoch on this
data. The resulting model was then adapted to
CoNLL-YAGO by training 1 epoch on CoNLL-
YAGO’s training set, where corrupt examples
were produced by considering all possible candi-
dates for each mention as corrupt-samples (Near-
Misses corrupt sampling).

Additional Features We proceeded to use the
model in a similar setting to Yamada et al.
(2016) where a Gradient Boosting Regression
Tree (GBRT) (Friedman, 2001) model was trained
with our model’s prediction as a feature along with
a number of statistical and string based features
defined by Yamada. The statistical features in-
clude entity prior probability, conditional proba-

63

bility, number of candidates for the given mention
and maximum conditional probability of the entity
in the document. The string based features include
edit distance between mention and entity title and
two boolean features indicating whether the entity
title starts or ends with the mention and vice versa.
The GBRT model parameters where set to the val-
ues reported as optimal by Yamada6.

Candidate Generation For comparability with
existing methods we used two publicly available
candidates datasets: (1) PPRforNED - Pershina at
el. (2015); (2) YAGO - Hoffart at el. (2011).

Baselines As a baseline we took the standard
Most Probable Sense (MPS) prediction, which se-
lects the entity that was seen most with the given
mention during training. We also compare to the
following papers - Francis-Landau et al. (2016),
Yamada at el. (2016), and Chisholm et al. (2015),
as they are all strong local approaches and a good
source for comparison.

Results Table 2 displays the micro and macro
P@1 scores on CoNLL-YAGO test-b for the dif-
ferent training steps. We find that when using only
the training set of CoNLL-YAGO our model is
under-trained and that the domain adaptation sig-
nificant boosts performance. We find that incorpo-
rating extra statistical and string features yields a
small extra improvement in performance.

The final micro and macro P@1 scores on
CoNLL-YAGO test-b are displayed in table 3. On
this dataset our model achieves comparable re-
sults, however it does not outperform the state-
of-the-art, probably because of the relatively small
training set and our reliance on domain adaptation.

5.3 Effects of initialized embeddings and
corrupt-sampling schemes

We performed a study of the effects of using
pre-initialized embeddings for our model, and of
using either All-Entity or Near-Misses corrupt-
sampling. The evaluation was done on a 10% sam-
ple of the evaluation set of the WikilinksNED cor-
pus and can be seen in Table 4.

We have found that using pre-initialized embed-
dings results in significant performance gains, due
to the better starting point. We have also found
that using Near-Misses, our model achieves sig-
nificantly improved performance. We attribute this

6Learning rate of 0.02; maximal tree depth of 4; 10, 000
trees.

CoNLL-YAGO test-b - Training Steps Eval
Model Micro

P@1
Macro
P@1

PPRforNED
CoNLL training set 82 82
+ domain adaptation 86.6 87.7
+ GBRT 87.3 88.6

Yago
CoNLL training set 74.8 73.5
+ domain adaptation 83.6 85.1
+ GBRT 83.3 86.3

Table 2: Evaluation of training steps on CoNLL-
YAGO.

CoNLL-YAGO test-b (Local methods)
Model Micro

P@1
Macro
P@1

PPRforNED
Our ARNN + GBRT 87.3 88.6
Yamada (2016) local 90.9 92.4
Yamada (2016) global 93.1 92.6

Yago
Our ARNN + GBRT 83.3 86.3
Yamada (2016) local 87.2 89.6
Francis-Landau (2016) 85.5 -
Chisholm (2015) local 86.1 -
Yamada (2016) global 91.5 90.9
Chisholm (2015) global 88.7 -

Table 3: Evaluation on CoNLL-YAGO.

difference to the more efficient nature of training
with near misses. Both these results were found to
be statistically significant.

6 Error Analysis

We randomly sampled and manually analyzed 200
cases of prediction errors made by our model. This
set was obtained from WikilinksNED’s validation
set that was not used for training.

Working with crowd-sourced data, we expected
some errors to result from noise in the ground
truths themselves. Indeed, we found that 19.5%
(39/200) of the errors were not false, out of which
5% (2) where wrong labels, 33% (13) were pre-
dictions with an equivalent meaning as the correct
entity, and in 61.5% (24) our model suggested a
more convincing solution than the original author
by using specific hints from the context. In this
manner, the mention ’Supreme leader’ , which was

64

Wikilinks Evaluation-Set
Model Micro

accuracy
Near-misses, with init. 72.5

Near-misses, random init. 67.2
All-Entity, with init. 70

All-Entity, random init. 67.1

Table 4: Corrupt-sampling and Initialization

contextually associated to the Iranian leader Ali
Khamenei, was linked by our model with ’supreme
leader of Iran’ while the ”correct” tag was the gen-
eral ’supreme leader’ entity.

In addition, 15.5% (31/200) were cases where
a Wikipedia disambiguation-page was either the
correct or predicted entity (2.5% and 14%, respec-
tively). We considered the rest of the 130 errors as
true semantic errors, and analyzed them in-depth.

Error type Fraction
False errors

Not errors 19.5% (39/200)
- Annotation error 5% (2/39)
- Better suggestion 61.5% (24/39)
- Equivalent entities 33% (13/39)
Disambiguation page 15.5% (31/200)

True semantic errors
Too specific/general 31.5% (41/130)
’almost correct’ errors 26% (34/130)
insufficient training 21.5% (28/130)

Table 5: Error distribution in 200 samples. Cate-
gories of true errors are not fully distinct.

First, we noticed that in 31.5% of the true errors
(41/130) our model selected an entity that can be
understood as a specific (6.5%) or general (25%)
realization of the correct solution. For example,
instead of predicting ’Aroma of wine’ for a text on
the scent and flavor of Turkish wine, the model
assigned the mention ’Aroma’ with the general
’Odor’ entity. We observed that in 26% (34/130)
of the error cases, the predicted entity had a very
strong semantic relationship to the correct entity.
A closer look discovered two prominent types of
’almost correct’ errors occurred repeatedly in the
data. The first was a film/book/theater type of er-
ror (8.4%), where the actual and the predicted enti-
ties were a different display of the same narrative.
Even though having different jargon and produc-

ers, those fields share extremely similar content,
which may explain why they tend to be frequently
confused by the algorithm. A third (4/14) of those
cases were tagged as truly ambiguous even for hu-
man reader. The second prominent type of ’almost
correct’ errors where differentiating between ad-
jectives that are used to describe properties of a na-
tion. Particularity, mentions such as ’Germanic’,
’Chinese’ and ’Dutch’ were falsely assigned to en-
tities that describe language instead of people, and
vice versa. We observed this type of mistake in
8.4% of the errors (11/130).

Another interesting type of errors where in
cases where the correct entity had insufficient
training. We defined insufficient training errors as
errors where the correct entity appeared less than
10 times in the training data. We saw that the
model followed the MPS in 75% of these cases,
showing that our model tends to follow the base-
line in such cases. Further, the amount of gen-
eralization error in insufficient-training conditions
was also significant (35.7%), as our model tended
to select more general entities.

7 Conclusions

Our results indicate that the expressibility of
attention-RNNs indeed allows us to extract use-
ful features from noisy context, when sufficient
amounts of training examples are available. This
allows our model to significantly out-perform ex-
isting state-of-the-art models. We find that both
using pre-initialized embedding vocabularies, and
the corrupt-sampling method employed are very
important for properly training our model.

However, the gap between results of all systems
tested on both CoNLL-YAGO and WikilinksNED
indicates that mentions with noisy context are in-
deed a challenging test. We believe this to be
an important real-world scenario, that represents
a distinct test-case that fills a gap between existing
news-based datasets and the much noisier Twitter
data (Ritter et al., 2011) that has received increas-
ing attention. We find recurrent neural models are
a promising direction for this task.

Finally, our error analysis shows a number of
possible improvements that should be addressed.
Since we use the training set for candidate genera-
tion, non-nonsensical candidates (i.e. disambigua-
tion pages) cause our model to err and should be
removed from the candidate set. In addition, we
observe that lack of sufficient training for long-

65

tail entities is still a problem, even when a large
training set is available. We believe this, and some
subtle semantic cases (book/movie) can be at least
partially addressed by considering semantic prop-
erties of entities, such as types and categories. We
intend to address these issues in future work.

References
Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene

Brevdo, Zhifeng Chen, Craig Citro, Greg S. Cor-
rado, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Ian Goodfellow, Andrew Harp,
Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal
Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh
Levenberg, Dan Mané, Rajat Monga, Sherry Moore,
Derek Murray, Chris Olah, Mike Schuster, Jonathon
Shlens, Benoit Steiner, Ilya Sutskever, Kunal Tal-
war, Paul Tucker, Vincent Vanhoucke, Vijay Va-
sudevan, Fernanda Viégas, Oriol Vinyals, Pete
Warden, Martin Wattenberg, Martin Wicke, Yuan
Yu, and Xiaoqiang Zheng. 2015. TensorFlow:
Large-scale machine learning on heterogeneous sys-
tems. Software available from tensorflow.org.
http://tensorflow.org/.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua
Bengio. 2014. Neural machine translation by
jointly learning to align and translate. CoRR
abs/1409.0473. http://arxiv.org/abs/1409.0473.

Luisa Bentivogli, Pamela Forner, Claudio Giu-
liano, Alessandro Marchetti, Emanuele Pianta, and
Kateryna Tymoshenko. 2010. Proceedings of the
2nd Workshop on The People’s Web Meets NLP:
Collaboratively Constructed Semantic Resources,
Coling 2010 Organizing Committee, chapter Ex-
tending English ACE 2005 Corpus Annotation with
Ground-truth Links to Wikipedia, pages 19–27.
http://aclweb.org/anthology/W10-3503.

Jonathan Berant and Percy Liang. 2014. Semantic
parsing via paraphrasing. In Proceedings of the
52nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers). Asso-
ciation for Computational Linguistics, pages 1415–
1425. https://doi.org/10.3115/v1/P14-1133.

Razvan Bunescu and Marius Paşca. 2006. Using en-
cyclopedic knowledge for named entity disambigua-
tion. In 11th Conference of the European Chap-
ter of the Association for Computational Linguistics.
http://aclweb.org/anthology/E06-1002.

Xiao Cheng and Dan Roth. 2013. Relational
inference for wikification. In Proceedings
of the 2013 Conference on Empirical Meth-
ods in Natural Language Processing. Association
for Computational Linguistics, pages 1787–1796.
http://aclweb.org/anthology/D13-1184.

Andrew Chisholm and Ben Hachey. 2015. Entity dis-
ambiguation with web links. Transactions of the As-

sociation of Computational Linguistics 3:145–156.
http://aclweb.org/anthology/Q15-1011.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder–decoder
for statistical machine translation. In Proceedings of
the 2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP). Association
for Computational Linguistics, pages 1724–1734.
https://doi.org/10.3115/v1/D14-1179.

François Chollet. 2015. Keras.
https://github.com/fchollet/keras.

John C. Duchi, Elad Hazan, and Yoram Singer.
2011. Adaptive subgradient methods for on-
line learning and stochastic optimization. Jour-
nal of Machine Learning Research 12:2121–2159.
http://dl.acm.org/citation.cfm?id=2021068.

Matthew Francis-Landau, Greg Durrett, and Dan
Klein. 2016. Capturing semantic similarity for en-
tity linking with convolutional neural networks. In
Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies.
Association for Computational Linguistics, pages
1256–1261. https://doi.org/10.18653/v1/N16-1150.

Jerome H Friedman. 2001. Greedy function
approximation: a gradient boosting ma-
chine. Annals of statistics pages 1189–1232.
https://doi.org/10.1214/aos/1013203451.

Hege Fromreide, Dirk Hovy, and Anders Søgaard.
2014. Crowdsourcing and annotating ner for twit-
ter #drift. In Proceedings of the Ninth Inter-
national Conference on Language Resources and
Evaluation (LREC-2014). European Language Re-
sources Association (ELRA). http://www.lrec-
conf.org/proceedings/lrec2014/pdf/421 Paper.pdf.

Evgeniy Gabrilovich and Shaul Markovitch. 2007.
Computing semantic relatedness using wikipedia-
based explicit semantic analysis. In Proceedings
of the 20th International Joint Conference on Artifi-
cal Intelligence. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, IJCAI’07, pages 1606–
1611. http://dl.acm.org/citation.cfm?id=1625275.
1625535.

Amir Globerson, Nevena Lazic, Soumen Chakrabarti,
Amarnag Subramanya, Michael Ringaard, and Fer-
nando Pereira. 2016. Collective entity resolution
with multi-focal attention. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers). As-
sociation for Computational Linguistics, pages 621–
631. https://doi.org/10.18653/v1/P16-1059.

Zhaochen Guo and Denilson Barbosa. 2014. En-
tity linking with a unified semantic representation.
In Proceedings of the 23rd International Confer-
ence on World Wide Web. ACM, New York, NY,

66

USA, WWW ’14 Companion, pages 1305–1310.
https://doi.org/10.1145/2567948.2579705.

Zhengyan He, Shujie Liu, Mu Li, Ming Zhou, Longkai
Zhang, and Houfeng Wang. 2013. Learning entity
representation for entity disambiguation. In Pro-
ceedings of the 51st Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 2: Short
Papers). Association for Computational Linguis-
tics, pages 30–34. http://aclweb.org/anthology/P13-
2006.

Johannes Hoffart, Amir Mohamed Yosef, Ilaria Bor-
dino, Hagen Fürstenau, Manfred Pinkal, Marc
Spaniol, Bilyana Taneva, Stefan Thater, and
Gerhard Weikum. 2011. Robust disambigua-
tion of named entities in text. In Proceed-
ings of the 2011 Conference on Empirical Meth-
ods in Natural Language Processing. Associa-
tion for Computational Linguistics, pages 782–792.
http://aclweb.org/anthology/D11-1072.

Zhiting Hu, Poyao Huang, Yuntian Deng, Yingkai Gao,
and Eric Xing. 2015. Entity hierarchy embedding.
In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers). Asso-
ciation for Computational Linguistics, pages 1292–
1300. https://doi.org/10.3115/v1/P15-1125.

Hongzhao Huang, Yunbo Cao, Xiaojiang Huang, Heng
Ji, and Chin-Yew Lin. 2014. Collective tweet
wikification based on semi-supervised graph reg-
ularization. In Proceedings of the 52nd An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). Associa-
tion for Computational Linguistics, pages 380–390.
https://doi.org/10.3115/v1/P14-1036.

Heng Ji, Ralph Grishman, Hoa Trang Dang, Kira Grif-
fitt, and Joe Ellis. 2010. Overview of the tac 2010
knowledge base population track. In Third Text
Analysis Conference (TAC 2010). volume 3, pages
3–3.

Nevena Lazic, Amarnag Subramanya, Michael Ring-
gaard, and Fernando Pereira. 2015. Plato: A selec-
tive context model for entity resolution. Transac-
tions of the Association of Computational Linguis-
tics 3:503–515. http://aclweb.org/anthology/Q15-
1036.

Omer Levy and Yoav Goldberg. 2014a. Dependency-
based word embeddings. In Proceedings of the 52nd
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 2: Short Papers). Associ-
ation for Computational Linguistics, pages 302–308.
https://doi.org/10.3115/v1/P14-2050.

Omer Levy and Yoav Goldberg. 2014b. Neural word
embedding as implicit matrix factorization. In Ad-
vances in Neural Information Processing Systems
27: Annual Conference on Neural Information
Processing Systems 2014, December 8-13 2014,

Montreal, Quebec, Canada. pages 2177–2185.
http://papers.nips.cc/paper/5477-neural-word-
embedding-as-implicit-matrix-factorization.

Omer Levy, Steffen Remus, Chris Biemann, and Ido
Dagan. 2015. Do supervised distributional methods
really learn lexical inference relations? In Proceed-
ings of the 2015 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies. Associa-
tion for Computational Linguistics, pages 970–976.
https://doi.org/10.3115/v1/N15-1098.

Edgar Meij, Wouter Weerkamp, and Maarten de Ri-
jke. 2012. Adding semantics to microblog posts.
In Proceedings of the Fifth ACM International Con-
ference on Web Search and Data Mining. ACM,
New York, NY, USA, WSDM ’12, pages 563–572.
https://doi.org/10.1145/2124295.2124364.

Rada Mihalcea and Andras Csomai. 2007. Wik-
ify!: Linking documents to encyclopedic
knowledge. In Proceedings of the Sixteenth
ACM Conference on Conference on Informa-
tion and Knowledge Management. ACM, New
York, NY, USA, CIKM ’07, pages 233–242.
https://doi.org/10.1145/1321440.1321475.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S.
Corrado, and Jeffrey Dean. 2013. Distributed
representations of words and phrases and their com-
positionality. In Advances in Neural Information
Processing Systems 26: 27th Annual Conference
on Neural Information Processing Systems 2013.
Proceedings of a meeting held December 5-8,
2013, Lake Tahoe, Nevada, United States.. pages
3111–3119. http://papers.nips.cc/paper/5021-
distributed-representations-of-words-and-phrases-
and-their-compositionality.

Lili Mou, Zhao Meng, Rui Yan, Ge Li, Yan Xu,
Lu Zhang, and Zhi Jin. 2016. How transfer-
able are neural networks in nlp applications? In
Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing. Associa-
tion for Computational Linguistics, pages 479–489.
http://aclweb.org/anthology/D16-1046.

Maria Pershina, Yifan He, and Ralph Grishman.
2015. Personalized page rank for named en-
tity disambiguation. In Proceedings of the
2015 Conference of the North American Chap-
ter of the Association for Computational Linguis-
tics: Human Language Technologies. Associa-
tion for Computational Linguistics, pages 238–243.
https://doi.org/10.3115/v1/N15-1026.

Lev Ratinov, Dan Roth, Doug Downey, and Mike An-
derson. 2011. Local and global algorithms for dis-
ambiguation to wikipedia. In Proceedings of the
49th Annual Meeting of the Association for Com-
putational Linguistics: Human Language Technolo-
gies. Association for Computational Linguistics,
pages 1375–1384. http://aclweb.org/anthology/P11-
1138.

67

Alan Ritter, Sam Clark, Mausam, and Oren Et-
zioni. 2011. Named entity recognition in
tweets: An experimental study. In Proceed-
ings of the 2011 Conference on Empirical Meth-
ods in Natural Language Processing. Association
for Computational Linguistics, pages 1524–1534.
http://aclweb.org/anthology/D11-1141.

Sameer Singh, Amarnag Subramanya, Fernando
Pereira, and Andrew McCallum. 2012. Wikilinks:
A large-scale cross-document coreference corpus
labeled via links to wikipedia. University of
Massachusetts, Amherst, Tech. Rep. UM-CS-2012-
015 https://web.cs.umass.edu/publication/docs
/2012/UM-CS-2012-015.pdf.

Fabian M. Suchanek, Gjergji Kasneci, and Ger-
hard Weikum. 2007. Yago: A core of seman-
tic knowledge. In Proceedings of the 16th Inter-
national Conference on World Wide Web. ACM,
New York, NY, USA, WWW ’07, pages 697–706.
https://doi.org/10.1145/1242572.1242667.

Yaming Sun, Lei Lin, Duyu Tang, Nan Yang, Zhen-
zhou Ji, and Xiaolong Wang. 2015. Modeling
mention, context and entity with neural networks
for entity disambiguation. In Proceedings of the
Twenty-Fourth International Joint Conference on
Artificial Intelligence, IJCAI 2015, Buenos Aires,
Argentina, July 25-31, 2015. pages 1333–1339.
http://ijcai.org/Abstract/15/192.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun
Cho, Aaron C. Courville, Ruslan Salakhutdi-
nov, Richard S. Zemel, and Yoshua Bengio.
2015. Show, attend and tell: Neural image
caption generation with visual attention. In
Proceedings of the 32nd International Confer-
ence on Machine Learning, ICML 2015, Lille,
France, 6-11 July 2015. pages 2048–2057.
http://jmlr.org/proceedings/papers/v37/xuc15.html.

Ikuya Yamada, Hiroyuki Shindo, Hideaki Takeda,
and Yoshiyasu Takefuji. 2016. Joint learn-
ing of the embedding of words and entities
for named entity disambiguation. In Proceed-
ings of The 20th SIGNLL Conference on Com-
putational Natural Language Learning. Associa-
tion for Computational Linguistics, pages 250–259.
https://doi.org/10.18653/v1/K16-1025.

68

Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017), pages 69–79,
Vancouver, Canada, August 3 - August 4, 2017. c©2017 Association for Computational Linguistics

Tell Me Why: Using Question Answering as Distant Supervision for
Answer Justification

Rebecca Sharp*, Mihai Surdeanu*, Peter Jansen*,
Marco A. Valenzuela-Escárcega*, Peter Clark† and Michael Hammond*

*University of Arizona
†Allen Institute for Artificial Intelligence

*{bsharp, msurdeanu, pajansen, marcov, hammond}@email.arizona.edu
†peterc@allenai.org

Abstract

For many applications of question answer-
ing (QA), being able to explain why a
given model chose an answer is critical.
However, the lack of labeled data for an-
swer justifications makes learning this dif-
ficult and expensive. Here we propose an
approach that uses answer ranking as dis-
tant supervision for learning how to select
informative justifications, where justifica-
tions serve as inferential connections be-
tween the question and the correct answer
while often containing little lexical over-
lap with either. We propose a neural net-
work architecture for QA that reranks an-
swer justifications as an intermediate (and
human-interpretable) step in answer selec-
tion. Our approach is informed by a set of
features designed to combine both learned
representations and explicit features to
capture the connection between questions,
answers, and answer justifications. We
show that with this end-to-end approach
we are able to significantly improve upon
a strong IR baseline in both justification
ranking (+9% rated highly relevant) and
answer selection (+6% P@1).

1 Introduction

Developing interpretable machine learning (ML)
models, that is, models where a human user can
understand what the model is learning, is consid-
ered by many to be crucial for ensuring usabil-
ity and accelerating progress (Craven and Shav-
lik, 1996; Kim et al., 2015; Letham et al., 2015;
Ribeiro et al., 2016). For many applications of
question answering (QA), i.e., finding short an-
swers to natural language questions, simply pro-
viding an answer is not sufficient. A complete

Question:
Which of these is a response to an internal stimulus?
(A) A sunflower turns to face the rising sun.
(B) A cucumber tendril wraps around a wire.
(C) A pine tree knocked sideways in a landslide grows up-

ward in a bend.
(D) Guard cells of a tomato plant leaf close when there

is little water in the roots .

Justification: Plants rely on hormones to send signals
within the plant in order to respond to internal stimuli
such as a lack of water or nutrients.

Table 1: Example of an 8th grade science question with a
justification for the correct answer. Note the lack of direct
lexical overlap present between the justification and the cor-
rect answer, demonstrating the difficulty of the task of finding
justifications using traditional distant supervision methods.

approach must be interpretable, i.e., able to ex-
plain why an answer is correct. For example,
in the medical domain, a QA approach that an-
swers treatment questions would not be trusted if
the treatment recommendation is not explained in
terms that can be understood by the human user.

One approach to interpreting complex models
is to make use of human-interpretable information
generated by the model to gain insight into what
the model is learning. We follow the intuition of
Lei et al. (2016), whose two-component network
first generates text spans from an input document,
and then uses these text spans to make predictions.
Lei et al. utilize these intermediate text spans to
infer the model’s preferences. By learning these
human-readable intermediate representations end-
to-end with a downstream task, the representations
are optimized to correlate with what the model
learns is discriminatory for the task, and they can
be evaluated against what a human would consider
to be important. Here we apply this general frame-
work for model interpretability to QA.

In this work, we focus on answering multiple-
choice science exam questions (Clark (2015); see
example in Table 1). This domain is challenging
as: (a) approximately 70% of science exam ques-

69

tion shave been shown to require complex forms of
inference to solve (Clark et al., 2013; Jansen et al.,
2016), and (b) there are few structured knowledge
bases to support this inference. Within this do-
main, we propose an approach that learns to both
select and explain answers, when the only super-
vision available is for which answer is correct (but
not how to explain it). Intuitively, our approach
chooses the justifications that provide the most
help towards ranking the correct answers higher
than incorrect ones. More formally, our neural net-
work approach alternates between using the cur-
rent model with max-pooling to choose the high-
est scoring justifications for correct answers, and
optimizing the answer ranking model given these
justifications. Crucially, these reranked texts serve
as our human-readable answer justifications, and
by examining them, we gain insight into what the
model learned was useful for the QA task.

The specific contributions of this work are:

1. We propose an end-to-end neural method for
learning to answer questions and select a
high-quality justification for those answers.
Our approach re-ranks free-text answer jus-
tifications without the need for structured
knowledge bases. With supervision only for
the correct answers, we learn this re-ranking
through a form of distant supervision – i.e.,
the answer ranking supervises the justifica-
tion re-ranking.

2. We investigate two distinct categories of fea-
tures in this “little data” domain: explicit fea-
tures, and learned representations. We show
that, with limited training, explicit features
perform far better despite their simplicity.

3. We demonstrate a large (+9%) improvement
in generating high-quality justifications over
a strong information retrieval (IR) baseline,
while maintaining near state-of-the-art per-
formance on the multiple-choice science-
exam QA task, demonstrating the success of
the end-to-end strategy.

2 Related work

In many ways, deep learning has become the
canonical example of the ”black box” of machine
learning and many of the approaches to explaining
it can be loosely categorized into two types: ap-
proaches that try to interpret the parameters them-
selves (e.g., with visualizations and heat maps

(Zeiler and Fergus, 2014; Hermann et al., 2015; Li
et al., 2016), and approaches that generate human-
interpretable information that is ideally correlated
with what is being learned inside the model (e.g.,
Lei et al. (2016)). Our approach falls into the lat-
ter type – we use our model’s reranking of human-
readable justifications to give us insight into what
the model considers informative for answering
questions. This allows us to see where we do well
(Section 6.2), and where we can improve (Section
6.3).

Deep learning has been successfully applied
to many recent QA approaches and related tasks
(Bordes et al., 2015; Hermann et al., 2015; He
and Golub, 2016; Dong et al., 2015; Tan et al.,
2016, inter alia). However, large quantities of
data are needed to train the millions of parame-
ters often contained in these models. Recently,
simpler model architectures have been proposed
that greatly reduce the number of parameters while
maintaining high performance (e.g., Iyyer et al.,
2015; Chen et al., 2016; Parikh et al., 2016). We
take inspiration from this trend and propose a sim-
ple neural architecture for our task to offset the
limited available training data.

Another way to mitigate sparse training data
is to include higher-level explicit features. Like
Sachan et al. (2016), we make use of explicit fea-
tures alongside features from distributed represen-
tations to capture connections between questions,
answers, and supporting text. However, we use a
simpler set of features and while they use struc-
tured and semi-structured knowledge bases, we
use only free-text.

Our approach to learning justification reranking
end-to-end with answer selection is similar to the
Jansen et al. (2017) latent reranking perceptron,
which also operates over free text. However, our
approach does not require decomposing the text
into an intermediate representation, allowing our
technique to more easily extend to larger textual
knowledge bases.

The way we have formulated our justification
selection (as a re-ranking of knowledge base sen-
tences) is related to, but distinct from the task of
answer sentence selection (Wang and Manning,
2010; Severyn and Moschitti, 2012, 2013; Sev-
eryn et al., 2013; Severyn and Moschitti, 2015;
Wang and Nyberg, 2015, inter alia). Answer sen-
tence selection is typically framed as a fully or
semi-supervised task for factoid questions, where

70

Figure 1: Architecture of our question answering approach.
Given a question, candidate answer, and a free-text knowl-
edge base as inputs, we generate a pool of candidate justifica-
tions, from which we extract feature vectors. We use a neural
network to score each and then use max-pooling to select the
current best justification. This serves as the score for the can-
didate answer itself. The red border indicates the components
that are trained online.

a correctly selected sentence fully contains the an-
swer text. Here, we have a variety of questions,
many of which are non-factoid. Additionally, we
have no direct supervision for our justification se-
lection (i.e., no labels as to which sentences are
good justifications for our answers), motivating
our distant supervision approach where the per-
formance on our QA task serves as supervision
for selecting good justifications. Further, we are
not actually looking for sentences that contain
the answer choice, as with answer sentence selec-
tion, but rather sentences which close the ”lexical
chasm” (Berger et al., 2000) between question and
answer. This distinction is demonstrated in the ex-
ample in Table 1, where the correct answer does
not overlap lexically with the question and only
minimally with the justification. Instead, the jus-
tification serves as a bridge between the question
and answer, filling in the missing information for
the required inference.

3 Approach

One of the primary difficulties with the explain-
able QA task addressed here is that, while we have
supervision for the correct answer, we do not have
annotated answer justifications. Here we tackle
this challenge by using the QA task performance
as supervision for the justification reranking, al-
lowing us to learn to choose both the correct an-
swer and a compelling, human-readable justifica-
tion for that answer.

Additionally, similar to the strategy Chen and
Manning (2014) applied to parsing, we combine
representation-based features with explicit fea-
tures that capture additional information that is
difficult to model through embeddings, especially
with limited training data.

The architecture of our approach is summarized
in Figure 1. Given a question and a candidate an-
swer, we first query an textual knowledge base
(KB) to retrieve a pool of potential justifications
for that answer candidate. For each justification,
we extract a set of features designed to model the
relations between questions, answers, and answer
justifications based on word embeddings, lexical
overlap with the question and answer candidate,
discourse, and information retrieval (IR) (Section
4.2). These features are passed into a simple neu-
ral network to generate a score for each justifica-
tion, given the current state of the model. A final
max-pooling layer selects the top-scoring justifi-
cation for the candidate answer and this max score
is used also as the score for the answer candidate.
The system is trained using correct-incorrect an-
swer pairs with a pairwise margin ranking loss ob-
jective function to enforce that the correct answer
be ranked higher than any of the incorrect answers.

With this end-to-end approach, the model learns
to select justifications that allow it to correctly an-
swer questions. We hypothesize that this approach
enables the model to indirectly learn to choose
justifications that provide good explanations as to
why the answer is correct. We empirically test this
hypothesis in Section 6, where we show that in-
deed the model learns to correctly answer ques-
tions, as well as to select high-quality justifications
for those answers.

4 Model and Features

Our approach consists of three main components:
(a) the retrieval of a pool of candidate answer jus-
tifications (Section 4.1); (b) the extraction of fea-
tures for each (Section 4.2); and (c) the scoring
of the answer candidate itself based on this pool
of justifications (Section 4.3). The architecture of
this latter scoring component is shown in Figure 2.

4.1 Candidate Justification Retrieval

The first step in our process is to use standard in-
formation retrieval (IR) methods to retrieve a set of
candidate justifications for each candidate answer
to a given question. To do this, we build a bag-of-

71

Figure 2: Detailed architecture of the model’s scoring com-
ponent. The question, candidate answer, and justification are
encoded (by summing their word embeddings) to create vec-
tor representations of each. These representations are com-
bined in several ways to create a set of representation-based
similarity features that are concatenated to additional explicit
features capturing lexical overlap, discourse and IR informa-
tion and fed into a feed-forward neural network. The output
layer of the network is a single node that represents the score
of the justification candidate.

words (BOW) query using the content lemmas for
the question and answer candidate, boosting the
answer lemmas to have four times more weight1.
We used Lucene2 with a tf-idf based scoring func-
tion to return the top-scoring documents from the
KB. Each of these indexed documents consists of
a single sentence from our corpora, and serves as
one potential justification.

4.2 Feature Extraction

For each retrieved candidate justification, we ex-
tract a set of features based on (a) distributed rep-
resentations of the question, candidate answer, and
justification terms; (b) strict lexical overlap; (c)
discourse relations present in the justification; and
(d) the IR scores for the justification.

Representation-based features (Emb): To
model the similarity between the text of each ques-
tion (Q), candidate answer (A), and candidate jus-
tification (J), we include a set of features that uti-
lize distributed representations of the words found
in each. First we encode each by summing the
vectors for each of their words.3. We then com-
pute sim(Q,A), sim(Q, J), and sim(A, J) us-

1We empirically found this answer term boosting to en-
sure retrieval of documents which were relevant to the partic-
ular answer candidate.

2https://lucene.apache.org
3While this BOW approach is not ideal in many ways, it

performed equivalently to far more complicated approaches
such as LSTMs and GRUs, also noted by (Iyyer et al., 2015),
likely due to the limited training data in this domain.

ing cosine similarity. Using another vector repre-
sentation of only the unique words in the justifica-
tion, i.e., the words that do not occur in either the
question or the candidate answer, we also compute
sim(Q, uniqueJ) and sim(A, uniqueJ).

To create a feature which captures the relation-
ship between the question, answer, and justifica-
tion, we take inspiration from TransE, a popu-
lar relation extraction framework (Bordes et al.,
2013). TransE is based on the premise that if two
entities, e1 and e2 are related by a relation r, then
a mapping into k dimensions, m(x) ∈ Rk can
be learned such that m(e1) + m(r) ≈ m(e2).
Here, we modify this intuition for QA by sug-
gesting that given the vectorized representations
of the question, answer candidate, and justifica-
tion above, Q+ J ≈ A, i.e., a question combined
with a strong justification will point towards an an-
swer. Here we model this as an explicit feature,
the euclidean distance between Q+ J and A, and
hypothesize that as a consequence the model will
learn to select passages that maximize the quality
of the justifications. This makes a total of six fea-
tures based on distributed representations.

Lexical overlap features (LO): We additionally
characterize each justification in terms of a simple
set of explicit features designed to capture the size
of the justification, as well as the lexical overlap
(and difference) between the justification and the
question and answer candidate. We include these
five features: the proportion of question words, of
answer words, and of the combined set of question
and answer words that also appear in the justifica-
tion; the proportion of justification words that do
not appear in either the question or the answer; and
the length of the justification in words.4

Semi-Lexicalized Discourse features (lexDisc):
These features use the discourse structure of the
justification text, which has been shown to be use-
ful for QA (Jansen et al., 2014; Sharp et al., 2015;
Sachan et al., 2016).

We use the discourse parser of Surdeanu et al.
(2015) to fragment the text into elementary dis-
course units (EDUs) and then recursively con-
nect neighboring EDUs with binary discourse re-
lations. For each of the 18 possible relation la-
bels, we create a set of semi-lexicalized discourse
features that indicate the presence of a given dis-
course relation as well as whether or not the head

4We normalized this value by the maximum justification
length.

72

and modifier texts contain words from the question
and/or the answer.

For example, for the question Q: What makes
water a good solvent...? A: strong polarity, with
a discourse-parsed justification [Water is an effi-
cient solvent]e1 [because of this polarity.]e2, we
create the semi-lexicalized feature Q cause A, be-
cause there is a Cause relation between EDUs e1
and e2, e1 overlaps with the question, and e2 over-
laps with the answer. Since there are 18 possible
discourse relation labels, and the prefix and suffix
can be any of Q, A, QA or None, this creates a set
of 288 indicator features.

IR-based features (IR++): Finally, we also use
a set of four IR-based features which are assigned
at the level of the answer candidate (i.e., these fea-
tures are identical for each of the candidate justi-
fications for that answer choice). Using the same
query method as described in Section 4.1, for each
question and answer candidate we retrieve a set
of indexed documents. Using the tf-idf based re-
trieval scores of these returned documents, s(di)
for di ∈ D, we rank the answer candidates using
two methods:

• by the maximum retrieved document score
for each candidate, and

• by the weighted sum of all retrieved docu-
ment scores5: ∑

di∈D

1

i
s(di) (1)

We repeat this process using an unboosted query
as well, for a total of four rankings of the answer
candidates. We then use these rankings to make
a set of four reciprocal rank features, IR++

0 , ...,
IR++

3 , for each answer candidate (i.e., IR++
0 = 1.0

for the top-ranked candidate in the first ranking,
IR++

0 = 0.5 for the next candidate, etc.)

4.3 Neural Network
As shown in Figure 2, the extracted features for
each candidate justification are concatenated and
passed into a fully-connected feed-forward neural
network (NN). The output layer is a single node
representing the justification score. We then use
max-pooling over these scores to select the current
best justification for the answer candidate, and use
its score as the score for the answer candidate it-
self. For training, the correct answer for a given

5Weighted sum was based on the IR scores used in the
winning Kaggle system from user Cardal (https://github.
com/Cardal/Kaggle_AllenAIscience)

question is paired with each of the incorrect an-
swers, and each are scored as above. We compute
the pair-wise margin ranking loss for each training
pair:

L = max(0,m− F (a+) + F (a−)) (2)

where F (a+) and F (a−) are the model scores for
a correct and incorrect answer candidate and m is
the margin, and backpropagate the gradients. At
testing time, we use the trained model to score
each answer choice (again using the maximum
justification score) and select the highest-scoring.

As we are interested in not only correctly an-
swering questions, but also selecting valid justi-
fication for those answers, we keep track of the
scores of all justifications and use this information
to return the top k justifications for each answer
choice. These are evaluated along with the answer
selection performance in Section 6.

5 Experiments

5.1 Data and Setup
We evaluated our model on the set of 8th grade
science questions that was provided by the Allen
Institute for Artificial Intelligence (AI2) for a re-
cent Kaggle challenge. The training set contained
2,500 question, each with 4 answer candidates.
For our test set, we used the 800 publicly-released
questions that were used as the validation set in the
actual evaluation.6 We tuned our model architec-
tures and hyper-parameters on the training data us-
ing five-fold cross-validation (training on 4 folds,
validating on 1). During testing, we froze the
model architecture and all hyperparameters and
re-trained on all the training data, setting aside
a random 15% of training questions to facilitate
early stopping.

5.2 Baselines
In addition to previous work, we compare our
model against two strong IR baselines:

• IR Baseline: For this baseline, we rank an-
swer candidates by the maximum tf.idf doc-
ument retrieval score using an unboosted
query of question and answer terms (see Sec-
tion 4.1 for retrieval details).

• IR++: This baseline uses the same architec-
ture as the full model, as described in Section
4.3, but with only the IR++ feature group.

6The official testing dataset is not publicly available.

73

5.3 Corpora

For our pool of candidate justifications (as well
as the scores for our IR baselines) we used the
corpora that were cited as being most helpful to
the top-performing systems of the Kaggle chal-
lenge. These consisted of short, flash-card style
texts gathered from two online resources: about
700K sentences from StudyStack7 and 25K sen-
tences from Quizlet8. From these corpora, we use
the top 50 sentences retrieved by the IR model
as our set of candidate justifications. All of our
corpora were annotated using using the Stanford
CoreNLP toolkit (Manning et al., 2014), the de-
pendency parser of Chen and Manning (2014), and
the discourse parser of Surdeanu et al. (2015).

While our model is able to learn a set of em-
beddings, we found performance was improved
when using pre-trained embeddings, and in this
low-data domain, fixing these embeddings to not
update during training substantially reduced the
amount of model over-fitting. In order to pre-
train domain-relevant embeddings for our vocabu-
lary, we used the documents from the StudyStack
and Quizlet corpora, supplemented by the newly
released Aristo MINI corpus (December 2016 re-
lease)9, which contains 1.2M science-related sen-
tences from various web sources. The training was
done using the word2vec algorithm (Mikolov
et al., 2010, 2013) as implemented by Levy and
Goldberg (2014), such that the context for each
word in a sentence is composed of all the other
words in the same sentence. We used embeddings
of size 50 as we did not see a performance im-
provement with higher dimensionality.

5.4 Model Tuning

The neural model was implemented in Keras
(Chollet, 2015) using the Theano (Theano De-
velopment Team, 2016) backend. For our feed-
forward component, we use a shallow neural net-
work that we lightly tuned to have a single fully-
connected layer containing 10 nodes, glorot uni-
form initialization, a tanh activation, and an L2-
regularization of 0.1. We trained with the RM-
SProp optimizer (Tieleman and Hinton, 2012), a
learning rate of 0.001, 100 epochs, a batch size of
32, and early stopping with a patience of 5 epochs.
Our loss function used a margin of 1.0.

7
https://www.studystack.com/

8
https://quizlet.com/

9
http://allenai.org/

Model P@1 Val P@1 Test
1 Random 25 25
2 IR Baseline 47.2 47
3 IR++ 50.7∗∗ 36.35
4 Iyyer et al. (2015) – 32.52
5 Khot et al. (2017) – 46.17
6 Our approach w/o IR 50.54∗ 48.66

7 Our approach 54.0∗∗†† 53.3∗∗†

Table 2: Performance on the AI2 Kaggle questions, measured
by precision-at-one (P@1). ∗s indicate that the difference be-
tween the corresponding model and the IR baseline is sta-
tistically significant (∗ indicates p < 0.05 and ∗∗ indicates
p < 0.001) and †s indicate significance compared to IR++,
All significance values were determined through a one-tailed
bootstrap resampling test with 100,000 iterations.

Ablated Model P@1 Val
IR++ + LO 53.4∗∗††

IR++ + LO + lexDisc 53.6∗∗††

Full Model (IR++ + LO + lexDisc + Emb) 54.0∗∗††

Table 3: Ablation of feature groups results, measured by
precision-at-one (P@1) on validation data. Significance is
indicated as in Table 2.

We experimented with burn-in, i.e., using the
best justification chosen by the IR model for the
first mini-batches, but found that models without
burn-in performed better, indicating that the model
benefited from being able to select its own justifi-
cation.

6 Results

Rather than seeking to outperform all other sys-
tems at selecting the correct answer to a question,
here we aimed to construct a system system that
can produce substantially better justifications for
why the answer choice is correct to a human user,
without unduly sacrificing accuracy on the answer
selection task. Accordingly, we evaluate our sys-
tem both in terms of it’s ability to correctly answer
questions (Section 6.1), as well as provide high-
quality justifications for those answers (6.2). Ad-
ditionally, we perform an error analysis (Section
6.3), taking advantage of the insight the reranked
justifications provide into what the model is learn-
ing.

6.1 QA Performance
We evaluated the accuracy of our system as well
as the baselines on the held-out 800 set of test
questions. Performance, measured in precision at
1 (P@1)(Manning et al., 2008), is shown in Ta-
ble 2 for both the validation (i.e., cross validation
on training) and test partitions. Because NNs are
sensitive to initialization, each experimental result

74

shown is the average performance across five runs,
each using different random seeds.

The best performing baseline on the validation
data was a model using only IR++ features (line
3), but its performance dropped substantially when
evaluated on test due to the failure of several ran-
dom seed initializations to learn. For this reason,
we assessed significance of our model combina-
tions with respect to both the IR baseline as well
as the IR++ (indicated by ∗ and †s, respectively).

Our full model that combines IR++, lexical
overlap, discourse, and embeddings-based fea-
tures, has a P@1 of 53.3% (line 7), an absolute
gain of 6.3% over the strong IR baseline despite
using the same background knowledge.

Comparison to Previous Work: We compared
our performance against another model that
achieves state of the art performance on a differ-
ent set of 8th grade science questions, TUPLE-
INF(T+T’) (Khot et al., 2017). TUPLEINF(T+T’)
uses Integer Linear Programming to find support
for questions via tuple representations of KB sen-
tences10. On our test data, TUPLEINF(T+T’)
achieves 46.17% P@1 (line 5). As this model is
independent of an IR component, we compare its
performance against our full system without the
IR-based features (line 6), whose performance is
48.66% P@1, an absolute improvement of 2.49%
P@1 (5.4% relative) despite our unstructured text
inputs and the far smaller size of our knowledge
base (three orders of magnitude).

Sachan et al. (2016) also tackle the AI2 Kag-
gle question set with an approach that learns align-
ments between questions and structured and semi-
structured KB data. They use only the training
questions (splitting them into training, validation,
and testing partitions), supplemented by questions
found in online study guides, and report an accu-
racy of 47.84%. By way of a loose comparison
(since we are evaluating on different data parti-
tions), our model has approximately 5% higher
performance despite our simpler set of features
and unstructured KB.

We also compare our model to our implementa-
tion of the basic Deep-Averaged Network (DAN)
Architecture of Iyyer et al. (2015). We used the
same 50-dimensional embeddings in both models,
so with the reduced embedding dimension, we re-

10Notably, one portion of the tuple KB used was con-
structed based on a different 8th grade question set than the
one we use here.

duced the size of each of the DAN dense layer to
50 as well. For simplicity, we also did not im-
plement their word-dropout, a feature that they re-
ported as providing a performance boost. Using
this implementation, the performance on the test
set was 31.50% P@1. To help with observed over-
fitting, we tried removing the dense layers and re-
ceived a small boost to 32.52% P@1 (line 4). The
lower performance of their model, which relies
exclusively on latent representations of the data,
underscores the benefit of including explicit fea-
tures alongside latent features in a deep-learning
approach for this domain11.

In comparison to other systems that competed
in the Kaggle challenge, our system comes in
in 7th place out of 170 competitors (top 4%).12

Compared with the systems which disclosed their
methods, we use a subset of their corpora and sub-
stantially less hyperparameter tuning, and yet we
achieve competitive results.
Feature Ablation: To evaluate the contribution
of the individual feature groups, we additionally
performed an ablation experiment (see Table 3).
Each of our ablated models performed signifi-
cantly better than the IR baseline on the validation
set, including our simplest model, IR+++LO.

6.2 Justification Performance

One of our key claims is that our approach ad-
dresses the related, but more challenging prob-
lem of performing explainable question answer-
ing, i.e., providing a high-quality, compelling jus-
tification for the chosen answer. To evaluate this
claim, we evaluated a random set of 100 test ques-
tions that both the IR baseline and our full sys-
tem answered correctly. For each question, we as-
sessed the quality of each of the top five justifica-
tions. For IR, these were the highest-scoring re-
trieved documents, and for our system, these were

11Another difference between our system and that of the
DAN baseline is our usage of a text justification. However,
we suspect this difference is not the source of the perfor-
mance difference: see Jansen et al. (2017), where a variant
of the DAN baseline that included an averaged representa-
tion of a justification alongside the averaged representations
of the question and answer failed to show a performance in-
crease.

12Based on the public leaderboard (https://www.kaggle.
com/c/the-allen-ai-science-challenge/leaderboard).
The best scoring submission had an accuracy of 59.38%.
Note that for the systems that participated, this set served as
validation while for us it was test, and thus it is likely that
these scores are slightly overfitted to this dataset, but for us it
was blind. As such this is a conservative comparison, and in
reality the difference is likely to be smaller.

75

Question
Q: Scientists use ice cores to help predict the impact of
future atmospheric changes on climate. Which property
of ice cores do these scientists use?
A: The composition of ancient materials trapped in air
bubbles

Rating Example Justification
Good Ice cores: cylinders of ice that scientist use to

study trapped atmospheric gases and particles
frozen with in the ice in air bubbles

Half Ice core: sample from the accumulation of snow
and ice over many years that have recrystallized
and have trapped air bubbles from previous time
periods

Topical Vesicular texture formation [has] trapped air
bubbles.

Off-
topic

Physical change: change during which some
properties of material change but ...

Table 4: Example justifications from the our model and their
associated ratings.

Model Good@1 Good@5 NDCG@5
IR Baseline 0.52 0.64 0.55
Our Approach 0.61 0.74 0.62∗∗

Table 5: Percentage of questions that have at least one
good justification within the top 1 (Good@1) and the top
5 (Good@5) justifications, as well as the normalized dis-
counted cumulative gain at 5 (NDCG@5) of the ranked justi-
fications. Significance indicated as in Table 2.

the top-scoring justifications as re-ranked by our
model. Each of these justifications was composed
of a single sentence from our corpus, though a fu-
ture version could use multi-sentence passages, or
aggregate several sentences together, as in Jansen
et al. (2017).

Following the methodology of Jansen et al.
(2017), each justification received a rating of ei-
ther Good (if the connection between the question
and correct answer was fully covered), Half (if
there was a missing link), Topical (if the justifi-
cation was simply of the right topic), or Off-Topic
(if the justification was completely unrelated to the
question). Examples of each rating are provided in
Table 4.

Results of this analysis are shown using three
evaluation metrics in Table 5. The first two
columns show the percentage of questions which
had a Good justification at position 1 (Good@1),
and within the top 5 (Good@5). Note that 61% of
the top-ranked justifications from our system were
rated as Good as compared to 52% from the IR
baseline (a gain of 9%), despite the systems using
identical corpora.

We also evaluated the justification ratings us-
ing normalized discounted cumulative gain at 5
(NDCG@5) (as formulated in Manning et al.

Figure 3: Number of questions for which our complete model
chooses a new justification at each epoch during training.
While this is for a single random seed, we see essentially
identical graphs for each random initialization.

(2008), p.163), where we assigned Good justifi-
cations a gain of 3.0, Half a gain of 2.0, Topical a
gain of 1.0, and Off-Topic a gain of 0.0. With this
formulation, our system had a NDCG@5 of 0.62
while the IR baseline had a significantly lower
NDCG@5 of 0.55 (p < 0.001), shown in the third
column of Table 5.

Contribution of Learning to Rerank Justifica-
tions: The main assertion of this work is that
through learning to rank answers and justifications
for those answer candidates in an end-to-end man-
ner, we both answer questions correctly and pro-
vide compelling justifications as to why the an-
swer is correct. To confirm that this is the case, we
also ran a version of our system that does not re-
rank justifications, but uses the top-ranked justifi-
cation retrieved by IR. This configuration dropped
our performance on test to 48.7% P@1, a decrease
of 4.6%, and we additionally lose all justification
improvements from our system (see Section 6.2),
demonstrating that learning this reranking is key
to our approach.

Additionally, we tracked the number of times
a new justification was chosen by the model as it
trained. We found that our system converges to a
stable set of justifications during training, shown
in Figure 3.

6.3 Error Analysis

To better understand the limitations of our current
system, we performed an error analysis of 30 in-
correctly answered questions. We examined the
top 5 justifications returned for both the correct
and chosen answers. Notably, 50% of the ques-
tions analyzed had one or more good justifications

76

Error Type Percent
Short justification/High lexical overlap 53.3%
Complex inference required 43.3%
Knowledge Base Noise 6.7%
Word order necessary 6.7%
Coverage 6.7%
Negation 3.3%
Other 6.7%

Table 6: Summary of the findings of the 30 question error
analysis. Note that a given question may fall into more than
one category.

Type: Short justification/High lexical overlap
Question: The length of time between night and day on

Earth varies throughout the year. This time vari-
ance is explained primarily by .

Correct: Earth ’s angle of tilt
... the days are very short in the winter because
the sun’s rays hit the earth at an extreme angle
... due to the tilt of the earth’s axis.

Chosen: Earth ’s distance from the Sun
Is light year time or distance? Distance

Table 7: Example of the system preferring a justification for
which all the terms were found in either the question or an-
swer candidate. (Justifications shown in italics)

in the top 5 returned by our system, but for a vari-
ety of reasons, summarized in Table 6, the system
incorrectly ranked another justification higher.

The table shows that the most common form of
error was the system’s preference for short justifi-
cations with a large degree of lexical overlap with
the question and answer choice itself, shown by
the example in Table 7. The effect was magnified
when the correct answer required more explana-
tion to connect the question to the answer. This
suggests that the system has learned that generally
many unmatched words are indicative of an incor-
rect answer. While this may typically be true, ex-
tending the system to be able to prefer the opposite
with certain types of questions would potentially
help with these errors.

Type: Complex inference required
Question: Mr. Harris mows his lawn twice each month.

He claims that it is better to leave the clippings
on the ground. Which long term effect will this
most likely have on his lawn?

Correct: It will provide the lawn with needed nutrients.

Table 8: Example of a question for which complex inference
is required. In order to answer the question, you would need
to assemble the event chain: cut grass left on the ground
→ grass decomposes → decomposed material provides nu-
trients.

The second largest source of errors came from
questions requiring complex inference (causal,
process, quantitative, or model-based reasoning)
as with the question shown in Table 8. This
demonstrates not only the difficulty of the ques-

Type: Knowledge base noise
Question: If an object traveling to the right is acted upon

by an unbalanced force from behind it the object
will .

Correct: speed up
Chosen change direction

Unbalanced force: force that acts on an object
that will change its direction

Table 9: Example of a question for which knowledge base
noise (here, in the form of over-generalization) was an issue.

tion set but also the need for systems that can ro-
bustly handle a variety of question types and their
corresponding information needs.

Aside from these primary sources of error, there
were some smaller trends: 7% of the incorrectly
chosen answers actually had justifications which
“validated” them due to noise in the knowledge
base (e.g., the example shown in Table 9), 7% re-
quired word-order to answer (e.g., mass divided
by acceleration vs. acceleration divided by mass),
another 7% of questions suffered from lack of cov-
erage of the question concept in the knowledge
base, and 3% failed to appropriately handle nega-
tion (i.e., questions of the format Which of the fol-
lowing are NOT ...).

7 Conclusion

Here we propose an end-to-end question answer-
ing (QA) model that learns to correctly answer
questions as well as provide compelling, human-
readable justifications for its answers, despite not
having access to labels for justification quality. We
do this by using the question answering task as a
form of distant supervision for learning justifica-
tion re-ranking. We show that our accuracy and
justification quality are significantly better than a
strong IR baseline, while maintaining near state-
of-the-art performance for the answer selection
task as well.

Acknowledgments

We thank the Allen Institute for Artificial In-
telligence for funding this work. Additionally,
this work was partially funded by the Defense
Advanced Research Projects Agency (DARPA)
Big Mechanism program under ARO contract
W911NF-14-1-0395. Dr. Mihai Surdeanu dis-
closes a financial interest in Lum.ai. This inter-
est has been disclosed to the University of Ari-
zona Institutional Review Committee and is being
managed in accordance with its conflict of interest
policies.

77

References

Adam Berger, Rich Caruana, David Cohn, Dayne Frey-
tag, and Vibhu Mittal. 2000. Bridging the lexical
chasm: Statistical approaches to answer finding. In
Proceedings of the 23rd Annual International ACM
SIGIR Conference on Research & Development on
Information Retrieval. Athens, Greece.

Antoine Bordes, Nicolas Usunier, Sumit Chopra, and
Jason Weston. 2015. Large-scale simple ques-
tion answering with memory networks. CoRR
abs/1506.02075.

Antoine Bordes, Nicolas Usunier, Alberto Garcı́a-
Durán, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. In NIPS.

Danqi Chen, Jason Bolton, and Christopher D. Man-
ning. 2016. A thorough examination of the
cnn/daily mail reading comprehension task. In As-
sociation for Computational Linguistics (ACL).

Danqi Chen and Christopher D Manning. 2014. A fast
and accurate dependency parser using neural net-
works. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Process-
ing. pages 740–750.

F. Chollet. 2015. Keras. https://github.com/
fchollet/keras.

Peter Clark. 2015. Elementary school science and math
tests as a driver for AI: take the Aristo challenge! In
Blai Bonet and Sven Koenig, editors, Proceedings
of the Twenty-Ninth AAAI Conference on Artificial
Intelligence, January 25-30, 2015, Austin, Texas,
USA.. AAAI Press, pages 4019–4021.

Peter Clark, Philip Harrison, and Niranjan Balasubra-
manian. 2013. A study of the knowledge base re-
quirements for passing an elementary science test.
In Proceedings of the 2013 Workshop on Automated
Knowledge Base Construction. AKBC’13, pages
37–42.

Mark W Craven and Jude W Shavlik. 1996. Extracting
tree-structured representations of trained networks.
Advances in neural information processing systems
pages 24–30.

Li Dong, Furu Wei, Ming Zhou, and Ke Xu.
2015. Question answering over freebase with multi-
column convolutional neural networks. In Proceed-
ings of Association for Computational Linguistics.
pages 260–269.

Xiaodong He and David Golub. 2016. Character-
level question answering with attention. In Pro-
ceedings of the 2016 Conference on Empirical Meth-
ods in Natural Language Processing. Association
for Computational Linguistics, pages 1598–1607.

Karl Moritz Hermann, Tomáš Kočiský, Edward
Grefenstette, Lasse Espeholt, Will Kay, Mustafa Su-
leyman, and Phil Blunsom. 2015. Teaching ma-
chines to read and comprehend. In Advances in Neu-
ral Information Processing Systems (NIPS).

Mohit Iyyer, Varun Manjunatha, Jordan Boyd-Graber,
and Hal Daumé III. 2015. Deep unordered compo-
sition rivals syntactic methods for text classification.
In Association for Computational Linguistics.

Peter Jansen, Niranjan Balasubramanian, Mihai Sur-
deanu, and Peter Clark. 2016. What’s in an expla-
nation? characterizing knowledge and inference re-
quirements for elementary science exams. In Pro-
ceedings of COLING 2016, the 26th International
Conference on Computational Linguistics: Techni-
cal Papers. The COLING 2016 Organizing Commit-
tee, Osaka, Japan, pages 2956–2965.

Peter Jansen, Rebecca Sharp, Mihai Surdeanu, and Pe-
ter Clark. 2017. Framing qa as building and ranking
intersentence answer justifications. Computational
Linguistics .

Peter Jansen, Mihai Surdeanu, and Peter Clark. 2014.
Discourse complements lexical semantics for non-
factoid answer reranking. In Proceedings of the
52nd Annual Meeting of the Association for Com-
putational Linguistics (ACL).

Tushar Khot, Ashish Sabharwal, and Peter Clark. 2017.
Answering complex questions using open informa-
tion extraction. In Proceedings of Association for
Computational Linguistics (ACL).

Been Kim, Julie A. Shah, and Finale Doshi-Velez.
2015. Mind the gap: A generative approach to inter-
pretable feature selection and extraction. In NIPS.

Tao Lei, Regina Barzilay, and Tommi S. Jaakkola.
2016. Rationalizing neural predictions. In Proceed-
ings of the 2016 Conference on Empirical Methods
in Natural Language Processing.

Benjamin Letham, Cynthia Rudin, Tyler H Mc-
Cormick, David Madigan, et al. 2015. Interpretable
classifiers using rules and bayesian analysis: Build-
ing a better stroke prediction model. The Annals of
Applied Statistics 9(3):1350–1371.

O. Levy and Y. Goldberg. 2014. Dependency-based
word embeddings. In Proceedings of the 52nd An-
nual Meeting of the Association for Computational
Linguistics (ACL). pages 302–308.

Jiwei Li, Xinlei Chen, Eduard Hovy, and Dan Juraf-
sky. 2016. Visualizing and understanding neural
models in nlp. In Proceedings of the 2016 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies. Association for Computational
Linguistics, pages 681–691.

Christopher D. Manning, Prabhakar Raghavan, and
Hinrich Schütze. 2008. Introduction to Information
Retrieval. Cambridge University Press.

78

Christopher D Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J Bethard, and David Mc-
Closky. 2014. The stanford corenlp natural language
processing toolkit. In Proceedings of 52nd Annual
Meeting of the Association for Computational Lin-
guistics: System Demonstrations. pages 55–60.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. In Proceedings of the Inter-
national Conference on Learning Representations
(ICLR).

Tomas Mikolov, Martin Karafiat, Lukas Burget, Jan
Cernocky, and Sanjeev Khudanpur. 2010. Recurrent
neural network based language model. In Proceed-
ings of the 11th Annual Conference of the Interna-
tional Speech Communication Association (INTER-
SPEECH 2010).

Ankur P. Parikh, Oscar Täckström, Dipanjan Das, and
Jakob Uszkoreit. 2016. A decomposable attention
model for natural language inference. In Proceed-
ings of the 2016 Conference on Empirical Methods
in Natural Language Processing.

Marco Ribeiro, Sameer Singh, and Carlos Guestrin.
2016. “Why Should I Trust You?”: Explaining
the predictions of any classifier. In Proceedings of
the 2016 Conference of the North American Chap-
ter of the Association for Computational Linguis-
tics: Demonstrations. Association for Computa-
tional Linguistics, pages 97–101.

Mrinmaya Sachan, Avinava Dubey, and Eric P Xing.
2016. Science question answering using instruc-
tional materials. In The 54th Annual Meeting of
the Association for Computational Linguistics. page
467.

Aliaksei Severyn and Alessandro Moschitti. 2012.
Structural relationships for large-scale learning of
answer re-ranking. In Proceedings of the 35th Inter-
national ACM SIGIR Conference on Research and
Development in Information Retrieval.

Aliaksei Severyn and Alessandro Moschitti. 2013. Au-
tomatic feature engineering for answer selection and
extraction. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing
(EMNLP).

Aliaksei Severyn and Alessandro Moschitti. 2015.
Learning to rank short text pairs with convolutional
deep neural networks. In Proceedings of the 38th
International ACM SIGIR Conference on Research
and Development in Information Retrieval.

Aliaksei Severyn, Massimo Nicosia, and Alessandro
Moschitti. 2013. Learning adaptable patterns for
passage reranking. In Proceedings of the Seven-
teenth Conference on Computational Natural Lan-
guage Learning (CoNLL).

Rebecca Sharp, Peter Jansen, Mihai Surdeanu, and Pe-
ter Clark. 2015. Spinning straw into gold: Using
free text to train monolingual alignment models for
non-factoid question answering. In Proceedings of
the 2015 Conference of the North American Chap-
ter of the Association for Computational Linguis-
tics: Human Language Technologies. Association
for Computational Linguistics, Denver, Colorado,
pages 231–237.

Mihai Surdeanu, Thomas Hicks, and Marco A.
Valenzuela-Escárcega. 2015. Two practical rhetor-
ical structure theory parsers. In Proceedings of
the North American Chapter of the Association
for Computational Linguistics (NAACL): Software
Demonstrations.

Ming Tan, Cicero dos Santos, Bing Xiang, and Bowen
Zhou. 2016. Improved representation learning for
question answer matching. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers). As-
sociation for Computational Linguistics, pages 464–
473.

Theano Development Team. 2016. Theano: A Python
framework for fast computation of mathematical ex-
pressions. arXiv e-prints abs/1605.02688.

Tijmen Tieleman and Geoffrey Hinton. 2012. Lecture
6.5-rmsprop: Divide the gradient by a running aver-
age of its recent magnitude. COURSERA: Neural
Networks for Machine Learning.

Di Wang and Eric Nyberg. 2015. A long short-term
memory model for answer sentence selection in
question answering. In Proceedings of the 53rd An-
nual Meeting of the Association for Computational
Linguistics and the 7th International Joint Confer-
ence on Natural Language Processing (Volume 2:
Short Papers). Association for Computational Lin-
guistics, pages 707–712.

Mengqiu Wang and Christopher Manning. 2010. Prob-
abilistic tree-edit models with structured latent vari-
ables for textual entailment and question answering.
In Proceedings of the 23rd International Conference
on Computational Linguistics (Coling 2010). Coling
2010 Organizing Committee, pages 1164–1172.

Matthew D. Zeiler and Rob Fergus. 2014. Visual-
izing and Understanding Convolutional Networks,
Springer International Publishing, Cham, pages
818–833.

79

Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017), pages 80–89,
Vancouver, Canada, August 3 - August 4, 2017. c©2017 Association for Computational Linguistics

CoNLL’17

Learning What is Essential in Questions

Daniel Khashabi†
Univ. of Pennsylvania

danielkh@cis.upenn.edu

Tushar Khot Ashish Sabharwal
Allen Institute for AI

tushark,ashishs@allenai.org

Dan Roth†
Univ. of Pennsylvania

danroth@cis.upenn.edu

Abstract

Question answering (QA) systems are eas-
ily distracted by irrelevant or redundant
words in questions, especially when faced
with long or multi-sentence questions in
difficult domains. This paper introduces
and studies the notion of essential ques-
tion terms with the goal of improving
such QA solvers. We illustrate the im-
portance of essential question terms by
showing that humans’ ability to answer
questions drops significantly when essen-
tial terms are eliminated from questions.
We then develop a classifier that reliably
(90% mean average precision) identifies
and ranks essential terms in questions. Fi-
nally, we use the classifier to demonstrate
that the notion of question term essen-
tiality allows state-of-the-art QA solvers
for elementary-level science questions to
make better and more informed decisions,
improving performance by up to 5%.

We also introduce a new dataset of over
2,200 crowd-sourced essential terms anno-
tated science questions.

1 Introduction

Understanding what a question is really about is
a fundamental challenge for question answering
systems that operate with a natural language in-
terface. In domains with multi-sentence ques-
tions covering a wide array of subject areas, such
as standardized tests for elementary level science,
the challenge is even more pronounced (Clark,
2015). Many QA systems in such domains

† Most of the work was done when the first and last
authors were affiliated with the University of Illinois, Urbana-
Champaign.

derive significant leverage from relatively shal-
low Information Retrieval (IR) and statistical cor-
relation techniques operating on large unstruc-
tured corpora (Kwok et al., 2001; Clark et al.,
2016). Inference based QA systems operating on
(semi-)structured knowledge formalisms have also
demonstrated complementary strengths, by using
optimization formalisms such as Semantic Pars-
ing (Yih et al., 2014), Integer Linear Program
(ILP) (Khashabi et al., 2016), and probabilistic
logic formalisms such as Markov Logic Networks
(MLNs) (Khot et al., 2015).

These QA systems, however, often struggle
with seemingly simple questions because they are
unable to reliably identify which question words
are redundant, irrelevant, or even intentionally dis-
tracting. This reduces the systems’ precision and
results in questionable “reasoning” even when the
correct answer is selected among the given alter-
natives. The variability of subject domain and
question style makes identifying essential question
words challenging. Further, essentiality is context
dependent—a word like ‘animals’ can be critical
for one question and distracting for another. Con-
sider the following example:

One way animals usually respond to a sudden drop in tem-
perature is by (A) sweating (B) shivering (C) blinking (D)
salivating.

A state-of-the-art optimization based QA system
called TableILP (Khashabi et al., 2016), which
performs reasoning by aligning the question to
semi-structured knowledge, aligns only the word
‘animals’ when answering this question. Not sur-
prisingly, it chooses an incorrect answer. The issue
is that it does not recognize that “drop in tempera-
ture” is an essential aspect of the question.

Towards this goal, we propose a system that can
assign an essentiality score to each term in the
question. For the above example, our system gen-

80

0

0.25

0.5

0.75

1

O
ne

w
ay
	

an
im
al
s

us
ua
lly
	

re
sp
on

d	
 to
	
 a	

su
dd

en

dr
op

	
 in

te
m
pe
ra
tu
re
	
 is by

Chart	
 Title

Figure 1: Essentiality scores generated by our
system, which assigns high essentiality to “drop”
and “temperature”.

erates the scores shown in Figure 1, where more
weight is put on “temperature” and “sudden drop”.
A QA system, when armed with such information,
is expected to exhibit a more informed behavior.

We make the following contributions:
(A) We introduce the notion of question term

essentiality and release a new dataset of 2,223
crowd-sourced essential term annotated questions
(total 19K annotated terms) that capture this con-
cept.1 We illustrate the importance of this con-
cept by demonstrating that humans become sub-
stantially worse at QA when even a few essential
question terms are dropped.

(B) We design a classifier that is effective at pre-
dicting question term essentiality. The F1 (0.80)
and per-sentence mean average precision (MAP,
0.90) scores of our classifier supercede the closest
baselines by 3%-5%. Further, our classifier gener-
alizes substantially better to unseen terms.

(C) We show that this classifier can be used
to improve a surprisingly effective IR based QA
system (Clark et al., 2016) by 4%-5% on previ-
ously used question sets and by 1.2% on a larger
question set. We also incorporate the classifier
in TableILP (Khashabi et al., 2016), resulting in
fewer errors when sufficient knowledge is present
for questions to be meaningfully answerable.

1.1 Related Work
Our work can be viewed as the study of an inter-
mediate layer in QA systems. Some systems im-
plicitly model and learn it, often via indirect sig-
nals from end-to-end training data. For instance,
Neural Networks based models (Wang et al., 2016;
Tymoshenko et al., 2016; Yin et al., 2016) implic-
itly compute some kind of attention. While this is
intuitively meant to weigh key words in the ques-
tion more heavily, this aspect hasn’t been system-

1 Annotated dataset and classifier available at https:
//github.com/allenai/essential-terms

atically evaluated, in part due to the lack of ground
truth annotations.

There is related work on extracting question
type information (Li and Roth, 2002; Li et al.,
2007) and applying it to the design and analysis of
end-to-end QA systems (Moldovan et al., 2003).
The concept of term essentiality studied in this
work is different, and so is our supervised learn-
ing approach compared to the typical rule-based
systems for question type identification.

Another line of relevant work is sentence com-
pression (Clarke and Lapata, 2008), where the
goal is to minimize the content while maintain-
ing grammatical soundness. These approaches
typically build an internal importance assignment
component to assign significance scores to various
terms, which is often done using language models,
co-occurrence statistics, or their variants (Knight
and Marcu, 2002; Hori and Sadaoki, 2004). We
compare against unsupervised baselines inspired
by such importance assignment techniques.

In a similar spirit, Park and Croft (2015) use
translation models to extract key terms to prevent
semantic drift in query expansion.

One key difference from general text summa-
rization literature is that we operate on questions,
which tend to have different essentiality charac-
teristics than, say, paragraphs or news articles. As
we discuss in Section 2.1, typical indicators of es-
sentiality such as being a proper noun or a verb
(for event extraction) are much less informative for
questions. Similarly, while the opening sentence
of a Wikipedia article is often a good summary, it
is the last sentence (in multi-sentence questions)
that contains the most pertinent words.

In parallel to our effort, Jansen et al. (2017) re-
cently introduced a science QA system that uses
the notion of focus words. Their rule-based system
incorporates grammatical structure, answer types,
etc. We take a different approach by learning a
supervised model using a new annotated dataset.

2 Essential Question Terms

In this section, we introduce the notion of essential
question terms, present a dataset annotated with
these terms, and describe two experimental studies
that illustrate the importance of this notion—we
show that when dropping terms from questions,
humans’ performance degrades significantly faster
if the dropped terms are essential question terms.

Given a question q, we consider each non-

81

stopword token in q as a candidate for being an
essential question term. Precisely defining what
is essential and what isn’t is not an easy task and
involves some level of inherent subjectivity. We
specified three broad criteria: 1) altering an es-
sential term should change the intended meaning
of q, 2) dropping non-essential terms should not
change the correct answer for q, and 3) grammat-
ical correctness is not important. We found that
given these relatively simple criteria, human anno-
tators had a surprisingly high agreement when an-
notating elementary-level science questions. Next
we discuss the specifics of the crowd-sourcing task
and the resulting dataset.

2.1 Crowd-Sourced Essentiality Dataset

We collected 2,223 elementary school science
exam questions for the annotation of essential
terms. This set includes the questions used by
Clark et al. (2016)2 and additional ones obtained
from other public resources such as the Internet
or textbooks. For each of these questions, we
asked crowd workers3 to annotate essential ques-
tion terms based on the above criteria as well as a
few examples of essential and non-essential terms.
Figure 2 depicts the annotation interface.

The questions were annotated by 5 crowd work-
ers,4 and resulted in 19,380 annotated terms. The
Fleiss’ kappa statistic (Fleiss, 1971) for this task
was κ = 0.58, indicating a level of inter-annotator
agreement very close to ‘substantial’. In particu-
lar, all workers agreed on 36.5% of the terms and
at least 4 agreed on 69.9% of the terms. We use
the proportion of workers that marked a term as
essential to be its annotated essentiality score.

On average, less than one-third (29.9%) of the
terms in each question were marked as essential
(i.e., score > 0.5). This shows the large propor-
tion of distractors in these science tests (as com-
pared to traditional QA datasets), further showing
the importance of this task. Next we provide some
insights into these terms.

We found that part-of-speech (POS) tags are not
a reliable predictor of essentiality, making it diffi-
cult to hand-author POS tag based rules. Among

2These are the only publicly available state-level science
exams. http://www.nysedregents.org/Grade4/Science/

3We use Amazon Mechanical Turk for crowd-sourcing.
4A few invalid annotations resulted in about 1% of the

questions receiving fewer annotations. 2,199 questions re-
ceived at least 5 annotations (79 received 10 annotations due
to unintended question repetition), 21 received 4 annotations,
and 4 received 3 annotations.

the proper nouns (NNP, NNPS) mentioned in the
questions, fewer than half (47.0%) were marked
as essential. This is in contrast with domains such
as news articles where proper nouns carry per-
haps the most important information. Nearly two-
thirds (65.3%) of the mentioned comparative ad-
jectives (JJR) were marked as essential, whereas
only a quarter of the mentioned superlative ad-
jectives (JJS) were deemed essential. Verbs were
marked essential less than a third (32.4%) of the
time. This differs from domains such as math
word problems where verbs have been found to
play a key role (Hosseini et al., 2014).

The best single indicator of essential terms, not
surprisingly, was being a scientific term5 (such as
precipitation and gravity). 76.6% of such terms
occurring in questions were marked as essential.

In summary, we have a term essentiality an-
notated dataset of 2,223 questions. We split this
into train/development/test subsets in a 70/9/21 ra-
tio, resulting in 483 test sentences used for per-
question evaluation.

We also derive from the above an annotated
dataset of 19,380 terms by pooling together all
terms across all questions. Each term in this larger
dataset is annotated with an essentiality score in
the context of the question it appears in. This
results in 4,124 test instances (derived from the
above 483 test questions). We use this dataset for
per-term evaluation.

2.2 The Importance of Essential Terms

Here we report a second crowd-sourcing experi-
ment that validates our hypothesis that the ques-
tion terms marked above as essential are, in fact,
essential for understanding and answering the
questions. Specifically, we ask: Is the question
still answerable by a human if a fraction of the
essential question terms are eliminated? For in-
stance, the sample question in the introduction is
unanswerable when “drop” and “temperature” are
removed from the question: One way animals usu-
ally respond to a sudden * in * is by ?

To this end, we consider both the annotated es-
sentiality scores as well as the score produced by
our trained classifier (to be presented in Section
3). We first generate candidate sets of terms to
eliminate using these essentiality scores based on a
threshold ξ ∈ {0, 0.2, . . . , 1.0}: (a) essential set:
terms with score≥ ξ; (b) non-essential set: terms

5We use 9,144 science terms from Khashabi et al. (2016).

82

Figure 2: Crowd-sourcing interface for annotating essential terms in a question, including the criteria for
essentiality and sample annotations.

Figure 3: Crowd-sourcing interface for verifying the validity of essentiality annotations generated by the
first task. Annotators are asked to answer, if possible, questions with a group of terms dropped.

with score < ξ. We then ask crowd workers to try
to answer a question after replacing each candidate
set of terms with “***”. In addition to four orig-
inal answer options, we now also include “I don’t
know. The information is not enough” (cf. Fig-
ure 3 for the user interface).6 For each value of ξ,
we obtain 5 × 269 annotations for 269 questions.
We measure how often the workers feel there is
sufficient information to attempt the question and,
when they do attempt, how often do they choose
the right answer.

Each value of ξ results in some fraction of terms
to be dropped from a question; the exact num-
ber depends on the question and on whether we

6It is also possible to directly collect essential term groups
using this task. However, collecting such sets of essential
terms would be substantially more expensive, as one must
iterate over exponentially many subsets rather than the linear
number of terms used in our annotation scheme.

use annotated scores or our classifier’s scores. In
Figure 4, we plot the average fraction of terms
dropped on the horizontal axis and the correspond-
ing fraction of questions attempted on the verti-
cal axis. Solid lines indicate annotated scores and
dashed lines indicate classifier scores. Blue lines
(bottom left) illustrate the effect of eliminating es-
sential sets while red lines (top right) reflect elim-
inating non-essential sets.

We make two observations. First, the solid blue
line (bottom-left) demonstrates that dropping even
a small fraction of question terms marked as es-
sential dramatically reduces the QA performance
of humans. E.g., dropping just 12% of the terms
(with high essentiality scores) makes 51% of the
questions unanswerable. The solid red line (top-
right), on the other hand, shows the opposite trend
for terms marked as not-essential: even after drop-

83

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
fraction of question terms dropped

0

0.2

0.4

0.6

0.8

1
fr

ac
tio

n
of

 q
ue

st
io

ns
 a

tte
m

pt
ed

Annotation:drop-essentials-above-x
Annotation:drop-essentials-below-x
Classifier:drop-essentials-above-x
Classifier:drop-essentials-below-x

Figure 4: The relationship between the frac-
tion of question words dropped and the fraction
of the questions attempted (fraction of the ques-
tions workers felt comfortable answering). Drop-
ping most essential terms (blue lines) results in
very few questions remaining answerable, while
least essential terms (red lines) allows most ques-
tions to still be answerable. Solid lines indicate
human annotation scores while dashed lines indi-
cate predicted scores.

ping 80% of such terms, 65% of the questions re-
mained answerable.

Second, the dashed lines reflecting the results
when using scores from our ET classifier are very
close to the solid lines based on human annotation.
This indicates that our classifier, to be described
next, closely captures human intuition.

3 Essential Terms Classifier

Given the dataset of questions and their terms an-
notated with essential scores, is it possible to learn
the underlying concept? Towards this end, given a
question q , answer options a, and a question term
ql, we seek a classifier that predicts whether ql is
essential for answering q. We also extend it to pro-
duce an essentiality score et(ql, q, a) ∈ [0, 1].7 We
use the annotated dataset from Section 2, where
real-valued essentiality scores are binarized to 1 if
they are at least 0.5, and to 0 otherwise.

We train a linear SVM classifier (Joachims,
1998), henceforth referred to as ET classifier.
Given the complex nature of the task, the fea-
tures of this classifier include syntactic (e.g., de-
pendency parse based) and semantic (e.g., Brown

7The essentiality score may alternatively be defined as
et(ql, q), independent of the answer options a. This is more
suitable for non-multiple choice questions. Our system uses
a only to compute PMI-based statistical association features
for the classifier. In our experiments, dropping these features
resulted in only a small drop in the classifier’s performance.

cluster representation of words (Brown et al.,
1992), a list of scientific words) properties of ques-
tion words, as well as their combinations. In total,
we use 120 types of features (cf. Appendix ?? of
our Extended edition (Khashabi et al., 2017)).

Baselines. To evaluate our approach, we devise
a few simple yet relatively powerful baselines.

First, for our supervised baseline, given
(ql, q, a) as before, we ignore q and compute how
often is ql annotated as essential in the entire
dataset. In other words, the score for ql is the
proportion of times it was marked as essential in
the annotated dataset. If the instance is never ob-
server in training, we choose an arbitrary label
as prediction. We refer to this baseline as la-
bel proportion baseline and create two variants of
it: PROPSURF based on surface string and PRO-
PLEM based on lemmatizing the surface string.
For unseen ql, this baseline makes a random guess
with uniform distribution.

Our unsupervised baseline is inspired by work
on sentence compression (Clarke and Lapata,
2008) and the PMI solver of Clark et al. (2016),
which compute word importance based on co-
occurrence statistics in a large corpus. In a cor-
pus C of 280 GB of plain text (5 × 1010 to-
kens) extracted from Web pages,8 we identify un-
igrams, bigrams, trigrams, and skip-bigrams from
q and each answer option ai. For a pair (x, y)
of n-grams, their pointwise mutual information
(PMI) (Church and Hanks, 1989) in C is defined
as log p(x,y)

p(x)p(y) where p(x, y) is the co-occurrence
frequency of x and y (within some window) in C.
For a given word x, we find all pairs of question n-
grams and answer option n-grams. MAXPMI and
SUMPMI score the importance of a word x by
max-ing or summing, resp., PMI scores p(x, y)
across all answer options y for q. A limitation of
this baseline is its dependence on the existence of
answer options, while our system makes essential-
ity predictions independent of the answer options.

We note that all of the aforementioned baselines
produce real-valued confidence scores (for each
term in the question), which can be turned into bi-
nary labels (essential and non-essential) by thresh-
olding at a certain confidence value.

8Collected by Charles Clarke at the University of Water-
loo, and used previously by Turney (2013).

84

3.1 Evaluation

We consider two natural evaluation metrics for es-
sentiality detection, first treating it as a binary pre-
diction task at the level of individual terms and
then as a task of ranking terms within each ques-
tion by the degree of essentiality.

Binary Classification of Terms. We consider
all question terms pooled together as described
in Section 2.1, resulting in a dataset of 19,380
terms annotated (in the context of the correspond-
ing question) independently as essential or not.
The ET classifier is trained on the train subset, and
the threshold is tuned using the dev subset.

AUC Acc P R F1
MAXPMI † 0.74 0.67 0.88 0.65 0.75
SUMPMI † 0.74 0.67 0.88 0.65 0.75
PROPSURF 0.79 0.61 0.68 0.64 0.66
PROPLEM 0.80 0.63 0.76 0.64 0.69
ET Classifier 0.79 0.75 0.91 0.71 0.80

Table 1: Effectiveness of various methods for
identifying essential question terms in the test set,
including area under the PR curve (AUC), accu-
racy (Acc), precision (P), recall (R), and F1 score.
ET classifier substantially outperforms all super-
vised and unsupervised (denoted with †) baselines.

For each term in the corresponding test set of
4,124 instances, we use various methods to pre-
dict whether the term is essential (for the corre-
sponding question) or not. Table 1 summarizes
the resulting performance. For the threshold-based
scores, each method was tuned to maximize the
F1 score based on the dev set. The ET classifier
achieves an F1 score of 0.80, which is 5%-14%
higher than the baselines. Its accuracy at 0.75 is
statistically significantly better than all baselines
based on the Binomial9 exact test (Howell, 2012)
at p-value 0.05.

As noted earlier, each of these essentiality iden-
tification methods are parameterized by a thresh-
old for balancing precision and recall. This allows
them to be tuned for end-to-end performance of
the downstream task. We use this feature later
when incorporating the ET classifier in QA sys-
tems. Figure 5 depicts the PR curves for vari-
ous methods as the threshold is varied, highlight-
ing that the ET classifier performs reliably at var-
ious recall points. Its precision, when tuned to
optimize F1, is 0.91, which is very suitable for

9Each test term prediction is assumed to be a binomial.

0 0.2 0.4 0.6 0.8 1
Recall

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

P
re

ci
si
o
n

MaxPMI
SumPMI
PropSurf
PropLemma
ET

Figure 5: Precision-recall trade-off for various
classifiers as the threshold is varied. ET classifier
(green) is significantly better throughout.

AUC Acc P R F1
MAXPMI † 0.75 0.63 0.81 0.65 0.72
SUMPMI † 0.75 0.63 0.80 0.66 0.72
PROPSURF 0.57 0.51 0.49 0.61 0.54
PROPLEM 0.58 0.49 0.50 0.59 0.54
ET Classifier 0.78 0.71 0.88 0.71 0.78

Table 2: Generalization to unseen terms: Effec-
tiveness of various methods, using the same met-
rics as in Table 1. As expected, supervised meth-
ods perform poorly, similar to a random baseline.
Unsupervised methods generalize well, but the ET
classifier again substantially outperforms them.

high-precision applications. It has a 5% higher
AUC (area under the curve) and outperforms base-
lines by roughly 5% throughout the precision-
recall spectrum.

As a second study, we assess how well our clas-
sifier generalizes to unseen terms. For this, we
consider only the 559 test terms that do not appear
in the train set.10 Table 2 provides the resulting
performance metrics. We see that the frequency
based supervised baselines, having never seen the
test terms, stay close to the default precision of
0.5. The unsupervised baselines, by nature, gener-
alize much better but are substantially dominated
by our ET classifier, which achieves an F1 score
of 78%. This is only 2% below its own F1 across
all seen and unseen terms, and 6% higher than the
second best baseline.

Ranking Question Terms by Essentiality.
Next, we investigate the performance of the ET
classifier as a system that ranks all terms within
a question in the order of essentiality. Thus,

10In all our other experiments, test and train questions are
always distinct but may have some terms in common.

85

System MAP
MAXPMI † 0.87
SUMPMI † 0.85
PROPSURF 0.85
PROPLEM 0.86
ET Classifier 0.90

Table 3: Effectiveness of various methods for
ranking the terms in a question by essentiality.
† indicates unsupervised method. Mean-Average
Precision (MAP) numbers reflect the mean (across
all test set questions) of the average precision of
the term ranking for each question. ET classifier
again substantially outperforms all baselines.

unlike the previous evaluation that pools terms
together across questions, we now consider each
question as a unit. For the ranked list produced by
each classifier for each question, we compute the
average precision (AP).11 We then take the mean
of these AP values across questions to obtain
the mean average precision (MAP) score for the
classifier.

The results for the test set (483 questions) are
shown in Table 3. Our ET classifier achieves a
MAP of 90.2%, which is 3%-5% higher than the
baselines, and demonstrates that one can learn to
reliably identify essential question terms.

4 Using ET Classifier in QA Solvers

In order to assess the utility of our ET classifier,
we investigate its impact on two end-to-end QA
systems. We start with a brief description of the
question sets.

Question Sets. We use three question sets of 4-
way multiple choice questions.12 REGENTS and
AI2PUBLIC are two publicly available elementary
school science question set. REGENTS comes with
127 training and 129 test questions; AI2PUBLIC

contains 432 training and 339 test questions that
subsume the smaller question sets used previ-
ously (Clark et al., 2016; Khashabi et al., 2016).
REGTSPERTD set, introduced by Khashabi et al.
(2016), has 1,080 questions obtained by automat-
ically perturbing incorrect answer choices for 108
New York Regents 4th grade science questions.

11We rank all terms within a question based on their es-
sentiality scores. For any true positive instance at rank k, the
precision at k is defined to be the number of positive instances
with rank no more than k, divided by k. The average of all
these precision values for the ranked list for the question is
the average precision.

12Available at http://allenai.org/data.html

We split this into 700 train and 380 test questions.
For each question, a solver gets a score of 1 if it

chooses the correct answer and 1/k if it reports a
k-way tie that includes the correct answer.

QA Systems. We investigate the impact of
adding the ET classifier to two state-of-the-art
QA systems for elementary level science ques-
tions. Let q be a multiple choice question with
answer options {ai}. The IR Solver from Clark
et al. (2016) searches, for each ai, a large corpus
for a sentence that best matches the (q, ai) pair.
It then selects the answer option for which the
match score is the highest. The inference based
TableILP Solver from Khashabi et al. (2016), on
the other hand, performs QA by treating it as
an optimization problem over a semi-structured
knowledge base derived from text. It is designed
to answer questions requiring multi-step inference
and a combination of multiple facts.

For each multiple-choice question (q, a), we use
the ET classifier to obtain essential term scores sl
for each token ql in q; sl = et(ql, q, a). We will be
interested in the subset ω of all terms Tq in q with
essentiality score above a threshold ξ: ω(ξ; q) =
{l ∈ Tq | sl > ξ}. Let ω(ξ; q) = Tq \ ω(ξ; q). For
brevity, we will write ω(ξ) when q is implicit.

4.1 IR solver + ET

To incorporate the ET classifier, we create a pa-
rameterized IR system called IR + ET(ξ) where,
instead of querying a (q, ai) pair, we query
(ω(ξ; q), ai).

While IR solvers are generally easy to imple-
ment and are used in popular QA systems with
surprisingly good performance, they are often also
sensitive to the nature of the questions they re-
ceive. Khashabi et al. (2016) demonstrated that
a minor perturbation of the questions, as embod-
ied in the REGTSPERTD question set, dramatically
reduces the performance of IR solvers. Since the
perturbation involved the introduction of distract-
ing incorrect answer options, we hypothesize that
a system with better knowledge of what’s impor-
tant in the question will demonstrate increased ro-
bustness to such perturbation.

Table 4 validates this hypothesis, showing the
result of incorporating ET in IR, as IR + ET(ξ =
0.36), where ξ was selected by optimizing end-to-
end performance on the training set. We observe a
5% boost in the score on REGTSPERTD, showing
that incorporating the notion of essentiality makes

86

Dataset Basic IR IR + ET

REGENTS 59.11 60.85
AI2PUBLIC 57.90 59.10
REGTSPERTD 61.84 66.84

Table 4: Performance of the IR solver without
(Basic IR) and with (IR + ET) essential terms. The
numbers are solver scores (%) on the test sets of
the three datasets.

the system more robust to perturbations.
Adding ET to IR also improves its performance

on standard test sets. On the larger AI2PUBLIC

question set, we see an improvement of 1.2%.
On the smaller REGENTS set, introducing ET
improves IRsolver’s score by 1.74%, bringing
it close to the state-of-the-art solver, TableILP,
which achieves a score of 61.5%. This demon-
strates that the notion of essential terms can be
fruitfully exploited to improve QA systems.

4.2 TableILP solver + ET

Our essentiality guided query filtering helped the
IR solver find sentences that are more relevant to
the question. However, for TableILP an added
focus on essential terms is expected to help only
when the requisite knowledge is present in its rel-
atively small knowledge base. To remove con-
founding factors, we focus on questions that are,
in fact, answerable.

To this end, we consider three (implicit) require-
ments for TableILP to demonstrate reliable behav-
ior: (1) the existence of relevant knowledge, (2)
correct alignment between the question and the
knowledge, and (3) a valid reasoning chain con-
necting the facts together. Judging this for a ques-
tion, however, requires a significant manual effort
and can only be done at a small scale.

Question Set. We consider questions for which
the TableILP solver does have access to the req-
uisite knowledge and, as judged by a human, a
reasoning chain to arrive at the correct answer.
To reduce manual effort, we collect such ques-
tions by starting with the correct reasoning chains
(‘support graphs’) provided by TableILP. A human
annotator is then asked to paraphrase the corre-
sponding questions or add distracting terms, while
maintaining the general meaning of the question.
Note that this is done independent of essentiality
scores. For instance, the modified question below
changes two words in the question without affect-
ing its core intent:

Original question: A fox grows thicker fur as a season
changes. This adaptation helps the fox to (A) find food(B)
keep warmer(C) grow stronger(D) escape from predators
Generated question: An animal grows thicker hair as a
season changes. This adaptation helps to (A) find food(B)
keep warmer(C) grow stronger(D) escape from predators

While these generated questions should ar-
guably remain correctly answerable by TableILP,
we found that this is often not the case. To in-
vestigate this, we curate a small dataset QR with
12 questions (cf. Appendix C of the extended ver-
sion (Khashabi et al., 2017)) on each of which, de-
spite having the required knowledge and a plausi-
ble reasoning chain, TableILP fails.

Modified Solver. To incorporate question term
essentiality in the TableILP solver while maintain-
ing high recall, we employ a cascade system that
starts with a strong essentiality requirement and
progressively weakens it.

Following the notation of Khashabi et al.
(2016), let x(ql) be a binary variable that denotes
whether or not the l-th term of the question is used
in the final reasoning graph. We enforce that terms
with essentiality score above a threshold ξ must be
used: x(ql) = 1, ∀l ∈ ω(ξ). Let TableILP+ET(ξ)
denote the resulting system which can now be used
in a cascading architecture.

TableILP+ET(ξ1) → TableILP+ET(ξ2) → ...

where ξ1 < ξ2 < . . . < ξk is a sequence of
thresholds. Questions unanswered by the first
system are delegated to the second, and so on. The
cascade has the same recall as TableILP, as long as
the last system is the vanilla TableILP. We refer to
this configuration as CASCADES(ξ1, ξ2, . . . , ξk).

This can be implemented via repeated calls to
TableILP+ET(ξj) with j increasing from 1 to k,
stopping if a solution is found. Alternatively, one
can simulate the cascade via a single extended ILP
using k new binary variables zj with constraints:
|ω(ξj)| ∗ zj ≤

∑
l∈ω(ξj)

x(ql) for j ∈ {1, . . . , k},
and addingM ∗∑k

j=1 zj to the objective function,
for a sufficiently large constant M .

We evaluate CASCADES(0.4, 0.6, 0.8, 1.0) on
our question set, QR. By employing essential-
ity information provided by the ET classifier,
CASCADES corrects 41.7% of the mistakes made
by vanilla TableILP. This error-reduction illus-
trates that the extra attention mechanism added
to TableILP via the concept of essential question
terms helps it cope with distracting terms.

87

5 Conclusion

We introduced the concept of essential question
terms and demonstrated its importance for ques-
tion answering via two empirical findings: (a)
humans becomes substantially worse at QA even
when a few essential question terms are dropped,
and (b) state-of-the-art QA systems can be im-
proved by incorporating this notion. While text
summarization has been studied before, questions
have different characteristics, requiring new train-
ing data to learn a reliable model of essentiality.
We introduced such a dataset and showed that our
classifier trained on this dataset substantially out-
performs several baselines in identifying and rank-
ing question terms by the degree of essentiality.

Acknowledgments

The authors would like to thank Peter Clark,
Oyvind Tafjord, and Peter Turney for valuable dis-
cussions and insights.

This work is supported by DARPA under agree-
ment number FA8750-13-2-0008. The U.S. Gov-
ernment is authorized to reproduce and distribute
reprints for Governmental purposes notwithstand-
ing any copyright notation thereon. The views and
conclusions contained herein are those of the au-
thors and should not be interpreted as necessarily
representing the official policies or endorsements,
either expressed or implied, of DARPA or the U.S.
Government.

References
P. F. Brown, P. V. Desouza, R. L. Mercer, V. J. D.

Pietra, and J. C. Lai. 1992. Class-based n-gram
models of natural language. Computational linguis-
tics 18(4):467–479.

K. W. Church and P. Hanks. 1989. Word association
norms, mutual information and lexicography. In
27th Annual Meeting of the Association for Compu-
tational Linguistics. pages 76–83.

P. Clark. 2015. Elementary school science and math
tests as a driver for AI: take the Aristo challenge! In
29th AAAI/IAAI. Austin, TX, pages 4019–4021.

P. Clark, O. Etzioni, T. Khot, A. Sabharwal, O. Tafjord,
P. Turney, and D. Khashabi. 2016. Combining re-
trieval, statistics, and inference to answer elemen-
tary science questions. In 30th AAAI.

J. Clarke and M. Lapata. 2008. Global inference for
sentence compression: An integer linear program-
ming approach. Journal of Artificial Intelligence Re-
search 31:399–429.

J. L. Fleiss. 1971. Measuring nominal scale agree-
ment among many raters. Psychological bulletin
76(5):378.

C. Hori and F. Sadaoki. 2004. Speech summarization:
an approach through word extraction and a method
for evaluation. IEICE TRANSACTIONS on Informa-
tion and Systems 87(1):15–25.

Mohammad Javad Hosseini, Hannaneh Hajishirzi,
Oren Etzioni, and Nate Kushman. 2014. Learning
to solve arithmetic word problems with verb catego-
rization. In 2014 EMNLP. pages 523–533.

D. Howell. 2012. Statistical methods for psychology.
Cengage Learning.

P. Jansen, R. Sharp, M. Surdeanu, and P. Clark. 2017.
Framing qa as building and ranking intersentence
answer justifications. Computational Linguistics .

T. Joachims. 1998. Text categorization with support
vector machines: Learning with many relevant fea-
tures. Machine learning: ECML-98 pages 137–142.

D. Khashabi, T. Khot, A. Sabharwal, P. Clark, O. Et-
zioni, and D. Roth. 2016. Question answering via
integer programming over semi-structured knowl-
edge (extended version). In Proc. 25th Int. Joint
Conf. on Artificial Intelligence (IJCAI).

D. Khashabi, T. Khot, A. Sabharwal, and D. Roth.
2017. Learning what is essential in questions (ex-
tended version).

T. Khot, N. Balasubramanian, E. Gribkoff, A. Sab-
harwal, P. Clark, and O. Etzioni. 2015. Exploring
Markov logic networks for question answering. In
2015 EMNLP. Lisbon, Portugal.

K. Knight and D. Marcu. 2002. Summarization be-
yond sentence extraction: A probabilistic approach
to sentence compression. Artificial Intelligence
139(1):91–107.

C. Kwok, O. Etzioni, and D. S. Weld. 2001. Scaling
question answering to the web. In WWW.

F. Li, X. Zhang, J. Yuan, and X. Zhu. 2007. Classifying
what-type questions by head noun tagging. In Proc.
22nd Int. Conf. on Comput. Ling. (COLING).

X. Li and D. Roth. 2002. Learning question classi-
fiers. In Proceedings of the 19th International Con-
ference on Computational Linguistics - Volume 1.
Association for Computational Linguistics, Strouds-
burg, PA, USA, COLING ’02, pages 1–7.

D. Moldovan, M. Paşca, S. Harabagiu, and M. Sur-
deanu. 2003. Performance issues and error analy-
sis in an open-domain question answering system.
ACM Transactions on Information Systems (TOIS)
21(2):133–154.

88

J. H. Park and W. B. Croft. 2015. Using key concepts
in a translation model for retrieval. In Proceedings
of the 38th International ACM SIGIR Conference
on Research and Development in Information Re-
trieval. ACM, pages 927–930.

P. D. Turney. 2013. Distributional semantics beyond
words: Supervised learning of analogy and para-
phrase. TACL 1:353–366.

Kateryna Tymoshenko, Daniele Bonadiman, and
Alessandro Moschitti. 2016. Convolutional neural
networks vs. convolution kernels: Feature engineer-
ing for answer sentence reranking. In HLT-NAACL.

B. Wang, K. Liu, and J. Zhao. 2016. Inner attention
based recurrent neural networks for answer selec-
tion. In ACL.

W.-t. Yih, X. He, and C. Meek. 2014. Semantic pars-
ing for single-relation question answering. In Proc.
52nd Annual Meeting of the Ass. for Comp. Linguis-
tics (ACL). pages 643–648.

W. Yin, S. Ebert, and H. Schütze. 2016. Attention-
based convolutional neural network for machine
comprehension. In NAACL HCQA Workshop.

89

Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017), pages 90–99,
Vancouver, Canada, August 3 - August 4, 2017. c©2017 Association for Computational Linguistics

Top-Rank Enhanced Listwise Optimization
for Statistical Machine Translation

Huadong Chen,† Shujian Huang,†∗ David Chiang,‡ Xinyu Dai,† Jiajun Chen†
†State Key Laboratory for Novel Software Technology, Nanjing University
{chenhd,huangsj,daixinyu,chenjj}@nlp.nju.edu.cn

‡Department of Computer Science and Engineering, University of Notre Dame
dchiang@nd.edu

Abstract

Pairwise ranking methods are the basis
of many widely used discriminative train-
ing approaches for structure prediction
problems in natural language processing
(NLP). Decomposing the problem of rank-
ing hypotheses into pairwise comparisons
enables simple and efficient solutions.
However, neglecting the global ordering
of the hypothesis list may hinder learning.
We propose a listwise learning framework
for structure prediction problems such as
machine translation. Our framework di-
rectly models the entire translation list’s
ordering to learn parameters which may
better fit the given listwise samples. Fur-
thermore, we propose top-rank enhanced
loss functions, which are more sensitive to
ranking errors at higher positions. Exper-
iments on a large-scale Chinese-English
translation task show that both our list-
wise learning framework and top-rank en-
hanced listwise losses lead to significant
improvements in translation quality.

1 Introduction

Discriminative training methods for structured
prediction in natural language processing (NLP)
aim to estimate the parameters of a model that as-
signs a score to each hypothesis in the (possibly
very large) search space. For example, in statisti-
cal machine translation (SMT), the model assigns
a score to each possible translation, and in syn-
tactic parsing, the function assigns a score to each
possible syntactic tree. Ideally, the model should
assign scores that rank hypotheses according to
their true quality. In this paper, we consider the
problem of discriminative training for SMT.

∗Corresponding author.

Traditional SMT systems use log-linear models
with only about a dozen features, such as trans-
lation probabilities and language model probabil-
ities (Yamada and Knight, 2001; Koehn et al.,
2003; Chiang, 2005; Liu et al., 2006). These mod-
els can be tuned by minimum error rate training
(MERT) (Och, 2003), which directly optimizes
BLEU using coordinate ascent combined with a
global line search.

To enable training of modern SMT systems,
which can have thousands of features or more,
many research efforts have been made towards
scalable discriminative training methods (Chiang
et al., 2008; Hopkins and May, 2011; Bazrafshan
et al., 2012). Most of these methods either de-
fine loss functions that push the model to correctly
compare pairs of hypotheses, or use approximate
optimization methods that effectively do the same.
For practical reasons, only a subset of the pairs are
considered; these pairs are selected by either sam-
pling (Hopkins and May, 2011) or heuristic meth-
ods (Watanabe et al., 2007; Chiang et al., 2008).

But this pairwise approach neglects the global
ordering of the list of hypotheses, which may
lead to problems trying to learn good parameter
values. Inspired by research in information re-
trieval (IR) (Cao et al., 2007; Xia et al., 2008),
we propose to directly model the ordering of the
whole translation list, instead of decomposing it
into translation pairs.

Previous research has tried to integrate listwise
methods into SMT, but almost all of them focus
on the reranking task, which aims to rescore the
fixed translation lists generated by a baseline sys-
tem. They try to either use listwise approaches
to training the reranking model (Li et al., 2013;
Niehues et al., 2015) or replace the pointwise
ranking function, i.e. the log-linear model, with
a listwise ranking function by introducing listwise
features (Zhang et al., 2016). In this paper, we

90

focus on listwise approaches that can learn bet-
ter discriminative models for SMT. We present a
listwise learning framework for tuning translation
systems that uses two listwise ranking objectives
originally developed for IR, ListNet (Cao et al.,
2007) and ListMLE (Xia et al., 2008). But un-
like standard IR problems, structured prediction
problems usually have a huge search space, and
at each training iteration, the list of search results
can vary. The usual strategy is to form the union
of all lists of search results, but this can lead to a
“patchy” list that doesn’t represent the full search
space well. The listwise approaches always based
on the permutation probability distribution over
the list. Modeling the distribution over a “patchy”
list, whose elements were generated by different
parameters will affect listwise approaches’ per-
formance. To address this issue, we design an
instance-aggregating method: Instead of treating
the data as a fixed-size set of lists that each grow
over time as new translations are added at each it-
eration, we treat the data as a growing set of lists;
each time a sentence is translated, the k-best list of
translations is added as a new list.

We also extend standard listwise training by
considering the importance of different instances
in the list. Based on the intuition that instances
at the top may be more important for ranking, we
propose top-rank enhanced loss functions, which
incorporate a position-dependent cost that penal-
izes errors occurring at the top of the list more
strongly.

We conduct large-scale Chinese-to-English
translation experiments showing that our top-rank
enhanced listwise learning methods significantly
outperform other tuning methods with high di-
mensional feature sets. Additionally, even with
a small basic feature set, our methods still obtain
better results than MERT.

2 Background

2.1 Log-linear models
In this paper, we assume a log-linear model, which
defines a scoring function on target translation hy-
potheses e, given a source sentence f :

Pr(e | f) =
exp s(e, f)∑
e′ exp s(e′, f)

(1)

s(e, f) = w · h(e | f) (2)

where h(e | f) is the feature vector and w is the
feature weight vector.

𝑓𝑖 𝑓𝑖+1 𝑓𝑖+2 𝑓𝑖+3

𝑒𝑗 𝑒𝑗+1 𝑒𝑗+2 𝑒𝑗+3 𝑒𝑗+4

Figure 1: An example of word-phrase features for
a phrase translation. The fi and ej represent the i-
th in the source phrase and j-th word in the target
phrase, respectively.

The process of training a SMT system includes
both learning the sub-models, which are included
in the feature vector h, and learning the weight
vector w.

Then the decoding of SMT systems can be for-
mulated as a search for the translation ê with the
highest model score:

ê = arg max
e∈E

s(e, f) (3)

where E is the set of all reachable hypotheses.

2.2 SMT Features
In this paper, we use a hierarchical phrase based
translation system (Chiang, 2005). For convenient
comparison, we divide features of SMT into the
following three sets.

Basic Features: The basic features are those
commonly used in hierarchical phrase based trans-
lation systems, including a language model, four
translation model features, word, phrase and rule
penalties, and penalties for unknown words, the
glue rule and null translations.

Extended Features: Inspired by Chen et al.
(2013), we manually group the parallel training
data into 15 sets, according to their genre and ori-
gin. The translation models trained on each set are
used as separate features. We also add an indica-
tor feature for each individual training set to mark
where the translation rule comes from. The ex-
tended features provide additional 60 translation
model features and 16 indicator features, which is
too many to be tuned with MERT.

Sparse Features: We use word-phrase pair
features as our sparse features, which reflect
the word-phrase correspondence in a hierarchical
phrase (Watanabe et al., 2007). Figure 1 illustrates
an example of word-phrase pair features for a
phrase translation pair fi, ..., fi+3 and ej , ..., ej+4.
Word-phrase pair features (fi, ej+1), (fi+1, ej),
(fi+2, ej+2ej+3), (fi+3, ej+4) will be fired for the
translation rule with the given word alignment. In

91

practice, these feature only fire when all the source
and target words in the feature are both in the top
100 most frequent words.

2.3 Tuning via Pairwise Ranking

The beam search strategy for SMT decoding pro-
cess makes it convenient to get a k-best transla-
tion list for each source sentence. Given a set of
source sentences and their corresponding transla-
tion lists, the tuning problem could be regarded
as a ranking task. Many recently proposed SMT
tuning methods are based on the pairwise rank-
ing framework (Chiang et al., 2008; Hopkins and
May, 2011; Bazrafshan et al., 2012).

Pairwise ranking optimization (PRO) (Hopkins
and May, 2011) is a commonly used tuning
method. The idea of PRO is to sample pairs (e, e′)
from the k-best list, and train a linear binary clas-
sifier to predict whether eval(e) > eval(e′) or
eval(e) < eval(e′), where eval(·) is an extrinsic
metric like BLEU. In this paper, we use sentence-
level BLEU with add-one smoothing (Lin and
Och, 2004).

The method gets a comparable BLEU score to
MERT and MIRA (Chiang et al., 2008), and scales
well on large feature sets. Other pairwise ranking
methods employ similar procedures.

3 Listwise Learning Framework

Although ranking methods have shown their effec-
tiveness in tuning for SMT systems (Hopkins and
May, 2011; Watanabe, 2012; Dreyer and Dong,
2015), most proposed ranking approaches view
tuning as pairwise ranking. These approaches de-
compose the ranking of the hypothesis list into
pairs, which might limit the training method’s
ability to learn better parameters. To preserve the
ranking information, we first formulate training as
an instance of the listwise ranking problem. Then
we propose a learning method based on the iter-
ative learning framework of SMT tuning and fur-
ther investigate the top-rank enhanced losses.

3.1 Training Objectives

3.1.1 The Permutation Probability Model
In order to directly model the translation list,
we first introduce a probabilistic model proposed
by Guiver and Snelson (2009). A ranking of a list
of k translations can be thought of as a function π
from [1, k] to translations, where each π(t) is the
t-th translation candidate in the ranking. A scoring

function z (which could be either the model score,
s, or the BLEU score, eval) induces a probability
distribution over rankings:

Pz(π) =
k∏
j=1

exp z(π(j))∑k
t=j exp z(π(t))

. (4)

3.1.2 Loss Functions
Based on the probabilistic model above, the loss
function can be defined as the difference between
the distribution over the ranking according to
eval(·) and s(·). Thus, we introduce the follow-
ing two standard listwise losses.

ListNet: The ListNet loss is the cross entropy
between the distributions calculated from eval(·)
and s(·), respectively, over all permutations.

Due to the exponential number of permutations,
Cao et al. (2007) propose a top-one loss instead.
Given the function eval(·) and s(·), the top-one
loss is defined as:

LNet-T = −
k∑
j=1

P ′eval(ej) logP ′s(ej)

P ′z(ej) =
exp z(ej)∑k
i=1 exp z(ei)

where ej is the j-th element in the k-best list,
and P ′z(ej) is the probability that translation ej is
ranked at the top by the function z.

ListMLE: The ListMLE loss is the negative
log-likelihood of the permutation probability of
the correct ranking πeval, calculated according
to s(·) (Xia et al., 2008):

LMLE = − logPs(πeval)

= −
k∑
j=1

log
exp s(πeval(j))∑k
t=j exp s(πeval(t))

.
(5)

The training objective, which we want to min-
imize, is simply the total loss over all the lists in
the tuning set.

3.2 Training with Instance Aggregating
Because there can be exponentially many possi-
ble translations of a sentence, it’s only feasible to
rank the k best translations rather than all of them;
because the feature weights change at each itera-
tion, we have a different k-best list to rank at each
iteration. This is different from standard ranking
problems in which the training instances stay the
same each iteration.

92

Algorithm 1 MERT-like tuning algorithm

Require: Training sentences {f}, maximum
number of iterations I , randomly initialized
model parameters w0.

1: for i = 0 to I do
2: for source sentences f do
3: Decode f : E if = KbestDecoder(f ,wi)
4: T ← T ∪ {E if}
5: end for
6: Training: wi+1 = Optimization(T,wi)
7: end for

Many previous tuning methods address this
problem by merging the k-best list at the current
iteration with the k-best lists at all previous itera-
tions into a single list (Hopkins and May, 2011).
We call this k-best merging. More formally, if E if
is the k-best list of source sentence f at iteration i,
then at each iteration, the model is trained on the
set of lists:

Ef =
i⋃

j=0

Ejf

T = {Ef | ∀f}
For each source sentence f , T has only one train-
ing sample, which is a better and better approxi-
mation to the full hypothesis set of f as more iter-
ations pass.

Unlike previous tuning methods, our tuning
method focuses on the distribution over permuta-
tion of the whole list. Moreover, unlike with list-
wise optimization methods used in IR, the k-best
list produced for a source sentence at one iteration
can differ dramatically from the k-best list pro-
duced at the next iteration. Merging k-best lists
across iterations, each of which represents only a
tiny fraction of the full search space, will lead to
a “patchy” list that may hurt the learning perfor-
mance of the listwise optimization algorithms.

To address this challenge, we propose instance
aggregating: instead of merging k-best lists across
different iterations, we view the translation lists
from different iterations as individual training in-
stances:

T = {Ejf | ∀f , 0 ≤ j ≤ i}.
With this method, each source sentence f has i
training instances at the i-th training iteration. In
this way, we avoid “patchy” lists and obtain a bet-
ter set of instances for tuning.

Algorithm 2 Listwise Optimization Algorithm

Require: Training instances T , model parameters
w, maximum number of epochs J , batch size
b, number of batches B

1: for j = 0 to J do
2: for i = 0 to B do
3: Sample a minibatch of b lists from T

without replacement
4: Calculate loss function L
5: Calculate gradient∇L
6: wt+1 = AdaDelta(wt, L,∆w)
7: end for
8: end for
9: w = BestBLEU([E]m1)

The above instance aggregating method can be
used in a MERT-like iterative tuning algorithm as
shown in Algorithm 1, which can be easily inte-
grated into current open source systems. The two
standard listwise losses can be easily optimized
using gradient-based methods (Algorithm 2); both
losses are convex, so convergence to a global opti-
mum is guaranteed. The gradients of ListNET and
ListMLE with respect to the parameters w for a
single sentence are:

∂LNet-T

∂w
= −

k∑
j=1

P ′eval(ej)

(
∂s(ej)
∂w

−
k∑
j=1

exp s(ej)∑k
j′=1 exp s(ej′)

∂s(ej)
∂w

)

∂LMLE

∂w
= −

k∑
j=1

(
∂s(πeval(j))

∂w

−
k∑
t=j

exp s(πeval(t))∑k
t′=j exp s(πeval(t′))

∂s(πeval(t))
∂w

)

For optimization, we use a mini-batch stochas-
tic gradient descent (SGD) algorithm together
with AdaDelta (Zeiler, 2012) algorithm to adap-
tively set the learning rate.

4 Top-Rank Enhanced Losses

In evaluating an SMT system, one naturally cares
much more about the top-ranked results than the
lower-ranked results. Therefore, we think that get-
ting the ranking right at the top of a list is more rel-
evant for tuning. Therefore, we should pay more

93

attention to the top-ranked translations instead of
forcing the model to rank the entire list correctly.

Position-dependent Attention: To do this, we
assign a higher cost to ranking errors that occur at
the top and a lower cost to errors at the bottom. To
make the cost sensitive to position, we define it as:

c(j) =
k − j + 1∑k

t=1 t
(6)

where j is the position in the ranking and k is the
size of the list.

Based on this cost function, we propose simple
top-rank enhanced listwise losses as extensions of
both the ListNet loss and the ListMLE loss. The
loss functions are defined as follows:

LMLE-TE = −
k∑
j=1

c(j) log
exp s(πeval(j))∑k
t=j exp s(πeval(t))

LNet-TE = −
∑
∀π∈Ωk

P ′′eval (π)
k∑
j=1

c(j) log qj(π)

qj(π) =
exp z(π(j))∑k
t=j exp z(π(t))

.

Along similar lines, Xia et al. (2008) also pro-
posed a top-n ranking method, which assumes
that only the correct ranking of top-n hypothe-
ses is useful. Compared to our top-rank enhanced
losses, it may be too harsh to discard informa-
tion about the rest of the ordering altogether; our
method retains the whole ordering but weights it
by position.

5 Experiments and Results

5.1 Data and Preparation

We conduct experiments on a large scale Chinese-
English translation task. The parallel data comes
from LDC corpora1, which consists of 8.2 million
of sentence pairs. Monolingual data includes Xin-
hua portion of Gigaword corpus. We use NIST
MT03 evaluation test data as the development set,
MT02, MT04 and MT05 as the test set.

The Chinese side of the corpora is word seg-
mented using ICTCLAS2. Word alignments of the

1The corpora include LDC2002E18, LDC2003E14,
LDC2004E12, LDC2004T08, LDC2005T10 and
LDC2007T09

2http://ictclas.nlpir.org/

Data Usage Sents.
LDC TM train 8,260,093

Gigaword LM train 14,684,074
MT03 train 919
MT02 test 878
MT04 test 1,788
MT05 test 1,082

Table 1: Experimental data and statistics.

parallel data are learned by running GIZA++ (Och
and Ney, 2003) in both directions and refined un-
der the “grow-diag-final-and” method. We train a
5-gram language model on the monolingual data
with Modified Kneser-Ney smoothing(Chen and
Goodman, 1999). Throughout the experiments,
our translation system is an in-house implemen-
tation of the hierarchical phrase-based translation
system (Chiang, 2005). The translation quality is
evaluated by 4-gram case-insensitive BLEU (Pa-
pineni et al., 2002). Statistical significance test-
ing between systems is conducted by bootstrap re-
sampling implemented by Clark et al. (2011).

5.2 Tuning Settings

We build baselines for extended and sparse fea-
ture sets with two different tuning methods. First,
we tune with PRO (Hopkins and May, 2011). As
reported by Cherry and Foster (2012), it’s hard
to find the setting that performs well in general.
We use MegaM version (Daumé III, 2004) with
30 iterations for basic feature set and 100 itera-
tions for extended and sparse feature sets. Second,
we run the k-best batch MIRA (KB-MIRA) which
shows comparable results with online version of
MIRA (Cherry and Foster, 2012; Green et al.,
2013). In our experiments, we run KB-MIRA with
standard settings in Moses3. For the basic feature
set, the baseline is tuned with MERT (Och, 2003).

For all our listwise tuning methods, we set batch
size to 10. In our experiments, we can’t find
a epoch size perform well in general, so we set
epoch size to 100 for ListMLE with basic features,
200 for ListMLE with extended and sparse fea-
tures, and 300 for ListNet. These values are set to
achieve the best performance on the development
set.

We set beam size to 20 throughout our exper-
iments unless otherwise noted. Following Clark
et al. (2011), we run the same training procedure
3 times and present the average results for stabil-
ity. All tuning methods are executed for 40 iter-

3http://www.statmt.org/moses/

94

Methods MT02 MT04 MT05 AVG
Netm 40.36 38.30 37.93 38.86(+0.00)
ListNet 40.75 38.69 38.31 39.25(+0.39)
MLEm 39.82 37.88 37.65 38.45(+0.00)
ListMLE 40.40 38.21 38.04 38.88(+0.43)

Table 2: The comparison of instances aggre-
gating and k-best merging on the extended fea-
ture set.(Netm and MLEm denote ListNet and
ListMLE with k-best merging respectively.)

1 2 3 4 5 6 7 8 9
Top-n

38.0

38.5

39.0

39.5

40.0

40.5

41.0

41.5

BL
EU

Dev03

Test02

Test03

Test04

Figure 2: Effect of different n for Top-n ListMLE.
We investigate the effect on the extended feature
set.

ations of the outer loop and returned the weights
that achieve the best development BLEU scores.
For all tuning methods on sparse feature set, we
use the weight vector tuned by PRO on the ex-
tended feature set as initial weights.

5.3 Experiments of Listwise Learning
Framework

We first investigate the effectiveness of our in-
stance aggregating training procedure. The results
are presented in Table 2. The table compare train-
ing with instance aggregating and k-best merging.
As the result suggested, with the instance aggre-
gating method, the performance improves on both
listwise tuning approaches. For the rest of this pa-
per, we use the instance aggregating as standard
setting for listwise tuning approaches.

To verify the performance of our proposed list-
wise learning framework, we first compare sys-
tems with standard listwise losses to the baseline
systems. The first four rows in Table 3 show
the results. ListNet can outperform PRO by 0.55
BLEU score and 0.26 BLEU score on extended
feature set and sparse feature set, respectively. Its
main reason is that our listwise methods can obtain
structured order information when we take com-

plete translation list as instance.
We also observe that ListMLE can only get

a modest performance compare to ListNet. We
think the objective function of standard ListMLE
which forces the whole list ranking in a correct or-
der is too hard. ListNet mainly benefits from its
top one permutation probability which only con-
cerns the permutation with the best object ranked
first.

5.4 Effect of Top-rank Enhanced Losses

To verify our assumption that the correct rank in
the top portion of a list is more informative, we
conduct this set of experiments. Figure 2 shows
the results of top-n ListMLE with different n.
Compared to ListMLE in Table 2, we find top-
n ListMLE can make significant improvements,
which means that the top rank is more important.
We can observe an improvement in all test sets
when we set n from 1 to 5, but when we further
increase n, the results dropped. This situation in-
dicates that the correct ranking at the top of the list
is more informative and forcing the model to rank
the bottom correctly as important as the top will
sacrifice the ability to guide better search.

In Table 3, top-5 ListMLE which only aims to
rank the top five translations correctly can out-
perform the baseline and standard ListMLE. With
our position-dependent attention, the top-rank en-
hanced ListMLE can make further improvement
over the baseline system(+1.07 and +0.73 on ex-
tended and sparse feature sets, respectively.) and
achieves the best performance.

The top-n loss might be too loose as an approxi-
mation of the measure of BLEU. Compared to top-
n ListMLE, our top-rank enhanced ListMLE can
further utilize the different portions of the list by
different weights. To verify the claim, we further
examined the learning processes of the two losses.
For simplicity, the experiment is conducted on a
translation list generated by random parameters.
The results are shown in Figure 3. We can see that
our top-rank enhanced loss almost completely in-
versely correlates with BLEU after iteration 70. In
contrast, after iteration 150, although top-5 loss is
still decreasing, BLEU starts to drop.

Due to the high computation cost of ListNet, we
only perform the top-rank enhanced ListMLE in
this paper. Our preliminary experiments indicate
that the performance of ListNet can be further im-
proved with a top-2 loss. We think our top-rank

95

Method Extended Features Sparse Features
MT02 MT04 MT05 AVG MT02 MT04 MT05 AVG

PRO 40.30 38.12 37.69 38.70(+0.00) 40.63 38.46 38.24 39.11(+0.00)
KB-MIRA 40.48 37.71 37.37 38.52(-0.18) 40.67 38.48 38.21 39.12(+0.01)
ListNet 40.75∗ 38.69+ 38.31∗ 39.25(+0.55) 40.91∗ 38.77∗ 38.42 39.37(+0.26)
ListMLE 40.40 38.21 38.04 38.88(+0.18) 40.63 38.68 38.24 39.18(+0.07)
ListMLE-T5 41.02∗ 38.84+ 38.79+ 39.55(+0.85) 41.12∗ 38.91∗ 38.89∗ 39.64(+0.53)
ListMLE-TE 41.15+ 39.01+ 39.16+ 39.77(+1.07) 41.25+ 39.00+ 39.27+ 39.84(+0.73)

Table 3: BLEU4 in percentage for comparing of baseline systems and systems with listwise losses. +, ∗

marks results that are significant better than the baseline system with p < 0.01 and p < 0.05. (ListMLE-
T5 and ListMLE-TE refer to top-5 LisMLE and our top-rank enhanced ListMLE, respectively.)

0 50 100 150 200

Epoch number

26.0

26.1

26.2

26.3

26.4

26.5

26.6

26.7

BL
EU

BLEU

40.4

40.5

40.6

40.7

40.8

40.9

41.0

41.1

41.2

41.3

Lo
ss

Loss

(a)

0 50 100 150 200

Epoch number

25.4

25.6

25.8

26.0

26.2

26.4

26.6

26.8

BL
EU

BLEU

13.2

13.4

13.6

13.8

14.0

Lo
ss

Loss

(b)

Figure 3: Listwise losses v.s. BLEU in (a) top-5 ListMLE and (b) top-rank enhanced ListMLE

Methods MT02 MT04 MT05 AVG
PRO 40.90 38.84 38.64 39.64(+0.00)
KB-MIRA 41.09 38.49 38.62 39.40(-0.06)
ListNet 41.49+ 39.25∗ 39.17∗ 39.97(+0.51)
ListMLE-T5 41.26∗ 39.63+ 39.32∗ 40.07(+0.61)
ListMLE-TE 41.85+ 39.96+ 39.88+ 40.56(+1.10)

Table 4: Comparison of baselines and listwise ap-
proaches with a larger k-best list on extended fea-
ture set.

enhanced method is also useful for ListNet, but
due to its computational demands it needs to be
further investigated.

5.5 Impact of the Size of Candidate Lists

Our listwise tuning methods directly model the or-
der of the translation list, it is clear that the choice
of the translation list size k has an impact on our
methods. A larger candidate list size may result in
the availability of more information during tuning.
In order to verify our tuning methods’ capability of
handling the larger translation list, we increase k
from 20 to 100. The comparison results are shown
in Table 4. With a larger size k, our tuning meth-
ods also perform better than baselines. For List-

Net and top-5 ListMLE, we observe that the im-
provements over baseline is smaller than size 20.
This results show that the order information loss
caused by directly drop the bottom is aggravated
with larger list size. However, our top-rank en-
hanced method still get a slight better result than
size 20 and significant improvement over baseline
by 1.1 BLEU score. This indicate that our top-
rank enhanced method is more stable and can still
effectively exploit the larger size translation list.

5.6 Performance on Basic Feature Set

Since the effectiveness of high dimensional fea-
ture set, recent work pays more attention to this
scenario. Although previous discriminative tun-
ing methods can effectively handle high dimen-
sional feature set, MERT is still the dominant tun-
ing method for basic features. Here, we investigate
our top-rank enhanced tuning methods’ capabil-
ity of handling basic feature set. Table 5 summa-
rizes the comparison results. Firstly, we observe
that ListNet and ListMLE can perform compara-
ble with MERT. With our top-ranked enhanced
method, we can get a better performance than

96

Methods MT02 MT04 MT05 AVG
MERT 37.72 37.13 36.77 37.21(+0.00)
PRO 37.85 37.21 36.68 37.24(+0.03)
KB-MIRA 37.97 37.28 36.58 37.28(+0.07)
ListNet 37.71 37.47∗ 36.78 37.32(+0.11)
ListMLE 37.54 37.54 36.65 37.24(+0.03)
ListMLE-T5 37.90 37.32 36.84 37.35(+0.14)
ListMLE-TE 38.03 37.49∗ 36.85 37.46(+0.25)

Table 5: Comparison of baseline and liswise ap-
proaches on basic feature set.

MERT by 0.25 BLEU score. These results show
that our top-ranked enhanced tuning method can
learn more informations of translation list even
with a basic feature set.

6 Related Work

The ranking problem is well studied in IR com-
munity. There are many methods been pro-
posed, including pointwise (Nallapati, 2004), pair-
wise (Herbrich et al., 1999; Burges et al., 2005)
and listwise (Cao et al., 2007; Xia et al., 2008) al-
gorithms. Experiment results show that listwise
methods deliver better performance than point-
wise and pairwise methods in general (Liu, 2010).

Most NLP researches take ranking as an extra
step after searching from its output space (Char-
niak and Johnson, 2005; Collins and Terry Koo,
2005; Duh, 2008). In SMT research, listwise ap-
proaches also have been employed for the rerank-
ing tasks. For example, Li et al. (2013) uti-
lized two listwise approaches to rerank the trans-
lation outputs and achieved the best segment-
level correlation with human judgments. Niehues
et al. (2015) employed ListNet to rescore the k-
best translations, which significantly outperforms
MERT, KB-MIRA and PRO. Zhang et al. (2016)
viewed the log-linear model as a pointwise rank-
ing function and shifted it to listwise ranking func-
tion by introducing listwise features and outper-
formed the log-linear model. Compared to these
efforts, our method takes a further step by inte-
grating listwise ranking methods into the iterative
training.

There are also some researches use ranking
methods for tuning to guide better search. In SMT,
previous attempts on using ranking as a tuning
methods usually perform pairwise comparisons on
a subset of translation pairs (Chiang et al., 2008;
Hopkins and May, 2011; Watanabe, 2012; Bazraf-
shan et al., 2012; Guzmán et al., 2015). Dreyer
and Dong (2015) even took all translation pairs of
the k-best list as training instances, which only ob-

tained a comparable result with PRO and the im-
plementation is more complicate. In this paper,
we model the entire list as a whole unit, and pro-
pose training objectives that are sensitive to differ-
ent parts of the list.

7 Conclusion

In this paper, we propose a listwise learning
framework for statistical machine translation. In
order to adapt listwise approaches, we use an iter-
ative training framework in which instances from
different iterations are aggregated into the train-
ing set. To emphasize the top order of the list, we
further propose top-rank enhanced listwise learn-
ing losses. Compared to previous efforts in SMT
tuning, our method directly models the order in-
formation of the complete translation list. Experi-
ments show our method could lead to significant
improvements of translation quality in different
feature sets and beam size.

Our current work focuses on the traditional
SMT task. For future work, it will be interesting to
integrate our methods to modern neural machine
translation systems or other structure prediction
problems. It may also be interesting to explore
more methods on listwise tuning framework, such
as investigating different methods to enhance top
order of translation list directly w.r.t a given eval-
uation metric.

Acknowledgments

The authors would like to thank the anonymous re-
viewers for their valuable comments. This work is
supported by the National Science Foundation of
China (No. 61672277, 61300158 and 61472183).
Part of Huadong Chen’s contribution was made
while visiting University of Notre Dame. His visit
was supported by the joint PhD program of China
Scholarship Council.

References
Marzieh Bazrafshan, Tagyoung Chung, and Daniel

Gildea. 2012. Tuning as linear regression. In Pro-
ceedings of the 2012 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies. Asso-
ciation for Computational Linguistics, pages 543–
547. http://aclweb.org/anthology/N12-1062.

Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier,
Matt Deeds, Nicole Hamilton, and Greg Hul-
lender. 2005. Learning to rank using gradient

97

descent. In Proceedings of the 22Nd Interna-
tional Conference on Machine Learning. ACM,
New York, NY, USA, ICML ’05, pages 89–96.
https://doi.org/10.1145/1102351.1102363.

Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai,
and Hang Li. 2007. Learning to rank: From
pairwise approach to listwise approach. In
Proceedings of the 24th International Con-
ference on Machine Learning. ACM, New
York, NY, USA, ICML ’07, pages 129–136.
https://doi.org/10.1145/1273496.1273513.

Eugene Charniak and Mark Johnson. 2005. Coarse-
to-fine n-best parsing and maxent discrimina-
tive reranking. In Proceedings of the 43rd
Annual Meeting of the Association for Com-
putational Linguistics (ACL’05). Association
for Computational Linguistics, pages 173–180.
http://aclweb.org/anthology/P05-1022.

Boxing Chen, Roland Kuhn, and George Foster. 2013.
Vector space model for adaptation in statistical ma-
chine translation. In Proceedings of the 51st An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). Association
for Computational Linguistics, pages 1285–1293.
http://aclweb.org/anthology/P13-1126.

Stanley F Chen and Joshua Goodman. 1999. An
empirical study of smoothing techniques for lan-
guage modeling. Computer Speech & Language
13(4):359–394.

Colin Cherry and George Foster. 2012. Batch tuning
strategies for statistical machine translation. In Pro-
ceedings of the 2012 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies. Asso-
ciation for Computational Linguistics, pages 427–
436. http://aclweb.org/anthology/N12-1047.

David Chiang. 2005. A hierarchical phrase-based
model for statistical machine translation. In Pro-
ceedings of the 43rd Annual Meeting of the Associ-
ation for Computational Linguistics (ACL’05). As-
sociation for Computational Linguistics, pages 263–
270. http://aclweb.org/anthology/P05-1033.

David Chiang, Yuval Marton, and Philip Resnik.
2008. Online large-margin training of syntac-
tic and structural translation features. In Pro-
ceedings of the 2008 Conference on Empirical
Methods in Natural Language Processing. Associa-
tion for Computational Linguistics, pages 224–233.
http://aclweb.org/anthology/D08-1024.

H. Jonathan Clark, Chris Dyer, Alon Lavie, and
A. Noah Smith. 2011. Better hypothesis testing for
statistical machine translation: Controlling for opti-
mizer instability. In Proceedings of the 49th Annual
Meeting of the Association for Computational Lin-
guistics: Human Language Technologies. Associa-
tion for Computational Linguistics, pages 176–181.
http://aclweb.org/anthology/P11-2031.

Collins and Michael Terry Koo. 2005. Discrimina-
tive reranking for natural language parsing. Compu-
tational Linguistics, Volume 31, Number 1, March
2005 http://aclweb.org/anthology/J05-1003.

Hal Daumé III. 2004. Notes on CG and LM-BFGS
optimization of logistic regression.

Markus Dreyer and Yuanzhe Dong. 2015. Apro: All-
pairs ranking optimization for mt tuning. In Pro-
ceedings of the 2015 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies. Asso-
ciation for Computational Linguistics, pages 1018–
1023. https://doi.org/10.3115/v1/N15-1106.

Kevin Duh. 2008. Ranking vs. regression in machine
translation evaluation. In Proceedings of the
Third Workshop on Statistical Machine Transla-
tion. Association for Computational Linguistics,
Stroudsburg, PA, USA, StatMT ’08, pages 191–194.
http://dl.acm.org/citation.cfm?id=1626394.1626425.

Spence Green, Sida Wang, Daniel Cer, and D. Christo-
pher Manning. 2013. Fast and adaptive online train-
ing of feature-rich translation models. In Proceed-
ings of the 51st Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers). Association for Computational Linguistics,
pages 311–321. http://aclweb.org/anthology/P13-
1031.

John Guiver and Edward Snelson. 2009. Bayesian
inference for plackett-luce ranking models. In
Proceedings of the 26th Annual International
Conference on Machine Learning. ACM, New
York, NY, USA, ICML ’09, pages 377–384.
https://doi.org/10.1145/1553374.1553423.

Francisco Guzmán, Preslav Nakov, and Stephan
Vogel. 2015. Analyzing optimization for sta-
tistical machine translation: Mert learns ver-
bosity, pro learns length. In Proceedings of the
Nineteenth Conference on Computational Natu-
ral Language Learning. Association for Compu-
tational Linguistics, Beijing, China, pages 62–72.
http://www.aclweb.org/anthology/K15-1007.

Ralf Herbrich, Thore Graepel, and Klaus Obermayer.
1999. Support vector learning for ordinal regres-
sion. In Artificial Neural Networks, 1999. ICANN
99. Ninth International Conference on (Conf. Publ.
No. 470). IET, volume 1, pages 97–102.

Mark Hopkins and Jonathan May. 2011. Tun-
ing as ranking. In Proceedings of the 2011
Conference on Empirical Methods in Nat-
ural Language Processing. Association for
Computational Linguistics, pages 1352–1362.
http://aclweb.org/anthology/D11-1125.

Philipp Koehn, Franz J. Och, and Daniel Marcu.
2003. Statistical phrase-based translation. In Pro-
ceedings of the 2003 Human Language Technol-
ogy Conference of the North American Chapter

98

of the Association for Computational Linguistics.
http://aclweb.org/anthology/N03-1017.

Maoxi Li, Aiwen Jiang, and Mingwen Wang. 2013.
Listwise approach to learning to rank for automatic
evaluation of machine translation. Proceedings of
the XIV Machine Translation Summit .

Chin-Yew Lin and Franz Josef Och. 2004. ORANGE:
A method for evaluating automatic evaluation met-
rics for machine translation. In Proceedings of
the 20th International Conference on Computational
Linguistics.

Tie-Yan Liu. 2010. Learning to rank for informa-
tion retrieval. In Proceedings of the 33rd In-
ternational ACM SIGIR Conference on Research
and Development in Information Retrieval. ACM,
New York, NY, USA, SIGIR ’10, pages 904–904.
https://doi.org/10.1145/1835449.1835676.

Yang Liu, Qun Liu, and Shouxun Lin. 2006. Tree-
to-string alignment template for statistical ma-
chine translation. In Proceedings of the 21st
International Conference on Computational Lin-
guistics and 44th Annual Meeting of the Asso-
ciation for Computational Linguistics. Associa-
tion for Computational Linguistics, pages 609–616.
http://aclweb.org/anthology/P06-1077.

Ramesh Nallapati. 2004. Discriminative models for in-
formation retrieval. In Proceedings of the 27th An-
nual International ACM SIGIR Conference on Re-
search and Development in Information Retrieval.
ACM, New York, NY, USA, SIGIR ’04, pages 64–
71. https://doi.org/10.1145/1008992.1009006.

Jan Niehues, Quoc-Khanh DO, Alexandre Allauzen,
and Alex Waibel. 2015. Listnet-based mt rescor-
ing. In Proceedings of the Tenth Workshop
on Statistical Machine Translation. Association
for Computational Linguistics, pages 248–255.
http://aclweb.org/anthology/W15-3030.

Franz Josef Och. 2003. Minimum error rate train-
ing in statistical machine translation. In ACL
’03: Proceedings of the 41st Annual Meeting
on Association for Computational Linguis-
tics. Association for Computational Linguis-
tics, Morristown, NJ, USA, pages 160–167.
https://doi.org/http://dx.doi.org/10.3115/1075096.1075117.

Franz Josef Och and Hermann Ney. 2003. A
systematic comparison of various statistical
alignment models. Comput. Linguist. 29(1):19–51.
https://doi.org/http://dl.acm.org/citation.cfm?id=778824.

Kishore Papineni, Salim Roukos, Todd Ward, and
Wei-Jing Zhu. 2002. Bleu: a method for au-
tomatic evaluation of machine translation. In
Proceedings of the 40th Annual Meeting of
the Association for Computational Linguistics.
http://aclweb.org/anthology/P02-1040.

Taro Watanabe. 2012. Optimized online rank learn-
ing for machine translation. In Proceedings of
the 2012 Conference of the North American Chap-
ter of the Association for Computational Linguis-
tics: Human Language Technologies. Associa-
tion for Computational Linguistics, pages 253–262.
http://aclweb.org/anthology/N12-1026.

Taro Watanabe, Jun Suzuki, Hajime Tsukada, and
Hideki Isozaki. 2007. Online large-margin train-
ing for statistical machine translation. In Proceed-
ings of the 2007 Joint Conference on Empirical
Methods in Natural Language Processing and Com-
putational Natural Language Learning (EMNLP-
CoNLL). http://aclweb.org/anthology/D07-1080.

Fen Xia, Tie-Yan Liu, Jue Wang, Wensheng
Zhang, and Hang Li. 2008. Listwise ap-
proach to learning to rank: Theory and algo-
rithm. In Proceedings of the 25th International
Conference on Machine Learning. ACM, New
York, NY, USA, ICML ’08, pages 1192–1199.
https://doi.org/10.1145/1390156.1390306.

Kenji Yamada and Kevin Knight. 2001. A
syntax-based statistical translation model. In
Proceedings of the 39th Annual Meeting of
the Association for Computational Linguistics.
http://aclweb.org/anthology/P01-1067.

Matthew D Zeiler. 2012. Adadelta: An adaptive learn-
ing rate method. arXiv preprint arXiv:1212.5701 .

M. Zhang, Y. Liu, H. Luan, and M. Sun. 2016. Listwise
ranking functions for statistical machine transla-
tion. IEEE/ACM Transactions on Audio, Speech,
and Language Processing 24(8):1464–1472.
https://doi.org/10.1109/TASLP.2016.2560527.

99

Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017), pages 100–111,
Vancouver, Canada, August 3 - August 4, 2017. c©2017 Association for Computational Linguistics

Embedding Words and Senses Together
via Joint Knowledge-Enhanced Training

Massimiliano Mancini*, Jose Camacho-Collados*, Ignacio Iacobacci and Roberto Navigli
Department of Computer Science

Sapienza University of Rome
mancini@dis.uniroma1.it

{collados,iacobacci,navigli}@di.uniroma1.it

Abstract

Word embeddings are widely used in Nat-
ural Language Processing, mainly due to
their success in capturing semantic infor-
mation from massive corpora. However,
their creation process does not allow the
different meanings of a word to be auto-
matically separated, as it conflates them
into a single vector. We address this issue
by proposing a new model which learns
word and sense embeddings jointly. Our
model exploits large corpora and knowl-
edge from semantic networks in order to
produce a unified vector space of word
and sense embeddings. We evaluate the
main features of our approach both qual-
itatively and quantitatively in a variety of
tasks, highlighting the advantages of the
proposed method in comparison to state-
of-the-art word- and sense-based models.

1 Introduction

Recently, approaches based on neural networks
which embed words into low-dimensional vector
spaces from text corpora (i.e. word embeddings)
have become increasingly popular (Mikolov et al.,
2013; Pennington et al., 2014). Word embeddings
have proved to be beneficial in many Natural Lan-
guage Processing tasks, such as Machine Transla-
tion (Zou et al., 2013), syntactic parsing (Weiss
et al., 2015), and Question Answering (Bordes
et al., 2014), to name a few. Despite their suc-
cess in capturing semantic properties of words,
these representations are generally hampered by
an important limitation: the inability to discrimi-
nate among different meanings of the same word.

Authors marked with an asterisk (*) contributed equally.

Previous works have addressed this limita-
tion by automatically inducing word senses from
monolingual corpora (Schütze, 1998; Reisinger
and Mooney, 2010; Huang et al., 2012; Di Marco
and Navigli, 2013; Neelakantan et al., 2014; Tian
et al., 2014; Li and Jurafsky, 2015; Vu and
Parker, 2016; Qiu et al., 2016), or bilingual par-
allel data (Guo et al., 2014; Ettinger et al., 2016;
Šuster et al., 2016). However, these approaches
learn solely on the basis of statistics extracted
from text corpora and do not exploit knowl-
edge from semantic networks. Additionally, their
induced senses are neither readily interpretable
(Panchenko et al., 2017) nor easily mappable to
lexical resources, which limits their application.
Recent approaches have utilized semantic net-
works to inject knowledge into existing word rep-
resentations (Yu and Dredze, 2014; Faruqui et al.,
2015; Goikoetxea et al., 2015; Speer and Lowry-
Duda, 2017; Mrksic et al., 2017), but without solv-
ing the meaning conflation issue. In order to ob-
tain a representation for each sense of a word,
a number of approaches have leveraged lexical
resources to learn sense embeddings as a result
of post-processing conventional word embeddings
(Chen et al., 2014; Johansson and Pina, 2015;
Jauhar et al., 2015; Rothe and Schütze, 2015; Pile-
hvar and Collier, 2016; Camacho-Collados et al.,
2016).

Instead, we propose SW2V (Senses and Words
to Vectors), a neural model that exploits knowl-
edge from both text corpora and semantic net-
works in order to simultaneously learn embed-
dings for both words and senses. Moreover, our
model provides three additional key features: (1)
both word and sense embeddings are represented
in the same vector space, (2) it is flexible, as it can
be applied to different predictive models, and (3)
it is scalable for very large semantic networks and
text corpora.

100

2 Related work

Embedding words from large corpora into a low-
dimensional vector space has been a popular task
since the appearance of the probabilistic feed-
forward neural network language model (Ben-
gio et al., 2003) and later developments such as
word2vec (Mikolov et al., 2013) and GloVe (Pen-
nington et al., 2014). However, little research has
focused on exploiting lexical resources to over-
come the inherent ambiguity of word embeddings.

Iacobacci et al. (2015) overcame this limitation
by applying an off-the-shelf disambiguation sys-
tem (i.e. Babelfy (Moro et al., 2014)) to a cor-
pus and then using word2vec to learn sense em-
beddings over the pre-disambiguated text. How-
ever, in their approach words are replaced by their
intended senses, consequently producing as out-
put sense representations only. The representation
of words and senses in the same vector space
proves essential for applying these knowledge-
based sense embeddings in downstream applica-
tions, particularly for their integration into neural
architectures (Pilehvar et al., 2017). In the litera-
ture, various different methods have attempted to
overcome this limitation. Chen et al. (2014) pro-
posed a model for obtaining both word and sense
representations based on a first training step of
conventional word embeddings, a second disam-
biguation step based on sense definitions, and a fi-
nal training phase which uses the disambiguated
text as input. Likewise, Rothe and Schütze (2015)
aimed at building a shared space of word and
sense embeddings based on two steps: a first train-
ing step of only word embeddings and a second
training step to produce sense and synset em-
beddings. These two approaches require multiple
steps of training and make use of a relatively small
resource like WordNet, which limits their cov-
erage and applicability. Camacho-Collados et al.
(2016) increased the coverage of these WordNet-
based approaches by exploiting the complemen-
tary knowledge of WordNet and Wikipedia along
with pre-trained word embeddings. Finally, Wang
et al. (2014) and Fang et al. (2016) proposed a
model to align vector spaces of words and en-
tities from knowledge bases. However, these ap-
proaches are restricted to nominal instances only
(i.e. Wikipedia pages or entities).

In contrast, we propose a model which learns
both words and sense embeddings from a single
joint training phase, producing a common vector

space of words and senses as an emerging feature.

3 Connecting words and senses in
context

In order to jointly produce embeddings for words
and senses, SW2V needs as input a corpus where
words are connected to senses1 in each given con-
text. One option for obtaining such connections
could be to take a sense-annotated corpus as input.
However, manually annotating large amounts of
data is extremely expensive and therefore imprac-
tical in normal settings. Obtaining sense-annotated
data from current off-the-shelf disambiguation and
entity linking systems is possible, but generally
suffers from two major problems. First, supervised
systems are hampered by the very same prob-
lem of needing large amounts of sense-annotated
data. Second, the relatively slow speed of current
disambiguation systems, such as graph-based ap-
proaches (Hoffart et al., 2012; Agirre et al., 2014;
Moro et al., 2014), or word-expert supervised sys-
tems (Zhong and Ng, 2010; Iacobacci et al., 2016;
Melamud et al., 2016), could become an obstacle
when applied to large corpora.

This is the reason why we propose a simple yet
effective unsupervised shallow word-sense con-
nectivity algorithm, which can be applied to vir-
tually any given semantic network and is linear on
the corpus size. The main idea of the algorithm is
to exploit the connections of a semantic network
by associating words with the senses that are most
connected within the sentence, according to the
underlying network.

Shallow word-sense connectivity algorithm.
Formally, a corpus and a semantic network are
taken as input and a set of connected words and
senses is produced as output. We define a seman-
tic network as a graph (S,E) where the set S con-
tains synsets (nodes) and E represents a set of
semantically connected synset pairs (edges). Al-
gorithm 1 describes how to connect words and
senses in a given text (sentence or paragraph) T .
First, we gather in a set ST all candidate synsets
of the words (including multiwords up to trigrams)
in T (lines 1 to 3). Second, for each candidate
synset s we calculate the number of synsets which
are connected with s in the semantic network
and are included in ST , excluding connections of
synsets which only appear as candidates of the

1In this paper we focus on senses but other items con-
nected to words may be used (e.g. supersenses or images).

101

Algorithm 1 Shallow word-sense connectivity
Input: Semantic network (S,E) and text T represented as a

bag of words
Output: Set of connected words and senses T ∗ ⊂ T × S
1: Set of synsets ST ← ∅
2: for each word w ∈ T
3: ST ← ST ∪ Sw (Sw: set of candidate synsets of w)
4: Minimum connections threshold θ ← |ST |+|T |

2 δ
5: Output set of connections T ∗ ← ∅
6: for each w ∈ T
7: Relative maximum connections max = 0
8: Set of senses associated with w, Cw ← ∅
9: for each candidate synset s ∈ Sw

10: Number of edges n = |s′ ∈ ST : (s, s′) ∈ E &
∃w′ ∈ T : w′ 6= w & s′ ∈ Sw′ |

11: if n ≥ max & n ≥ θ then
12: if n > max then
13: Cw ← {(w, s)}
14: max← n
15: else
16: Cw ← Cw ∪ {(w, s)}
17: T ∗ ← T ∗ ∪ Cw
18: return Output set of connected words and senses T ∗

same word (lines 5 to 10). Finally, each word is
associated with its top candidate synset(s) accord-
ing to its/their number of connections in context,
provided that its/their number of connections ex-
ceeds a threshold θ = |ST |+|T |

2 δ (lines 11 to 17).2

This parameter aims to retain relevant connectivity
across senses, as only senses above the threshold
will be connected to words in the output corpus. θ
is proportional to the reciprocal of a parameter δ,3

and directly proportional to the average text length
and number of candidate synsets within the text.

The complexity of the proposed algorithm is
N + (N × α), where N is the number of words
of the training corpus and α is the average poly-
semy degree of a word in the corpus according to
the input semantic network. Considering that non-
content words are not taken into account (i.e. pol-
ysemy degree 0) and that the average polysemy
degree of words in current lexical resources (e.g.
WordNet or BabelNet) does not exceed a small
constant (3) in any language, we can safely assume
that the algorithm is linear in the size of the train-
ing corpus. Hence, the training time is not signif-
icantly increased in comparison to training words

2As mentioned above, all unigrams, bigrams and trigrams
present in the semantic network are considered. In the case
of overlapping instances, the selection of the final instance is
performed in this order: mention whose synset is more con-
nected (i.e. n is higher), longer mention and from left to right.

3Higher values of δ lead to higher recall, while lower val-
ues of δ increase precision but lower the recall. We set the
value of δ to 100, as it was shown to produce a fine bal-
ance between precision and recall. This parameter may also
be tuned on downstream tasks.

only, irrespective of the corpus size. This enables
a fast training on large amounts of text corpora,
in contrast to current unsupervised disambiguation
algorithms. Additionally, as we will show in Sec-
tion 5.2, this algorithm does not only speed up sig-
nificantly the training phase, but also leads to more
accurate results.

Note that with our algorithm a word is allowed
to have more than one sense associated. In fact,
current lexical resources like WordNet (Miller,
1995) or BabelNet (Navigli and Ponzetto, 2012)
are hampered by the high granularity of their sense
inventories (Hovy et al., 2013). In Section 6.2 we
show how our sense embeddings are particularly
suited to deal with this issue.

4 Joint training of words and senses

The goal of our approach is to obtain a shared
vector space of words and senses. To this end,
our model extends conventional word embedding
models by integrating explicit knowledge into its
architecture. While we will focus on the Con-
tinuous Bag Of Words (CBOW) architecture of
word2vec (Mikolov et al., 2013), our extension
can easily be applied similarly to Skip-Gram, or to
other predictive approaches based on neural net-
works. The CBOW architecture is based on the
feedforward neural network language model (Ben-
gio et al., 2003) and aims at predicting the current
word using its surrounding context. The architec-
ture consists of input, hidden and output layers.
The input layer has the size of the word vocabulary
and encodes the context as a combination of one-
hot vector representations of surrounding words of
a given target word. The output layer has the same
size as the input layer and contains a one-hot vec-
tor of the target word during the training phase.

Our model extends the input and output layers
of the neural network with word senses4 by ex-
ploiting the intrinsic relationship between words
and senses. The leading principle is that, since a
word is the surface form of an underlying sense,
updating the embedding of the word should pro-
duce a consequent update to the embedding rep-
resenting that particular sense, and vice-versa. As
a consequence of the algorithm described in the
previous section, each word in the corpus may be
connected with zero, one or more senses. We re-

4Our model can also produce a space of words and synset
embeddings as output: the only difference is that all synonym
senses would be considered to be the same item, i.e. a synset.

102

Figure 1: The SW2V architecture on a sample training instance using four context words. Dotted lines
represent the virtual link between words and associated senses in context. In this example, the input layer
consists of a context of two previous words (wt−2, wt−1) and two subsequent words (wt+1, wt+2) with
respect to the target word wt. Two words (wt−1, wt+2) do not have senses associated in context, while
wt−2, wt+1 have three senses (s1t−1, s2t−1, s3t−1) and one sense associated (s1t+1) in context, respectively.
The output layer consists of the target word wt, which has two senses associated (s1t , s

2
t) in context.

fer to the set of senses connected to a given word
within the specific context as its associated senses.

Formally, we define a training instance as a se-
quence of words W = wt−n, ..., wt, ..., wt+n
(being wt the target word) and S =
St−n, ..., St,, St+n, where Si = s1i , ..., s

ki
i

is the sequence of all associated senses in context
of wi ∈ W . Note that Si might be empty if the
word wi does not have any associated sense.
In our model each target word takes as context
both its surrounding words and all the senses
associated with them. In contrast to the original
CBOW architecture, where the training criterion
is to correctly classify wt, our approach aims to
predict the word wt and its set St of associated
senses. This is equivalent to minimizing the
following loss function:

E = − log(p(wt|W t, St))−
∑
s∈St

log(p(s|W t, St))

where W t = wt−n, ..., wt−1, wt+1, ..., wt+n and
St = St−n, ..., St−1, St+1, ..., St+n. Figure 1
shows the organization of the input and the out-
put layers on a sample training instance. In what
follows we present a set of variants of the model
on the output and the input layers.

4.1 Output layer alternatives
Both words and senses. This is the default case

explained above. If a word has one or more
associated senses, these senses are also used
as target on a separate output layer.

Only words. In this case we exclude senses as
target. There is a single output layer with the
size of the word vocabulary as in the original
CBOW model.

Only senses. In contrast, this alternative excludes
words, using only senses as target. In this
case, if a word does not have any associated
sense, it is not used as target instance.

4.2 Input layer alternatives

Both words and senses. Words and their associ-
ated senses are included in the input layer and
contribute to the hidden state. Both words and
senses are updated as a consequence of the
backpropagation algorithm.

Only words. In this alternative only the surround-
ing words contribute to the hidden state, i.e.
the target word/sense (depending on the alter-
native of the output layer) is predicted only
from word features. The update of an input
word is propagated to the embeddings of its
associated senses, if any. In other words, de-
spite not being included in the input layer,
senses still receive the same gradient of the
associated input word, through a virtual con-
nection. This configuration, coupled with the
only-words output layer configuration, corre-
sponds exactly to the default CBOW archi-
tecture of word2vec with the only addition of
the update step for senses.

103

Only senses. Words are excluded from the input
layer and the target is predicted only from
the senses associated with the surrounding
words. The weights of the words are updated
through the updates of the associated senses,
in contrast to the only-words alternative.

5 Analysis of Model Components

In this section we analyze the different compo-
nents of SW2V, including the nine model configu-
rations (Section 5.1) and the algorithm which gen-
erates the connections between words and senses
in context (Section 5.2). In what follows we de-
scribe the common analysis setting:

• Training model and hyperparameters. For
evaluation purposes, we use the CBOW
model of word2vec with standard hyperpa-
rameters: the dimensionality of the vectors is
set to 300 and the window size to 8, and hi-
erarchical softmax is used for normalization.
These hyperparameter values are set across
all experiments.

• Corpus and semantic network. We use a
300M-words corpus from the UMBC project
(Han et al., 2013), which contains English
paragraphs extracted from the web.5 As se-
mantic network we use BabelNet 3.06, a large
multilingual semantic network with over 350
million semantic connections, integrating re-
sources such as Wikipedia and WordNet. We
chose BabelNet owing to its wide coverage of
named entities and lexicographic knowledge.

• Benchmark. Word similarity has been one
of the most popular benchmarks for in-vitro
evaluation of vector space models (Penning-
ton et al., 2014; Levy et al., 2015). For
the analysis we use two word similarity
datasets: the similarity portion (Agirre et al.,
2009, WS-Sim) of the WordSim-353 dataset
(Finkelstein et al., 2002) and RG-65 (Ruben-
stein and Goodenough, 1965). In order to
compute the similarity of two words using
our sense embeddings, we apply the standard
closest senses strategy (Resnik, 1995; Bu-
danitsky and Hirst, 2006; Camacho-Collados

5http://ebiquity.umbc.
edu/blogger/2013/05/01/
umbc-webbase-corpus-of-3b-english-words/

6http://babelnet.org

et al., 2015), using cosine similarity (cos) as
comparison measure between senses:

sim(w1, w2) = max
s∈Sw1 ,s

′∈Sw2

cos(~s1, ~s2) (1)

where Swi represents the set of all candidate
senses of wi and ~si refers to the sense vector
representation of the sense si.

5.1 Model configurations

In this section we analyze the different configu-
rations of our model in respect of the input and
the output layer on a word similarity experiment.
Recall from Section 4 that our model could have
words, senses or both in either the input and output
layers. Table 1 shows the results of all nine config-
urations on the WS-Sim and RG-65 datasets.

As shown in Table 1, the best configuration ac-
cording to both Spearman and Pearson correla-
tion measures is the configuration which has only
senses in the input layer and both words and senses
in the output layer.7 In fact, taking only senses as
input seems to be consistently the best alternative
for the input layer. Our hunch is that the knowl-
edge learned from both the co-occurrence infor-
mation and the semantic network is more balanced
with this input setting. For instance, in the case
of including both words and senses in the input
layer, the co-occurrence information learned by
the network would be duplicated for both words
and senses.

5.2 Disambiguation / Shallow word-sense
connectivity algorithm

In this section we evaluate the impact of our shal-
low word-sense connectivity algorithm (Section
3) by testing our model directly taking a pre-
disambiguated text as input. In this case the net-
work exploits the connections between each word
and its disambiguated sense in context. For this
comparison we used Babelfy8 (Moro et al., 2014),
a state-of-the-art graph-based disambiguation and
entity linking system based on BabelNet. We com-
pare to both the default Babelfy system which

7In this analysis we used the word similarity task for
optimizing the sense embeddings, without caring about the
performance of word embeddings or their interconnectivity.
Therefore, this configuration may not be optimal for word
embeddings and may be further tuned on specific applica-
tions. More information about different configurations in the
documentation of the source code.

8http://babelfy.org

104

Output
Words Senses Both

WS-Sim RG-65 WS-Sim RG-65 WS-Sim RG-65
r ρ r ρ r ρ r ρ r ρ r ρ

In
pu

t Words 0.49 0.48 0.65 0.66 0.56 0.56 0.67 0.67 0.54 0.53 0.66 0.65
Senses 0.69 0.69 0.70 0.71 0.69 0.70 0.70 0.74 0.72 0.71 0.71 0.74
Both 0.60 0.65 0.67 0.70 0.62 0.65 0.66 0.67 0.65 0.71 0.68 0.70

Table 1: Pearson (r) and Spearman (ρ) correlation performance of the nine configurations of SW2V

WS-Sim RG-65
r ρ r ρ

Shallow 0.72 0.71 0.71 0.74
Babelfy 0.65 0.63 0.69 0.70
Babelfy* 0.63 0.61 0.65 0.64

Table 2: Pearson (r) and Spearman (ρ) correla-
tion performance of SW2V integrating our shal-
low word-sense connectivity algorithm (default),
Babelfy, or Babelfy*.

uses the Most Common Sense (MCS) heuristic as a
back-off strategy and, following (Iacobacci et al.,
2015), we also include a version in which only
instances above the Babelfy default confidence
threshold are disambiguated (i.e. the MCS back-
off strategy is disabled). We will refer to this latter
version as Babelfy* and report the best configura-
tion of each strategy according to our analysis.

Table 2 shows the results of our model using
the three different strategies on RG-65 and WS-
Sim. Our shallow word-sense connectivity algo-
rithm achieves the best overall results. We believe
that these results are due to the semantic connec-
tivity ensured by our algorithm and to the pos-
sibility of associating words with more than one
sense, which seems beneficial for training, mak-
ing it more robust to possible disambiguation er-
rors and to the sense granularity issue (Erk et al.,
2013). The results are especially significant con-
sidering that our algorithm took a tenth of the time
needed by Babelfy to process the corpus.

6 Evaluation

We perform a qualitative and quantitative evalua-
tion of important features of SW2V in three dif-
ferent tasks. First, in order to compare our model
against standard word-based approaches, we eval-
uate our system in the word similarity task (Sec-
tion 6.1). Second, we measure the quality of our
sense embeddings in a sense-specific application:

sense clustering (Section 6.2). Finally, we evalu-
ate the coherence of our unified vector space by
measuring the interconnectivity of word and sense
embeddings (Section 6.3).

Experimental setting. Throughout all the ex-
periments we use the same standard hyperparam-
eters mentioned in Section 5 for both the origi-
nal word2vec implementation and our proposed
model SW2V. For SW2V we use the same opti-
mal configuration according to the analysis of the
previous section (only senses as input, and both
words and senses as output) for all tasks. As train-
ing corpus we take the full 3B-words UMBC web-
base corpus and the Wikipedia (Wikipedia dump
of November 2014), used by three of the compari-
son systems. We use BabelNet 3.0 (SW2VBN) and
WordNet 3.0 (SW2VWN) as semantic networks.

Comparison systems. We compare with the
publicly available pre-trained sense embeddings
of four state-of-the-art models: Chen et al. (2014)9

and AutoExtend10 (Rothe and Schütze, 2015)
based on WordNet, and SensEmbed11 (Iacobacci
et al., 2015) and NASARI12 (Camacho-Collados
et al., 2016) based on BabelNet.

6.1 Word Similarity

In this section we evaluate our sense represen-
tations on the standard SimLex-999 (Hill et al.,
2015) and MEN (Bruni et al., 2014) word simi-
larity datasets13. SimLex and MEN contain 999
and 3000 word pairs, respectively, which consti-
tute, to our knowledge, the two largest similar-

9http://pan.baidu.com/s/1eQcPK8i
10We used the AutoExtend code (http://cistern.

cis.lmu.de/˜sascha/AutoExtend/) to obtain
sense vectors using W2V embeddings trained on UMBC
(GoogleNews corpus used in their pre-trained models is
not publicly available). We also tried the code to include
BabelNet as lexical resource, but it was not easily scalable
(BabelNet is two orders of magnitude larger than WordNet).

11http://lcl.uniroma1.it/sensembed/
12http://lcl.uniroma1.it/nasari/
13To enable a fair comparison we did not perform experi-

ments on the small datasets used in Section 5 for validation.

105

SimLex-999 MEN
System Corpus r ρ r ρ

Senses

SW2VBN UMBC 0.49 0.47 0.75 0.75
SW2VWN UMBC 0.46 0.45 0.76 0.76
AutoExtend UMBC 0.47 0.45 0.74 0.75
AutoExtend Google-News 0.46 0.46 0.68 0.70
SW2VBN Wikipedia 0.47 0.43 0.71 0.73
SW2VWN Wikipedia 0.47 0.43 0.71 0.72
SensEmbed Wikipedia 0.43 0.39 0.65 0.70
Chen et al. (2014) Wikipedia 0.46 0.43 0.62 0.62

Words

Word2vec UMBC 0.39 0.39 0.75 0.75
RetrofittingBN UMBC 0.47 0.46 0.75 0.76
RetrofittingWN UMBC 0.47 0.46 0.76 0.76
Word2vec Wikipedia 0.39 0.38 0.71 0.72
RetrofittingBN Wikipedia 0.35 0.32 0.66 0.66
RetrofittingWN Wikipedia 0.47 0.44 0.73 0.73

Table 3: Pearson (r) and Spearman (ρ) correlation performance on the SimLex-999 and MEN word
similarity datasets.

ity datasets comprising a balanced set of noun,
verb and adjective instances. As explained in Sec-
tion 5, we use the closest sense strategy for the
word similarity measurement of our model and
all sense-based comparison systems. As regards
the word embedding models, words are directly
compared by using cosine similarity. We also in-
clude a retrofitted version of the original word2vec
word vectors (Faruqui et al., 2015, Retrofitting14)
using WordNet (RetrofittingWN) and BabelNet
(RetrofittingBN) as lexical resources.

Table 3 shows the results of SW2V and all com-
parison models in SimLex and MEN. SW2V con-
sistently outperforms all sense-based comparison
systems using the same corpus, and clearly per-
forms better than the original word2vec trained on
the same corpus. Retrofitting decreases the perfor-
mance of the original word2vec on the Wikipedia
corpus using BabelNet as lexical resource, but sig-
nificantly improves the original word vectors on
the UMBC corpus, obtaining comparable results
to our approach. However, while our approach
provides a shared space of words and senses,
Retrofitting still conflates different meanings of a
word into the same vector.

Additionally, we noticed that most of the score
divergences between our system and the gold stan-
dard scores in SimLex-999 were produced on

14https://github.com/mfaruqui/
retrofitting

antonym pairs, which are over-represented in this
dataset: 38 word pairs hold a clear antonymy re-
lation (e.g. encourage-discourage or long-short),
while 41 additional pairs hold some degree of
antonymy (e.g. new-ancient or man-woman).15 In
contrast to the consistently low gold similarity
scores given to antonym pairs, our system varies
its similarity scores depending on the specific na-
ture of the pair16. Recent works have managed
to obtain significant improvements by tweaking
usual word embedding approaches into provid-
ing low similarity scores for antonym pairs (Pham
et al., 2015; Schwartz et al., 2015; Nguyen et al.,
2016; Mrksic et al., 2017), but this is outside the
scope of this paper.

6.2 Sense Clustering
Current lexical resources tend to suffer from the
high granularity of their sense inventories (Palmer
et al., 2007). In fact, a meaningful clustering of
their senses may lead to improvements on down-
stream tasks (Hovy et al., 2013; Flekova and
Gurevych, 2016; Pilehvar et al., 2017). In this sec-
tion we evaluate our synset representations on the
Wikipedia sense clustering task. For a fair com-
parison with respect to the BabelNet-based com-

15Two annotators decided the degree of antonymy between
word pairs: clear antonyms, weak antonyms or neither.

16For instance, the pairs sunset-sunrise and day-night are
given, respectively, 1.88 and 2.47 gold scores in the 0-10
scale, while our model gives them a higher similarity score.
In fact, both pairs appear as coordinate synsets in WordNet.

106

Accuracy F-Measure
SW2V 87.8 63.9
SensEmbed 82.7 40.3
NASARI 87.0 62.5
Multi-SVM 85.5 -
Mono-SVM 83.5 -
Baseline 17.5 29.8

Table 4: Accuracy and F-Measure percentages of
different systems on the SemEval Wikipedia sense
clustering dataset.

parison systems that use the Wikipedia corpus for
training, in this experiment we report the results of
our model trained on the Wikipedia corpus and us-
ing BabelNet as lexical resource only. For the eval-
uation we consider the two Wikipedia sense clus-
tering datasets (500-pair and SemEval) created by
Dandala et al. (2013). In these datasets sense clus-
tering is viewed as a binary classification task in
which, given a pair of Wikipedia pages, the system
has to decide whether to cluster them into a single
instance or not. To this end, we use our synset em-
beddings and cluster Wikipedia pages17 together
if their similarity exceeds a threshold γ. In order
to set the optimal value of γ, we follow Dandala
et al. (2013) and use the first 500-pairs sense clus-
tering dataset for tuning. We set the threshold γ
to 0.35, which is the value leading to the highest
F-Measure among all values from 0 to 1 with a
0.05 step size on the 500-pair dataset. Likewise,
we set a threshold for NASARI (0.7) and SensEm-
bed (0.3) comparison systems.

Finally, we evaluate our approach on the Se-
mEval sense clustering test set. This test set con-
sists of 925 pairs which were obtained from a
set of highly ambiguous words gathered from
past SemEval tasks. For comparison, we also in-
clude the supervised approach of Dandala et al.
(2013) based on a multi-feature Support Vector
Machine classifier trained on an automatically-
labeled dataset of the English Wikipedia (Mono-
SVM) and Wikipedia in four different languages
(Multi-SVM). As naive baseline we include the
system which would cluster all given pairs.

Table 4 shows the F-Measure and accuracy re-
sults on the SemEval sense clustering dataset.
SW2V outperforms all comparison systems ac-
cording to both measures, including the sense rep-

17Since Wikipedia is a resource included in BabelNet, our
synset representations are expandable to Wikipedia pages.

resentations of NASARI and SensEmbed using the
same setup and the same underlying lexical re-
source. This confirms the capability of our system
to accurately capture the semantics of word senses
on this sense-specific task.

6.3 Word and sense interconnectivity
In the previous experiments we evaluated the ef-
fectiveness of the sense embeddings. In contrast,
this experiment aims at testing the interconnec-
tivity between word and sense embeddings in the
vector space. As explained in Section 2, there have
been previous approaches building a shared space
of word and sense embeddings, but to date lit-
tle research has focused on testing the semantic
coherence of the vector space. To this end, we
evaluate our model on a Word Sense Disambigua-
tion (WSD) task, using our shared vector space of
words and senses to obtain a Most Common Sense
(MCS) baseline. The insight behind this experi-
ment is that a semantically coherent shared space
of words and senses should be able to build a rel-
atively strong baseline for the task, as the MCS
of a given word should be closer to the word
vector than any other sense. The MCS baseline
is generally integrated into the pipeline of state-
of-the-art WSD and Entity Linking systems as a
back-off strategy (Navigli, 2009; Jin et al., 2009;
Zhong and Ng, 2010; Moro et al., 2014; Raganato
et al., 2017) and is used in various NLP applica-
tions (Bennett et al., 2016). Therefore, a system
which automatically identifies the MCS of words
from non-annotated text may be quite valuable,
especially for resource-poor languages or large
knowledge resources for which obtaining sense-
annotated corpora is extremely expensive. More-
over, even in a resource like WordNet for which
sense-annotated data is available (Miller et al.,
1993, SemCor), 61% of its polysemous lemmas
have no sense annotations (Bennett et al., 2016).

Given an input word w, we compute the cosine
similarity between w and all its candidate senses,
picking the sense leading to the highest similarity:

MCS(w) = argmax
s∈Sw

cos(~w,~s) (2)

where cos(~w,~s) refers to the cosine similarity be-
tween the embeddings of w and s. In order to as-
sess the reliability of SW2V against previous mod-
els using WordNet as sense inventory, we test our
model on the all-words SemEval-2007 (task 17)
(Pradhan et al., 2007) and SemEval-2013 (task

107

SemEval-07 SemEval-13
SW2V 39.9 54.0
AutoExtend 17.6 31.0
Baseline 24.8 34.9

Table 5: F-Measure percentage of different MCS
strategies on the SemEval-2007 and SemEval-
2013 WSD datasets.

12) (Navigli et al., 2013) WSD datasets. Note that
our model using BabelNet as semantic network
has a far larger coverage than just WordNet and
may additionally be used for Wikification (Mihal-
cea and Csomai, 2007) and Entity Linking tasks.
Since the versions of WordNet vary across datasets
and comparison systems, we decided to evaluate
the systems on the portion of the datasets covered
by all comparison systems18 (less than 10% of in-
stances were removed from each dataset).

Table 5 shows the results of our system and
AutoExtend on the SemEval-2007 and SemEval-
2013 WSD datasets. SW2V provides the best
MCS results in both datasets. In general, AutoEx-
tend does not accurately capture the predominant
sense of a word and performs worse than a base-
line that selects the intended sense randomly from
the set of all possible senses of the target word.

In fact, AutoExtend tends to create clusters
which include a word and all its possible senses.
As an example, Table 6 shows the closest word and
sense19 embeddings of our SW2V model and Au-
toExtend to the military and fish senses of, respec-
tively, company and school. AutoExtend creates
clusters with all the senses of company and school
and their related instances, even if they belong to
different domains (e.g., firm2

n or business1
n clearly

concern the business sense of company). Instead,
SW2V creates a semantic cluster of word and
sense embeddings which are semantically close to
the corresponding company2

n and school7n senses.

7 Conclusion and Future Work

In this paper we proposed SW2V (Senses and
Words to Vectors), a neural model which learns
vector representations for words and senses in a
joint training phase by exploiting both text corpora
and knowledge from semantic networks. Data (in-

18We were unable to obtain the word embeddings of Chen
et al. (2014) for comparison even after contacting the authors.

19Following Navigli (2009), wordpn is the nth sense of
word with part of speech p (using WordNet 3.0).

company2
n (military unit) school7n (group of fish)

AutoExtend SW2V AutoExtend SW2V
company9

n battalion1
n school schools7

n

company battalion school4n sharks1
n

company8
n regiment1n school6n sharks

company6
n detachment4n school1v shoals3

n

company7
n platoon1

n school3n fish1
n

company1
v brigade1

n elementary dolphins1
n

firm regiment schools pods3
n

business1
n corps1

n elementary3
a eels

firm2
n brigade school5n dolphins

company1
n platoon elementary1

a whales2
n

Table 6: Ten closest word and sense embeddings
to the senses company2

n (military unit) and school7n
(group of fish).

cluding the preprocessed corpora and pre-trained
embeddings used in the evaluation) and source
code to apply our extension of the word2vec ar-
chitecture to learn word and sense embeddings
from any preprocessed corpus are freely avail-
able at http://lcl.uniroma1.it/sw2v.
Unlike previous sense-based models which re-
quire post-processing steps and use WordNet as
sense inventory, our model achieves a semantically
coherent vector space of both words and senses
as an emerging feature of a single training phase
and is easily scalable to larger semantic networks
like BabelNet. Finally, we showed, both quantita-
tively and qualitatively, some of the advantages of
using our approach as against previous state-of-
the-art word- and sense-based models in various
tasks, and highlighted interesting semantic prop-
erties of the resulting unified vector space of word
and sense embeddings.

As future work we plan to integrate a WSD and
Entity Linking system for applying our model on
downstream NLP applications, along the lines of
Pilehvar et al. (2017). We are also planning to ap-
ply our model to languages other than English and
to study its potential on multilingual and cross-
lingual applications.

Acknowledgments

The authors gratefully acknowledge
the support of the ERC Consolidator
Grant MOUSSE No. 726487.

Jose Camacho-Collados is supported by a
Google Doctoral Fellowship in Natural Language
Processing. We would also like to thank Jim Mc-
Manus for his comments on the manuscript.

108

References
Eneko Agirre, Enrique Alfonseca, Keith Hall, Jana

Kravalova, Marius Paşca, and Aitor Soroa. 2009. A
study on similarity and relatedness using distribu-
tional and WordNet-based approaches. In Proceed-
ings of NAACL. pages 19–27.

Eneko Agirre, Oier Lopez de Lacalle, and Aitor Soroa.
2014. Random walks for knowledge-based word
sense disambiguation. Computational Linguistics
40(1):57–84.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Janvin. 2003. A Neural Probabilistic Lan-
guage Model. The Journal of Machine Learning Re-
search 3:1137–1155.

Andrew Bennett, Timothy Baldwin, Jey Han Lau, Di-
ana McCarthy, and Francis Bond. 2016. Lexsemtm:
A semantic dataset based on all-words unsupervised
sense distribution learning. In Proceedings of ACL.
pages 1513–1524.

Antoine Bordes, Sumit Chopra, and Jason Weston.
2014. Question answering with subgraph embed-
dings. In Proceedings of EMNLP. pages 615–620.

Elia Bruni, Nam-Khanh Tran, and Marco Baroni. 2014.
Multimodal distributional semantics. J. Artif. Intell.
Res.(JAIR) 49(1-47).

Alexander Budanitsky and Graeme Hirst. 2006. Evalu-
ating WordNet-based measures of Lexical Semantic
Relatedness. Computational Linguistics 32(1):13–
47.

José Camacho-Collados, Mohammad Taher Pilehvar,
and Roberto Navigli. 2015. A Unified Multilingual
Semantic Representation of Concepts. In Proceed-
ings of ACL. Beijing, China, pages 741–751.

José Camacho-Collados, Mohammad Taher Pilehvar,
and Roberto Navigli. 2016. Nasari: Integrating ex-
plicit knowledge and corpus statistics for a multilin-
gual representation of concepts and entities. Artifi-
cial Intelligence 240:36–64.

Xinxiong Chen, Zhiyuan Liu, and Maosong Sun. 2014.
A unified model for word sense representation and
disambiguation. In Proceedings of EMNLP. Doha,
Qatar, pages 1025–1035.

Bharath Dandala, Chris Hokamp, Rada Mihalcea, and
Razvan C. Bunescu. 2013. Sense clustering using
Wikipedia. In Proc. of RANLP. Hissar, Bulgaria,
pages 164–171.

Antonio Di Marco and Roberto Navigli. 2013. Cluster-
ing and diversifying web search results with graph-
based word sense induction. Computational Lin-
guistics 39(3):709–754.

Katrin Erk, Diana McCarthy, and Nicholas Gaylord.
2013. Measuring word meaning in context. Com-
putational Linguistics 39(3):511–554.

Allyson Ettinger, Philip Resnik, and Marine Carpuat.
2016. Retrofitting Sense-Specific Word Vectors Us-
ing Parallel Text. In Proceedings of NAACL-HLT .
pages 1378–1383.

Wei Fang, Jianwen Zhang, Dilin Wang, Zheng Chen,
and Ming Li. 2016. Entity disambiguation by
knowledge and text jointly embedding. In Proceed-
ings of CoNLL. pages 260–269.

Manaal Faruqui, Jesse Dodge, Sujay K. Jauhar, Chris
Dyer, Eduard Hovy, and Noah A. Smith. 2015.
Retrofitting word vectors to semantic lexicons. In
Proceedings of NAACL. pages 1606–1615.

Lev Finkelstein, Gabrilovich Evgeniy, Matias Yossi,
Rivlin Ehud, Solan Zach, Wolfman Gadi, and Rup-
pin Eytan. 2002. Placing search in context: The con-
cept revisited. ACM Transactions on Information
Systems 20(1):116–131.

Lucie Flekova and Iryna Gurevych. 2016. Supersense
embeddings: A unified model for supersense inter-
pretation, prediction, and utilization. In Proceedings
of ACL. pages 2029–2041.

Josu Goikoetxea, Aitor Soroa, Eneko Agirre, and
Basque Country Donostia. 2015. Random walks
and neural network language models on knowledge
bases. In Proceedings of NAACL. pages 1434–1439.

Jiang Guo, Wanxiang Che, Haifeng Wang, and Ting
Liu. 2014. Learning sense-specific word embed-
dings by exploiting bilingual resources. In Proceed-
ings of COLING. pages 497–507.

Lushan Han, Abhay Kashyap, Tim Finin, James
Mayfield, and Jonathan Weese. 2013. UMBC
EBIQUITY-CORE: Semantic textual similarity sys-
tems. In Proceedings of the Second Joint Confer-
ence on Lexical and Computational Semantics. vol-
ume 1, pages 44–52.

Felix Hill, Roi Reichart, and Anna Korhonen. 2015.
Simlex-999: Evaluating semantic models with (gen-
uine) similarity estimation. Computational Linguis-
tics .

Johannes Hoffart, Stephan Seufert, Dat Ba Nguyen,
Martin Theobald, and Gerhard Weikum. 2012.
Kore: keyphrase overlap relatedness for entity dis-
ambiguation. In Proceedings of CIKM. pages 545–
554.

Eduard H. Hovy, Roberto Navigli, and Simone Paolo
Ponzetto. 2013. Collaboratively built semi-
structured content and Artificial Intelligence: The
story so far. Artificial Intelligence 194:2–27.

Eric H. Huang, Richard Socher, Christopher D. Man-
ning, and Andrew Y. Ng. 2012. Improving word
representations via global context and multiple word
prototypes. In Proc. of ACL. Jeju Island, Korea,
pages 873–882.

109

Ignacio Iacobacci, Mohammad Taher Pilehvar, and
Roberto Navigli. 2015. Sensembed: Learning sense
embeddings for word and relational similarity. In
Proceedings of ACL. Beijing, China, pages 95–105.

Ignacio Iacobacci, Mohammad Taher Pilehvar, and
Roberto Navigli. 2016. Embeddings for Word Sense
Disambiguation: An Evaluation Study. In Proceed-
ings of ACL. pages 897–907.

Sujay Kumar Jauhar, Chris Dyer, and Eduard Hovy.
2015. Ontologically grounded multi-sense represen-
tation learning for semantic vector space models. In
Proceedings of NAACL.

Peng Jin, Diana McCarthy, Rob Koeling, and John Car-
roll. 2009. Estimating and exploiting the entropy of
sense distributions. In Proceedings of NAACL (2).
pages 233–236.

Richard Johansson and Luis Nieto Pina. 2015. Embed-
ding a semantic network in a word space. In Pro-
ceedings of NAACL. pages 1428–1433.

Omer Levy, Yoav Goldberg, and Ido Dagan. 2015. Im-
proving distributional similarity with lessons learned
from word embeddings. TACL 3:211–225.

Jiwei Li and Dan Jurafsky. 2015. Do multi-sense em-
beddings improve natural language understanding?
In Proceedings of EMNLP. Lisbon, Portugal.

Oren Melamud, Jacob Goldberger, and Ido Dagan.
2016. context2vec: Learning Generic Context Em-
bedding with Bidirectional LSTM. In Proc. of
CONLL. pages 51–61.

Rada Mihalcea and Andras Csomai. 2007. Wikify!
Linking documents to encyclopedic knowledge. In
Proceedings of the Sixteenth ACM Conference on
Information and Knowledge management. Lisbon,
Portugal, pages 233–242.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. CoRR abs/1301.3781.

George A Miller. 1995. Wordnet: a lexical database for
english. Communications of the ACM 38(11):39–
41.

George A. Miller, Claudia Leacock, Randee Tengi, and
Ross Bunker. 1993. A semantic concordance. In
Proceedings of the 3rd DARPA Workshop on Human
Language Technology. Plainsboro, N.J., pages 303–
308.

Andrea Moro, Alessandro Raganato, and Roberto Nav-
igli. 2014. Entity Linking meets Word Sense Disam-
biguation: a Unified Approach. TACL 2:231–244.

Nikola Mrksic, Ivan Vulić, Diarmuid Ó Séaghdha, Ira
Leviant, Roi Reichart, Milica Gai, Anna Korhonen,
and Steve Young. 2017. Semantic Specialisation of
Distributional Word Vector Spaces using Monolin-
gual and Cross-Lingual Constraints. TACL .

Roberto Navigli. 2009. Word Sense Disambiguation:
A survey. ACM Computing Surveys 41(2):1–69.

Roberto Navigli, David Jurgens, and Daniele Vannella.
2013. SemEval-2013 Task 12: Multilingual Word
Sense Disambiguation. In Proceedings of SemEval
2013. pages 222–231.

Roberto Navigli and Simone Paolo Ponzetto. 2012.
BabelNet: The automatic construction, evaluation
and application of a wide-coverage multilingual se-
mantic network. AIJ 193:217–250.

Arvind Neelakantan, Jeevan Shankar, Alexandre Pas-
sos, and Andrew McCallum. 2014. Efficient non-
parametric estimation of multiple embeddings per
word in vector space. In Proceedings of EMNLP.
Doha, Qatar, pages 1059–1069.

Kim Anh Nguyen, Sabine Schulte im Walde, and
Ngoc Thang Vu. 2016. Integrating distributional
lexical contrast into word embeddings for antonym-
synonym distinction. In Proceedings of ACL. pages
454–459.

Martha Palmer, Hoa Dang, and Christiane Fellbaum.
2007. Making fine-grained and coarse-grained
sense distinctions, both manually and automatically.
Natural Language Engineering 13(2):137–163.

Alexander Panchenko, Eugen Ruppert, Stefano Faralli,
Simone Paolo Ponzetto, and Chris Biemann. 2017.
Unsupervised does not mean uninterpretable: The
case for word sense induction and disambiguation.
In Proceedings of EACL. pages 86–98.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. GloVe: Global vectors for word
representation. In Proceedings of EMNLP. pages
1532–1543.

Nghia The Pham, Angeliki Lazaridou, and Marco Ba-
roni. 2015. A multitask objective to inject lexical
contrast into distributional semantics. In Proceed-
ings of ACL. pages 21–26.

Mohammad Taher Pilehvar, Jose Camacho-Collados,
Roberto Navigli, and Nigel Collier. 2017. Towards
a Seamless Integration of Word Senses into Down-
stream NLP Applications. In Proceedings of ACL.
Vancouver, Canada.

Mohammad Taher Pilehvar and Nigel Collier. 2016.
De-conflated semantic representations. In Proceed-
ings of EMNLP. Austin, TX.

Sameer Pradhan, Edward Loper, Dmitriy Dligach, and
Martha Palmer. 2007. SemEval-2007 task-17: En-
glish lexical sample, SRL and all words. In Pro-
ceedings of SemEval. pages 87–92.

Lin Qiu, Kewei Tu, and Yong Yu. 2016. Context-
dependent sense embedding. In Proceedings of
EMNLP. Austin, Texas, pages 183–191.

110

Alessandro Raganato, Jose Camacho-Collados, and
Roberto Navigli. 2017. Word Sense Disambigua-
tion: A Unified Evaluation Framework and Empir-
ical Comparison. In Proceedings of EACL. pages
99–110.

Joseph Reisinger and Raymond J. Mooney. 2010.
Multi-prototype vector-space models of word mean-
ing. In Proceedings of ACL. pages 109–117.

Philip Resnik. 1995. Using information content to
evaluate semantic similarity in a taxonomy. In Pro-
ceedings of IJCAI. pages 448–453.

Sascha Rothe and Hinrich Schütze. 2015. AutoEx-
tend: Extending Word Embeddings to Embeddings
for Synsets and Lexemes. In Proceedings of ACL.
Beijing, China, pages 1793–1803.

Herbert Rubenstein and John B. Goodenough. 1965.
Contextual correlates of synonymy. Commun. ACM
8(10):627–633.

Hinrich Schütze. 1998. Automatic word sense discrim-
ination. Computational linguistics 24(1):97–123.

Roy Schwartz, Roi Reichart, and Ari Rappoport. 2015.
Symmetric pattern based word embeddings for im-
proved word similarity prediction. In Proceedings
of CoNLL. pages 258–267.

Robert Speer and Joanna Lowry-Duda. 2017. Con-
ceptnet at semeval-2017 task 2: Extending word em-
beddings with multilingual relational knowledge. In
Proceedings of the 11th International Workshop on
Semantic Evaluation (SemEval-2017). pages 76–80.

Simon Šuster, Ivan Titov, and Gertjan van Noord. 2016.
Bilingual learning of multi-sense embeddings with
discrete autoencoders. In Proceedings of NAACL-
HLT . pages 1346–1356.

Fei Tian, Hanjun Dai, Jiang Bian, Bin Gao, Rui Zhang,
Enhong Chen, and Tie-Yan Liu. 2014. A probabilis-
tic model for learning multi-prototype word embed-
dings. In Proceedings of COLING. pages 151–160.

Thuy Vu and D Stott Parker. 2016. K-embeddings:
Learning conceptual embeddings for words using
context. In Proceedings of NAACL-HLT . pages
1262–1267.

Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng
Chen. 2014. Knowledge graph and text jointly em-
bedding. In Proceedings of EMNLP. pages 1591–
1601.

David Weiss, Chris Alberti, Michael Collins, and Slav
Petrov. 2015. Structured training for neural network
transition-based parsing. In Proceedings of ACL.
Beijing, China, pages 323–333.

Mo Yu and Mark Dredze. 2014. Improving lexical em-
beddings with semantic knowledge. In Proceedings
of ACL (2). pages 545–550.

Zhi Zhong and Hwee Tou Ng. 2010. It Makes Sense: A
wide-coverage Word Sense Disambiguation system
for free text. In Proc. of ACL System Demonstra-
tions. pages 78–83.

Will Y. Zou, Richard Socher, Daniel M Cer, and
Christopher D Manning. 2013. Bilingual word em-
beddings for phrase-based machine translation. In
Proceedings of EMNLP. pages 1393–1398.

111

Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017), pages 112–122,
Vancouver, Canada, August 3 - August 4, 2017. c©2017 Association for Computational Linguistics

Automatic Selection of Context Configurations for Improved
Class-Specific Word Representations

Ivan Vulić1, Roy Schwartz2,3, Ari Rappoport4
Roi Reichart5, Anna Korhonen1

1 Language Technology Lab, DTAL, University of Cambridge
2 CS & Engineering, University of Washington and 3Allen Institute for AI

4 Institute of Computer Science, The Hebrew University of Jerusalem
5 Faculty of Industrial Engineering and Management, Technion, IIT

{iv250,alk23}@cam.ac.uk roysch@cs.washington.edu
arir@cs.huji.ac.il roiri@ie.technion.ac.il

Abstract

This paper is concerned with identifying
contexts useful for training word represen-
tation models for different word classes
such as adjectives (A), verbs (V), and
nouns (N). We introduce a simple yet ef-
fective framework for an automatic selec-
tion of class-specific context configurations.
We construct a context configuration space
based on universal dependency relations
between words, and efficiently search this
space with an adapted beam search algo-
rithm. In word similarity tasks for each
word class, we show that our framework is
both effective and efficient. Particularly, it
improves the Spearman’s ρ correlation with
human scores on SimLex-999 over the best
previously proposed class-specific contexts
by 6 (A), 6 (V) and 5 (N) ρ points. With our
selected context configurations, we train on
only 14% (A), 26.2% (V), and 33.6% (N)
of all dependency-based contexts, resulting
in a reduced training time. Our results gen-
eralise: we show that the configurations our
algorithm learns for one English training
setup outperform previously proposed con-
text types in another training setup for En-
glish. Moreover, basing the configuration
space on universal dependencies, it is possi-
ble to transfer the learned configurations to
German and Italian. We also demonstrate
improved per-class results over other con-
text types in these two languages.

1 Introduction

Dense real-valued word representations (embed-
dings) have become ubiquitous in NLP, serving
as invaluable features in a broad range of tasks
(Turian et al., 2010; Collobert et al., 2011; Chen

and Manning, 2014). The omnipresent word2vec
skip-gram model with negative sampling (SGNS)
(Mikolov et al., 2013) is still considered a ro-
bust and effective choice for a word representation
model, due to its simplicity, fast training, as well as
its solid performance across semantic tasks (Baroni
et al., 2014; Levy et al., 2015). The original SGNS
implementation learns word representations from
local bag-of-words contexts (BOW). However, the
underlying model is equally applicable with other
context types (Levy and Goldberg, 2014a).

Recent work suggests that “not all contexts are
created equal”. For example, reaching beyond stan-
dard BOW contexts towards contexts based on de-
pendency parses (Bansal et al., 2014; Melamud
et al., 2016) or symmetric patterns (Schwartz et al.,
2015, 2016) yields significant improvements in
learning representations for particular word classes
such as adjectives (A) and verbs (V). Moreover,
Schwartz et al. (2016) demonstrated that a subset
of dependency-based contexts which covers only
coordination structures is particularly effective for
SGNS training, both in terms of the quality of the
induced representations and in the reduced training
time of the model. Interestingly, they also demon-
strated that despite the success with adjectives and
verbs, BOW contexts are still the optimal choice
when learning representations for nouns (N).

In this work, we propose a simple yet effec-
tive framework for selecting context configurations,
which yields improved representations for verbs,
adjectives, and nouns. We start with a definition of
our context configuration space (Sect. 3.1). Our ba-
sic definition of a context refers to a single typed (or
labeled) dependency link between words (e.g., the
amod link or the dobj link). Our configuration
space then naturally consists of all possible sub-
sets of the set of labeled dependency links between
words. We employ the universal dependencies (UD)
scheme to make our framework applicable across

112

languages. We then describe (Sect. 3.2) our adapted
beam search algorithm that aims to select an opti-
mal context configuration for a given word class.

We show that SGNS requires different context
configurations to produce improved results for each
word class. For instance, our algorithm detects that
the combination of amod and conj contexts is
effective for adjective representation. Moreover,
some contexts that boost representation learning for
one word class (e.g., amod contexts for adjectives)
may be uninformative when learning representa-
tions for another class (e.g., amod for verbs). By
removing such dispensable contexts, we are able
both to speed up the SGNS training and to improve
representation quality.

We first experiment with the task of predicting
similarity scores for the A/V/N portions of the
benchmarking SimLex-999 evaluation set, running
our algorithm in a standard SGNS experimental
setup (Levy et al., 2015). When training SGNS with
our learned context configurations it outperforms
SGNS trained with the best previously proposed
context type for each word class: the improvements
in Spearman’s ρ rank correlations are 6 (A), 6 (V),
and 5 (N) points. We also show that by building
context configurations we obtain improvements on
the entire SimLex-999 (4 ρ points over the best
baseline). Interestingly, this context configuration
is not the optimal configuration for any word class.

We then demonstrate that our approach is ro-
bust by showing that transferring the optimal con-
figurations learned in the above setup to three
other setups yields improved performance. First,
the above context configurations, learned with the
SGNS training on the English Wikipedia corpus,
have an even stronger impact on SimLex999 per-
formance when SGNS is trained on a larger corpus.
Second, the transferred configurations also result
in competitive performance on the task of solv-
ing class-specific TOEFL questions. Finally, we
transfer the learned context configurations across
languages: these configurations improve the SGNS
performance when trained with German or Italian
corpora and evaluated on class-specific subsets of
the multilingual SimLex-999 (Leviant and Reichart,
2015), without any language-specific tuning.

2 Related Work

Word representation models typically train on
(word, context) pairs. Traditionally, most models
use bag-of-words (BOW) contexts, which represent

a word using its neighbouring words, irrespective
of the syntactic or semantic relations between them
(Collobert et al., 2011; Mikolov et al., 2013; Mnih
and Kavukcuoglu, 2013; Pennington et al., 2014, in-
ter alia). Several alternative context types have been
proposed, motivated by the limitations of BOW
contexts, most notably their focus on topical rather
than functional similarity (e.g., coffee:cup vs. cof-
fee:tea). These include dependency contexts (Padó
and Lapata, 2007; Levy and Goldberg, 2014a), pat-
tern contexts (Baroni et al., 2010; Schwartz et al.,
2015) and substitute vectors (Yatbaz et al., 2012;
Melamud et al., 2015).

Several recent studies examined the effect of con-
text types on word representation learning. Mela-
mud et al. (2016) compared three context types on
a set of intrinsic and extrinsic evaluation setups:
BOW, dependency links, and substitute vectors.
They show that the optimal type largely depends on
the task at hand, with dependency-based contexts
displaying strong performance on semantic similar-
ity tasks. Vulić and Korhonen (2016) extended the
comparison to more languages, reaching similar
conclusions. Schwartz et al. (2016), showed that
symmetric patterns are useful as contexts for V and
A similarity, while BOW still works best for nouns.
They also indicated that coordination structures,
a particular dependency link, are more useful for
verbs and adjectives than the entire set of dependen-
cies. In this work, we generalise their approach: our
algorithm systematically and efficiently searches
the space of dependency-based context configura-
tions, yielding class-specific representations with
substantial gains for all three word classes.

Previous attempts on specialising word represen-
tations for a particular relation (e.g., similarity vs
relatedness, antonyms) operate in one of two frame-
works: (1) modifying the prior or the regularisation
of the original training procedure (Yu and Dredze,
2014; Wieting et al., 2015; Liu et al., 2015; Kiela
et al., 2015; Ling et al., 2015b); (2) post-processing
procedures which use lexical knowledge to refine
previously trained word vectors (Faruqui et al.,
2015; Wieting et al., 2015; Mrkšić et al., 2017).
Our work suggests that the induced representations
can be specialised by directly training the word rep-
resentation model with carefully selected contexts.

3 Context Selection: Methodology

The goal of our work is to develop a methodology
for the identification of optimal context configura-

113

Australian scientist discovers stars with telescope

amod nsubj dobj case

nmod

Scienziato australiano scopre stelle con telescopio

amod

nsubj

dobj case

nmod

Australian scientist discovers stars with telescope

amod nsubj
dobj case

nmod

prep:with

Figure 1: Extracting dependency-based contexts.
Top: An example English sentence from (Levy and
Goldberg, 2014a), now UD-parsed. Middle: the
same sentence in Italian, UD-parsed. Note the sim-
ilarity between the two parses which suggests that
our context selection framework may be extended
to other languages. Bottom: prepositional arc col-
lapsing. The uninformative short-range case arc
is removed, while a “pseudo-arc” specifying the
exact link (prep:with) between discovers and
telescope is added.

tions for word representation model training. We
hope to get improved word representations and,
at the same time, cut down the training time of
the word representation model. Fundamentally, we
are not trying to design a new word representation
model, but rather to find valuable configurations
for existing algorithms.

The motivation to search for such training con-
text configurations lies in the intuition that the dis-
tributional hypothesis (Harris, 1954) should not
necessarily be made with respect to BOW contexts.
Instead, it may be restated as a series of statements
according to particular word relations. For example,
the hypothesis can be restated as: “two adjectives
are similar if they modify similar nouns”, which
is captured by the amod typed dependency rela-
tion. This could also be reversed to reflect noun
similarity by saying that “two nouns are similar
if they are modified by similar adjectives”. In an-
other example, “two verbs are similar if they are
used as predicates of similar nominal subjects” (the
nsubj and nsubjpass dependency relations).

First, we have to define an expressive context
configuration space that contains potential train-
ing configurations and is effectively decomposed
so that useful configurations may be sought algo-
rithmically. We can then continue by designing a
search algorithm over the configuration space.

3.1 Context Configuration Space

We focus on the configuration space based on
dependency-based contexts (DEPS) (Padó and La-
pata, 2007; Utt and Padó, 2014). We choose this
space due to multiple reasons. First, dependency
structures are known to be very useful in captur-
ing functional relations between words, even if
these relations are long distance. Second, they have
been proven useful in learning word embeddings
(Levy and Goldberg, 2014a; Melamud et al., 2016).
Finally, owing to the recent development of the
Universal Dependencies (UD) annotation scheme
(McDonald et al., 2013; Nivre et al., 2016)1 it is
possible to reason over dependency structures in a
multilingual manner (e.g., Fig. 1). Consequently,
a search algorithm in such DEPS-based configura-
tion space can be developed for multiple languages
based on the same design principles. Indeed, in this
work we show that the optimal configurations for
English translate to improved representations in
two additional languages, German and Italian.

And so, given a (UD-)parsed training corpus,
for each target word w with modifiers m1, . . . ,mk

and a head h, the word w is paired with context el-
ements m1_r1, . . . ,mk_rk, h_r−1

h , where r is the
type of the dependency relation between the head
and the modifier (e.g., amod), and r−1 denotes
an inverse relation. To simplify the presentation,
we adopt the assumption that all training data for
the word representation model are in the form of
such (word, context) pairs (Levy and Goldberg,
2014a,c), where word is the current target word,
and context is its observed context (e.g., BOW,
positional, dependency-based). A naive version of
DEPS extracts contexts from the parsed corpus
without any post-processing. Given the example
from Fig. 1, the DEPS contexts of discovers are:
scientist_nsubj, stars_dobj, telescope_nmod.

DEPS not only emphasises functional similar-
ity, but also provides a natural implicit grouping
of related contexts. For instance, all pairs with
the shared relation r and r−1 are taken as an r-
based context bag, e.g., the pairs {(scientist, Aus-
tralian_amod), (Australian, scientist_amod−1)}
from Fig. 1 are inserted into the amod con-
text bag, while {(discovers, stars_dobj), (stars,
discovers_dobj−1)} are labelled with dobj.

Assume that we have obtained M distinct depen-
dency relations r1, . . . , rM after parsing and post-
processing the corpus. The j-th individual context

1http://universaldependencies.org/ (V1.4 used)

114

ri + rj + rk + rl

ri + rj + rk ri + rj + rl ri + rk + rl rj + rk + rl

ri + rj ri + rk rj + rk ri + rl rj + rl rk + rl

ri rj rk rl

E(RPool
¬ri

) > E(RPool)

E(RPool)

E(RPool
¬rl

) < E(RPool)

E(RPool
¬ri¬rj

) < E(RPool
¬ri

)

Figure 2: An illustration of Alg. 1. The search space
is presented as a DAG with direct links between
origin configurations (e.g., ri + rj + rk) and all
its children configurations obtained by removing
exactly one individual bag from the origin (e.g., ri+
rj , rj + rk). After automatically constructing the
initial pool (line 1), the entry point of the algorithm
is the RPool configuration (line 2). Thicker blue
circles denote visited configurations, while the gray
circle denotes the best configuration found.

bag, j = 1, . . . ,M , labelled rj , is a bag (or a mul-
tiset) of (word, context) pairs where context has
one of the following forms: v_rj or v_r−1

j , where v
is some vocabulary word. A context configuration
is then simply a set of individual context bags, e.g.,
R = {ri, rj , rk}, also labelled as R: ri + rj + rk.
We call a configuration consisting of K individual
context bags a K-set configuration (e.g., in this
example, R is a 3-set configuration).2

Although a brute-force exhaustive search over
all possible configurations is possible in theory and
for small pools (e.g., for adjectives, see Tab. 2), it
becomes challenging or practically infeasible for
large pools and large training data. For instance,
based on the pool from Tab. 2, the search for the
optimal configuration would involve trying out
210−1 = 1023 configurations for nouns (i.e., train-
ing 1023 different word representation models).
Therefore, to reduce the number of visited con-
figurations, we present a simple heuristic search
algorithm inspired by beam search (Pearl, 1984).

2A note on the nomenclature and notation: Each context
configuration may be seen as a set of context bags, as it does
not allow for repetition of its constituent context bags. For
simplicity and clarity of presentation, we use dependency
relation types (e.g., ri = amod, rj = acl) as labels for context
bags. The reader has to be aware that a configuration R =
{ri, rj , rk} is not by any means a set of relation types/names,
but is in fact a multiset of all (word, context) pairs belonging
to the corresponding context bags labelled with ri, rj , rk.

Algorithm 1: Best Configuration Search
Input :Set of M individual context bags:

S = {r′1, r′2, . . . , r′M}
1 build: pool of those K ≤M candidate individual

context bags {r1, . . . , rK} for which
E(ri) >= threshold, i ∈ {1, . . . ,M}, where E(·) is
a fitness function.

2 build: K-set configuration RPool = {r1, . . . , rK} ;
3 initialize: (1) set of candidate configurations

R = {RPool} ; (2) current level l = K ; (3) best
configuration Ro = ∅ ;

4 search:
5 repeat
6 Rn ← ∅ ;
7 Ro ← arg max

R∈R∪{Ro}
E(R) ;

8 foreach R ∈ R do
9 foreach ri ∈ R do

10 build new (l − 1)-set context
configuration R¬ri = R− {ri} ;

11 if E(R¬ri) ≥ E(R) then
12 Rn ← Rn ∪ {R¬ri} ;

13 l← l − 1 ;
14 R← Rn ;
15 until l == 0 or R == ∅;

Output :Best configuration Ro

3.2 Class-Specific Configuration Search

Alg. 1 provides a high-level overview of the al-
gorithm. An example of its flow is given in Fig. 2.
Starting from S, the set of all possibleM individual
context bags, the algorithm automatically detects
the subset SK ⊆ S, |SK | = K, of candidate indi-
vidual bags that are used as the initial pool (line 1
of Alg. 1). The selection is based on some fitness
(goal) function E. In our setup, E(R) is Spear-
man’s ρ correlation with human judgment scores
obtained on the development set after training the
word representation model with the configuration
R. The selection step relies on a simple threshold:
we use a threshold of ρ ≥ 0.2 without any fine-
tuning in all experiments with all word classes.

We find this step to facilitate efficiency at a minor
cost for accuracy. For example, since amod denotes
an adjectival modifier of a noun, an efficient search
procedure may safely remove this bag from the
pool of candidate bags for verbs.

The search algorithm then starts from the full
K-set RPool configuration (line 3) and tests K
(K − 1)-set configurations where exactly one in-
dividual bag ri is removed to generate each such
configuration (line 10). It then retains only the set
of configurations that score higher than the origin
K-set configuration (lines 11-12, see Fig. 2). Us-
ing this principle, it continues searching only over
lower-level (l − 1)-set configurations that further

115

improve performance over their l-set origin config-
uration. It stops if it reaches the lowest level or if
it cannot improve the goal function any more (line
15). The best scoring configuration is returned (n.b.,
not guaranteed to be the global optimum).

In our experiments with this heuristic, the search
for the optimal configuration for verbs is performed
only over 13 1-set configurations plus 26 other con-
figurations (39 out of 133 possible configurations).3

For nouns, the advantage of the heuristic is even
more dramatic: only 104 out of 1026 possible con-
figurations were considered during the search.4

4 Experimental Setup

4.1 Implementation Details

Word Representation Model We experiment
with SGNS (Mikolov et al., 2013), the standard
and very robust choice in vector space modeling
(Levy et al., 2015). In all experiments we use
word2vecf, a reimplementation of word2vec
able to learn from arbitrary (word, context)
pairs.5 For details concerning the implementation,
we refer the reader to (Goldberg and Levy, 2014;
Levy and Goldberg, 2014a).

The SGNS preprocessing scheme was replicated
from (Levy and Goldberg, 2014a; Levy et al., 2015).
After lowercasing, all words and contexts that ap-
peared less than 100 times were filtered. When
considering all dependency types, the vocabulary
spans approximately 185K word types.6 Further,
all representations were trained with d = 300 (very
similar trends are observed with d = 100, 500).

The same setup was used in prior work
(Schwartz et al., 2016; Vulić and Korhonen, 2016).
Keeping the representation model fixed across ex-
periments and varying only the context type allows
us to attribute any differences in results to a sole
factor: the context type. We plan to experiment with
other representation models in future work.

3The total is 133 as we have to include 6 additional 1-set
configurations that have to be tested (line 1 of Alg. 1) but are
not included in the initial pool for verbs (line 2).

4We also experimented with a less conservative variant
which does not stop when lower-level configurations do not
improve E; it instead follows the path of the best-scoring
lower-level configuration even if its score is lower than that of
its origin. As we do not observe any significant improvement
with this variant, we opt for the faster and simpler one.

5https://bitbucket.org/yoavgo/word2vecf
6SGNS for all models was trained using stochastic gradient

descent and standard settings: 15 negative samples, global
learning rate: 0.025, subsampling rate: 1e− 4, 15 epochs.

Universal Dependencies as Labels The
adopted UD scheme leans on the universal
Stanford dependencies (de Marneffe et al., 2014)
complemented with the universal POS tagset
(Petrov et al., 2012). It is straightforward to
“translate” previous annotation schemes to UD
(de Marneffe et al., 2014). Providing a consistently
annotated inventory of categories for similar
syntactic constructions across languages, the
UD scheme facilitates representation learning in
languages other than English, as shown in (Vulić
and Korhonen, 2016; Vulić, 2017).

Individual Context Bags Standard post-parsing
steps are performed in order to obtain an initial
list of individual context bags for our algorithm:
(1) Prepositional arcs are collapsed ((Levy and
Goldberg, 2014a; Vulić and Korhonen, 2016), see
Fig. 1). Following this procedure, all pairs where
the relation r has the form prep:X (where X is
a preposition) are subsumed to a context bag la-
belled prep; (2) Similar labels are merged into a
single label (e.g., direct (dobj) and indirect ob-
jects (iobj) are merged into obj); (3) Pairs with
infrequent and uninformative labels are removed
(e.g., punct, goeswith, cc).

Coordination-based contexts are extracted as in
prior work (Schwartz et al., 2016), distinguishing
between left and right contexts extracted from the
conj relation; the label for this bag is conjlr.
We also utilise the variant that does not make the
distinction, labeled conjll. If both are used, the
label is simply conj=conjlr+conjll.7

Consequently, the individual context bags we
use in all experiments are: subj, obj, comp,
nummod, appos, nmod, acl, amod, prep,
adv, compound, conjlr, conjll.

4.2 Training and Evaluation

We run the algorithm for context configuration se-
lection only once, with the SGNS training setup
described below. Our main evaluation setup is pre-
sented below, but the learned configurations are
tested in additional setups, detailed in Sect. 5.

Training Data Our training corpus is the cleaned
and tokenised English Polyglot Wikipedia data
(Al-Rfou et al., 2013),8 consisting of approxi-

7Given the coordination structure boys and girls,
conjlr training pairs are (boys, girls_conj), (girls,
boys_conj−1), while conjll pairs are (boys, girls_conj),
(girls, boys_conj).

8https://sites.google.com/site/rmyeid/projects/polyglot

116

mately 75M sentences and 1.7B word tokens. The
Wikipedia data were POS-tagged with universal
POS (UPOS) tags (Petrov et al., 2012) using the
state-of-the art TurboTagger (Martins et al., 2013).9

The parser was trained using default settings (SVM
MIRA with 20 iterations, no further parameter tun-
ing) on the TRAIN+DEV portion of the UD treebank
annotated with UPOS tags. The data were then
parsed with UD using the graph-based Mate parser
v3.61 (Bohnet, 2010)10 with standard settings on
TRAIN+DEV of the UD treebank.

Evaluation We experiment with the verb pair
(222 pairs), adjective pair (111 pairs), and noun
pair (666 pairs) portions of SimLex-999. We re-
port Spearman’s ρ correlation between the ranks
derived from the scores of the evaluated models
and the human scores. Our evaluation setup is bor-
rowed from Levy et al. (2015): we perform 2-fold
cross-validation, where the context configurations
are optimised on a development set, separate from
the unseen test data. Unless stated otherwise, the
reported scores are always the averages of the 2
runs, computed in the standard fashion by apply-
ing the cosine similarity to the vectors of words
participating in a pair.

4.3 Baselines

Baseline Context Types We compare the con-
text configurations found by Alg. 1 against baseline
contexts from prior work:
- BOW: Standard bag-of-words contexts.
- POSIT: Positional contexts (Schütze, 1993; Levy
and Goldberg, 2014b; Ling et al., 2015a), which
enrich BOW with information on the sequential
position of each context word. Given the example
from Fig. 1, POSIT with the window size 2 extracts
the following contexts for discovers: Australian_-2,
scientist_-1, stars_+2, with_+1.
- DEPS-All: All dependency links without any con-
text selection, extracted from dependency-parsed
data with prepositional arc collapsing.
- COORD: Coordination-based contexts are used
as fast lightweight contexts for improved repre-
sentations of adjectives and verbs (Schwartz et al.,
2016). This is in fact the conjlr context bag, a
subset of DEPS-All.
- SP: Contexts based on symmetric patterns (SPs,
(Davidov and Rappoport, 2006; Schwartz et al.,
2015)). For example, if the word X and the word

9http://www.cs.cmu.edu/~ark/TurboParser/
10https://code.google.com/archive/p/mate-tools/

Context Group Adj Verb Noun

conjlr (A+N+V) 0.415 0.281 0.401
obj (N+V) -0.028 0.309 0.390
prep (N+V) 0.188 0.344 0.387
amod (A+N) 0.479 0.058 0.398
compound (N) -0.124 -0.019 0.416
adv (V) 0.197 0.342 0.104
nummod (-) -0.142 -0.065 0.029

Table 1: 2-fold cross-validation results for an illus-
trative selection of individual context bags. Results
are presented for the noun, verb and adjective sub-
sets of SimLex-999. Values in parentheses denote
the class-specific initial pools to which each context
is selected based on its ρ score (line 1 of Alg. 1).

Adjectives Verbs Nouns
amod,
conjlr,
conjll

prep,
acl, obj,
comp, adv,
conjlr,
conjll

amod, prep,
compound, subj,
obj, appos, acl,
nmod, conjlr,
conjll

Table 2: Automatically constructed initial pools of
candidate bags for each word class (Sect. 3.2).

Y appear in the lexico-syntactic symmetric pattern
“X or Y” in the SGNS training corpus, then Y is an
SP context instance for X, and vice versa.

The development set was used to tune the win-
dow size for BOW and POSIT (to 2) and the pa-
rameters of the SP extraction algorithm.11

Baseline Greedy Search Algorithm We also
compare our search algorithm to its greedy vari-
ant: at each iteration of lines 8-12 in Alg. 1, Rn

now keeps only the best configuration of size l − 1
that perform better than the initial configuration of
size l, instead of all such configurations.

5 Results and Discussion

5.1 Main Evaluation Setup

Not All Context Bags are Created Equal First,
we test the performance of individual context bags
across SimLex-999 adjective, verb, and noun sub-
sets. Besides providing insight on the intuition be-
hind context selection, these findings are important
for the automatic selection of class-specific pools
(line 1 of Alg. 1). The results are shown in Tab. 1.

The experiment supports our intuition (see
Sect. 3.2): some context bags are definitely not
useful for some classes and may be safely removed

11The SP extraction algorithm is available online:
homes.cs.washington.edu/∼roysch/software/dr06/dr06.html

117

Baselines (Verbs)
BOW (win=2) 0.336
POSIT (win=2) 0.345
COORD (conjlr) 0.283
SP 0.349
DEPS-All 0.344

Configurations: Verbs
POOL-ALL 0.379
prep+acl+obj+adv+conj 0.393
prep+acl+obj+comp+conj 0.344
prep+obj+comp+adv+conj 0.391†
prep+acl+adv+conj (BEST) 0.409
prep+acl+obj+adv 0.392
prep+acl+adv 0.407
prep+acl+conj 0.390
acl+obj+adv+conj 0.345
acl+obj+adv 0.385

Baselines (Nouns)
BOW (win=2) 0.435
POSIT (win=2) 0.437
COORD (conjlr) 0.392
SP 0.372
DEPS-All 0.441

Configurations: Nouns
POOL-ALL 0.469
amod+subj+obj+appos+compound+nmod+conj 0.478
amod+subj+obj+appos+compound+conj 0.487
amod+subj+obj+appos+compound+conjlr 0.476†
amod+subj+obj+compound+conj (BEST) 0.491
amod+subj+obj+appos+conj 0.470
subj+obj+compound+conj 0.479
amod+subj+compound+conj 0.481
amod+subj+obj+compound 0.478
amod+obj+compound+conj 0.481

Table 3: Results on the SimLex-999 test data over (a) verbs and (b) nouns subsets. Only a selection
of context configurations optimised for verb and noun similarity are shown. POOL-ALL denotes a
configuration where all individual context bags from the verbs/nouns-oriented pools (see Table 2) are
used. BEST denotes the best performing configuration found by Alg. 1. Other configurations visited by
Alg. 1 that score higher than the best scoring baseline context type for each word class are in gray. Scores
obtained using a greedy search algorithm instead of Alg. 1 are in italic, marked with a cross (†).

Baselines (Adjectives)
BOW (win=2) 0.489
POSIT (win=2) 0.460
COORD (conjlr) 0.407
SP 0.395
DEPS-All 0.360

Configurations: Adjectives

POOL-ALL: amod+conj (BEST) 0.546†
amod+conjlr 0.527
amod+conjll 0.531
conj 0.470

Table 4: Results on the SimLex-999 adjectives sub-
set with adjective-specific configurations.

when performing the class-specific SGNS training.
For instance, the amod bag is indeed important for
adjective and noun similarity, and at the same time
it does not encode any useful information regarding
verb similarity. compound is, as expected, use-
ful only for nouns. Tab. 1 also suggests that some
context bags (e.g., nummod) do not encode any in-
formative contextual evidence regarding similarity,
therefore they can be discarded. The initial results
with individual context bags help to reduce the pool
of candidate bags (line 1 in Alg. 1), see Tab. 2.

Searching for Improved Configurations Next,
we test if we can improve class-specific represen-
tations by selecting class-specific configurations.
Results are summarised in Tables 3 and 4. Indeed,
class-specific configurations yield better represen-
tations, as is evident from the scores: the improve-

ments with the best class-specific configurations
found by Alg. 1 are approximately 6 ρ points for ad-
jectives, 6 points for verbs, and 5 points for nouns
over the best baseline for each class.

The improvements are visible even with config-
urations that simply pool all candidate individual
bags (POOL-ALL), without running Alg. 1 beyond
line 1. However, further careful context selection,
i.e., traversing the configuration space using Alg. 1
leads to additional improvements for V and N
(gains of 3 and 2.2 ρ points). Very similar improved
scores are achieved with a variety of configurations
(see Tab. 3), especially in the neighbourhood of the
best configuration found by Alg. 1. This indicates
that the method is quite robust: even sub-optimal12

solutions result in improved class-specific repre-
sentations. Furthermore, our algorithm is able to
find better configurations for verbs and nouns com-
pared to its greedy variant. Finally, our algorithm
generalises well: the best scoring configuration on
the dev set is always the best one on the test set.

Training: Fast and/or Accurate? Carefully se-
lected configurations are also likely to reduce
SGNS training times. Indeed, the configuration-
based model trains on only 14% (A), 26.2% (V),
and 33.6% (N) of all dependency-based contexts.
The training times and statistics for each con-
text type are displayed in Tab. 5. All models

12The term optimal here and later in the text refers to the
best configuration returned by our algorithm.

118

Context Type Training Time # Pairs

BOW (win=2) 179mins 27s 5.974G
POSIT (win=2) 190mins 12s 5.974G
COORD (conjlr) 4mins 11s 129.69M
SP 1mins 29s 46.37M
DEPS-All 103mins 35s 3.165G

BEST-ADJ 14mins 5s 447.4M
BEST-VERBS 29mins 48s 828.55M
BEST-NOUNS 41mins 14s 1.063G

Table 5: Training time (wall-clock time reported) in
minutes for SGNS (d = 300) with different context
types. BEST-* denotes the best scoring configura-
tion for each class found by Alg. 1. #Pairs shows
a total number of pairs used in SGNS training for
each context type.

were trained using parallel training on 10 Intel(R)
Xeon(R) E5-2667 2.90GHz processors. The results
indicate that class-specific configurations are not
as lightweight and fast as SP or COORD contexts
(Schwartz et al., 2016). However, they also suggest
that such configurations provide a good balance
between accuracy and speed: they reach peak per-
formances for each class, outscoring all baseline
context types (including SP and COORD), while
training is still much faster than with “heavyweight”
context types such as BOW, POSIT or DEPS-All.

Now that we verified the decrease in training
time our algorithm provides for the final training,
it makes sense to ask whether the configurations it
finds are valuable in other setups. This will make
the fast training of practical importance.

5.2 Generalisation: Configuration Transfer

Another Training Setup We first test whether
the context configurations learned in Sect. 5.1 are
useful when SGNS is trained in another English
setup (Schwartz et al., 2016), with more training
data and other annotation and parser choices, while
evaluation is still performed on SimLex-999.

In this setup the training corpus is the 8B words
corpus generated by the word2vec script.13 A
preprocessing step now merges common word
pairs and triplets to expression tokens (e.g.,
Bilbo_Baggins). The corpus is parsed with labelled
Stanford dependencies (de Marneffe and Manning,
2008) using the Stanford POS Tagger (Toutanova
et al., 2003) and the stack version of the MALT
parser (Goldberg and Nivre, 2012). SGNS prepro-
cessing and parameters are also replicated; we now

13code.google.com/p/word2vec/source/browse/trunk/

Context Type Adj Verbs Nouns All

BOW (win=2) 0.604 0.307 0.501 0.464
POSIT (win=2) 0.585 0.400 0.471 0.469
COORD (conjlr) 0.629 0.413 0.428 0.430
SP 0.649 0.458 0.414 0.444
DEPS-All 0.574 0.389 0.492 0.464

BEST-ADJ 0.671 0.348 0.504 0.449
BEST-VERBS 0.392 0.455 0.478 0.448
BEST-NOUNS 0.581 0.327 0.535 0.489

BEST-ALL 0.616 0.402 0.519 0.506

Table 6: Results on the A/V/N SimLex-999 sub-
sets, and on the entire set (All) in the setup from
Schwartz et al. (2016). d = 500. BEST-* are again
the best class-specific configs returned by Alg. 1.

train 500-dim embeddings as in prior work.14

Results are presented in Tab. 6. The imported
class-specific configurations, computed using a
much smaller corpus (Sect. 5.1), again outperform
competitive baseline context types for adjectives
and nouns. The BEST-VERBS configuration is
outscored by SP, but the margin is negligible. We
also evaluate another configuration found using
Alg. 1 in Sect. 5.1, which targets the overall im-
proved performance without any finer-grained di-
vision to classes (BEST-ALL). This configuration
(amod+subj+obj+compound+prep+adv+conj) out-
performs all baseline models on the entire bench-
mark. Interestingly, the non-specific BEST-ALL
configuration falls short of A/V/N-specific configu-
rations for each class. This unambiguously implies
that the “trade-off” configuration targeting all three
classes at the same time differs from specialised
class-specific configurations.

Experiments on Other Languages We next test
whether the optimal context configurations com-
puted in Sect. 5.1 with English training data are
also useful for other languages. For this, we train
SGNS models on the Italian (IT) and German (DE)
Polyglot Wikipedia corpora with those configura-
tions, and evaluate on the IT and DE multilingual
SimLex-999 (Leviant and Reichart, 2015).15

Our results demonstrate similar patterns as for
English, and indicate that our framework can be
easily applied to other languages. For instance, the
BEST-ADJ configuration (the same configuration
as in Tab. 4 and Tab. 7) yields an improvement of 8

14The “translation” from labelled Stanford dependencies
into UD is performed using the mapping from de Marneffe
et al. (2014), e.g., nn is mapped into compound, and rcmod,
partmod, infmod are all mapped into one bag: acl.

15http://leviants.com/ira.leviant/MultilingualVSMdata.html

119

Context Type Adj-Q Verb-Q Noun-Q

BOW (win=2) 31/41 14/19 16/19
POSIT (win=2) 32/41 13/19 15/19
COORD (conjlr) 26/41 11/19 8/19
SP 26/41 11/19 12/19
DEPS-All 31/41 14/19 16/19

BEST-ADJ 32/41 12/19 15/19
BEST-VERBS 24/41 15/19 16/19
BEST-NOUNS 30/41 14/19 17/19

Table 7: Results on the A/V/N TOEFL question
subsets. The reported scores are in the following
form: correct_answers/overall_questions. Adj-Q
refers to the subset of TOEFL questions targeting
adjectives; similar for Verb-Q and Noun-Q. BEST-*
refer to the best class-specific configurations from
Tab. 3 and Tab. 4.

ρ points and 4 ρ points over the strongest adjectives
baseline in IT and DE, respectively. We get similar
improvements for nouns (IT: 3 ρ points, DE: 2 ρ
points), and verbs (IT: 2, DE: 4).

TOEFL Evaluation We also verify that the se-
lection of class-specific configurations (Sect. 5.1) is
useful beyond the core SimLex evaluation. For this
aim, we evaluate on the A, V, and N TOEFL ques-
tions (Landauer and Dumais, 1997). The results are
summarised in Tab. 7. Despite the limited size of
the TOEFL dataset, we observe positive trends in
the reported results (e.g., V-specific configurations
yield a small gain on verb questions), showcasing
the potential of class-specific training in this task.

6 Conclusion and Future Work

We have presented a novel framework for select-
ing class-specific context configurations which
yield improved representations for prominent word
classes: adjectives, verbs, and nouns. Its design
and dependence on the Universal Dependencies
annotation scheme makes it applicable in differ-
ent languages. We have proposed an algorithm that
is able to find a suitable class-specific configura-
tion while making the search over the large space
of possible context configurations computation-
ally feasible. Each word class requires a different
class-specific configuration to produce improved
results on the class-specific subset of SimLex-999
in English, Italian, and German. We also show that
the selection of context configurations is robust as
once learned configuration may be effectively trans-
ferred to other data setups, tasks, and languages
without additional retraining or fine-tuning.

In future work, we plan to test the framework
with finer-grained contexts, investigating beyond
POS-based word classes and dependency links. Ex-
ploring more sophisticated algorithms that can ef-
ficiently search richer configuration spaces is also
an intriguing direction. Another research avenue
is application of the context selection idea to other
representation models beyond SGNS tested in this
work, and experimenting with assigning weights to
context subsets. Finally, we plan to test the porta-
bility of our approach to more languages.

Acknowledgments

This work is supported by the ERC Consolidator
Grant LEXICAL: Lexical Acquisition Across Lan-
guages (no 648909). Roy Schwartz was supported
by the Intel Collaborative Research Institute for
Computational Intelligence (ICRI-CI). The authors
are grateful to the anonymous reviewers for their
helpful and constructive suggestions.

References
Rami Al-Rfou, Bryan Perozzi, and Steven Skiena.

2013. Polyglot: Distributed word representations
for multilingual NLP. In CoNLL. pages 183–192.
http://www.aclweb.org/anthology/W13-3520.

Mohit Bansal, Kevin Gimpel, and Karen Livescu.
2014. Tailoring continuous word representations
for dependency parsing. In ACL. pages 809–815.
http://www.aclweb.org/anthology/P14-2131.

Marco Baroni, Georgiana Dinu, and Germán
Kruszewski. 2014. Don’t count, predict! A
systematic comparison of context-counting vs.
context-predicting semantic vectors. In ACL. pages
238–247. http://www.aclweb.org/anthology/P14-
1023.

Marco Baroni, Brian Murphy, Eduard Barbu, and
Massimo Poesio. 2010. Strudel: A corpus-
based semantic model based on properties
and types. Cognitive Science pages 222–254.
https://doi.org/10.1111/j.1551-6709.2009.01068.x.

Bernd Bohnet. 2010. Top accuracy and
fast dependency parsing is not a con-
tradiction. In COLING. pages 89–97.
http://www.aclweb.org/anthology/C10-1011.

Danqi Chen and Christopher D. Manning. 2014.
A fast and accurate dependency parser using
neural networks. In EMNLP. pages 740–750.
http://www.aclweb.org/anthology/D14-1082.

Ronan Collobert, Jason Weston, Léon Bottou,
Michael Karlen, Koray Kavukcuoglu, and

120

Pavel P. Kuksa. 2011. Natural language pro-
cessing (almost) from scratch. Journal of
Machine Learning Research 12:2493–2537.
http://dl.acm.org/citation.cfm?id=1953048.2078186.

Dmitry Davidov and Ari Rappoport. 2006. Ef-
ficient unsupervised discovery of word cat-
egories using symmetric patterns and high
frequency words. In ACL. pages 297–304.
http://www.aclweb.org/anthology/P06-1038.

Marie-Catherine de Marneffe, Timothy Dozat, Natalia
Silveira, Katri Haverinen, Filip Ginter, Joakim
Nivre, and Christopher D. Manning. 2014. Univer-
sal Stanford dependencies: A cross-linguistic typol-
ogy. In LREC. pages 4585–4592. http://www.lrec-
conf.org/proceedings/lrec2014/summaries/1062.html.

Marie-Catherine de Marneffe and Christopher D. Man-
ning. 2008. The Stanford typed dependencies repre-
sentation. In Proceedings of the Workshop on Cross-
Framework and Cross-Domain Parser Evaluation.
pages 1–8. http://www.aclweb.org/anthology/W08-
1301.

Manaal Faruqui, Jesse Dodge, Sujay Kumar Jauhar,
Chris Dyer, Eduard Hovy, and Noah A. Smith.
2015. Retrofitting word vectors to semantic
lexicons. In NAACL-HLT . pages 1606–1615.
http://www.aclweb.org/anthology/N15-1184.

Yoav Goldberg and Omer Levy. 2014. Word2vec ex-
plained: Deriving Mikolov et al.’s negative-sampling
word-embedding method. CoRR abs/1402.3722.
http://arxiv.org/abs/1402.3722.

Yoav Goldberg and Joakim Nivre. 2012. A
dynamic oracle for arc-eager dependency
parsing. In COLING. pages 959–976.
http://www.aclweb.org/anthology/C12-1059.

Zellig S. Harris. 1954. Distributional
structure. Word 10(23):146–162.
https://doi.org/10.1080/00437956.1954.11659520.

Douwe Kiela, Felix Hill, and Stephen Clark. 2015.
Specializing word embeddings for similarity or
relatedness. In EMNLP. pages 2044–2048.
http://aclweb.org/anthology/D15-1242.

Thomas K. Landauer and Susan T. Dumais. 1997.
Solutions to Plato’s problem: The Latent Seman-
tic Analysis theory of acquisition, induction, and
representation of knowledge. Psychological Re-
view 104(2):211–240. https://doi.org/10.1037/0033-
295X.104.2.211.

Ira Leviant and Roi Reichart. 2015. Separated by
an un-common language: Towards judgment lan-
guage informed vector space modeling. CoRR
abs/1508.00106. http://arxiv.org/abs/1508.00106.

Omer Levy and Yoav Goldberg. 2014a. Dependency-
based word embeddings. In ACL. pages 302–308.
http://www.aclweb.org/anthology/P14-2050.

Omer Levy and Yoav Goldberg. 2014b. Lin-
guistic regularities in sparse and explicit word
representations. In CoNLL. pages 171–180.
http://www.aclweb.org/anthology/W14-1618.

Omer Levy and Yoav Goldberg. 2014c. Neu-
ral word embedding as implicit matrix fac-
torization. In NIPS. pages 2177–2185.
http://papers.nips.cc/paper/5477.pdf.

Omer Levy, Yoav Goldberg, and Ido Dagan. 2015. Im-
proving distributional similarity with lessons learned
from word embeddings. Transactions of the ACL
3:211–225.

Wang Ling, Chris Dyer, Alan W. Black, and
Isabel Trancoso. 2015a. Two/too simple
adaptations of Word2Vec for syntax prob-
lems. In NAACL-HLT . pages 1299–1304.
http://www.aclweb.org/anthology/N15-1142.

Wang Ling, Yulia Tsvetkov, Silvio Amir, Ramon Fer-
mandez, Chris Dyer, Alan W Black, Isabel Tran-
coso, and Chu-Cheng Lin. 2015b. Not all contexts
are created equal: Better word representations with
variable attention. In EMNLP. pages 1367–1372.
http://aclweb.org/anthology/D15-1161.

Quan Liu, Hui Jiang, Si Wei, Zhen-Hua Ling,
and Yu Hu. 2015. Learning semantic word
embeddings based on ordinal knowledge
constraints. In ACL. pages 1501–1511.
http://www.aclweb.org/anthology/P15-1145.

André F. T. Martins, Miguel B. Almeida, and Noah A.
Smith. 2013. Turning on the Turbo: Fast third-order
non-projective turbo parsers. In ACL. pages 617–
622. http://www.aclweb.org/anthology/P13-2109.

Ryan T. McDonald, Joakim Nivre, Yvonne
Quirmbach-Brundage, Yoav Goldberg, Dipan-
jan Das, Kuzman Ganchev, Keith B. Hall, Slav
Petrov, Hao Zhang, Oscar Täckström, Claudia
Bedini, Núria Bertomeu Castelló, and Jungmee
Lee. 2013. Universal dependency annotation
for multilingual parsing. In ACL. pages 92–97.
http://www.aclweb.org/anthology/P13-2017.

Oren Melamud, Ido Dagan, and Jacob Goldberger.
2015. Modeling word meaning in context with sub-
stitute vectors. In NAACL-HLT . pages 472–482.
http://www.aclweb.org/anthology/N15-1050.

Oren Melamud, David McClosky, Siddharth
Patwardhan, and Mohit Bansal. 2016. The
role of context types and dimensionality in
learning word embeddings. In NAACL-HLT .
http://www.aclweb.org/anthology/N16-1118.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S.
Corrado, and Jeffrey Dean. 2013. Distributed repre-
sentations of words and phrases and their composi-
tionality. In NIPS. pages 3111–3119.

Andriy Mnih and Koray Kavukcuoglu. 2013. Learning
word embeddings efficiently with noise-contrastive
estimation. In NIPS. pages 2265–2273.

121

Nikola Mrkšić, Ivan Vulić, Diarmuid Ó Séaghdha, Ira
Leviant, Roi Reichart, Milica Gašić, Anna Korho-
nen, and Steve Young. 2017. Semantic specialisa-
tion of distributional word vector spaces using mono-
lingual and cross-lingual constraints. Transactions
of the ACL https://arxiv.org/abs/1706.00374.

Joakim Nivre et al. 2016. Universal Dependencies 1.4.
LINDAT/CLARIN digital library at Institute of For-
mal and Applied Linguistics, Charles University in
Prague.

Sebastian Padó and Mirella Lapata. 2007. Dependency-
based construction of semantic space mod-
els. Computational Linguistics 33(2):161–199.
https://doi.org/10.1162/coli.2007.33.2.161.

Judea Pearl. 1984. Heuristics: Intelligent search strate-
gies for computer problem solving .

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In EMNLP. pages 1532–1543.
http://www.aclweb.org/anthology/D14-1162.

Slav Petrov, Dipanjan Das, and Ryan T. McDon-
ald. 2012. A universal part-of-speech tagset.
In LREC. pages 2089–2096. http://www.lrec-
conf.org/proceedings/lrec2012/summaries/274.html.

Hinrich Schütze. 1993. Part-of-speech induc-
tion from scratch. In ACL. pages 251–258.
http://www.aclweb.org/anthology/P93-1034.

Roy Schwartz, Roi Reichart, and Ari Rappoport. 2015.
Symmetric pattern based word embeddings for im-
proved word similarity prediction. In CoNLL. pages
258–267. http://www.aclweb.org/anthology/K15-
1026.

Roy Schwartz, Roi Reichart, and Ari Rappoport.
2016. Symmetric patterns and coordinations:
Fast and enhanced representations of verbs and
adjectives. In NAACL-HLT . pages 499–505.
http://www.aclweb.org/anthology/N16-1060.

Kristina Toutanova, Dan Klein, Christopher D. Man-
ning, and Yoram Singer. 2003. Feature-rich
part-of-speech tagging with a cyclic dependency
network. In NAACL-HLT . pages 173–180.
http://aclweb.org/anthology/N/N03/.

Joseph P. Turian, Lev-Arie Ratinov, and
Yoshua Bengio. 2010. Word representa-
tions: A simple and general method for semi-
supervised learning. In ACL. pages 384–394.
http://www.aclweb.org/anthology/P10-1040.

Jason Utt and Sebastian Padó. 2014. Crosslingual
and multilingual construction of syntax-based vector
space models. Transactions of the ACL 2:245–258.

Ivan Vulić. 2017. Cross-lingual syntactically informed
distributed word representations. In EACL. pages
408–414. http://www.aclweb.org/anthology/E17-
2065.

Ivan Vulić and Anna Korhonen. 2016. Is “universal
syntax” universally useful for learning distributed
word representations? In ACL. pages 518–524.
http://anthology.aclweb.org/P16-2084.

John Wieting, Mohit Bansal, Kevin Gimpel,
and Karen Livescu. 2015. From paraphrase
database to compositional paraphrase model
and back. Transactions of the ACL 3:345–358.
http://aclweb.org/anthology/Q15-1025.

Mehmet Ali Yatbaz, Enis Sert, and Deniz Yuret. 2012.
Learning syntactic categories using paradigmatic
representations of word context. In EMNLP. pages
940–951. http://www.aclweb.org/anthology/D12-
1086.

Mo Yu and Mark Dredze. 2014. Improving lexical em-
beddings with semantic knowledge. In ACL. pages
545–550. http://www.aclweb.org/anthology/P14-
2089.

122

Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017), pages 123–133,
Vancouver, Canada, August 3 - August 4, 2017. c©2017 Association for Computational Linguistics

Modeling Context Words as Regions:
An Ordinal Regression Approach to Word Embedding

Shoaib Jameel and Steven Schockaert
School of Computer Science and Informatics

Cardiff University
{JameelS1, SchockaertS1}@cardiff.ac.uk

Abstract

Vector representations of word meaning
have found many applications in the field
of natural language processing. Word vec-
tors intuitively represent the average con-
text in which a given word tends to oc-
cur, but they cannot explicitly model the
diversity of these contexts. Although re-
gion representations of word meaning of-
fer a natural alternative to word vectors,
only few methods have been proposed that
can effectively learn word regions. In this
paper, we propose a new word embedding
model which is based on SVM regression.
We show that the underlying ranking in-
terpretation of word contexts is sufficient
to match, and sometimes outperform, the
performance of popular methods such as
Skip-gram. Furthermore, we show that
by using a quadratic kernel, we can effec-
tively learn word regions, which outper-
form existing unsupervised models for the
task of hypernym detection.

1 Introduction

Word embedding models such as Skip-gram
(Mikolov et al., 2013b) and GloVe (Pennington
et al., 2014) represent words as vectors of typi-
cally around 300 dimensions. The relatively low-
dimensional nature of these word vectors makes
them ideally suited for representing textual in-
put to neural network models (Goldberg, 2016;
Nayak, 2015). Moreover, word embeddings have
been found to capture many interesting regulari-
ties (Mikolov et al., 2013b; Kim and de Marn-
effe, 2013; Gupta et al., 2015; Rothe and Schütze,
2016), which makes it possible to use them as
a source of semantic and linguistic knowledge,
and to align word embeddings with visual features

(Frome et al., 2013) or across different languages
(Zou et al., 2013; Faruqui and Dyer, 2014).

Notwithstanding the practical advantages of
representing words as vectors, a few authors have
advocated the idea that words may be better repre-
sented as regions (Erk, 2009), possibly with grad-
ual boundaries (Vilnis and McCallum, 2015). One
important advantage of region representations is
that they can distinguish words with a broad mean-
ing from those with a more narrow meaning, and
should thus in principle be better suited for tasks
such as hypernym detection and taxonomy learn-
ing. However, it is currently not well understood
how such region based representations can best be
learned. One possible approach, suggested in (Vil-
nis and McCallum, 2015), is to learn a multivari-
ate Gaussian for each word, essentially by requir-
ing that words which frequently occur together
are represented by similar Gaussians. However,
for large vocabularies, this is computationally only
feasible with diagonal covariance matrices.

In this paper, we propose a different approach to
learning region representations for words, which
is inspired by a geometric view of the Skip-gram
model. Essentially, Skip-gram learns two vectors
pw and p̃w for each word w, such that the prob-
ability that a word c appears in the context of a
target word t can be expressed as a function of
pt · p̃c (see Section 2). This means that for each
threshold λ ∈ [−1, 1] and context word c, there
is a hyperplane Hc

λ which (approximately) sepa-
rates the words t for which pt · p̃c ≥ λ from the
others. Note that this hyperplane is completely de-
termined by the vector p̃c and the choice of λ. An
illustration of this geometric view is shown in Fig-
ure 1(a), where e.g. the word c is strongly related
to a (i.e. a has a high probability of occurring in
the context of c) but not closely related to b. Note
in particular that there is a half-space containing
those words which are strongly related to a (w.r.t.

123

a given threshold λ).
Our contribution is twofold. First, we empir-

ically show that effective word embeddings can
be learned from purely ordinal information, which
stands in contrast to the probabilistic view taken
by e.g. Skip-gram and GloVe. Specifically, we
propose a new word embedding model which uses
(a ranking equivalent of) max-margin constraints
to impose the requirement that pt · p̃c should be
a monotonic function of the probability P (c|t)
of seeing c in the context of t. Geometrically,
this means that, like Skip-gram, our model asso-
ciates with each context word a number of paral-
lel hyperplanes. However, unlike in the Skip-gram
model, only the relative position of these hyper-
planes is imposed (i.e. if λ1 < λ2 < λ3 then Hλ2

c

should occur between Hλ1
c and Hλ3

c). Second, by
using a quadratic kernel for the max-margin con-
straints, we obtain a model that can represent con-
text words as a set of nested ellipsoids, as illus-
trated in Figure 1(b). From these nested ellipsoids
we can then estimate a Gaussian which acts as a
convenient region based word representation.

Note that our model thus jointly learns a vector
representation for each word (i.e. the target word
representations) as well as a region based repre-
sentation (i.e. the nested ellipsoids representing
the context words). We present experimental re-
sults which show that the region based represen-
tations are effective for measuring synonymy and
hypernymy. Moreover, perhaps surprisingly, the
region based modeling of context words also ben-
efits the target word vectors, which match, and
in some cases outperform the vectors obtained
by standard word embedding models on various
benchmark evaluation tasks.

2 Background and Related Work

2.1 Word Embedding

Various methods have already been proposed for
learning vector space representations of words,
e.g. based on matrix factorization (Turney and
Pantel, 2010) or neural networks. Here we briefly
review Skip-gram and GloVe, two popular models
which share some similarities with our model.

The basic assumption of Skip-gram (Mikolov
et al., 2013b) is that the probability P (c|t) of see-
ing word c in the context of word t is given as:

P (c|t) =
pt · p̃c∑
c′ pt · p̃c′

(a) Linear kernel

(b) Quadratic kernel

Figure 1: The (dark) green region covers words
that are (strongly) related to a. Similarly, the
(dark) blue region expresses relatedness to b.

In principle, based on this view, the target vec-
tors pw and context vectors p̃w could be learned
by maximizing the likelihood of a given corpus.
Since this is computationally not feasible, how-
ever, it was proposed in (Mikolov et al., 2013b)
to instead optimize the following objective:

N∑
i=1

∑
c′∈Ci

log(σ(pwi ·p̃c))+
∑
c′∈Ci

log(−σ(pwi ·p̃c′))

where the left-most summation is over all N word
occurrences in the corpus, wi is the ith word in the
corpus, Ci are the words appearing in the context
of wi and Ci consists of k · |Ci| randomly chosen
words, called the negative samples for wi. The
context Ci contains the ti words immediately pre-
ceding and succeeding wi, where ti is randomly
sampled from {1, ..., tmax} for each i (Goldberg
and Levy, 2014). The probability of choosing
word w as a negative sample is proportional to(

occ(w)
N

)0.75
, with occ(w) the number of occur-

rences of word w in the corpus. Finally, to reduce
the impact of frequent words, some word occur-
rences are removed from the corpus before apply-
ing the model, with the probability of removing an

124

occurrence of word w being 1−
√

θ
occ(w) . Default

parameter values are tmax = 5 and θ = 10−5.
GloVe is another popular model for word em-

bedding (Pennington et al., 2014). Rather than
explicitly considering all word occurrences, it di-
rectly uses a global co-occurrence matrix X =
(xij) where xij is the number of times the word
wj appears in the context of wi. Like Skip-gram,
it learns both a target vector pw and context vec-
tor p̃w for each word w, but instead learns these
vectors by optimizing the following objective:∑
i

∑
j

f(xij)(pwi · p̃wj + bwi + b̃wj − log xij)2

where bwi and b̃wj are bias terms, and f is a
weighting function to reduce the impact of very
rare terms, defined as:

f(xij) =

{
(xij

xmax
)α if xij < xmax

1 otherwise

The default values are xmax = 100 and α = 0.75.

2.2 Region Representations
The idea of representing words as regions was
advocated in (Erk, 2009), as a way of model-
ing the diversity of the contexts in which a word
appears. It was argued that such regions could
be used to more accurately model the meaning
of polysemous words and to model lexical en-
tailment. Rather than learning region represen-
tations directly, it was proposed to use a vector
space representation of word occurrences. Two
alternatives were investigated for estimating a re-
gion from these occurrence vectors, respectively
inspired by prototype and exemplar based mod-
els of categorization. The first approach defines
the region as the set of points whose weighted dis-
tance to a prototype vector for the word is within a
given radius, while the second approach relies on
the k-nearest neighbor principle.

In contrast, (Vilnis and McCallum, 2015) pro-
posed a method that directly learns a representa-
tion in which each word corresponds to a Gaus-
sian. The model uses an objective function which
requires the Gaussians of words that co-occur to be
more similar than the Gaussians of words of neg-
ative samples (which are obtained as in the Skip-
gram model). Two similarity measures are consid-
ered: the inner product of the Gaussians and the
KL-divergence. It is furthermore argued that the

asymmetric nature of KL-divergence makes it a
natural choice for modeling hypernymy. In partic-
ular, it is proposed that the word embeddings could
be improved by imposing that words that are in a
hypernym relation have a low KL-divergence, al-
lowing for a natural way to combine corpus statis-
tics with available taxonomies.

Finally, another model that represents words
using probability distributions was proposed in
(Jameel and Schockaert, 2016). However, their
model is aimed at capturing the uncertainty about
vector representations, rather than at modeling the
diversity of words. They show that capturing
this uncertainty leads to vectors that outperform
those of the GloVe model, on which their model
is based. However, the resulting distributions are
not suitable for modeling hypernymy. For exam-
ple, since more information is available for general
terms than for narrow terms, the distributions asso-
ciated with general terms have a smaller variance,
whereas approaches that are aimed at modeling the
diversity of words have the opposite behavior.

2.3 Ranking Embedding

The model we propose only relies on the rank-
ings induced by each context word, and tries to
embed these rankings in a vector space. This
problem of “ranking embedding” has already been
studied by a few authors. An elegant approach
for embedding a given set of rankings, based on
the product order, is proposed in (Vendrov et al.,
2016). However, this method is specifically aimed
at completing partially ordered relations (such as
taxonomies), based on observed statistical corre-
lations, and would not be directly suitable as a ba-
sis for a word embedding method. The computa-
tional complexity of the ranking embedding prob-
lem was characterized in (Schockaert and Lee,
2015), where the associated decision problem was
shown to be complete for the class ∃R (which sits
between NP and PSPACE).

Note that the problem of ranking embedding
is different from the learning-to-rank task (Liu,
2009). In the former case we are interested
in learning a vector space representation that is
somehow in accordance with a given completely
specified set of rankings, whereas in the latter case
the focus is on representing incompletely specified
rankings in a given vector space representation.

125

3 Ordinal Regression Word Embedding

3.1 Learning the Embedding
In this section we explain how a form of ordinal
regression can be used to learn both word vectors
and word regions at the same time. First we intro-
duce some notations.

Recall that the Positive Pointwise Mutual In-
formation (PPMI) between two words wi and wj
is defined as PPMI(wi, wj) = max(0,PMI(wi,
wj)), with PMI(wi, wj) given by:

log
(
n(wi, wj) · (

∑
w∈W

∑
w′∈W n(w,w′))

(
∑

w∈W n(wi, w)) · (∑w∈W n(w,wj))

)
where we write n(wi, wj) for the number of times
word wj occurs in the context of wi, and W repre-
sents the vocabulary. For each word wj , we write
W j

0 , ...,W
j
nj for the stratification of the words in

the vocabulary according to their PPMI value with
wj , i.e. we have that:

1. PPMI(w,wj) = 0 for w ∈W j
0 ;

2. PPMI(w,wj) < PPMI(w′, wj) for w ∈ W j
i

and w′ ∈W j
k with i < k; and

3. PPMI(w,wj) = PPMI(w′, wj) for w,w′ ∈
W j
i .

As a toy example, suppose W = {w1, w2, w3, w4,
w5} and:

PPMI(w2, w1) = 3.4 PPMI(w3, w1) = 4.1
PPMI(w4, w1) = 0 PPMI(w5, w1) = 0
PPMI(w1, w1) = 0

Then we would have W 1
0 = {w1, w4, w5}, W 1

1 =
{w2} and W 1

2 = {w3}.
To learn the word embedding, we use the fol-

lowing objective function, which requires that for
each context word wj there is a sequence of par-
allel hyperplanes that separate the representations
of the words in W j

i−1 from the representations of
the words in W j

i (i ∈ {1, ..., nj}):

∑
j

(nj∑
i=1

pos(j, i− 1) + neg(j, i)

|W j
i−1 ∪W j

i |

)
+ λ‖p̃wj‖2

where

pos(j, i− 1) =
∑

w∈W j
i−1

[1− (φ(pw) · p̃wj+b
i
j)]

2
+

neg(j, i) =
∑
w∈W j

i

[1 + (φ(pw) · p̃wj+b
i
j)]

2
+

subject to1 b1j < ... < b
nj

j for each j. Note
that we write [x]+ for max(0, x) and φ denotes
the feature map of the considered kernel function.
In this paper, we will in particular consider linear
and quadratic kernels. If a linear kernel is used,
then φ is simply the identity function. Using a
quadratic kernel leads to a quadratic increase in the
dimensionality of φ(pw) and p̃wj . In practice, we
found our model to be about 3 times slower when
a quadratic kernel is used, when the word vectors
pw are chosen to be 300-dimensional. Note that
p̃wj and bij define a hyperplane, separating the ker-
nel space into a positive and a negative half-space.
The constraints of the form pos(j, i − 1) essen-
tially encode that the elements from W j

i−1 should
be represented in the positive half-space, whereas
the constraints of the form neg(j, i) encode that
the elements fromW j

i should be represented in the
negative half-space.

When using a linear kernel, the model is simi-
lar in spirit to Skip-gram, in the sense that it as-
sociates with each context word a sequence of
parallel hyperplanes. In our case, however, only
the ordering of these hyperplanes is specified,
i.e. the specific offsets bij are learned. In other
words, we make the assumption that the higher
PPMI(w,wj) the stronger w is related to wj , but
we do not otherwise assume that the numerical
value of PPMI(w,wj) is relevant. When using a
quadratic kernel, each context word is essentially
modeled as a sequence of nested ellipsoids. This
gives the model a lot more freedom to satisfy the
constraints, which may potentially lead to more in-
formative vectors.

The model is similar in spirit to the fixed margin
variant for ranking with large-margin constraints
proposed in (Shashua and Levin, 2002), but with
the crucial difference that we are learning word
vectors and hyperplanes at the same time, rather
than finding hyperplanes for a given vector space
representation. We use stochastic gradient descent
to optimize the proposed objective. Note that we
use a squared hinge loss, which makes optimizing
the objective more straightforward. As usual, the
parameter λ controls the trade-off between main-
taining a wide margin and minimizing classifica-

1While it may seem at first glance that this constraint is
redundant, this is not actually the case; see (Chu and Keerthi,
2005) for a counterexample in a closely related framework.

126

tion errors. Throughout the experiments we have
kept λ at a default value of 0.5. We have also
added L2 regularization for the word vectors wt
with a weight of 0.01, which was found to increase
the stability of the model. In practice, W j

0 is typ-
ically very large (containing most of the vocabu-
lary), which would make the model too inefficient.
To address this issue, we replace it by a small sub-
sample, which is similar in spirit to the idea of
negative sampling in the Skip-gram model. In our
experiments we use 2k randomly sampled words
from W , where k =

∑nj

i=1 |W j
i | is the total num-

ber of positive samples. We simply use a uniform
distribution to obtain the negative samples, as ini-
tial experiments showed that using other sampling
strategies had almost no effect on the result.

3.2 Using Region Representations

When using a quadratic kernel, the hyperplanes
defined by the vector p̃wj and offsets bij define a se-
quence of nested ellipsoids. To represent the word
wj , we estimate a Gaussian from these nested el-
lipsoids. The use of Gaussian representations is
computationally convenient and intuitively acts as
a form of smoothing. In Section 3.2.1 we first
explain how these Gaussians are estimated, after
which we explain how they are used for measur-
ing word similarity in Section 3.2.2

3.2.1 Estimating Gaussians
Rather than estimating the Gaussian representa-
tion of a given word wj from the vector p̃wj and
offsets bij directly, we will estimate it from the lo-
cations of the words that are inside the correspond-
ing ellipsoids. In this way, we can also take into
account the distribution of words within each el-
lipsoid. In particular, for each word wj , we first
determine a set of words w whose vector pw is in-
side these ellipsoids. Specifically, for each wordw
that occurs at least once in the context of wj , or is
among the 10 closest neighbors in the vector space
of such a word, we test whether φ(pw)·p̃wj < −b1j ,
i.e. whether w is in the outer ellipsoid for wj .
Let Mwj be the set of all words w for which this
is the case. We then represent wj as the Gaus-
sian G(.;µwj , Cwj), where µwj and Cwj are esti-
mated as the sample mean and covariance of the
set {pw |w ∈Mwj}.

We also consider a variant in which each word
w from Mwj is weighted as follows. First, we
determine the largest k in {1, ..., nj} for which
φ(pw) · p̃wj < −bkj ; note that since w ∈ Mwj

such a k exists. The weight λw of w is defined as
the PPMI value that is associated with the set W k

j .
When using this weighted setting, the mean µwj

and covariance matrix Cwj are estimated as:

µwj =

∑
w∈Mwj

λwpw∑
w∈Mwj

λw

Cwj =

∑
w∈Mwj

λw(pw − µ)(pw − µ)T∑
w∈Mwj

λw

Note that the two proposed methods to estimate
the Gaussian G(.;µwj , Cwj) do not depend on the
choice of kernel, hence they could also be applied
in combination with a linear kernel. However,
given the close relationships between Gaussians
and ellipsoids, we can expect quadratic kernels to
lead to higher-quality representations. This will be
confirmed experimentally in Section 4.

3.2.2 Measuring similarity
To compute the similarity between w and w′,
based on the associated Gaussians, we consider
two alternatives. First, following (Vilnis and Mc-
Callum, 2015), we consider the inner product, de-
fined as follows:

E(w,w′) =
∫
G(x;µw, Cw)G(x;µw′ , Cw′)dx

= G(0;µw − µw′ , Cw + Cw′)

The second alternative is the Jensen-Shannon di-
vergence, given by:

JS(w,w′) = KL(fw‖fw′) + KL(fw′‖fw)

with fw = G(.;µw, Cw), fw′ = G(.;µw′ , Cw′),
and KL the Kullback-Leibler divergence. When
computing the KL-divergence we add a small
value δ to the diagonal elements of the covariance
matrices, following (Vilnis and McCallum, 2015);
we used 0.01. This is needed, as for rare words,
the covariance matrix may otherwise be singular.

Finally, to measure the degree to which w en-
tails w′, we use KL-divergence, again in accor-
dance with (Vilnis and McCallum, 2015).

4 Experiments

In this section we evaluate both the vector and
region representations produced by our model.
In our experiments, we have used the Wikipedia
dump from November 2nd, 2015 consisting of
1,335,766,618 tokens. We used a basic text

127

preprocessing strategy, which involved remov-
ing punctuations, removing HTML/XML tags and
lowercasing all tokens. We have removed words
with less than 10 occurrences in the entire cor-
pus. We used the Apache sentence segmentation
tool2 to detect sentence boundaries. In all our ex-
periments, we have set the number of dimensions
as 300, which was found to be a good choice in
previous work, e.g. (Pennington et al., 2014). We
use a context window of 10 words before and af-
ter the target word, but without crossing sentence
boundaries. The number of iterations for SGD
was set to 20. The results of all baseline mod-
els have been obtained using their publicly avail-
able implementations. We have used 10 negative
samples in the word2vec code, which gave better
results than the default value of 5. For the base-
line models, we have used the default settings,
apart from the D-GloVe model for which no de-
fault values were provided by the authors. For
D-GloVe, we have therefore tuned the parameters
using the ranges discussed in (Jameel and Schock-
aert, 2016). Specifically we have used the parame-
ters that gave the best results on the Google Anal-
ogy Test Set (see below).

As baselines we have used the following stan-
dard word embedding models: the Skip-gram
(SG) and Continuous Bag-of-Words (CBOW)
models3, proposed in (Mikolov et al., 2013a), the
GloVe model4, proposed in (Pennington et al.,
2014), and the D-GloVe model5 proposed in
(Jameel and Schockaert, 2016). We have also
compared against the Gaussian word embedding
model6 from (Vilnis and McCallum, 2015), using
the means of the Gaussians as vector representa-
tions, and the Gaussians themselves as region rep-
resentations. As in (Vilnis and McCallum, 2015),
we consider two variants: one with diagonal co-
variance matrices (Gauss-D) and one with spheri-
cal covariance matrices (Gauss-S). For our model,
we will consider the following configurations:

Reg-li-cos word vectors, obtained using linear
kernel, compared using cosine similarity;

2https://opennlp.apache.org/
documentation/1.5.3/manual/opennlp.html#
tools.sentdetect

3https://code.google.com/archive/p/
word2vec/

4https://nlp.stanford.edu/projects/
glove/

5https://github.com/bashthebuilder/
pGlove

6https://github.com/seomoz/word2gauss

Table 1: Results for the analogy completion task
(accuracy). Reg-li-* and Reg-qu-* are our models
with a linear and quadratic kernel.

Gsem Gsyn MSR
SG 71.5 64.2 68.6
CBOW 74.2 62.3 66.2
GloVe 80.2 58.0 50.3
D-GloVe 81.4 59.1 59.6
Gauss-D-cos 61.5 53.6 50.7
Gauss-D-eucl 61.5 53.6 50.7
Gauss-S-cos 61.2 53.2 49.8
Gauss-S-eucl 61.4 53.3 49.8
Reg-li-cos 77.8 62.4 62.6
Reg-li-eucl 77.9 62.6 62.6
Reg-qu-cos 78.6 65.7 63.5
Reg-qu-eucl 78.7 65.7 63.6

Reg-li-eucl word vectors, obtained using linear
kernel, compared using Euclidean distance;

Reg-qu-cos word vectors, obtained using
quadratic kernel, compared using cosine
similarity;

Reg-qu-eucl word vectors, obtained using
quadratic kernel, compared using Euclidean
distance;

Reg-li-prod Gaussian word regions, obtained us-
ing linear kernel, compared using the inner
product E;

Reg-li-wprod Gaussian word regions estimated
using the weighted variant, obtained using
linear kernel, compared using the inner prod-
uct E;

Reg-li-JS Gaussian word regions, obtained us-
ing linear kernel, compared using the Jensen-
Shannon divergence;

Reg-li-wJS Gaussian word regions estimated us-
ing the weighted variant, obtained using lin-
ear kernel, compared using Jensen-Shannon
divergence.

4.1 Analogy Completion
Analogy completion is a standard evaluation task
for word embeddings. Given a pair (w1, w2) and
a word w3 the goal is to find the word w4 such
that w3 and w4 are related in the same way as w1

and w2. To solve this task, we predict the word w4

which is most similar to w2 − w1 + w3, either in
terms of cosine similarity or Euclidean distance.
The evaluation metric is accuracy. We use two
popular benchmark data sets: the Google Analogy

128

Test Set7 and the Microsoft Research Syntactic
Analogies Dataset8. The former contains both se-
mantic and syntactic relations, for which we show
the results separately, respectively referred to as
Gsem and Gsyn; the latter only contains syntactic
relations and will be referred to as MSR. The re-
sults are shown in Table 1. Recall that the param-
eters of D-GloVe were tuned on the Google Anal-
ogy Test Set, hence the results reported for this
model for Gsem and Gsyn might be slightly higher
than what would normally be obtained. Note that
for our model, we can only use word vectors for
this task.

We outperform SG and CBOW for Gsem and
Gsyn but not for MSR, and we outperform GloVe
and D-GloVe for Gsyn and MSR but not for Gsem.
The vectors from the Gaussian embedding model
are not competitive for this task. For our model,
using Euclidean distance slightly outperforms us-
ing cosine. For GloVe, SG and CBOW, we only
show results for cosine, as this led to the best re-
sults. For D-GloVe, we used the likelihood-based
similarity measure proposed in the original paper,
which was found to outperform both cosine and
Euclidean distance for that model.

For our model, the quadratic kernel leads to bet-
ter results than the linear kernel, which is some-
what surprising since this task evaluates a kind
of linear regularity. This suggests that the ad-
ditional flexibility that results from the quadratic
kernel leads to more faithful context word repre-
sentations, which in turn improves the quality of
the target word vectors.

4.2 Similarity Estimation
To evaluate our model’s ability to measure sim-
ilarity we use 12 standard evaluation sets9, for
which we will use the following abbreviations: S1:
MTurk-287, S2:RG-65, S3:MC-30, S4:WS-353-
REL, S5:WS-353-ALL, S6:RW-STANFORD, S7:
YP-130, S8:SIMLEX-999, S9:VERB-143, S10:
WS-353-SIM, S11:MTurk-771, S12:MEN-TR-
3K. Each of these datasets contains similarity
judgements for a number of word pairs. The task
evaluates to what extent the similarity scores pro-
duced by a given word embedding model lead to

7https://nlp.stanford.edu/projects/
glove/

8http://research.microsoft.com/en-us/
um/people/gzweig/Pubs/myz_naacl13_test_
set.tgz

9https://github.com/mfaruqui/
eval-word-vectors

the same ordering of the word pairs as the pro-
vided ground truth judgments. The evaluation
metric is the Spearman ρ rank correlation coeffi-
cient. For this task, we can either use word vectors
or word regions. The results are shown in Table 2.

For our model, the best results are obtained
when using word vectors and the Euclidean dis-
tance (Reg-qu-eucl), although the differences with
the word regions (Reg-qu-wprod) are small. We
use prod to refer to the configuration where simi-
larity is estimated using the inner product, whereas
we write JS for the configurations that use Jensen-
Shannon divergence. Moreover, we use wprod and
wJS to refer to the weighted variant for estimating
the Gaussians. We can again observe that using
a quadratic kernel leads to better results than us-
ing a linear kernel. As the weighted versions for
estimating the Gaussians do not lead to a clear im-
provement, for the remainder of this paper we will
only consider the unweighted variant.

With the exception of S9, our model substan-
tially outperforms the Gaussian word embedding
model. Of the standard models SG and D-GloVe
obtain the strongest performance. Compared to
our model, these baseline models achieve similar
results for S2, S10, S11 and S12, worse results for
S1, S3, S4, S5, S6 and better results for S7, S8
and S9. Two general trends can be observed. First,
the data sets where our model performs better tend
to be datasets which describe semantic relatedness
rather than pure synonymy. Second, the standard
models appear to perform better on data sets that
contain verbs and adjectives, as opposed to nouns.

4.3 Modeling properties

In (Rubinstein et al., 2015), it was analysed to
what extent word embeddings can be used to iden-
tify concepts that satisfy a given attribute. While
good results were obtained for taxonomic prop-
erties, attributive properties such as ‘dangerous’,
‘round’, or ‘blue’ proved to be considerably more
problematic. We may expect region-based mod-
els to perform well on this task, since each of
these attributes then explicitly corresponds to a re-
gion in space. To test this hypothesis, Table 3
shows the results for the same 7 taxonomic prop-
erties and 13 attributive properties as in (Rubin-
stein et al., 2015), where the positive and nega-
tive examples for all 20 properties are obtained
from the McRae feature norms data (McRae et al.,
2005). Following (Rubinstein et al., 2015), we use

129

Table 2: Results for similarity estimation (Spearman ρ). Reg-li-* and Reg-qu-* are our models with a
linear and quadratic kernel.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12
SG 0.656 0.773 0.789 0.648 0.709 0.459 0.500 0.415 0.435 0.773 0.655 0.731
CBOW 0.644 0.768 0.740 0.532 0.622 0.419 0.341 0.361 0.343 0.707 0.597 0.693
GloVe 0.595 0.755 0.746 0.515 0.577 0.318 0.533 0.382 0.354 0.690 0.652 0.724
D-GloVe 0.659 0.788 0.785 0.555 0.651 0.401 0.535 0.413 0.388 0.778 0.656 0.746
Gauss-D-cos 0.591 0.622 0.661 0.403 0.501 0.249 0.388 0.337 0.411 0.640 0.599 0.643
Gauss-D-eucl 0.591 0.623 0.661 0.403 0.501 0.250 0.388 0.338 0.411 0.641 0.599 0.643
Gauss-D-prod 0.588 0.618 0.658 0.399 0.498 0.213 0.356 0.326 0.409 0.631 0.588 0.633
Gauss-D-JS 0.598 0.619 0.665 0.403 0.532 0.288 0.381 0.339 0.410 0.643 0.599 0.644
Gauss-S-cos 0.593 0.632 0.681 0.409 0.506 0.256 0.392 0.337 0.416 0.649 0.601 0.644
Gauss-S-eucl 0.593 0.632 0.681 0.409 0.507 0.356 0.393 0.337 0.416 0.649 0.603 0.644
Gauss-S-prod 0.591 0.619 0.659 0.403 0.505 0.312 0.389 0.328 0.412 0.633 0.591 0.633
Gauss-S-JS 0.598 0.622 0.667 0.405 0.533 0.288 0.385 0.349 0.410 0.643 0.601 0.644
Reg-li-cos 0.666 0.764 0.821 0.652 0.713 0.489 0.469 0.354 0.361 0.734 0.642 0.739
Reg-li-eucl 0.668 0.766 0.821 0.654 0.715 0.489 0.469 0.359 0.361 0.734 0.643 0.739
Reg-li-prod 0.661 0.759 0.818 0.634 0.710 0.481 0.445 0.358 0.360 0.724 0.641 0.729
Reg-li-wprod 0.663 0.761 0.819 0.638 0.711 0.482 0.446 0.359 0.361 0.725 0.642 0.731
Reg-li-JS 0.663 0.758 0.815 0.638 0.709 0.479 0.443 0.359 0.361 0.723 0.641 0.729
Reg-li-wJS 0.665 0.760 0.816 0.638 0.710 0.481 0.445 0.359 0.361 0.725 0.641 0.731
Reg-qu-cos 0.684 0.781 0.839 0.662 0.723 0.505 0.479 0.367 0.368 0.777 0.656 0.744
Reg-qu-eucl 0.685 0.781 0.839 0.664 0.723 0.509 0.479 0.367 0.368 0.779 0.656 0.744
Reg-qu-prod 0.681 0.780 0.831 0.658 0.719 0.501 0.478 0.355 0.331 0.778 0.653 0.741
Reg-qu-wprod 0.684 0.788 0.831 0.663 0.721 0.501 0.475 0.370 0.365 0.778 0.653 0.739
Reg-qu-JS 0.680 0.781 0.826 0.661 0.715 0.497 0.471 0.328 0.355 0.771 0.649 0.721
Reg-qu-wJS 0.678 0.782 0.824 0.662 0.712 0.498 0.469 0.326 0.351 0.771 0.644 0.720

Table 3: Results for McRae feature norms (F1).
Reg-li and Reg-qu are our models with a linear and
quadratic kernel.

Taxonomic Attributive
lin quad lin quad

SG 0.781 0.784 0.365 0.378
CBOW 0.775 0.781 0.361 0.371
GloVe 0.785 0.786 0.364 0.377
D-GloVe 0.743 0.749 0.342 0.364
Gauss-D 0.787 0.789 0.406 0.414
Gauss-S 0.781 0.784 0.401 0.406
Reg-li 0.791 0.796 0.399 0.406
Reg-qu 0.795 0.799 0.411 0.421

5-fold cross-validation to train a binary SVM for
each property and compute the average F-score
due to unbalanced class label distribution. We
separately present results for SVMs with a linear
and a quadratic kernel. The results indeed support
the hypothesis that region-based models are well-
suited for this task, as both the Gaussian embed-
ding model and our model outperform the standard
word embedding models.

4.4 Hypernym Detection

For hypernym detection, we have used the follow-
ing 5 benchmark data sets10: H1 (Baroni et al.,
2012), H2 (Baroni and Lenci, 2011), H3 (Kotler-

10https://github.com/stephenroller/
emnlp2016

man et al., 2010), H4 (Levy et al., 2014) and H5
(Turney and Mohammad, 2015). Each of the data
sets contains positive and negative examples, i.e.
word pairs that are in a hypernym relation and
word pairs that are not. Rather than treating this
problem as a classification task, which would re-
quire selecting a threshold in addition to producing
a score, we treat it as a ranking problem. In other
words, we evaluate to what extent the word pairs
that are in a valid hypernym relation are the ones
that receive the highest scores. We use average
precision as our evaluation metric.

Apart from our model, the Gaussian embedding
model is the only word embedding model that can
by design support unsupervised hyperynym detec-
tion. As an additional baseline, however, we also
show how Skip-gram performs when using cosine
similarity. While such a symmetric measure can-
not faithfully model hypernyny, it was nonetheless
found to be a strong baseline for hypernymy mod-
els (Vulić et al., 2016), due to the inherent diffi-
culty of the task. We also compare with a num-
ber of standard bag-of-words based models for de-
tecting hypernyms: WeedsPrec (Kotlerman et al.,
2010), ClarkeDE (Clarke, 2009) and invCL (Lenci
and Benotto, 2012). These latter models take as
input the PPMI weighted co-occurrence counts.

The results are shown in Table 4, where Reg-li-
KL and Reg-qu-KL refer to variants of our model

130

Table 4: Results for hypernym detection (AP).
Reg-li-* and Reg-qu-* are our models with a lin-
ear and quadratic kernel.

Model H1 H2 H3 H4 H5
WeedsPrec 0.565 0.376 0.611 0.414 0.685
ClarkeDE 0.588 0.397 0.621 0.426 0.699

invCL 0.603 0.416 0.693 0.439 0.756
SG 0.682 0.434 0.712 0.455 0.789

Gauss-D-KL 0.865 0.505 0.806 0.515 0.815
Gauss-S-KL 0.823 0.498 0.801 0.507 0.789
Gauss-D-Cos 0.846 0.499 0.801 0.509 0.811
Gauss-S-Cos 0.813 0.484 0.799 0.501 0.778

Gauss-D-KLC 0.868 0.511 0.809 0.519 0.815
Gauss-S-KLC 0.835 0.501 0.804 0.511 0.795

Reg-li-KL 0.867 0.501 0.805 0.505 0.801
Reg-qu-KL 0.871 0.512 0.811 0.521 0.814
Reg-li-Cos 0.871 0.502 0.807 0.508 0.804
Reg-qu-Cos 0.873 0.513 0.818 0.525 0.819
Reg-li-KLC 0.874 0.509 0.812 0.511 0.806
Reg-qu-KLC 0.878 0.519 0.825 0.531 0.823

in which Kullback-Leibler divergence is used to
compare word regions. Surprisingly, both for our
model and for the Gaussian embedding model,
we find that using cosine similarity between the
word vectors outperforms using the word regions
with KL-divergence. In general, our model out-
performs the Gaussian embedding model and the
other baselines. Given the effectiveness of the co-
sine similarity, we have also experimented with
the following metric:

hyp(w1, w2) = (1− cos(w1, w2)) · KL(fw1 ||fw2)

The results are referred to as Reg-li-KLC and Reg-
qu-KLC in Table 4. These results suggest that the
word regions can indeed be useful for detecting
hypernymy, when used in combination with cosine
similarity. Intuitively, for w2 to be a hypernym of
w1, both words need to be similar and w2 needs
to be more general than w1. While word regions
are not needed for measuring similarity, they seem
essential for modeling generality (in an unsuper-
vised setting).

The datasets considered so far all treat hyper-
nyms as a binary notion. In (Vulić et al., 2016)
a evaluation set was introduced which contains
graded hypernym pairs. The underlying intuition
is that e.g. cat and dog are more typical/natural hy-
ponyms of animal than dinosaur or amoeba. The
results for this data set are shown in Table 5. In
this case, we use Spearman ρ as an evaluation met-
ric, measuring how well the rankings induced by
different models correlate with the ground truth.
Following (Vulić et al., 2016), we separately men-
tion results for nouns and verbs. In the case of

Table 5: Results for HyperLex (Spearman ρ). Reg-
li-* and Reg-qu-* are our models with a linear and
quadratic kernel.

Model All Nouns Verbs
WeedsPrec 0.166 0.153 0.201
ClarkeDE 0.165 0.151 0.189

invCL 0.168 0.154 0.198
SG 0.158 0.164 0.297

Gauss-D-KL 0.185 0.171 0.198
Gauss-S-KL 0.181 0.168 0.184
Gauss-D-Cos 0.179 0.158 0.161
Gauss-S-Cos 0.166 0.151 0.158

Gauss-D-KLC 0.191 0.177 0.199
Gauss-S-KLC 0.189 0.171 0.189

Reg-li-KL 0.181 0.165 0.179
Reg-qu-KL 0.188 0.169 0.191
Reg-li-Cos 0.184 0.168 0.181
Reg-qu-Cos 0.190 0.180 0.196
Reg-li-KLC 0.189 0.171 0.185
Reg-qu-KLC 0.208 0.188 0.201

nouns, our findings here are broadly in agreement
with those from Table 4 Interesting, for verbs we
find that Skip-gram substantially outperforms the
region based models, which is in accordance with
our findings in the word similarity experiments.

5 Conclusions

We have proposed a new word embedding model,
which is based on ordinal regression. The input to
our model consists of a number of rankings, cap-
turing how strongly each word is related to each
context word in a purely ordinal way. Word vec-
tors are then obtained by embedding these rank-
ings in a low-dimensional vector space. Despite
the fact that all quantitative information is disre-
garded by our model (except for constructing the
rankings), it is competitive with standard methods
such as Skip-gram, and in fact outperforms them
in several tasks. An important advantage of our
model is that it can be used to learn region repre-
sentations for words, by using a quadratic kernel.
Our experimental results suggest that these regions
can be useful for modeling hypernymy.

Acknowledgments

This work was supported by ERC Starting Grant
637277. This work was performed using the
computational facilities of the Advanced Research
Computing@Cardiff (ARCCA) Division, Cardiff
University. The authors would like to thank the
anonymous reviewers for their insightful com-
ments.

131

References
Marco Baroni, Raffaella Bernardi, Ngoc-Quynh Do,

and Chung-chieh Shan. 2012. Entailment above the
word level in distributional semantics. In Proceed-
ings of the 13th Conference of the European Chap-
ter of the Association for Computational Linguistics.
pages 23–32.

Marco Baroni and Alessandro Lenci. 2011. How we
blessed distributional semantic evaluation. In Pro-
ceedings of the GEMS 2011 Workshop on GEomet-
rical Models of Natural Language Semantics. Asso-
ciation for Computational Linguistics, pages 1–10.

Wei Chu and S Sathiya Keerthi. 2005. New approaches
to support vector ordinal regression. In ICML. pages
145–152.

Daoud Clarke. 2009. Context-theoretic semantics for
natural language: an overview. In Proceedings of
the Workshop on Geometrical Models of Natural
Language Semantics. pages 112–119.

Katrin Erk. 2009. Representing words as regions in
vector space. In Proceedings of the Thirteenth Con-
ference on Computational Natural Language Learn-
ing. pages 57–65.

Manaal Faruqui and Chris Dyer. 2014. Improving vec-
tor space word representations using multilingual
correlation. In Proceedings of the 14th Conference
of the European Chapter of the Association for Com-
putational Linguistics. pages 462–471.

Andrea Frome, Gregory S. Corrado, Jonathon Shlens,
Samy Bengio, Jeffrey Dean, Marc’Aurelio Ranzato,
and Tomas Mikolov. 2013. Devise: A deep visual-
semantic embedding model. In Proc. NIPS. pages
2121–2129.

Yoav Goldberg. 2016. A primer on neural network
models for natural language processing. Journal of
Artificial Intelligence Research 57:345–420.

Yoav Goldberg and Omer Levy. 2014. word2vec
explained: Deriving mikolov et al.’s negative-
sampling word-embedding method. arXiv preprint
arXiv:1402.3722 .

Abhijeet Gupta, Gemma Boleda, Marco Baroni, and
Sebastian Padó. 2015. Distributional vectors encode
referential attributes. In Proc. EMNLP. pages 12–
21.

Shoaib Jameel and Steven Schockaert. 2016. D-glove:
A feasible least squares model for estimating word
embedding densities. In Proceedings of the 26th In-
ternational Conference on Computational Linguis-
tics. pages 1849–1860.

Joo-Kyung Kim and Marie-Catherine de Marneffe.
2013. Deriving adjectival scales from continuous
space word representations. In Proc. EMNLP. pages
1625–1630.

Lili Kotlerman, Ido Dagan, Idan Szpektor, and Maayan
Zhitomirsky-Geffet. 2010. Directional distribu-
tional similarity for lexical inference. Natural Lan-
guage Engineering 16:359–389.

Alessandro Lenci and Giulia Benotto. 2012. Identify-
ing hypernyms in distributional semantic spaces. In
Proceedings of *SEM. pages 75–79.

Omer Levy, Yoav Goldberg, and Israel Ramat-Gan.
2014. Linguistic regularities in sparse and explicit
word representations. In Proc. CoNLL. pages 171–
180.

Tie-Yan Liu. 2009. Learning to rank for information
retrieval. Foundations and Trends in Information
Retrieval 3:225–331.

Ken McRae, George S Cree, Mark S Seidenberg, and
Chris McNorgan. 2005. Semantic feature produc-
tion norms for a large set of living and nonliving
things. Behavior Research Methods 37:547–559.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013a. Efficient estimation of word represen-
tations in vector space. In International Conference
on Learning Representations.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S.
Corrado, and Jeffrey Dean. 2013b. Distributed rep-
resentations of words and phrases and their compo-
sitionality. In Proceedings of the 27th Annual Con-
ference on Neural Information Processing Systems.
pages 3111–3119.

Neha Nayak. 2015. In learning hyperonyms over word
embeddings. Technical report, Student technical re-
port.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In Proc. EMNLP. pages 1532–
1543.

Sascha Rothe and Hinrich Schütze. 2016. Word
embedding calculus in meaningful ultradense sub-
spaces. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguis-
tics. pages 512–517.

Dana Rubinstein, Effi Levi, Roy Schwartz, and Ari
Rappoport. 2015. How well do distributional mod-
els capture different types of semantic knowledge?
In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics. pages
726–730.

Steven Schockaert and Jae Hee Lee. 2015. Qualita-
tive reasoning about directions in semantic spaces.
In Proceedings of the International Joint Conference
on Artificial Intelligence. pages 3207–3213.

Amnon Shashua and Anat Levin. 2002. Ranking with
large margin principle: Two approaches. In NIPS.
pages 937–944.

132

P. D. Turney and P. Pantel. 2010. From frequency to
meaning: Vector space models of semantics. Jour-
nal of Artificial Intelligence Research 37:141–188.

Peter D Turney and Saif M Mohammad. 2015. Ex-
periments with three approaches to recognizing lex-
ical entailment. Natural Language Engineering
21(03):437–476.

Ivan Vendrov, Ryan Kiros, Sanja Fidler, and Raquel
Urtasun. 2016. Order-embeddings of images and
language. In International Conference on Learning
Representations.

Luke Vilnis and Andrew McCallum. 2015. Word rep-
resentations via gaussian embedding. In Proceed-
ings of the International Conference on Learning
Representations.

Ivan Vulić, Daniela Gerz, Douwe Kiela, Felix Hill,
and Anna Korhonen. 2016. Hyperlex: A large-scale
evaluation of graded lexical entailment. arXiv .

Will Y Zou, Richard Socher, Daniel M Cer, and
Christopher D Manning. 2013. Bilingual word em-
beddings for phrase-based machine translation. In
Proc. EMNLP. pages 1393–1398.

133

Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017), pages 134–142,
Vancouver, Canada, August 3 - August 4, 2017. c©2017 Association for Computational Linguistics

An Artificial Language Evaluation of Distributional Semantic Models

Fatemeh Torabi Asr Michael N. Jones

Cognitive Science Program Psychological and Brain Sciences
Indiana University, Bloomington Indiana University, Bloomington
fatorabi@indiana.edu jonesmn@indiana.edu

Abstract

Recent studies of distributional semantic
models have set up a competition
between word embeddings obtained from
predictive neural networks and word
vectors obtained from count-based
models. This paper is an attempt to reveal
the underlying contribution of additional
training data and post-processing steps on
each type of model in word similarity and
relatedness inference tasks. We do so by
designing an artificial language, training a
predictive and a count-based model on
data sampled from this grammar, and
evaluating the resulting word vectors in
paradigmatic and syntagmatic tasks
defined with respect to the grammar.

1 Introduction

The distributional tradition in linguistics (e.g.,
Harris, 1954) classically posits that a word’s
meaning can be estimated by its pattern of co-
occurrence with other words. Modern
distributional semantic models (DSMs) formalize
this process to construct vector representations
for word meaning from statistical regularities in
large-scale corpora. A typical approach in NLP
has been to apply dimensional reduction
algorithms borrowed from linear algebra to a
word-by-context frequency matrix representation
of a text corpus (Deerwester et al. 1990,
Landauer & Dumais, 1997). Words that
frequently appear in similar contexts will have
similar patterns across resulting latent
components, even if they never directly co-occur
(for reviews, see Jones, Willits, & Dennis, 2015;
Turney & Pantel, 2010). These models
dominated the literature over direct count
methods for over two decades (Bullinaria &
Levy, 2007, 2012). Recently, DSMs based on
neural networks have rapidly grown in popularity
(e.g., Bengio et al., 2003; Collobert et al., 2011;
Mikolov et al., 2013). Given a word, the model

attempts to predict the context words that it
occurs with, or vice-versa. After training on a text
corpus, the pattern of elements across the model’s
hidden layer come to reflect semantic similarities,
i.e., will be similar for words that predict similar
contexts even if those words do not predict each
other. In this sense, neural embedding models
come to a distributed vector representation of
word meaning that is reminiscent of traditional
dimensional reduction DSMs, albeit with a
considerably different learning algorithm.
 Mikolov et al. (2013a, 2013b) have
demonstrated state-of-the-art performance using a
neural embedding model with an efficient
objective function called word2vec. This
model rapidly emerged as the leader of the DSM
pack, outperforming other models on a broad
range of lexical semantic tasks (Baroni et al.
2014). However, since the early surge in
excitement for word2vec, the literature has now
become more focused on trying to understand the
conditions under which embedding or traditional
DSMs are optimal. Levy and Goldberg (2014)
demonstrated analytically that word2vec is
implicitly factorizing a word-by-context matrix
whose cell values are shifted PMI values. In other
words, the objective function and the input to
word2vec are formally equivalent to traditional
DSMs; thus the models should behave alike in
the limit. The distinction is really one of process
and parameterization. With optimum
parameterization of traditional DSMs, more
recent research is finding insignificant
performance differences between word2vec
and SVD factorizations of a PMI matrix
(Sahlgren & Lenci, 2016). Levy et al. (2015)
even found a slight advantage for a factorization
of the bias shifted log-count matrix and for
traditional PPMI over word2vec on some tasks
when hyperparameters were optimized.
 One general distinction between the two types
of models is that neural embedding models such
as word2vec seem to underperform when the
training corpus is small, particularly for low-
frequency words (Asr et al., 2016; Sahlgren &

134

Lenci, 2016). Levy et al. (2015) note that there is
often a benefit in word2vec of tuning a larger
parameter space over using a larger training
corpus. With limited-data mining scenarios
becoming more common, a better understanding
of how model type and corpus size interact with
optimal parameterization is an important topic of
inquiry.
 Secondly, interest has shifted from trying to
determine the best overall model towards a better
understanding of what kinds of word relations
each model is best at learning, and under what
parameterizations. Count-based PMI models are
very good at representing first-order statistical
patterns that reflect syntagmatic relationships in
language (aka “relatedness” data). In contrast, the
training scheme used by word2vec attempts to
optimize it for detecting second-order statistical
patterns that reflect paradigmatic relationships
in language (aka “similarity” data). Indeed, this
was the pattern demonstrated by Levy et al.
(2015): After tuning hyperparameters,
word2vec performed best on similarity-based
tasks while PPMI performed best on relatedness
tasks. SVD-based models attempt to represent
both statistical patterns. This count-based model
outperformed both word2vec and PPMI in
Levy et al. on both types of relations when
standard parameter sets were used; however, the
advantage disappeared when hyperparameters
were tuned. Standard word2vec is optimized
for paradigmatic tasks but architectural
adaptations exist to make the model better suited
for syntagmatic tasks (e.g., Kiela et al., 2015;
Ling et al., 2015). Making a model better at one
type of task might come at the cost of making it
worse at the other if the two types of word
relations are orthogonal (Andreas & Klein, 2014;
Mitchell & Steedman, 2015). Optimizing for a
particular task is also closely tied to the issue of
training data size (Melamud et al., 2016).
 Finally, both of these issues are intricately tied
to post-processing of the embeddings. Levy et al.
(2015) inspired by Pennington et al., (2014)
pointed out an important parametrization of the
word2vec model, where co-occurrence
information encoded between hidden and output
layers (context vectors) are used as well as
weighs between the input and hidden layers
(word vectors) to construct the final word
embeddings (w+c representation). When
calculating word similarity based on this
composite representation, a mixture between
first- and second-order coocurrence information
are considered. This is remarkably similar to
cognitive models that construct composite

memory representations from both paradigmatic
and syntagmatic information (Jones & Mewhort,
2007). Recent empirical studies in developmental
psychology have found that children learn word
relations that have both sources of information
before relations with either source alone (Unger
et al., 2016). Levy et al. (2015) found a consistent
benefit for word2vec and PPMI when the w+c
post-processing combination was applied. Even
though, this is an efficient adaptation in that the
scheme does not require retraining, most studies
on word similarity and relatedness have only
employed the default word2vec setting (i.e.,
only using word vectors) and the usefulness of
context vectors has been left underexplored.
 It is very plausible to assume that the above
three issues (corpus size, relation type, post-
processing) interact: Higher-order paradigmatic
word relations likely require more training data to
discover, and the merging of w+c blends
different relation types. The goal of this paper is
to elaborate on the effect of corpus size and post-
processing on the reflection of syntagmatic and
paradigmatic relations between words within the
resulting vector space. It has proven impossible
in psycholinguistics to select real words that
cleanly separate paradigmatic and syntagmatic
relations (McNamara, 2005). Hence, we opted to
bring the statistical structure of the language
under experimental control using an artificial
language adapted from Elman (1990). Unlike in
natural language corpora, the sources are
independent: e.g., dog never directly appears with
cat, and hence any learned relation between them
could not be due to first-order information. Thus
by defining crisp semantic categories and
sentence frames, we investigate how first and
second-order co-occurrence information sources
are consumed and represented in terms of
similarity between words by count-based and
predictive DSMs. Given current uncertainty in
the literature on the role of corpus size, relation
type, and w+c post-processing regarding the
performance of various DSM architectures, this
approach affords experimental control to evaluate
relative performance as a factorial combination of
information sources and parameters while
controlling for the many confounding factors that
exist in natural language corpora; including the
ambiguity of similarity vs. relatedness of two
words in evaluation datasets. Section 2 describes
our framework in details, and section 3 presents
several experiments exploring the capacity of
count vs. predict DSMs in modeling relations
between words.

135

2 Experiment Setup

2.1 Creation of Corpus

The artificial language grammar that we use for
generating sentences in our test corpora is
depicted in Table 1. This grammar was first
introduced by Elman (1990) in his exploration of
language modeling by Recurrent Neural
Networks (RNNs). The language consists of a
small vocabulary, a set of explicitly defined
semantic categories on top of the vocabulary, and
finally, a set of syntactic rules or possible
sentence frames, which specifies how words can
be put together in a sentence with regard to their
semantic categories. The language generation
algorithm enumerates all possible sentences in
the language and the corpus generator returns a
random sample of the language using a uniform
distribution across sentence types. The corpus
size is a variable in our experiments, and we
mention explicitly when we repeat an experiment
by re-sampling a corpus to validate the results on
the semantic similarity tasks.

2.2 Semantic Similarity Tasks

All experiments in the current paper are centered
on the idea that, at least, two types of semantic
similarity can be identified for word pairs.

Table 1. Artificial language grammar (Elman 1990)

Sentence Frames Example

	
NOUN-HUM			VERB-EAT			NOUN-FOOD					
NOUN-HUM			VERB-PERCEPT			NOUN-INANIM					
NOUN-HUM			VERB-DESTROY			NOUN-FRAG					
NOUN-HUM			VERB-INTRAN					
NOUN-HUM			VERB-TRAN			NOUN-HUM					
NOUN-HUM			VERB-AGPAT			NOUN-INANIM					
NOUN-HUM			VERB-AGPAT					
NOUN-ANIM			VERB-EAT			NOUN-FOOD					
NOUN-ANIM			VERB-TRAN			NOUN-ANIM					
NOUN-ANIM			VERB-AGPAT			NOUN-INANIM					
NOUN-ANIM			VERB-AGPAT					
NOUN-INANIM			VERB-AGPAT					
NOUN-AGRESS			VERB-DESTROY			NOUN-FRAG					
NOUN-AGRESS			VERB-EAT			NOUN-HUM					
NOUN-AGRESS			VERB-EAT			NOUN-ANIM					
NOUN-AGRESS			VERB-EAT			NOUN-FOOD	

 man eat cookie
 woman see book
 man smash glass
 woman sleep
 man chase woman
 woman brake book
 man move
 cat eat cookie
 mouse see cat
 cat chase mouse
 mouse move
 rock move
 dragon brake plate
 monster eat man
 dragon eat cat
 monster eat cookie

Semantic Categories

	
NOUN-HUM:			[man,	woman]
NOUN-ANIM:			[cat,	mouse]
NOUN-AGRESS:			[dragon,	monster]	
NOUN-INANIM:			[book,	rock]	
NOUN-FRAG:			[glass,	plate]
NOUN-FOOD:			[cookie,	sandwich]		
VERB-INTRAN:			[think,	sleep]
VERB-TRAN:			[see,	chase]			
VERB-PERCEPT:			[smell,	see]
VERB-AGPAT:			[move,	break]
VERB-DESTROY:			[break,	smash]
VERB-EAT:			[eat]

Thus, we define two distinct methods to evaluate
performance of the DSMs in learning semantic
similarity from our artificial language—the
syntagmatic task and the paradigmatic task.

Syntagmatic task: the objective of this task is to
identify word pairs that can occur in context
together (here the scope of a sentence). For
example, the word pair smash and cookie cannot
appear in each other’s context according to the
grammar in Table 1, because no legal sentence
frame includes the semantic category of both
words. Conversely, the word pair eat and cookies
are related in the sense that the two words can co-
occur within a sentence. Evaluation of the vectors
produced by different DSMs in this task is based
on the cosine similarity between words occurring
in common vs. different context frames and is
calculated by the following accuracy measure:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦'() = 𝐴𝑣𝑔	𝑠𝑖𝑚 𝑤2, 𝑤4
− 	𝐴𝑣𝑔	𝑠𝑖𝑚 𝑤6, 𝑤7

 where (wi , wj) is indicative of the word pairs in
the vocabulary that appear together in at least one
sentence frame, and (wk , wl) is indicative of word
pairs that do not appear in any common frame
given their semantic categories (e.g., glass and
chase belong to NOUN-FRAG and VERB-
TRANS, respectively, which never co-occur
within a sentence).
 The syntagmatic task is a strict version of
finding first-order related, directly co-occurring,
or similar topic words in a natural language.
Since word pairs are exclusively labeled as co-
occurring vs. non-co-occurring based on the
grammar of the artificial language, we will have
the possibility to look into the performance of the
DSM models in drawing syntagmatic similarities
without having to deal with other confounds
present in natural languages. This type of
evaluation is almost impossible in a natural
language given the openness of the semantic
categories and enormous grammar size. In our
modeling framework, if words are distributed in a
DSM mostly based on first-order co-occurrence
information, accuracy of the syntagmatic task
would be high.

Paradigmatic task: two words should be similar
if they tend to occur in similar contexts even if
they never co-occur in the same sentence. Our
paradigmatic task is defined based on this
intuition, and the idea of taxonomically similar
words in natural languages. According to Table

136

1, if two words come from the same semantic
category (e.g., man and woman) they appear in
similar sentence frames, thus ideally (when all
possible sentence formulations exist in the
generated sample of the language) they should be
found as fully substitutable words. The
paradigmatic task evaluates the quality of word
vectors generated by a DSM by calculating the
cosine similarity of word pairs belonging to same
vs. different sematic categories.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦89: = 𝐴𝑣𝑔	𝑠𝑖𝑚 𝑤2, 𝑤4
− 	𝐴𝑣𝑔	𝑠𝑖𝑚 𝑤6, 𝑤7

 where (wi , wj) indicates all word pairs coming
from same semantic categories, and (wk , wl)
indicates word pairs belong to different semantic
categories. Based on this formulation, the
paradigmatic accuracy of a model emphasizing
second-order information would be higher than a
model favoring first-order information to
distribute words in the vector space. The reason
is that, in the former model, the cosine similarity
between vectors of interchangeable words like
man and woman would converge to 1, or will be
at least higher than similarity between other word
vectors. 1 Both 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦'() and 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦89: are
bounded measures within the range of [-2, 2]; in
practice though, they tend to come out within the
range of [0, 1].
 The above two tasks define the basics of our
discriminative approach to investigate which
models or parameter settings work best for each
type of semantic similarity induction.

2.3 Distributional Methods

In our experiments, we use the implementations
of word2vec Skip-Gram with Negative
Sampling (SGNS) and PMI matrix factorization
via Singular Value Decomposition (SVD) by
Levy et al. (2015).
 The Skip-gram model (SGNS) is one of the two
word2vec architectures that predicts based on
a target word one of its context words at a time.
Error of prediction is calculated in the output via
softmax and back-propagated to update two

1 The paradigmatic task can also be defined based on higher-
level taxonomic relations. For example, given the grammar
in Table 1, we expect models to cluster Verbs and Nouns
because each of these higher-level word types share some
within-category contextual similarities and between-
category differences (e.g., all nouns in the grammar have a
verb in context, whereas verbs don’t have verbs in their
context). In section 3.5 where semantic spaces are visualized
we will return to this important point, but for the rest of our
experiments model performance is evaluated based on the
two basic tasks defined above.

weight matrices: the context matrix (CM)
between the output and the hidden layer []vd, and
the word matrix (WM) between the input and the
hidden layer []vd ,where v is the vocabulary size
and d is the size of the hidden layer, thus
dimensionality of the final word vectors. In the
majority of previous work, the word matrix was
used as the final output of the model. When
context words are sampled from the same
vocabulary as that of target words, the final CM
will have the same dimensionality as WM, thus it
can also be used as a semantic representation of
the words. Averaging both matrices for a final
word representation, rather than just the WM, is
an optional post-processing method indicated by
w+c.
 Singular Value Decomposition (SVD) is a
classic representation learning technique for
projecting data into a new, and usually, smaller
feature space. Other similar techniques in
machine learning include eigenvalue
decomposition, the basis of Principle Component
Analysis. The SVD model in our study is
representative of the count-based distributional
semantic models. It begins by calculating a v*v
matrix of point-wise mutual information between
word-context pairs. The matrix is then factorized
and reduced to a v*d matrix, where each row will
be a word vector in the new semantic space.

2.4 Implementation and Parameter
Balancing

In all our experiments, we try to equate the two
models by keeping the common parameters
constant and iterating over different values of the
method-specific parameters to obtain the best
performance for each.
Fixed parameters: parameters that we keep
constant throughout all experimental conditions
are the context window size (set to 2, in order to
cover all words within a sentence in the artificial
grammar), subsampling & dynamic context (set
to off; no frequency-based smoothing or
prioritization is applied to co-occurrence counts),
rare word removal (set to off, no minimum cut-
off is applied to context words). Therefore, in all
experimental conditions that result from
manipulating other parameters exactly the same
word-context population is extracted from a
given corpus and fed as input data to the SGNS
and SVD models. We also use one iteration
(epoch) in SGNS to keep it equated with SVD,
and examine the effect of re-occurrences by
manipulating the corpus size instead.
Variable parameters: for comparative
experiments on small vs. big data, we generate 5

137

independent corpora of each size (between 1K
and 30K sentences) according to the sampling
procedure described in Section 2.1. There are
three important parameters that strongly affect
the performance of the models, but since they are
not the focus of our study we chose their values
through a performance maximization procedure
in all our experiments. One parameter called dim
is the number of reduced dimensions or the size
of final vectors, which is enumerated between 2
and 14 in our experiments. The other parameter
neg is only applicable to SGNS and indicates the
number of negative samples (we try between zero
and 6 negative samples). Finally, a parameter in
SVD determines the asymmetry of factorization,
which was simulated with 0, 0.5 and 1 eig (for
more details refer to Levy et al., 2015).

3 Results

3.1 Vanilla Comparison

Our first comparison explores the overall
performance of the two DSMs with their
common post-processing practice. We only use
the W matrix to construct the word vectors after
training SGNS, and the SVD factorization is also
performed in its default manner. As explained in
2.4, we sampled five corpora of each size and
measured the maximum likelihood of a model’s
performance by manipulating the variable
parameters.
 Table 2 shows that both models had very low
overall accuracies in grouping syntagmatically
related words. This observation indicates that, by
default, both SVD and SGNS consume first-order
co-occurrence information but infer second-order
information, i.e., paradigmatic similarities
between words by generalizing over context
types in which two words can be seen. This
finding suggests that neither of the models with
its default configuration is suitable for
performing word relatedness tasks. Reported best
performances in the table for SVD were obtained
at eig = 0.0, and for SGNS at neg = 1. Optimal
dimensionality was variable but always above 5.

Table 2. Vanilla setup accuracy in paradigmatic and
syntagmatic tasks with different size training corpuses.

Corpus
size

Method Paradigmatic Syntagmati
c

1K SVD 0.828 0.253
SGNS 0.535 0.113

10K SVD 0.832 0.258
SGNS 0.775 0.092

3.2 Corpus Size

Accuracy scores in Table 2 suggest that, even
with small training data SVD can produce good
vectors for the paradigmatic task. However, the
performance of SGNS increases with more
training data. This quick observation is consistent
with previous findings regarding the superior
performance of count models on word similarity
and categorization tasks when models were
trained on small corpora and with their default
post-processing setting (Asr et al., 2016;
Sahlgren & Lenci, 2016). The main reason stated
in the literature is that SGNS requires tuning a
large number of parameters and seeing more and
more data (either through extra epochs or by
feeding in a larger corpus of the same distribution
of words and sentences) helps the model to
converge. In the next sections we will see how
otherwise we could enhance this model’s
performance, possibly in both syntagmatic and
paradigmatic tasks.

3.3 Inclusion of Context Vectors

We hypothesized that using a post-processing
setup emphasizing first-order information should
enhance models’ performance in the syntagmatic
task. To test this, we repeated experiments on
training corpora of size 1K to 30K with the
alternative post-processing approaches (inclusion
of context vectors, i.e., w+c vs. w, which was the
default setting).
 Figure 1 shows that the inclusion of context
vectors enhances the accuracy of both models in
the syntagmatic task (red lines are on top of the
blue lines). This enhancement is more
pronounced in the SGNS model: more data
increases the accuracy of syntagmatic similarity
inference consistently when the w+c option is
used. SVD also benefits from a w+c equivalent
setting proposed by Levy & Goldberg (2015) in
performing the syntagmatic task, however the
enhancement is tightly bounded for this model.
 For the paradigmatic task, we expected an
inverse pattern: explicit inclusion of first-order
co-occurrence information in similarity
measurement by considering both word and
context vectors should hurt model’s performance
because only second-order information is
important for the paradigmatic task. We can see
in Figure 2 that our hypothesis is supported for
SVD, where the accuracy declines significantly
with the inclusion of the context vectors
(compare the red and blue dotted lines).
However, the SGNS model does not exhibit a
dramatic change of performance in the

138

paradigmatic task with or without the w+c option
(compare the solid lines). In fact, the
performance in the paradigmatic task was slightly
enhanced too. Putting this together with what we
saw above regarding SGNS performance in the
syntagmatic task brings us to an interesting
conclusion about the “optimal parameter setting”
for this model: using the w+c option is a good
choice adding to the robustness of SGNS,
particularly when unsure of which type of
similarity inference we would like the model to
perform at the end. The SVD model, on the other
hand, does not show the capability to learn both
tasks at the same time; it gets better in one at the
expense of the other. In the next section we try to
explain this difference by looking into the way
the two models distribute words within the high
dimensional vector space.

Figure 1. Accuracy of SGNS and SVD with word only
vs. word+context vectors trained on corpuses of
different sizes (1K to 30K sentences) in the
syntagmatic task.

Figure 2. Accuracy of SGNS and SVD with word only
vs. word+context vectors trained on corpuses of
different sizes (1K to 30K sentences) in the
paradigmatic task.

3.4 Metric Space Expansion/Compression

The above experiments showed a lower ceiling
for SVD performance compared to SGNS in both
tasks when sufficient data was available to the
models and the parameter space was thoroughly
explored. In order to explain this observation, we
took a closer look at the vectors generated by
each model and specifically examined the range
of the similarity scores of all word pairs in the
vocabulary. We found that SVD generated
numerically closer vectors compared to SGNS.
This results in a smaller range of similarity
scores: totally interchangeable words, such as
man and woman get a cosine similarity score
close to 1.0; completely different words (that
neither appear in a sentence together, nor share
similar contexts) such as glass and chase get a
negative similarity score typically close to 0.0, or
around -0.5 in a best case scenario.

Figure 3. Spectrum of similarity scores between words
in SVD and SGNS (10K corpus, neg = 1, eig = 0, dim
= 2 to 9 on the x-axis): (a) with w and, (b) with w+c
post-processing.

Figure 3 depicts the minimum, maximum and
average similarity scores obtained for all word
pairs from the vocabulary through repeated
experiments on a 10K corpus by manipulating the
dimensionality (x-axis). It is almost the same for
SGNS and SVD when the word-only post-

139

processing is applied, but as soon as the context
vectors are included, the spectrum of similarity
scores widens up for SGNS. This investigation
may explain why SVD is unable to manifest
paradigmatic and syntagmatic relations at the
same time.
 SVD does not get a huge benefit from more
training data or the post-processing step for
inclusion of the context vectors. The underlying
reason is that SVD always uses a sub-space of the
entire similarity spectrum [-0.5, 1.0] so
everything is squeezed – we refer to this
phenomenon as space compression, which we
hypothesize is due to the limitations of the
dimensionality reduction mechanism. On the
other hand, the distribution of words in the vector
space obtained from SGNS changes drastically
both by training on more data and considering
context vectors.
 As Figure 3 shows, SGNS has the capacity to
use up the entire similarity spectrum [-1.0, 1.0],
i.e., space expansion. We conjecture that this is
due both to the design of the objective function
and to the larger number of parameters in the
neural model being updated independently,
making it a more flexible method to encode fine-
grained differences between word groups, while
keeping them in meaningful clusters. More data
helps the model fine-tune its parameters.
Furthermore, averaging the word and context
vectors provides an ensemble voting for
syntagmatic (relatedness) and paradigmatic
(similarity) at the same time.

3.5 Word Clusters in the Semantic Space

The space expansion of the SGNS model by
inclusion of the context vectors can be visualized
with a 2-dimensional projection of the vectors
obtained from w vs. w+c post-processing
conditions, depicted in Figures 4 and 5
respectively. A comparison between the two plots
shows how the vicinity of paradigmatically
similar words (interchangeable words such as cat
and mouse) can be preserved while syntagmatic
clusters are emphasized (cat and chase) by
inclusion of context vectors.
 It is important, however, to note that higher-
level paradigmatic relations are negatively
affected as the model tries to bring
syntagmatically related words closer to one
another. For example, verbs and nouns (clustered
in gray ovals in Figures 4), which are
paradigmatically different, get mixed up once the
syntagmatic clusters start to shape (gray
rectangles in Figure 5). On the other hand, nouns
referring to animate categories (that have some

level of paradigmatic similarity) fall apart in the
w+c space (red dashed cluster in Figures 4,
distorted in Figure 5). These observations
emphasize the importance of the post-processing
choices based on the final inferences we expect
from the model. When generalized to a natural
language setting, the models depending on the
w+c parameterization would demonstrate
synonymy, similarity and associative relatedness
differently.

Figure 4. Paradigmatic clusters in SGNS w vector
space; Syntagmatic clusters not easily identified (10K
corpus, dim = 14, neg = 1)

Figure 5. Clear syntagmatic clusters in SGNS w+c
vector space; some paradigmatically related words are
kept together and some have fallen apart (10K corpus,
dim = 14, neg = 1)

One should consider that while dimensionality
reduction to two dimensions is possible and
helpful for visualization purposes, these images
do not reflect the exact distances between words
in the high-dimension space. Therefore, these
observations should be understood in

140

combination with other results, e.g., similarity
spectrums demonstrated in the previous section.

4 Conclusion

We proposed a methodology based on artificial
language generation for studying distributional
semantic models. This methodology was inspired
by the prominent study of Elman (1990) and we
mainly selected that to bring confound factors in
natural languages under control while assessing
the effect of model parameters on produced word
vectors.
 The experiments in this paper revealed an
interaction between the training corpus size and a
variety of parameter settings of two opponent
DSMs in word similarity/relatedness evaluation.
Confirming previous findings with small training
data, we showed that SVD could easily organize
words based on paradigmatic similarities
obtained from second-order co-occurrence
information, whereas SGNS needed more data to
acquire the same type of knowledge. When it
comes to syntagmatic relatedness between words,
both models required accurate parameter settings.
In particular, the default configuration of both
SVD and SGNS aims at optimizing the space in a
way that paradigmatically similar words are put
together.
 The optimal setting of the SGNS for an overall
superior performance in both paradigmatic and
syntagmatic tasks involved the inclusion of
context vectors, which is not the typically tested
setting of word2vec in previous studies. Our
analysis of similarity scores between vectors
generated for all words in the artificial language
showed that averaging word and context vectors
would result in a more organized SGNS vector
space. The equivalent post-processing of the
matrices in SVD for explicit inclusion of first-
order similarity suggested by Levy et al. (2015)
enhanced the performance of this model in the
syntagmatic (relatedness) task only in the
expense of making it worse for the paradigmatic
(similarity) task.
 Our observations suggest that SVD has some
limitations in populating the distributional space
as evenly as SGNS; thus it always comes up with
vectors that are on average closer to one another.
Further study is needed to explain this finding in
a fundamental way perhaps via mathematical
derivations. The trade-off between performance
in paradigmatic and syntagmatic task, specially
for the SVD model, can explain the occasional
superiority and inferiority of this model against
the neural opponents in previous studies:

similarity and relatedness rankings for words in
natural languages manifest a mixture of
paradigmatic and syntagmatic relations among
words, thus a certain SVD model (with its post-
processing optimized for reflecting either type of
relation) might outperform SGNS in one task and
not in the other.
 Our experiments were a first step towards
understanding the differences between classic
and neural distributional models in a more
controlled setting. The proposed methodology
can be used in future research, e.g. to assess the
effect of vocabulary and grammar size on
resulting word vectors by different models, and in
turn to select the right distributional approach in
specific research context. We hope also that our
work will initiate a general methodology for
understanding the mechanism of neural networks
employed in a variety of natural language
processing tasks.

Acknowledgement

We are thankful to our reviewers for their helpful
feedback on the initial version of the paper and
suggestions for extension of the work. This
research was funded by grant R305A140382
from the Institute of Education Sciences.

References
Andreas, J., & Klein, D. (2014). How much do word

embeddings encode about syntax? In Proceedings
of ACL (pp. 822-827).

Asr, F. T., Willits, J. A., & Jones, M. N. (2016).
Comparing Predictive and Co-occurrence Based
Models of Lexical Semantics Trained on Child-
directed Speech. In Proceedings of the Annual
Meeting of Cognitive Science Society.

Baroni, M., Dinu, G., & Kruszewski, G. (2014). Don't
count, predict! A systematic comparison of context-
counting vs. context-predicting semantic vectors. In
Proceedings of ACL (pp. 238-247).

Bengio, Y., Ducharme, R., Vincent, P., & Jauvin, C.
(2003). A neural probabilistic language
model. Machine Learning Research, 3(Feb), 1137-
1155.

Bullinaria, J. A., & Levy, J. P. (2007). Extracting
semantic representations from word co-occurrence
statistics: A computational study. Behavior
Research Methods, 39, 510-526.

Collobert, R., Weston, J., Bottou, L., Karlen, M.,
Kavukcuoglu, K., & Kuksa, P. (2011). Natural
language processing (almost) from scratch. Journal
of Machine Learning Research, 12(Aug), 2493-
2537.

141

Deerwester, S., Dumais, S. T., Furnas, G. W.,
Landauer, T. K., & Harshman, R. (1990). Indexing
by latent semantic analysis. Journal of the
American society for information science, 41(6),
391.

Elman, J.L. (1990). Finding structure in time.
Cognitive Science, 14, 179-211.

Harris, Z. (1970). Distributional structure. In Papers
in Structural and Transformational Linguistics (pp.
775–794).

Kiela, D., Hill, F., & Clark, S. (2015). Specializing
word embeddings for similarity or relatedness. In
Proceedings of EMNLP.

Jones, M. N., & Mewhort, D. J. (2007). Representing
word meaning and order information in a composite
holographic lexicon. Psychological Review, 114(1),
1.

 Jones, M. N., Willits, J., Dennis, S., & Jones, M.
(2015). Models of semantic memory. Oxford
Handbook of Mathematical and Computational
Psychology, 232-254

Landauer, T. K., & Dumais, S. T. (1997). A solution
to Plato's problem: The latent semantic analysis
theory of acquisition, induction, and representation
of knowledge. Psychological Review, 104(2), 211.

Levy, O., & Goldberg, Y. (2014). Neural word
embedding as implicit matrix factorization. In
Advances in Neural Information Processing
Systems (pp. 2177-2185).

Levy, O., Goldberg, Y., & Dagan, I. (2015).
Improving distributional similarity with lessons
learned from word embeddings. Transactions of the
Association for Computational Linguistics, 3, 211-
225.

Li, J., Chen, X., Hovy, E. and Jurafsky, D. (2016).
Visualizing and Understanding Neural Models in
NLP. In Proceedings of NAACL.

Ling, W., Dyer, C., Black, A., & Trancoso, I. (2015).
Two/too simple adaptations of word2vec for syntax
problems. In Proceedings of ACL-HLT (pp. 1299-
1304).

McNamara, T. P. (2005). Semantic priming:
Perspectives from memory and word recognition.
Psychology Press.

Melamud, O., McClosky, D., Patwardhan, S., &
Bansal, M. (2016). The role of context types and
dimensionality in learning word embeddings. arXiv
preprint arXiv:1601.00893.

Miller, G. A. (1958). Free recall of redundant strings
of letters. Journal of Experimental
Psychology, 56(6), 485.

Mitchell, J., & Steedman, M. (2015). Orthogonality of
syntax and semantics within distributional spaces.
In Proceedings of ACL.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S.
and Dean, J. (2013a). Efficient estimation of word
representations in vector space. In ICLR.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S.,
and Dean., J. (2013b) Distributed Representations
of Words and Phrases and their Compositionality.
In Proceedings of NIPS, 2013.

Pennington, J., Socher, R., & Manning, C. D. (2014).
Glove: Global Vectors for Word Representation.
In EMNLP (Vol. 14, pp. 1532-43).

Sahlgren, M., & Lenci, A. (2016). The Effects of Data
Size and Frequency Range on Distributional
Semantic Models. arXiv preprint
arXiv:1609.08293.

Turney, P. D., & Pantel, P. (2010). From frequency to
meaning: Vector space models of semantics.
Journal of Artificial Intelligence Research, 37(1),
141-188.

Unger, L., Fisher, A. V., Nugent, R., Ventura, S. L., &
MacLellan, C. J. (2016). Developmental changes in
semantic knowledge organization. Journal of
Experimental Child Psychology, 146, 202-222.

142

Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017), pages 143–152,
Vancouver, Canada, August 3 - August 4, 2017. c©2017 Association for Computational Linguistics

Learning Word Representations with Regularization
from Prior Knowledge

Yan Song
Tencent AI Lab

clksong@tencent.com

Chia-Jung Lee
Microsoft

cjlee@microsoft.com

Fei Xia
University of Washington

fxia@uw.edu

Abstract

Conventional word embeddings are train-
ed with specific criteria (e.g., based on
language modeling or co-occurrence) in-
side a single information source, disre-
garding the opportunity for further calibra-
tion using external knowledge. This paper
presents a unified framework that lever-
ages pre-learned or external priors, in the
form of a regularizer, for enhancing con-
ventional language model-based embed-
ding learning. We consider two types of
regularizers. The first type is derived from
topic distribution by running latent Dirich-
let allocation on unlabeled data. The sec-
ond type is based on dictionaries that are
created with human annotation efforts. To
effectively learn with the regularizers, we
propose a novel data structure, trajectory
softmax, in this paper. The resulting em-
beddings are evaluated by word similarity
and sentiment classification. Experimental
results show that our learning framework
with regularization from prior knowledge
improves embedding quality across multi-
ple datasets, compared to a diverse collec-
tion of baseline methods.

1 Introduction

Distributed representation of words (or word em-
bedding) has been demonstrated to be effec-
tive in many natural language processing (NLP)
tasks (Bengio et al., 2003; Collobert and We-
ston, 2008; Turney and Pantel, 2010; Collobert
et al., 2011; Mikolov et al., 2013b,d; Weston
et al., 2015). Conventional word embeddings are
trained with a single objective function (e.g., lan-
guage modeling (Mikolov et al., 2013c) or word
co-occurrence factorization (Pennington et al.,

2014)), which restricts the capability of the
learned embeddings from integrating other types
of knowledge. Prior work has leveraged relevant
sources to obtain embeddings that are best suited
for the target tasks, such as Maas et al. (2011) us-
ing a sentiment lexicon to enhance embeddings for
sentiment classification. However, learning word
embeddings with a particular target makes the ap-
proach less generic, also implying that customized
adaptation has to be made whenever a new knowl-
edge source is considered.

Along the lines of improving embedding qual-
ity, semantic resources have been incorporated as
guiding knowledge to refine objective functions in
a joint learning framework (Bian et al., 2014; Xu
et al., 2014; Yu and Dredze, 2014; Nguyen et al.,
2016), or used for retrofitting based on word re-
lations defined in the semantic lexicons (Faruqui
et al., 2015; Kiela et al., 2015). These approaches,
nonetheless, require explicit word relations de-
fined in semantic resources, which is a difficult
prerequisite for knowledge preparation.

Given the above challenges, we propose a novel
framework that extends typical context learning
by integrating external knowledge sources for en-
hancing embedding learning. Compared to a well
known work by Faruqui et al. (2015) that focused
on tackling the task using a retrofitting1 frame-
work on semantic lexicons, our method has an
emphasis on joint learning where two objectives
are considered for optimization simultaneously. In
the meantime, we design a general-purpose infras-
tructure which can incorporate arbitrary external
sources into learning as long as the sources can
be encoded into vectors of numerical values (e.g.
multi-hot vector according to the topic distribu-
tions from a topic model). In prior work by Yu
and Dredze (2014) and Kiela et al. (2015), the ex-

1In their study, joint learning was reported to be less ef-
fective than retrofitting.

143

ternal knowledge has to be clustered beforehand
according to their semantic relatedness (e.g., cold,
icy, winter, frozen), and words of similar mean-
ings are added as part of context for learning. This
may set a high bar for preparing external knowl-
edge since finding the precise word-word relations
is required. Our infrastructure, on the other hand,
is more flexible as knowledge that is learned else-
where, such as from topic modeling or even a sen-
timent lexicon, can be easily encoded and incor-
porated into the framework to enrich embeddings.

The way we integrate external knowledge is
performed by the notion of a regularizer, which is
an independent component that can be connected
to the two typical architectures, namely, continu-
ous bag-of-words (CBOW) and skip-gram (SG),
or used independently as a retrofitter. We construct
the regularizers based on the knowledge learned
from both unlabeled data and manually crafted
information sources. As an example of the for-
mer, a topic model from latent Dirichlet allocation
(LDA) (Blei et al., 2003) is first generated from
a given corpus, based on which per-word topical
distributions are then added as extra signals to aid
embedding learning. As an example of the latter,
one can encode a dictionary into the regularizer
and thus adapt the learning process with the en-
coded knowledge.

Another contribution of this paper is that we
propose a novel data structure, trajectory softmax,
to effectively learn prior knowledge in the regu-
larizer. Compared to conventional tree based hi-
erarchical softmax, trajectory softmax can greatly
reduce the space complexity when learning over a
high-dimension vector. Our experimental results
on several different tasks have demonstrated the
effectiveness of our approach compared to up-to-
date studies.

The rest of the paper is organized as follows. In
section 2, we describe in detail our framework and
show how we learn the regularizer in section 3.
Section 4 presents and analyzes our experimental
results and section 5 surveys related work. Finally,
conclusions and directions of future work are dis-
cussed in section 6.

2 Approach

Conventionally word embeddings are learned
from word contexts. In this section, we describe
our method of extending embedding learning to
incorporate other types of information sources.

Previous work has shown that many different
sources can help learn better embeddings, such as
semantic lexicons (Yu and Dredze, 2014; Faruqui
et al., 2015; Kiela et al., 2015) or topic distribu-
tions (Maas et al., 2011; Liu et al., 2015b). To
provide a more generic solution, we propose a uni-
fied framework that learns word embeddings from
context (e.g., CBOW or SG) together with the flex-
ibility of incorporating arbitrary external knowl-
edge using the notion of a regularizer. Details are
unfolded in following subsections.

2.1 The Proposed Learning Framework

Preliminaries: The fundamental principle for
learning word embeddings is to leverage word
context, with a general goal of maximizing the
likelihood that a word is predicted by its context.
For example, the CBOW model can be formulated
as maximizing

L =
1
|V |

|V |∑
i=1

log p(wi |
∑

0<|j|≤c
υi+j), ∀ wi ∈ V

(1)
where υi+j refers to the embedding of a word in
wi+ci−c, and c defines the window size of words ad-
jacent to the word wi. The optimization for L over
the entire corpus is straightforward.

The left part of Figure 1 illustrates the con-
cept of such context learning. It is a typical ob-
jective function for language modeling, where wi
is learned by the association with its neighboring
words. Since context greatly affects the choice of
the current word, this modeling strategy can help
finding reasonable semantic relationships among
words.

Regularizer: To incorporate additional sources
for embedding learning, we introduce the notion
of a regularizer, which is designed to encode in-
formation from arbitrary knowledge corpora.

Given a knowledge resource Ψ, one can en-
code the knowledge carried by a word w with
ψ(w), where ψ can be any function that maps w
to the knowledge it encapsulates. For example,

a word has a topic vector ψ(w) =
−−→
e(wi)Φ[1:K,:],

resulting ψ(w) =
−→
Φw = (φ1,w, φ2,w, ..., φK,w),

where Φ[1:K,:] is the topic distribution matrix for

all words withK topics;
−−→
e(wi) is the standard basis

vector with 1 at the i-th position in the vocabulary
V . Therefore, regularization for all w with given

144

Figure 1: Illustration of joint learning word embeddings with context and regularization from prior
knowledge. The green lines refer to the prediction and the red dotted lines refer to the updating process.

a knowledge source can be conceptually used to
maximize

∑
w∈V R(υ), where R is the regular-

izer, defined as a function of the embedding υ of a
given word w and formulated as:

R(υ) = log p(ψ(w)|υ), ∀ w ∈ V,Ψ (2)

The right part of Figure 1 shows an instantiation
of a regularizer that encodes prior knowledge of
vocabulary size |V |, each with D dimensions.

Joint Learning: To extend conventional embed-
ding learning, we combine context learning from
an original corpus with external knowledge en-
coded by a regularizer, where the shared vocabu-
lary set forms a bridge connecting the two spaces.
In particular, the objective function for CBOW
with integrating the regularizer can be formulated
as maximizing

L =
1
|V |

|V |∑
i=1

log p(wi, ψ(wi) |
∑

0<|j|≤c
υi+j) (3)

where not only wi, but also R(wi) is predicted by
the context wordswi+j via their embeddings υi+j .

Figure 1 as a whole illustrates this idea. Re-
call that each row of the matrix corresponds to a
vector of a word in V , representing prior knowl-
edge across D dimensions (e.g., semantic types,
classes or topics). When learning/predicting a
word within this framework, the model needs to
predict not only the correct word as shown in the
context learning part in the figure, but also the cor-
rect vector in the regularizer. In doing so, the
prior knowledge will be carried to word embed-

dings from regularization to context learning by
back-propagation through the gradients obtained
from the learning process based on the regulariza-
tion matrix.

Retrofitting: With joint learning as our goal,
we should emphasize that the proposed frame-
work supports simultaneous context learning and
prior knowledge retrofitting with a unified objec-
tive function. This means that the retrofitters can
be considered as a stand-alone component at dis-
posal, where the external knowledge vectors are
regarded as supervised-learning target and the em-
beddings are updated through the course of fitting
to the target. In §4, we will evaluate the perfor-
mance of both joint learner and retrofitter in detail.

2.2 Parameter Estimation

As shown in Equation 3, prior knowledge par-
ticipates in the optimization process for predict-
ing the current word and contributes to embedding
updating during training a CBOW model. Using
stochastic gradient descent (SGD), embeddings
can be easily updated by both objective functions
for language modeling and regularization through:

υ?i+j = υi+j−λ∇υ[log p(wi|
∑

0<|j|≤c
υi+j)+R(υ?i)]

(4)
where R is defined as in Eq.2 for ψ(wi). For SG
model, prior knowledge is introduced in a similar
way, with the difference being that context words
are predicted instead of the current word.

Therefore, when learned from the context, em-

145

Figure 2: Comparison of hierarchical softmax (left) and trajectory softmax (right) based on an example of
eight words in binary coding. The bold arrow lines refer to the path for encoding w5 in both hierarchical
and trajectory softmax.

beddings are updated in the same way as in nor-
mal CBOW and SG models. When learned from
the regularizer, embeddings are updated via a su-
pervised learning over Ψ, on the condition that Ψ
is appropriately encoded by ψ. The details of how
it is performed will be illustrated in the next sub-
section.

2.3 Trajectory Softmax

Hierarchical softmax is a good choice for reducing
the computational complexity when training prob-
abilistic neural network language models. There-
fore, for context learning on the left part of Fig-
ure 1, we continue using hierarchical softmax
based on Huffman coding tree (Mikolov et al.,
2013a). Typically to encode the entire vocabulary,
the depth of the tree falls in a manageable range
around 15 to 18.

However, different from learning context
words, to encode a regularizer as shown on the
right part of Figure 1, using hierarchical softmax is
intractable due to exponential space demand. Con-
sider words expressed withD-dimensional vectors
in a regularizer, a tree-based hierarchical softmax
may require 2D − 1 nodes, as illustrated in the
left hand side of Figure 2. Since each node con-
tains a d-dimensional “node vector” that is to be
updated through training, the total space required
isO(2D ·d) for hierarchical softmax to encode the
regularizer. WhenD is very large, such asD = 50
meaning that tree depth is 50, the space demand
tends to be unrealistic as the number of nodes in
the tree grows to 250.

To avoid the exponential requirement in space,
in this work, we propose a trajectory softmax acti-
vation to effectively learn over the D-dimensional
vectors. Our approach follows a grid hierarchical

structure along a path when conducting learning
in the regularizer. From the right hand side of Fig-
ure 2, we see that the same regularizer entry is en-
coded with a path of D nodes, using a grid struc-
ture instead of a tree one. Consequently the total
space required will be reduced to O(2 ·D · d).

As a running example, Figure 2 shows that
when D = 4, the conventional hierarchical soft-
max needs at least 15 nodes to perform softmax
over the path, while trajectory softmax greatly re-
duces space to only 7 nodes. Compared to tree-
based hierarchical softmax, the paths in trajectory
softmax are not branches of a tree, but a fully
connected grid of nodes with space complexity of
D × |C| in general. Here |C| refers to the num-
ber of choices on the paths for a node to the next
node, and thus |C| = 2 is the binary case. In
Figure 2, we see an activation trajectory for a se-
quence of “Root→100” for encoding word w5. wt
is then learned and updated through the nodes on
the trajectory when w5 is predicted by wt. The
learning and updating are referred by the dashed
arrow lines. Overall, trajectory softmax greatly re-
duces the space complexity than hierarchical soft-
max, especially when words sharing similar infor-
mation, in which case the paths of these words will
be greatly overlapped.

More formally, learning with trajectory softmax
in the binary case is similar to hierarchical soft-
max, which is to maximize p over the path for a
vector encoded in ψ(w), where p is defined below
with an input vector υ:

p(ψ(w)|υ) =
D−1∏
i=1

σ(Jn(i+ 1)K · υ>i υ) (5)

where υi is the inner vector in i-th node on the
trajectory. Jn(i + 1)K = 1 or −1 when (i + 1)-th

146

node is encoded with 0 or 1, respectively. The final
update to word embedding υ with the regularizer
is conducted by:

υ∗ = υ − γ(σ(υ>i υ)− ti) · υi (6)

which is applied to i = 1, 2, ..., D − 1, where
σ(x) = exp(x)/(1 + exp(x)); ti = Jn(i + 1)K;
γ is a discount learning rate.

Since the design of trajectory softmax is com-
patible with the conventional hierarchical softmax,
one can easily implement the joint learning by
concatenating its Root with the terminal node in
the hierachical tree. The learning process is thus
to traverse all the nodes from the hierarchical tree
and the trajectory path.

3 Constructing Regularizers

We consider two categories of information sources
for constructing regularizers. The first type of reg-
ularizer is built based on resources without anno-
tation. On the contrary, the second type uses text
collections with annotation. For brevity, through-
out the paper we refer to the former as unannotated
regularizer whereas the latter is recognized as an-
notated regularizer.

3.1 Unannotated Regularizer
The unannotated regularizer constructs its regular-
ization matrix based on an LDA learned topic dis-
tribution, which reflects topical salience informa-
tion of a given word from prior knowledge. Us-
ing LDA not only serves our purpose of learn-
ing according to word semantics reflected by co-
occurrences but can also bring in knowledge inex-
pensively (i.e., no annotations needed).

To start, a classic LDA is first performed on an
arbitrary base corpus for retrieving word topical
distribution, resulting in a topic model withK top-
ics. All the units in the corpus are then assigned
with a word-topic probability φi corresponding to
topic k, based on which a matrix is formed with all−→
Φw, as described in §2.1. Next we convert each−→
Φ into a 0-1 vector based on the maximum val-
ues in

−→
Φ . In particular, positions with maximum

values are set to 1 and the rest are set to 0 (e.g.
[0.1, 0.1, 0.4, 0.4]→ [0, 0, 1, 1]). This converted
matrix functions as the final regularization matrix
as shown in right hand side of Figure 1. We set
K = 50 in our experiments.2 An in-house LDA

2We experimented with other numbers for K, and their
performance didn’t vary too much when K > 40. We didn’t
include this comparison due to the similar results.

implementation3 is used for training Φ[1:K,:], with
1,000 iterations.

3.2 Annotated Regularizer

We use three sources for training annotated regu-
larizers in this work. Two of the sources are se-
mantic lexicons, namely, the Paraphrase Database
(PPDB)4 (Ganitkevitch et al., 2013) and synonyms
in the WordNet (WNsyn)5 (Miller, 1995). They
are used in the word similarity task. The third
source is a semantic dictionary, SentiWordNet 3.0
(SWN) (Baccianella et al., 2010), which is used
in the sentiment classification task. All of the
three sources were created with annotation efforts,
where either lexical or semantic relations were
provided by human experts beforehand.

Before constructing the regularizer, we need en-
code each word in the sources as a vector accord-
ing to its relations to other words or predefined in-
formation. For PPDB and WNsyn, we use them in
different ways for joint learning and retrofitting.
In order to optimize the efficiency in joint learn-
ing, we compress the word relations with topic
representations. We use an LDA learner to get
topic models for the lexicons6, with K = 50.
Therefore, the word relations are transferred into
topic distributions that are learned from their co-
occurrences defined in the lexicon. The way we
construct regularization matrix may be lossy, risk-
ing losing information that is explicitly delivered
in the lexicon. However, it provides us effective
encodings for words, and also yields better learn-
ing performance empirically in our experiments.
In retrofitting, we directly use words’ adjacent ma-
trices extracted from their relations defined in the
lexicons, then take the adjacent vector for each
word as the regularization vector.

The SWN includes 83K words (147K words
and phrases in total). Every word in SWN has two
scores for its degree towards positive and negative
polarities. For example, the word “pretty” receives
0.625 and 0 for positive and negative respectively,
which means it is strongly associated with positive
sentiment. The scores range from 0 to 1 with step

3It is a Markov Chain Monte Carlo (MCMC) based LDA
using Gibbs sampling.

4We use PPDB-XL in this paper.
5We use WNsyn because in our experiment only using

synonyms perform better than using synonyms, hypernyms
and hyponyms.

6The lexicons are organized in the similar way as in
Faruqui et al. (2015), where synonyms are grouped together
and treated as a document for LDA learning.

147

Embeddings
MEN-3k SimLex-999 WordSim-353
γ ρ γ ρ γ ρ

LDA 57.17 58.86 20.39 22.12 55.48 54.81
CBOW 62.93 65.84 28.34 28.31 68.50 66.67

Yu and Dredze (2014)
+PPDB 65.35 65.84 35.56 33.30 72.75 72.43
+WNsyn 65.20 65.74 36.15 33.65 72.79 72.58

This work
+LDA 67.33 69.51 29.79 29.78 71.19 69.58
+PPDB 65.25 66.87 36.43 33.28 69.45 68.89
+WNsyn 64.42 66.98 33.86 33.69 66.13 67.11

SG 64.79 66.71 26.97 26.59 68.88 67.80

Kiela et al. (2015)
+PPDB 61.13 60.04 36.47 34.29 70.14 68.76
+WNsyn 57.02 59.84 29.02 29.99 63.61 61.22

This work
+LDA 65.02 65.32 25.19 24.04 66.16 69.21
+PPDB 70.83 71.35 37.10 35.72 73.94 73.11
+WNsyn 66.58 68.14 36.72 35.91 68.50 67.90

Table 1: Word similarity results for joint learning on three datasets in terms of Pearson’s coefficient cor-
relation (γ) and Spearman’s rank correlation (ρ) in percentages. Higher score indicates better correlation
of the model with respect to the gold standard. Bold indicates the highest score for each embedding type.

of 0.125 for both positive and negative polarities.
Therefore there are 9 different degrees for a word
to be annotated for the two sentiments. For en-
coding this dictionary, we design a 18-dimension
vector, in which the first 9 dimension represents
the positive sentiment while the last 9 for negative
sentiment. A word is thus encoded into a binary
form where the corresponding dimension is set
to 1 with others 0. For the aforementioned word
“pretty”, its encoded vector will be “000001000
000000000”, in which the score 0.625 of positive
activates the 6th dimension in the vector. In doing
so, we form a 83K × 18 regularization matrix for
the SWN dictionary.

4 Experiments

The resulting word embeddings based on joint
learning as well as retrofitting are evaluated in-
trinsically and extrinsically. For intrinsic evalu-
ation, we use word similarity benchmark to di-
rectly test the quality of the learned embeddings.
For extrinsic evaluation, we use sentiment analy-
sis as a downstream task with different input em-
beddings. Regularizers based on LDA, PPDB and
WNsyn are used in word similarity experiment,
while SentiWordNet regularization is used in sen-
timent analysis. The experimental results will be
discussed in §4.1 and §4.2.

We experiment with three learning paradigms,
namely CBOW, SG and GloVe. GloVe is only
tested in retrofitting since our regularizer is not

compatible with GloVe learning objective in joint
learning. In all of our retrofitting experiments, we
only train the regularizer with one iteration, con-
sistent with Kiela et al. (2015).

The base corpus that we used to train ini-
tial word embeddings is from the latest articles
dumped from Wikipedia and newswire7, which
contains approximately 8 billion words. When
training on this corpus, we set the dimension of
word embeddings to be 200 and cutoff threshold
of word frequency threshold to be 5 times of oc-
currence. These are common setups shared across
the following experiments.

4.1 Word Similarities Evaluation

We use the MEN-3k (Bruni et al., 2012), SimLex-
999 (Hill et al., 2015) and WordSim-353 (Finkel-
stein et al., 2002) datasets to perform quantitative
comparisons among different approaches to gen-
erating embeddings. The cosine scores are com-
puted between the vectors of each pair of words in
the datasets8. The measures adopted are Pearson’s
coefficient of product-moment correlation (γ) and
Spearman’s rank correlation (ρ), which reflect how

7This corpus is constructed by the script demo-train-big-
model-v1.sh from https://storage.googleapis.com/google-
code-archive-source/v2/code.google.com/word2vec/source-
archive.zip

8For LDA embeddings (topic distributions), we tried
Jenson-Shannon divergence, which is much worse than co-
sine scores in measuring the similarity. Therefore we still use
cosine for LDA embeddings.

148

Embeddings
MEN-3k SimLex-999 WordSim-353
γ ρ γ ρ γ ρ

GloVe 66.84 66.97 28.87 27.52 59.78 61.46

Faruqui et al. (2015)
+PPDB 66.98 67.04 29.25 28.25 61.44 63.35
+WNsyn 64.29 63.92 27.32 24.39 57.40 58.88

This work
+LDA 59.65 60.23 22.25 22.70 55.65 57.57
+PPDB 68.99 68.99 31.35 29.85 62.31 63.96
+WNsyn 66.72 66.84 29.78 28.47 59.62 61.34

CBOW 62.93 65.84 28.34 28.31 68.50 66.67

Yu and Dredze (2014)
+PPDB 65.08 65.52 36.16 34.01 72.75 72.39
+WNsyn 65.34 65.77 35.68 33.33 72.72 72.74

Faruqui et al. (2015)
+PPDB 65.07 67.55 37.07 35.02 71.76 71.18
+WNsyn 63.71 66.44 30.15 29.83 71.24 69.39

This work
+LDA 50.07 56.64 21.47 23.01 41.56 47.27
+PPDB 65.30 67.68 37.34 35.74 72.01 72.05
+WNsyn 63.89 66.74 33.96 33.82 68.70 66.91

SG 64.79 66.71 26.97 26.59 68.88 67.80

Kiela et al. (2015)
+PPDB 67.38 69.05 32.49 31.84 71.59 69.82
+WNsyn 64.58 67.02 29.43 28.12 69.15 68.36

Faruqui et al. (2015)
+PPDB 65.44 67.02 34.12 33.72 71.24 70.31
+WNsyn 65.65 66.71 28.25 27.61 70.21 69.47

This work
+LDA 64.02 65.33 24.64 24.28 59.43 60.60
+PPDB 67.17 69.09 34.93 34.57 72.63 71.15
+WNsyn 65.62 67.38 29.96 29.82 69.70 68.91

Table 2: Word similarity results for retrofitting on three datasets in terms of Pearson’s coefficient corre-
lation (γ) and Spearman’s rank correlation (ρ) in percentages. Higher score indicates better correlation
of the model with respect to the gold standard. Bold indicates the highest score for each embedding type.

close the similarity scores to human judgments.
For both joint learning and retrofitting, we test

our approach with using PPDB and WNsyn as the
prior knowledge applied to our regularizer. Con-
sidering that LDA can be regarded as soft cluster-
ing for words, it is very hard to present words with
deterministic relations like in PPDB and WNsyn,
therefore we do not apply retrofitting on LDA re-
sults for previous studies.

The evaluation results are shown in Table 1 and
Table 2 for joint learning and retrofitting, respec-
tively. Each block in the tables indicates an em-
bedding type and its corresponding enhancement
approaches. For comparison, we also include the
results from the approaches proposed in previous
studies, i.e., Yu and Dredze (2014)9 for CBOW,
Kiela et al. (2015)10 for SG and Faruiqui et al.
(2015)11 for all initial embeddings. Their settings
are equal to that used in our approach.

9https://github.com/Gorov/JointRCM
10We re-implemented their approach in our own code.
11https://github.com/mfaruqui/retrofitting

Table 1 shows that directly using LDA topic dis-
tributions as embeddings can give reasonable re-
sults for word similarities. Because LDA captures
word co-occurrences globally so that words share
similar contexts are encoded similarly via topic
distributions. This is a good indication showing
that LDA could be a useful guidance to help our
regularize to incorporate global information.

For other joint learning results in Table 1, our
approach shows significant gain over the base-
lines, the same for the approaches from previ-
ous studies (Yu and Dredze, 2014; Faruqui et al.,
2015). However, using WNsyn in Kiela et al.
(2015) does not help, this may owe to the fact that
using the words defined in WNsyn as contexts will
affect the real context learning and thus deviate the
joint objective function. Interestingly, using LDA
in regularizer significantly boosts the performance
on MEN-3k, even better than that with using se-
mantic lexicons. The reason might be that LDA
enhances word embeddings with the relatedness
inherited in topic distributions.

149

For retrofitting, Table 2 shows that our approach
demonstrates its effectiveness for enhancing ini-
tial embeddings with prior knowledge. It performs
consistently better than all other approaches in a
wide range of settings, including three embedding
types on three datasets, with few exceptions. Since
retrofitting only updates those words in the exter-
nal sources, e.g., LDA word list or lexicons, it is
very sensitive to the quality of the corresponding
sources. Consequently, it can be observed from
our experiment that unannotated knowledge, i.e.,
topic distributions, is not an effective source as a
good guidance. In contrast, PPDB, which is of
high quality of semantic knowledge, outperforms
other types of information in most cases.

4.2 Sentiment Classification Evaluation

We perform sentiment classification on the IMDB
review data set (Maas et al., 2011), which has 50K
labeled samples with equal number of positive and
negative reviews. The data set is pre-divided into
training and test sets, with each set containing 25K
reviews. The classifier is based on a bi-directional
LSTM model as described in Dai and Le (2015),
with one hidden layer of 1024 units. Embeddings
from different approaches are used as inputs for
the LSTM classifier. For determining the hyper-
parameters (e.g., training epoch and learning rate),
we use 15% of the training data as the validation
set and we apply early stopping strategy when the
error rate on the validation set starts to increase.
Note that the final model for testing is trained on
the entire training set.

As reported in Table 3, the embeddings trained
by our approach work effectively for sentiment
classification. Both joint learning and retrofitting
with our regularizer outperform other baseline ap-
proaches from previous studies, with joint learn-
ing being somewhat better than retrofitting. Over-
all, our joint learning with CBOW achieves the
best performance on this task. A ten-partition two-
tailed paired t-test at p < 0.05 level is performed
on comparing each score with the baseline result
for each embedding type. Considering that sen-
timent is not directly related to word meaning,
the results indicate that our regularizer is capa-
ble of incorporating different type of knowledge
for a specific task, even if it is not aligned with
the context learning. This task demonstrates the
potential of our framework for encoding external
knowledge and using it to enrich the representa-

Embeddings Accuracy
Maas et al. (2011) 88.89

GloVe 90.66
Faruqui et al. (2015) +Retro 90.43

This work +Retro 90.89
CBOW 91.29

Yu and Dredze (2014)
+Joint 91.14
+Retro 90.71

Faruqui et al. (2015) +Retro 90.77

This work
+Joint 92.09∗
+Retro 91.81∗

SG 91.30
Faruqui et al. (2015) +Retro 91.03

Kiela et al. (2015)
+Joint 91.45
+Retro 91.14

This work
+Joint 92.07∗
+Retro 91.42

Table 3: Sentiment classification results on IMDB
data set (Maas et al., 2011). Bold indicates the
highest score for each embedding type. * indi-
cates t-test significance at p < 0.05 level when
compared with the baseline.

tions of words, without the requirement to build a
task-specific, customized model.

5 Related Work

Early research on representing words as dis-
tributed continuous vectors dates back to Rumel-
hart et al. (1986). Recent previous studies (Col-
lobert and Weston, 2008; Collobert et al., 2011)
showed that, the quality of embeddings can be im-
proved when training multi-task deep models on
task-specific corpora, domain knowledge that is
learned over the process. Yet one downside is that
huge amounts of labeled data is often required.
Another methodology is to update embeddings by
learning with external knowledge. Joint learn-
ing and retrofitting are two mainstreams of this
methodology. Leveraging semantic lexicons (Yu
and Dredze, 2014; Bian et al., 2014; Faruqui et al.,
2015; Liu et al., 2015a; Kiela et al., 2015; Wieting
et al., 2015; Nguyen et al., 2016) or word distri-
butional information (Maas et al., 2011; Liu et al.,
2015b) has been proven as effective in enhancing
word embeddings, especially for specific down-
stream tasks. Bian et al. (2014) proposed to im-
prove embedding learning with different kinds of
knowledge, such as morphological, syntactic and

150

semantic information. Wieting et al. (2015) im-
proves embeddings by leveraging paraphrase pairs
from the PPDB for learning phrase embeddings in
the paraphrasing task. In a similar way, Hill et
al. (2016) uses learned word embeddings as super-
vised knowledge for learning phrase embeddings.

Although our approach is conceptually similar
to previous work, it is different in several ways.
For leveraging unlabeled data, the regularizer in
this work is different from applying topic distri-
butions as word vectors (Maas et al., 2011) or
treating topics as conditional contexts (Liu et al.,
2015b). For leveraging semantic knowledge, our
regularizer does not require explicit word relations
as used in previous studies (Yu and Dredze, 2014;
Faruqui et al., 2015; Kiela et al., 2015), but takes
encoded information of words. Moreover, in order
to appropriately learn the encoded information, we
use trajectory softmax to perform the regulariza-
tion. As a result, it provides a versatile data struc-
ture to incorporate any vectorized information into
embedding learning. The above novelties make
our approach versatile so that it can integrate dif-
ferent types of knowledge.

6 Conclusion and Future Work

In this paper we proposed a regularization frame-
work for improving the learning of word embed-
dings with explicit integration of prior knowl-
edge. Our approach can be used independently
as a retrofitter or jointly with CBOW and SG to
encode prior knowledge. We proposed trajectory
softmax for learning over the regularizer, which
can greatly reduce the space complexity compared
to hierarchical softmax using the Huffman coding
tree, which enables the regularizer to learn over
a long vector. Moreover, the regularizer can be
constructed from either unlabeled data (e.g., LDA
trained from the base corpus) or manually crafted
resources such as a lexicon. Experiments on word
similarity evaluation and sentiment classification
show the benefits of our approach.

For the future work, we plan to evaluate the ef-
fectiveness of this framework with other types of
prior knowledge and NLP tasks. We also want
to explore different ways of encoding external
knowledge for regularization.

References
Stefano Baccianella, Andrea Esuli, and Fabrizio Sebas-

tiani. 2010. SentiWordNet 3.0: An Enhanced Lex-

ical Resource for Sentiment Analysis and Opinion
Mining. In Proceedings of the Seventh conference
on International Language Resources and Evalua-
tion (LREC’10). European Language Resources As-
sociation (ELRA), Valletta, Malta.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Janvin. 2003. A neural probabilistic lan-
guage model. J. Mach. Learn. Res. 3:1137–1155.

Jiang Bian, Bin Gao, and Tie-Yan Liu. 2014.
Knowledge-Powered Deep Learning for Word Em-
bedding. In Proceedings of the European Confer-
ence on Machine Learning and Knowledge Discov-
ery in Databases - Volume 8724. New York, NY,
USA, ECML PKDD 2014, pages 132–148.

David M. Blei, Andrew Y. Ng, and Michael I. Jordan.
2003. Latent Dirichlet Allocation. Journal of Ma-
chine Learning Research 3:993–1022.

Elia Bruni, Gemma Boleda, Marco Baroni, and
Nam Khanh Tran. 2012. Distributional Semantics
in Technicolor. In Proceedings of the 50th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers). Jeju Island, Ko-
rea, pages 136–145.

Ronan Collobert and Jason Weston. 2008. A unified
architecture for natural language processing: Deep
neural networks with multitask learning. In Pro-
ceedings of the 25th International Conference on
Machine Learning. ACM, New York, NY, USA,
ICML ’08, pages 160–167.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural Language Processing (Almost) from
Scratch. Journal of Machine Learning Research
12:2493–2537.

Andrew M. Dai and Quoc V. Le. 2015. Semi-
supervised Sequence Learning. In Advances in
Neural Information Processing Systems 28: Annual
Conference on Neural Information Processing Sys-
tems 2015, December 7-12, 2015, Montreal, Que-
bec, Canada. pages 3079–3087.

Manaal Faruqui, Jesse Dodge, Sujay Kumar Jauhar,
Chris Dyer, Eduard Hovy, and Noah A. Smith. 2015.
Retrofitting word vectors to semantic lexicons. In
Proceedings of the 2015 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies.
Denver, Colorado, pages 1606–1615.

Lev Finkelstein, Evgeniy Gabrilovich, Yossi Matias,
Ehud Rivlin, Zach Solan, Gadi Wolfman, and Ey-
tan Ruppin. 2002. Placing Search in Context: the
Concept Revisited. ACM Transaction on Informa-
tion Systems 20(1):116–131.

Juri Ganitkevitch, Benjamin Van Durme, and Chris
Callison-Burch. 2013. PPDB: The Paraphrase
Database. In Proceedings of the 2013 Conference of
the North American Chapter of the Association for

151

Computational Linguistics: Human Language Tech-
nologies. Atlanta, Georgia, pages 758–764.

Felix Hill, KyungHyun Cho, Anna Korhonen, and
Yoshua Bengio. 2016. Learning to Understand
Phrases by Embedding the Dictionary. Transac-
tions of the Association for Computational Linguis-
tics 4:17–30.

Felix Hill, Roi Reichart, and Anna Korhonen. 2015.
Simlex-999: Evaluating Semantic Models with Gen-
uine Similarity Estimation. Computational Linguis-
tics 41(4):665–695.

Douwe Kiela, Felix Hill, and Stephen Clark. 2015.
Specializing word embeddings for similarity or re-
latedness. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Process-
ing. Lisbon, Portugal, pages 2044–2048.

Quan Liu, Hui Jiang, Si Wei, Zhen-Hua Ling, and
Yu Hu. 2015a. Learning semantic word embed-
dings based on ordinal knowledge constraints. In
Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers). Beijing,
China, pages 1501–1511.

Yang Liu, Zhiyuan Liu, Tat-Seng Chua, and Maosong
Sun. 2015b. Topical Word Embeddings. In Pro-
ceedings of the Twenty-Ninth AAAI Conference on
Artificial Intelligence. AAAI’15, pages 2418–2424.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,
Dan Huang, Andrew Y. Ng, and Christopher Potts.
2011. Learning Word Vectors for Sentiment Anal-
ysis. In Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics:
Human Language Technologies. Portland, Oregon,
USA, pages 142–150.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013a. Efficient Estimation of Word
Representations in Vector Space. arXiv preprint
abs/1301.3781.

Tomas Mikolov, Quoc V. Le, and Ilya Sutskever.
2013b. Exploiting Similarities among Lan-
guages for Machine Translation. arXiv preprint
abs/1309.4168.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013c. Distributed representa-
tions of words and phrases and their composition-
ality. In C.J.C. Burges, L. Bottou, M. Welling,
Z. Ghahramani, and K.Q. Weinberger, editors, Ad-
vances in Neural Information Processing Systems
26, pages 3111–3119.

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig.
2013d. Linguistic Regularities in Continuous Space
Word Representations. In Proceedings of the 2013
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies. Association for Computa-
tional Linguistics, Atlanta, Georgia, pages 746–751.

George A. Miller. 1995. WordNet: A Lexical Database
for English. Commun. ACM 38(11):39–41.

Kim Anh Nguyen, Sabine Schulte im Walde, and
Ngoc Thang Vu. 2016. Integrating distributional
lexical contrast into word embeddings for antonym-
synonym distinction. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers). Berlin, Ger-
many, pages 454–459.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global Vectors for Word
Representation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP). Doha, Qatar, pages 1532–
1543.

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J.
Williams. 1986. Learning Representations by Back-
propagating Errors. Nature pages 533–536.

Peter D. Turney and Patrick Pantel. 2010. From Fre-
quency to Meaning: Vector Space Models of Se-
mantics. Journal of Artificial Intelligence Research
37(1):141–188.

Jason Weston, Antoine Bordes, Sumit Chopra, and
Tomas Mikolov. 2015. Towards AI-Complete Ques-
tion Answering: A Set of Prerequisite Toy Tasks.
arXiv preprint abs/1502.05698.

John Wieting, Mohit Bansal, Kevin Gimpel, and Karen
Livescu. 2015. From Paraphrase Database to Com-
positional Paraphrase Model and Back. Transac-
tions of the Association for Computational Linguis-
tics 3:345–358.

Chang Xu, Yalong Bai, Jiang Bian, Bin Gao, Gang
Wang, Xiaoguang Liu, and Tie-Yan Liu. 2014.
RC-NET: A General Framework for Incorporating
Knowledge into Word Representations. In Proceed-
ings of the 23rd ACM International Conference on
Conference on Information and Knowledge Man-
agement. ACM, New York, NY, USA, CIKM ’14,
pages 1219–1228.

Mo Yu and Mark Dredze. 2014. Improving lexical
embeddings with semantic knowledge. In Proceed-
ings of the 52nd Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Pa-
pers). Baltimore, Maryland, pages 545–550.

152

Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017), pages 153–162,
Vancouver, Canada, August 3 - August 4, 2017. c©2017 Association for Computational Linguistics

Attention-based Recurrent Convolutional Neural
Network for Automatic Essay Scoring

Fei Dong and Yue Zhang∗ and Jie Yang
Singapore University of Technology and Design

{fei dong, jie yang}@mymail.sutd.edu.sg
yue zhang@sutd.edu.sg

Abstract

Neural network models have recently been
applied to the task of automatic essay scor-
ing, giving promising results. Existing
work used recurrent neural networks and
convolutional neural networks to model
input essays, giving grades based on a sin-
gle vector representation of the essay. On
the other hand, the relative advantages of
RNNs and CNNs have not been compared.
In addition, different parts of the essay can
contribute differently for scoring, which is
not captured by existing models. We ad-
dress these issues by building a hierarchi-
cal sentence-document model to represent
essays, using the attention mechanism to
automatically decide the relative weights
of words and sentences. Results show that
our model outperforms the previous state-
of-the-art methods, demonstrating the ef-
fectiveness of the attention mechanism.

1 Introduction

Automatic essay scoring (AES) is the task of au-
tomatically assigning grades to student essays.
It can be highly challenging, requiring not only
knowledge on spelling and grammars, but also
on semantics, discourse and pragmatics. Tradi-
tional models use sparse features such as bag-
of-words, part-of-speech tags, grammar complex-
ity measures, word error rates and essay lengths,
which can suffer from the drawbacks of time-
consuming feature engineering and data sparsity.

Recently, neural network models have been
used for AES (Alikaniotis et al., 2016; Dong and
Zhang, 2016; Taghipour and Ng, 2016), giving
better results compared to statistical models with
handcrafted features. In particular, distributed
word representations are used for the input, and

∗ Corresponding author.

a neural network model is employed to combine
word information, resulting in a single dense vec-
tor form of the whole essay. A score is given based
on a non-linear neural layer on the representa-
tion. Without handcrafted features, neural network
models have been shown to be more robust than
statistical models across different domains (Dong
and Zhang, 2016).

Both recurrent neural networks (Williams and
Zipser, 1989; Mikolov et al., 2010) and convolu-
tional neural networks (LeCun et al., 1998; Kim,
2014) have been used for modelling input es-
says. In particular, Alikaniotis et al. (2016)
and Taghipour and Ng (2016) use a single-layer
LSTM (Hochreiter and Schmidhuber, 1997) over
the word sequence to model the essay, and Dong
and Zhang (2016) use a two-level hierarchical
CNN structure to model sentences and documents
separately. It has been commonly understood that
CNNs can capture local ngram information effec-
tively, while LSTMs are strong in modelling long
history. No previous work has compared the ef-
fectiveness of LSTMs and CNNs under the same
settings for AES. To better understand the con-
trast, we adopt the two-layer structure of Dong and
Zhang (2016), comparing CNNs and LSTMs for
modelling sentences and documents.

Not all sentences contribute equally to the scor-
ing of a given essay, and not all words contribute
equally within a sentence. We adopt the neural
attention model (Xu et al., 2015; Luong et al.,
2015) to automatically calculate weights for con-
volution features of CNNs and hidden state val-
ues of LSTMs, which has been used for obtain-
ing the most pertinent information for machine
translation (Luong et al., 2015), sentiment analy-
sis (Shin et al., 2016; Wang et al., 2016; Liu and
Zhang, 2017) and other tasks. In our case, the at-
tention mechanism can intuitively select sentences
and grams that are more aligned with the props or
obviously incorrect. To our knowledge, no prior

153

work has investigated the effectiveness of atten-
tion models for AES.

Results show that CNN is relatively more ef-
fective for modelling sentences, and LSTMs are
relatively more effective for modelling documents.
This is likely because local ngram information are
more relevant to the scoring of sentence structures,
and global information is more relevant for scoring
document level coherence. In addition, attention
gives significantly more accurate results. Our fi-
nal model achieves the best result reported on the
ASAP1 test set. We release our code at https:
//github.com/feidong1991/aes.

2 Automatic Essay Scoring

2.1 Task

The task of AES is usually treated as a super-
vised learning problem, typical models of which
can be divided into three categories: classification,
regression and preference ranking. In the classi-
fication scenario, scores are divided into several
categories, each score or score range is regarded
as one class and the ordinary classification mod-
els are employed such as Naive Bayes (NB) and
SVMs (Larkey, 1998; Rudner and Liang, 2002).
In the regression scenario, each score is treated as
continous values for the essay and regression mod-
els are considered, like linear regression, Bayesian
linear ridge regression (Attali and Burstein, 2004;
Phandi et al., 2015). In the preference ranking sce-
nario, AES task is considered as a ranking problem
in which pair-wise ranking and list-wise ranking
are employed (Yannakoudakis et al., 2011; Chen
and He, 2013; Cummins et al., 2016). The former
considers the ranking between each pair of essays,
while the latter considers the absolute ranking of
each essay in the whole set.

Formally, an AES model is trained to minimize
the difference between its automatically output
scores and human given scores on a set of train-
ing data:

min
N∑
i=1

f(y∗i , yi),

s.t. yi = g(ti), i = 1, 2, ..., N

(1)

where N is the total number of essays in the train-
ing set, y∗i and yi are the golden score assigned
by human raters and prediction score made by the

1https://www.kaggle.com/c/asap-aes/data

AES system of i-th essay in the set respectively,
ti is feature representation of i-th essay, f is the
metric function between golden score and predic-
tion score, such as mean square error and mean
absolute error, and g is the mapping function from
feature ti to score yi.

2.2 Evaluation Metric
Many measurement metrics have be adopted to as-
sess the quality of AES systems, including Pear-
son’s correlation, Spearman’s ranking correlation,
Kendall’s Tau and kappa, especially quadratic
weighted kappa (QWK). We follow the Auto-
mated Student Assessment Prize (ASAP) compe-
tition official criteria which takes QWK as evalu-
ation metric, which is also adopted as evaluation
metric in (Dong and Zhang, 2016; Taghipour and
Ng, 2016; Phandi et al., 2015).

Kappa measures inter-raters agreement on the
qualitive items, here inter-raters refer to AES
system and human rater. QWK is modified
from kappa which takes quadratic weights. The
quadratic weight matrix in QWK is defined as:

Wi,j =
(i− j)2
(R− 1)2

, (2)

where i and j are the reference rating (assigned by
a human rater) and the system rating (assigned by
an AES system), respectively, andR is the number
of possible ratings.

An observed score matrix O is calculated such
thatOi,j refers to the number of essays that receive
a rating i by the human rater and a rating j by the
AES system. An expected score matrix E is cal-
culated as the outer product of histogram vectors
of the two (reference and system) ratings. The ma-
trix E needs to be normalized such that the sum of
elements in E and the sum of elements in O keep
the same. Finally, given the three matrices W , O
and E, the QWK value is calculated according to
Equation 3:

κ = 1−
∑
Wi,jOi,j∑
Wi,jEi,j

(3)

We evaluate our model using QWK as the metric,
and perform one-tailed t-test to determine the sig-
nificance of improvements.

3 Model

We employ a hierarchical neural model similar to
the sentence-document model of Dong and Zhang

154

Figure 1: Sentence representation using ConvNet
and attention pooling

(2016) who consider essay script as being com-
posed of sentence sequences rather than word se-
quences. Different from their model, our neu-
ral model learns text representation with LSTMs,
which could model the coherence and corefer-
ence among sequences of sentences (i.e. captur-
ing more global information compared to CNNs).
Besides, attention pooling is both used on words
and sentences, which aims to capture more rele-
vant words and sentences that contribute to the fi-
nal quality of essays.

We investiage two types of word represen-
tations, one being character-based embedding,
which utilizes a convolutinal layer to learn word
representations from raw characters, and the other
being word embedding.

Characters For character-based word represen-
tation, we employ a convolutional layer over char-
acters in each word, followed by max-pooling
and average-pooling layers. The concatenation of
max-pooling and average-pooling forms the final
word representation for each word.

Let c1
i , c

2
i , ..., c

m
i be one-hot representation of

characters that make up the word wi, we have the
following word representation for wi using make-
up characters:

xci = Ecci (4)

zjci = f(Wc · [xjci : xj+h−1
ci] + bc) (5)

x̃i = max
j

zjci (6)

x̂i = avg
j

zjci (7)

xi = x̃i ⊕ x̂i, (8)

where Ec is the embedding matrix, xci is the em-
bedding vector for ci, zjci is the feature map for
j-th character in i-th word wi after convolutional
layer, Wc, bc are the weights matrix and bias
vector respectively, h specifies the window size
in the convolutional layer and f is the activation

Figure 2: Document (Text) representation using
LSTM and attention pooling

function, here hyperbolic tangent function tanh
is used. x̃i and x̂i are max-pooling and average-
pooling vectors over zjci , and the final word wi’s
representation xi is the concatenation of x̃i and
x̂i.

Words Given a sentence of words sequence
w1,w2, ...,wn, an lookup layer map each wi into
a dense vector xi, i = 1, 2, ..., n.

xi = Ewi, i = 1, 2, ..., n (9)

where wi is one-hot representation of the i-th
word in the sentence, E is the embedding matrix,
xi is the embedding vector of i-th word.

3.1 Sentence Representation
After obtaining the word representations xi, i =
1, 2, ..., n, we employ a convolutional layer on
each sentence:

zi = f(Wz · [xji : xj+hw−1
i] + bz), (10)

where Wz , bz are weight matrix and bias vector,
respectively, hw is the window size in the convo-
lutional layer and zi is the result feature represen-
tation.

Above the convolutional layer, attention pool-
ing is employed to acquire a sentence representa-
tion. The structure of a sentence representation is
depicted in Figure 1. The details of convolutional
and attention pooling layers are defined in the fol-
lowing equations.

mi = tanh(Wm · zi + bm) (11)

ui =
ewu·mi∑
ewu·mj

(12)

s =
∑

uizi, (13)

where Wm, wu are weight matrix and vector, re-
spectively, bm is the bias vector, mi and ui are
attention vector and attention weight respectively

155

for i-th word. s is the final sentence representa-
tion, which is the weighted sum of all the word
vectors.

3.2 Text Representation

A recurrent layer is used to compose a docu-
ment (text) representation similar to the models of
Alikaniotis et al. (2016) and Taghipour and Ng
(2016). The main difference is that both earlier
work treat the essay script as a sequence of words
rathter than a sequence of sentences. Alikaniotis
et al. (2016) use score-specific word embeddings
as word features and take the last hidden state of
LSTM as text representation. Taghipour and Ng
(2016) take the average value over all the hidden
states of LSTM as text representation. In contrast
to the previous LSTM models, we use LSTM to
learn from sentence sequences and attention pool-
ing on the hidden states of LSTM to obtain the
contribution of each sentence to the final quality
of essays. The structure of a text representation
using LSTM is depicted in Figure 2.

Long short-term memory units are the modi-
fied recurrent units which are proposed to han-
dle the problem of vanishing gradients effec-
tively (Hochreiter and Schmidhuber, 1997; Pas-
canu et al., 2013). LSTMs use gates to control in-
formation flow, preserving or forgetting informa-
tion for each cell units. In order to control infor-
mation flow when processing a vector sequence,
an input gate, a forget gate and an output gate are
employed to decide the passing of information at
each time step. Assuming that an essay script con-
sists of T sentences, s1, s2, ..., sT with st being
the feature representation of t-th word st, we have
LSTM cell units addressed in the following equa-
tions:

it = σ(Wi · st + Ui · ht−1 + bi)
ft = σ(Wf · st + Uf · ht−1 + bf)
c̃t = tanh(Wc · st + Uc · ht−1 + bc)
ct = it ◦ c̃t + ft ◦ ct−1

ot = σ(Wo · st + Uo · ht−1 + bo)
ht = ot ◦ tanh(ct),

(14)

where st and ht are the input sentence and output
sentence vectors at time t, respectively. Wi, Wf

,Wc, Wo, Ui, Uf , Uc, and Uo are weight matri-
ces and bi, bf , bc, and bo are bias vectors. The
symbol ◦ denotes element-wise multiplication and
σ represents the sigmoid function.

After obtaining the intermediate hidden states
of LSTM h1,h2, ...,hT , we use another attention
pooling layer over the sentences to learn the final
text representation. The attention pooling helps to
acuquire the weights of sentences’ contribution to
final quality of the text. The attention pooling over
sentences is addressed as:

ai = tanh(Wa · hi + ba) (15)

αi =
ewα·ai∑
ewα·aj (16)

o =
∑

αihi, (17)

where Wa, wα are weight matrix and vector re-
spectively, ba is the bias vector, ai is attention vec-
tor for i-th sentence, and αi is the attention weight
of i-th sentence. o is the final text representation,
which is the weighted sum of all the sentence vec-
tors.

Finally, one linear layer with sigmoid function
applied on the text representation to get the final
score as described in Equation 18.

y = sigmoid(wyo + by) (18)

where wy, by are weight vector and bias vector, y
is the final score of the essay.

4 Training

Objective We use mean square error (MSE)
loss, which is also used in previous models. MSE
is widely used in regression tasks, which mea-
sures the average value of square error between
gold standard scores y∗i and prediction scores yi
assigned by the AES system among all the essays.
Given N essays, we calculate MSE according to
Equation 19.

mse(y, y∗) =
1
N

N∑
i=1

(yi − y∗i)2 (19)

The model is trained on a fixed number of
epochs and evaluated on the development set at ev-
ery epoch. We set the batch size to 10 and the best
model is selected on the performance of quadratic
weighted kappa on the development set. The de-
tails of model hyper-parameters are listed in Table
1.

Character Embeddings The character embed-
dings are initialized with uniform distribution
from [-0.05, 0.05]. The dimension of character
embeddings is set to 30. During the training pro-
cess, character embeddings are fine-tuned.

156

Layer Parameter Name Parameter Value

Lookup char embedding dim 30
word embedding dim 50

CNN window size 5
number of filters 100

LSTM hidden units 100
Dropout dropout rate 0.5

epochs 50
batch size 10

initial learning rate η 0.001
momentum 0.9

Table 1: Hyper-parameters

Set #Essays Genre Avg Len. Range Med.
1 1783 ARG 350 2-12 8
2 1800 ARG 350 1-6 3
3 1726 RES 150 0-3 1
4 1772 RES 150 0-3 1
5 1805 RES 150 0-4 2
6 1800 RES 150 0-4 2
7 1569 NAR 250 0-30 16
8 723 NAR 650 0-60 36

Table 2: Statistics of the ASAP dataset; Range
refers to score range and Med. refers to median
scores. For genre, ARG specifies argumentative
essays, RES means response essays and NAR de-
notes narrative essays.

Word Embeddings We take the Stanford’s pub-
licly available GloVe 50-dimensional embed-
dings2 as word pretrained embeddings, which are
trained on 6 billion words from Wikipedia and
web text (Pennington et al., 2014). During the
training process, word embeddings are fine-tuned.

Optimization We use RMSprop (Dauphin et al.,
2015) as our optimizer to train the whole model.
The initial learning rate η is set to 0.001 and mo-
mentum is set to 0.9. Dropout regularization is
used to avoid overfitting and drop rate is 0.5.

5 Experiments

5.1 Setup
Data The ASAP dataset is used as evaluation
data of our AES system. The ASAP dataset con-
sists of 8 different prompts of genres as listed in
Table 2.

There are no released labeled test data from
the ASAP competition, thus we separate test
set and development set from the training set.
The partition exactly follows the setting used by
Taghipour and Ng (2016), which adopts 5-fold
cross-validation, in each fold, 60% of the data is
used as our training set, 20% as the development

2http://nlp.stanford.edu/projects/glove/

set, and 20% as the test set. The data is tok-
enized with NLTK3 tokenizer. All the words are
converted to lowercase and the scores are scaled
to the range [0, 1]. During evaluation phase,
the scaled scores are rescaled to original integer
scores, which are used to calculate evaluation met-
ric QWK values. The vocabulary size of the data
is set to 4000, by following Taghipour and Ng
(2016), selecting the most 4000 frequent words in
the training data and treating all other words as un-
known words.

Baseline models We take LSTM with Mean-
over-Time Pooling (LSTM-MoT) (Taghipour and
Ng, 2016) and hierarchical CNN (CNN-CNN-
MoT) (Dong and Zhang, 2016) as our baselines.
The former takes the essay script as a sequence of
words, which is text-level model and the latter re-
gards the script as a sequence of sentences, which
is sentence-level model.

LSTM-MoT uses one layer of LSTM over the
word sequences, and takes the average pooling
over all time-step states as the final text representa-
tion, which is called Mean-over-Time (MoT) pool-
ing (Taghipour and Ng, 2016). A linear layer with
sigmoid function follows the MoT layer to predict
the score of an essay script.

CNN-CNN-MoT uses two layers of CNN, in
which one layer operates over each sentence to ob-
tain representation for each sentence and the other
CNN is stacked above, followed by mean-over-
time pooling to get the final text representation.

LSTM-MoT is the current state-of-the-art neu-
ral model on the text-level and CNN-CNN-MoT is
a state-of-the-art model on the sentence-level. Be-
sides, LSTM-LSTM-MoT and LSTM-CNN-MoT
are adopted as another two baseline models. The
former model takes LSTMs to represent both sen-
tences and texts, and the latter uses CNN repre-
senting sentences and LSTM representing texts.
Both models use MoT pooling and are sentence-
level models. We compare our model (LSTM-
CNN-attent) with the baseline models to study
CNN representing sentences and LSTM represent-
ing texts.

5.2 Results
The results are listed in Table 3. Our
model LSTM-CNN-attent outperforms the base-
line model CNN-CNN-MoT by 3.0%, LSTM-
MoT by 2.2% on average quadratic weighted

3http://www.nltk.org

157

Prompts LSTM-
MoT

CNN-
CNN-MoT

LSTM-
CNN-att

1 0.818 0.805 0.822
2 0.688 0.613 0.682
3 0.679 0.662 0.672
4 0.805 0.778 0.814
5 0.808 0.800 0.803
6 0.817 0.809 0.811
7 0.797 0.758 0.801
8 0.527 0.644 0.705
Avg. 0.742 0.734 0.764

Table 3: Comparison of quadratic weighted kappa
between different models on the test data.

LSTM-CNN-attent Average QWK
char 0.738
word 0.764
word + char 0.761

Table 4: Comparison of quadratic weight kappa
using different features on the test data.

kappa. The results are statistically significant with
p < 0.05 by one-tailed t-test. Even compared
with the ensemble model used by Taghipour and
Ng (2016), which ensembles 10 instances of CNN
and LSTM of different initializations, our model
still achieves 0.3% improvement on QWK.

5.3 Analysis

We perform several development experiments
to verify the effectiveness of sentence-document
model and text representation with LSTM and at-
tention pooling.

Characters and Words We explore a convo-
lutional layer to learn word representation from
char-based CNN to replace word embeddings. In
Table 4, we compare the performance of using
character embeddings, word embeddings and con-
catenation of two embeddings. Empirical results
show that with only character embedding features,
the performance of our model outperforms CNN-
CNN-MoT, and is close to LSTM-MoT. How-
ever, there is still a big gap between character
embedding and word embedding models, which
could come from the fact that we use pretrained
word embeddings, which helps improve the per-
formance. When both the word and character em-
beddings are used, the performance does not im-
prove. One possible explanation is that the ASAP
dataset is rather small given the model parameters,
which has a potential for overfitting if both words
and characters are used.

Model Model Type Pooling Avg
QWK

LSTM-MoT document-level MoT 0.742
LSTM-attent document-level attention 0.731
CNN-CNN-
MoT

sentence-level MoT 0.734

LSTM-LSTM-
MoT

sentence-level MoT 0.758

LSTM-CNN-
MoT

sentence-level MoT 0.759

LSTM-LSTM-
attent

sentence-level attention 0.762

LSTM-CNN-
attent

sentence-level attention 0.764

Table 5: Comparison between different model
types and pooling methods on the test data (only
word embeddings used).

Granularity The previous model LSTM-MoT
tackles the AES task by treating each essay script
as a sequence of words, which makes an es-
say an extra long sequence. The word num-
ber of one essay usually exceeds several hun-
dreds, which makes it difficult to directly use
LSTM to learn text representation if only last
hidden state is used. It has been verified by
Taghipour and Ng (2016) that LSTM with Mean-
over-Time pooling outperforms LSTM with only
last state. Though MoT pooling could alleviate
this problem by considering all the states infor-
mation, the model is still built on text-level rather
than sentence-level. Both LSTM-CNN-MoT and
LSTM-LSTM-MoT are sentence-document mod-
els. The former explores CNN for sentence rep-
resentation and LSTM for text representation, and
the latter use both LSTMs for sentence and text
representation with MoT pooling. In Table 5,
LSTM-CNN-MoT and LSTM-LSTM-MoT obtain
large improvements compared to LSTM-MoT, es-
pecially for prompt 8 essays, of which the aver-
age script length is the biggest. This shows that
sentence-document model tends to be more effec-
tive for long essays.

Local vs Global In Table 5, we compare LSTM-
CNN-MoT with CNN-CNN-MoT to analyze the
effectiveness of LSTM for text representation over
CNN. Both CNN-CNN-MoT and LSTM-CNN-
MoT learn hierarchical sentence-document repre-
sentations. The former employs two-level CNNs
for sentence representation and text representation
respectively, and mean-over-time pooling is both
used after two-level CNNs. The latter employs a
CNN to learn sentence representation at the bot-
tom, stacks one layer of LSTM above to learn

158

text representation, and mean-over-time pooling
is also used after CNN and LSTM. Compared
with CNN-CNN-MoT in Table 5, LSTM-CNN-
MoT gives a big improvement. We believe that on
text representation layer, LSTMs can learn more
global information, such as sentence coherence,
while CNNs learn more local features, such as n-
grams and bag-of-words. LSTM-LSTM-MoT out-
performs CNN-CNN-MoT and gets slightly worse
than LSTM-CNN-MoT, which also shows that
LSTM is relatively more effective for modeling
the documents.

Mean-over-Time vs Attention pooling We
compare the two pooling methods adopted in our
model, namely mean-over-time pooling and at-
tention pooling in Table 5. The pooling layers
are used after both CNN and LSTM layer to get
sentence representation and text representation re-
spectively. We find that by attending over words
and sentences, we achieve the best performance,
which demonstrates that attention pooling helps
find the key words and sentences that contribute to
judging quality of essays. In contrast to MoT, each
word and sentence will be treated equally, which
violates human raters’ assessing process. Since
our model is based on the sentence-level rather
than the text-level, we can exert attention pooling
to focus on pertinent words and sentences. Note
that attention can be weakened when used for an
extra long sequence, such as the scenario in the
text-level model. Taghipour and Ng (2016) tried to
attend over words on their one-layer LSTM model,
but failed to beat the baseline model that employs
mean-over-time pooling, because of that text-level
model contains a quite long sequence of words,
which may weaken the effect of attention. On the
contrary, sentence-level model contains relatively
short sequences of words, which makes attention
more effective.

In Table 6, we briefly show two prompts from
the AES data, namely Prompt 4 and Prompt 8.
Prompt 4 asks for a response based on the last
paragraph of a given story and Prompt 8 requires a
true story about laughter. Prompt 4 has few num-
ber of sentences compared with Prompt 8. For
convenience, we take Prompt 4 essays as our ex-
amples to analyze the attention mechanism on sen-
tences, and Prompt 8 essays to analyze the atten-
tion mechanism on words n-grams. In Table 7, we
list all five sentences in order that make up of one
response essay from test set in Prompt 4. Each

Prompt Contents
Prompt
4

Read the last paragraph of the story. “When
they come back, Saeng vowed silently to her-
self, in the spring, when the snows melt and the
geese return and this hibiscus is budding, then I
will take that test again.”
Write a response that explains why the author
concludes the story with this paragraph. In your
response, include details and examples from the
story that support your ideas. 5

Prompt
8

We all understand the benefits of laughter. For
example, someone once said, “Laughter is the
shortest distance between two people.” Many
other people believe that laughter is an impor-
tant part of any relationship.
Tell a true story in which laughter was one ele-
ment or part.

Table 6: Contents of Prompt 4 and Prompt 8

sentence is associated with its attention weight as
shown in the table. The 4-th sentence has the
biggest attention weight among the five sentence,
then followed by the 5-th sentence. Intuitively, we
know the 4-th and 5-th sentence can give strong
supporting ideas to illustrate why the author con-
cludes the story with the last paragraph. There-
fore, it proves that our attention mechanism on
sentences captures the key sentences to represent
essays indeed.

In Table 8, we list three example sentences in
one essay from the prompt 8 test data. The essay
is written by students given the prompt described
in the Table 6. The highlighted words are the 5-
grams4 that have the highest attention score. It can
be easily seen that the highlighted 5-grams are the
most relevant to the prompt, which demonstrates
our attention-pooling takes an effect on learning
sentence representation.

6 Related Work

The first AES system dates back to 1960s (Page,
1968, 1994) when Project Essay Grade (PEG) was
developed. Following that, IntelliMetric 2, Intelli-
gent Essay Assessor (IEA) (Landauer et al., 1998;
Foltz et al., 1999) have come out. IEA uses La-
tent Semantic Analysis (LSA) to calculate the se-
mantic similarity between texts and assigns a score
to test text based on the score of the training text
which is most similar to the given test text. Other
commercial system, like e-rater system (Attali and

4Since we use a window size of 5 in CNN layer, the at-
tention pooling after CNN layer is attending over 5-grams
features.

5As Prompt 4 contains a long story in the prompt descrip-
tions, we only pick up the most relevant contents here.

159

No. Sentences Attention
weights

1
there was a specific reason as to why
the author concluded the story with that
quote .

0.17568

2
the author wanted to show how the plant
gave saeng a new sense of determina-
tion .

0.20358

3
saeng previously was upset and tearing
the plant apart .

0.19651

4
but it seemed that she realized how the
plant was able to bud to the<unk> and
survive .

0.21264

5
so she now was determined to <unk>
the <unk> as well and retake the test
she failed .

0.21159

Table 7: Attention weights of sentences coming
from one student essay in Prompt 4 (The darkness
of blue indicates the relative magnitude of atten-
tion weights.

Prompt 8
Example 1 when i was a young boy i used

to laugh at anything i could , but as a
kid who did n’t ?

Example 2 as i got older and grew more , i developed
a great sense of humor that to my advan-
tage made me a young people <unk> .

Example 3 i grew more and more <unk> a
stronger , more confident sense of humor

.

Table 8: Examples of attention pooling over n-
grams features in Prompt 8 (The first row specifies
the prompt given by the essay designer).

Burstein, 2004), has been deployed in the English
language test, such as Test of English as a Foreign
Language (TOEFL) and Graduate Record Exam-
ination (GRE). Step-wise linear regression is em-
ployed in the e-rater systems along with grammat-
ical errors, lexical complexity as handcrafted fea-
tures.

In the research literature, Larkey (1998) uses
Naive Bayes model and takes AES as a classi-
fication model. Rudner and Liang (2002) ex-
plore multinomial Bernoulli Naive Bayes models
to classify texts into several categories of text qual-
ity based on content and style features. Chen et al.
(2010) formulates the AES task into a weakly su-
pervised framework and employ a voting algo-
rithm.

Other recent work formulate the task as a pref-
erence ranking problem (Yannakoudakis et al.,
2011; Phandi et al., 2015). Yannakoudakis et al.

(2011) formulate AES as a pairwise ranking prob-
lem by ranking the order of pair essays based on
their quality. Features consist of word n-grams,
deep linguistic features, including grammatical
complexity, POS n-grams and parsing trees fea-
tures. Chen and He (2013) formulate AES into a
list-wise ranking problem by considering the or-
der relation among the whole essays. Features
contain syntactical features, grammar and fluency
features as well as content and prompt-specific
features. Phandi et al. (2015) use correlated
Bayesian Linear Ridge Regression focusing on
domain-adaptation tasks. All these previous meth-
ods are traditional discrete models using hand-
crafted discrete features.

Recently, Alikaniotis et al. (2016) employ a
long short-term memory model to learn features
for essay scoring task automatically without any
predefined feature templates. It leverages score-
specific word embeddings (SSWEs) for word rep-
resentations, and takes the last hidden states of a
two-layer bidirectional LSTM for essay represen-
tations. Taghipour and Ng (2016) also adopt a
LSTM model for AES, but use ordinary word em-
bedding and take the average pooling value of all
the hidden states of LSTM layer as the essay repre-
sentations. Dong and Zhang (2016) develop a hi-
erarchical CNN model for regression on AES task
by processing texts into sentences and using two
layers CNN on both sentence-level and text-level
to get the final text representation. Our work con-
tributes to the research literature by systematically
investigating CNN and LSTM on sentence-level
and text-level modeling, and the effectiveness of
attention network on automatically selecting more
relevant ngrams and sentences for the task.

Our work is also inline with recent work
on building hierarchical sentence-document level
representations of documents. Li et al. (2015)
build a hierarchical LSTM auto-encoder for doc-
uments. Yang et al. (2016) build hierarchi-
cal LSTM models with attention for document
and Tang et al. (2015) use a hierarchical Gated
RNN for sentiment classification. Ren and Zhang
(2016) use hierarchical CNN-LSTM model for
spam detection. We use a hierarchical CNN-
LSTM model for essay scoring, which is a regres-
sion task.

160

7 Conclusion

We investigated a recurrent convolutional neural
network to learn text representation and grade es-
says automatically. Our model treated input essays
as sentence-document hierarchies, and employed
attention pooling to find the pertinent words and
sentences. Empirical results on ASAP essay data
show that our model outperforms state-of-art neu-
ral models for automatic essay scoring task, giving
the best performance. Future work explores the
advantage of neural models on cross-domain AES
task.

Acknowledgments

We thank the anonymous reviewers for their in-
sightful comments. Yue Zhang is the correspond-
ing author.

References
Dimitrios Alikaniotis, Helen Yannakoudakis, and

Marek Rei. 2016. Automatic text scoring using neu-
ral networks. arXiv preprint arXiv:1606.04289 .

Yigal Attali and Jill Burstein. 2004. Automated essay
scoring with e-rater R© v. 2.0. ETS Research Report
Series 2004(2):i–21.

Hongbo Chen and Ben He. 2013. Automated essay
scoring by maximizing human-machine agreement.
In EMNLP. pages 1741–1752.

Yen-Yu Chen, Chien-Liang Liu, Chia-Hoang Lee, Tao-
Hsing Chang, et al. 2010. An unsupervised auto-
mated essay scoring system. IEEE Intelligent sys-
tems 25(5):61–67.

Ronan Cummins, Meng Zhang, and Ted Briscoe. 2016.
Constrained multi-task learning for automated essay
scoring. Association for Computational Linguistics.

Yann Dauphin, Harm de Vries, and Yoshua Bengio.
2015. Equilibrated adaptive learning rates for non-
convex optimization. In Advances in Neural Infor-
mation Processing Systems. pages 1504–1512.

Fei Dong and Yue Zhang. 2016. Automatic fea-
tures for essay scoring an empirical study. In
Proceedings of the 2016 Conference on Empir-
ical Methods in Natural Language Processing,
pages 968974,. Association for Computational
Linguistics, Austin, Texas, pages 1072–1077.
https://www.aclweb.org/anthology/D/D16/D16-
1115.pdf.

Peter W Foltz, Darrell Laham, and Thomas K Lan-
dauer. 1999. Automated essay scoring: Applica-
tions to educational technology. In proceedings of
EdMedia. volume 99, pages 40–64.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation
9(8):1735–1780.

Yoon Kim. 2014. Convolutional neural net-
works for sentence classification. arXiv preprint
arXiv:1408.5882 .

Thomas K Landauer, Peter W Foltz, and Darrell La-
ham. 1998. An introduction to latent semantic anal-
ysis. Discourse processes 25(2-3):259–284.

Leah S Larkey. 1998. Automatic essay grading using
text categorization techniques. In Proceedings of the
21st annual international ACM SIGIR conference on
Research and development in information retrieval.
ACM, pages 90–95.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner. 1998. Gradient-based learning applied to
document recognition. Proceedings of the IEEE
86(11):2278–2324.

Jiwei Li, Minh-Thang Luong, and Dan Jurafsky. 2015.
A hierarchical neural autoencoder for paragraphs
and documents. arXiv preprint arXiv:1506.01057 .

Jiangming Liu and Yue Zhang. 2017. Attention mod-
eling for targeted sentiment. EACL 2017 page 572.

Minh-Thang Luong, Hieu Pham, and Christopher D
Manning. 2015. Effective approaches to attention-
based neural machine translation. arXiv preprint
arXiv:1508.04025 .

Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan
Cernockỳ, and Sanjeev Khudanpur. 2010. Recur-
rent neural network based language model. In Inter-
speech. volume 2, page 3.

Ellis B Page. 1968. The use of the computer in ana-
lyzing student essays. International review of edu-
cation 14(2):210–225.

Ellis Batten Page. 1994. Computer grading of student
prose, using modern concepts and software. The
Journal of experimental education 62(2):127–142.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio.
2013. On the difficulty of training recurrent neural
networks. ICML (3) 28:1310–1318.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word
representation. In EMNLP. volume 14, pages 1532–
1543.

Peter Phandi, Kian Ming A Chai, and Hwee Tou Ng.
2015. Flexible domain adaptation for automated es-
say scoring using correlated linear regression .

Yafeng Ren and Yue Zhang. 2016. Deceptive opin-
ion spam detection using neural network. In Pro-
ceedings of COLING 2016. Association for Com-
putational Linguistics, Osaka, Japan, pages 140–
150. http://www.aclweb.org/anthology/C/C16/C16-
1014.pdf.

161

Lawrence M Rudner and Tahung Liang. 2002. Au-
tomated essay scoring using bayes’ theorem. The
Journal of Technology, Learning and Assessment
1(2).

Bonggun Shin, Timothy Lee, and Jinho D Choi.
2016. Lexicon integrated cnn models with at-
tention for sentiment analysis. arXiv preprint
arXiv:1610.06272 .

Kaveh Taghipour and Hwee Tou Ng. 2016. A
neural approach to automated essay scor-
ing. In Proceedings of the 2016 Conference
on Empirical Methods in Natural Language
Processing, EMNLP 2016, Austin, Texas,
USA, November 1-4, 2016. pages 1882–1891.
http://aclweb.org/anthology/D/D16/D16-1193.pdf.

Duyu Tang, Bing Qin, and Ting Liu. 2015. Document
modeling with gated recurrent neural network for
sentiment classification. In EMNLP. pages 1422–
1432.

Yequan Wang, Minlie Huang, Li Zhao, and Xiaoyan
Zhu. 2016. Attention-based lstm for aspect-level
sentiment classification. In EMNLP. pages 606–
615.

Ronald J Williams and David Zipser. 1989. A learn-
ing algorithm for continually running fully recurrent
neural networks. Neural computation 1(2):270–280.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho,
Aaron C Courville, Ruslan Salakhutdinov, Richard S
Zemel, and Yoshua Bengio. 2015. Show, attend and
tell: Neural image caption generation with visual at-
tention. In ICML. volume 14, pages 77–81.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He,
Alex Smola, and Eduard Hovy. 2016. Hierarchical
attention networks for document classification. In
Proceedings of NAACL-HLT . pages 1480–1489.

Helen Yannakoudakis, Ted Briscoe, and Ben Medlock.
2011. A new dataset and method for automatically
grading esol texts. In Proceedings of the 49th An-
nual Meeting of the Association for Computational
Linguistics: Human Language Technologies-Volume
1. Association for Computational Linguistics, pages
180–189.

162

Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017), pages 163–172,
Vancouver, Canada, August 3 - August 4, 2017. c©2017 Association for Computational Linguistics

Feature Selection as Causal Inference:
Experiments with Text Classification

Michael J. Paul
University of Colorado

Boulder, CO 80309, USA
mpaul@colorado.edu

Abstract

This paper proposes a matching tech-
nique for learning causal associations be-
tween word features and class labels in
document classification. The goal is to
identify more meaningful and general-
izable features than with only correla-
tional approaches. Experiments with sen-
timent classification show that the pro-
posed method identifies interpretable word
associations with sentiment and improves
classification performance in a majority
of cases. The proposed feature selection
method is particularly effective when ap-
plied to out-of-domain data.

1 Introduction

A major challenge when building classifiers for
high-dimensional data like text is learning to iden-
tify features that are not just correlated with the
classes in the training data, but associated with
classes in a meaningful way that will generalize to
new data. Methods for regularization (Hoerl and
Kennard, 1970; Chen and Rosenfeld, 2000) and
feature selection (Yang and Pedersen, 1997; For-
man, 2003) are critical for obtaining good classi-
fication performance by removing or minimizing
the effects of noisy features. While empirically
successful, these techniques can only identify fea-
tures that are correlated with classes, and these as-
sociations can still be caused by factors other than
the direct relationship that is assumed.

A more meaningful association is a causal one.
In the context of document classification using
bag-of-words features, we ask the question, which
word features “cause” documents to have the class
labels that they do? For example, it might be rea-
sonable to claim that adding the word horrible to a
review would cause its sentiment to become neg-

ative, while this is less plausible for a word like
said. Yet, in one of our experimental datasets
of doctor reviews, said has a stronger correlation
with negative sentiment than horrible.

Inspired by methods for causal inference in
other domains, we seek to learn causal asso-
ciations between word features and document
classes. We experiment with propensity score
matching (Rosenbaum and Rubin, 1985), a tech-
nique attempts to mimic the random assignment
of subjects to treatment and control groups in a
randomized controlled trial by matching subjects
with a similar “propensity” to receive treatment.
Translating this idea to document classification,
we match documents with similar propensity to
contain a word, allowing us to compare the effect a
word has on the class distribution after controlling
for the context in which the word appears. We pro-
pose a statistical test for measuring the importance
of word features on the matched training data.

We experiment with binary sentiment classifi-
cation on three review corpora from different do-
mains (doctors, movies, products) using propen-
sity score matching to test for statistical signifi-
cance of features. Compared to a chi-squared test,
the propensity score matching test for feature se-
lection yields superior performance in a majority
of comparisons, especially for domain adaptation
and for identifying top word associations. After
presenting results and analysis in Sections 4–5, we
discuss the implications of our findings and make
suggestions for areas of language processing that
would benefit from causal learning methods.

2 Causal Inference and Confounding

A challenge in statistics and machine learning is
identifying causal relationships between variables.
Predictive models like classifiers typically learn
only correlational relationships between variables,

163

and if spurious correlations are built into a model,
then performance will worsen if the underlying
distributions change.

A common cause of spurious correlations is
confounding. A confounding variable is a vari-
able that explains the association between a depen-
dent variable and independent variables. A com-
monly used example is the positive correlation of
ice cream sales and shark attacks, which are corre-
lated because they both increase in warm weather
(when more people are swimming). As far as any-
one is aware, ice cream does not cause shark at-
tacks; rather, both variables are explained by a
confounding variable, the time of year.

There are experimental methods to reduce con-
founding bias and identify causal relationships.
Randomized controlled trials, in which subjects
are randomly assigned to a group that receives
treatment versus a control group that does not, are
the gold standard for experimentation in many do-
mains. However, this type of experiment is not
always possible or feasible. (In text processing,
we generally work with documents that have al-
ready been written: the idea of assigning features
to randomly selected documents to measure their
effect does not make sense, so we cannot directly
translate this idea.)

A variety of methods exist to attempt to in-
fer causality even when direct experiments, like
randomized controlled trials, cannot be conducted
(Rosenbaum, 2002). In this work, we propose the
use of one such method, propensity score match-
ing (Rosenbaum and Rubin, 1985), for reducing
the effects of confounding when identifying im-
portant features for classification. We describe this
method, and its application to text, in Section 3.
First, we discuss why causal methods may be im-
portant for document classification, and describe
previous work in this space.

2.1 Causality in Document Classification

We now discuss where these ideas are relevant to
document classification. Our study performs sen-
timent classification in online reviews using bag-
of-words (unigram) features, so we will use exam-
ples that apply to this setting.

There are a number of potentially confounding
factors in document classification (Landeiro and
Culotta, 2016). Consider a dataset of restaurant re-
views, in which fast food restaurants have a much
lower average score than other types of restau-

rants. Word features that are associated with fast
food, like drive-thru, will be correlated with neg-
ative sentiment due to this association, even if the
word itself has neutral sentiment. In this case, the
type of restaurant is a confounding variable that
causes spurious associations. If we had a method
for learning causal associations, we would know
that drive-thru itself does not affect sentiment.

What does it mean for a word to have a causal
relationship with a document class? It is difficult
to give a natural explanation for a bag-of-words
model that ignores pragmatics and discourse, but
here is an attempt. Suppose you are someone who
understands bag-of-words representations of doc-
uments, and you are given a bag of words corre-
sponding to a restaurant review. Suppose some-
one adds the word terrible to the bag. If you pre-
viously recognized the sentiment to be neutral or
even positive, it is possible that the addition of this
new word would cause the sentiment to change to
negative. On the other hand, it is hard to imagine a
set of words to which adding the word drive-thru
would change the sentiment in any direction.

In this example, we would say that the word
terrible “caused” the sentiment to change, while
drive-thru did not. While most real documents
will not have a clean interpretation of a word
“causing” a change in sentiment, this may still
serve as a useful conceptual model for identify-
ing features that are meaningfully associated with
class labels.

2.2 Previous Work

Recent studies have used text data, especially so-
cial media, to make causal claims (Cheng et al.,
2015; Reis and Culotta, 2015; Pavalanathan and
Eisenstein, 2016). The technique we use in this
work, propensity score matching, has recently
been applied to user-generated text data (Rehman
et al., 2016; De Choudhury and Kiciman, 2017).

For the task of document classification specif-
ically, Landeiro and Culotta (2016) experiment
with multiple methods to make classifiers robust
to confounding variables such as gender in social
media and genre in movie reviews. This work re-
quires confounding variables to be identified and
included explicitly, whereas our proposed method
requires only the features used for classification.

Causal methods have previously been applied
to feature selection (Guyon et al., 2007; Cawley,
2008; Aliferis et al., 2010), but not with the match-

164

People Text
Subject Document

Treatment Word
Outcome Class label

Table 1: A mapping of standard terminology of
randomized controlled trials (left) to our applica-
tion of these ideas to text classification (right).

ing methods proposed in this work, and not for
document classification.

3 Propensity Score Matching for
Document Classification

Propensity score matching (PSM) (Rosenbaum
and Rubin, 1985) is a technique that attempts to
simulate the random assignment of treatment and
control groups by matching treated subjects to un-
treated subjects that were similarly likely to be in
the same group. This is centered around the idea of
a propensity score, which Rosenbaum and Rubin
(1983) define as the probability of being assigned
to a treatment group based on observed character-
istics of the subject, P (zi|xi), typically estimated
with a logistic regression model. In other words,
what is the “propensity” of a subject to obtain
treatment? Subjects that did and did not receive
treatment are matched based their propensity to re-
ceive treatment, and we can then directly compare
the outcomes of the treated and untreated groups.

In the case of document classification, we want
to measure the effect of each word feature. Using
the terminology above, each word is a “treatment”
and each document is a “subject”. Each word has
a treatment group, the documents that contain the
word, and a “control” group, the documents that
do not. The “outcome” is the document class label.

Each subject has a propensity score for a treat-
ment. In document classification, this means that
each document has a propensity score for each
word, which is the probability that the word would
appear in the document. For a word w, we define
this as the probability of the word appearing given
all other words in the document: P (w|di − {w}),
where di is the set of words in the ith document.
We estimate these probabilities by training a logis-
tic regression model with word features.

Using our example from the previous section,
the probability that a document contains the word
drive-thru is likely to be higher in reviews that
describe fast food that those that do not. Match-

ing reviews based on their likelihood of contain-
ing this word should adjust for any bias caused by
the type of restaurant (fast food) as a confounding
variable. This is done without having explicitly in-
cluded this as a variable, since it will implicitly be
learned when estimating the probability of words
associated with fast food, like drive-thru.

3.1 Creating Matched Samples
Once propensity scores have been calculated, the
next step is to match documents containing a word
to documents that do not contain the word but have
a similar score. There are a number of strategies
for matching, summarized by Austin (2011a). For
example, matching could be done one-to-one or
one-to-many, sampling either with or without re-
placement. Another approach is to group similar
scoring samples into strata (Cochran, 1968).

In this work, we perform one-to-one match-
ing without replacement using a greedy match-
ing algorithm; Gu and Rosenbaum (1993) found
no quality difference using greedy versus optimal
matching. We also experiment with thresholding
how similar two scores must be to match them.

Implementation Even greedy matching is ex-
pensive, so we use a fast approximation. We place
documents into 100 bins based on their scores
(e.g., scores between .50 and .51). For each
“treatment” document, we match it to the approx-
imate closest “control” document by pointing to
the treatment document’s bin and iterating over
bins outward until we find the first non-empty bin,
and then select a random control document from
that bin. Placing documents into bins is related to
stratification approaches (Rosenbaum and Rubin,
1984), except that we use finer bins that typical
strata and we still return one-to-one pairs.

3.1.1 Comparing Groups
Since our instances are paired (after one-to-one
matching), we can use McNemar’s test (McNe-
mar, 1947), which tests if there is a significant
change in the distribution of a variable in response
to a change in the other. The test statistic is:

χ2 =
(TN − CP)2

TN + CP
(1)

where TN is the number of treatment instances
with a negative outcome (in our case, the num-
ber of documents containing the target word with
a negative sentiment label) and CP is the number
of control instances with a positive outcome (the

165

documents # tokens # word types
Doctors 20,000 432,636 2,422
Movies 50,000 9,420,645 3,124

Products 100,000 7,416,381 2,343

Table 2: Corpus summary.

number of documents that do not contain the word
with a positive sentiment label).

This test statistic has a chi-squared distribution
with 1 degree of freedom. This test is related to
a traditional chi-squared test used for feature se-
lection (which we compare to experimentally in
Section 4), except that it assumes paired data with
a “before” and “after” measurement. In our case,
we do not have two outcome measurements for the
same subject, but we have two subjects that have
been matched in a way that approximates this.

We perform this test for every feature (every
word in the vocabulary). The goal of the test is
to measure there is a significant difference in the
class distribution (positive versus negative, in the
case of sentiment) in documents that do and do not
contain the word (the “after” and “before” con-
ditions, respectively, when considering words as
treatments).

4 Experiments with Feature Selection

To evaluate the ability of propensity score match-
ing to identify meaningful word features, we use it
for feature selection (Yang and Pedersen, 1997) in
sentiment classification (Pang and Lee, 2004).

4.1 Datasets
We used datasets of reviews from three domains:

• Doctors: Doctor reviews from RateMDs.com
(Wallace et al., 2014). Doctors are rated on a
scale from 1–5 along four different dimensions
(knowledgeability, staff, helpfulness, punctual-
ity). We averaged the four ratings for each re-
view and labeled a review positive if the average
rating was ≥ 4 and negative if ≤ 2.
• Movies: Movie reviews from IMDB (Maas

et al., 2011). Movies are rated on a scale from
1–10. Reviews rated ≥ 7 are labeled positive
and reviews rated ≤ 4 are labeled negative.
• Products: Product reviews from Amazon (Jin-

dal and Liu, 2008). Products are rated on a scale
from 1–5, with reviews rated ≥ 4 labeled posi-
tive and reviews rated ≤ 2 labeled negative.

All datasets were sampled to have an equal class
balance. We used unigram word features. For ef-

Training Test Corpus
Corpus Doctors Movies Products

PSM χ2 PSM χ2 PSM χ2

Doctors .8569 .8560 .6796 .6657 .6670 .6367
Movies .6510 .5497 .8094 .7421 .6658 .4917

Products .7799 .7853 .8299 .8245 .8234 .8277

Table 3: Area under the feature selection curve
(see Figure 1) using F1-score as the evaluation
metric. All differences between corresponding
PSM and χ2 results are statistically significant
with p� 0.01 except for (Doctors, Doctors).

ficiency reasons (a limitation that is discussed in
Section 7), we pruned the long tail of features, re-
moving words appearing in less than 0.5% of each
corpus. The sizes of the processed corpora and
their vocabularies are summarized in Table 2.

4.2 Experimental Details

For each corpus, we randomly selected 50% for
training, 25% for development, and 25% for test-
ing. The training set is used for training classifiers
as well as calculating all feature selection metrics.

We used the development set to measure clas-
sification performance for different hyperparame-
ter values. Our propensity score matching method
has two hyperparameters. First, when building lo-
gistic regression models to estimate the propensity
scores, we adjusted the `2 regularization strength.
Second, when matching documents, we required
the difference between scores to be less than
τ×SD to count as a match, where SD is the stan-
dard deviation of the propensity scores. We per-
formed a grid search over different values of τ and
different regularization strengths, described more
in our analysis in Section 5.2, and used the best
combination of hyperparameters for each dataset.

We used logistic regression classifiers for sen-
timent classification. While we experimented
with `2 regularization for constructing propensity
scores, we used no regularization for the sentiment
classifiers. Since regularization and feature selec-
tion are both used to avoid overfitting, we did not
want to conflate the effects of the two, so by us-
ing unregularized classifiers we can directly assess
the efficacy of our feature selection methods on
held-out data. All models were implemented with
scikit-learn (Pedregosa et al., 2011).

Baseline We compare propensity score match-
ing with McNemar’s test (PSM) to a standard chi-
squared test (χ2) for feature selection, one of the

166

0.0 0.2 0.4 0.6 0.8 1.0

Percentage of feature set

0.75

0.80

0.85

0.90

F1
 s

co
re

Doctors

PSM

χ2

0.0 0.2 0.4 0.6 0.8 1.0

Percentage of feature set

0.60

0.65

0.70

0.75

0.80

0.85

0.90

F1
 s

co
re

Movies

PSM

χ2

0.0 0.2 0.4 0.6 0.8 1.0

Percentage of feature set

0.60

0.65

0.70

0.75

0.80

0.85

F1
 s

co
re

Products

PSM

χ2

Figure 1: F1 scores when using a varying numbers of features ranked by two feature selection tests.

most common statistical tests for features in doc-
ument classification (Manning et al., 2008). Since
both tests follow a chi-squared distribution, and
since McNemar’s test is loosely like a chi-squared
test for paired data, we believe this baseline offers
the most direct comparison.

4.3 Results

We calculated the F1 scores of the sentiment clas-
sifiers when using different numbers of features
ranked by significance. For example, when train-
ing a classifier with 1% of the feature set, this is
the most significant 1% (with the lowest p-values).
Results for varying feature set sizes on the three
test datasets are shown in Figure 1.

To summarize the curves with a concise metric,
we calculated the area under these curves (AUC).
AUC scores for each dataset can be found along
the diagonal of Table 3. We find that PSM gives
higher AUC scores than χ2 in two out of three
datasets, though one is not statistically significant
based on a paired t-test of the F1 scores.

PSM gives a large improvement over χ2 on the
Movies corpus, though the feature selection curve
is unusual in that it rises gradually and peaks much
later than χ2. This appears to be because the high-
est ranking words with PSM have mostly positive
sentiment. There is a worse balance of class asso-
ciations in the top features with PSM than χ2, so
the classifier has a harder time discriminating with
few features. However, PSM eventually achieves
a higher score than the peak from χ2 and the per-
formance does not drop as quickly after peaking.

In the next two subsections, we examine addi-
tional settings in which PSM offers larger advan-
tages over the χ2 baseline.

4.3.1 Generalizability
A motivation for learning features with causal as-
sociations with document classes is to learn robust

Doctors Movies Products
PSM χ2 PSM χ2 PSM χ2

great told great worst excellent waste
caring great excellent bad wonderful money
rude rude wonderful and great great
best best best great waste worst

excellent said love waste bad best

Table 4: The highest scoring words from the two
feature selection methods.

M = 5 M = 10 M = 20
PSM χ2 PSM χ2 PSM χ2

Doctors .5573 .4806 .6318 .5520 .6999 .6503
Movies .5211 .4962 .5841 .6196 .6171 .6921

Products .5388 .3478 .5514 .4696 .6031 .5622

Table 5: Area under the feature selection curve
when using only a small number of features, M .

features that can generalize to changes in the data
distribution. To test this, we evaluated each of the
three classifiers on the other two datasets (for ex-
ample, testing the classifier trained on Doctors on
the Products dataset). The AUC scores for all pairs
of datasets are shown in Table 3.

On average, PSM improves the AUC over χ2

by an average of .021 when testing on the same
domain as training, while the improvement in-
creases to an average of .053 when testing on out-
of-domain data. In thus seems that PSM may be
particularly effective at identifying features that
can be applied across domains.

4.3.2 Top Features
Having measured performance across the entire
feature set, we now focus on only the most highly
associated features. The top features are important
because these can give insights into the classifica-
tion task, revealing which features are most asso-
ciated with the target classes. Having top features
that are meaningful and interpretable will lead to
more trust in these models (Paul, 2016), and iden-

167

tifying meaningful features can itself be the goal
of a study (Eisenstein et al., 2011b).

We experimented with a small number of fea-
tures M ∈ {5, 10, 20}. Under the assumption that
optimal hyperparameters may be different when
using such a small number of features, we retuned
the PSM parameters again for the experiments in
this subsection, using M=10.

Table 4 shows the five words with the lowest
p-values with both methods. At a glance, the top
words from PSM seem to have strong sentiment
associations; for example, excellent is a top five
feature in all three datasets using PSM, and none
of the datasets using χ2. Words without obvious
sentiment associations seem to appear more often
in the top χ2 features, like and.

To quantify if there is a difference in quality,
we again calculated the area under the feature se-
lection F1 curves, where the number of features
ranged from 1 toM . Results are shown in Table 5.
For M of 10 and 20, PSM does worse on Movies,
which is not surprising based on our finding above
that the top features in this dataset are not bal-
anced across the two labels, so PSM does worse
for smaller numbers of features. For the other two
datasets, PSM substantially outperforms χ2. PSM
appears to be an effective method for identifying
strong feature associations.

5 Empirical Analysis

We now perform additional analyses to gain a
deeper understanding of the behavior of propen-
sity score matching applied to feature selection.

5.1 An Example

To better understand what happens during match-
ing, we examined the word said on the Doctors
corpus. This word does not have an obvious sen-
timent association, but is the fifth-highest scoring
word with χ2. It is still highly ranked when us-
ing propensity score matching, but this approach
reduces its rank to ten.

Upon closer inspection, we find that reviews
tend to use this word when discussing logistical
issues, like interactions with office staff. These
issues seem to be discussed primarily in a nega-
tive context, giving said a strong association with
negative sentiment. If, however, reviews that dis-
cussed these logistical issues were matched, then
within these matched reviews, those containing
said are probably not more negative than those that

0.01 0.1 1.0 100.0 109

λ

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

S
ta

n
d
a
rd

iz
e
d
 F

1
 s

co
re

0.2 0.8 2.0 ∞
τ

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Figure 2: The distribution of the area under the
feature selection curve scores when using different
hyperparameter settings (propensity inverse regu-
larization strength λ and matching threshold τ).

0.01 0.1 1.0 100.0 109

λ

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

S
ta

n
d
a
rd

iz
e
d
 F

1
 s

co
re

τ=∞

0.2 0.8 2.0 ∞
τ

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
λ=1.0

Figure 3: The distribution of scores when using
different hyperparameter settings, restricted to the
best performing setting for each independent pa-
rameter as shown in Figure 2 (varying λ with the
optimal τ , and varying τ with the optimal λ).

do not. With propensity score matching, docu-
ments are matched based on how likely they are
to contain the word said, which is meant to con-
trol for the negative context that this word has a
tendency (or propensity) to appear in.

Table 6 shows example reviews that do (the
“treatment” group) and do not (the “control”
group) contain said. We see that the higher
propensity reviews do tend to discuss issues like
receptionists and records, and controlling for this
context may explain why this method produced a
lower ranking for this word.

5.2 Hyperparameter Settings

We investigate the effect of different hyperparam-
eter settings. To do this, we first standardized
the results across the three development datasets
by converting them to z-scores so that they can
be directly compared. The distribution of scores
(specifically, the area under the F1 curve scores
from Table 3) is summarized in Figure 2.

168

“Treatment” “Control”
High Propensity

.8040
−

She repeatedly said, “I don’t care how you feel”
when my wife told her the medication (birth control)
was causing issues. She failed to mention a positive
test result, giving a clean bill of health.

.7880
−

After a long, long conversation during which I tried
to explain that I did not have records as I was only
looked at by a sport trainer, they still would not see
me without previous records.

.6320
−

I went for a checkup and he ended up waiting for
over 2 hours just to get into the room. Then I waited
some more until he eventually came in and dedicated
the whole 10 minutes of his time. When I asked
what exactly is going to take place, the assistant said,
no big deal, just a little scrape.

.5047
+

The receptionist was able to get me in the next
day and really worked around my busy schedule. I
downloaded my paperwork off the website and had
it ready at my appointment. I waited maybe 10 min-
utes and was in the exam room. The doctor was re-
ally nice and took the time to talk to me.

Low Propensity
.2012

+
I said he was on time but usually you have to wait
because he does procedures in all hospitals in town,
has emergencies and runs a little late. No matter how
busy he is, he greets you warmly and chats with you.

.1959
−

For over a week I was going to the pharmacy ev-
ery day after being told by her staff that it had been
called in. Finally after a week then told she would
not call it in, I had to come in to see her!

.0597
−

This doctor did not do what he said he would, was
massively late, unwilling to talk to us about the con-
dition we were facing.

.0598
−

DR.Taylor is usually not around. Staff is rude and
antagonistic. They do not care about you as a person
or your children.

Table 6: Examples of reviews that were matched based on the word said. Reviews on the left contain
the word said while those on the right do not. Each row corresponds to a pair of matched documents
(edited for length). The propensity score and sentiment label (+ or −) is shown for each document.

Regularization When training the logistic re-
gression model to create propensity scores,
we experimented with the following values of
the inverse regularization parameter: λ ∈
{0.01, 0.1, 1.0, 100.0, 109}, where λ=109 is es-
sentially no regularization other than to keep the
optimal parameter values finite. We make two ob-
servations. First, high λ values (less regulariza-
tion) generally result in worse scores. Second,
small λ values lead to more consistent results, with
less variance in the score distribution. Based on
these results, we recommend a value of λ=1.0
based on its high median score, competitive maxi-
mum score, and low variance.

Matching We required that the scores of two
documents were within τ×SD of each other,
and experimented with the following thresholds:
τ ∈ {0.2, 0.8, 2.0,∞}. Austin (2011b) found that
τ=0.2 was optimal for continuous features and
τ=0.8 was optimal for binary features. Based on
these guidelines, 0.8 would be appropriate for our
scenario, but we also compared to a larger thresh-
old (2.0) and no threshold (∞). We find that scores
consistently increase as τ increases.

Coupling Looking at the two hyperparameters
independently does not tell the whole story, due to
interactions between the two. In particular, we ob-
serve that lower thresholds (lower τ) work better
when using heavier regularization (lower λ), and

vice versa. It turns out that it is ill-advised to use
τ=∞, as Figure 2 would suggest, when using our
recommendation of λ=1.0. Figure 3 shows the
λ distribution when set to τ=∞ and the τ distri-
bution when set to λ=1.0. This shows that when
λ=1.0, scores are much worse when τ=∞. When
τ=∞, scores are better with higher λ values.

The best combinations of hyperparameters are
(λ = 100.0, τ =∞) and (λ = 1.0, τ = 2.0). Be-
tween these, we recommend (λ = 1.0, τ = 2.0)
due to its higher median and lower variance.

5.3 P-Values

Lastly, we examine the p-values produced by Mc-
Nemar’s test on propensity score matched data
compared to the standard chi-squared test. Fig-
ure 4 shows the distribution of the log of the p-
values from both methods, using the same hyper-
parameters as in Section 4.3. We find that χ2 tends
to assign lower p-values, with more extreme val-
ues. This suggests that propensity score matching
yields more conservative estimates of the statisti-
cal significance of features.

6 Related Work

In addition to the prior work already discussed,
we wish to draw attention to work in related areas
with respect to text classification.

169

450 400 350 300 250 200 150 100 50 0

Log p-value

100

101

102

103

104

N
u
m

b
e
r

o
f

w
o
rd

s

Doctors

PSM

χ2

800 700 600 500 400 300 200 100 0

Log p-value

100

101

102

103

104

N
u
m

b
e
r

o
f

w
o
rd

s

Movies

PSM

χ2

800 700 600 500 400 300 200 100 0

Log p-value

100

101

102

103

104

N
u
m

b
e
r

o
f

w
o
rd

s

Products

PSM

χ2

Figure 4: Distribution of p-values of features from the two methods of testing. Counts are on a log scale.

Matching There have been instances of using
matching techniques to improve text training data.
Tan et al. (2014) built models to estimate the
number of retweets of Twitter messages and ad-
dressed confounding factors by matching tweets
of the same author and topic (based on posting
the same link). Zhang et al. (2016) built classi-
fiers to predict media coverage of journal articles
used matching sampling to select negative training
examples, choosing articles from the same jour-
nal issue. While motivated differently, contrastive
estimation (Smith and Eisner, 2005) is also re-
lated to matching. In contrastive estimation, nega-
tive training examples are synthesized by perturb-
ing positive instances. This strategy essentially
matches instances that have the same semantics
but different syntax.

Annotation Perhaps the work that most closely
gets at the concept of causality in document classi-
fication is work that asks for annotators to identify
which features are important. There are branches
of active learning which ask annotators to label not
only documents, but to label features for impor-
tances or relevance (Raghavan et al., 2006; Druck
et al., 2009). Work on annotator rationales (Zaidan
et al., 2007; Zaidan and Eisner, 2008) seeks to
model why annotators labeled a document a cer-
tain way—in other words, what “caused” the doc-
ument to have its label? These ideas could poten-
tially be integrated with causal inference methods
for document classification.

7 Future Work

Efficiency is a drawback of the current work. The
standard way of defining propensity scores with
logistic regression models is not designed to scale
to the large number of variables used in text clas-
sification. Our proposed method is slow because
it requires training a logistic regression model for

every word in the vocabulary. Perhaps documents
could instead be matched based on another met-
ric, like cosine similarity. This would match docu-
ments with similar context, which is what the PSM
method appears to be doing based on our analysis.

We emphasize that the results of the PSM sta-
tistical analysis could be used in ways other than
using it to select features ahead of training, which
is less common today than doing feature selection
directly through the training process, for exam-
ple with sparse regularization (Tibshirani, 1994;
Eisenstein et al., 2011a; Yogatama and Smith,
2014). One way to integrate PSM with regular-
ization would be to use each feature’s test statistic
to weight its regularization penalty, discouraging
features with high p-values from having large co-
efficients in a classifier.

In general, we believe this work shows the util-
ity of controlling for the context in which features
appear in documents when learning associations
between features and classes, which has not been
widely considered in text processing. Prior work
that used matching and related techniques for text
classification was generally motivated by specific
factors that needed to be controlled for, but our
study found that a general-purpose matching ap-
proach can also lead to better feature discovery.
We want this work to be seen not necessarily as a
specific prescription for one method of feature se-
lection, but as a general framework for improving
learning of text categories.

8 Conclusion

We have introduced and experimented with the
idea of using propensity score matching for doc-
ument classification. This method matches docu-
ments of similar propensity to contain a word as
a way to simulate the random assignment to treat-
ment and control groups, allowing us to more re-

170

liably learn if a feature has a significant, causal
effect on document classes. While the concept of
causality does not apply to document classification
as naturally as in other tasks, the methods used
for causal inference may still lead to more inter-
pretable and generalizable features. This was evi-
denced by our experiments with feature selection
using corpora from three domains, in which our
proposed approach resulted in better performance
than a comparable baseline in a majority of cases,
particularly when testing on out-of-domain data.
In future work, we hope to consider other metrics
for matching to improve the efficiency, and to con-
sider other ways of integrating the proposed fea-
ture test into training methods for text classifiers.

References
C.F. Aliferis, A. Statnikov, I. Tsamardinos, S. Mani,

and X.D. Koutsoukos. 2010. Local causal and
markov blanket induction for causal discovery and
feature selection for classification. Journal of Ma-
chine Learning Research 11:171–234.

P.C. Austin. 2011a. An introduction to propensity
score methods for reducing the effects of confound-
ing in observational studies. Multivariate Behav Res
46(3):399–424.

P.C. Austin. 2011b. Optimal caliper widths for
propensity-score matching when estimating differ-
ences in means and differences in proportions in ob-
servational studies. Pharm Stat 10(2):150–161.

G.C. Cawley. 2008. Causal & non-causal feature se-
lection for ridge regression. In Proceedings of the
Workshop on the Causation and Prediction Chal-
lenge at WCCI 2008.

S.F. Chen and R. Rosenfeld. 2000. A survey of
smoothing techniques for maximum entropy mod-
els. IEEE Transactions on Speech and Audio Pro-
cessing 8(1):37–50.

J. Cheng, C. Danescu-Niculescu-Mizil, and
J. Leskovec. 2015. Antisocial behavior in on-
line discussion communities. In International
Conference on Web and Social Media (ICWSM).

W.G. Cochran. 1968. The effectiveness of adjustment
by subclassification in removing bias in observa-
tional studies. Biometrics 24:295–313.

M. De Choudhury and E. Kiciman. 2017. The lan-
guage of social support in social media and its effect
on suicidal ideation risk. In International Confer-
ence on Web and Social Media (ICWSM).

G. Druck, B. Settles, and A. McCallum. 2009. Ac-
tive learning by labeling features. In Conference on
Empirical Methods in Natural Language Processing
(EMNLP).

J. Eisenstein, A. Ahmed, and E.P. Xing. 2011a. Sparse
additive generative models of text. In International
Conference on Machine Learning (ICML).

J. Eisenstein, N.A. Smith, and E.P. Xing. 2011b. Dis-
covering sociolinguistic associations with structured
sparsity. In Proceedings of the Association for Com-
putational Linguistics (ACL).

G. Forman. 2003. An extensive empirical study of fea-
ture selection metrics for text classification. Journal
of Machine Learning Research 3:1289–1305.

X.S. Gu and P.R. Rosenbaum. 1993. Comparison
of multivariate matching methods: Structures, dis-
tances, and algorithms. Journal of Computational
and Graphical Statistics 2:405–420.

I. Guyon, C. Aliferis, and A. Elisseeff. 2007. Causal
feature selection. In H. Liu and H. Motoda, editors,
Computational Methods of Feature Selection, Chap-
man and Hall/CRC Press.

A.E. Hoerl and R.W. Kennard. 1970. Ridge regres-
sion: Biased estimation for nonorthogonal prob-
lems. Technometrics 12:55–67.

N. Jindal and B. Liu. 2008. Opinion spam and analy-
sis. In International Conference on Web Search and
Data Mining (WSDM).

V. Landeiro and A. Culotta. 2016. Robust text classifi-
cation in the presence of confounding bias. In AAAI.

A.L. Maas, R.E. Daly, P.T. Pham, D. Huang, A.Y. Ng,
and C. Potts. 2011. Learning word vectors for senti-
ment analysis. In Annual Meeting of the Association
for Computational Linguistics (ACL).

C.D. Manning, P. Raghavan, and H. Schütze. 2008.
Introduction to Information Retrieval. Cambridge
University Press.

Q. McNemar. 1947. Note on the sampling error of
the difference between correlated proportions or per-
centages. Psychometrika 12(2):153–157.

B. Pang and L. Lee. 2004. A sentimental education:
Sentiment analysis using subjectivity summarization
based on minimum cuts. In Proceedings of the 42nd
Annual Meeting on Association for Computational
Linguistics (ACL).

M.J. Paul. 2016. Interpretable machine learning:
lessons from topic modeling. In CHI Workshop on
Human-Centered Machine Learning.

U. Pavalanathan and J. Eisenstein. 2016. Emoticons vs.
emojis on Twitter: A causal inference approach. In
AAAI Spring Symposium on Observational Studies
through Social Media and Other Human-Generated
Content.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and

171

E. Duchesnay. 2011. Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research
12:2825–2830.

H. Raghavan, O. Madani, and R. Jones. 2006. Active
learning with feedback on features and instances. J.
Mach. Learn. Res. 7:1655–1686.

N.A. Rehman, J. Liu, and R. Chunara. 2016. Using
propensity score matching to understand the rela-
tionship between online health information sources
and vaccination sentiment. In AAAI Spring Sympo-
sium on Observational Studies through Social Me-
dia and Other Human-Generated Content.

V.L.D. Reis and A. Culotta. 2015. Using matched sam-
ples to estimate the effects of exercise on mental
health from Twitter. In AAAI.

P.R. Rosenbaum. 2002. Observational Studies.
Springer-Verlag.

P.R. Rosenbaum and D.B. Rubin. 1983. The central
role of the propensity score in observational studies
for causal effects. Biometrika 70:41–55.

P.R. Rosenbaum and D.B. Rubin. 1984. Reducing bias
in observational studies using subclassification on
the propensity score. Journal of the American Sta-
tistical Association 79:516–524.

P.R. Rosenbaum and D.B. Rubin. 1985. Constructing a
control group using multivariate matched sampling
methods that incorporate the propensity score. The
American Statistician 39:33–38.

N.A. Smith and J. Eisner. 2005. Contrastive estima-
tion: Training log-linear models on unlabeled data.
In Proceedings of the Association for Computational
Linguistics (ACL).

C. Tan, L. Lee, and B. Pang. 2014. The effect of word-
ing on message propagation: Topic- and author-
controlled natural experiments on Twitter. In An-
nual Meeting of the Association for Computational
Linguistics (ACL).

R. Tibshirani. 1994. Regression shrinkage and selec-
tion via the lasso. Journal of the Royal Statistical
Society, Series B 58:267–288.

B.C. Wallace, M.J. Paul, U. Sarkar, T.A. Trikalinos,
and M. Dredze. 2014. A large-scale quantitative
analysis of latent factors and sentiment in online
doctor reviews. Journal of the American Medical
Informatics Association 21(6):1098–1103.

Y. Yang and J.O. Pedersen. 1997. A comparative study
on feature selection in text categorization. In Pro-
ceedings of the Fourteenth International Conference
on Machine Learning (ICML).

D. Yogatama and N.A. Smith. 2014. Linguistic struc-
tured sparsity in text categorization. In Annual
Meeting of the Association for Computational Lin-
guistics (ACL).

O.F. Zaidan and J. Eisner. 2008. Modeling annotators:
A generative approach to learning from annotator ra-
tionales. In Proceedings of EMNLP 2008. pages 31–
40.

O.F. Zaidan, J. Eisner, and C. Piatko. 2007. Using “an-
notator rationales” to improve machine learning for
text categorization. In NAACL HLT 2007; Proceed-
ings of the Main Conference. pages 260–267.

Y. Zhang, E. Willis, M.J. Paul, N. Elhadad, and B.C.
Wallace. 2016. Characterizing the (perceived) news-
worthiness of health science articles: A data-driven
approach. JMIR Med Inform 4(3):e27.

172

Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017), pages 173–183,
Vancouver, Canada, August 3 - August 4, 2017. c©2017 Association for Computational Linguistics

A Joint Model for Semantic Sequences: Frames, Entities, Sentiments

Haoruo Peng Snigdha Chaturvedi Dan Roth
University of Illinois, Urbana-Champaign

{hpeng7,snigdha,danr}@illinois.edu

Abstract

Understanding stories – sequences of
events – is a crucial yet challenging nat-
ural language understanding task. These
events typically carry multiple aspects of
semantics including actions, entities and
emotions. Not only does each individ-
ual aspect contribute to the meaning of the
story, so does the interaction among these
aspects. Building on this intuition, we pro-
pose to jointly model important aspects
of semantic knowledge – frames, entities
and sentiments – via a semantic language
model. We achieve this by first represent-
ing these aspects’ semantic units at an ap-
propriate level of abstraction and then us-
ing the resulting vector representations for
each semantic aspect to learn a joint rep-
resentation via a neural language model.
We show that the joint semantic language
model is of high quality and can gener-
ate better semantic sequences than models
that operate on the word level. We further
demonstrate that our joint model can be
applied to story cloze test and shallow dis-
course parsing tasks with improved perfor-
mance and that each semantic aspect con-
tributes to the model.

1 Introduction

Understanding a story requires understanding se-
quences of events. It is thus vital to model se-
mantic sequences in text. This modeling process
necessitates deep semantic knowledge about what
can happen next. Since events involve actions,
participants and emotions, semantic knowledge
about these aspects must be captured and modeled.

Consider the examples in Figure 1. In Ex.1,
we observe a sequence of actions (commit, arrest,
charge, try), each corresponding to a predicate

Ex.1 (Actions - Frames) Steven Avery committed
murder. He was arrested, charged and tried.
Opt.1 Steven Avery was convicted of murder.
Opt.2 Steven went to the movies with friends.
Alter. Steven was held in jail during his trial.

Ex.2 (Participants - Entities) It was my first time
ever playing football and I was so nervous. During
the game, I got tackled and it did not hurt at all!
Opt.1 I then felt more confident playing football.
Opt.2 I realized playing baseball was a lot of fun.
Alter. However, I still love baseball more.

Ex.3 (Emotions - Sentiments) Joe wanted to be-
come a professional plumber. So, he applied to a
trade school. Fortunately, he was accepted.
Opt.1 It made Joe very happy.
Opt.2 It made Joe very sad.
Alter. However, Joe decided not to enroll because
he did not have enough money to pay tuition.

Figure 1: Examples of short stories requiring
different aspects of semantic knowledge. For all
stories, Opt.1 is the correct follow-up, while Opt.2
is the contrastive wrong follow-up demonstrating
the importance of each aspect. Alter. showcases
an alternative correct follow-up, which requires
considering different aspects of semantics jointly.

frame. Clearly, “convict” is more likely than “go”
to follow such sequence. This semantic knowl-
edge can be learned through modeling frame se-
quences observed in a large corpus. This phe-
nomena has already been studied in script learn-
ing works (Chatman, 1980; Chambers and Juraf-
sky, 2008b; Ferraro and Van Durme, 2016; Pi-
chotta and Mooney, 2016a; Peng and Roth, 2016).
However, modeling actions is not sufficient; par-
ticipants in actions and their emotions are also im-
portant. In Ex. 2, Opt.2 is not a plausible answer
because the story is about “football”, and it does
not make sense to suddenly change the key en-

173

Models Context Input Generated Ending
4-gram Steven Avery committed murder. He was

arrested, charged and tried.
With law by the judge <UNK> ...

RNNLM same as above The information under terrorism ...
Seq2Seq same as above He decided for a case.
FC-SemLM commit.01 arrest.01 charge.05 try.01 convict.01

FES-LM

PER[new]-commit.01-ARG[new](NEG)

ARG[new]-convict.01-PER[old](NEG)
ARG[new]-arrest.01-PER[old](NEU)
ARG[new]-charge.05-PER[old](NEU)
ARG[new]-try.01-PER[old](NEG)

Table 1: Comparison of generative ability for different models. For each model, we provide Ex.1 as
context and compare the generated ending. 4-gram and RNNLM models are trained on NYT news data
while Seq2Seq model is trained on the story data (details see Sec. 5). These are models operated on the
word level. We compare them with FC-SemLM (Peng and Roth, 2016), which works on frame abstrac-
tions, i.e. “predicate.sense”. For the proposed FES-LM, we further assign the arguments (subject and
object) of a predicate with NER types (“PER, LOC, ORG, MISC”) or “ARG” if otherwise. Each argu-
ment is also associated with a “[new/old]” label indicating if it is first mentioned in the sequence (decided
by entity co-reference). Additionally, the sentiment of a frame is represented as positive (POS), neural
(NEU) or negative (NEG). FES-LM can generate better endings in terms of soundness and specificity.
The FES-LM ending can be understood as “[Something] convict a person, who has been mentioned be-
fore (with an overall negative sentiment)”, which can be instantiated as ”Steven Avery was convicted.”
given current context.

tity to “baseball”. In Ex.3, one needs understand
that “being accepted” typically indicates a positive
sentiment and that it applies to “Joe”.

As importantly, we believe that modeling these
semantic aspects should be done jointly; other-
wise, it may not convey the complete intended
meaning. Consider the alternative follow-ups in
Figure 1: in Ex.1, the entity “jail” gives strong
indication that it follows the storyline that men-
tions “murder”; in Ex.2, even though “football”
is not explicitly mentioned, there is a comparison
between “baseball” and “football” that makes this
continuation coherent; in Ex.3, “decided not to en-
roll” is a reasonable action after “being accepted”,
although the general sentiment of the sentence is
negative. These examples show that in order to
model semantics in a more complete way, we need
to consider interactions between frames, entities
and sentiments.

In this paper, we propose a joint semantic lan-
guage model, FES-LM, for semantic sequences,
which captures Frames, Entities and Sentiment
information. Just as “standard” language mod-
els built on top of words, we construct FES-LM
by building language models on top of joint se-
mantic representations. This joint semantic rep-
resentation is a mixture of representations corre-

sponding to different semantic aspects. For each
aspect, we capture semantics via abstracting over
and disambiguating text surface forms, i.e. seman-
tic frames for predicates, entity types for seman-
tic arguments, and sentiment labels for the over-
all context. These abstractions provide the basic
vocabulary for FES-LM and are essential for cap-
turing the underlying semantics of a story. In Ta-
ble 1, we provide Ex.1 as context input (although
FC-SemLM and FES-LM automatically generate
a more abstract representation of this input) and
examine the ability of different models to generate
an ending. 4-gram, RNNLM and Seq2Seq models
operate on the word level, and the generated end-
ings are not satisfactory. FC-SemLM (Peng and
Roth, 2016) works on basic frame abstractions and
the proposed FES-LM model adds abstracted en-
tity and sentiment information into frames. The
results show that FES-LM produces the best end-
ing among all compared models in terms of se-
mantic soundness and specificity.

We build the joint language model from plain
text corpus with automatic annotation tools, re-
quiring no human effort. In the empirical study,
FES-LM is first built on news documents. We
provide perplexity analysis of different variants of
FES-LM as well as for the narrative cloze test,

174

where we test the system’s ability to recover a ran-
domly dropped frame. We further show that FES-
LM improves the performance of sense disam-
biguation for shallow discourse parsing. We then
re-train the model on short commonsense stories
(with the model trained on news as initialization).
We perform story cloze test (Mostafazadeh et al.,
2017), i.e. given a four-sentence story, choose
the fifth sentence from two provided options. Our
joint model achieves the best known results in the
unsupervised setting. In all cases, our ablation
study demonstrates that each aspect of FES-LM
contributes to the model.

The main contributions of our work are: 1) the
design of a joint neural language model for seman-
tic sequences built from frames, entities and sen-
timents; 2) showing that FES-LM trained on news
is of high quality and can help to improve shallow
discourse parsing; 3) achieving the state-of-the-art
result on story cloze test in an unsupervised setting
with the FES-LM tuned on stories.

2 Semantic Aspect Modeling

This section describes how we capture different
aspects of the semantic information in a text snip-
pet via semantic frames, entities and sentiments.

2.1 Semantic Frames

Semantic frame is defined by Fillmore (1976):
frames are certain schemata or frameworks of
concepts or terms which link together as a system,
which impose structure or coherence on some as-
pect of human experience, and which may contain
elements which are simultaneously parts of other
such frameworks. In this work, we simplify it by
defining a semantic frame as a composition of a
predicate and its corresponding argument partici-
pants. The design of PropBank frames (Kingsbury
and Palmer, 2002) and FrameNet frames (Baker
et al., 1998) perfectly fits our needs. Here we re-
quire the predicate to be disambiguated to a spe-
cific sense, thus each frame can be uniquely rep-
resented by its predicate sense. These frames pro-
vide a good level of generalization as each frame
can be instantiated into various surface forms in
natural texts. For example, in Ex.1, the seman-
tic frame in Opt.1 would be abstracted as “con-
vict.01”. We associate each of these frames with
an embedding. The arguments of the frames are
modeled as entities, as described next.

Additionally, in accordance with the idea pro-

Ex.4 The doctor told Susan that she was busy.
The doctor told Susan that she had cancer.
Mary told Susan that she had cancer.

Figure 2: Examples of the need for different lev-
els of entity abstraction. For each sentence, one
wants to understand what the pronoun “she” refers
to, which requires different abstractions for two
underlined entity choices depending on context.

posed by Peng and Roth (2016), we also ex-
tend the frame representations to include discourse
markers since they model relationships between
frames. In this work, we only consider explicit
discourse markers between abstracted frames. We
use surface forms to represent discourse markers
because there is only a limited set. We also assign
an embedding with the same dimension as frames
to each discourse marker.

To unify the representation, we formally use
ef to represent an embedding of a disambiguated
frame/discourse marker. Such embedding would
later be learned during language model training.

2.2 Entities

We consider the subject and object of a predicate
as the essential entity information for modeling se-
mantics. To achieve a higher level of abstraction,
we model entity types instead of entity surface
forms. We choose to assign entities with labels
produced by Named Entity Recognition (NER), as
NER typing is reliable.1

In fact, it is difficult to abstract each entity into
an appropriate level since the decision is largely
affected by context. Consider the examples shown
in Figure 2. For the first sentence, to correctly un-
derstand what “she” refers to, it is enough to just
abstract both entities “the doctor” and “Susan” to
the NER type “person”, i.e. the semantic knowl-
edge being person A told person B that person A
was busy. However, when we change the context
in the second sentence, the “person” abstraction
becomes too broad as it loses key information for
this “doctor - patient” situation. The ideal seman-
tic abstraction would be “a doctor told a patient
that the patient had a disease”. For the third sen-
tence, it is ambiguous without further context from
other sentences. Thus, entity abstraction is a deli-
cate balance between specificity and correctness.

1Though there are a number works on fine-grained entity
typing (Yogatama et al., 2015; Ren et al., 2016), their perfor-
mances are between 65% and 75%, much lower than NER.

175

Besides type information, Ex.2 in Figure 1
shows the necessity of providing new entity infor-
mation, i.e whether or not an entity is appeared for
the first time in the whole semantic sequence. This
corresponds well with the definition of anaphroc-
ity in co-reference resolution, i.e. whether or not
the mention starts a co-reference chain. Thus, we
can encode this binary information as an addi-
tional dimension in the entity representation.

Thus, we formally define re as the entity rep-
resentation. It is the concatenation of two entity
vectors rsub and robj for subject entity and object
entity respectively. Both rsub and robj are con-
structed as a one hot vector2 to represent an en-
tity type, plus an additional dimension indicating
whether or not it is a new entity (1 if it is new).

2.3 Sentiments

For a piece of text, we can assign a sentiment value
to it. It can either be positive, negative, or neutral.
In order to decide which one is most appropriate,
we first use a look-up table from word lexicons
to sentiment, and then count the number of words
which corresponds to positive (npos) and negative
(nneg) sentiment respectively. If npos > nneg, we
determine the text as positive; and if npos < nneg,
we assign the negative label; and if the two num-
bers equal, we deem the text as neutral. We use
one hot vector for three sentiment choices, and de-
fine sentiment representation as rs.

3 FES-LM - Joint Modeling

We present our joint model FES-LM and the neu-
ral language model implementation in this sec-
tion. The joint model considers frames, entities
and sentiments together to construct FES repre-
sentations in order to model semantics more com-
pletely. Moreover, we build language models on
top of such representations to reflect the sequen-
tial nature of semantics.

3.1 FES Representation

We propose FES-LM as a joint model to em-
bed frame, entity and sentiment information to-
gether. Thus for each sentence/clause (specific to
a frame), we can get individual representations for
the frame (i.e. ef), entity types and new entity in-
formation corresponds to subject and object of the
frame (i.e. re), and sentiment information (i.e. rs).

2Each dimension of the vector indicates an entity type (bi-
nary 0/1), and the vector contains exactly one element of 1.

Thus, we construct the FES representation as:

rFES = ef +Were +Wsrs.

We,Ws are two matrices transforming entity and
sentiment representations into the frame embed-
ding space, which are added to the correspond-
ing frame embedding. These two parameters are
shared across all FES representations. During lan-
guage model training, we learn frame embeddings
ef as well as We and Ws. An overview of the FES
representation in a semantic sequence is shown in
Figure 3. Note that if the frame embedding repre-
sents a discourse marker, we set the correspond-
ing entity and sentiment representations as zero
vectors since no entity/sentiment is matched to a
discourse marker. It is our design choice to add
the entity and sentiment vectors to the frame em-
beddings, which creates a unified semantic space.
During training, the interactions between different
semantic aspects are captured by optimizing the
loss on the joint FES representations.3

3.2 Neural Language Model

To model semantic sequences and train FES repre-
sentations, we build neural language models. The-
oretically, we can utilize any existing neural lan-
guage model. We choose to implement the log-
bilinear language model (LBL) (Mnih and Hinton,
2007) as our main method since previous works
have reported best performance using it (Rudinger
et al., 2015; Peng and Roth, 2016).

For ease of explanation, we assume that a
semantic sequence of FES representations is
[FES1,FES2,FES3, . . . ,FESk], with FESi being
the ith FES representation in the sequence. It as-
signs each token (i.e. FES representation) with
three components: a target vector v(FES), a con-
text vector v′(FES) and a bias b(FES). Thus, we
model the conditional probability of a token FESt

given its context c(FESt):

p(FESt|c(FESt)) =
exp(v(FESt)ᵀu(c(FESt)) + b(FESt))∑

FES∈V exp(v(FES)ᵀu(c(FESt)) + b(FES))
.

Here, V denotes the vocabulary (all possible FES
representations) and we define

3An alternative design choice is to concatenate the vec-
tor representations from different semantic aspects together,
but we did not get better empirical results compared to our
current design.

176

Frame Embedding 𝑒"

Entity Representation 𝑟$

Sentiment
Representation 𝑟%

FES Representation 𝑟&'(…

Sentence/Clause

𝑊$
𝑊%

…

Figure 3: An overview of the FES representation in a semantic sequence. Semantic frames are
represented by vector rf . The entity representation re is the concatenation of rsub and robj , both consist
of two parts: an one-hot vector for entity type plus an additional dimension to indicate whether or not it
is a new entity. The sentiment representation rs is also one-hot.

u(c(FESt)) =
∑

ci∈c(FESt)

qi � v′(ci).

Note that � represents element-wise multiplica-
tion and qi is a vector that depends only on the po-
sition of an FES representation in context, which is
also a model parameter. For language model train-
ing, we maximize the overall sequence probability∏k

t=1 p(FESt|c(FESt)).

4 Building FES-LM

In this section, we explain how we build FES-LM
from un-annotated plain text.

4.1 Dataset and Preprocessing

Dataset We first use the New York Times (NYT)
Corpus4 (from year 1987 to 2007) to train FES-
LM. It contains over 1.8M documents in to-
tal. To fine tune the model on short sto-
ries, we re-train FES-LM on the ROCStories
dataset (Mostafazadeh et al., 2017) with the model
trained on NYT as initialization. We use the train
set of ROCStories, which contains around 100K
short stories (each consists of five sentences) 5.
Preprocessing We pre-process all documents
with Semantic Role Labeling (SRL) (Punyakanok
et al., 2004) and Part-of-Speech (POS) tag-
ger (Roth and Zelenko, 1998). We also imple-
ment the explicit discourse connective identifica-
tion module of a shallow discourse parser (Song
et al., 2015). Additionally, we utilize within doc-
ument entity co-reference (Peng et al., 2015a) to
produce co-reference chains to get the new entity

4Available at https://catalog.ldc.upenn.edu/LDC2008T19
5Available at http://cs.rochester.edu/nlp/rocstories/

information. To obtain all annotations, we employ
the Illinois NLP tools6.

4.2 FES Representation Generation

As shown in Sec. 3, each FES representation is
built from basic semantic units: frame / entity /
sentiment. We describe our implementation de-
tails on how we extract these units from text and
how we further construct their vector representa-
tions respectively.
Frame Abstraction and Enrichment We directly
derive semantic frames from semantic role label-
ing annotations. As the Illinois SRL package is
built upon PropBank frames, we map them to
FrameNet frames via VerbNet senses to achieve
a higher level of abstraction. The mapping is de-
terministic and partial7. For unmapped PropBank
frames, we retain their original PropBank forms.
We then enrich the frames by augmenting them to
verb phrases. We apply three heuristic rules: 1) if
a preposition immediately follows a predicate, we
append the preposition e.g. “take over”; 2) if we
encounter the role label AM-PRD which indicates
a secondary predicate, we append it to the main
predicate e.g. “be happy”; 3) if we see the se-
mantic role label AM-NEG which indicates nega-
tion, we append “not” e.g. “not like”. We further
connect compound verbs together as they repre-
sent a unified semantic meaning. For this, we ap-
ply a rule that if the gap between two predicates
is less than two tokens, we treat them as a unified
semantic frame defined by the conjunction of the
two (augmented) semantic frames, e.g. “decide to

6Available at http://cogcomp.org/page/software/
7We use the mapping file http://verbs.colorado.edu/verb-

index/fn/vn-fn.xml to do it. For example, “place” and “put”
with the same VerbNet sense id “9.1-2” are both mapped to
the FrameNet frame “Placing”.

177

Vocabulary Size Sequence Size
FES F E S #seq #token

NYT 4M 15K 100 7 1.2M 25.4M
ROCStories 200K 1K 98 7 100K 630K

Table 2: Statistics on FES-LM vocabularies and
sequences. We compare FES-LM trained on NYT
vs. ROCStories; “FES” stands for unique FES
representations while “F” for frame embeddings,
“E” for entity representations, and “S” for senti-
ment representations. “#seq” is the number of se-
quences, and “#token” is the total number of to-
kens (FES representations) used for training.

buy” being represented by “decide.01-buy.01”.
To sum up, we employ the same techniques

to deal with frames as discussed in Peng and
Roth (2016), which allows us to model more fine-
grained semantic frames. As an example of this
processing step, “He didn’t want to give up.” is
represented as “(not)want.01-give.01[up]”. Each
semantic frame (here, including discourse mark-
ers) is represented by a 200-dimensional vector ef .
Entity Label Assignment For each entity (here
we refer to subject and object of the predicate), we
first extract its syntactic head using Collins’ Head
Rule. To assign entity types, we then check if the
head is inside a named entity generated by NER. If
so, we directly assign the NER label to this entity.
Otherwise, we check if the entity is a pronoun that
refers to a person i.e. I, me, we, you, he, him, she,
her, they, them; in which case, we assign “PER”
label to it. For all other cases, we simply assign
“ARG” label to indicate the type is unknown.

In order to assign “new entity” labels, we check
if the head is inside a mention identified by the co-
reference system to start a new co-reference chain.
If so, we assign 1; otherwise, we assign 0. On
ROCStories dataset, we add an additional rule that
all pronouns indicating a person will not be “new
entities”. This makes the co-reference decisions
more robust on short stories.8

The entity representation re is eventually con-
structed as a one-hot vector for types of 5 dimen-
sions and an additional dimension for “new entity”
information. As we consider both subjects and ob-
jects of a frame, re is of 12 dimensions in total. If
either one of the entities within a frame is missing
from SRL annotations, we set its corresponding 6
dimensions as zeros.
Sentiment Representation Generation We first

8The same rule is not applied on news, since pronouns
indicating a person can start a co-reference chain in news.

determine the polarity of a word by a look-up ta-
ble from two pre-trained sentiment lexicons (Liu
et al., 2005; Wilson et al., 2005). We then count
the number of positive words versus negative
words to decide the sentiment of a piece of text
as detailed in Sec. 2. This process is done on text
corresponding to each frame, i.e. a sentence or a
clause. Since we have two different lexicons, we
get two separate one-hot sentiment vectors, each
with a dimension of 3. Thus, the sentiment repre-
sentation is the concatenation of the two vectors, a
total dimension of 6.

4.3 Neural Language Model Training

For the NYT corpus, we treat each document as
a single semantic sequence while on ROCStories,
we see each story as a semantic sequence. Ad-
ditionally, we filter out rare frames which appear
less than 20 times in the NYT corpus. Statistics on
the eventual FES-LM vocabularies (unique FES
representations) and semantic sequences in both
datasets are shown in Table 2. Note that the num-
ber of unique FES representations reflects the rich-
ness of the semantic space that we model. On both
datasets, it is about 200 times over what is mod-
eled by only frame representations. At the same
time, we do not incur burden on language model
training. It is because we do not model unique
FES representations directly, and instead we are
still operating in the frame embedding space.9

We use the OxLM toolkit (Baltescu et al., 2014)
with Noise-Constrastive Estimation (Gutmann and
Hyvarinen, 2010) to implement the LBL model.
We set the context window size to 5 and pro-
duce 200-dimension embeddings for FES repre-
sentations. In addition to learning language model
parameters, we also learn frame embeddings ef
along with parameters forWe (12x200 matrix) and
Ws (6x200 matrix).

5 Evaluation

We first show that our proposed FES-LM is of high
quality in terms of language modeling ability. We
then evaluate FES-LM for shallow discourse pars-
ing on news data as well as application for story
cloze test on short common sense stories. In all
studies, we verify that each semantic aspect con-
tributes to the joint model.

9The FES representation space can be seen as entity and
sentiment infused frame embedding space.

178

CBOW SG LBL
Perplexity
FES-LM 133.8 135.8 126.0
Narrative Cloze Test (Recall@30)
FES-LM 38.9 37.3 43.2
FES-LM - Entity 35.3 33.1 38.4
FES-LM - Sentiment 34.9 32.8 36.3

Table 3: Quality comparison of neural language
models. We report results for perplexity and nar-
rative cloze test. Both evaluations are done on the
gold PropBank data (annotated with gold frames).
LBL outperforms CBOW and SG on both tests.
We carry out ablation studies for narrative cloze
test for FES-LM without entity and sentiment as-
pects respectively.

5.1 Quality of FES-LM
To evaluate the modeling ability of different neu-
ral language models, we train each variant of
FES-LM on NYT corpus and report perplex-
ity and narrative cloze test results. Here, we
choose the Skip-Gram (SG) model (Mikolov et al.,
2013b) and Continuous-Bag-of-Words (CBOW)
model (Mikolov et al., 2013a) for comparison with
the LBL model. We utilize the word2vec package
to implement both SG and CBOW. We set the con-
text window size to be 10 for SG and 5 for CBOW.

We employ the same experimental setting as de-
tailed in Peng and Roth (2016). Results are shown
in Table 3. They confirm that LBL model per-
forms the best with the lowest perplexity and high-
est recall for narrative cloze test.10 Note that the
numbers reported are not directly comparable with
those in literature (Rudinger et al., 2015; Peng and
Roth, 2016), as we model much richer semantics
even though the numbers seem inferior. We fur-
ther carry out ablation studies for narrative cloze
test for FES-LM without entity and sentiment as-
pects respectively11. The results show that senti-
ment contributes more than entity information.

5.2 Application on News
We choose shallow discourse parsing as the task to
show FES-LM’s applicability on news. In particu-
lar, we evaluate on identifying the correct sense of
discourse connectives (both explicit and implicit

10We also tried Neural-LSTM (Pichotta and Mooney,
2016a) and context2vec (Melamud et al., 2016) model, but
we cannot get better results.

11The ablation study is not done for perplexity test because
FES-LM with less semantic aspects yields smaller vocabu-
lary, which naturally leads to lower perplexity.

ones). We choose Song et al. (2015), which uses
a supervised pipeline approach, as our base sys-
tem. We follow the same experimental setting as
described in Peng and Roth (2016), i.e. we add ad-
ditional conditional probability features generated
from FES-LM into the base system. We evaluate
on CoNLL16 (Xue et al., 2016) test and blind sets,
following the train and development split from
the Shared Task, and report F1 using the official
shared task scorer.

Table 4 shows the results for shallow dis-
course parsing with added FES-LM features. We
get significant improvement over the base sys-
tem(*) (based on McNemar’s Test) and outper-
form SemLM, which only utilizes frame infor-
mation in the semantic sequences. We also ri-
val the top system (Mihaylov and Frank, 2016) in
the CoNLL16 Shared Task (connective sense clas-
sification subtask). Note that the FES-LM used
here is trained on NYT corpus. The ablation study
shows that entity aspect contributes less than sen-
timent aspect in this application.

5.3 Application on Stories
For the story cloze test on the ROCStories dataset.
We evaluate in an unsupervised setting, where we
disregard the labeled development set and directly
test on the test set12. We believe this is a better set-
ting to reflect a system’s ability to model seman-
tic sequences compared to the supervised setting
where we simply treat the task as a binary classifi-
cation problem with a development set to tune.

We first generate a set of conditional probabil-
ity features from FES-LM. For each story, we ex-
tract semantic aspect information as described in
Sec. 2 and construct the joint FES representation
according to the learned FES-LM. We then uti-
lize the conditional probability of the fifth sen-
tence s5 given previous context sentences C as
features. Suppose the semantic information in
the fifth sentence can be represented by rFES k,
we can then define the features as p(s5|C) =
p(rFES k|rFES (k-1), rFES (k-2), · · · , rFES (k-t)), t =
1, 2, · · · , k.We get multiple features depending on
how long we go back in the context in terms of
FES representations. Note that one sentence can
contain multiple FES representations depending
on how many semantic frames it has. For simplic-
ity, we assume a single FES representation rFES k

12The test set contains 1, 871 four-sentences long stories
with two fifth sentence options for each, of which only one is
correct; and we report the accuracy.

179

CoNLL16 Test CoNLL16 Blind
Explicit Implicit Overall Explicit Implicit Overall

Base (Song et al., 2015)* 89.8 35.6 60.4 75.8 31.9 52.3
SemLM (Peng and Roth, 2016) 91.1 36.3 61.4 77.3 33.2 53.8
Top (Mihaylov and Frank, 2016) 89.8 39.2 63.3 78.2 34.5 54.6
FES-LM (this work) 91.0 37.5 61.8 78.3 34.4 54.5
FES-LM - Entity 90.8 37.1 61.6 77.9 34.0 54.1
FES-LM - Sentiment 90.5 36.9 61.3 77.3 33.8 53.9

Table 4: Shallow discourse parsing results. With added FES-LM features, we get significant improve-
ment (based on McNemar’s Test) over the base system(*) and outperform SemLM, which only models
frame information. We also rival the top system (Mihaylov and Frank, 2016) in the CoNLL16 Shared
Task (connective sense classification subtask).

Baselines
Seq2Seq 58.0%
DSSM (Mostafazadeh et al., 2016) 58.5%
Seq2Seq with attention 59.1%
Individual Aspect S. M.V.
F-LM 57.8% 56.3%
E-LM 52.1% 52.6%
S-LM 54.2% 54.9%
Joint Model S. M.V.
FES-LM (this work) 62.3% 61.6%
FES-LM - Entity 61.5% 61.7%
FES-LM - Sentiment 61.1% 60.9%

Table 5: Accuracy results for story cloze text in
the unsupervised setting. “S.” represents the in-
ference method with the single most informative
feature while “M.V.” means majority voting. FES-
LM outperforms the strongest baseline (Seq2Seq
with attention) by 3 points. The difference is
statistically significant based on McNemar’s Test.
Additional ablation studies show that each seman-
tic aspect contributes to the joint model.

for s5. In practice, we get at most 12 FES repre-
sentations as context. We align the features by t,
indicating how long we consider the story context.
Thus, for each story, we generate at most 12 pairs
of conditional probability features. Evey pair of
such features can yield a decision on which ending
is more probable. Here, we test two different infer-
ence methods: a single most informative feature
(where we go with the decision made by the pair
of features which have the highest ratio) or ma-
jority voting based on all feature pairs. Note that
we need to re-train FES-LM on the stories (train
set of ROCStories, 5-sentence stories, no negative
examples provided)13.

13It is because of domain difference, e.g. average length of
semantic sequence is different (stories are shorter while news

We compare FES-LM with Seq2Seq base-
lines (Sutskever et al., 2014). We also train the
Seq2Seq model on the train set of ROCStories,
where we set input as the 4-sentence context and
the output as the 5th ending sentence for each
story. At test time, we get probability of each op-
tion ending from the soft-max layer and choose
the higher one as the answer. We use an LSTM
encoder (300 hidden units) and decode with an
LSTM of the same size. Since it is operated on the
word level, we use pre-trained 300-dimensional
GloVe embeddings (Pennington et al., 2014) and
keep them fixed during training. In addition,
we add an attention mechanism (Bahdanau et al.,
2014) to make the Seq2Seq baseline stronger.
We also report DSSM from Mostafazadeh et al.
(2016) as the previously best reported result14.
To study how each individual aspect affects the
performance, we develop neural language mod-
els on frames (F-LM), entities (E-LM) and sen-
timents (S-LM) as additional baseline models sep-
arately. We use the same language model train-
ing and feature generation techniques as FES-LM.
Particularly, for F-LM, it is the same model as FC-
SemLM defined in Peng and Roth (2016). Note
that individual aspects cannot capture the seman-
tic difference between two given options for all
instances. For those instances that the baseline
model fails to handle, we set the accuracy as 50%
(expectation of random guesses).

The accuracy results are shown in Table 5.
The best result we achieve (62.3%) outperforms
the strongest baseline (Seq2Seq with attention,
59.1%). It is statistically significant based on Mc-
Nemar’s Test (α = 0.01), illustrating the superior

are longer, see in Table 2).
14DSSM’s model parameters are trained on the ROCSto-

ries corpus while hyper parameters are determined on the de-
velopment set.

180

semantic modeling ability of FES-LM. Results are
mixed comparing the two inference methods. The
ablation study further confirms that each semantic
aspect has its worth in the joint model.

6 Related Work

Our work is built upon the previous work (Peng
and Roth, 2016). It generated a probabilistic
model on semantic frames while taking into ac-
count discourse information, and showed appli-
cations to both co-reference resolution and shal-
low discourse parsing. This line of work is
in general inspired by script learning. Early
works (Schank and Abelson, 1977; Mooney and
DeJong, 1985) tried to learn scripts via construc-
tion of knowledge bases from text. More recently,
researchers focused on utilizing statistical models
to extract high-quality scripts from large amounts
of data (Chambers and Jurafsky, 2008a; Bejan,
2008; Jans et al., 2012; Pichotta and Mooney,
2014; Granroth-Wilding et al., 2015; Rudinger
et al., 2015; Pichotta and Mooney, 2016b,a). Other
works aimed at learning a collection of structured
events (Chambers, 2013; Cheung et al., 2013; Bal-
asubramanian et al., 2013; Bamman and Smith,
2014; Nguyen et al., 2015; Inoue et al., 2016).
In particular, Ferraro and Van Durme (2016) pre-
sented a unified probabilistic model of syntactic
and semantic frames while also demonstrating im-
proved coherence. Several works have employed
neural embeddings (Modi and Titov, 2014b,a; Fr-
ermann et al., 2014; Titov and Khoddam, 2015).
Some prior works have used scripts-related ideas
to help improve NLP tasks (Irwin et al., 2011;
Rahman and Ng, 2011; Peng et al., 2015b). Most
recently, Mostafazadeh et al. (2016, 2017) pro-
posed story cloze test as a standard way to test
a system’s ability to model semantics. They re-
leased ROCStories dataset, and organized a shared
task for LSDSem’17.

7 Conclusion

This paper proposes FES-LM, a joint neural lan-
guage model for semantic sequences built upon
frames, entities and sentiments. Abstractions on
these semantic aspects enable FES-LM to generate
better semantic sequences than models working on
the word level. Evaluations show that the joint
model helps to improve shallow discourse parsing
and achieves the best result for story cloze test in
the unsupervised setting. In future work, we plan

to extend FES-LM to capture more semantic as-
pects and work towards building a general seman-
tic language model.

Acknowledgments

This work is supported by the US Defense Ad-
vanced Research Projects Agency (DARPA) un-
der contract HR0011-15-2-0025, and by the Army
Research Laboratory (ARL) under agreement
W911NF-09-2-0053, and also by IBM-ILLINOIS
Center for Cognitive Computing Systems Re-
search (C3SR) - a research collaboration as part of
the IBM Cognitive Horizon Network. The views
expressed are those of the authors and do not re-
flect the official policy or position of the Depart-
ment of Defense or the U.S. Government.

References
D. Bahdanau, K. Cho, and Y. Bengio. 2014. Neural

machine translation by jointly learning to align and
translate. arXiv preprint arXiv:1409.0473 .

C. F. Baker, C. J. Fillmore, and J. B. Lowe. 1998. The
berkeley framenet project. In COLING/ACL.

N. Balasubramanian, S. Soderland, O. E. Mausam,
and O. Etzioni. 2013. Generating coherent event
schemas at scale. In EMNLP.

P. Baltescu, P. Blunsom, and H. Hoang. 2014. Oxlm: A
neural language modelling framework for machine
translation. The Prague Bulletin of Mathematical
Linguistics .

D. Bamman and N. A. Smith. 2014. Unsupervised dis-
covery of biographical structure from text. TACL .

C. A. Bejan. 2008. Unsupervised discovery of event
scenarios from texts. In FLAIRS Conference.

N. Chambers. 2013. Event schema induction with a
probabilistic entity-driven model. In EMNLP.

N. Chambers and D. Jurafsky. 2008a. Jointly combin-
ing implicit constraints improves temporal ordering.
In EMNLP.

N. Chambers and D. Jurafsky. 2008b. Unsupervised
learning of narrative event chains. In ACL.

S. B. Chatman. 1980. Story and discourse: Narra-
tive structure in fiction and film. Cornell University
Press.

J. C. K. Cheung, H. Poon, and L. Vanderwende. 2013.
Probabilistic frame induction. arXiv:1302.4813 .

F. Ferraro and B. Van Durme. 2016. A unified bayesian
model of scripts, frames and language. In AAAI.

181

C. J. Fillmore. 1976. Frame semantics and the nature
of language. Annals of the New York Academy of
Sciences .

L. Frermann, I. Titov, and Pinkal. M. 2014. A hierar-
chical bayesian model for unsupervised induction of
script knowledge. In EACL.

M. Granroth-Wilding, S. Clark, M. T. Llano, R. Hep-
worth, S. Colton, J. Gow, J. Charnley, N. Lavrač,
M. Žnidaršič, and M. Perovšek. 2015. What hap-
pens next? event prediction using a compositional
neural network model. In AAAI.

M. Gutmann and A. Hyvarinen. 2010. Noise-
contrastive estimation: A new estimation principle
for unnormalized statistical models. In AISTATS.

N. Inoue, Y. Matsubayashi, M. Ono, N. Okazaki, and
K. Inui. 2016. Modeling context-sensitive selec-
tional preference with distributed representations. In
COLING.

J. Irwin, M. Komachi, and Y. Matsumoto. 2011. Nar-
rative schema as world knowledge for coreference
resolution. In CoNLL Shared Task.

B. Jans, S. Bethard, I. Vulić, and M. F. Moens. 2012.
Skip n-grams and ranking functions for predicting
script events. In EACL.

P. Kingsbury and M. Palmer. 2002. From Treebank to
PropBank. In Proceedings of LREC-2002.

B. Liu, M. Hu, and J. Cheng. 2005. Opinion observer:
Analyzing and comparing opinions on the web. In
WWW.

O. Melamud, J. Goldberger, and I. Dagan. 2016. con-
text2vec: Learning generic context embedding with
bidirectional lstm. In CoNLL.

T. Mihaylov and A. Frank. 2016. Discourse relation
sense classification using cross-argument semantic
similarity based on word embeddings. In CoNLL
Shared Task.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013a. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781 .

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig.
2013b. Linguistic regularities in continuous space
word representations. In NAACL.

A. Mnih and G. Hinton. 2007. Three new graphical
models for statistical language modelling. In ICML.

A. Modi and I. Titov. 2014a. Inducing neural models
of script knowledge. In CoNLL.

A. Modi and I. Titov. 2014b. Learning semantic script
knowledge with event embeddings. In ICLR Work-
shop.

R. Mooney and G. DeJong. 1985. Learning schemata
for natural language processing. In IJCAI.

N. Mostafazadeh, N. Chambers, X. He, D. Parikh,
D. Batra, L. Vanderwende, P. Kohli, and J. Allen.
2016. A corpus and cloze evaluation for deeper un-
derstanding of commonsense stories. In NAACL.

N. Mostafazadeh, M. Roth, A. Louis, N. Chambers,
and J. F. Allen. 2017. Lsdsem 2017 shared task: The
story cloze test. In LSDSEM workshop at EACL.

K.-H. Nguyen, X. Tannier, O. Ferret, and R. Besançon.
2015. Generative event schema induction with en-
tity disambiguation. In ACL.

H. Peng, K. Chang, and D. Roth. 2015a. A joint frame-
work for coreference resolution and mention head
detection. In CoNLL.

H. Peng, D. Khashabi, and D. Roth. 2015b. Solving
hard coreference problems. In NAACL.

H. Peng and D. Roth. 2016. Two discourse driven lan-
guage models for semantics. In ACL.

J. Pennington, R. Socher, and C. D. Manning. 2014.
Glove: Global vectors for word representation. In
EMNLP.

K. Pichotta and R. J. Mooney. 2014. Statistical script
learning with multi-argument events. In EACL.

K. Pichotta and R. J. Mooney. 2016a. Learning statis-
tical scripts with lstm recurrent neural networks. In
AAAI.

K. Pichotta and R. J. Mooney. 2016b. Using sentence-
level lstm language models for script inference. In
ACL.

V. Punyakanok, D. Roth, W. Yih, and D. Zimak. 2004.
Semantic role labeling via integer linear program-
ming inference. In COLING.

A. Rahman and V. Ng. 2011. Coreference resolution
with world knowledge. In ACL.

X. Ren, W. He, M. Qu, L. Huang, H. Ji, and J. Han.
2016. Afet: Automatic fine-grained entity typing by
hierarchical partial-label embedding. In EMNLP.

D. Roth and D. Zelenko. 1998. Part of speech tag-
ging using a network of linear separators. In ACL-
COLING.

R. Rudinger, P. Rastogi, F. Ferraro, and B. Van Durme.
2015. Script induction as language modeling. In
EMNLP.

R. C. Schank and R. P. Abelson. 1977. Scripts, plans,
goals, and understanding: An inquiry into human
knowledge structures. In JMZ.

Y. Song, H. Peng, P. Kordjamshidi, M. Sammons, and
D. Roth. 2015. Improving a pipeline architecture for
shallow discourse parsing. In CoNLL Shared Task.

182

I. Sutskever, O. Vinyals, and Q. V. Le. 2014. Sequence
to sequence learning with neural networks. In NIPS.

I. Titov and E. Khoddam. 2015. Unsupervised induc-
tion of semantic roles within a reconstruction-error
minimization framework. In NAACL.

Theresa Wilson, Janyce Wiebe, and Paul Hoffmann.
2005. Recognizing contextual polarity in phrase-
level sentiment analysis. In EMNLP.

N. Xue, H. T. Ng, A. Rutherford, B. Webber, C. Wang,
and H. Wang. 2016. Conll 2016 shared task on mul-
tilingual shallow discourse parsing. CoNLL .

Dani Yogatama, Daniel Gillick, and Nevena Lazic.
2015. Embedding methods for fine grained entity
type classification. In ACL.

183

Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017), pages 184–194,
Vancouver, Canada, August 3 - August 4, 2017. c©2017 Association for Computational Linguistics

Neural Sequence-to-sequence Learning of Internal Word Structure

Tatyana Ruzsics Tanja Samardžić
CorpusLab, URPP Language and Space,

University of Zurich, Switzerland
{tatiana.ruzsics, tanja.samardzic}@uzh.ch

Abstract

Learning internal word structure has re-
cently been recognized as an important
step in various multilingual processing
tasks and in theoretical language com-
parison. In this paper, we present a
neural encoder-decoder model for learn-
ing canonical morphological segmenta-
tion. Our model combines character-level
sequence-to-sequence transformation with
a language model over canonical seg-
ments. We obtain up to 4% improvement
over a strong character-level encoder-
decoder baseline for three languages. Our
model outperforms the previous state-of-
the-art for two languages, while eliminat-
ing the need for external resources such
as large dictionaries. Finally, by compar-
ing the performance of encoder-decoder
and classical statistical machine transla-
tion systems trained with and without cor-
pus counts, we show that including corpus
counts is beneficial to both approaches.

1 Introduction

One of the most obvious structural differences be-
tween languages is the variation in the complex-
ity of internal word structure. In some languages,
such as English, words are relatively short and
morphologically less complex. In other languages,
such as Chintang in Example 11, words tend to
be long and encapsulate rather rich structure. The
Chintang verb thaptakha in Example 1 consists of
a number of morphemes expressing the impera-
tive mode, aspect and deixis. The information ex-
pressed by a single Chintang verb requires several

1The example is adapted from (Stoll et al., In press)

words in English, as it can be seen in the glosses.2

and in the translation.

Example 1
a. cuwa thaptakha
b. cuwa thapt -a -khag -a
c. water move -IMP -see -IMP

across [2sS]
d. Bring some water over here!

The variation in word structure is observed even
in common categories such as plural, which is typ-
ically part of a word, but expressed using different
structures. The items in Example 23 show three
different structural types associated with express-
ing plural across languages.

Example 2
Type Sg. Pl.
Suffix Turkish ev ev-ler

‘house’ ‘houses’
Prefix Swahili m-toto wa-toto

‘child’ ‘children’
Redupli- Malay anak anak-anak
cation ‘child’ ‘children’

With the spread of natural language process-
ing to a wider range of languages, learning in-
ternal word structure becomes increasingly impor-
tant for developing practical applications. Analy-
sis of internal word structure, usually termed mor-
phological segmentation, has been shown helpful
in tasks such as machine translation (Dyer et al.,
2008; Narasimhan et al., 2014), speech process-
ing (Creutz et al., 2007) and parsing (Seeker and
Çetinoglu, 2015). Additionally, there is a grow-
ing interest in automatic learning of morphologi-
cal segmentation for the purpose of theoretical lan-

2Cf. Leipzig Glossing Rules at https://www.eva.
mpg.de/lingua/resources/glossing-rules.
php

3The examples are adapted from (Eifring and Theil, 2005)

184

guage comparison (Bentz et al., 2017). In this con-
text, it becomes particularly important to be able
to process a wide variety of languages, for which
the available data sets consist of small, annotated
corpora.

In the present work, we cast the task of
morphological segmentation as supervised neu-
ral sequence-to-sequence learning over characters.
Our goal is to define a method for automatic seg-
mentation that can be easily ported across lan-
guages, taking advantage of the relatively small,
manually analyzed corpora increasingly available
in the linguistic community. Our approach there-
fore needs to rely only on the data available in an
annotated corpus.

We follow the line of research based on the soft-
attention encoder-decoder paradigm (Bahdanau
et al., 2014). This paradigm was recently applied
to the task of canonical segmentation by Kann
et al. (2016). It was shown to achieve the state-of-
the-art performance when combined with a neural
re-ranker method that employs additional external
dictionary information (Kann et al., 2016). Our
approach improves the results achieved by Kann
et al. (2016) in case of Indonesian and German
languages eliminating at the same time the need
for resources outside of annotated corpora.

2 Related Work

The task of the morphological segmentation can
be defined in two ways, illustrated with the Chin-
tang verb from Example 1:

a. Surface segmentation:
thaptakha→ thapt-a-kh-a

b. Canonical segmentation:
thaptakha→ thapt-a-khag-a

The term surface or allomorph segmentation is
used by Creutz and Linden (2004) to refer to the
analysis where the input word is segmented into
substrings without any further string transforma-
tion. This definition is most widely applied in
computational processing; it is, however, too sim-
plistic for the majority of languages. It does not
allow, for instance, to identify -es in bus-es and -s
in car-s as two variants of the same English plural
marker.

More recently, the term canonical segmentation
was used by Cotterell et al. (2016) to refer to the
same definition that was termed morpheme seg-
mentation by Creutz and Linden (2004). In this

case, a more abstract internal word structure is
learned by transforming the resulting substrings
into their canonical forms.

While a great variety of methods has been pro-
posed for surface segmentation, canonical seg-
mentation, which is address in our work, has
started being addressed only recently.

The task of surface morphological segmentation
is traditionally approached using finite-state tech-
nology, such as OpenFst library (Allauzen and Ri-
ley, 2012) and OpenGrm Thrax Grammar Com-
piler library (Roark et al., 2012), with sequence
modeling used to disambiguate the finite-state out-
put (Heintz, 2008).

Another line of research has addressed sur-
face segmentation with unsupervised algorithms
(MORFESSOR (Creutz and Lagus, 2002), MOR-
FESSOR CAT-MAP (Creutz and Lagus, 2005)),
and, more recently, with semi-supervised ap-
proaches (Poon et al., 2009; Kohonen et al.,
2010)). Narasimhan et al. (2015) include seman-
tic information in the unsupervised learning, stay-
ing at the level of surface segmentation. Their
approach is extended by Bergmanis and Goldwa-
ter (2017), who make a step towards canonical
segmentation, proposing a method to generalize
over spelling variants of functionally similar mor-
phemes.

Supervised approaches to learning morpholog-
ical structure are rather rare. Ruokolainen et al.
(2013) apply conditional random fields algorithm,
used for different sequence classification tasks,
to the task of surface segmentation. Their CRF-
MORPH system tags each character of a morpho-
logically complex word with one of the tags ‘B’
for the beginning, ‘M’ middle, and ‘E’ end of a
segment, and ‘S’ for a single character segment.
The CHIPMUNK model of Cotterell et al. (2015)
based on a semi-Markov model extends the CRF-
MORPH approach by adding features from stand-
alone dictionaries and affix lists.

Canonical segmentation is tackled by Cotterell
et al. (2016), who develop a log-linear model on
conjunction of a finite-state transduction model
for modeling orthographic changes and a semi-
Markov segmentation model.

Recently, neural network models achieved
state-of-the-art results for both types of segmen-
tation tasks. Wang et al. (2016) applied window
LSTM model for surface segmentation. Kann
et al. (2016) improved the results by Cotterell

185

et al. (2016) on canonical segmentation by apply-
ing the encoder-decoder RNN framework. Kann
et al. (2016) achieve the current state-of-the-art for
canonical segmentation by re-ranking the output
of the encoder-decoder system. The re-ranking
component is a multilayer perception run on the
morphemes embeddings (Kann et al., 2016). The
morphemes embedding used for this re-ranking
model are calculated using additional information
from the Aspell dictionaries. We follow Kann
et al. (2016) in using the encoder-decoder RNN
framework, but we do not use any external re-
sources. Instead of that, we extract and exploit
more information from the training corpus.

Our approach is in the spirit of the “shallow fu-
sion” approach to machine translation of Gulcehre
et al. (2017). Like Gulcehre et al. (2017), we in-
tegrate a language model into an encoder-decoder
framework. There are, however, several important
differences.

First of all, the role of the language model is dif-
ferent. Integrating a language model allows Gul-
cehre et al. (2017) to augment the parallel train-
ing data with additional monolingual corpora on
the target side. In this way, they add new infor-
mation about sequencing, not captured in training
on parallel data alone. Both components of their
system are trained on the same kind of units —
characters. As opposed to this, we use a language
model to extract more information from the paral-
lel data. We add new information by training the
system at two levels: the basic encoder-decoder
component is trained on character sequences and
the language model component is trained on the
sequences of morphemes. In the case of Gulcehre
et al. (2017), the use of a language model is moti-
vated by the fact that external monolingual target-
side data is almost always universally available.
The situation is reversed for the task of morpho-
logical segmentation: morphologically segmented
corpora are produced manually by experts in the
process of linguistic analysis and they tend to be
small and expensive. Our approach is motivated
by the need to extract as much information as pos-
sible from relatively small target-side data sets.

Second, we add a third component to our model
which controls for the difference in characters
length between the input word string and the out-
put segmentation string. This helps overcome lan-
guage model preference for a short output.

Last, while Gulcehre et al. (2017) use a lan-

guage model implemented with recurrent neural
networks, we employ a statistical language model,
which is better adapted to our settings with small
data sets.

Finally, we note that corpus frequencies are not
used in previous supervised approaches, but that
systems are trained on word types (training data
consist of a list of word types and a segmentation
for each type). In the present work, we study token
versus types training set up and how this difference
affects the performance of statistical models.

3 Model Description

Given an input sequence, such as the Chintang
sentence in Example 1 (line a.), we produce a
canonical segmentation (line b.), where we recog-
nize that the sequence kh in the surface form is an
instance of the light verb khag.

We follow the notations of Kann et al. (2016)
in the formalization of the task of canonical seg-
mentation. First, we define two discrete alphabets,
Σ of the surface symbols and Σcan of the canon-
ical symbols. For many languages these two al-
phabets coincide, for example in the case of En-
glish they consist of 26 letters of the Latin alpha-
bet. In the case of Chintang, these alphabets are
different: the surface symbols express more spe-
cific pronunciation features. Our task is to learn
a mapping from a surface word form w ∈ Σ∗

(e.g., w=‘thaptakha’), to its canonical segmenta-
tion c ∈ Ω∗ (e.g., c=thapt|-a|-khag|-a). We define
Ω = Σcan ∪ {|}, where the symbol ‘|’ marks seg-
mentation boundaries.4

To learn the mappings, we combine the general
sequence transformation framework — known as
the encoder-decoder RNN — trained on a charac-
ter level with a language model trained on mor-
phemes. Note that a kind of a language model
over characters is implicitly included as a part
of the decoder in the character-based encoder-
decoder RNN. The language model in our ap-
proach is trained over higher level units, provid-
ing additional information about the sequences.
This, however, poses a challenge for its integration
in the general framework. We tackle this prob-
lem with our “synchronization” method applied at
the decoding stage: the segmentation hypotheses

4Furthermore, specifically to the Chintang corpus, the
canonical symbols additionally use a dash element ‘-’ to dis-
tinguish between suffixes, prefixes and roots. We do not ex-
clude this symbol in our experiments.

186

are expanded and scored using a log-linear com-
bination of (a) scores from a lower-level encoder-
decoder model and (b) higher-level scores of the
language model. The fusion of the scores is trig-
gered only at the segmentation boundaries.

In this section, we first review the encoder-
decoder RNN framework. Then, we present our
fusion approach for integrating a language model
into the encoder-decoder system.

3.1 Background: Standard Encoder-Decoder
Set-up (cED)

The canonical segmentation problem fits the
general sequence-to-sequence framework, that is
mapping a variable-length sequence to another
variable-length sequence. In machine translation,
a relatively standard way to perform this task is
using encoder-decoder RNN (Cho et al., 2014;
Sutskever et al., 2014), extended with a bidirec-
tional encoder and attention mechanism of Bah-
danau et al. (2014). For the task of canonical seg-
mentation, the input and the output to the encoder-
decoder model is represented as a sequence of
characters separated by spaces. Formally, we use
the following set up.

The encoder RNN processes the input sequence
of vectors, X = (x1, . . . , xnx), into a sequence of
vectors representing hidden states:

ht = f(ht−1, xt), t = 1, . . . , nx (1)

where f stands for gated recurrent units (Cho
et al., 2014). The decoder RNN is conditioned
on the information produced by the encoder to
generate the output sequence Y = (y1, . . . , yny).
Specifically, the decoder RNN models a condi-
tional probability at each step as a function of pre-
vious output, current decoder hidden state and cur-
rent context vector:

p(yt|y1, . . . , yt−1, X) = g(yt−1, st, ct), (2)

st = f(st−1, yt−1, ct), t = 1, . . . , ny (3)

The context vector ct is computed at each step as
a weighted sum of the hidden states:

ct =
nx∑

k=1

αtkhk, (4)

where the weights are calculated by an alignment
model which scores how well the inputs around

the position k and the output at the position t
match. Intuitively, the decoder produces an output
element one at a time, each time focusing (putting
attention) on a different part of the input sequence
in order to gather the details that are required to
produce the next output element.

We use the bidirectional setting of the encoder
model (Bahdanau et al., 2014): the hidden state
ht for each time step is obtained by concatenat-
ing a forward and backward state ht = [

−→
ht ;
←−
ht].

This means that the hidden state contains the sum-
maries of both the preceding elements and the fol-
lowing elements. We refer to this standard frame-
work as cED.

3.2 Integrating a Morpheme Language
Model (LM) into cED

Before the integration, we assume that cED sys-
tem and language model LM have been trained
separately. The cED system is trained on charac-
ter sequences in a parallel corpus where the source
side consists of unsegmented words and the target
side consist of the aligned canonically segmented
words. During the training the cED model learns
conditional probability distribution over the char-
acter sequences (2). The LM is trained over mor-
pheme sequences on the target side of the corpus
and scores how likely a given sequence is in a
given language.

We can find the most probable segmentation us-
ing a beam search algorithm guided by “synchro-
nized” character-level cED and morpheme-level
LM scores. At each time step t, the cED system
computes a score for each possible next charac-
ter yt in the vocabulary Ω as a continuation of the
segmentation hypothesis from the previous step
{(y1y2 . . . yt−1)i}, i = 1, . . . ,K where K is the
beam size (how many best scored segmentation
hypothesis we keep from each step). This score is
a logarithm of the probability (2). Then, each pos-
sible continuation {(y1y2 . . . yt−1)iyt}, yt ∈ Ω,
i = 1, . . . ,K gets a score which is a sum of cED
scores for each character, that is, a sum of the
scores for a hypothesis from a previous time step
(y1y2 . . . yt−1)i and a score for the next character
yt. Thus we get a set of |Ω|×K new hypothesis of
length |t| together with their respective scores. All
these new hypotheses at the step t are then sorted
according to their respective scores, and the top K
ones are selected as candidates for the expansion
at the next time step.

187

In order to guide the described beam decod-
ing with the LM scores we perform a “synchro-
nization”. Specifically, we continue the beam
search based on the character cED scores till the
step s1 where all the segmentation hypothesis
{(y1y2 . . . ys1)i} i = 1, . . . ,K end with a bound-
ary symbol. The boundary symbol can be either
end of word symbol ‘< /w >’ or a segmentation
boundary symbol ‘|’. At this step, we re-score the
segmentation hypotheses with a weighted sum of
the cED score and the LM score:

log p(ys1|y1, . . . , ys1−1, X)
= log pcED(ys1|y1, . . . , ys1−1, X)

+ αLM log pLM (y1, . . . , ys1−1) (5)

At this step, y1, . . . , ys1 is considered a se-
quence of s1 characters by the cED system and
y1, . . . , ys1−1 (without the last boundary symbol)
is considered one morpheme by the LM.

From this synchronization point s1 we
continue to expand the re-scored hypothesis
{(y1y2 . . . ys1)i} i = 1, . . . ,K at the next
time step using again only cED scores. We
continue this process until we get to the next
synchronization point s2 where all the hypoth-
esis {(y1y2 . . . ys2)i} i = 1, . . . ,K end with a
boundary symbol. After rescoring them with a
weighted sum of cED and LM we continue this
process again till the next synchronization point.
The decoding process ends at a synchronization
point where the last symbol of the best scored
hypothesis (using the combined cED and LM
score) is an end-of-word symbol.

The described decoding process therefore
scores the segmentation hypotheses at two levels:
normally working at the character level with cED
scores and adding the LM scores only when it hits
a boundary symbol. In this way, the LM score
helps to evaluate how probable the last generated
morpheme is based on the morpheme history, that
is the sequence of morphemes generated at the
previous synchronization time steps.

3.3 The Length Constraint
It is well known that language models give higher
preference to shorter sequences. This becomes
an issue in the proposed fused model described
above: at the synchronization points high LM
scores tend to stop further hypothesis expansion.
For example, only the first segment can be gen-
erated as a model output if it happens to be a fre-

quent standalone word. This leads to favoring seg-
mentation predictions where the output is shorter
than the input, which is rarely plausible in segmen-
tation. Our early experiments confirmed this intu-
ition, therefore we consider the length constraint
component to be an integral part of the language
model inclusion and we do not report experiments
without this component.

To deal with the length issue, we add a “length
constraint” component LC. The LC score is based
on the difference in character length between the
input word and its segmentation hypothesis. To
synchronize the LC score with LM scoring process
described before we assign it only at the synchro-
nization time steps and attach it to the boundary
symbol. Therefore, the LC score, combined with
the LM score, helps to evaluate how probable is
the last generated morpheme given the sequence
of morphemes generated at the previous steps.

Assume that the input word is X = x1 . . . xn

and the produced segmentation hypothesis at the
first synchronization step s1 is y1 . . . ys1 where
ys1 is a boundary symbol. Then the LC score as-
signed to the morpheme y1 . . . ys1−1 and attached
to the boundary symbol ys1 is calculated as the
negative value of the absolute difference between
the morpheme length and input word length di-
vided by the the input length: LC(y1 . . . ys1−1) =
−(|y1 . . . ys1−1| − |X|)/|X| = −|s1 − 1 −
n|/n. At the next synchronization point s2 the
LC score is calculated using the length of the
next produced segment: LC(ys1+1 . . . ys2−1) =
−(|ys1+1 . . . ys2−1|−|X|)/|X|. In a general case,
the LC score for the last generated segment σi can
be expressed as

LC(σi) = −(|σi| − |X|)/|X| (6)

Note that boundary symbols are excluded for the
segments length calculation.

The intuition behind the LC score is that it gives
a contribution to the total score of a segmenta-
tion hypothesis showing how different the length
of the so far produced hypothesis is compared to
the length of the input word. The characters in
the canonical segments tend to be either inserted
or deleted compared to their surface form equiv-
alents, therefore we measure LC score using an
absolute difference in the length. The higher the
absolute value of the difference between the input
and the hypothesis, the higher the penalty.

With the inclusion of the LC score for the length

188

control the total score of our fusion model be-
comes:

log p(ys1|y1, . . . , ys1−1, X)
= log pcED(ys1|y1, . . . , ys1−1, X)
+ αLM log pLM (y1, . . . , ys1−1)

+ αLCLC(y1, . . . , ys1−1) (7)

where the weights αLM and αLC are optimized on
a development set.

4 Data and Experiments

In this section, we first give a description of the
corpora that we employ for the experiments. Then,
we discuss the experimental setup for our model.
Finally, we discuss the different configurations of
the corpus we employ to explore encoder-decoder
model behavior with and without corpus frequen-
cies.

4.1 Corpora

We run our experiments on the datasets for En-
glish, German and Indonesian released by Cot-
terell et al. (2016).5 The corpus for each language
is constructed based on the 10,000 forms selected
at random from a uniform distribution over types.
This data is further used to sample 5 splits into
8000 training forms, 1000 development forms and
1000 test forms. Following Cotterell et al. (2016)
and Kann et al. (2016), we report the results on
each of the 5 splits for all three languages.

In addition to these sets, we use a manually seg-
mented and glossed corpus of Chintang (Bickel
et al., 2004-2015), a language that features a
high degree of synthesis and free prefix ordering
(Bickel et al., 2007). The total corpus size of
955,025 word tokens makes the Chintang corpus
an exceptional resource for the task of morpholog-
ical segmentation. As discussed in Section 2, the
target segmented data is not easily available and
corpora of this size are not likely to be developed
for many langauges. We are interested in exper-
imenting with a realistic setup, therefore we use
around 150,000 tokens out of the total corpus size.
This set is divided into the training set (around
100,000 word tokens) and development and test
set (around 25,000 word tokens each).

5ryancotterell.github.io/
canonical-segmentation

The data set taken from Cotterell et al. (2016)
allows us a comparison of our system with the pre-
vious state-of-the-art. The Chintang set allows us
to run the segmentation models in different train-
ing regimes, with and without corpus frequencies,
and therefore to assess the influence of the corpus
counts on the performance.

4.2 Tools

We combine the three different components, cED,
LM and LC, into a single fused model using
the SGNMT (syntactically guided neural machine
translation) framework of Stahlberg et al. (2016).6

This framework provides an elegant solution to de-
composing an encoder-decoder system into three
components: training, decoding and scoring.

The training module implements the encoder-
decoder model with attention mechanism using
the Blocks framework built on top of Theano.7.
We employ this implementation for the cED
model.

The scoring component of SGNMT consists of
predictor modules, which define scores over the
target vocabulary given the current internal pre-
dictor state, the history, the source sentence, and
external side information. Predictors can be com-
bined with other predictors to form complex de-
coding tasks. In the case of our model, we use
three predictors: cED, LM and LC.

The decoding component is represented by the
decoder modules which are search strategies that
traverse the space spanned by the predictors. We
use a beam search module.

We train the language model LM over mor-
pheme sequences using SRILM toolkit.8. The
model is trained on the target side of the parallel
corpus, i.e. the canonical segmentations.

The weights of the predictors are optimized us-
ing MERT (Och, 2003). This is a standard opti-
mization routine in statistical machine translation
which searches for the weights of the model com-
ponents by directly maximizing the performance
of the system on a development set. We use the
Z-MERT tool9 in our implementation. The code is
available on our GitHub account.10

6http://ucam-smt.github.io/sgnmt
7https://github.com/mila-udem/blocks
8http://www.speech.sri.com/projects/

srilm/
9http://www.cs.jhu.edu/˜ozaidan/zmert/

10https://github.com/tatyana-ruzsics/
uzh-corpuslab-morphological-segmentation

189

4.3 Experimental Setup

Baseline and comparison As a baseline, we
use the basic component of our model (cED), an
ensemble of 5 character-level attention encoder-
decoder models with the hyperparameters de-
scribed below.

We also compare the encoder-decoder model
to the character-level statistical machine transla-
tion (cSMT). This approach is a natural choice in
machine translation with small training sets, but
no results have been reported so far for the task
of canonical segmentation. We used the Moses
toolkit with the following settings: distortion is
disallowed and build-in MERT optimization is
used to optimize the translation model and lan-
guage model.

As a reference, we compare our results to the
state-of-the-art neural re-ranker model of Kann
et al. (2016) Note, however, that the results can-
not be directly compared since Kann et al. (2016)
use extra training material in the form of external
dictionaries.

Evaluation Since our method is intended to be
used for processing corpora, the evaluation is per-
formed at the level of word tokens using accuracy
of the full segmentation. In addition, we evaluate
the performance on subsets of test words. Besides
the seen words, we distinguish between two kinds
of test words that are not seen in the training cor-
pus: a) new combinations of morphemes already
seen during training and b) words that contain un-
seen morphemes.

Hyperparameters The bidirectional encoder
consists of a forward and a backward recurrent
RNN each having 100 hidden units. The decoder
also has 100 hidden units. The dimensionality of
the character embedding is 300. We use a mini-
batch stochastic gradient descent (SGD) algorithm
together with Adadelta to train each model. Each
update direction is computed using a minibatch of
20 training examples. At decoding, we use a beam
search with a beam size of 12 to find the segmenta-
tion that approximately maximizes the conditional
probability. All the described hyperparameters are
the same as in the work of Kann et al. (2016).

Initialization of all weights (encoder, decoder,
embeddings) to the identity matrix and the biases
to zero (Le et al., 2015) results in a very fast
convergence rate compared to other initializations.
We train a single model for 20 epochs with an

early stopping based on the development set per-
formance. We also shuffle the training data be-
tween the epochs.

Finally, we use an ensemble of five encoder-
decoder models with different random initializa-
tions. We shuffle the training data for each of the
model using different seed value. The ensemble
model is based on a combined score from all 5
models and is used to guide the decoding process.

Following earlier experiments, we use mor-
pheme 3-gram language model and apply Kneser-
Ney smoothing.

As the objective for the MERT weight optimiza-
tion we use accuracy on the development set.

Tokens vs Types The Chintang corpus allows
us to assess the influence of the corpus counts on
the performance of the models used for canonical
segmentation. In these experiments, we run only
the two baseline models, cSMT and cED (without
our language model component), in order to eval-
uate directly the relevance of such corpus signal to
these two training paradigms.11

We run each model, cSMT and cED, in two
regimes. In the first, type regime, we train the
models using a parallel corpus which consists of
word types, i.e. unique pairs of surface form and
its canonical segmentation. The size of such type
corpus is around 21,000 word forms. In the second
regime, we train the models using a parallel corpus
where each pair of surface form and its canonical
segmentation appears as many time as the corre-
sponding word appears in the corpus. The size of
the token-based corpus is then 100,000 tokens.

In the type regime, the amount of training ex-
amples is substantially smaller than in the token
regime. In order to make the comparison between
the token regime and the type regime more fair in
terms of the amount of training and testing data,
we add one more experiment. Specifically, we
train the cED model in the type regime using the
same number of iterations as in the token regime:
100,000 iterations. In this way, each word type is
seen multiple times both in the type and the to-
ken regime. The difference is that all the types
are equally frequent in the type regime, while we
observe their natural text frequency in the token

11One way to include language model into SMT would be
the n-best list reranking which is not exactly the same as our
synchronization approach that guides the decoding process.
Integrating our fusion approach for a higher-level language
model into MOSES is not trivial, and the systems are not
comparable without that.

190

regime.

5 Results and Discussion

The performance of our fused model cED+LM to-
gether with the two baseline models is reported
for English, German, Indonesian in Table 1.12 We
show the average results over five splits for each
language along with the standard deviation (in
brackets). Additionally, we present the results on
the words not seen in the training which make up
for 99% of the test sets in this corpora.

Our fused approach gives an improvement from
1% to 4% over the stronger cED baseline. The
bigger improvement for Indonesian could be at-
tributed to the regular patterns of orthographic
changes which appear on the segmentation bound-
aries. In the category of unseen data, the LM com-
ponent helps to correct errors for the words con-
sisting of new combinations of seen morphemes.
In case of Indonesian, around 80% of new words
(an average over five splits) belongs to this cate-
gory, while its share is only around 25% for Ger-
man and English. The overall lower performance
for English and German thus might be due to the
less regular patterns and more unseen roots in the
training data.

We observe that out of the two baseline models,
cED and cSMT, cED performs on average better
although their behavior is very similar with a dif-
ference of only 1% in accuracy in the case of Ger-
man and Indonesian.

For reference, we also show the results of the
joint model of Cotterell et al. (2016) and the state-
of-the-art neural reranker model of Kann et al.
(2016) which are available for these data sets. We
can see that our approach (cED+LM) gives an im-
provement of 1% for German and 2% for Indone-
sian over the state-of-the-art performance while
we do not employ extra information from external
dictionaries. Note that the languages for which we
improve the state of the art are morphologically
richer than English.

Table 2 shows the cED and cSMT model on
Chintang in two training regimes, word types and
word tokens. We also report the results for com-
parative setting of the type-based regime.

12We obtained significantly better results for cED model
than those reported in Kann et al. (2016). We speculate that
the difference might be due to the shuffling of the data be-
tween the training epochs and early stopping based on the
validation set performance.

We observe that the corpus-wide training based
on word tokens increases the overall performance
for both, the cED and cSMT models. The ob-
served improvement can be partially explained by
the fact that our evaluation is token based: we
count the same result as many times as it appears
in the test set. Nevertheless, the score is infor-
mative because it shows the coverage over the
whole corpus. Additionally, our comparable set-
ting shows that seeing a segmentation for a word
type multiple times is not what helps learning.
What is beneficial is knowing the actual distribu-
tion in the corpus.

It can be seen in Table 2 that cSMT outper-
forms cED in the token regime. One possible ex-
planation for this outcome is that the inclusion of
the word counts helps to learn the character align-
ments better. This explanation would be in line
with the results of Aharoni and Goldberg (2017),
who showed that using pretrained character-level
statistical alignments to guide the encoder-decoder
network in training time can help to improve over
the end-to-end soft attention approach for morpho-
logical inflection generation task, which also falls
into the category of a more general sequence trans-
duction task.

Regarding the different subsets of the test data,
the highest improvement on unseen words with
new morphemes is achieved by the cED model,
while the cSMT model generalizes better in the
category of unseen words that consist of new com-
bination of seen morphemes. Both models be-
have similarly on seen words with the cSMT being
slightly better. This leads to an overall best perfor-
mance of the cSMT model, since the category of
seen words has the largest weight among all the
word tokens in the test data.

6 Conclusion and Future Work

We presented a neural model based on charac-
ter level encoder-decoder framework for morpho-
logical canonical segmentation in a low-resource
setting. The model is fused with a language
model over morpheme segments and length con-
trol model. Our approach gives higher results than
the state-of-the-art approach to canonical segmen-
tation for languages with more morphology, In-
donesian and German, while using only the infor-
mation contained in the training corpus.

Future work may include a development of a
single canonical segmentation model where the

191

Error Rate (%)
Types Regime

cED+LM cED cSMT Joint* cED+RR*
Baseline Baseline

English Total 0.21 (.01) 0.22 (.01) 0.27 (.02) 0.27 (.02) 0.19 (.01)
New comb. 0.15 (.03) 0.24 (.01) - - -

New morph. 0.23 (.01) 0.20 (.01) - - -
German Total 0.19 (.00) 0.23 (.02) 0.24 (.02) 0.41 (.03) 0.20 (.01)

New comb. 0.11 (.02) 0.33 (.03) - - -
New morph. 0.21 (.01) 0.20 (.01) - - -

Indonesian Total 0.03 (.02) 0.07 (.01) 0.06 (.01) 0.10 (.01) 0.05 (.01)
New comb. 0.02 (.03) 0.06 (.01) - - -

New morph. 0.09 (.03) 0.09 (.03) - - -

Table 1: Performance on the task of canonical segmentation for English, German and Indonesian. Type-
based regime. cED+LM - character based encoder-decoder model fused with morpheme based language
model. Baseline models: cED - character based encoder-decoder model, cSMT - character based statis-
tical machine translation model. For reference only: Joint* - model of Cotterell et al. (2016), cED+RR*
- model of Kann et al. (2016), not directly comparable since based on external dictionary information)

Correct predictions (%)
No. of Types Regime Tokens Regime

cED cSMT cED cED cSMT
Baseline Compar. Baseline

Total 24,606 0.19 0.18 0.23 0.16 0.14
Seen words 19,920 0.13 0.12 0.18 0.08 0.07
New comb. 3,959 0.44 0.41 0.42 0.47 0.41

New morph. 727 0.53 0.57 0.60 0.48 0.56

Table 2: Performance on the task of canonical segmentation for Chintang. Type-based vs token-based
training regime. cED - character based encoder-decoder model, cSMT - character based statistical ma-
chine translation model. Comparative setting for cED: training in types regime for the same number of
iterations as in the individual setting of token regime.

optimization of model components is performed
using neural approaches.

Another idea relevant to explore in future work
is to consider the networks that are designed to be
strong at character copying which is the most com-
mon operation in string transduction tasks such as
morphological segmentation, morphological rein-
flection and normalization (Gu et al., 2016; See
et al., 2017; Makarov et al., 2017).

We also analyzed the effect of incorporating
corpus counts for the purpose of training statis-
tical and neural models for canonical segmenta-
tion. The results show that incorporating counts as
they are seen in the corpora is beneficial for such
task for both types of models. Our findings sug-
gest that training sets including real word counts
should be further developed for this and similar

tasks and would be beneficial for development of
future models.

References
Roee Aharoni and Yoav Goldberg. 2017. Morphologi-

cal inflection generation with hard monotonic atten-
tion. In ACL.

Cyril Allauzen and Michael Riley. 2012. A pushdown
transducer extension for the openfst library. In Im-
plementation and Application of Automata - 17th In-
ternational Conference, CIAA 2012, Porto, Portu-
gal, July 17-20, 2012. Proceedings. pages 66–77.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua
Bengio. 2014. Neural machine translation by
jointly learning to align and translate. CoRR
abs/1409.0473.

Christian Bentz, Dimitrios Alikaniotis, Tanja Samardi,

192

and Paula Buttery. 2017. Variation in word fre-
quency distributions: Definitions, measures and im-
plications for a corpus-based language typology.
Journal of Quantitative Linguistics pages 128–162.
https://doi.org/10.1080/09296174.2016.1265792.

Toms Bergmanis and Sharon Goldwater. 2017. From
segmentation to analyses: a probabilistic model for
unsupervised morphology induction. In Proceed-
ings of the 15th Conference of the European Chap-
ter of the Association for Computational Linguistics.
Valencia, Spain.

Balthasar Bickel, Goma Banjade, Martin Gaen-
szle, Elena Lieven, Netra Prasad Paudyal,
Ichchha Purna Rai, Manoj Rai, Novel Kishore
Rai, and Sabine Stoll. 2007. Free prefix or-
dering in chintang. Language 83(1):43–73.
https://muse.jhu.edu/article/214599.

Balthasar Bickel, Sabine Stoll, Martin Gaenszle,
Novel Kishor Rai, Elena Lieven, Goma Banjade,
Toya Nath Bhatta, Netra Paudyal, Judith Pettigrew,
Ichchha P. Rai, and Manoj Rai. 2004-2015. Audio-
visual corpus of the chintang language, including a
longitudinal corpus of language acquisition by six
children. http://www.mpi. nl/DOBES.

Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bah-
danau, and Yoshua Bengio. 2014. On the properties
of neural machine translation: Encoder-decoder ap-
proaches. In Proceedings of SSST@EMNLP 2014,
Eighth Workshop on Syntax, Semantics and Struc-
ture in Statistical Translation, Doha, Qatar, 25 Oc-
tober 2014. pages 103–111.

Ryan Cotterell, Thomas Müller, Alexander Fraser, and
Hinrich Schütze. 2015. Labeled morphological seg-
mentation with semi-markov models. In Proceed-
ings of the Nineteenth Conference on Computational
Natural Language Learning. Association for Com-
putational Linguistics, pages 164–174.

Ryan Cotterell, Tim Vieira, and Hinrich Schütze. 2016.
A joint model of orthography and morphological
segmentation. In NAACL HLT 2016, The 2016 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, San Diego California, USA,
June 12-17, 2016. pages 664–669.

Mathias Creutz, Teemu Hirsimäki, Mikko Kurimo,
Antti Puurula, Janne Pylkkönen, Vesa Siivola, Matti
Varjokallio, Ebru Arisoy, Murat Saraçlar, and An-
dreas Stolcke. 2007. Morph-based speech recog-
nition and modeling of out-of-vocabulary words
across languages. ACM Trans. Speech Lang. Pro-
cess. 5(1):3:1–3:29.

Mathias Creutz and Krista Lagus. 2002. Unsupervised
discovery of morphemes. In Proceedings of the
ACL-02 Workshop on Morphological and Phonolog-
ical Learning. Association for Computational Lin-
guistics, pages 21–30.

Mathias Creutz and Krista Lagus. 2005. Inducing the
morphological lexicon of a natural language from
unannotated text. In Proc. International and In-
terdisciplinary Conference on Adaptive Knowledge
Representation and Reasoning (AKRR-05). Espoo,
Finland, pages 106–113.

Mathias Creutz and Krister Linden. 2004. Morpheme
segmentation gold standards for finnish and english.

Christopher Dyer, A Muresan, and Philip Resnik. 2008.
Generalizing word lattice translation. In In ACL-
HLT .

H. Eifring and R. Theil. 2005. Linguistics for Students
of Asian and African Languages. [available at
http://www.uio.no/studier/emner/
hf/ikos/EXFAC03-AAS/h05/larestoff/
linguistics/], Universitetet i Oslo.

Jiatao Gu, Zhengdong Lu, Hang Li, and Victor
O. K. Li. 2016. Incorporating copying mech-
anism in sequence-to-sequence learning. CoRR
http://arxiv.org/abs/1603.06393.

Caglar Gulcehre, Orhan Firat, Kelvin Xu, Kyunghyun
Cho, and Yoshua Bengio. 2017. On integrat-
ing a language model into neural machine
translation. Computer Speech and Language
https://doi.org/http://doi.org/10.1016/j.csl.2017.01.014.

Ilana Heintz. 2008. Arabic language modeling with fi-
nite state transducers. In ACL 2008, Proceedings of
the 46th Annual Meeting of the Association for Com-
putational Linguistics, June 15-20, 2008, Columbus,
Ohio, USA, Student Research Workshop. pages 37–
42.

Katharina Kann, Ryan Cotterell, and Hinrich Schütze.
2016. Neural morphological analysis: Encoding-
decoding canonical segments. In Proceedings of the
2016 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2016, Austin, Texas,
USA, November 1-4, 2016. pages 961–967.

Oskar Kohonen, Sami Virpioja, and Krista Lagus.
2010. Semi-supervised learning of concatenative
morphology. In Proceedings of the 11th Meeting of
the ACL Special Interest Group on Computational
Morphology and Phonology. Association for Com-
putational Linguistics, pages 78–86.

Quoc V. Le, Navdeep Jaitly, and Geoffrey E. Hinton.
2015. A simple way to initialize recurrent networks
of rectified linear units. CoRR abs/1504.00941.

Peter Makarov, Tatyana Ruzsics, and Simon
Clematide. 2017. Align and copy: Uzh at sig-
morphon 2017 shared task for morphological
reinflection. In Proceedings of the CoNLL-
SIGMORPHON 2017 Shared Task: Universal
Morphological Reinflection. Vancouver, Canada.

Karthik Narasimhan, Regina Barzilay, and Tommi
Jaakkola. 2015. An unsupervised method for uncov-
ering morphological chains. Transactions of the As-
sociation for Computational Linguistics 3:157–167.

193

Karthik Narasimhan, Damianos Karakos, Richard
Schwartz, Stavros Tsakalidis, and Regina Barzilay.
2014. Morphological segmentation for keyword
spotting. EMNLP .

Franz Josef Och. 2003. Minimum error rate training in
statistical machine translation. In Proceedings of the
41st Annual Meeting of the Association for Compu-
tational Linguistics, 7-12 July 2003, Sapporo Con-
vention Center, Sapporo, Japan.. pages 160–167.

Hoifung Poon, Colin Cherry, and Kristina Toutanova.
2009. Unsupervised morphological segmentation
with log-linear models. In Proceedings of Human
Language Technologies: The 2009 Annual Confer-
ence of the North American Chapter of the Associa-
tion for Computational Linguistics. Association for
Computational Linguistics, pages 209–217.

Brian Roark, Richard Sproat, Cyril Allauzen, Michael
Riley, Jeffrey Sorensen, and Terry Tai. 2012. The
opengrm open-source finite-state grammar software
libraries. In Proceedings of the ACL 2012 Sys-
tem Demonstrations. Association for Computational
Linguistics, ACL ’12, pages 61–66.

Teemu Ruokolainen, Oskar Kohonen, Sami Virpioja,
and Mikko Kurimo. 2013. Supervised morphologi-
cal segmentation in a low-resource learning setting
using conditional random fields. In Proceedings of
the Seventeenth Conference on Computational Nat-
ural Language Learning. Association for Computa-
tional Linguistics, pages 29–37.

Abigail See, Peter J Liu, and Christopher D Man-
ning. 2017. Get To The Point: Summarization with
Pointer-Generator Networks. In ACL.

Wolfgang Seeker and Özlem Çetinoglu. 2015. A
graph-based lattice dependency parser for joint
morphological segmentation and syntactic analysis.
TACL 3:359–373.

Felix Stahlberg, Eva Hasler, Aurelien Waite, and Bill
Byrne. 2016. Syntactically guided neural machine
translation. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguis-
tics, ACL 2016, August 7-12, 2016, Berlin, Ger-
many, Volume 2: Short Papers.

Sabine Stoll, Jekaterina Mazara, and Balthasar Bickel.
In press. The acquisition of polysynthetic verb
forms in chintang. In Michael Fortescue, Marianne
Mithun, and Nicholas Evans, editors, Handbook of
Polysynthesis, Oxford University Press, Oxford.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in Neural Information Process-
ing Systems 27: Annual Conference on Neural In-
formation Processing Systems 2014, December 8-
13 2014, Montreal, Quebec, Canada. pages 3104–
3112.

Linlin Wang, Zhu Cao, Yu Xia, and Gerard de Melo.
2016. Morphological segmentation with window
LSTM neural networks. In Proceedings of the
Thirtieth AAAI Conference on Artificial Intelligence,
February 12-17, 2016, Phoenix, Arizona, USA..
pages 2842–2848.

194

Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017), pages 195–205,
Vancouver, Canada, August 3 - August 4, 2017. c©2017 Association for Computational Linguistics

A Supervised Approach to Extractive Summarisation of Scientific Papers

Ed Collins and Isabelle Augenstein and Sebastian Riedel
Department of Computer Science,

University College London (UCL), UK
{edward.collins.13|i.augenstein|s.riedel}@ucl.ac.uk

Abstract

Automatic summarisation is a popular ap-
proach to reduce a document to its main
arguments. Recent research in the area has
focused on neural approaches to summari-
sation, which can be very data-hungry.
However, few large datasets exist and none
for the traditionally popular domain of sci-
entific publications, which opens up chal-
lenging research avenues centered on en-
coding large, complex documents. In this
paper, we introduce a new dataset for
summarisation of computer science pub-
lications by exploiting a large resource
of author provided summaries and show
straightforward ways of extending it fur-
ther. We develop models on the dataset
making use of both neural sentence en-
coding and traditionally used summarisa-
tion features and show that models which
encode sentences as well as their lo-
cal and global context perform best, sig-
nificantly outperforming well-established
baseline methods.

1 Introduction

Automatic summarisation is the task of reducing
a document to its main points. There are two
streams of summarisation approaches: extractive
summarisation, which copies parts of a document
(often whole sentences) to form a summary, and
abstractive summarisation, which reads a docu-
ment and then generates a summary from it, which
can contain phrases not appearing in the docu-
ment. Abstractive summarisation is the more dif-
ficult task, but useful for domains where sentences
taken out of context are not a good basis for form-
ing a grammatical and coherent summary, like
novels.

Here, we are concerned with summarising sci-
entific publications. Since scientific publications
are a technical domain with fairly regular and ex-
plicit language, we opt for the task of extractive
summarisation. Although there has been work
on summarisation of scientific publications before,
existing datasets are very small, consisting of tens
of documents (Kupiec et al., 1995; Visser and
Wieling, 2009). Such small datasets are not suf-
ficient to learn supervised summarisation models
relying on neural methods for sentence and docu-
ment encoding, usually trained on many thousands
of documents (Rush et al., 2015; Cheng and Lap-
ata, 2016; Chopra et al., 2016; See et al., 2017).

In this paper, we introduce a dataset for auto-
matic summarisation of computer science publi-
cations which can be used for both abstractive and
extractive summarisation. It consists of more than
10k documents and can easily be extended auto-
matically to an additional 26 domains. The dataset
is created by exploiting an existing resource, Sci-
enceDirect,1 where many journals require authors
to submit highlight statements along with their
manuscripts. Using such highlight statements as
gold statements has been proven a good gold stan-
dard for news documents (Nallapati et al., 2016a).
This new dataset offers many exciting research
challenges, such how best to encode very large
technical documents, which are largely ignored by
current research.

In more detail, our contributions are as follows:

• We introduce a new dataset for summarisa-
tion of scientific publications consisting of
over 10k documents
• Following the approach of (Hermann et al.,

2015) in the news domain, we introduce
a method, HighlightROUGE, which can be
used to automatically extend this dataset and

1http://www.sciencedirect.com/

195

Paper Title Statistical estimation of the names of HTTPS servers
with domain name graphs

Highlights we present the domain name graph (DNG), which is a
formal expression that can keep track of cname chains and char-
acterize the dynamic and diverse nature of DNS mechanisms and
deployments. We develop a framework called service-flow map
(sfmap) that works on top of the DNG.sfmap estimates the host-
name of an HTTPS server when given a pair of client and server IP
addresses. It can statistically estimate the hostname even when as-
sociating DNS queries are unobserved due to caching mechanisms,
etc through extensive analysis using real packet traces, we demon-
strate that the sfmap framework establishes good estimation accu-
racies and can outperform the state-of-the art technique called dn-
hunter. We also identify the optimized setting of the sfmap frame-
work. The experiment results suggest that the success of the sfmap
lies in the fact that it can complement incomplete DNS information
by leveraging the graph structure. To cope with large-scale mea-
surement data, we introduce techniques to make the sfmap frame-
work scalable. We validate the effectiveness of the approach using
large-scale traffic data collected at a gateway point of internet ac-
cess links .

Summary Statements Highlighted in Context from Section of
Main Text Contributions: in this work, we present a novel method-
ology that aims to infer the hostnames of HTTPS flows, given the
three research challenges shown above. The key contributions of
this work are summarized as follows. We present the domain name
graph (DNG), which is a formal expression that can keep track
of cname chains (challenge 1) and characterize the dynamic and
diverse nature of DNS mechanisms and deployments (challenge
3). We develop a framework called service-flow map (sfmap) that
works on top of the DNG. sfmap estimates the hostname of an
https server when given a pair of client and server IP addresses.
It can statistically estimate the hostname even when associating
DNS queries are unobserved due to caching mechanisms, etc (chal-
lenge 2). Through extensive analysis using real packet traces , we
demonstrate that the sfmap framework establishes good estima-
tion accuracies and can outperform the state-of-the art technique
called dn-hunter, [2]. We also identify the optimized setting of the
sfmap framework. The experiment results suggest that the success
of the sfmap lies in the fact that it can complement incomplete
DNS information by leveraging the graph structure. To cope with
large-scale measurement data, we introduce techniques to make the
sfmap framework scalable. We validate the effectiveness of the ap-
proach using large-scale traffic data collected at a gateway point of
internet access links. The remainder of this paper is organized as
follows: section2 summarizes the related work. [...]

Table 1: An example of a document with sum-
mary statements highlighted in context.

show empirically that this improves sum-
marisation performance
• Taking inspiration from previous work in

summarising scientific literature (Kupiec
et al., 1995; Saggion et al., 2016), we intro-
duce a metric we use as a feature, Abstrac-
tROUGE, which can be used to extract sum-
maries by exploiting the abstract of a paper
• We benchmark several neural as well tradi-

tional summarisation methods on the dataset
and use simple features to model the global
context of a summary statement, which con-
tribute most to the overall score
• We compare our best performing system to

several well-established baseline methods,
some of which use more elaborate methods
to model the global context than we do, and
show that our best performing model outper-
forms them on this extractive summarisation

#documents #instances

CSPubSum Train 10148 85490
CSPubSumExt Train 10148 263440
CSPubSum Test 150 N/A
CSPubSumExt Test 10148 131720

Table 2: The CSPubSum and CSPubSumExt
datasets as described in Section 2.2. Instances are
items of training data.

task by a considerable margin
• We analyse to what degree different sections

in scientific papers contribute to a summary

We expect the research documented in this paper
to be relevant beyond the document summarisa-
tion community, for other tasks in the space of
automatically understand scientific publications,
such as keyphrase extraction (Kim et al., 2010;
Sterckx et al., 2016; Augenstein et al., 2017; Au-
genstein and Søgaard, 2017), semantic relation ex-
traction (Gupta and Manning, 2011; Marsi and
Öztürk, 2015) or topic classification of scientific
articles (Ó Séaghdha and Teufel, 2014).

2 Dataset and Problem Formulation

We release a novel dataset for extractive summari-
sation comprised of 10148 Computer Science pub-
lications.2 Publications were obtained from Sci-
enceDirect, where publications are grouped into
27 domains, Computer Science being one of them.
As such, the dataset could easily be extended to
more domains. An example document is shown in
Table 1. Each paper in this dataset is guaranteed to
have a title, abstract, author written highlight state-
ments and author defined keywords. The high-
light statements are sentences that should effec-
tively convey the main takeaway of each paper and
are a good gold summary, while the keyphrases
are the key topics of the paper. Both abstract and
highlights can be thought of as a summary of a pa-
per. Since highlight statements, unlike sentences
in the abstract, generally do not have dependen-
cies between them, we opt to use those as gold
summary statements for developing our summari-
sation models, following Hermann et al. (2015);
Nallapati et al. (2016b) in their approaches to news
summarisation.

2The dataset along with the code is avail-
able here: https://github.com/EdCo95/
scientific-paper-summarisation

196

2.1 Problem Formulation

As shown by Cao et al. (2015), sentences can
be good summaries even when taken out of the
context of the surrounding sentences. Most of
the highlights have this characteristic, not relying
on any previous or subsequent sentences to make
sense. Consequently, we frame the extractive sum-
marisation task here as a binary sentence classifi-
cation task, where we assign each sentence in a
document a label y ∈ 0, 1. Our training data is
therefore a list of sentences, sentence features to
encode context and a label all stored in a randomly
ordered list.

2.2 Creation of the Training and Testing Data

We used the 10k papers to create two different
datasets: CSPubSum and CSPubSumExt where
CSPubSumExt is CSPubSum extended with High-
lightROUGE. The number of training items for
each is given in Table 2.

CSPubSum This dataset’s positive examples
are the highlight statements of each paper. There
are an equal number of negative examples which
are sampled randomly from the bottom 10% of
sentences which are the worst summaries for their
paper, measured with ROUGE-L (see below), re-
sulting in 85490 training instances. CSPubSum
Test is formed of 150 full papers rather than a ran-
domly ordered list of training sentences. These are
used to measure the summary quality of each sum-
mariser, not the accuracy of the trained models.

CSPubSumExt The CSPubSum dataset has two
drawbacks: 1) it is an order of magnitude behind
comparable large summarisation datasets (Her-
mann et al., 2015; Nallapati et al., 2016b); 2)
it does not have labels for sentences in the con-
text of the main body of the paper. We gener-
ate additional training examples for each paper
with HighlightROUGE (see next section), which
finds sentences that are similar to the highlights.
This results in 263k instances for CSPubSumExt
Train and 132k instances for CSPubSumExt Test.
CSPubSumExt Test is used to test the accuracy of
trained models. The trained models are then used
in summarisers whose quality is tested on CSPub-
Sum Test with the ROUGE-L metric (see below).

3 ROUGE Metrics

ROUGE metrics are evaluation metrics for sum-
marisation which correspond well to human

judgements of good summaries (Lin, 2004). We
elect to use ROUGE-L, inline with other research
into summarisation of scientific articles (Cohan
and Goharian, 2015; Jaidka et al., 2016).

3.1 HighlightROUGE

HighlightROUGE is a method used to generate ad-
ditional training data for this dataset, using a sim-
ilar approach to (Hermann et al., 2015). As input
it takes a gold summary and body of text and finds
the sentences within that text which give the best
ROUGE-L score in relation to the highlights, like
an oracle summariser would do. These sentences
represent the ideal sentences to extract from each
paper for an extractive summary.

We select the top 20 sentences which give the
highest ROUGE-L score with the highlights for
each paper as positive instances and combine these
with the highlights to give the positive examples
for each paper. An equal number of negative in-
stances are sampled from the lowest scored sen-
tences to match.

When generating data using HighlightROUGE,
no sentences from the abstracts of any papers were
included as training examples. This is because
the abstract is already a summary; our goal is to
extract salient sentences from the main paper to
supplement the abstract, not from the preexisting
summary.

3.2 AbstractROUGE

AbstractROUGE is used as a feature for sum-
marisation. It is a metric presented by this work
which exploits the known structure of a paper by
making use of the abstract, a preexisting sum-
mary. The idea of AbstractROUGE is that sen-
tences which are good summaries of the abstract
are also likely to be good summaries of the high-
lights. The AbstractROUGE score of a sentence is
simply the ROUGE-L score of that sentence and
the abstract. The intuition of comparing sentences
to the abstract is one often used in summarising
scientific literature, e.g. (Saggion et al., 2016;
Kupiec et al., 1995), however these authors gen-
erally encode sentences and abstract as TF-IDF
vectors, then compare them, rather than directly
comparing them with an evaluation metric. While
this may seem somewhat like cheating, all scien-
tific papers are guaranteed to have an abstract so it
makes sense to exploit it as much as possible.

197

4 Method

We encode each sentence in two different ways: as
their mean averaged word embeddings and as their
Recurrent Neural Network (RNN) encoding.

4.1 Summariser Features

As the sentences in our dataset are randomly or-
dered, there is no readily available context for
each sentence from surrounding sentences (tak-
ing this into account is a potential future develop-
ment). To provide local and global context, a set
of 8 features are used for each sentence which are
described below. These contextual features con-
tribute to achieving the best performances. Some
recent work in summarisation uses as many as 30
features (Dlikman and Last, 2016; Litvak et al.,
2016). We choose only a minimal set of features to
focus more on learning from raw data than on fea-
ture engineering, although this could potentially
further improve results.

AbstractROUGE A new metric presented by
this work, described in Section 3.2.

Location Authors such as Kavila and Radhika
(2015) only chose summary sentences from the
Abstract, Introduction or Conclusion, thinking
these more salient to summaries; and we show
that certain sections within a paper are more rel-
evant to summaries than others (see Section 5.1).
Therefore we assign sentences an integer location
for 7 different sections: Highlight, Abstract, Intro-
duction, Results / Discussion / Analysis, Method,
Conclusion, all else.3 Location features have been
used in other ways in previous work on sum-
marising scientific literature; Visser and Wieling
(2009) extract sentence location features based on
the headings they occurred beneath while Teufel
and Moens (2002) divide the paper into 20 equal
parts and assign each sentence a location based on
which segment it occurred in - an attempt to cap-
ture distinct zones of the paper.

Numeric Count is the number of numbers in
a sentence, based on the intuition that sentences
containing heavy maths are unlikely to be good
summaries when taken out of context.

Title Score In Visser and Wieling (2009) and
Teufel and Moens (2002)’s work on summarising

3based on a small manually created gazetteer of alterna-
tive names

scientific papers, one of the features used is Ti-
tle Score. Our feature differs slightly from Visser
and Wieling (2009) in that we only use the main
paper title whereas Visser and Wieling (2009) use
all section headings. To calculate this feature, the
non-stopwords that each sentence contains which
overlap with the title of the paper are counted.

Keyphrase Score Authors such as Spärck Jones
(2007) refer to the keyphrase score as a useful
summarisation feature. The feature uses author
defined keywords and counts how many of these
keywords a sentence contains, the idea being that
important sentences will contain more keywords.

TF-IDF Term Frequency, Inverse Document
Frequency (TF-IDF) is a measure of how relevant
a word is to a document (Ramos et al., 2003). It
takes into account the frequency of a word in the
current document and the frequency of that word
in a background corpus of documents; if a word is
frequent in a document but infrequent in a corpus
it is likely to be important to that document. TF-
IDF was calculated for each word in the sentence,
and averaged over the sentence to give a TF-IDF
score for the sentence. Stopwords were ignored.

Document TF-IDF Document TF-IDF calcu-
lates the same metric as TF-IDF, but uses the count
of words in a sentence as the term frequency and
count of words in the rest of the paper as the back-
ground corpus. This gives a representation of how
important a word is in a sentence in relation to the
rest of the document.

Sentence Length Teufel et al. (2002) created a
binary feature for if a sentence was longer than
a threshold. We simply include the length of the
sentence as a feature; an attempt to capture the
intuition that short sentences are very unlikely to
be good summaries because they cannot possibly
convey as much information as longer sentences.

4.2 Summariser Architectures

Models detailed in this section could take any
combination of four possible inputs, and are
named accordingly:

• S: The sentence encoded with an RNN.

• A: a vector representation of the abstract of a
paper, created by averaging the word vectors
of every non-stopword word in the abstract.
Since an abstract is already a summary, this

198

gives a good sense of relevance. It is another
way of taking the abstract into consideration
by using neural methods as opposed to a fea-
ture. A future development is to encode this
with an RNN.

• F: the 8 features listed in Section 4.1.

• Word2Vec: the sentence represented by tak-
ing the average of every non-stopword word
vector in the sentence.

Models containing “Net” use a neural network
with one or multiple hidden layers. Models end-
ing with “Ens” use an ensemble. All non-linearity
functions are Rectified Linear Units (ReLUs),
chosen for their faster training time and recent
popularity (Krizhevsky et al., 2012).

Single Feature Models The simplest class of
summarisers use a single feature from Section 4.1
(Sentence Length, Numeric Count and Section are
excluded due to lack of granularity when sorting
by these).

Features Only: FNet A single layer neural net
to classify each sentence based on all of the 8 fea-
tures given in Section 4.1. A future development
is to try this with other classification algorithms.

Word Vector Models: Word2Vec and
Word2VecAF Both single layer networks.
Word2Vec takes as input the sentence represented
as an averaged word vector of 100 numbers.4

Word2VecAF takes the sentence average vector,
abstract average vector and handcrafted features,
giving a 208-dimensional vector for classification.

LSTM-RNN Method: SNet Takes as input the
ordered words of the sentence represented as 100-
dimensional vectors and feeds them through a
bi-directional RNN with Long-Short Term Mem-
ory (LSTM, Hochreiter and Schmidhuber (1997))
cells, with 128 hidden units and dropout to pre-
vent overfitting. Dropout probability was set to
0.5 which is thought to be near optimal for many
tasks (Srivastava et al., 2014). Output from the for-
wards and backwards LSTMs is concatenated and
projected into two classes.5

4Word embeddings are obtained by training a Word2Vec
skip-gram model on the 10000 papers with dimensionality
100, minimum word count 5, a context window of 20 words
and downsample setting of 0.001

5The model is trained until loss convergence on a small
dev set

Figure 1: SAFNet Architecture

LSTM and Features: SFNet SFNet processes
the sentence with an LSTM as in the previous
paragraph and passes the output through a fully
connected layer with dropout. The handcrafted
features are treated as separate inputs to the net-
work and are passed through a fully connected
layer. The outputs of the LSTM and features hid-
den layer are then concatenated and projected into
two classes.

SAFNet SAFNet, shown in Figure 1 is the
most involved architecture presented in this paper,
which further to SFNet also encodes the abstract.

Ensemble Methods: SAF+F and S+F Ensem-
blers The two ensemble methods use a weighted
average of the output of two different models:

psummary =
S1(1− C) + S2(1 + C)

2

Where S1 is the output of the first summariser,
S2 is the output of the second and C is a hyperpa-
rameter. SAF+F Ensembler uses SAFNet as as S1

and FNet as S2. S+F Ensembler uses SNet as S1

and FNet as S2.

5 Results and Analysis

5.1 Most Relevant Sections to a Summary
A straight-forward heuristic way of obtaining
a summary automatically would be to identify

199

which sections of a paper generally represent good
summaries and take those sections as a summary
of the paper. This is precisely what Kavila and
Radhika (2015) do, constructing summaries only
from the Abstract, Introduction and Conclusion.
This approach works from the intuition that cer-
tain sections are more relevant to summaries.

To understand how much each section con-
tributes to a gold summary, we compute the
ROUGE-L score of each sentence compared to
the gold summary and average sentence-level
ROUGE-L scores by section. ROUGE-type met-
rics are not the only metrics which we can use to
determine how relevant a sentence is to a sum-
mary. Throughout the data, there are approxi-
mately 2000 occurrences of authors directly copy-
ing sentences from within the main text to use as
highlight statements. By recording from which
sections of the paper these sentences came, we can
determine from which sections authors most fre-
quently copy sentences to the highlights, so may
be the most relevant to a summary. This is referred
to as the Copy/Paste Score in this paper.

Figure 2 shows the average ROUGE score
for each section over all papers, and the nor-
malised Copy/Paste score. The title has the high-
est ROUGE score in relation to the gold summary,
which is intuitive as the aim of a title is to convey
information about the research in a single line.

A surprising result is that the introduction has
the third-lowest ROUGE score in relation to the
highlights. Our hypothesis was that the introduc-
tion would be ranked highest after the abstract and
title because it is designed to give the reader a ba-
sic background of the problem. Indeed, the intro-
duction has the second highest Copy/Paste score
of all sections. The reason the introduction has a
low ROUGE score but high Copy/Paste score is
likely due to its length. The introduction tends
to be longer (average length of 72.1 sentences)
than other sections, but still of a relatively simple
level compared to the method (average length of
41.6 sentences), thus has more potential sentences
for an author to use in highlights, giving the high
Copy/Paste score. However it would also have
more sentences which are not good summaries and
thus reduce the overall average ROUGE score of
the introduction.

Hence, although some sections are slightly
more likely to contain good summary sentences,
and assuming that we do not take summary sen-

Figure 2: Comparison of the average ROUGE
scores for each section and the Normalised Copy-
/Paste score for each section, as detailed in Sec-
tion 5.1. The wider bars in ascending order are the
ROUGE scores for each section, and the thinner
overlaid bars are the Copy/Paste count.

tences from the abstract which is already a sum-
mary, then Figure 2 suggests that there is no
definitive section from which summary sentences
should be extracted.

5.2 Comparison of Model Performance and
Error Analysis

Figure 3 shows comparisons of the best model
we developed to well-established external baseline
methods. Our model can be seen to significantly
outperform these methods, including graph-based
methods which take account of global context:
LexRank (Radev, 2004) and TextRank (Mihalcea
and Tarau, 2004); probabilistic methods in KL-
Sum (KL divergence summariser, Haghighi and
Vanderwende (2009)); methods based on singu-
lar value decomposition with LSA (latent semantic
analysis, Steinberger and Ježek (2004)); and sim-
ple methods based on counting in SumBasic (Van-
derwende et al., 2007). This is an encouraging re-
sult showing that our methods that combine neural
sentence encoding and simple features for repre-
senting the global context and positional informa-
tion are very effective for modelling an extractive
summarisation problem.

Figure 4 shows the performance of all mod-
els developed in this work measured in terms of
accuracy and ROUGE-L on CSPubSumExt Test
and CSPubSum Test, respectively. Architectures
which use a combination of sentence encoding and
additional features performed best by both mea-

200

Figure 3: Comparison of the best performing
model and several baselines by ROUGE-L score
on CSPubSum Test.

sures. The LSTM encoding on its own outper-
forms models based on averaged word embed-
dings by 6.7% accuracy and 2.1 ROUGE points.
This shows that the ordering of words in a sen-
tence clearly makes a difference in deciding if that
sentence is a summary sentence. This is a particu-
larly interesting result as it shows that encoding a
sentence with an RNN is superior to simple arith-
metic, and provides an alternative to the recur-
sive autoencoder proposed by (Socher et al., 2011)
which performed worse than vector addition.

Another interesting result is that the highest ac-
curacy on CSPubSumExt Test did not translate
into the best ROUGE score on CSPubSum Test,
although they are strongly correlated (Pearson cor-
relation, R=0.8738). SAFNet achieved the high-
est accuracy on CSPubSumExt Test, however was
worse than the AbstractROUGE Summariser on
CSPubSum Test. This is most likely due to imper-
fections in the training data. A small fraction of
sentences in the training data are mislabelled due
to bad examples in the highlights which are ex-
acerbated by the HighlightROUGE method. This
leads to confusion for the summarisers capable of
learning complex enough representations to clas-
sify the mislabelled data correctly.

We manually examined 100 sentences from
CSPubSumExt which were incorrectly classified
by SAFNet. Out of those, 37 are mislabelled
examples. The primary cause of false positives
was lack of context (16 / 50 sentences) and long
range dependency (10 / 50 sentences). Other im-
portant causes of false positives were mislabelled
data (12 / 50 sentences) and a failure to recog-

Figure 4: Comparison of the accuracy of each
model on CSPubSumExt Test and ROUGE-L
score on CSPubSum Test. ROUGE Scores are
given as a percentage of the Oracle Summariser
score which is the highest score achievable for
an extractive summariser on each of the papers.
The wider bars in ascending order are the ROUGE
scores. There is a statistically significant differ-
ence between the performance of the top four sum-
marisers and the 5th highest scoring one (unpaired
t-test, p=0.0139).

nise that mathematically intense sentences are not
good summaries (7 / 50 sentences). Lack of con-
text is when sentences require information from
the sentences immediately before them to make
sense. For example, the sentence “The perfor-
mance of such systems is commonly evaluated us-
ing the data in the matrix” is classified as positive
but does not make sense out of context as it is not
clear what systems the sentence is referring to. A
long-range dependency is when sentences refer to
an entity that is described elsewhere in the paper,
e.g. sentences referring to figures. These are more
likely to be classified as summary statements when
using models trained on automatically generated
training data with HighlightROUGE, because they
have a large overlap with the summary.

The primary cause of false negatives was misla-
belled data (25 / 50 sentences) and failure to recog-
nise an entailment, observation or conclusion (20
/ 50 sentences). Mislabelled data is usually caused
by the presence of some sentences in the high-
lights which are of the form “we set m=10 in this
approach”, which are not clear without context.
Such sentences should only be labelled as positive
if they are part of multi-line summaries, which is
difficult to determine automatically.

201

Failure to recognise an entailment, observation
or conclusion is where a sentence has the form
”entity X seems to have a very small effect on Y”
for example, but the summariser has not learnt that
this information is useful for a summary, possibly
because it was occluded by mislabelled data.

SAFNet and SFNet achieve high accuracy on
the automatically generated CSPubSumExt Test
dataset, though a lower ROUGE score than other
simpler methods such as FNet on CSPubSum Test.
This is likely due to overfitting, which our simpler
summarisation models are less prone to. One op-
tion to solve this would be to manually improve
the CSPubSumExt labels, the other to change the
form of the training data. Rather than using a ran-
domised list of sentences and trying to learn ob-
jectively good summaries (Cao et al., 2015), each
training example could be all the sentences in or-
der from a paper, classified as either summary or
not summary. The best summary sentences from
within the paper would then be chosen using High-
lightROUGE and used as training data, and an ap-
proach similar to Nallapati et al. (2016a) could
be used to read the whole paper sequentially and
solve the issue of long-range dependencies and
context.

The issue faced by SAFNet does not affect the
ensemble methods so much as their predictions are
weighted by a hyperparameter tuned with CSPub-
Sum Test rather than CSPubSumExt. Ensemblers
ensure good performance on both test sets as the
two models are adapted to perform better on dif-
ferent examples.

In summary, our model performances show
that: reading a sentence sequentially is superior
to averaging its word vectors, simple features that
model global context and positional information
are very effective and a high accuracy on an au-
tomatically generated test set does not guarantee a
high ROUGE-L score on a gold test set, although
they are correlated. This is most likely caused by
models overfitting data that has a small but sig-
nificant proportion of mislabelled examples as a
byproduct of being generated automatically.

5.3 Effect of Using ROUGE-L to Generate
More Data

This work used a method similar to Hermann et al.
(2015) to generate extra training data (Section
3.1). Figure 5 compares three models trained on
CSPubSumExt Train and the same models trained

Figure 5: Comparison of the ROUGE scores of
FNet, SAFNet and SFNet when trained on CSPub-
SumExt Train (bars on the left) and CSPubSum
Train (bars on the right) and .

on CSPubSum Train (the feature of which section
the example appeared in was removed to do this).
The FNet summariser and SFNet suffer statisti-
cally significant (p = 0.0147 and p < 0.0001)
drops in performance from using the unexpanded
dataset, although interestingly SAFNet does not,
suggesting it is a more stable model than the other
two. These drops in performance however show
that using the method we have described to in-
crease the amount of available training data does
improves model performance for summarisation.

5.4 Effect of the AbstractROUGE Metric on
Summariser Performance

This work suggested use of the AbstractROUGE
metric as a feature (Section 3.2). Figure 6 com-
pares the performance of 3 models trained with
and without it. This shows two things: the Ab-
stractROUGE metric does improve performance
for summarisation techniques based only on fea-
ture engineering; and learning a representation of
the sentence directly from the raw text as is done
in SAFNet and SFNet as well as learning from
features results in a far more stable model. This
model is still able to make good predictions even
if AbstractROUGE is not available for training,
meaning the models need not rely on the presence
of an abstract.

6 Related Work

Datasets Datasets for extractive summarisation
often emerged as part of evaluation campaigns
for summarisation of news, organised by the

202

Figure 6: Comparison of ROUGE scores of the
Features Only, SAFNet and SFNet models when
trained with (bars on the left) and without (bars on
the right) AbstractROUGE, evaluated on CSPub-
Sum Test. The FNet classifier suffers a statis-
tically significant (p=0.0279) decrease in perfor-
mance without the AbstractROUGE metric.

Document Understanding Conference (DUC), and
the Text Analysis Conference (TAC). DUC pro-
posed single-document summarisation (Harman
and Over, 2002), whereas TAC datasets are
for multi-document summarisation (Dang and
Owczarzak, 2008, 2009). All of the datasets con-
tain roughly 500 documents.

The largest summarisation dataset (1 mil-
lion documents) to date is the DailyMail/CNN
dataset (Hermann et al., 2015), first used
for single-document abstractive summarisation
by (Nallapati et al., 2016b), enabling research on
data-intensive sequence encoding methods.

Existing datasets for summarisation of scien-
tific documents of which we are aware are small.
Kupiec et al. (1995) used only 21 publications
and CL-SciSumm 20176 contains 30 publications.
Ronzano and Saggion (2016) used a set of 40 pa-
pers, Kupiec et al. (1995) used 21 and Visser and
Wieling (2009) used only 9 papers. The largest
known scientific paper dataset was used by Teufel
and Moens (2002) who used a subset of 80 papers
from a larger corpus of 260 articles.

The dataset we introduce in this paper is, to our
knowledge, the only large dataset for extractive
summarisation of scientific publications. The size
of the dataset enables training of data-intensive
neural methods and also offers exciting research

6http://wing.comp.nus.edu.sg/
cl-scisumm2017/

challenges centered around how to encode very
large documents.

Extractive Summarisation Methods Early
work on extractive summarisation focuses ex-
clusively on easy to compute statistics, e.g.
word frequency (Luhn, 1958), location in the
document (Baxendale, 1958), and TF-IDF (Salton
et al., 1996). Supervised learning methods which
classify sentences in a document binarily as
summary sentences or not soon became popu-
lar (Kupiec et al., 1995). Exploration of more
cues such as sentence position (Yang et al., 2017),
sentence length (Radev et al., 2004), words in the
title, presence of proper nouns, word frequency
(Nenkova et al., 2006) and event cues (Filatova
and Hatzivassiloglou, 2004) followed.

Recent approaches to extractive summari-
sation have mostly focused on neural ap-
proaches, based on bag of word embeddings ap-
proaches (Kobayashi et al., 2015; Yogatama et al.,
2015) or encoding whole documents with CNNs
and/or RNNs (Cheng and Lapata, 2016).

In our setting, since the documents are very
large, it is computationally challenging to read a
whole publication with a (possibly hierarchical)
neural sequence encoder. In this work, we there-
fore opt to only encode the target sequence with an
RNN and the global context with simpler features.
We leave fully neural approaches to encoding pub-
lications to future work.

7 Conclusion

In this paper, we have introduced a new dataset for
summarisation of computer science publications,
which is substantially larger than comparable ex-
isting datasets, by exploiting an existing resource.
We showed the performance of several extractive
summarisation models on the dataset that encode
sentences, global context and position, which sig-
nificantly outperform well-established summari-
sation methods. We introduced a new metric,
AbstractROUGE, which we show increases sum-
marisation performance. Finally, we show how
the dataset can be extended automatically, which
further increases performance. Remaining chal-
lenges are to better model the global context of
a summary statement and to better capture cross-
sentence dependencies.

Acknowledgments

This work was partly supported by Elsevier.

203

References
Isabelle Augenstein, Mrinal Kanti Das, Sebastian

Riedel, Lakshmi Nair Vikraman, and Andrew Mc-
Callum. 2017. SemEval 2017 Task 10: ScienceIE -
Extracting Keyphrases and Relations from Scientific
Publications. In Proceedings of SemEval.

Isabelle Augenstein and Anders Søgaard. 2017. Multi-
Task Learning of Keyphrase Boundary Classifica-
tion. In Proceedings of ACL.

Phyllis B Baxendale. 1958. Machine-Made Index for
Technical LiteratureAn Experiment. IBM Journal of
Research and Development 2(4):354–361.

Ziqiang Cao, Furu Wei, Sujian Li, Wenjie Li, Ming
Zhou, and Houfeng Wang. 2015. Learning Sum-
mary Prior Representation for Extractive Summa-
rization. Proceedings of ACL .

Jianpeng Cheng and Mirella Lapata. 2016. Neural
Summarization by Extracting Sentences and Words.
In Proceedings of ACL.

Sumit Chopra, Michael Auli, and Alexander M. Rush.
2016. Abstractive Sentence Summarization with At-
tentive Recurrent Neural Networks. In Proceedings
NAACL-HLT .

Arman Cohan and Nazli Goharian. 2015. Scientific
Article Summarization Using Citation-Context and
Article’s Discourse Structure. In Proceedings of
EMNLP. September, pages 390–400.

Hoa Trang Dang and Karolina Owczarzak. 2008.
Overview of the TAC 2008 Update Summarization
Task. In Proceedings of TAC.

HT Dang and K Owczarzak. 2009. Overview of the
TAC 2009 Summarization Track. In Proceedings of
TAC.

Alexander Dlikman and Mark Last. 2016. Using
Machine Learning Methods and Linguistic Fea-
tures in Single-Document Extractive Summariza-
tion. CEUR Workshop Proceedings 1646:1–8.

Elena Filatova and Vasileios Hatzivassiloglou. 2004.
Event-Based Extractive Summarization. In Pro-
ceedings of ACL Workshop on Summarization.

Sonal Gupta and Christopher Manning. 2011. Ana-
lyzing the Dynamics of Research by Extracting Key
Aspects of Scientific Papers. In Proceedings of IJC-
NLP.

Aria Haghighi and Lucy Vanderwende. 2009. Explor-
ing Content Models for Multi-Document Summa-
rization. In Proceedings of ACL-HLT . June, pages
362–370.

Donna Harman and Paul Over. 2002. The duc summa-
rization evaluations. In Proceedings HLT .

Karl Moritz Hermann, Tomas Kocisky, Edward
Grefenstette, Lasse Espeholt, Will Kay, Mustafa Su-
leyman, and Phil Blunsom. 2015. Teaching Ma-
chines to Read and Comprehend. In Proceedings
of NIPS.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Computation
9(8):1735–1780.

Kokil Jaidka, Muthu Kumar Chandrasekaran, Sajal
Rustagi, and Min Yen Kan. 2016. Overview of the
CL-SciSumm 2016 Shared Task. CEUR Workshop
Proceedings 1610:93–102.

Selvani Deepthi Kavila and Y Radhika. 2015. Extrac-
tive Text Summarization Using Modified Weighing
and Sentence Symmetric Feature Methods. Interna-
tional Journal of Modern Education and Computer
Science 7(10):33.

Su Nam Kim, Olena Medelyan, Min-Yen Kan, and
Timothy Baldwin. 2010. SemEval-2010 Task 5 :
Automatic Keyphrase Extraction from Scientific Ar-
ticles. In Proceedings of the 5th International Work-
shop on Semantic Evaluation. Association for Com-
putational Linguistics, Uppsala, Sweden, pages 21–
26.

Hayato Kobayashi, Masaki Noguchi, and Taichi Yat-
suka. 2015. Summarization Based on Embedding
Distributions. In Proceedings of EMNLP.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hin-
ton. 2012. ImageNet Classification with Deep Con-
volutional Neural Networks. In Proceedings of
NIPS. pages 1–9.

Julian Kupiec, Jan Pedersen, and Francine Chen. 1995.
A Trainable Document Summarizer. In Proceedings
of SIGIR.

C Y Lin. 2004. ROUGE: A Package for Automatic
Evaluation of Summaries. In Proceedings of the
ACL Workshop on Text Summarization Branches
Out (WAS). 1, pages 25–26.

Marina Litvak, Natalia Vanetik, Mark Last, and Elena
Churkin. 2016. MUSEEC: A Multilingual Text
Summarization Tool. Proceedings of ACL System
Demonstrations pages 73–78.

Hans Peter Luhn. 1958. The Automatic Creation of
Literature Abstracts. IBM Journal of research and
development 2(2):159–165.

Erwin Marsi and Pinar Öztürk. 2015. Extraction and
generalisation of variables from scientific publica-
tions. In Proceedings of EMNLP.

Rada Mihalcea and Paul Tarau. 2004. TextRank:
Bringing order into texts. Proceedings of EMNLP
85:404–411.

204

Ramesh Nallapati, Feifei Zhai, and Bowen Zhou.
2016a. SummaRuNNer: A Recurrent Neural Net-
work based Sequence Model for Extractive Sum-
marization of Documents. Association for the Ad-
vancement of Artificial Intelligence .

Ramesh Nallapati, Bowen Zhou, Caglar Gulcehre,
Bing Xiang, et al. 2016b. Abstractive Text Sum-
marization Using Sequence-to-Sequence RNNs and
Beyond. In Proceedings of CoNLL.

Ani Nenkova, Lucy Vanderwende, and Kathleen McK-
eown. 2006. A Compositional Context Sensitive
Multi-document Summarizer: Exploring the Factors
That Influence Summarization. In Proceedings of
SIGIR.

Diarmuid Ó Séaghdha and Simone Teufel. 2014. Un-
supervised learning of rhetorical structure with un-
topic models. In Proceedings of Coling.

Dragomir R Radev. 2004. LexRank : Graph-based
Centrality as Salience in Text Summarization. Jour-
nal of Artificial Intelligence Research 22(22):457–
479.

Dragomir R Radev, Timothy Allison, Sasha Blair-
Goldensohn, John Blitzer, Arda Celebi, Stanko
Dimitrov, Elliott Drabek, Ali Hakim, Wai Lam,
Danyu Liu, et al. 2004. MEAD-A Platform for Mul-
tidocument Multilingual Text Summarization. In
Proceedings of LREC.

Juan Ramos, Juramos Eden, and Rutgers Edu. 2003.
Using TF-IDF to Determine Word Relevance in
Document Queries. Processing .

Francesco Ronzano and Horacio Saggion. 2016.
Knowledge Extraction and Modeling from Scientific
Publications. In Proceedings of WWW Workshop on
Enhancing Scholarly Data.

Alexander M. Rush, Sumit Chopra, and Jason We-
ston. 2015. A Neural Attention Model for Abstrac-
tive Sentence Summarization. In Proceedings of
EMNLP.

Horacio Saggion, Ahmed Abura’ed, and Francesco
Ronzano. 2016. Trainable citation-enhanced sum-
marization of scientific articles. CEUR Workshop
Proceedings 1610:175–186.

Gerard Salton, James Allan, Chris Buckley, and Amit
Singhal. 1996. Automatic Analysis, Theme Gen-
eration, and Summarization of Machine-Readable
Texts. In Information retrieval and hypertext,
Springer, pages 51–73.

Abigail See, Peter J Liu, and Christopher D Man-
ning. 2017. Get To The Point: Summarization
with Pointer-Generator Networks. In Proceedings
of ACL.

Richard Socher, Jeffrey Pennington, Eric H Huang,
Andrew Y Ng, and Christopher D Manning. 2011.

Semi-Supervised Recursive Autoencoders for Pre-
dicting Sentiment Distributions. In Proceedings of
EMNLP. pages 151–161.

Karen Spärck Jones. 2007. Automatic summarising:
The state of the art. Information Processing and
Management 43(6):1449–1481.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A Simple Way to Prevent Neural Networks
from Overfitting. Journal of Machine Learning Re-
search 15:1929–1958.

Josef Steinberger and Karel Ježek. 2004. Using Latent
Semantic Analysis in Text Summarization. In Pro-
ceedings of ISIM. pages 93–100.

Lucas Sterckx, Cornelia Caragea, Thomas Demeester,
and Chris Develder. 2016. Supervised Keyphrase
Extraction as Positive Unlabeled Learning. In Pro-
ceedings of EMNLP.

Simone Teufel and Marc Moens. 2002. Summariz-
ing Scientific Articles: Experiments with Relevance
and Rhetorical Status. Computational linguistics
28(4):409–445.

Lucy Vanderwende, Hisami Suzuki, Chris Brockett,
and Ani Nenkova. 2007. Beyond SumBasic: Task-
focused summarization with sentence simplification
and lexical expansion. Information Processing and
Management 43(6):1606–1618.

W. T. Visser and M .B. Wieling. 2009. Sentence-based
Summarization of Scientific Documents .

Yinfei Yang, Forrest Bao, and Ani Nenkova. 2017. De-
tecting (Un)Important Content for Single-Document
News Summarization. In Proceedings of EACL
(Short Papers).

Dani Yogatama, Fei Liu, and Noah A Smith. 2015.
Extractive Summarization by Maximizing Semantic
Volume. In Proceedings of EMNLP. pages 1961–
1966.

205

Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017), pages 206–215,
Vancouver, Canada, August 3 - August 4, 2017. c©2017 Association for Computational Linguistics

An Automatic Approach for Document-level Topic Model Evaluation

Shraey Bhatia1 Jey Han Lau1,2 Timothy Baldwin1

1 School of Computing and Information Systems,
The University of Melbourne

2 IBM Research

shraeybhatia@gmail.com, jeyhan.lau@gmail.com, tb@ldwin.net

Abstract

Topic models jointly learn topics and
document-level topic distribution. Extrin-
sic evaluation of topic models tends to fo-
cus exclusively on topic-level evaluation,
e.g. by assessing the coherence of topics.
We demonstrate that there can be large dis-
crepancies between topic- and document-
level model quality, and that basing model
evaluation on topic-level analysis can be
highly misleading. We propose a method
for automatically predicting topic model
quality based on analysis of document-
level topic allocations, and provide empiri-
cal evidence for its robustness.

1 Introduction

Topic models such as latent Dirichlet allocation
(Blei et al., 2003) jointly learn latent topics (in
the form of multinomial distributions over words)
and topic allocations to individual documents (in
the form of multinomial distributions over top-
ics), and provide a powerful means of document
collection navigation and visualisation (Newman
et al., 2010a; Chaney and Blei, 2012; Smith et al.,
2017). One property of LDA-style topic models
that has contributed to their popularity is that they
are highly configurable, and can be structured to
capture a myriad of statistical dependencies, such
as between topics (Blei and Lafferty, 2006), be-
tween documents associated with the same individ-
ual (Rosen-Zvi et al., 2004), or between documents
associated with individuals in different network
relations (Wang and Blei, 2011). This has led to
a wealth of topic models of different types, and
the need for methods to evaluate different styles of
topic model over the same document collections.
Test data perplexity is the obvious solution, but
it has been shown to correlate poorly with direct

human assessment of topic model quality (Chang
et al., 2009), motivating the need for automatic
topic model evaluation methods which emulate hu-
man assessment. Research in this vein has focused
primarily on evaluating the quality of individual
topics (Newman et al., 2010b; Mimno et al., 2011;
Aletras and Stevenson, 2013; Lau et al., 2014; Fang
et al., 2016) and largely ignored evaluation of topic
allocations to individual documents, and it has be-
come widely accepted that topic-level evaluation
is a reliable indicator of the intrinsic quality of the
overall topic model (Lau et al., 2014). We chal-
lenge this assumption, and demonstrate that topic
model evaluation should operate at both the topic
and document levels.

Our primary contributions are as follows: (1)
we empirically demonstrate that there can be large
discrepancies between topic- and document-level
topic model evaluation; (2) we demonstrate that
previously-proposed document-level evaluation ap-
proaches can be misleading, and propose an al-
ternative evaluation method; and (3) we propose
an automatic approach to topic model evaluation
based on analysis of document-level topic distri-
butions, which we show to correlate strongly with
manual annotations.

2 Related Work

Perplexity or held-out likelihood has long been
used as an intrinsic metric to evaluate topic models
(Wallach et al., 2009). Chang et al. (2009) pro-
posed two human judgement tasks, at the topic
and document levels, and showed that there is low
correlation between perplexity and direct human
evaluations of topic model quality. The two tasks
took the form of “intruder” tasks, whereby sub-
jects were tasked with identifying an intruder topic
word for a given topic, or an intruder topic for a
given document. Specifically, in the word intrusion

206

task, an intruder word was added to the top-5 topic
words, and annotators were asked to identify the
intruder word. Similarly in the topic intrusion task,
a document and 4 topics were presented — the
top-3 topics corresponding to the document and a
random intruder topic — and subjects were asked
to spot the intruder topic. The intuition behind both
methods is that the higher the quality of the topic
or topic allocation for a given document, the easier
it should be to detect the intruder.

Newman et al. (2010b) proposed to measure
topic coherence directly in the form of “observed
coherence”, in which human judges rated topics
directly on an ordinal 3-point scale. They experi-
mented with a range of different methods to auto-
mate the rating task, and reported the best results by
simply aggregating pointwise mutual information
(pmi) scores for different pairings of topic words,
based on a sliding window over English Wikipedia.

Building on the work of Chang et al. (2009), Lau
et al. (2014) proposed an improved method for es-
timating observed coherence based on normalised
pmi (npmi), and further automated the word in-
truder detection task based on a combination of
word association features (pmi, npmi, CP1, and
CP2) in a learn-to-rank model (Joachims, 2006).
Additionally, the authors showed a strong correla-
tion between word intrusion and observed coher-
ence, and suggested that it is possible to perform
topic model evaluation based on aggregation of
word intrusion or observed coherence scores across
all topics.

3 Datasets and Topic Models

We use two document collections for our experi-
ments: APNEWS and the British National Corpus
(“BNC”: Burnard (1995)). APNEWS is a collection
of Associated Press1 news articles from 2009 to
2016, while BNC is an amalgamation of extracts
from different sources such as books, journals, let-
ters, and pamphlets. We sample 50K and 15K
documents from APNEWS and BNC, respectively,
to create two datasets for our experiments.

In terms of preprocessing, we use Stanford
CoreNLP (Manning et al., 2014) to tokenise words
and sentences. We additionally remove stop
words,2 lower-case all word tokens, filter word
types which occur less than 10 times, and exclude

1https://www.ap.org/en-gb/
2We use Mallet’s stop word list: https://github.

com/mimno/Mallet/tree/master/stoplists

the top 0.1% most frequent word types. Statistics
for each of the preprocessed datasets are provided
in Table 1.

Similarly to Chang et al. (2009), we base our
analysis on a representative selection of topic mod-
els, each of which we train over APNEWS and BNC

to generate 100 topics:
• lda (Blei et al., 2003) uses a symmetric

Dirichlet prior to model both document-level
topic mixtures and topic-level word mixtures.
It is one of the most commonly used topic
model implementations and serve as a bench-
mark for comparison. We use Mallet’s imple-
mentation of lda for our experiments. Note
that Mallet implements various enhancements
to the basic LDA model, including the use of
an asymmetric–symmetric prior.
• ctm (Blei and Lafferty, 2006) is an extension

of lda that uses a logistic normal prior over
topic proportions instead of a Dirichlet prior
to model correlations between different topics
and reduce overlap in topic content.
• hca (Buntine and Mishra, 2014) is an exten-

sion to LDA to capture word burstiness (Doyle
and Elkan, 2009), based on the observation
that there tends to be higher likelihood of gen-
erating a word which has already been seen
recently. Word generation is modelled by a
Pitman–Yor process (Chen et al., 2011).
• ntm (Cao et al., 2015) is a neural topic

model, where topic–word multinomials are
modelled as a look-up layer of words, and
topic–document multinomials are modelled
as a look-up layer of documents. The output
layer of the network is given by the dot prod-
uct of the two vectors. There are 2 variants of
ntm: unsupervised and supervised. We use
only the unsupervised variant in our experi-
ments.
• cluster is a baseline topic model, specifi-

cally designed to produce highly coherent top-
ics but “bland” topic allocations. We represent
word types in the documents with pre-trained
word2vec vectors (Mikolov et al., 2013a,b),
pre-trained on Google News,3 and create word
clusters using k-means clustering (k = 100)
to generate the topics. We derive the multi-
nomial distribution for each topic based on
the cosine distance to the cluster centroid, and

3Available from: https://code.google.com/
archive/word2vec.

207

Dataset #Docs #Tokens

APNEWS 50K 15M
BNC 15K 18M

Table 1: Statistics for the two document collections
used in our experiments

Model APNEWS BNC

lda 0.16 0.14
ctm 0.07 0.09
hca 0.14 0.08
ntm 0.10 0.08

cluster 0.18 0.17

Table 2: Topic coherence scores (npmi)

linear normalisation across all words.
To generate the topic allocation for a given
document, we first calculate a document
representation based on the mean of the
word2vec vectors of its content words. For
each cluster, we represent them by calculat-
ing the mean word2vec vectors of its top-10
words. Given the document vector and clus-
ters/topics, we calculate the similarity of the
document to each cluster based on cosine sim-
ilarity, and finally (linearly) normalise the sim-
ilarities to generate a probability distribution.

4 Topic-level Evaluation: Topic
Coherence

Pointwise mutual information (and its normalised
variant npmi) is a common association measure to
estimate topic coherence (Newman et al., 2010b;
Mimno et al., 2011; Aletras and Stevenson, 2013;
Lau et al., 2014; Fang et al., 2016). Although the
method is successful in assessing topic quality, it
tells us little about the association between docu-
ments and topics. As we will see, a topic model
can produce topics that are coherent — in terms
of npmi association — but poor descriptor of the
overall concepts in the document collection.

We first compute topic coherence for all 5 topic
models over APNEWS and BNC using npmi (Lau
et al., 2014) and present the results in Table 2.4 We
see that lda and cluster perform consistently
well across both datasets. hca performs well over

4We use the following open source toolkit to com-
pute topic coherence: https://github.com/jhlau/
topic_interpretability.

APNEWS but poorly over BNC. Both ctm and ntm
topics appear to have low coherence over the two
datasets.

Based on these results, one would conclude that
cluster is a good topic model, as it produces
very coherent topics. To better understand the na-
ture and quality of the topics, we present a random
sample of lda and cluster topics in Table 3.

Looking at the topics, we see that cluster
tends to include different inflectional forms of the
same word (e.g. prohibited, probihiting) and near-
synonyms/sister words (e.g. river, lake, creeks) in
a single topic. This explains the strong npmi as-
sociation of the cluster topics. On the other
hand, lda discovers related words that collectively
describe concepts rather than just clustering (near)
synonyms. This suggests that the topic coherence
metric alone may not completely capture topic
model quality, leading us to also investigate the
topic distribution associated with documents from
our collections.

5 Human Evaluation of Document-level
Topic Allocations

In this section, we describe a series of manual evalu-
ations of document-level topic allocations, in order
to get a more holistic evaluation of the true qual-
ity of the different topic models (in line with the
original work of Chang et al. (2009)).

5.1 Topic Intrusion

The goal of the topic intrusion task is to exam-
ine whether the document–topic allocations from
a given topic model accord with manual judge-
ments. We formulate the task similarly to Chang
et al. (2009), in presenting the human judges with
a snippet from each document, along with four top-
ics. The four topics comprise the top-3 highest
probability topics related to document, and one in-
truder topic. Each annotator is required to pick the
topic that is least representative of the document,
with the expectation that the better the topic model,
the more readily they should be able to pick the
intruder topic. The intruder topic is sampled ran-
domly, subject to the following conditions: (1) it
should be a low probability topic for the target doc-
ument; and (2) it should be a high probability topic
for at least one other document. The first constraint
is intended to ensure that the intruder topic is un-
related to the target document, while the second
constraint is intended to select a topic that is highly

208

Model Topics

lda
oil gas drilling gulf spill natural pipeline wells industry energy
computer video screen program text disk windows electronic machine graphics
health care hospital services medical staff patients service child authority

cluster
river creek lake rivers dam tributary lakes reservoir tributaries creeks
prohibited forbid prohibiting prohibits violated prohibit contravened forbids violate barred
terrace courtyard staircase staircases courtyards walls pergola walkway stairways walkways

Table 3: Example lda and cluster topics.

Topic Model
Mean Model Precision

APNEWS BNC

lda 0.84 0.66
ctm 0.64 0.66
hca 0.60 0.44
ntm 0.26 0.17

cluster 0.39 0.48

Table 4: Mean model precision for human judge-
ments

associated with some documents, and hence likely
to be coherent and not a junk topic. Each topic is
represented by its top-10 most probable words, and
the target document is presented in the form of the
first three sentences, with an option to view more
of the document if further context is needed.

We used Amazon Mechanical Turk to collect
the human judgements, with five document–topic
combinations forming a single HIT, one of which
acts as a quality control. The control items were
sourced from an earlier annotation task where sub-
jects were asked to score the top-5 topics for a
target document on a scale of 0–3. The 50 top-
scoring documents from this annotation task, with
their top-3 topics, were chosen as controls. The
intruder topic for the control was generated by ran-
domly selecting 10 words from the corpus vocabu-
lary. In order to pass quality control, each worker
had to correctly select the intruder topic for the con-
trol document–topic item over 60% of time (across
all HITs they completed). Each document–topic
pair was rated by 10 annotators initially, and for
HITs where less than 3 annotations passed quality
control, we reposted them for a second round of
annotation.

For our annotation task, we randomly sampled
100 documents from each of our two datasets, for

Topic Model
Mean Topic Log Odds

APNEWS BNC

lda -0.78 -1.84
ctm -1.04 -1.60
hca -2.09 -3.61
ntm -7.16 -6.32

cluster -0.12 -0.10

Table 5: Mean topic log odds for human judge-
ments

each of which we generate document–topic items
based on the five different topic models. In total,
therefore, we annotated 1000 (100 documents × 2
collections× 5 topic models) document–topic com-
binations. After quality control, the final dataset
contains an average of 5.4 and 5.5 valid intruder
topic annotations for APNEWS and BNC, respec-
tively.

Chang et al. (2009) proposed topic log odds
(“TLO”) as a means of evaluating the topic intru-
sion task. The authors defined topic log odds for
a document–topic pair as the difference in the log-
probability assigned to the intruder and the log-
probability assigned to the topic chosen by a given
annotator, which they then averaged across anno-
tators to get a TLO score for a single document.
Separately, Chang et al. (2009) proposed model
precision as a means of evaluating the word in-
trusion task, whereby they simply calculated the
proportion of annotators who correctly selected
the intruder word for a given topic. In addition
to presenting results based on TLO, we apply the
model precision methodology in our evaluation
of the topic intrusion task, in calculating the pro-
portion of annotators who correctly selected the
intruder topic for a given document, which we then
average across documents to derive a model score.

209

(a) APNEWS (b) BNC

Figure 1: Boxplots of model precision

(a) APNEWS (b) BNC

Figure 2: Boxplots of topic log odds

The results of the human annotation task are
summarised in Tables 4 and 5. Looking at model
precision for APNEWS first, we see that lda out-
performs the other topic models. ctm and hca
perform credibly, whereas ntm and cluster
are quite poor. Moving on to BNC, we see a
drop in score for lda, to a level comparable with
ctm. cluster improves slightly higher than
BNC, whereas hca drops considerably (despite be-
ing designed specifically to deal with word bursti-
ness in the longer documents characteristic of BNC).
Figure 1 shows boxplots for topic-level model pre-
cision, and reflects a similar trend.

Looking next to TLO in Table 5, we see a totally
different picture, with cluster being rated as the
best topic model by a clear margin. This exposes a
flaw in the TLO formulation, in the case of adver-
sarial topic models such as clusterwhich assign
near-uniform probabilities across all topics. This
results in the difference in probability mass being

very close to the upper bound of zero in all cases,
meaning that even for random topic selection, TLO
is near perfect. We can also see this in Figure 2,
where the boxes for cluster have nearly zero
range. Indeed, if we combined the results for TLO
with those for topic coherence, we would (very
wrongly!) conclude that cluster performs best
over both document collections. More encourag-
ingly, for the other four topic models, the results for
TLO are much more consistent with those based
on model precision.

5.2 Direct Annotation of Topic Assignments

Newman et al. (2010b) proposed a more direct ap-
proach to topic coherence, by asking people to rate
topics directly based on the top-N words. Taking
inspiration from their methodology, we propose
to directly annotate each topic assigned to a tar-
get document. We present the human annotators
with the target document and the top-ranked (high-

210

Topic Model
Average rating

APNEWS BNC

lda 1.26 1.01
ctm 0.96 1.02
hca 0.95 0.90
ntm 0.36 0.46

cluster 0.41 0.66

Table 6: Top-1 document–topic rating for each
topic model

est probability) topic from each of the five topic
models, and ask them to rate each topic on an or-
dinal scale of 0–3. At the model level, we take the
mean rating over all document–topic pairings for
that topic model (based, once again, on 100 docu-
ments per collection).5 We summarise the findings
in Table 6.

We observe that, in the case of APNEWS,
lda does considerably better than ctm and hca,
whereas for BNC, lda and ctm are quite close,
with hca close behind. cluster and ntm do
poorly across both datasets. The overall trend for
APNEWS of lda > ctm > hca > cluster >
ntm is consistent with the model precision results
in Table 4. In the case of BNC, the observation of
ctm ≈ lda > hca > cluster > ntm is also
broadly the same, except that hca does not do as
well over the topic intrusion task. Here, we are
more interested in the relative performance of topic
models than absolute numbers, although the low
absolute scores are an indication that it is a difficult
annotation task.

Broadly combined across the two evaluation
methodologies, lda and ctm are top-performing,
hca gets mixed results, and cluster and ntm
are the lowest performers. These results generally
agree with the model precision findings, demon-
strating that model precision is a more robust met-
ric than TLO.

6 Automatic Evaluation

A limitation of the topic intrusion task is that it
requires manual annotation, making it ill-suited for
large-scale or automatic evaluation. We present
the first attempt to automate the prediction of the
intruder topic, with the aim of developing an ap-
proach to topic model evaluation which comple-

5The 100 documents used for this task were different to
the ones used in Section 5.1.

ments topic coherence (as motivated in Sections 4
and 5).

6.1 Methodology
We build a support vector regression (SVR) model
(Joachims, 2006) to rank topics given a document
to select the intruder topic. We first explain an
intuition of the features that are driving the SVR.

To rank topics for a document, we need to first
compute the probability of a topic t given document
d, i.e. P (t|d). We can invert the condition using
Bayes rule:

P (t|d) =
P (d|t)P (t)
P (d)

∝ P (d|t)P (t)

We can omit P (d) as the probability of document
d is constant for the topics that we are ranking.

Next we represent topic t using its top-N highest
probability words, giving:

P (t|d) ∝ P (d|w1, ..., wN)P (w1, ..., wN)
∝ logP (d|w1, ..., wN)+

logP (w1, ..., wN)

The first term logP (d|w1, ..., wN) can be inter-
preted from an information retrieval perspective,
where we are computing the relevance of docu-
ment d given query terms w1, w2, ..., wN . This
term constitutes the first feature for the SVR. We
use Indri6 to index the document collection, and
compute logP (d|w1, ..., wN) given a set of query
words and a document.7

We estimate the second term, logP (w1, ..., wN),
using the pairwise probability of the topic words:∑

0<i≤m

∑
i+1≤j≤m

log
#(wi, wj)

#(·)

where m denotes the number of topic words used,
#(wi, wj) is the number of documents where word
wi and wj co-occur, and #(·) is the total number
of documents. We explore using two values of m
here: 5 and 10.8 These two values constitute the
second and third features of the SVR.

To train the SVR, we sample 1700 random doc-
uments and split them into 1600/100 documents
for the training and test partitions, respectively.

6http://www.lemurproject.org
7N = 10.
8That is, if m = 5, we compute pairwise probabilities

using the top-5 topic words.

211

(a) APNEWS (b) BNC

Figure 3: Mean Model Precision Comparison

The test documents are the same 100 documents
that were previously used for intruder topics (Sec-
tion 5.1). As the intruder topics are artificially
generated, we can sample additional documents to
create a larger training set for the SVR; the ability
to generate arbitrary training data is a strength of
our method.

We pool together all 5 topic models when train-
ing the SVR, thereby generating 8000 training and
500 development and testing instances for each
dataset. For each document, the SVR is trained to
rank the topics in terms of their likelihood of being
an intruder topic.9 The top-ranking topic is selected
as the system-predicted intruder word, and model
precision is computed as before (Section 5.1).10

6.2 System results

In Figure 3, we present the human vs. system mean
model precision on the test partition for each of
the topic models. We see that the trend line for the
system model precision very closely tracks that of
human model precision. In general, the best sys-
tems — lda and ctm — and the worst systems
— ntm and cluster — are predicted correctly.
The correlation between the two is very high, at
r = 0.88 and 0.87 for APNEWS and BNC, respec-
tively. This suggests that the automated method
is a reliable means of evaluating document-level
topic model quality.

9We use the default hyper-parameter values for the SVR
(C = 0.01), and hence do no require a development set for
tuning.

10Note that the system model precision for each document–
topic combination is a binary value as there is only 1 system
— as opposed to multiple annotators — selecting an intruder
word.

7 Discussion

To better understand the differences between
human- and system-predicted intruder topics, we
present a number of documents and their associ-
ated topics in Table 7, focusing specifically on:
(a) intruder topics that humans struggle to identify
but our automatic method reliably detects; and (b)
conversely, intruder topics which humans readily
identify but our method struggles to detect.

Looking at the topics across the two types of
errors, we notice that there are often multiple “bad”
topics for these documents: occasionally the anno-
tators are able to single out the worst topic while
the system fails (1st and 2nd document), but some-
times the opposite happens (3rd and 4th document).
In the first case, the top-ranking topic (church, gay,
...) from the topic model is associated with the doc-
ument because of the service, but actually capturing
a very different aspect of religion to what is dis-
cussed in the document, which leads our method
astray. A similar effect is seen with the second
document. In the case of the third and fourth doc-
uments, there is actually content further down in
the document which is relevant to the topics the
human annotators select, but it is not apparent in
the document snippet presented to the annotators.
That is, the effect is caused by resource limitations
for the annotation task, that our automated method
does not suffer from.

When we aggregate the top-level model preci-
sion values for a topic model, these differences
are averaged out (hence the strong correlation in
Section 6.2), but these qualitative analyses reveal
that there are still slight disparities between human

212

Error Type:
High human MP
Low system MP

Document

more than 2,000 attendees are expected to attend public funeral services for former nevada gov.
kenny guinn . a catholic mass on tuesday morning will be followed by a memorial reception at
palace station . the two-term governor who served from 1999 to 2007 died thursday after falling
from the roof of his las vegas home while making repairs . he was 73 . guinn ’s former chief of staff
pete ernaut says attendance to the services will be limited only by the size of the venues . services
start at 10 a.m. at st. joseph , husband of mary roman catholic church ...

Topics

0: church gay marriage religious catholic same-sex couples pastor members bishop
1: died family funeral honor memorial father death wife cemetery son
2: casino las vegas nevada gambling casinos ford vehicles cars car
X: students college student campus education tuition universities colleges high degree

Document

the milwaukee art museum is exhibiting more than 70 works done by 19th century portrait painter
thomas sully . it ’s the first retrospective of the artist in 30 years and the first to present the artist ’s
portraits and subject pictures . sully was known for employing drama and theatricality to his works
. in some of his full-length portraits , he composed his figures as if they were onstage . some of
his subjects even seem to be trying to directly engage the viewer . milwaukee art museum director
daniel keegan says the exhibit provides a new look ...

Topics

0: china art chinese arts artist painting artists cuba world beijing
1: show music film movie won festival tickets game band play
2: online information internet book video media facebook phone computer technology
X: kelley family letter leave absence left united jay weeks director

Error Type:
Low human MP
High system MP

Document

(ap) ? the west virginia lottery is celebrating its 28th birthday by doing what it does best : awarding
large sums of money . the lottery will mark the milestone on thursday by giving away prizes of $
1 million , $ 100,000 and $ 10,000 . the three finalists were selected out of thousands of entries
from the lottery ’s monopoly millionaire instant game . the finalists are josh schoolcraft of given ,
douglas schafer of wheeling and todd kingrey of charleston . all three are due at lottery headquarters
in charleston to collect their winnings ...

Topics

0: jackpot powerball mega lottery lotto jackpots prizes ticket megaplier tickets
1: mingo earl wheeling virginia ap charleston wvu huntington coalfields rockefeller
2: museum artifacts exhibit paintings artwork historical curator sculpture exhibition exhibits
X: abercrombie ridley solace daley enclosures hobbyists hawaiian seventeen secondhand probate

Document

a 75-year-old driver has died after a collision near o’neill in northern nebraska . the holt county
sheriff ’s office says the accident occurred wednesday afternoon , less than a mile east of o’neill .
the office says thomas schneider halted at a stop sign and then turned east onto nebraska highway
108 . but he apparently turned too wide and went into the oncoming lane . his vehicle struck a
westbound vehicle driven by 52-year-old gerald kemp , of niobrara . schneider was pronounced at
the scene . the sheriff ’s office says kemp suffered no visible injuries ...

Topics

0: officers shot car shooting officer sheriff woman died killed hospital
1: service weather area storm miles airport snow river bridge emergency
2: prison prosecutors charges guilty trial judge case charged murder pleaded
X: toll road rocky carpenter hogan indiana long harvey private director

Table 7: Document and topic examples for two types of errors. “MP” denotes model precision, “X” the
intruder topic, and the indices the ranking of the topics. Topics highlighted in pink (yellow) are those
incorrectly selected by the system (humans) as intruder topics.

annotators and the automated method in intruder
topic selection.

To further understand how the topics relate to the
documents in different topic models, we present
documents with the corresponding topics for differ-
ent topic models in Table 8.

In the human annotation task, we use the top-10
most probable words to represent a topic. We use
10 words as it is the standard approach to visualis-
ing topics, but this is an important hyper-parameter
which needs to be investigated further (Lau and
Baldwin, 2016), which we leave to future work.

8 Conclusion

We demonstrate empirically that there can be
large discrepancies between topic coherence and
document–topic associations. By way of designing
an artificial topic model, we showed that a topic
model can simultaneously produce topics that are
coherent but be largely undescriptive of the doc-
ument collection. We propose a method to auto-
matically predict document-level topic quality and
found encouraging correlation with manual evalua-
tion, suggesting that it can be used as an alternative
approach for extrinsic topic model evaluation.

213

lda
Document

more than 2,000 attendees are expected to attend public funeral services for former nevada gov.
kenny guinn . a catholic mass on tuesday morning will be followed by a memorial reception at
palace station . the two-term governor who served from 1999 to 2007 died thursday after falling
from the roof of his las vegas home while making repairs . he was 73 . guinn ’s former chief of staff
pete ernaut says attendance to the services will be limited only by the size of the venues . services
start at 10 a.m. at st. joseph , husband of mary roman catholic church ...

Topics 0: church gay marriage religious catholic same-sex couples pastor members bishop
1: died family funeral honor memorial father death wife cemetery son

hca

Document

usa today founder al neuharth has died in cocoa beach , florida . he was 89 . the news was announced
friday by usa today and by the newseum , which he also founded . neuharth changed american
newspapers by putting easy-to-read articles and bright graphics in his national daily publication ,
which he began in 1982 when he ran the gannett co. newspaper group . he wanted to create a bright
, breezy , fun newspaper that would catch people ’s attention and not take itself too seriously. its
annual revenues increased from 200 million to more than 3 billion ...

Topics
0: honorary commencement philanthropist journalism distinguished honored bachelor pulitzer
doctorate harvard
1: shortfall premiums budget reductions cuts shortfalls salaries pensions revenues budgets

ctm
Document

a teenage driver who survived a southeastern indiana crash that killed three other youths will spend
90 days in juvenile detention and surrender his driver ’s license until age 21 . the 17-year-old driver
admitted to charges of reckless homicide and reckless driving during a ripley county juvenile court
hearing thursday in versailles , indiana state police sgt. noel houze jr. told the associated press . the
teenager choked back sobs throughout the half-hour hearing . the teen will be sent to a juvenile
facility in muncie . he also must complete 350 hours of community service ..

Topics 0: officers shot car shooting officer sheriff woman died killed hospital
1: prison prosecutors charges guilty trial judge case charged murder pleaded

ntm

Document

a judge in will county has approved further testing on the coat an oswego man was wearing when
his wife and three children were found shot to death in 2007 . christopher vaughn is accused
of killing his family inside their suv , which was parked on a frontage road along interstate 55 .
authorities found kimberly vaughn shot to death , along with their children , 12-year-old abigayle ,
11-year-old cassandra and 8-year-old blake . assistant state ’s attorney mike fitzgerald on monday
said prosecutors asked for more dna testing on the coat ...

Topics
0: arraigned burglarizing arrested bigamy detectives motorcyclist arraignment coroner accomplice
fondled
1: quarterly pretax dividend profit annualized earnings profits stockholders writedown premarket

cluster

Document

a southwest idaho district court judge has been arrested on suspicion of misdemeanor driving under
the influence . the idaho press-tribune reports (http://bit.ly/npiita) that 3rd district court judge
renae hoff was taken into custody early saturday morning in meridian . meridian deputy police chief
tracy basterrechea says an officer pulled the 61-year-old hoff over after she failed to ” maintain the
lane of travel . ”

Topics
0: suppliers manufacturers companies importers supplier exporters distributors market wholesalers
export
1: deported deportation incarcerated prison detention jail parole imprisoned convicts incarceration

Table 8: Example documents and their corresponding topics for different topic models

Acknowledgements

This research was supported in part by the Aus-
tralian Research Council.

References

Nikos Aletras and Mark Stevenson. 2013. Evaluating
topic coherence using distributional semantics. In
Proceedings of the Tenth International Workshop on
Computational Semantics (IWCS-10). Potsdam, Ger-
many, pages 13–22.

David Blei and John Lafferty. 2006. Correlated topic

models. Advances in Neural Information Process-
ing Systems 18.

David M Blei, Andrew Y Ng, and Michael I Jordan.
2003. Latent Dirichlet allocation. Journal of Ma-
chine Learning Research 3:993–1022.

Wray L Buntine and Swapnil Mishra. 2014. Experi-
ments with non-parametric topic models. In Pro-
ceedings of the 20th ACM SIGKDD International
Conference on Knowledge Discovery and Data Min-
ing. pages 881–890.

Lou Burnard. 1995. User guide for the British National
Corpus.

Ziqiang Cao, Sujian Li, Yang Liu, Wenjie Li, and Heng

214

Ji. 2015. A novel neural topic model and its su-
pervised extension. In Proceedings of AAAI 2015.
pages 2210–2216.

Allison June-Barlow Chaney and David M. Blei. 2012.
Visualizing topic models. In Proceedings of the 6th
International Conference on Weblogs and Social Me-
dia (ICWSM 2012). Dublin, Ireland.

Jonathan Chang, Sean Gerrish, Chong Wang, Jordan L.
Boyd-Graber, and David M. Blei. 2009. Reading
tea leaves: How humans interpret topic models. In
Advances in Neural Information Processing Systems
21 (NIPS-09). Vancouver, Canada, pages 288–296.

Changyou Chen, Lan Du, and Wray Buntine. 2011.
Sampling table configurations for the hierarchical
poisson-dirichlet process. Machine Learning and
Knowledge Discovery in Databases pages 296–311.

Gabriel Doyle and Charles Elkan. 2009. Accounting
for burstiness in topic models. In Proceedings of the
26th Annual International Conference on Machine
Learning. pages 281–288.

Anjie Fang, Craig Macdonald, Iadh Ounis, and Philip
Habel. 2016. Using word embedding to evaluate the
coherence of topics from Twitter data. In Proceed-
ings of the 39th International ACM SIGIR confer-
ence on Research and Development in Information
Retrieval. pages 1057–1060.

Thorsten Joachims. 2006. Training linear SVMs in lin-
ear time. In Proceedings of the 12th ACM SIGKDD
International Conference on Knowledge Discovery
and Data Mining. pages 217–226.

Jey Han Lau and Timothy Baldwin. 2016. The sensitiv-
ity of topic coherence evaluation to topic cardinality.
In Proceedings of NAACL-HLT . pages 483–487.

Jey Han Lau, David Newman, and Timothy Baldwin.
2014. Machine reading tea leaves: Automatically
evaluating topic coherence and topic model quality.
In Proceedings of EACL 2014. pages 530–539.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David Mc-
Closky. 2014. The Stanford CoreNLP natural lan-
guage processing toolkit. In Association for Compu-
tational Linguistics (ACL) System Demonstrations.
Baltimore, USA, pages 55–60.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013a. Efficient estimation of word represen-
tations in vector space. In Proceedings of Workshop
at the International Conference on Learning Repre-
sentations, 2013. Scottsdale, USA.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013b. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in Neural Information Processing
Systems. pages 3111–3119.

David Mimno, Hanna Wallach, Edmund Talley,
Miriam Leenders, and Andrew McCallum. 2011.
Optimizing semantic coherence in topic models. In
Proceedings of the 2011 Conference on Empirical
Methods in Natural Language Processing (EMNLP
2011). Edinburgh, UK, pages 262–272.

David Newman, Timothy Baldwin, Lawrence Cavedon,
Sarvnaz Karimi, David Martinez, and Justin Zobel.
2010a. Visualizing document collections and search
results using topic mapping. Journal of Web Seman-
tics 8(2–3):169–175.

David Newman, Jey Han Lau, Karl Grieser, and Timo-
thy Baldwin. 2010b. Automatic evaluation of topic
coherence. In Human Language Technologies: The
2010 Annual Conference of the North American
Chapter of the Association for Computational Lin-
guistics. pages 100–108.

Michal Rosen-Zvi, Thomas Griffiths, Mark Steyvers,
and Padhraic Smyth. 2004. The author-topic model
for authors and documents. In Proceedings of the
20th Conference on Uncertainty in Artificial Intelli-
gence. pages 487–494.

Alison Smith, Tak Yeon Lee, Forough Poursabzi-
Sangdeh, Jordan Boyd-Graber, Kevin Seppi, Niklas
Elmqvist, and Leah Findlater. 2017. Evaluating
visual representations for topic understanding and
their effects on manually generated labels. Transac-
tions of the Association for Computational Linguis-
tics 5:1–15.

Hanna M Wallach, Iain Murray, Ruslan Salakhutdi-
nov, and David Mimno. 2009. Evaluation methods
for topic models. In Proceedings of the 26th Inter-
national Conference on Machine Learning (ICML
2009). Montreal, Canada, pages 1105–1112.

Chong Wang and David M. Blei. 2011. Collabora-
tive topic modeling for recommending scientific ar-
ticles. In Proceedings of the 17th ACM SIGKDD
International Conference on Knowledge Discovery
and Data Mining. pages 448–456.

215

Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017), pages 216–225,
Vancouver, Canada, August 3 - August 4, 2017. c©2017 Association for Computational Linguistics

Robust Coreference Resolution and Entity Linking on Dialogues:
Character Identification on TV Show Transcripts

Henry Y. Chen, Ethan Zhou, Jinho D. Choi
Math and Computer Science

Emory University
Atlanta, GA 30322, USA

{henry.chen, ethan.zhou, jinho.choi}@emory.edu

Abstract
This paper presents a novel approach to
character identification, that is an entity
linking task that maps mentions to charac-
ters in dialogues from TV show transcripts.
We first augment and correct several cases
of annotation errors in an existing corpus so
the corpus is clearer and cleaner for statisti-
cal learning. We also introduce the agglom-
erative convolutional neural network that
takes groups of features and learns mention
and mention-pair embeddings for corefer-
ence resolution. We then propose another
neural model that employs the embeddings
learned and creates cluster embeddings for
entity linking. Our coreference resolution
model shows comparable results to other
state-of-the-art systems. Our entity linking
model significantly outperforms the previ-
ous work, showing the F1 score of 86.76%
and the accuracy of 95.30% for character
identification.

1 Introduction

Character identification (Chen and Choi, 2016) is a
task that identifies each mention as a character in a
multiparty dialogue.1 Let a mention be a nominal
referring to a human (e.g., she, mom, Judy), and an
entity be a character in the dialogue. The objective
is to assign each mention to an entity, who may or
may not appear as a speaker in the dialogue. For
the example in Table 1, the mention comedian is
not one of the speakers in the dialogue; nonetheless,
it clearly refers to a real person that may appear in
some other dialogues. Identifying such mentions
as actual characters requires cross-document entity
resolution, which makes this task challenging.
1The dialogues are extracted from TV show transcripts by the
previous work (Chen and Choi, 2016).

Character identification can be viewed as a task of
entity linking. Most of the previous work on entity
linking focuses on Wikification (Mihalcea and Cso-
mai, 2007a; Ratinov et al., 2011a; Guo et al., 2013).
Unlike Wikification, entities in this task have no
precompiled information from a knowledge base,
which is another challenging aspect. This task is
similar to coreference resolution in the sense that it
groups mentions into entities, but distinct because
it requires the identification of mention groups as
real entities. Furthermore, even if it can be tackled
as a coreference resolution task, only a few coref-
erence resolution systems are designed to handle
dialogues well (Rocha, 1999; Niraula et al., 2014)
although several state-of-the-art systems have been
proposed for the general domain (Peng et al., 2015;
Clark and Manning, 2016; Wiseman et al., 2016).

Due to the nature of multiparty dialogues where
speakers take turns to complete a context, charac-
ter identification becomes a critical step to adapt
higher-level NLP tasks (e.g., question answering,
summarization) to this domain. This task can
also bring another level of sophistication to intelli-
gent personal assistants and intelligent tutoring sys-
tems. Perhaps the most challenging aspect comes
from colloquial writing that consists of ironies,
metaphors, or rhetorical questions. Despite all the
challenges, we believe that the output of this task
will enhance inference on dialogue contexts by pro-
viding finer-grained information about individuals.

In this paper, we augment and correct the exist-
ing corpus for character identification, and propose
an end-to-end deep-learning system that combines
neural models for coreference resolution and entity
linking to tackle the task of character identification.
The updated corpus and the source code of our
models are published and publicly available.2 This
combined system utilizes the strengths from both

2nlp.mathcs.emory.edu/character-mining/

216

Speaker Utterance
Joey Yeah, right! ... You1 serious?
Rachel Everything you2 need to know is in that first kiss.
Chandler Yeah. For us3, it’s like the stand-up comedian4 you5 have to sit through before the main dude6 starts.
Ross It’s not that we7 don’t like the comedian8, it’s that ... that’s not why we9 bought the ticket.

{You1} → Rachel, {us3, we7,9} → Collective, {you2,5} → General, {comedian4,8} → Generic, {dude6} → Other

Table 1: An example of a multiparty dialogue extracted from the corpus.

models. We introduce a novel approach, agglomer-
ative convolution neural network, for coreference
resolution to learn mention, mention-pair, and clus-
ter embeddings, and the results are taken as input
to our entity linking model that assigns mentions to
their real entities. Entities, including main charac-
ters and recurring support characters, are selected
from a TV show to mimic a realistic scenario. To
the best of our knowledge, this is the first end-to-
end model that performs character identification on
multiparty dialogues.

2 Related Work

The latest coreference systems employ advanced
context features in tandem with deep networks to
achieve state-of-the-art performance (Clark and
Manning, 2016; Wiseman et al., 2015). Since our
task is similar to coreference resolution, we take a
similar approach to feature engineering by building
mention and cluster embeddings with word em-
beddings (Clark and Manning, 2016) and include
additional mention features described by Wiseman
et al. (2015). We are motivated to use convolu-
tional networks through the work of Wu and Ma
(2017), but we distinguish our approach by using
deep convolution to build embeddings for character
identification.

Entity linking has traditionally relied heavily on
knowledge databases, most notably, Wikipedia, for
entities (Mihalcea and Csomai, 2007b; Ratinov
et al., 2011b; Gattani et al., 2013; Francis-Landau
et al., 2016).3 Although we do not make use of
knowledge bases, our task is closely aligned to en-
tity linking. Recent advances in entity linking are
also applicable to our task since we see Francis-
Landau et al. (2016) use convolutional nets to cap-
ture semantic similarity between a mention and an
entity by comparing context of the mention with the
description of the entity. This work validates our
usage of deep learning for character identification.

3This task is known as ‘Wikification’.

Dialogue tracking has been an expanding task
as shown by the Dialogue State Tracking Chal-
lenges hosted by Microsoft (Kim et al., 2015).
That an ongoing conversation can be dynamically
tracked (Henderson et al., 2013) is exciting and
applicable to our task because the state of a conver-
sation may yield significant hints for entity linking
and coreference resolution. Speaker identification,
a task similar to character identification, has already
shown some success with partial dialogue tracking
by dynamically identifying speakers at each turn in
a dialogue using conditional random field models.

3 Corpus

The character identification corpus created by Chen
and Choi (2016) includes entity annotation of per-
sonal mentions specific to the domain of multiparty
dialogues. While the corpus covers a large amount
of entities that appear in the first two seasons of the
TV show, Friends, some of its annotation remains
ambiguous, particularly around the label Unknown.

An example of Unknown mentions in a snippet
of a conversation is provided in Table 1. Men-
tions comedian4,8 and dude6 are originally labeled
Unknown, but they are two different entities such
that their labels should be distinguished. Even
though their entities are not immediately identi-
fiable, the Unknown label provides no clarity; thus,
mentions under this label needs to be subcatego-
rized. We propose to disambiguate these Unknown
mentions (Section 3.2), comprising 10% of the an-
notation. Such disambiguation allows finer-grained
categories of entity annotations of mentions. We
believe the resultant annotations are more realis-
tic and can be used to train more robust model on
character identification.

3.1 Corpus Correction

Before disambiguating the corpus, we find some
recurring data malformations and errors in mention
detection within the corpus. For example:

217

Rachel: (To guy with a phone) Hello, excuse me.

The underlined action note is accidentally included
in the utterance as a part of the dialogue due to a
missing parentheses, and the mention guy is conse-
quently incorporated into the corpus. These mal-
formations are fixed, and mentions included are
removed from the corpus manually before disam-
biguation. The correction is necessary since the
inclusion of action notes is inconsistent throughout
the corpus, and they are removed to avoid confu-
sion for our models.

3.2 Corpus Disambiguation
Three labels are introduced to disambiguate Un-
known mentions: General, Generic, and Other.
Generic provides abstract groupings for unidentifi-
able entities, and each group is assigned a unique
number for differentiation:

• General: Mention used in reference to a gen-
eral case (e.g., you2,5 in Table 1).

• Generic: Mention referring to a unidentifiable
entity (e.g., comedian4,8 in Table 1).

• Other: Mention referred to insignificant sin-
gleton entity (e.g., dude6 in Table 1).

We perform this disambiguation manually with two
main guidelines: only mentions originally labeled
Unknown are included, and the labels introduced
above are provided to annotators in addition to
the known entities. We limit the Generic men-
tion groups to 5 per iteration of disambiguation for
simplicity, and the scenes that requires more than 5
groups are recursively annotated until all unknowns
are disambiguated. Unlike the previous work, our
annotators are familiar with the TV show, and the
task takes about 3 weeks to complete.

P S C G N O Σ
F1 5,101 2,610 1,259 109 152 184 9,306
F2 5,312 2,432 1,280 42 111 167 9,304
Σ 10,413 5,042 2,388 151 263 351 18,608

Table 2: Counts of disambiguated mentions. P/S:
main and secondary character entities. C/G/N/O:
Collective/General/Generic/Other.

4 Coreference Resolution

The task of character identification needs rich fea-
tures extracted from mention clusters generated by

a coreference resolution system. Thus, the end re-
sult of this task largely depends on the quality of the
coreference resolution model. Several coreference
resolution systems have been proposed and shown
state-of-the-art performance (Pradhan et al., 2012);
however, they are not necessarily designed for the
genre of multiparty dialogue, where each document
comprises utterances from multiple speakers.

This section describes a novel approach to coref-
erence resolution using Convolutional Neural Net-
works (CNN). Our model takes groups of fea-
tures incorporating several dialogue aspects, feeds
them into deep convolution layers, and dynamically
generates mention embeddings and mention-pair
embeddings, which are used to create the cluster
embeddings that significantly improve the perfor-
mance of our entity linking model (Section 5).

4.1 Agglomerative CNN

Our coreference resolution model, Agglomerative
Convolutional Neural Network (ACNN), takes ad-
vantage of deep layers in CNN. The model is called
agglomerative since it aggregates multiple feature
groups into several convolution layers for the gen-
eration of mention and mention-pair embeddings.
Each layer aims to consolidate and learn different
combinations of the input features, and additional
features are included at each layer. The unique na-
ture of our model allows incremental feature aggre-
gations to create more robust embeddings. Figure 1
illustrates the complete architecture of ACNN.

The first part of the network learns the mention
embedding for each of two mentions compared
for a coreferent relation. Given two feature maps
φk

e(m) and φd(m) where m is a mention, φk
e(m)

extracts the embedding features based on word em-
beddings, and φd(m) extracts the discrete features
(Table 3). The first convolution layer CONVk

1 with
n-gram filters of size d is applied to each embed-
ding group k, and the result from each filter is max-
pooled to generate a feature vector ∈ R1×d. The
second convolution layer CONV2 is then applied to
the 3D feature matrix ∈ Rn×d×k from the previous
convolution layer on all embedding groups. The
result of CONV2 is max-pooled and concatenated
with discrete features extracted by φd(m) to form
the mention embedding rs(m), defined as follows:

rs(m) = CONV2(

CONV
1
1(φ

1
e(m))

...
CONVk

1(φ
k
e(m))

) ‖ φd(m)

218

Figure 1: The overview of our agglomerative convolutional neural network.

The second part of the network utilizes the learned
mention embedding rs(m) to create the mention-
pair embedding. Another feature map φp(mi,mj)
is defined to extract pairwise features between men-
tions mi and mj (Table 3). The third convolution
layer CONV3 is applied to the stacked mention em-
beddings, rs(mi) and rs(mj). The result is max-
pooled and concatenated with the pairwise features
extracted by φp(mi,mj) to form the mention-pair
embedding rp(mi,mj), defined as follows:

rp(mi,mj) = CONV3(
[
rs(mi)
rs(mj)

]
) ‖ φp(mi,mj)

The learned mention-pair embedding is put through
the hidden layer with the linear rectifier activation
function (ReLu) before applying the sigmoid func-
tionσ(mi,mj) to determine the coreferent relation
between mentions mi and mj , defined as follows:

h(x) = ReLU(wh · x+ bh)
σ(mi,mj) = sigmoid(ws · h(rp(mi,mj)) + bs)

The purpose of the sigmoid function σ(mi,mj) is
twofold. For each mention mi, it performs binary
classifications betweenmi andmj where j ∈ [1, i).
If max(σ(mi,mj)) < 0.5, the model considers no
coreferent relation between mi and any mention
prior to it, and create a new cluster containing only
mi s.t. mi becomes a singleton for the moment.
If max(σ(mi,mj)) ≥ 0.5, mi is put to the exist-
ing cluster Cmk

that mk belongs to, where mk is
argj max(σ(mi,mj)). This formalism of mention
clustering is defined as follows:

• If ∀1≤j<i.max(σ(mi,mj)) < 0.5, then
create a new cluster Cmi .

• If ∃1≤j<i.max(σ(mi,mj)) ≥ 0.5, then
Cmk
← Cmk

∪ {mi},
where mk = argj max(σ(mi,mj)).

Table 3 shows feature templates used for our
ACNN model. Sentence and utterance embed-
dings are the average vectors of all word embed-
dings in the sentence and utterance, respectively.
Speaker embeddings are randomly generated using
the Gaussian distribution. Gender and plurality in-
formation are from Bergsma and Lin (2006), and
word animacy is from Durrett and Klein (2013).

Map Features
φ1

e(m) Embeddings of 1st three words in m

φ2
e(m)

Embeddings of 3 proceeding words of m
Embeddings of 3 succeeding words of m
Average embedding of all words in m

φ3
e(m)

Embeddings of 3 proceeding sentences
Embeddings of 1 succeeding sentence
Embedding of the current sentence

φ4
e(m)

Embeddings of 3 proceeding utterances
Embeddings of 1 succeeding utterances
Embeddings of the current utterance

φd(m)

Avg. gender info. of all words in m
Avg. plurality info. of all words in m
Avg. word animacy of all words in m
Embedding of the current speaker
Embeddings of the previous 2 speakers

φp(mi,mj)

Exact string match between mi and mj

Relaxed string match between mi and mj

Speaker match between mi and mj

Mention distance between mi and mj

Sentence distance between mi and mj

Table 3: Complete feature templates for ACNN.
φk

e(m): embedding features, φd(m): discrete fea-
tures, φp(mi,mj): pairwise features.

219

4.2 Configuration

For our experiments, word embeddings of dimen-
sion 50 are trained with FastText (Bojanowski et al.,
2016) on the aggregation of New York Times,4

Wikipedia,5 and Amazon reviews.6 The tanh acti-
vation function and a filter size of 280 is used for all
convolution layers. A dropout rate of 0.8 is applied
to all max-pooled convoluted results, and `2 regu-
larization is applied to the sigmoid function. The
hidden layer has the same dimension as the filter
size. Binary labels of 0 and 1 are assigned to each
mention-to-mention pair based on the gold clus-
ter information. The model is trained on a mean
squared error loss function with the RMSprop opti-
mizer.

5 Entity Linking

Coreference resolution groups mentions into clus-
ters; however, it does not assign character labels
to the clusters, which is required for character
identification. This section describes our entity
linking model that takes the mention embeddings
and the mention-pair embeddings generated ACNN
and classifies each mention to one of the charac-
ter labels (Figure 3). These embeddings are used
to create cluster and cluster-mention embeddings
through pooling, which give a significant improve-
ment to character identification when included as
features in our linker (Section 6).

ReLu

ReLu

Mt

Mention Embedding Clusterm Embedding

M c
1

M c
n

Clusterp Embedding

M c
t,i

M c
t,k

Avg. Pooling

Max Pooling

CONVs CONVp

Figure 2: The overview of our entity linking model.
Clusterm and Clusterp embeddings are derived from
mention and mention-pair embeddings, resp.

4catalog.ldc.upenn.edu/ldc2008t19
5dumps.wikimedia.org/enwiki/
6snap.stanford.edu/data/web-Amazon.html

Figure 2 illustrates our entity linking model based
on a feed-forward neural network with two hid-
den layers. For each mention m, the model takes
the mention embedding rs(m) and two cluster em-
beddings derived from mention embeddings and
mention-pair embeddings within the cluster C(m)
(Section 5.2) and classifies m into one of the entity
labels using the Softmax regression.

5.1 Cluster Embedding
Two types of cluster embeddings are derived to cap-
ture cluster information. Given a mention m and
its cluster Cm, cluster embedding Rs(Cm) repre-
sents the collective mention embedding of all men-
tions within Cm, and mention-cluster embedding
Rp(Cm,m) represents the collective mention-pair
embedding between m and all the other mentions
in Cm that are compared to m during coreference
resolution (∀i. mi ∈ Cm):

Rs(Cm) = [rs(m1), rs(m2), ..., rs(m|Cm|)]

Rp(Cm,m) = [rp(mi,m) |mi 6= m]

CONVs and CONVp are two separate convolution
layers with unigram filters using the tanh activa-
tion. The results from these layers are max-pooled.
The cluster embedding rs(Cm) and the mention-
cluster embedding rp(Cm,m) are defined as fol-
lows:

rs(Cm) = CONVs(
[
avg pool(Rs(Cm))
max pool(Rs(Cm))

]
)

rp(Cm,m) = CONVp(
[
avg pool(Rp(Cm,m))
max pool(Rp(Cm,m))

]
)

The mention embedding, the cluster embedding,
and the mention-cluster embedding are concate-
nated and fed into the network as input, and the
scores of all character labels are activated as output.

5.2 Configuration
A dropout layer of rate 0.8 is applied to all inputs.
The model is trained as a multi-class classifier with
the categorical cross-entropy loss function and the
RMSprop optimizer. All hidden layers use the
ReLU activation function and have the same num-
ber of hidden units as the dimension of the mention
embeddings. The convolution layers use the same
filter sizes as the dimensions of input embeddings.

6 Experiments

Following Chen and Choi (2016), experiments are
conducted on two tasks, coreference resolution and

220

Model
Episode-Level Scene-Level

MUC B3 CEAFe µ |C| MUC B3 CEAFe µ |C|
Clark and Manning (2016) 89.58 69.12 47.33 68.68 15.19 90.38 76.79 56.95 74.70 8.13
Wiseman et al. (2016) 89.80 57.66 45.48 64.31 14.86 89.60 78.08 65.95 77.88 6.20
This work (ACNN) 89.92 70.33 44.09 68.11 16.40 88.09 78.77 59.72 75.53 7.49

Table 4: Coreference resolution results on the evaluation set (in %).
µ = (MUC + B3 + CEAFe) / 3. |C|: the average cluster size.

entity linking. Our coreference resolution model
shows robust performance compared to other state-
of-the-art systems (Section 6.2). Our entity linking
model significantly outperforms the heuristic-based
approach from the previous work (Section 6.3). All
models are evaluated on the gold mentions to focus
purely on the analysis of these two tasks.

6.1 Data Split

The corpus is split into the training, development,
and evaluation sets (Table 5). For the episode-level,
all mentions referring to the same character in each
episode are grouped into one cluster (CEpi). For the
scene-level, this grouping is done by each scene
such that there can be multiple mention clusters that
refer to the same character within an episode (CSce).
Ambiguous mention types such as collective, gen-
eral, and other are excluded from our experiments
(Section 3); including those mentions requires de-
veloping different resolution models that we shall
explore in the future.

E S DC CE CS M
TRN 38 362 371 820 2,026 12,842
DEV 3 28 44 58 159 991
TST 5 58 80 113 301 1,885
Total 46 448 444 991 2,486 15,718

Table 5: The training (TRN), development (DEV),
and evaluation (TST) sets. E/S/DC/CE/CS/M: the
numbers of episodes, scenes, distinct characters,
episode/scene-level clusters, and mentions.

For entity linking, entity labels are predetermined
by collecting characters that appear in all three sets;
characters that do not appear in any of the three sets
are put together and labeled as Unknown. This is
reasonable because it is not possible for a statistical
model to learn about characters that do not appear
in the training set. Likewise, characters that appear
in the training set but not in the other sets cannot
be developed or evaluated. A total of ten labels
are used for entity linking that consist of the top-9

most frequently appeared characters across all sets
and unknown (Figure 3).

6.2 Coreference Resolution
To benchmark the robustness of our ACNN model
(Section 4), two state-of-the-art coreference resolu-
tion systems are also experimented. Episode and
scene-level models are developed separately for all
three systems using the same dataset in Table 5. All
system outputs are evaluated with the MUC (Vi-
lain et al., 1995), B3 (Bagga and Baldwin, 1998),
and CEAFe (Luo, 2005) metrics suggested by the
CoNLL’12 shared task (Pradhan et al., 2012). The
average score of five trials is reported for each met-
ric to minimize variance because these systems use
neural network approaches with random initializa-
tion to produce varying results per trial (Table 4).

Table 1

All Tst
Ross 2221 190
Rachel 1969 239
Chandler 1753 235
Monica 1622 201
Joey 1475 192
Phoebe 1373 143
Carol 225 49
Barry 144 11
Mindy 100 9
Other 4836 616

31%

9%
9% 10%

11%

13%

14% Ross
Rachel
Chandler
Monica
Joey
Phoebe
Carol
Barry
Mindy
Other

33%

1%
3%

8%

10%

11%

12%

13%

10%

Ross
Rachel
Chandler
Monica
Joey
Phoebe
Carol
Barry
Mindy
Other

1%

Figure 3: Character labels used for entity linking.

Comparison between the State-of-the-Art
When trained and evaluated on our dataset, both the
Stanford (Clark and Manning, 2016) and the Har-
vard (Wiseman et al., 2016) systems give compara-
ble results to their performance on the CoNLL’12
dataset.7 The Stanford system using its pre-trained
model gives the µ scores of 47.67% and 64.14% for
the episode and scene-level respectively, which sig-
nifies the importance of the in-domain training data.
7The Stanford and the Harvard systems reported µ scores of
65.73% and 64.21% on the CoNLL’12 dataset, respectively.

221

Model Ross Joey Chandler Monica Phoebe Rachel Carol Mindy Barry Unk. Avg Acc

E
B 57.54 80.94 64.91 89.82 87.86 76.47 30.14 0 16.67 70.24 57.46 72.52

ME 72.81 80.31 82.43 79.78 82.71 82.94 44.84 20.00 53.05 76.23 67.51 77.80
CE 93.46 97.90 98.23 95.42 98.24 95.02 100.00 0 95.65 93.71 86.76 95.30

S
B 60.00 69.09 61.05 72.51 57.27 78.77 34.38 0 11.76 67.62 51.24 66.68

ME 74.75 81.76 80.71 88.83 84.33 85.43 53.15 20.00 62.90 80.82 71.27 81.07
CE 91.29 90.64 86.33 94.10 85.41 90.16 65.35 18.71 83.45 85.82 79.12 87.64

Table 6: Entity linking results on the evaluation set (in %). The F1 score is reported for each character.
E/S: episode/scene level. Unk.: unknown. Avg: the macro-average F1 score between all characters.

Acc: (the number of correctly labeled mentions) / (the total number of mentions).

All systems show higher scores for the scene-level
than the episode-level consistently, which confirms
the difficulty of this task on larger documents.

Although both systems take advantage of global
cluster features, they reveal different strengths on
resolving mentions with respect to the cluster size.
The Stanford system excels for the episode-level,
which is primarily attributed to the cluster-based na-
ture of this system; it is able to find more accurate
coreferent chains when the clusters are larger. The
Harvard system performs best for the scene-level,
indicating that its neural architecture with Long
Short-Term Memory cells captures more meaning-
ful cluster features when the clusters are smaller.

Comparison to Agglomerative CNN
In comparison to the other state-of-the-art systems,
our ACNN model shows competitive performance;
it gives the highest B3 and comparable µ scores
for both episode and scene levels. We measure
the average cluster size produced by each system
for further analysis (|C| in Table 4). The Harvard
system produces smaller clusters than the other
two systems. Such a tendency gives more pure
clusters, favored by the CEAFe metric for the scene-
level. However, it is prone to breaking up too many
links, which leads to poor performance in the B3

evaluation on the episode-level.
The performance of our model is encouraging

although coreference resolution is not the end goal.
We design this model to automatically generate
mention embeddings and mention-pair embeddings
that are used to construct cluster features for entity
linking. However, even though this model’s success
in coreference resolution is not our final objective,
its success directly correlates to the success of en-
tity linking because of the similarity between these
two tasks. Due to the similar nature of these two
tasks, the success of coreference resolution directly
correlates to that of entity linking. These embed-

dings are the essence of our entity linking model,
leading to a huge improvement.

6.3 Entity Linking

The heuristic-based approach proposed by Chen
and Choi (2016) is adapted to establish the baseline.
Two statistical models are experimented for both
the episode and scene levels, one using only men-
tion embeddings and the other using both mention
embeddings and cluster embeddings (Section 5).
All models are evaluated with the F1 scores of char-
acter labels, the macro-average F1 scores between
all labels, and the label accuracies. The average
scores of five trials are reported in Table 6.

B: Baseline Model
The heuristic-based approach is applied to the men-
tion clusters found by our coreference resolution
model. Two rules, 1)proper noun and 2)first-person
pronoun matches, are used to assign character la-
bels to all mentions. The label of each cluster is
then determined by the majority vote between the
mention labels within the cluster. Finally, the clus-
ter label is assigned to all mentions in that cluster.
This model performs better when it is applied to
the episode-level clusters because larger clusters
provide more mention labels, which makes the ma-
jority vote more reliable.

ME: Mention Embedding Model
This model takes advantage of the mention embed-
dings generated by our ACNN model. Compared to
the baseline, it gives over a 21% higher average F1
score, and over a 15% higher label accuracy for the
episode and the scene levels, respectively. Interest-
ingly, this model shows higher performance for the
scene-level, which is not the case for the other two
models. This implies that the mention embeddings
learned from scene-level documents are more infor-
mative than those learned from episode-level ones.

222

System

Ross Joey Chandler Monica Phoebe Rachel Carol Mindy Barry Unk. Σ
G
o
l
d

Ross 182 7 1 190
Joey 186 6 192

Chandler 235 235
Monica 1 200 201
Phoebe 141 2 143
Rachel 2 237 239
Carol 49 49
Mindy 0 9 9
Barry 11 11
Other 11 1 11 21 4 5 1 562 616

Σ 193 187 247 223 145 244 54 0 12 580 1,885

Table 7: The confusion matrix between gold and system annotation for all character labels (in #).

This case is also reflected on its coreference resolu-
tion performance where the scene-level scores are
higher than the episode-level scores (Table 4).

CE: Cluster Embedding Model
While the mention embeddings give a significant
improvement over the baseline, further improve-
ment is made when they are coupled with the clus-
ter and mention-cluster embeddings. The episode-
level cluster embedding model shows an average
F1 score of 86.76% and a label accuracy of 95.30%,
which is another 15% improvement, suggesting a
practical use of this model in real applications. A
couple of important observations are made:

• Cluster and mention-cluster embeddings, al-
though learned during coreference resolution,
are crucial for entity linking such that a coref-
erence resolution model specifically designed
for multiparty dialogues is necessary to build
the state-of-the-art entity linking model for
this genre.

• Clusters generated from the episode-level doc-
uments provide more information than those
from the scene-level do, which aligns with the
conclusion made by Chen and Choi (2016).

Error Analysis
An error analysis is performed on the episode-level
cluster embedding model. From the confusion ma-
trix in Table 7, two common system errors are de-
tected. First, most of the mispredictions identify
Unknown as specific characters. Second, the perfor-
mance on the secondary characters, Carol, Mindy,
and Barry, is subpar with respect to other enti-
ties. This subpar performance likely stems from

a paucity of appearances by these secondary char-
acters. For example, Mindy constitutes 1% of the
dataset (Figure 3) and has only nine occurrences in
the evaluation set. Our best model is robust in iden-
tifying the primary characters, showing an average
F1 score of 96.38% and an accuracy of 98.42% on
the evaluation set.

7 Conclusion

In this paper, we explore a relatively new task, char-
acter identification on multiparty dialogues, and
introduce a novel perspective on approaching the
task with coreference resolution and entity linking.
We improve and augment finer-grained annotation
over the existing corpus that simulates real conver-
sations. We propose a deep convolutional neural
network to agglomerate groups of features into
mention, mention-pair, cluster, and mention-cluster
embeddings that are optimized for entity predic-
tion. Our coreference resolution result shows an
improvement on the updated version of the corpus.
Our entity linking result reaches to the accuracy
that is sufficient for real-world applications.

To the best of our knowledge, our work is the
first time that such deep convolution layers have
been used for training mention and cluster embed-
dings. Our results show that the generation of these
embeddings is crucial for the success of entity link-
ing on multiparty dialogues. For future work, we
will continue to increase the size of the corpus with
high-quality and disambiguated annotation. We
also wish to improve the embeddings to represent
plural and collective mentions, thus we can build
upon our entity linking model incorporating many-
to-many linkings between entities and mentions.

223

References
Amit Bagga and Breck Baldwin. 1998. Algorithms

for scoring coreference chains. In The first interna-
tional conference on language resources and evalu-
ation workshop on linguistics coreference. Citeseer,
volume 1, pages 563–566.

Shane Bergsma and Dekang Lin. 2006. Bootstrapping
path-based pronoun resolution. In Proceedings of
the 21st International Conference on Computational
Linguistics and 44th Annual Meeting of the Associa-
tion for Computational Linguistics. Association for
Computational Linguistics, Sydney, Australia, pages
33–40.

Piotr Bojanowski, Edouard Grave, Armand Joulin,
and Tomas Mikolov. 2016. Enriching word vec-
tors with subword information. arXiv preprint
arXiv:1607.04606 .

Yu-Hsin Chen and Jinho D. Choi. 2016. Character
identification on multiparty conversation: Identify-
ing mentions of characters in tv shows. In Proceed-
ings of the 17th Annual Meeting of the Special Inter-
est Group on Discourse and Dialogue. Association
for Computational Linguistics, Los Angeles, pages
90–100. http://www.aclweb.org/anthology/W16-
3612.

Kevin Clark and Christopher D. Manning. 2016.
Deep reinforcement learning for mention-ranking
coreference models. In Proceedings of the
2016 Conference on Empirical Methods in Natu-
ral Language Processing. Association for Computa-
tional Linguistics, Austin, Texas, pages 2256–2262.
https://aclweb.org/anthology/D16-1245.

Greg Durrett and Dan Klein. 2013. Easy victories and
uphill battles in coreference resolution. In Proceed-
ings of the Conference on Empirical Methods in Nat-
ural Language Processing. Association for Compu-
tational Linguistics, Seattle, Washington.

Matthew Francis-Landau, Greg Durrett, and Dan Klein.
2016. Capturing semantic similarity for entity
linking with convolutional neural networks. In
Proceedings of the 2016 Conference of the North
American Chapter of the Association for Com-
putational Linguistics: Human Language Tech-
nologies. Association for Computational Linguis-
tics, San Diego, California, pages 1256–1261.
http://www.aclweb.org/anthology/N16-1150.

Abhishek Gattani, Digvijay S. Lamba, Nikesh
Garera, Mitul Tiwari, Xiaoyong Chai, Sanjib
Das, Sri Subramaniam, Anand Rajaraman, Venky
Harinarayan, and AnHai Doan. 2013. En-
tity extraction, linking, classification, and tag-
ging for social media: A wikipedia-based ap-
proach. Proc. VLDB Endow. 6(11):1126–1137.
https://doi.org/10.14778/2536222.2536237.

Stephen Guo, Ming-Wei Chang, and Emre Kiciman.
2013. To Link or Not to Link? A Study on End-
to-End Tweet Entity Linking. In Proceedings of the

Conference of the North American Chapter of the As-
sociation for Computational Linguistics on Human
Language Technology. NAACL, pages 1020–1030.

Matthew Henderson, Blaise Thomson, and Steve
Young. 2013. Deep neural network approach for
the dialog state tracking challenge. In Proceed-
ings of the SIGDIAL 2013 Conference. Association
for Computational Linguistics, Metz, France, pages
467–471. http://www.aclweb.org/anthology/W13-
4073.

Seokhwan Kim, Luis Fernando D́Haro, Rafael E.
Banchs, Jason D. Williams, and Matthew Hender-
son. 2015. The Fourth Dialog State Tracking Chal-
lenge. In Proceedings of the 4th Dialog State Track-
ing Challenge. DSTC4.

Xiaoqiang Luo. 2005. On coreference resolution per-
formance metrics. In Proceedings of the confer-
ence on Human Language Technology and Empiri-
cal Methods in Natural Language Processing. Asso-
ciation for Computational Linguistics, pages 25–32.

Rada Mihalcea and Andras Csomai. 2007a. Wikify!:
Linking Documents to Encyclopedic Knowledge. In
Proceedings of the Sixteenth ACM Conference on
Conference on Information and Knowledge Manage-
ment. CIKM’07, pages 233–242.

Rada Mihalcea and Andras Csomai. 2007b. Wik-
ify!: Linking documents to encyclopedic
knowledge. In Proceedings of the Sixteenth
ACM Conference on Conference on Informa-
tion and Knowledge Management. ACM, New
York, NY, USA, CIKM ’07, pages 233–242.
https://doi.org/10.1145/1321440.1321475.

Nobal B. Niraula, Vasile Rus, Rajendra Banjade, Dan
Stefanescu, William Baggett, and Brent Morgan.
2014. The DARE Corpus: A Resource for Anaphora
Resolution in Dialogue Based Intelligent Tutoring
Systems. In Proceedings of the Ninth International
Conference on Language Resources and Evaluation.
LREC’14, pages 3199–3203.

Haoruo Peng, Kai-Wei Chang, and Dan Roth. 2015.
A Joint Framework for Coreference Resolution and
Mention Head Detection. In Proceedings of the 9th
Conference on Computational Natural Language
Learning. CoNLL’15, pages 12–21.

Sameer Pradhan, Alessandro Moschitti, Nianwen Xue,
Olga Uryupina, and Yuchen Zhang. 2012. CoNLL-
2012 Shared Task: Modeling Multilingual Unre-
stricted Coreference in OntoNotes. In Proceedings
of the Sixteenth Conference on Computational Nat-
ural Language Learning: Shared Task. CoNLL’12,
pages 1–40.

Lev Ratinov, Dan Roth, Doug Downey, and Mike An-
derson. 2011a. Local and Global Algorithms for
Disambiguation to Wikipedia. In Proceedings of
the 49th Annual Meeting of the Association for Com-
putational Linguistics: Human Language Technolo-
gies. ACL’11, pages 1375–1384.

224

Lev Ratinov, Dan Roth, Doug Downey, and Mike
Anderson. 2011b. Local and global algo-
rithms for disambiguation to wikipedia. In
Proceedings of the 49th Annual Meeting of
the Association for Computational Linguis-
tics: Human Language Technologies - Volume
1. Association for Computational Linguistics,
Stroudsburg, PA, USA, HLT ’11, pages 1375–1384.
http://dl.acm.org/citation.cfm?id=2002472.2002642.

Marco Rocha. 1999. Coreference Resolution in Dia-
logues in English and Portuguese. In Proceedings
of the Workshop on Coreference and Its Applications.
CorefApp’99, pages 53–60.

Marc Vilain, John Burger, John Aberdeen, Dennis Con-
nolly, and Lynette Hirschman. 1995. A model-
theoretic coreference scoring scheme. In Pro-
ceedings of the 6th conference on Message under-
standing. Association for Computational Linguis-
tics, pages 45–52.

Sam Wiseman, Alexander M. Rush, Stuart Shieber,
and Jason Weston. 2015. Learning anaphoric-
ity and antecedent ranking features for corefer-
ence resolution. In Proceedings of the 53rd
Annual Meeting of the Association for Computa-
tional Linguistics and the 7th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers). Association for Computa-
tional Linguistics, Beijing, China, pages 1416–1426.
http://www.aclweb.org/anthology/P15-1137.

Sam Wiseman, Alexander M. Rush, and Stuart M.
Shieber. 2016. Learning global features for coref-
erence resolution. In Proceedings of the 2016 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies. Association for Computational
Linguistics, San Diego, California, pages 994–1004.
http://www.aclweb.org/anthology/N16-1114.

J. L. Wu and W. Y. Ma. 2017. A deep learn-
ing framework for coreference resolution
based on convolutional neural network. In
2017 IEEE 11th International Conference
on Semantic Computing (ICSC). pages 61–64.
https://doi.org/10.1109/ICSC.2017.57.

225

Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017), pages 226–237,
Vancouver, Canada, August 3 - August 4, 2017. c©2017 Association for Computational Linguistics

Cross-language Learning with Adversarial Neural Networks:
Application to Community Question Answering

Shafiq Joty, Preslav Nakov, Lluı́s Màrquez and Israa Jaradat
ALT Research Group

Qatar Computing Research Institute, HBKU
{sjoty, pnakov, lmarquez, ijaradat}@hbku.edu.qa

Abstract

We address the problem of cross-language
adaptation for question-question similarity
reranking in community question answer-
ing, with the objective to port a system
trained on one input language to another
input language given labeled training data
for the first language and only unlabeled
data for the second language. In particular,
we propose to use adversarial training of
neural networks to learn high-level features
that are discriminative for the main learn-
ing task, and at the same time are invariant
across the input languages. The evalua-
tion results show sizable improvements for
our cross-language adversarial neural net-
work (CLANN) model over a strong non-
adversarial system.

1 Introduction

Developing natural language processing (NLP) sys-
tems that can work indistinctly with different input
languages is a challenging task; yet, such a setup
is useful for many real-world applications. One ex-
pensive solution is to annotate data for each input
language and then to train a separate system for
each one. Another option, which can be also costly,
is to translate the input, e.g., using machine transla-
tion (MT), and then to work monolingually in the
target language (Hartrumpf et al., 2008; Lin and
Kuo, 2010; Ture and Boschee, 2016). However, the
machine-translated text can be of low quality, might
lose some input signal, e.g., it can alter sentiment
(Mohammad et al., 2016), or may not be really
needed (Bouma et al., 2008; Pouran Ben Veyseh,
2016). Using a unified cross-language representa-
tion of the input is a third, less costly option, which
allows any combination of input languages during
both training and testing.

In this paper, we take this last approach, i.e., com-
bining languages during both training and testing,
and we study the problem of question-question sim-
ilarity reranking in community Question Answer-
ing (cQA), when the input question can be either
in English or in Arabic, and the questions it is com-
pared to are always in English. We start with a
simple language-independent representation based
on cross-language word embeddings, which we in-
put into a feed-forward multilayer neural network
to classify pairs of questions, (English, English) or
(Arabic, English), regarding their similarity.

Furthermore, we explore the question of whether
adversarial training can be used to improve the per-
formance of the network when we have some unla-
beled examples in the target language. In particular,
we adapt the Domain Adversarial Neural Network
model from (Ganin et al., 2016), which was orig-
inally used for domain adaptation, to our cross-
language setting. To the best of our knowledge,
this is novel for cross-language question-question
similarity reranking, as well as for natural language
processing (NLP) in general; moreover, we are
not aware of any previous work on cross-language
question reranking for community Question An-
swering.

In our setup, the basic task-solving network is
paired with another network that shares the in-
ternal representation of the input and tries to de-
cide whether the input example comes from the
source (English) or from the target (Arabic) lan-
guage. The training of this language discriminator
network is adversarial with respect to the shared
layers by using gradient reversal during backpropa-
gation, which makes the training to maximize the
loss of the discriminator rather than to minimize
it. The main idea is to learn a high-level abstract
representation that is discriminative for the main
classification task, but is invariant across the input
languages.

226

We apply this method to an extension of the
SemEval-2016 Task 3, subtask B benchmark
dataset for question-question similarity rerank-
ing (Nakov et al., 2016b). In particular, we hired
professional translators to translate the original En-
glish questions to Arabic, and we further collected
additional unlabeled questions in English, which
we also got translated into Arabic. We show that
using the unlabeled data for adversarial training al-
lows us to improve the results by a sizable margin
in both directions, i.e., when training on English
and adapting the system with the Arabic unlabeled
data, and vice versa. Moreover, the resulting per-
formance is comparable to the best monolingual
English systems at SemEval. We also compare our
unsupervised model to a semi-supervised model,
where we have some labeled data for the target
language.

The remainder of this paper is organized as fol-
lows: Section 2 discusses some related work. Sec-
tion 3 introduces our model for adversarial training
for cross-language problems. Section 4 describes
the experimental setup. Section 5 presents the eval-
uation results. Finally, Section 6 concludes and
points to possible directions for future work.

2 Related Work

Below we discuss three relevant research lines:
(a) adversarial training, (b) question-question simi-
larity, and (c) cross-language learning.

Adversarial training of neural networks has
shown a big impact recently, especially in areas
such as computer vision, where generative unsu-
pervised models have proved capable of synthesiz-
ing new images (Goodfellow et al., 2014; Radford
et al., 2016; Makhzani et al., 2016). One crucial
challenge in adversarial training is to find the right
balance between the two components: the gener-
ator and the adversarial discriminator. Thus, sev-
eral methods have been proposed recently to sta-
bilize training (Metz et al., 2017; Arjovsky et al.,
2017). Adversarial training has also been success-
ful in training predictive models. More relevant
to our work is the work of Ganin et al. (2016),
who proposed domain adversarial neural networks
(DANN) to learn discriminative but at the same
time domain-invariant representations, with do-
main adaptation as a target. Here, we use adver-
sarial training to learn task-specific representations
in a cross-language setting, which is novel for this
task, to the best of our knowledge.

Question-question similarity was part of Task 3 on
cQA at SemEval-2016/2017 (Nakov et al., 2016b,
2017); there was also a similar subtask as part of
SemEval-2016 Task 1 on Semantic Textual Simi-
larity (Agirre et al., 2016). Question-question simi-
larity is an important problem with application to
question recommendation, question duplicate de-
tection, community question answering, and ques-
tion answering in general. Typically, it has been
addressed using a variety of textual similarity mea-
sures. Some work has paid attention to modeling
the question topic, which can be done explicitly,
e.g., using a graph of topic terms (Cao et al., 2008),
or implicitly, e.g., using LDA-based topic language
model that matches the questions not only at the
term level but also at the topic level (Zhang et al.,
2014). Another important aspect is syntactic struc-
ture, e.g., Wang et al. (2009) proposed a retrieval
model for finding similar questions based on the
similarity of syntactic trees, and Da San Martino
et al. (2016) used syntactic kernels. Yet another
emerging approach is to use neural networks, e.g.,
dos Santos et al. (2015) used convolutional neu-
ral networks (CNNs), Romeo et al. (2016) used
long short-term memory (LSTMs) networks with
neural attention to select the important part when
comparing two questions, and Lei et al. (2016)
used a combined recurrent–convolutional model to
map questions to continuous semantic representa-
tions. Finally, translation models have been pop-
ular for question-question similarity (Jeon et al.,
2005; Zhou et al., 2011). Unlike that work, here
we are interested in cross-language adaptation for
question-question similarity reranking. The prob-
lem was studied in (Martino et al., 2017) using
cross-language kernels and deep neural networks;
however, they used no adversarial training.

Cross-language Question Answering was the
topic of several challenges, e.g., at CLEF
2008 (Forner et al., 2008), at NTCIR-8 (Mitamura
et al., 2010), and at BOLT (Soboroff et al., 2016).
Cross-language QA methods typically use machine
translation directly or adapt MT models to the QA
setting (Echihabi and Marcu, 2003; Soricut and
Brill, 2006; Riezler et al., 2007; Hartrumpf et al.,
2008; Lin and Kuo, 2010; Surdeanu et al., 2011;
Ture and Boschee, 2016). They can also map terms
across languages using Wikipedia links or Babel-
Net (Bouma et al., 2008; Pouran Ben Veyseh, 2016).
However, adversarial training has not been tried in
that setting.

227

q: give tips? did you do with it; if the answer is yes, then what
the magnitude of what you avoid it? In our country, we
leave a 15-20 percent.

q′1 Tipping in Qatar. Is Tipping customary in Qatar ? What
is considered ”reasonable” amount to tip : 1. The guy
that pushes the shopping trolley for you 2. The person
that washes your car 3. The tea boy that makes coffee
for you in the office 4. The waiters at 5-star restaurants
5. The petrol pump attendants etc
Relevant

q′2 Tipping Beauty Salon. What do you think how much
i should tip the stuff in a beauty salon for mani-
cure/pedicure; massage or haircut?? Any idea what
is required in Qatar?
Relevant
. . .

q′9 Business Meeting? Guys; I’m just enquiring about what
one should wear to business meetings in Doha? Are
there certain things a man should or shouldn’t wear
(Serious replys only - not like A man shouldn’t wear a
dress)!!!! Thanks - Gino
Irrelevant

q′10 what to do? I see this man every morning; cleaning
the road. I want to give him some money(not any big
amount)but I feel odd to offer money to a person who
is not asking for it. I am confused; I kept the money
handy in the car.... because of the traffic the car moves
very slowly in that area; I can give it to him easily..but
am not able to do it for the past 4 days; and I feel so bad
about it. If I see him tomorrow; What to do?
Irrelevant

Figure 1: An input question and some of the po-
tentially relevant questions retrieved for it.

3 Adversarial Training for
Cross-Language Problems

We demonstrate our approach for cross-language
representation learning with adversarial training on
a cross-lingual extension of the question–question
similarity reranking subtask of SemEval-2016
Task 3 on community Question Answering.

An example for the monolingual task is shown
in Figure 1. We can see an original English input
question q and a list of several potentially simi-
lar questions q′i from the Qatar Living1 forum, re-
trieved by a search engine. The original question
(also referred to as a new question) asks about how
to tip in Qatar. Question q′1 is relevant with respect
to it as it asks the same thing, and so is q′2, which
asks how much one should tip in a specific situa-
tion. However, q′9 and q′10 are irrelevant: the former
asks about what to wear at business meetings, and
the latter asks about how to tip a kind of person
who does not normally receive tips.

1http://www.qatarliving.com/forum

In our case, the input question q is in a different lan-
guage (Arabic) than the language of the retrieved
questions (English). The goal is to rerank a set of
K retrieved questions {q′k}Kk=1 written in a source
language (e.g., English) according to their similar-
ity with respect to an input user question q that
comes in another (target) language, e.g., Arabic.
For simplicity, henceforth we will use Arabic as
target and English as source. However, in princi-
ple, our method generalizes to any source-target
language pair.

3.1 Unsupervised Language Adaptation

We approach the problem as a classification task,
where given a question pair (q, q′), the goal is to
decide whether the retrieved question q′ is similar
(i.e., relevant) to q or not. Let c ∈ {0, 1} denote
the class label: 1 for similar, and 0 for not similar.
We use the posterior probability p(c = 1|q, q′, θ)
as a score for ranking all retrieved questions by
similarity, where θ are the model parameters.

More formally, letRn = {q′n,k}Kk=1 denote the
set of K retrieved questions for a new question
qn. Note that the questions in Rn are always in
English. We consider a training scenario where we
have labeled examples DS = {qn, q′n,k, cn,k}Nn=1

for English qn, but we only have unlabeled exam-
ples DT = {qn, q′n,k}Mn=N+1 for Arabic qn, with
cn,k denoting the class label for the pair (qn, q′n,k).
We want to train a cross-language model that can
classify any test example {qn, q′n,k}, where qn is
in Arabic. This scenario is of practical importance,
e.g., when an Arabic speaker wants to query the
system in Arabic, and the database of related infor-
mation is only in English. Here, we adapt the idea
for adversarial training for domain adaptation as
proposed by Ganin et al. (2016).

Figure 2 shows the architecture of our cross-
language adversarial neural network (CLANN)
model. The input to the network is a pair (q, q′),
which is first mapped to fixed-length vectors
(zq, zq′). To generate these word embeddings, one
can use existing tools such as word2vec (Mikolov
et al., 2013) and monolingual data from the respec-
tive languages. Alternatively, one can use cross-
language word embeddings, e.g., trained using the
bivec model (Luong et al., 2015). The latter can
yield better initialization, which could be poten-
tially crucial when the labeled data is too small to
train the input representations with the end-to-end
system.

228

q
(new;&ar/en)&

(related;&en)&

!
!
!

!
!
!

input&
embeddings&

!
!
!

!
!
!

!
!
!

c

! !

φ"() q ,q’

h f
interaction&&

layer&

zq

q’
zq’

features&

l

class&label&

language&label&

!
!
!

hl

loss$Ll&
gradient&
reversal&BP& λ(grad(Ll)&/λ(grad(Ll)&

Figure 2: Architecture of CLANN for the question to question similarity problem in cQA.

The network then models the interactions between
the input embeddings by passing them through two
non-linear hidden layers, h and f . Additionally, the
network considers pairwise features φ(q, q′) that
go directly to the output layer, and also through the
second hidden layer.

The following equations describe the transfor-
mations through the hidden layers:

h = g(U [zq; zq′]) (1)

f = g(V [h;φ(q, q′)]) (2)

where [.; .] denotes concatenation of two column
vectors, U and V are the weight matrices in the first
and in the second hidden layer, and g is a nonlinear
activation function; we use rectified linear units or
ReLU (Nair and Hinton, 2010).

The pairwise features φ(q, q′) encode different
types of similarity between q and q′, and task-
specific properties that we describe later in Sec-
tion 4. In our earlier work (Martino et al., 2017),
we found it beneficial to use them directly to the
output layer as well as through a hidden-layer trans-
formation. The non-linear transformation allows
us to learn high-level abstract features from the raw
similarity measures, while the adversarial training,
as we describe below, will make these abstract fea-
tures language-invariant.

The output layer computes a sigmoid:

ĉθ = p(c = 1|f ,w) = sigm(wT [f ;φ(q, q′)]) (3)

where w are the output layer weights.
We train the network by minimizing the negative

log-probability of the gold labels:

Lc(θ) = −c log ĉθ − (1− c) log (1− ĉθ) (4)

The network described so far learns the abstract
features through multiple hidden layers that are dis-
criminative for the classification task, i.e., similar
vs. non-similar. However, our goal is also to make
these features invariant across languages. To this
end, we put a language discriminator, another neu-
ral network that takes the internal representation of
the network f (see Equation 2) as input, and tries
to discriminate between English and Arabic inputs
— in our case, whether the input comes fromDS or
from DT .

The language discriminator is again defined by
a sigmoid function:

l̂ω = p(l = 1|f , ω) = sigm(wT
l hl) (5)

where l ∈ {0, 1} denotes the language of q (1 for
English, and 0 for Arabic), wl are the final layer
weights of the discriminator, and hl = g(Ulf) de-
fines the hidden layer of the discriminator with
Ul being the layer weights and g being the ReLU
activations.

We use the negative log-probability as the dis-
crimination loss:

Ll(ω) = −l log l̂ω − (1− l) log
(
1− l̂ω

)
(6)

The overall training objective of the composite
model can be written as follows:

L(θ, ω) =
N∑

n=1

Ln
c (θ)− λ

[N∑
n=1

Ln
l (ω) +

M∑
n=N+1

Ln
l (ω)

]
(7)

where θ = {U, V,w}, ω = {U, V,w, Ul,wl}, and
the hyper-parameter λ controls the relative strength
of the two networks.

229

In training, we look for parameter values that sat-
isfy a min-max optimization criterion as follows:

θ∗ = argmin
U,V,w

max
Ul,wl

L(U, V,w, Ul,wl) (8)

which involves a maximization (gradient ascent)
with respect to {Ul,wl} and a minimization (gra-
dient descent) with respect to {U, V,w}. Note
that maximizing L(U, V,w, Ul,wl) with respect
to {Ul,wl} is equivalent to minimizing the dis-
criminator loss Ll(ω) in Equation (6), which aims
to improve the discrimination accuracy. In other
words, when put together, the updates of the shared
parameters {U, V,w} for the two classifiers work
adversarially with respect to each other.

In our gradient descent training, the above min-
max optimization is performed by reversing the gra-
dients of the language discrimination loss Ll(ω),
when they are backpropagated to the shared lay-
ers. As shown in Figure 2, the gradient reversal is
applied to layer f and also to the layers that come
before it.

Our optimization setup is related to the train-
ing method of Generative Adversarial Networks
or GANs (Goodfellow et al., 2014), where the
goal is to build deep generative models that can
generate realistic images. The discriminator in
GANs tries to distinguish real images from model-
generated images, and thus the training attempts
to minimize the discrepancy between the two im-
age distributions, i.e., empirical as in the training
data vs. model-based as produced by the generator.
When backpropagating to the generator network,
they consider a slight variation of the reverse gra-
dients with respect to the discriminator loss. In
particular, if ρ is the discriminator probability, in-
stead of reversing the gradients of log(1− ρ), they
use the gradients of log ρ. Reversing the gradient
is a different way to achieve the same goal.

Training. Algorithm 1 shows pseudocode for the
algorithm we use to train our model, which is
based on stochastic gradient descent (SDG). We
first initialize the model parameters by using sam-
ples from glorot-uniform distribution (Glorot and
Bengio, 2010). We then form minibatches of size b
by randomly sampling b/2 labeled examples from
DS and b/2 unlabeled examples from DT . For the
labeled instances, both Lc(θ) and Ll(ω) losses are
active, while only the Ll(ω) loss is active for the
unlabeled instances.

Algorithm 1: Model Training with SGD
Input :data DS , DT , batch size b
Output : learned model parameters

{U, V,w, Ul,wl}
1. Initialize model parameters;
2. repeat

(a) Randomly sample b
2 labeled examples

from DS
(b) Randomly Sample b

2 unlabeled
examples from DT

(c) Compute Lc(θ) and Ll(ω)
(d) Take a gradient step for 2

b∇θLc(θ)
(e) Take a gradient step for

2λ
b ∇Ul,wl

Ll(ω)
// Gradient reversal

(f) Take a gradient step for −2λ
b ∇θLl(ω)

until convergence;

As mentioned above, the main challenge in adver-
sarial training is to balance the two components of
the network. If one component becomes smarter,
its loss to the shared layer becomes useless, and the
training fails to converge (Arjovsky et al., 2017).
Equivalently, if one component gets weaker, its
loss overwhelms that of the other, causing training
to fail. In our experiments, the language discrim-
inator was weaker. This could be due to the use
of cross-language word embeddings to generate
input embedding representations for q and q′. To
balance the two components, we would want the er-
ror signals from the discriminator to be fairly weak
initially, with full power unleashed only as the clas-
sification errors start to dominate. We follow the
weighting schedule proposed by Ganin et al. (2016,
p. 21), who initialize λ to 0, and then change it
gradually to 1 as training progresses. I.e., we start
training the task classifier first, and we gradually
add the discriminator’s loss.

3.2 Semi-supervised Extension

Above we considered an unsupervised adaptation
scenario, where we did not have any labeled in-
stance for the target language, i.e., when the new
question qn is in Arabic. However, our method can
be easily generalized to a semi-supervised setting,
where we have access to some labeled instances in
the target language, DT ∗ = {qn,Rn, cn}Ln=M+1.
In this case, each minibatch during training is
formed by labeled instances from both DS and
DT ∗ , and unlabeled instances from DT .

230

System Input Discrim. Target Hyperparam. (b, d, h, f , l2) MAP MRR AvgRec
FNN en – ar 8, 0.2, 10, 100, 0.03 75.28 84.26 89.48
CLANN en en vs. ar’ ar 8, 0.2, 15, 100, 0.02 76.64 84.52 90.92
FNN ar – en 8, 0.4, 20, 125, 0.03 75.32 84.17 89.26
CLANN ar ar vs. en’ en 8, 0.4, 15, 75, 0.02 76.70 84.52 90.61

Table 1: Performance on the test set for our cross-language systems, with and without adversarial
adaptation (CLANN and FNN, respectively), and for both language directions (en-ar and ar-en). The
prime notation under the Discrim. column represents using a counterpart from the unlabeled data.

4 Experimental Setting

In this section, we describe the datasets we used,
the generation of the input embeddings, the nature
of the pairwise features, and the general training
setup of our model.

4.1 Datasets
SemEval-2016 Task 3 (Nakov et al., 2016b), pro-
vides 267 input questions for training, 50 for de-
velopment, and 70 for testing, and ten times as
many potentially related questions retrieved by an
IR engine for each input question: 2,670, 500, and
700, respectively. Based on this data, we simu-
lated a cross-language setup for question-question
similarity reranking. We first got the 387 original
train+dev+test questions translated into Arabic by
professional translators. Then, we used these Ara-
bic questions as an input with the goal to rerank
the ten related English questions. As an example,
this is the Arabic translation of the original English
question from Figure 1:

; 	à

A ��Ë@ @ 	YîE. 	àñÊª 	®�K @ 	XAÓ ? �HAJ
Ó@Q» B@ 	àñ¢ª�K Éë

? é 	KñJ. 	Jj. ���K AÓ �èñ�̄ ñë AÓ , Ñª	K �éK. Ag. B@ �I	KA¿ @ 	X @
. �é
JÖÏ AK. 20 úÍ@
 15 	áÓ ¼Q�� 	K , A 	KXCK. ú

	̄

We further collected 221 additional original
questions and 1,863 related questions as unlabeled
data, and we got the 221 English questions trans-
lated to Arabic.2

4.2 Cross-language Embeddings
We used the TED (Abdelali et al., 2014) and
the OPUS parallel Arabic–English bi-texts (Tiede-
mann, 2012) to extract a bilingual dictionary, and
to learn cross-language embeddings. We chose
these bi-texts as they are conversational (TED talks
and movie subtitles, respectively), and thus infor-
mal, which is close to the style of our community
question answering forum.

2Our cross-language dataset and code are available at
https://github.com/qcri/CLANN

We trained Arabic-English cross-language word
embeddings from the concatenation of these bi-
texts using bivec (Luong et al., 2015), a bilingual
extension of word2vec, which has achieved excel-
lent results on semantic tasks close to ours (Upad-
hyay et al., 2016). In particular, we trained 200-
dimensional vectors using the parameters described
in (Upadhyay et al., 2016), with a context window
of size 5 and iterating for 5 epochs. We then com-
pute the representation for a question by averaging
the embedding vectors of the words it contains. Us-
ing these cross-language embeddings allows us to
compare directly representations of an Arabic or
an English input question q to English potentially
related questions q′i.

4.3 Pairwise Features

In addition to the embeddings, we also used some
pairwise features that model the similarity or some
other relation between the input question and the
potentially related questions.3 These features were
proposed in the previous literature for the question–
question similarity problem, and they are necessary
to obtain state-of-the-art results.

In particular, we calculated the similarity be-
tween the two questions using machine transla-
tion evaluation metrics, as suggested in (Guzmán
et al., 2016). In particular, we used BLEU (Pa-
pineni et al., 2002); NIST (Doddington, 2002);
TER v0.7.25 (Snover et al., 2006); METEOR v1.4
(Lavie and Denkowski, 2009) with paraphrases;
Unigram PRECISION; Unigram RECALL. We
also used features that model various components
of BLEU, as proposed in (Guzmán et al., 2015):
n-gram precisions, n-gram matches, total number
of n-grams (n=1,2,3,4), hypothesis and reference
length, length ratio, and brevity penalty.

3This required translating the Arabic input question to
English. For this, we used an in-house Arabic–English phrase-
based statistical machine translation system, trained on the
TED and on the OPUS bi-texts; for language modeling, it also
used the English Gigaword corpus.

231

We further used as features the cosine similarity
between question embeddings. In particular, we
used (i) 300-dimensional pre-trained Google News
embeddings from (Mikolov et al., 2013), (ii) 100-
dimensional embeddings trained on the entire Qatar
Living forum (Mihaylov and Nakov, 2016), and
(iii) 25-dimensional Stanford neural parser embed-
dings (Socher et al., 2013). The latter are produced
by the parser internally, as a by-product.

Furthermore, we computed various task-specific
features, most of them introduced in the 2015
edition of the SemEval task by (Nicosia et al.,
2015; Joty et al., 2015). This includes
some question-level features: (1) number of
URLs/images/emails/phone numbers; (2) num-
ber of tokens/sentences; (3) average number
of tokens; (4) type/token ratio; (5) number of
nouns/verbs/adjectives/adverbs/ pronouns; (6) num-
ber of positive/negative smileys; (7) number of sin-
gle/double/ triple exclamation/interrogation sym-
bols; (8) number of interrogative sentences (based
on parsing); (9) number of words that are not
in WORD2VEC’s Google News vocabulary. Also,
some question-question pair features: (10) count ra-
tio in terms of sentences/tokens/nouns/verbs/ adjec-
tives/adverbs/pronouns; (11) count ratio of words
that are not in WORD2VEC’s Google News vocabu-
lary. Finally, we also have one meta feature: (12) re-
ciprocal rank of the related question in the list of
related questions.

4.4 Model settings

We trained our CLANN model by optimizing the
objective in Equation (7) using ADAM (Kingma
and Ba, 2015) with default parameters. For this,
we used up to 200 epochs. In order to avoid over-
fitting, we used dropout (Srivastava et al., 2014)
of hidden units, l2 regularization on weights, and
early stopping by observing MAP on the devel-
opment dataset —if MAP did not increase for
15 consecutive epochs, we exited with the best
model recorded so far. We optimized the val-
ues of the hyper-parameters using grid search:
for minibatch (b) size in {8, 12, 16}, for dropout
(d) rate in {0.2, 0.3, 0.4, 0.5}, for h layer size in
{10, 15, 20}, for f layer size in {75, 100, 125}, and
for l2 strength in {0.01, 0.02, 0.03}. The fifth col-
umn in Table 1 shows the optimal hyper-parameter
setting for the different models. Finally, we used
the best model as found on the development dataset
for the final evaluation on the test dataset.

System MAP MRR AvgRec
Monolingual (English) from SemEval-2016
1. IR rank 74.75 83.79 88.30
2. UH-PRHLT (1st) 76.70 83.02 90.31
3. ConvKN (2nd) 76.02 84.64 90.70
Cross-language (Arabic into English)
4. CLANN 76.70 84.52 90.61

Table 2: Comparison of our cross-language ap-
proach (CLANN) to the best results at SemEval-
2016 Task 3, subtask B.

5 Evaluation Results

Below we present the experimental results for the
unsupervised and semi-supervised language adap-
tation settings. We compare our cross-language
adversarial network (CLANN) to a feed forward
neural network (FNN) that has no adversarial part.

5.1 Unsupervised Adaptation Experiments

Table 1 shows the main results for our cross-
language adaptation experiments. Rows 1-2
present the results when the target language is Ara-
bic and the system is trained with English input.
Rows 3-4 show the reverse case, i.e., adaptation
into English when training on Arabic. FNN stands
for feed-forward neural network, and it is the upper
layer in Figure 2, excluding the language discrim-
inator. CLANN is the full cross-language adver-
sarial neural network, training the discriminator
with English inputs paired with random Arabic re-
lated questions from the unlabeled dataset. We
show three ranking-oriented evaluation measures
that are standard in the field of Information Re-
trieval: mean average precision (MAP), mean re-
ciprocal rank (MRR), and average recall (AvgRec).
We computed them using the official scorer from
SemEval-2016 Task 3.4 Similarly to that task, we
consider Mean Average Precision (MAP) as the
main evaluation metric. The table also presents, for
reproducibility, the values of the neural network
hyper-parameters after tuning (in the fifth column).

We can see that the MAP score for FNN with
Arabic target is 75.28. When doing the adver-
sarial adaptation with the unlabeled Arabic exam-
ples (CLANN), the MAP score is boosted to 76.64
(+1.36 points). Going in the reverse direction, with
English as the target, yields very comparable re-
sults: MAP goes from 75.32 to 76.70 (+1.38).

4http://alt.qcri.org/semeval2016/
task3/

232

Figure 3: Scatter plots showing Arabic and English test examples, after training the adversarial network.
Arabic is shown in blue, and English is in red. 0-1 are the class labels. Left: ar→en, right: en→ar.

To put these results into perspective, Table 2 shows
the results for the top-2 best-performing systems
from SemEval-2016 Task 3, which used a mono-
lingual English setting. We can see that our FNN
approach based on cross-language input embed-
dings is already not far from the best systems. Yet,
when we consider the full adversarial network, in
any of the two directions, we get performance that
is on par with the best, in all metrics.

We conclude that the adversarial component
in the network does the expected job, and im-
proves the performance by focusing the language-
independent features in the representation layer.
The scatter plots in Figure 3 are computed by pro-
jecting the representation layer vectors of the first
500 test examples into two dimensions using t-SNE
visualization (van der Maaten and Hinton, 2008).
The first 250 are taken with Arabic input (blue),
the second 250 are taken with English input (red).
0-1 are the class labels (similar vs. non-similar).
The top plot corresponds to CLANN training with
English and adapting with Arabic examples, while
the second one covers the opposite direction. The
plots look as expected. CLANN really mixes the
blue and the red examples, as the adversarial part
of the network pushes for learning shared abstract
features that are language-insensitive. At the same
time, the points form clusters with clear majorities
of 0s or 1s, as the supervised part of the network
learns how to classify them in these classes.

5.2 Semi-supervised Experiments

We now study the semi-supervised scenario when
we also have some labeled data from the target
language, i.e., where the original question q is in
the target language. This can be relevant in prac-
tical situations, as sometimes we might be able to
annotate some data in the target language. It is
also an exploration of training with data in multiple
languages all together.

To simulate this scenario, we split the training
set in two halves. We train with one half as the
source language, and we use the other half with
the target language as extra supervised data. At
the same time, we also use the unlabeled exam-
ples as before. We introduced the semi-supervised
model in subsection 3.2, which is a straightforward
adaptation of the CLANN model.

Table 3 shows the main results of our cross-
language semi-supervised experiments. The ta-
ble is split into two blocks by source and target
language (en-ar or ar-en). We also use the same
notation as in Table 1. The suffixes -unsup and
-semisup indicate whether CLANN is trained in
unsupervised mode (same as in Table 1) or in semi-
supervised mode. The language discriminator in
this setting is trained to discriminate between la-
beled source and labeled target examples, and la-
beled source and unlabeled target examples. This
is indicated in the Discrim. column using asterisk
and prime symbols, respectively.

233

System Input Discrim. Target
Hyperparam.

MAP MRR AvgRec
(b, d, h, f , l2)

FNN en — ar 8, 0.3, 10, 100, 0.03 74.69 83.79 88.16
CLANN-unsup en en vs. ar’ ar 12, 0.3, 15, 75, 0.02 75.93 84.15 89.63

CLANN-semisup en+ar∗
{en vs. ar∗

ar 8, 0.4, 15, 75, 0.02 76.65 84.52 90.84
en vs. ar’

FNN ar — en 8, 0.2, 10, 75, 0.03 75.38 84.05 89.12
CLANN-unsup ar ar vs. en’ en 12, 0.2, 15, 75, 0.03 75.89 84.29 89.54

CLANN-semisup ar+en∗
{ar vs. en∗

en 8, 0.2, 10, 75, 0.03 76.63 84.52 90.82
ar vs. en’

Table 3: Semi-supervised experiments, when training on half of the training dataset, and evaluating on the
full testing dataset. Shown is the performance of our cross-language models, with and without adversarial
adaptation (i.e., using CLANN and FNN, respectively), using the unsupervised and the semi-supervised
settings, and for both language directions: English–Arabic and Arabic–English. The prime notation in the
Discrim. column represents choosing a counterpart for the discriminator from the unlabeled data. The
asterisks stand for choosing an unpaired labeled example from the other half of the training dataset.

There are several interesting observations that we
can make about Table 3. First, since here we are
training with only 50% of the original training data,
both FNN and CLANN-unsup yield lower results
compared to before, i.e., compared to Table 1; this
is to be expected. However, the unsupervised adap-
tation, i.e., using the CLANN-unsup model, still
yields improvements over the FNN model by a
sizable margin, according to all three evaluation
measures. When we also train using the additional
labeled examples in the target language, i.e., us-
ing the CLANN-semisup model, the results are
boosted again to a final MAP score that is very
similar to what we had obtained before with the
full source-language training dataset. In the En-
glish into Arabic adaptation, the MAP score jumps
from 74.69 to 76.65 (+1.96 points) when going
from the FNN to the CLANN-semisup model, the
MRR score goes from 83.79 to 84.52 (+0.73), and
the AvgRec score is boosted from 88.16 to 90.84
(+2.68). The results in the opposite adaptation di-
rection, i.e., from Arabic into English, follow a
very similar pattern.

These results demonstrate the effectiveness and
the flexibility of our general adversarial training
framework within our CLANN architecture when
applied to a cross-language setting for question-
question similarity, taking advantage of the unla-
beled examples in the target language (i.e., when
using unsupervised adaptation) and also taking ad-
vantage of any labeled examples in the target lan-
guage that we may have at our disposal (i.e., when
using semi-supervised training with input examples
in the two languages simultaneously).

6 Conclusion

We have studied the problem of cross-language
adaptation for the task of question–question simi-
larity reranking in community question answering,
when the input question can be either in English or
in Arabic with the objective to port a system trained
on one input language to another input language
given labeled data for the source language and only
unlabeled data for the target language. We used a
discriminative adversarial neural network, which
we trained to learn task-specific representations di-
rectly. This is novel in a cross-language setting, and
we have shown that it works quite well. The evalua-
tion results have shown sizable improvements over
a strong neural network model that uses simple
projection with cross-language word embeddings.

In future work, we want to extend the present
research in several directions. For example, we
would like to start with monolingual word embed-
dings and to try to learn the shared cross-language
representation directly as part of the end-to-end
training of our neural network. We further plan
to try LSTM and CNN for generating the initial
representation of the input text (instead of simple
averaging of word embeddings). We also want to
experiment with more than two languages at a time.
Another interesting research direction we want to
explore is to try to adapt our general CLANN
framework to other tasks, e.g., to answer ranking in
community Question Answering (Joty et al., 2016;
Nakov et al., 2016a) in a cross-language setting, as
well as to cross-language representation learning
for words and sentences.

234

Acknowledgment

This research was performed by the Arabic Lan-
guage Technologies group at Qatar Computing Re-
search Institute, HBKU, within the Interactive sYs-
tems for Answer Search project (IYAS).

References
Ahmed Abdelali, Francisco Guzmán, Hassan Sajjad,

and Stephan Vogel. 2014. The AMARA corpus:
Building parallel language resources for the educa-
tional domain. In Proceedings of the 9th Interna-
tional Conference on Language Resources and Eval-
uation. Reykjavik, Iceland, LREC ’14, pages 1856–
1862.

Eneko Agirre, Carmen Banea, Daniel Cer, Mona Diab,
Aitor Gonzalez-Agirre, Rada Mihalcea, German
Rigau, and Janyce Wiebe. 2016. SemEval-2016
task 1: Semantic textual similarity, monolingual
and cross-lingual evaluation. In Proceedings of the
10th International Workshop on Semantic Evalua-
tion. San Diego, CA, USA, SemEval ’16, pages 497–
511.

Martı́n Arjovsky, Soumith Chintala, and Léon Bottou.
2017. Wasserstein GAN. CoRR abs/1701.07875.

Gosse Bouma, Jori Mur, and Gertjan van Noord. 2008.
Question answering with Joost at CLEF 2008. In
Proceedings of the 9th Workshop of the Cross-
Language Evaluation Forum: Evaluating Systems
for Multilingual and Multimodal Information Ac-
cess. Aarhus, Denmark, CLEF ’08, pages 257–260.

Yunbo Cao, Huizhong Duan, Chin-Yew Lin, Yong Yu,
and Hsiao-Wuen Hon. 2008. Recommending ques-
tions using the MDL-based tree cut model. In Pro-
ceedings of the 17th International Conference on
World Wide Web. Beijing, China, WWW ’08, pages
81–90.

Giovanni Da San Martino, Alberto Barrón-Cedeño, Sal-
vatore Romeo, Antonio Uva, and Alessandro Mos-
chitti. 2016. Learning to re-rank questions in com-
munity question answering using advanced features.
In Proceedings of the 25th ACM International Con-
ference on Information and Knowledge Manage-
ment. Indianapolis, IN, USA, CIKM ’16, pages
1997–2000.

George Doddington. 2002. Automatic evaluation
of machine translation quality using n-gram co-
occurrence statistics. In Proceedings of the 2nd In-
ternational Conference on Human Language Tech-
nology Research. San Diego, CA, USA, HLT ’02,
pages 138–145.

Cicero dos Santos, Luciano Barbosa, Dasha Bog-
danova, and Bianca Zadrozny. 2015. Learning hy-
brid representations to retrieve semantically equiva-
lent questions. In Proceedings of the 53rd Annual

Meeting of the Association for Computational Lin-
guistics and the 7th International Joint Conference
on Natural Language Processing. Beijing, China,
ACL-IJCNLP ’15, pages 694–699.

Abdessamad Echihabi and Daniel Marcu. 2003. A
noisy-channel approach to question answering. In
Proceedings of the 41st Annual Meeting of the As-
sociation for Computational Linguistics. Sapporo,
Japan, ACL ’03, pages 16–23.

Pamela Forner, Anselmo Peñas, Eneko Agirre, Iñaki
Alegria, Corina Forascu, Nicolas Moreau, Petya
Osenova, Prokopis Prokopidis, Paulo Rocha, Bog-
dan Sacaleanu, Richard F. E. Sutcliffe, and Erik F.
Tjong Kim Sang. 2008. Overview of the CLEF 2008
Multilingual Question Answering Track. In Pro-
ceedings of the 9th Workshop of the Cross-Language
Evaluation Forum: Evaluating Systems for Multilin-
gual and Multimodal Information Access. Aarhus,
Denmark, CLEF ’08, pages 262–295.

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan,
Pascal Germain, Hugo Larochelle, François Lavi-
olette, Mario Marchand, and Victor Lempitsky.
2016. Domain-adversarial training of neural net-
works. Journal of Machine Learning Research
17(1):2096–2030.

Xavier Glorot and Yoshua Bengio. 2010. Understand-
ing the difficulty of training deep feedforward neu-
ral networks. In JMLR W&CP: Proceedings of the
Thirteenth International Conference on Artificial In-
telligence and Statistics. Sardinia, Italy, volume 9 of
AISTATS ’10, pages 249–256.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. 2014. Generative ad-
versarial nets. In Proceedings of Advances in Neu-
ral Information Processing Systems Conference 27.
Montréal, Canada, NIPS ’14, pages 2672–2680.

Francisco Guzmán, Shafiq Joty, Lluı́s Màrquez, and
Preslav Nakov. 2015. Pairwise neural machine trans-
lation evaluation. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Lin-
guistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers). Beijing, China, ACL-IJCNLP ’15, pages
805–814.

Francisco Guzmán, Lluı́s Màrquez, and Preslav Nakov.
2016. Machine translation evaluation meets com-
munity question answering. In Proceedings of the
54th Annual Meeting of the Association for Com-
putational Linguistics. Berlin, Germany, ACL ’16,
pages 460–466.

Sven Hartrumpf, Ingo Glöckner, and Johannes Level-
ing. 2008. Efficient question answering with ques-
tion decomposition and multiple answer streams.
In Proceedings of the 9th Workshop of the Cross-
Language Evaluation Forum: Evaluating Systems
for Multilingual and Multimodal Information Ac-
cess. Aarhus,Denmark, CLEF ’08, pages 421–428.

235

Jiwoon Jeon, W. Bruce Croft, and Joon Ho Lee. 2005.
Finding similar questions in large question and an-
swer archives. In Proceedings of the 14th ACM In-
ternational Conference on Information and Knowl-
edge Management. Bremen, Germany, CIKM ’05,
pages 84–90.

Shafiq Joty, Alberto Barrón-Cedeño, Giovanni
Da San Martino, Simone Filice, Lluı́s Màrquez,
Alessandro Moschitti, and Preslav Nakov. 2015.
Global Thread-level Inference for Comment Clas-
sification in Community Question Answering. In
Proc. of the 2015 Conference on Empirical Methods
in Natural Language Processing. ACL, Lisbon,
Portugal, pages 573–578.

Shafiq Joty, Lluı́s Màrquez, and Preslav Nakov. 2016.
Joint learning with global inference for comment
classification in community question answering. In
Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics. San Diego, CA, USA, NAACL-
HLT ’16.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In Proceedings
of the 3rd International Conference for Learning
Representations. San Diego, CA, USA, ICLR ’15.

Alon Lavie and Michael Denkowski. 2009. The ME-
TEOR metric for automatic evaluation of machine
translation. Machine Translation 23(2–3):105–115.

Tao Lei, Hrishikesh Joshi, Regina Barzilay, Tommi S.
Jaakkola, Kateryna Tymoshenko, Alessandro Mos-
chitti, and Lluı́s Màrquez. 2016. Semi-supervised
question retrieval with gated convolutions. In Pro-
ceedings of the 15th Annual Conference of the North
American Chapter of the Association for Computa-
tional Linguistics. San Diego, CA, USA, NAACL-
HLT ’16, pages 1279–1289.

Chuan-Jie Lin and Yu-Min Kuo. 2010. Description of
the NTOU complex QA system. In Proceedings of
the 8th NTCIR Workshop Meeting on Evaluation of
Information Access Technologies: Information Re-
trieval, Question Answering, and Cross-Lingual In-
formation Access. Tokyo, Japan, NTCIR ’10, pages
47–54.

Thang Luong, Hieu Pham, and Christopher D. Man-
ning. 2015. Bilingual word representations with
monolingual quality in mind. In Proceedings of the
1st Workshop on Vector Space Modeling for Natu-
ral Language Processing. Denver, CO, USA, pages
151–159.

Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly,
and Ian J. Goodfellow. 2016. Adversarial autoen-
coders. In Proceedings of the International Confer-
ence on Learning Representations 2016. San Juan,
Puerto Rico, ICLR ’16.

Giovanni Da San Martino, Salvatore Romeo, Al-
berto Barrón Cedeño, Shafiq Joty, Lluı́s Màrquez,

Alessandro Moschitti, and Preslav Nakov. 2017.
Cross-language question re-ranking. In Proceedings
of the 40th ACM SIGIR Conference on Research
and Development in Information Retrieval. Tokyo,
Japan, SIGIR ’17.

Luke Metz, Ben Poole, David Pfau, and Jascha Sohl-
Dickstein. 2017. Unrolled generative adversarial
networks. In 5th International Conference on Learn-
ing Representations. Toulon, France, ICLR ’17.

Todor Mihaylov and Preslav Nakov. 2016. Seman-
ticZ at SemEval-2016 Task 3: Ranking relevant an-
swers in community question answering using se-
mantic similarity based on fine-tuned word embed-
dings. In Proceedings of the 10th International
Workshop on Semantic Evaluation. San Diego, CA,
USA, SemEval ’16, pages 879–886.

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig.
2013. Linguistic regularities in continuous space
word representations. In Proceedings of the 2013
Conference of the North American Chapter of the
Association for Computational Linguistics. Atlanta,
GA, USA, NAACL-HLT ’13, pages 746–751.

Teruko Mitamura, Hideki Shima, Tetsuya Sakai,
Noriko Kando, Tatsunori Mori, Koichi Takeda,
Chin-Yew Song Ruihua Lin, Chuan-Jie Lin, and
Cheng-Wei Lee. 2010. Overview of the NTCIR-8
ACLIA tasks: Advanced cross-lingual information
access. In Proceedings of the 8th NTCIR Workshop
Meeting on Evaluation of Information Access Tech-
nologies: Information Retrieval, Question Answer-
ing, and Cross-Lingual Information Access. Tokyo,
Japan, NTCIR ’10, pages 15–24.

Saif M. Mohammad, Mohammad Salameh, and Svet-
lana Kiritchenko. 2016. How translation alters sen-
timent. Journal of Artificial Intelligence Research
55(1):95–130.

Vinod Nair and Geoffrey E. Hinton. 2010. Rectified lin-
ear units improve restricted Boltzmann machines. In
Proceedings of the 27th International Conference on
Machine Learning. Haifa, Israel, ICML ’10, pages
807–814.

Preslav Nakov, Doris Hoogeveen, Lluı́s Màrquez,
Alessandro Moschitti, Hamdy Mubarak, Timothy
Baldwin, and Karin Verspoor. 2017. SemEval-2017
task 3: Community question answering. In Proceed-
ings of the 11th International Workshop on Semantic
Evaluation. Vancouver, Canada, SemEval ’17.

Preslav Nakov, Lluı́s Màrquez, and Francisco Guzmán.
2016a. It takes three to tango: Triangulation ap-
proach to answer ranking in community question an-
swering. In Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Processing.
Austin, TX, USA, EMNLP ’16, pages 1586–1597.

Preslav Nakov, Lluı́s Màrquez, Alessandro Moschitti,
Walid Magdy, Hamdy Mubarak, Abed Alhakim
Freihat, Jim Glass, and Bilal Randeree. 2016b.

236

SemEval-2016 task 3: Community question answer-
ing. In Proceedings of the 10th International Work-
shop on Semantic Evaluation. San Diego, CA, USA,
SemEval ’16, pages 525–545.

Massimo Nicosia, Simone Filice, Alberto Barrón-
Cedeño, Iman Saleh, Hamdy Mubarak, Wei Gao,
Preslav Nakov, Giovanni Da San Martino, Alessan-
dro Moschitti, Kareem Darwish, Lluı́s Màrquez,
Shafiq Joty, and Walid Magdy. 2015. QCRI: An-
swer selection for community question answering -
experiments for Arabic and English. In Proceedings
of the 9th International Workshop on Semantic Eval-
uation. Denver, CO,USA, SemEval ’15, pages 203–
209.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: a method for automatic
evaluation of machine translation. In Proceedings
of 40th Annual Meting of the Association for Com-
putational Linguistics. Philadelphia, PA, USA, ACL
’02, pages 311–318.

Amir Pouran Ben Veyseh. 2016. Cross-lingual ques-
tion answering using common semantic space. In
Proceedings of the 2016 Workshop on Graph-based
Methods for Natural Language Processing. San
Diego, CA, USA, TextGraphs ’16, pages 15–19.

Alec Radford, Luke Metz, and Soumith Chintala. 2016.
Unsupervised representation learning with deep con-
volutional generative adversarial networks. In Pro-
ceedings of the 4th International Conference on
Learning Representations. San Juan, Puerto Rico,
ICLR ’16.

Stefan Riezler, Alexander Vasserman, Ioannis Tsochan-
taridis, Vibhu Mittal, and Yi Liu. 2007. Statistical
machine translation for query expansion in answer
retrieval. In Proceedings of the 45th Annual Meet-
ing of the Association of Computational Linguistics.
Prague, Czech Republic, ACL ’07, pages 464–471.

Salvatore Romeo, Giovanni Da San Martino, Alberto
Barrón-Cedeño, Alessandro Moschitti, Yonatan Be-
linkov, Wei-Ning Hsu, Yu Zhang, Mitra Mohtarami,
and James Glass. 2016. Neural attention for learning
to rank questions in community question answering.
In Proceedings of the 26th International Conference
on Computational Linguistics. Osaka, Japan, COL-
ING ’16, pages 1734–1745.

Matthew Snover, Bonnie Dorr, Richard Schwartz, Lin-
nea Micciulla, and John Makhoul. 2006. A study of
translation edit rate with targeted human annotation.
In Proceedings of the 7th Conference of the Associa-
tion for Machine Translation in the Americas. Cam-
bridge, MA, USA, AMTA ’06, pages 223–231.

Ian Soboroff, Kira Griffitt, and Stephanie Strassel.
2016. The BOLT IR test collections of multilin-
gual passage retrieval from discussion forums. In
Proceedings of the 39th International Conference on
Research and Development in Information Retrieval.
Pisa, Italy, SIGIR ’16, pages 713–716.

Richard Socher, John Bauer, Christopher D. Manning,
and Ng Andrew Y. 2013. Parsing with composi-
tional vector grammars. In Proceedings of the 51st
Annual Meeting of the Association for Computa-
tional Linguistics. Sofia, Bulgaria, ACL ’13, pages
455–465.

Radu Soricut and Eric Brill. 2006. Automatic question
answering using the web: Beyond the factoid. Infor-
mation Retrieval 9(2):191–206.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. Journal of Machine Learning Re-
search 15(1):1929–1958.

Mihai Surdeanu, Massimiliano Ciaramita, and Hugo
Zaragoza. 2011. Learning to rank answers to non-
factoid questions from web collections. Computa-
tional Linguistics 37(2):351–383.

Jörg Tiedemann. 2012. Parallel data, tools and inter-
faces in OPUS. In Proceedings of the 8th Interna-
tional Conference on Language Resources and Eval-
uation. Istanbul, Turkey, LREC ’12, pages 2214–
2218.

Ferhan Ture and Elizabeth Boschee. 2016. Learning
to translate for multilingual question answering. In
Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing. Austin,
TX, USA, EMNLP ’16, pages 573–584.

Shyam Upadhyay, Manaal Faruqui, Chris Dyer, and
Dan Roth. 2016. Cross-lingual models of word
embeddings: An empirical comparison. In Pro-
ceedings of the 54th Annual Meeting of the Asso-
ciation for Computational Linguistics. Berlin, Ger-
many, ACL ’16, pages 1661–1670.

Laurens van der Maaten and Geoffrey Hinton. 2008.
Visualizing high-dimensional data using t-SNE.
Journal of Machine Learning Research 9:2579 –
2605.

Kai Wang, Zhaoyan Ming, and Tat-Seng Chua. 2009.
A syntactic tree matching approach to finding simi-
lar questions in community-based QA services. In
Proceedings of the 32nd international ACM SIGIR
conference on Research and development in infor-
mation retrieval. Boston, MA, USA, SIGIR ’09,
pages 187–194.

Kai Zhang, Wei Wu, Haocheng Wu, Zhoujun Li, and
Ming Zhou. 2014. Question retrieval with high qual-
ity answers in community question answering. In
Proceedings of the 23rd ACM International Confer-
ence on Information and Knowledge Management.
Shanghai, China, CIKM ’14, pages 371–380.

Guangyou Zhou, Li Cai, Jun Zhao, and Kang Liu. 2011.
Phrase-based translation model for question retrieval
in community question answer archives. In Proceed-
ings of the 49th Annual Meeting of the Association
for Computational Linguistics. Portland, OR, USA,
ACL ’11, pages 653–662.

237

Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017), pages 238–247,
Vancouver, Canada, August 3 - August 4, 2017. c©2017 Association for Computational Linguistics

Knowledge Tracing in Sequential Learning of Inflected Vocabulary

Adithya Renduchintala and Philipp Koehn and Jason Eisner
Department of Computer Science

Johns Hopkins University
{adi.r,phi,eisner}@jhu.edu

Abstract

We present a feature-rich knowledge
tracing method that captures a student’s
acquisition and retention of knowledge dur-
ing a foreign language phrase learning task.
We model the student’s behavior as making
predictions under a log-linear model, and
adopt a neural gating mechanism to model
how the student updates their log-linear
parameters in response to feedback. The
gating mechanism allows the model to learn
complex patterns of retention and acquisi-
tion for each feature, while the log-linear
parameterization results in an interpretable
knowledge state. We collect human data
and evaluate several versions of the model.

1 Introduction

Knowledge tracing attempts to reconstruct when
a student acquired (or forgot) each of several
facts. Yet we often hear that “learning is not just
memorizing facts.” Facts are not atomic objects
to be discretely and independently manipulated.
Rather, we suppose, a student who recalls a fact in a
given setting is demonstrating a skill—by solving a
structured prediction problem that is akin to recon-
structive memory (Schacter, 1989; Posner, 1989)
or pattern completion (Hopfield, 1982; Smolensky,
1986). The attempt at structured prediction may
draw on many cooperating feature weights, some
of which may be shared with other facts or skills.

In this paper, for the task of foreign-language vo-
cabulary learning, we will adopt a specific structured
prediction model and learning algorithm. Different
knowledge states correspond to model parameter
settings (feature weights). Different learning styles
correspond to different hyperparameters that govern
the learning algorithm.1 As we interact with each
student through a simple online tutoring system, we

1In the present paper, we assume that all students share the
same hyperparameters (same learning style), although each stu-
dent will have their own parameters, which change as they learn.

would like to track their evolving knowledge state
and identify their learning style. That is, we would
like to discover parameters and hyperparameters
that can explain the evidence so far and predict how
the student will react in future. This could help
us make good future choices about how to instruct
this student, although we leave this reinforcement
learning problem to future work. In this paper, we
show that we can predict the student’s next answer.

In short, we expand the notion of a knowledge
tracing model to include representations for a
student’s (i) current knowledge, (ii) retention of
knowledge, and (iii) acquisition of new knowledge.
Our reconstruction of the student’s knowledge
state remains interpretable, since it corresponds to
the weights of hand-designed features (sub-skills).
Interpretability may help a future teaching system
provide useful feedback to students and to human
teachers, and help it construct educational stimuli
that are targeted at improving particular sub-skills,
such as features that select correct verb suffixes.

Our present paper considers a verb conjugation
task, where a foreign language learner learns
the verb conjugation paradigm by reviewing and
interacting with a series of flash cards. This
task is a good testbed, as it needs the learner to
deploy sub-word features and to generalize to
new examples. For example, a student learning
Spanish verb conjugation might encounter pairs
such as (tú entras, you enter), (yo miro,
I watch). Using these examples, the student
needs to recognize suffix patterns and apply them to
new pairs seen such as (yo entro, I enter).

Vocabulary learning presents a challenging
learning environment due to the large number of
skills (words) that need to be traced. Learning
vocabulary in conjunction with inflection further
complicates the challenge due to the number of new
sub-skills that are introduced. Huang et al. (2016)
suggest that modeling sub-skill interaction is crucial
to several knowledge tracing domains. For our
domain, a log-linear formulation elegantly allows
for arbitrary sub-skills via feature functions.

238

2 Related Work

Bayesian knowledge tracing (Corbett and Anderson,
1994) (BKT) has long been the standard method to
infer a student’s knowledge from his or her perfor-
mance on a sequence of task items. In BKT, each
skill is modeled by an HMM with two hidden states
(“known” or “not-known”), and the probability of
success on an item depends on the state of the skill it
exercises. Transition and emission probabilities are
learned from the performance data using Expecta-
tion Maximization (EM). Many extensions of BKT
have been investigated, including personalization
(e.g., Lee and Brunskill, 2012; Khajah et al., 2014a)
and modeling item difficulty (Khajah et al., 2014b).

Our approach could be called Parametric
Knowledge Tracing (PKT) because we take a
student’s knowledge to be a vector of prediction
parameters (feature weights) rather than a vector
of skill bits. Although several BKT variants
(Koedinger et al., 2011; Xu and Mostow, 2012;
González-Brenes et al., 2014) have modeled the
fact that related skills share sub-skills or features,
that work does not associate a real-valued weight
with each feature at each time. Either skills are still
represented with separate HMMs, whose transition
and/or emission probabilities are parameterized in
terms of shared features with time-invariant weights;
or else HMMs are associated with the individual
sub-skills, and the performance of a skill depends
on which of its subskills are in the “known” state.

Our current version is not Bayesian since it
assumes deterministic updates (but see footnote 4).
A closely related line of work with deterministic
updates is deep knowledge tracing (DKT) (Piech
et al., 2015), which applied a classical LSTM model
(Hochreiter and Schmidhuber, 1997) to knowledge
tracing and showed strong improvements over
BKT. Our PKT model differs from DKT in that
the student’s state at each time step is a more
interpretable feature vector, and the state update rule
is also interpretable—it is a type of error-correcting
learning rule. In addition, the student’s state is
able to predict the student’s actual response and
not merely whether the response was correct.
We expect that having an interpretable feature
vector has better inductive bias (see experiment in
section 7.1), and that it may be useful to plan future
actions by smart flash card systems. Moreover, in
this work we test different plausible state update
rules and see how they fit actual student responses,
in orer to gain insight about learning.

Most recently, Settles and Meeder (2016)’s half-
life regression assumes that a student’s retention
of a particular skill exponentially decays with time
and learns a parameter that models the rate of decay
(“half-life regression”). Like González-Brenes et al.
(2014) and Settles and Meeder (2016), our model
leverages a feature-rich formulation to predict the
probability of a learner correctly remembering a
skill, but can also capture complex spacing/retention
patterns using a neural gating mechanism. Another
distinction between our work and half-life regres-
sion is that we focus on knowledge tracing within
a single session, while half-life regression collapses
a session into a single data point and operates on
many such data points over longer time spans.

3 Verb Conjugation Task

We devised a flash card training system to teach
verb conjugations in a foreign language. In this
study, we only asked the student to translate from
the foreign language to English, not vice-versa.2

3.1 Task Setup

We consider a setting where students go through
a series of interactive flash cards during a training
session. Figure 1 shows the three types of cards:
(i) Example (EX) cards simply display a foreign
phrase and its English translation (for 7 seconds).
(ii) Multiple-Choice (MC) cards show a single
foreign phrase and require the student to select one
of five possible English phrases shown as options.
(iii) Typing (TP) cards show a foreign phrase and a
text input box, requiring the student to type out what
they think is the English translation. g Our system
can provide feedback for each student response.
(i) Indicative Feedback: This refers to marking a
student’s answer as correct or incorrect (Fig. 1c, 1d
and 1h). Indicative feedback is always shown for
both MC and TP cards. (ii) Explicit Feedback: If
the student makes an error on a TP card, the system
has a 50% chance of showing them the true answer
(Fig. 1g). (iii) Retry: If the student makes an error on
a MC card, the system has a 50% chance of allowing
them to try again, up to a maximum of 3 attempts.

3.2 Task Content

In this particular task we used three verb lemmas,
each inflected in 13 different ways (Table 1). The
inflections included three tenses (simple past,

2We would regard these as two separate skills that share pa-
rameters to some degree, an interesting subject for future study.

239

(a) (b) (c) (d)

(e) (f) (g) (h)
Figure 1: Screen grabs of card modalities during training. These examples show cards for a native English speaker learning
Spanish verb conjugation. Fig 1a is an EX card, Fig 1b shows a MC card before the student has made a selection, and Fig 1c and 1d
show MC cards after the student has made an incorrect or correct selection respectively, Fig 1e shows a MC card that is giving
the student another attempt (the system randomly decides to give the student up to three additional attempts), Fig 1f shows a TP
card where a student is completing an answer, Fig 1g shows a TP card that has marked a student answer wrong and then revealed
the right answer (the reveal is decided randomly), and finally Fig 1h shows a card that is giving a student feedback for their answer.

Categories Inf SPre,1,N SPre,2,N SPre,3,M SPre,3,F SF,1,N SF,2,N SF,3,M SF,3,F SP,1,N SP,2,N SP,3,M SP,3,F

acceptar yo acepto tú aceptas él acepta ella acepta yo aceptaré tú aceptarás él aceptará ella aceptará yo acepté tú aceptaste él aceptó ella aceptó
to accept I accept you accept he accepts she accepts I will accept you will accept* he will accept she will accept I accepted* you accepted he accepted she accepted

entrar yo entro tú entras él entra ella entra yo entraré tú entrarás él entrará ella entrará yo entré tú entraste él entró ella entró
Lemma

to enter I enter you enter he enters she enters I will enter you will enter he will enter she will enter I entered you entered he entered she entered

mirar yo miro tú miras él mira ella mira yo miraré tú mirarás él mirará ella mirará yo miré tú miraste él miró ella miró
to watch I watch* you watch* he watches* she watches I will watch you will watch* he will watch she will watch I watched you watched he watched* she watched

Table 1: Content used in training sequences. Phrase pairs with * were used for the quiz at the end of the training sequence. This
Spanish content was then transformed using the method in section 6.1.

present, and future) in each of four persons (first,
second, third masculine, third feminine), as well
as the infinitive form. We ensured that each surface
realization was unique and regular, resulting in 39
possible phrases.3 Seven phrases from this set were
randomly selected for a quiz, which is shown at
the end of the training session, leaving 32 phrases
that a student may see in the training session. The
student’s responses on the quiz do not receive
any feedback from the system.We also limited the
training session to 35 cards (some of which may
require multiple rounds of interaction, owing to
retries). All of the methods presented in this paper
could be applied to larger content sets as well.

4 Notation

We will use the following conventions in this paper.
System actions at, student responses yt, and feed-
back items a′t are subscripted by a time 1≤ t≤ T .
Other subscripts pick out elements of vectors or ma-
trices. Ordinary lowercase letters indicate scalars

3The inflected surface forms included explicit pronouns.

(α, β, etc.), boldfaced lowercase letters indicate
vectors (θ, y, wzx), and boldfaced uppercase letters
indicate matrices (Φ, Whh, etc.). The roman-font
superscripts are part of the vector or matrix name.

5 Student Models

5.1 Observable Student Behavior

A flash card is a structured object a=(x,O), where
x ∈ X is the foreign phrase and O is a set of al-
lowed responses. For an MC card,O is the set of 5
multiple-choice options on that card (or fewer on a
retry attempt). For a EX or TP card,O is the set of all
39 English phrases (the TP user interface prevents
the student from submitting a guess outside this set).

For non-EX cards, we assume the student samples
their response y∈O from a log-linear distribution
parameterized by their knowledge state θ∈Rd:

p(y |a;θ)=p(y |x,O;θ)

=
exp(θ ·φ(x,y))∑

y′∈O exp(θ ·φ(x,y′))
(1)

240

where φ(x,y) ∈ Rd is a feature vector extracted
from the (x,y) pair.

5.2 Feature Design
The student’s knowledge state is described by the
weights θ placed on the features φ(x,y) in equa-
tion (1). We assume the following binary features
will suffice to describe the student’s behavior.
• Phrasal features: We include a unique indicator

feature for each possible (x,y) pair, yielding 392

features. For example, there exists a feature that
fires iff x=yo miro∧y=I enter.
• Word features: We include indicator features for

all (source word, target word) pairs: e.g.,yo∈x∧
enter∈y. (These words need not be aligned.)
• Morpheme features: We include indicator

features for all (w,mc) pairs, wherew is a word
of the source phrase x, andm is a possible tense,
person, or number for the target phrase y (drawn
from Table 1). For example, m might be 1st
(first person) or SPre (simple present).
• Prefix and suffix features: For each word or

morpheme feature that fires, 8 backoff features
also fire, where the source word and (if present)
the target word are replaced by their first or last
i characters, for i∈{1,2,3,4}.

These templates yield about 4600 features in all, so
the knowledge state has d≈4600 dimensions.

5.3 Learning Models
We now turn to the question of modeling how the
student’s knowledge state changes during their
session. θt denotes the state at the start of round t.
We take θ1 =0 and assume that the student uses a
deterministic update rule of the following form:4

θt+1 =βt�θt+αt�ut (2)

where ut is an update vector that depends on the
student’s experience (at,yt,a′t) at round t.

Why this form? First imagine that the student
is learning by stochastic gradient descent on some
L2-regularized loss function C· ‖θ ‖2 +

∑
tLt(θ).

This algorithm’s update rule has the simplified form

θt+1 =βt ·θt+αt ·ut (3)

4Since learning is not perfectly predictable, it would
be more realistic to compute θt by a stochastic update—or
equivalently, by a deterministic update that also depends on a
random noise vector εt (which is drawn from, say, a Gaussian).
These noise vectors are “nuisance parameters,” but rather than
integrating over their possible values, a straightforward approxi-
mation is to optimize them by gradient descent—along with the
other update parameters—so as to locally maximize likelihood.

where ut = −∇Lt(θ) is the steepest-descent
direction on example t, αt>0 is the learning rate at
time t, and βt=1−αtC handles the weight decay
due to following the gradient of the regularizer.

Adaptive versions of stochastic gradient
descent—such as AdaGrad (Duchi et al., 2011) and
AdaDelta (Zeiler, 2012)—are more like our full
rule (2) in that they allow different learning rates
for different parameters.

In general, we can regardαt∈(0,1)d as modeling
the rates at which the learner updates the various pa-
rameters according to ut, and βt∈(0,1)d as model-
ing the rates at which those parameters are forgotten.
These vectors correspond respectively to the input
gates and forget gates in recurrent neural network
architectures such as the LSTM (Hochreiter and
Schmidhuber, 1997) or GRU (Cho et al., 2014). As
in those architectures, we will use neural networks to
chooseαt,βt at each time step t, so that they may be
sensitive in nonlinear ways to the context at round t.

5.3.1 Schemes for the Update Vector ut
We assume that ut is the gradient of some log-
probability, so that the student learns by trying to
increase the log-probability of the correct answer.
However, the student does not always observe the
correct answer y. For example, there is no output
label provided when the student only receives
feedback that their answer is incorrect. Even in such
cases, the student can change their knowledge state.

In this section, we define schemes for defining
ut from the experience (at,yt,a′t) at round t. Recall
that at=(xt,Ot). We omit the t subscripts below.

Suppose the student is told that a particular
phrase y∈O is the correct translation of x (via an
EX card or via feedback on an answer to an MC or
TP card). Then an apt strategy for the student would
be to use the following gradient:5

∆3 =∇θ logp(y |x,O;θ) (4)

=φ(x,y)−
∑
y′∈O

p(y′ |x)φ(x,y′)

If the student is told that y is incorrect, an apt strat-
egy is to move probability mass collectively to the
other available options, increasing their total prob-
ability, since one of those options must be correct.

5An objection is that for an EX or TP card, the student may
not actually know the exact set of optionsO in the denominator.
We attempted setting O to be the set of English phrases the
student has seen prior to the current question. Though intuitive,
this setting performed worse on all the update and gating
schemes.

241

We call this the redistribution gradient (RG):

∆7 =∇θ logp(O−{y}|x,O;θ) (5)

=
∑

y′∈O−{y}
p(y′ |x,y′ 6=y)φ(x,y′) (6)

−
∑
y′∈O

p(y′ |x)φ(x,y′)

where p(y′ |x,y′ 6=y) is a renormalized distribution
over just the options y′∈O−{y}. Note that if the
student selects two wrong answers y1,y2 in a row
on an MC card, the first update will subtract the
average features of O and add those of O−{y1};
the second update will subtract the average features
of O−{y1} and add those of O−{y1,y2}. The
intermediate addition and subtraction cancel out if
the sameα vector is used at both rounds, so the net
effect is to shift probability mass from the 5 initial
options to the 3 remaining ones.6

An alternate scheme for incorrect y is to use
−∆3. We call this negative gradient (NG).

Since the RG and NG update vectors both worked
well for handling incorrect y, we also tried linearly
interpolating them (RNG), with ut = γt �∆7 +
(1−γt)�−∆3. The interpolation vector γt has el-
ements in (0,1), and may depend on the context (pos-
sibly different for MC and EX cards, for example).

Finally, the feature vector (FG) scheme simply
adds the features φ(x, y) when y is correct or
subtracts them when y is incorrect. This is
appropriate for a student who pays attention only
to y, without bothering to note that the alternative
options inO are (respectively) incorrect or correct.

Recall from section 3.1 that the system some-
times gives both indicative and explicit feedback,
telling the student that one phrase is incorrect and
a different phrase is correct. We treat these as two
successive updates with update vectors ut and ut+1.
Notice that in the FG scheme, adding this pair of
update vectors resembles a perceptron update.

Table 2 summarizes our update schemes.

5.3.2 Schemes for the Gatesαt,βt,γt
We characterize each update t by a 7-dimensional
context vector ct, which summarizes what the
student has experienced. The first three elements
in ct are binary indicators of the type of flash card

6Arguably, a zeroth update should be allowed as well: upon
first viewing the MC card, the student should have the chance
to subtract the average features of the full set of possibilities
and add those of the 5 options in O, since again, the system
is implying that one of those 5 options must be correct.

Update Scheme Correct Incorrect

redistribution (RG) ut =∆3 ut =∆7

negative grad. (NG) ut =∆3 ut =−∆3

feature vector (FG) ut =φ(x,y) ut =−φ(x,y)

Table 2: Summary of update schemes (other than RNG).

(EX, MC or TP). The next three elements are binary
indicators of the type of information that caused the
update: correct student answer, incorrect student
answer, or revealed answer (via an EX card or
explicit feedback). As a reminder, the system can
respond with an indication that the answer is correct
or incorrect, or it can reveal the answer. Finally, the
last element of ct is 1/|O|, the chance probability
of success on this card. From ct, we define

αt=σ(Wαct +bα1) ∈(0,1)d (7)

βt=σ(Wβct−1+bβ1) ∈(0,1)d (8)

γt=σ(Wγct +bγ1) ∈(0,1)d (9)

where c0 = 0. Each gate vector is now parameter-
ized by a weight matrix W∈Rd×7, where d is the
dimensionality of the gradient and knowledge state.

We also tried simpler versions of this model. In
the vector model (VM), we defineαt=σ(bα), and
βt,γt similarly. These vectors do not vary with time
and simply reflect that some parameters are more
labile than others. Finally, the scalar model (SM) de-
finesαt=σ(bα1), so that all parameters are equally
labile. One could also imagine tying the gates for
features derived from the same template, meaning
that some kinds of features (in some contexts) are
more labile than others, or reducing the number of
parameters by learning low-rank W matrices.

While we also tried augmenting the context
vector ct with the knowledge state θt, this resulted
in far too many parameters to train well, and did not
help performance in pilot tests.

5.4 Parameter Estimation
We tune the W and b parameters of the model by
maximum likelihood, so as to better predict the
students’ responses yt. The likelihood function is

p(y1,...yT |at,...aT)=
T∏
t=1

p(yt |a1:t,y1:t−1,a
′
1:t−1)

=
T∏
t=1

p(yt |at;θt) (10)

where we take p(yt | ···) = 1 at steps where the
student makes no response (EX cards and explicit

242

feedback). Note that the model assumes that θt is a
sufficient statistic of the student’s past experiences.

For each (update scheme, gating scheme)
combination, we trained the parameters using SGD
with RMSProp updates (Tieleman and Hinton,
2012) to maximize the regularized log-likelihood∑

t,τt=0

logp(yt |xt;θt)−C·‖W‖2 (11)

summed over all students. Note that θt depends on
the parameters through the gated update rule (2).

The development set was used for early stopping
and to tune the regularization parameterC.7

6 Data Collection

We recruited 153 unique “students” via Amazon Me-
chanical Turk (MTurk). MTurk participants were
compensated $1 for completing the training and test
sessions and a bonus of $10 was given to the three
top scoring students. In our dataset, we retained
only the 121 students who answered all questions.

6.1 Language Obfuscation

Fig. 1 shows a few example flash cards for a native
English speaker learning Spanish. Fig. 1 shows
all our Spanish-English phrase pairs. In our actual
task, however, we invented an artificial language
for the MTurk students to learn, which allowed us
to ignore the problem of students with different
initial knowledge levels. We generated our artificial
language by enciphering the Spanish orthographic
representations. We created a mapping from the true
source string alphabet to an alternative, manually
defined alphabet, while attempting to preserve pro-
nounceability (by mapping vowels to vowels, etc.).
For example, mirarwas transformed into melil
and tú aceptas became pi icedpiz.

6.2 Card Ordering Policy

In the future, we expect to use planning or reinforce-
ment learning to choose the sequence of stimuli
for the student. For the present study of student
behavior, however, we hand-designed a simple
stochastic policy for choosing the stimuli.

The policy must decide what foreign phrase and
card modality to use at each training step. Our pol-
icy likes to repeat phrases with which participants

7We searched C ∈ {0.00025, 0.0005, 0.001, ..., 0.01,
0.025, 0.05, 0.1} for each gating model and update scheme
combination. C=0.0025 gave best results for the CM models,
0.01 for VM and 0.0005 for SM.

had trouble—in hopes that these already-taught
phrases are on the verge of being learned. It also
likes to pick out new phrases. This was inspired by
the popular Leitner (1972) approach, which devised
a system of buckets that control how frequently an
item is reviewed by a student. Leitner proposed
buckets with review frequency rates of every day,
every 2 days, every 4 days and so on.

For each foreign phrase x ∈ X , we maintain a
novelty score vx, which is a function of the number
of times the phrase is exposed to a student and an
error score ex, which is a function of the number
of times the student incorrectly responded to the
phrase. These scores are initialized to 1 and updated
as follows:8

vx←vx−1whenx is viewed

ex←
{

2ex when student getsxwrong
0.5ex when student getsx right

x∼ g(v)+g(e)

2
(12)

On each round, we sample a phrase x from ei-
ther Pv or Pe (equal probability); these distribu-
tions are computed by applying a softmax g(.)
over the vectors v and e respectively (see Eq. 12).
Once the phrase x is decided, the modality (EX,
MC, TP) is chosen stochastically using probabili-
ties (0.2,0.4,0.4), except that probabilities (1,0,0)
are used for the first example of the session, and
(0.4,0.6,0) if x is not “TP-qualified.” A phrase is
TP-qualified if the student has seen bothx’s pronoun
and x’s verb lemma on previous cards (even if their
correct translation was not revealed). For an MC
card, the distractor phrases are sampled uniformly
without replacement from the 38 other phrases.

7 Results & Experiments

We partitioned the students into three groups: 80
students for training, 20 for development, and 21
for testing. Most students found the task difficult;
the average score on the 7-question quiz—was
2.81 correct, with maximum score of 6. (Recall
from section 3.2 that the quiz questions were typing
questions, not multiple choice questions.)

After constructing each model, we evaluated it
on the held-out data: the 728 responses from the
21 testing students. We measure the log-probability
under the model of each actual response (“cross-
entropy”), and also the fraction of responses that

8Arguably we should have updated ex instead by
adding/subtracting 1, since it will be exponentiated later.

243

were correctly predicted if our prediction was the
model’s max-probability response (“accuracy”).

Table 3 shows the results of our experiment. All
of our models were predictive, doing far better than
a uniform baseline that assigned equal probability
1/|O| to all options. Our best models are shown in
the final two lines, RNG+VM and RNG+CM.

Which update scheme was best? Interestingly,
although the RG update vector is principled from a
machine learning viewpoint, the NG update vector
sometimes achieved better accuracy—though
worse perplexity—when predicting the responses
of human learners.9 We got our best results on both
metrics by interpolating between RG and NG (the
RNG scheme). Recall that the NG scheme was
motivated by the notion that students who guessed
wrong may not study the alternative answers (even
though one is correct), either because it is too much
trouble to study them or because (for a TP card)
those alternatives are not actually shown.

Which gating mechanism was best? In almost all
cases, we found that more parameters helped, with
CM>VM>SM on accuracy, and a similar pattern
on cross-entropy (with VM sometimes winning
but only slightly). In short, it helps to use different
learning rates for different features, and it probably
helps to make them sensitive to the learning context.

Surprisingly, the simple FG scheme outper-
formed both RG and NG when used in conjunction
with a scalar retention and acquisition gate. This,
however, did not extend to more complex gates.

Fig. 2 shows a breakdown of the prediction
accuracy measures according to whether the card
was MC or TP, and according to whether the
student’s answer was correct (C) or incorrect (IC).
Unsurprisingly, all the models have an easier time
predicting the student’s guess when the student is
correct, since the predicted parameters θt will often
pick the correct answer. However, this is where the
vector and context gates far outperform the scalar
gates. All the models find predicting the incorrect
answers of the students difficult. Moreover, when
predicting these incorrect answers, the RG models
do slightly better than the NG models.

The models obviously have higher accuracy
when predicting student answers for MC cards
than for TP cards, as MC cards have fewer options.
Again, within both of these modalities, the vector
and context gates outperform the scalar gate.

9Even the FG vector sometimes won (on both metrics!),
but this happened only with the worst gating mechanism, SM.

Update Scheme Gating Mechanism accuracy cross-ent.

(Uniform baseline) 0.133 2.459

FG SM 0.239∗ 2.362
FG VM 0.357† 2.130
FG CM 0.401 2.025

RG SM 0.135 3.194
RG VM 0.397† 1.909
RG CM 0.405 1.938

NG SM 0.185∗ 4.674
NG VM 0.394† 2.320
NG CM 0.449†∗ 2.244

RNG (mixed) SM 0.183 3.502
RNG (mixed) VM 0.427 1.855
RNG (mixed) CM 0.449 1.888

Table 3: Table summarizing prediction accuracy and cross-
entropy (in nats per prediction) for different models. Larger
accuracies and smaller cross-entropies are better. Within
an update scheme, the † indicates significant improvement
(McNemar’s test, p < 0.05) over the next-best gating
mechanism. Within g a gating mechanism, the ∗ indicates
significant improvement over the next-best update scheme. For
example, NG+CM is significantly better than NG+VM, so it
receives a †; it is also significantly better than RG+CM, and
receives a ∗ as well. These comparisons are conducted only
among the pure update schemes (above the double line). All
other models are significantly better than RG+SM (p<0.01).

Finally, Fig. 3 examines how these models behave
when making specific predictions over a training
sequence for a single student. At each step we plot
the difference in log-probability between our model
and a uniform baseline model. Thus, a marker above
0 means that our model assigned the student’s an-
swer a probability higher than chance.10 To con-
trast the performance difference, we show both the
highest-accuracy model (RNG+CM) and the lowest-
accuracy model (RG+SM). For a high-scoring stu-
dent (Fig. 3a), we see RNG+CM has a large margin
over RG+SM and a slight upward trend. A higher
probability than chance is noticeable even when the
student makes mistakes (indicated by hollow mark-
ers). In contrast, for an average student (Fig. 3b), the
margin between the two models is less perceptible.
While the CM+NG model is still above the SM+RG
line, there are some answers where CM+NG does
very poorly. This is especially true for some of the
wrong answers, for example at training steps 25, 29
and 33. Upon closer inspection into the model’s er-
ror in step 33, we found the prompt received at this
training step was ekki melü as a MC card, which
had been shown to the student on three prior occa-
sions, and the student even answered correctly on
one of these occasions. This explains why the model

10For MC cards, the chance probability is in { 1
5
, 1
4
, 1
3
}—

depending on how many options remain—while for TP cards
it is 1

39
.

244

MC MC­C MC­IC TP TP­C TP­IC
0.0

0.2

0.4

0.6

0.8
ac

cu
ra

cy
SM
VM
CM
RG
FV
NG

Figure 2: Plot comparing the models on test data under different conditions. Conditions MC and TP indicate Multiple-choice and
Typing questions respectively. These are broken down to the cases where the student answers them correctly C and incorrectly IC.
SM, VM, and CM represent scalar, vector, and context retention and acquisition gates (shown with different colors), respectively,
while RG, NG and FG are redistribution, negative and feature vector update schemes(shown with different hatching patterns).

0 5 10 15 20 25 30 35 40
training steps

−8

−6

−4

−2

0

2

4

su
pr

is
al

re
du

ct
io

n
(b

it
s)

(a) a student with quiz score 6/7

0 5 10 15 20 25 30 35 40 45
training steps

−8

−6

−4

−2

0

2

4

su
pr

is
al

re
du

ct
io

n
(b

it
s)

(b) a student with quiz score 2/7
Figure 3: Predicting a specific student’s responses. For each response, the plot shows our model’s improvement in log-probability
over the uniform baseline model. TP cards are the square markers connected by solid lines (the final 7 squares are the quiz), while
MC cards—which have a much higher baseline—are the circle markers connected by dashed lines. Hollow and solid markers
indicate correct and incorrect answers respectively. The RNG+CM model is shown in blue and the FG+SM model in red.

was surprised to see the student make this error.

7.1 Comparison with Less Restrictive Model
Our parametric knowledge tracing architecture
models the student as a typical structured prediction
system, which maintains weights for hand-designed
features and updates them roughly as an online
learning algorithm would. A natural question
is whether this restricted architecture sacrifices
performance for interpretability, or improves
performance via useful inductive bias.

To consider the other end of the spectrum, we
implemented a flexible LSTM model in the style
of recent deep learning research. This alternative
model predicts each response by a student (i.e., on
an MC or TP card) given the entire history of pre-
vious interactions with that student as summarized
by an LSTM. The LSTM architecture is formally
capable of capturing update rules exactly like those
of PKT, but it is far from limited to such rules.

Much like equation (1), at each time twe predict

p(yt=y |at)=
exp(ht ·ψ(y))∑

y′∈Ot
exp(ht ·ψ(y))

(13)

for each possible response y in the set of options

Ot, where ψ(y) ∈ Rd is a learned embedding of
response y. Here ht∈Rd denotes the hidden state
of the LSTM, which evolves as the student interacts
with the system and learns. ht depends on the LSTM
inputs for all times < t, just like the knowledge
state θt in equations (1)–(2). It also depends on the
LSTM input for time t, since that specifies the flash
card at to which we are predicting the response yt.

Each flash card a = (x,O) is encoded by a
concatenation a of three vectors: a one-hot 39-
dimensional vector specifying the foreign phrase
x, a 39-dimensional binary vector O indicating the
possible English options inO, and a one-hot vector
indicating whether the card is EX, MC, or TP.

When reading the history of past interactions, the
LSTM input at each time step t concatenates the vec-
tor representation at of the current flash card with
vectors at−1,yt−1,f t−1 that describe the student’s
experience in round t− 1: these respectively en-
code the previous flash card, the student’s response
to it (a one-hot 39-dimensional vector), and the re-
sulting feedback (a 39-dimensional binary vector
that indicates the remaining options after feedback).
Thus, if the student receives no feedback, then
f t−1 =Ot−1. Indicative feedback sets f t−1 =yt−1

245

Model Parameters Accuracy(test) Cross-Entropy

RNG+CM ≈ 97K 0.449 1.888
LSTM ≈ 25K 0.429 1.992

Table 4: Comparison of our best-performing PKT model
(RNG+CM) to our LSTM model. On our dataset, PKT outper-
forms the LSTM both in terms of accuracy and cross-entropy.

or f t−1 =Ot−1−yt, according to whether the stu-
dent was correct or incorrect. Explicit feedback
(including for an EX card) sets f t−1 to a one-hot rep-
resentation of the correct answer. Thus, f t−1 gives
the set of “positive” options that we used in the RG
update vector, while Ot−1 gives the set of “negative”
options, allowing the LSTM to similarly update its
hidden state from ht−1 to ht to reflect learning.11

As in section 5.4, we train the parameters by
L2-regularized maximum likelihood, with early
stopping on development data. The weights for
the LSTM were initialized uniformly at random
∼ U(−δ,+δ), where δ = 0.01, and RMSProp
was used for gradient descent. We settled on a
regularization coefficient of 0.002 after a line search.
The number of hidden units dwas also tuned using
line search. Interestingly, a dimensionality of just
d=10 performed best on dev data:12 at this size, the
LSTM has fewer parameters than our best model.

The result is shown in Table 4. These results favor
our restricted PKT architecture. We acknowledge
that the LSTM might perform better when a larger
training set was available (which would allow a
larger hidden layer), or using a different form of
regularization (Srivastava et al., 2014).

Intermediate or hybrid models would of course
also be possible. For example, we could predict
p(y | at) via (1), defining θt as h>t M , a learned
linear function of ht. This variant would again have
access to our hand-designed features φ(x,y), so
that it would know which flash cards were similar.
In fact θt ·φ(x,y) in (1) equals ht ·(Mφ(x,y)), so

11This architecture is formally able to mimic PKT. We would
store θ in the LSTM’s vector of cell activations, and configure
the LSTM’s “input” and “forget” gates to update this according
to (2) where ut is computed from the input. Observe that each
feature in section 5.2 has the form φij(x,y) = ξi(x) ·ψj(y).
Consider the hidden unit in h corresponding to this feature,
with activation θij . By configuring this unit’s “output” gate
to be ξi(x) (where x is the current foreign phrase given in the
input), we would arrange for this hidden unit to have output
ξi(x)·θij , which will be multiplied byψj(y) in (13) to recover
θij ·φij(x,y) just as in (1). (More precisely, the output would
be sigmoid(ξi(x) ·θij), but we can evade this nonlinearity if
we take the cell activations to be a scaled-down version of θ
and scale up the embeddingsψ(y) to compensate.)

12We searched 0.001,0.002,0.005,0.01,0.02,0.05 for the
regularization coefficient, and 5,10,15,20,50,100,200 for the
number of hidden units.

M can be regarded as projecting φ(x,y) down to
the LSTM’s hidden dimension d, learning how to
weight and use these features. In this variant, the
LSTM would no longer need to take at as part of
its input at time t: rather, ht (just like θt in PKT)
would be a pure representation of the student’s
knowledge state at time t, capable of predicting
yt for any at. This setup more closely resembles
PKT—or the DKT LSTM of Piech et al. (2015).
Unlike the DKT paper, however, it would still
predict the student’s specific response, not merely
whether they were right or wrong.

8 Conclusion

We have presented a cognitively plausible model
that traces a human student’s knowledge as he or she
interacts with a simple online tutoring system. The
student must learn to translate very short inflected
phrases from an unfamiliar language into English.
Our model assumes that when a student recalls or
guesses the translation, he or she is attempting to
solve a structured prediction problem of choosing
the best translation, based on salient features of the
input-output pair. Specifically, we characterize the
student’s knowledge as a vector of feature weights,
which is updated as the student interacts with the sys-
tem. While the phrasal features memorize the trans-
lations of entire input phrases, the other features can
pick up on the translations of individual words and
sub-words, which are reusable across phrases.

We collected and modeled human-subjects
data. We experimented with models using several
different update mechanisms, focusing on the
student’s treatment of negative feedback and the
degree to which the student tends to update or
forget specific weights in particular contexts. We
also found that in comparison to a less constrained
LSTM model, we can better fit the human behavior
by using weight update schemes that are broadly
consistent with schemes used in machine learning.

In the future, we plan to experiment with more
variants of the model, including variants that allow
noise and personalization. Most important, we mean
to use the model for planning which flash cards, feed-
back, or other stimuli to show next to a given student.

Acknowledgments

This material is based upon work supported by a
seed grant from the Science of Learning Institute
at Johns Hopkins University.

246

References
Kyunghyun Cho, Bart van Merrienboer, Caglar Gul-

cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder–decoder
for statistical machine translation. In Proceedings of
the 2014 Conference on Empirical Methods in Natu-
ral Language Processing (EMNLP). Association for
Computational Linguistics, Doha, Qatar, pages 1724–
1734. http://www.aclweb.org/anthology/D14-1179.

Albert T Corbett and John R Anderson. 1994. Knowl-
edge tracing: Modeling the acquisition of procedural
knowledge. User modeling and user-adapted
interaction 4(4):253–278.

John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine
Learning Research 12(Jul):2121–2159.

José González-Brenes, Yun Huang, and Peter
Brusilovsky. 2014. General features in knowledge
tracing to model multiple subskills, temporal item re-
sponse theory, and expert knowledge. In Proceedings
of the 7th International Conference on Educational
Data Mining. University of Pittsburgh, pages 84–91.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation
9(8):1735–1780.

J. J. Hopfield. 1982. Neural networks and physical
systems with emergent collective computational
abilities. In Proceedings of the National Academy of
Sciences of the USA. volume 79, pages 2554–2558.

Yun Huang, J Guerra, and Peter Brusilovsky. 2016.
Modeling skill combination patterns for deeper
knowledge tracing. In Proceedings of the 6th Work-
shop on Personalization Approaches in Learning
Environments (PALE 2016). 24th Conference on User
Modeling, Adaptation and Personalization, Halifax,
Canada.

Mohammad Khajah, Rowan Wing, Robert Lindsey,
and Michael Mozer. 2014a. Integrating latent-factor
and knowledge-tracing models to predict individual
differences in learning. In Proceedings of the 7th In-
ternational Conference on Educational Data Mining.

Mohammad M Khajah, Yun Huang, José P González-
Brenes, Michael C Mozer, and Peter Brusilovsky.
2014b. Integrating knowledge tracing and item
response theory: A tale of two frameworks. In
Proceedings of Workshop on Personalization Ap-
proaches in Learning Environments (PALE 2014) at
the 22th International Conference on User Modeling,
Adaptation, and Personalization. University of
Pittsburgh, pages 7–12.

K. R. Koedinger, P. I. Pavlick Jr., J. Stamper, T. Nixon,
and S. Ritter. 2011. Avoiding problem selection
thrashing with conjunctive knowledge tracing. In
Proceedings of the 4th International Conference on

Educational Data Mining. Eindhoven, NL, pages
91–100.

Jung In Lee and Emma Brunskill. 2012. The impact
on individualizing student models on necessary
practice opportunities. International Educational
Data Mining Society .

Sebastian Leitner. 1972. So lernt man lernen: der Weg
zum Erfolg. Herder, Freiburg.

Chris Piech, Jonathan Bassen, Jonathan Huang, Surya
Ganguli, Mehran Sahami, Leonidas J Guibas, and
Jascha Sohl-Dickstein. 2015. Deep knowledge trac-
ing. In Advances in Neural Information Processing
Systems. pages 505–513.

Michael I Posner. 1989. Foundations of cognitive
science. MIT press Cambridge, MA.

D. L. Schacter. 1989. Memory. In M. I. Postner, editor,
Foundations of Cognitive Science, MIT Press, pages
683–725.

Burr Settles and Brendan Meeder. 2016. A trainable
spaced repetition model for language learning. In
Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers). Association for Computational
Linguistics, Berlin, Germany, pages 1848–1858.
http://www.aclweb.org/anthology/P16-1174.

Paul Smolensky. 1986. Information processing in
dynamical systems: Foundations of harmony theory.
In D. E. Rumelhart, J. L. McClelland, and the
PDP Research Group, editors, Parallel Distributed
Processing: Explorations in the Microstructure of
Cognition, MIT Press/Bradford Books, Cambridge,
MA, volume 1: Foundations, pages 194–281.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov.
2014. Dropout: A simple way to prevent
neural networks from overfitting. Journal
of Machine Learning Research 15:1929–1958.
http://jmlr.org/papers/v15/srivastava14a.html.

Tijmen Tieleman and Geoffrey Hinton. 2012. Lecture
6.5-rmsprop: Divide the gradient by a running aver-
age of its recent magnitude. COURSERA: Neural
networks for machine learning 4(2).

Yanbo Xu and Jack Mostow. 2012. Comparison of
methods to trace multiple subskills: Is LR-DBN best?
In Proceedings of the 5th International Conference
on Educational Data Mining. pages 41–48.

Matthew D Zeiler. 2012. Adadelta: an adaptive learning
rate method. arXiv preprint arXiv:1212.5701 .

247

Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017), pages 248–259,
Vancouver, Canada, August 3 - August 4, 2017. c©2017 Association for Computational Linguistics

A Probabilistic Generative Grammar for Semantic Parsing

Abulhair Saparov
Carnegie Mellon University

Machine Learning Department
Pittsburgh, P.A.

asaparov@cs.cmu.edu

Vijay Saraswat
IBM T.J. Watson
Research Center

Yorktown Heights, N.Y.
vijay@saraswat.org

Tom M. Mitchell
Carnegie Mellon University

Machine Learning Department
Pittsburgh, P.A.

tom.mitchell@cmu.edu

Abstract

We present a generative model of nat-
ural language sentences and demon-
strate its application to semantic pars-
ing. In the generative process, a logical
form sampled from a prior, and condi-
tioned on this logical form, a grammar
probabilistically generates the output
sentence. Grammar induction using
MCMC is applied to learn the gram-
mar given a set of labeled sentences
with corresponding logical forms. We
develop a semantic parser that finds the
logical form with the highest posterior
probability exactly. We obtain strong
results on the GeoQuery dataset and
achieve state-of-the-art F1 on Jobs.

1 Introduction

Accurate and efficient semantic parsing is a
long-standing goal in natural language pro-
cessing. Existing approaches are quite suc-
cessful in particular domains (Zettlemoyer and
Collins, 2005, 2007; Wong and Mooney, 2007;
Liang et al., 2011; Kwiatkowski et al., 2010,
2011, 2013; Li et al., 2013; Zhao and Huang,
2014; Dong and Lapata, 2016). However, they
are largely domain-specific, relying on addi-
tional supervision such as a lexicon that pro-
vides the semantics or the type of each to-
ken in a set (Zettlemoyer and Collins, 2005,
2007; Kwiatkowski et al., 2010, 2011; Liang
et al., 2011; Zhao and Huang, 2014; Dong
and Lapata, 2016), or a set of initial syn-
chronous context-free grammar rules (Wong
and Mooney, 2007; Li et al., 2013). To ap-
ply the above systems to a new domain, addi-
tional supervision is necessary. When begin-
ning to read text from a new domain, humans
do not need to re-learn basic English gram-

Semantic prior

Logical form
turn on device(Ada,gpu cluster)

Generative semantic grammarParser

S

VP

NP

NPPNP

V

NP

“Ada started the machine with the GPU”

Figure 1: High-level illustration of the setting in which
our grammar is applied in this paper. The dark arrows
outline the generative process. During parsing, the in-
put is the observed sentence, and we wish to find the
most probable logical form and derivation given the
training data under the semantic prior.

mar. Rather, they may encounter novel ter-
minology. With this in mind, our approach
is akin to that of (Kwiatkowski et al., 2013)
where we provide domain-independent super-
vision to train a semantic parser on a new do-
main. More specifically, we restrict the rules
that may be learned during training to a set
that characterizes the general syntax of En-
glish. While we do not explicitly present and
evaluate an open-domain semantic parser, we
hope our work provides a step in that direc-
tion.

Knowledge plays a critical role in natural
language understanding. Even seemingly triv-
ial sentences may have a large number of am-
biguous interpretations. Consider the sentence
“Ada started the machine with the GPU,” for
example. Without additional knowledge, such
as the fact that “machine” can refer to com-
puting devices that contain GPUs, or that
computers generally contain devices such as

248

GPUs, the reader cannot determine whether
the GPU is part of the machine or if the GPU
is a device that is used to start machines. Con-
text is highly instrumental to quickly and un-
ambiguously understand sentences.

In contrast to most semantic parsers, which
are built on discriminative models, our model
is fully generative: To generate a sentence, the
logical form is first drawn from a prior. A
grammar then recursively constructs a deriva-
tion tree top-down, probabilistically selecting
production rules from distributions that de-
pend on the logical form (see Figure 1 for a
high-level schematic diagram). The seman-
tic prior distribution provides a straightfor-
ward way to incorporate background knowl-
edge, such as information about the types of
entities and predicates, or the context of the
utterance. Additionally, our generative model
presents a promising direction to jointly learn
to understand and generate natural language.

This article describes the following contri-
butions:
• In Section 2, we present our grammar for-

malism in its general form.
• Section 2.2 discusses aspects of the model

in its application to the later experiments.
• In Section 3, we present a method to per-

form grammar induction in this model.
Given a set of observed sentences and
their corresponding logical forms, we ap-
ply Markov chain Monte Carlo (MCMC) to
infer the posterior distributions of the pro-
duction rules in the grammar.
• Given a trained grammar, we also develop

a method to perform parsing in Section 4:
to find the k-best logical forms for a given
sentence, leveraging the semantic prior to
guide its search.
• Using the GeoQuery and Jobs datasets,

we demonstrate in Section 6 that this
framework can be applied to create nat-
ural language interfaces for semantic for-
malisms as complex as Datalog/lambda cal-
culus, which contain variables, scope ambi-
guity, and superlatives.

All code and datasets are available at github.
com/asaparov/parser.

2 Semantic grammar

A grammar in our formalism operates over a
set of nonterminals N and a set of terminal

S→ N:select arg1 VP:delete arg1
VP→ V:identity N:select arg2
VP→ V:identity

N→ “tennis” V→ “swims”
N→ “Andre Agassi” V→ “plays”
N→ “Chopin”

Figure 2: Example of a grammar in our framework.
This grammar operates on logical forms of the form
predicate(first argument, second argument). The se-
mantic function select arg1 returns the first argu-
ment of the logical form. Likewise, the function
select arg2 returns the second argument. The func-
tion delete arg1 removes the first argument, and
identity returns the logical form with no change. In
our use of the framework, the interior production rules
(the first three listed above) are examples of rules that
we specify, whereas the terminal rules and the posterior
probabilities of all rules are learned via grammar in-
duction. We also use a richer semantic formalism than
in this example. Section 2.2 provides more detail.

S plays sport(agassi,tennis)

Nagassi

“Andre Agassi”

VP plays sport(,tennis)

V

“plays”

N tennis

“tennis.”
Figure 3: Example of a derivation tree under the gram-
mar given in Figure 2. The logical form corresponding
to every node is shown in blue beside the respective
node. The logical form for V is plays sport(,tennis)
and is omitted above to reduce clutter.

symbolsW. It can be understood as an exten-
sion of a context-free grammar (CFG) (Chom-
sky, 1956) where the generative process for the
syntax is dependent on a logical form, thereby
coupling syntax with semantics. In the top-
down generative process of a derivation tree, a
logical form guides the selection of production
rules. Production rules in our grammar have
the form A→ B1:f1 . . . Bk :fk where A ∈ N is
a nonterminal, Bi ∈ N∪W are right-hand side
symbols, and fi are semantic transformation
functions. These functions can encode how
to “decompose” this logical form when recur-
sively generating the subtrees rooted at each
Bi. Thus, they enable semantic composition-
ality. An example of a grammar in this frame-
work is shown in Figure 2, and a derivation
tree is shown in Figure 3. Let R be the set
of production rules in the grammar and RA

be the set of production rules with left-hand
nonterminal symbol A.

2.1 Generative process

A parse tree (or derivation) in this formalism
is a tree where every interior node is labeled

249

with a nonterminal symbol, every leaf is la-
beled with a terminal, and the root node is
labeled with the root nonterminal S. More-
over, every node in the tree is associated with
a logical form: let xn be the logical form as-
signed to the tree node n, and x0 = x for the
root node 0.

The generative process to build a parse tree
begins with the root nonterminal S and a log-
ical form x. We expand S by randomly draw-
ing a production rule from RS , conditioned
on the logical form x. This provides the first
level of child nodes in the derivation tree. So
if, for example, the rule S → B1 :f1 . . . Bk :fk
were drawn, the root node would have k
child nodes, n1, . . . ,nk, respectively labeled
B1, . . . , Bk. The logical form associated with
each node is determined by the semantic trans-
formation function: xni = fi(x). These func-
tions describe the relationship between the
logical form at a child node and that of its
parent node. This process repeats recursively
with every right-hand side nonterminal sym-
bol, until there are no unexpanded nontermi-
nal nodes. The sentence is obtained by taking
the yield of the terminals in the tree (a con-
catenation).

The semantic transformation functions are
specific to the semantic formalism and may be
defined as appropriate to the application. In
our parsing application, we define a domain-
independent set of transformation functions
(e.g., one function selects the left n conjuncts
in a conjunction, another selects the nth argu-
ment of a predicate instance, etc).

2.2 Selecting production rules

In the above description, we did not specify
the distribution from which rules are selected
from RA. There are many modeling options
available when specifying this distribution. In
our approach, we choose a hierarchical Dirich-
let process (HDP) prior (Teh et al., 2006). Ev-
ery nonterminal in our grammar A ∈ N will
be associated with an HDP hierarchy. For each
nonterminal, we specify a sequence of semantic
feature functions, {g1, . . . , gm}, each of which
return a discrete feature (such as an integer)
of an input logical form x. We use this se-
quence of feature functions to define the hier-
archy of the HDP: starting with the root node,
we add a child node for every possible value of
the first feature function g1. For each of these

child nodes, we add a grandchild node for ev-
ery possible value of the second feature func-
tion g2, and so forth. The result is a complete
tree of depth m. Each node n in this tree is
assigned a distribution Gn as follows:

G0 ∼ DP(α0, H), (1)

Gn ∼ DP(αn, Gπ(n)),

where 0 is the root node, π(n) is the parent
of n, α are a set of concentration parameters,
and H is a base distribution over RA. This
base distribution is independent of the logical
form x.

To select a rule in the generative process,
given the logical form x, we can compute its
feature values (g1(x), . . . , gm(x)) which specify
a unique path in the HDP hierarchy to a leaf
node Gx. We then draw the production rule
from Gx. The specified set of production rules
and semantic features are included with the
code package. The specified rules and features
do not change across our experiments.

Take, for example, the derivation in Figure
3. In the generative process where the node
VP is expanded, the production rule is drawn
from the HDP associated with the nontermi-
nal VP. Suppose the HDP was constructed
using a sequence of two semantic features:
(predicate, arg2). In the example, the fea-
ture functions are evaluated with the logical
form plays sport(,tennis) and they return
the sequence (plays sport, tennis). This se-
quence uniquely identifies a path in the HDP
hierarchy from the root node 0 to a leaf node
n. The production rule VP→ V N is drawn
from this leaf nodeGn, and the generative pro-
cess continues recursively.

In our implementation, we divide the set of
nonterminals N into two groups: (1) the set
of “interior” nonterminals, and (2) pretermi-
nals. The production rules of preterminals are
restricted such that the right-hand side con-
tains only terminal symbols. The rules of inte-
rior nonterminals are restricted such that only
nonterminal symbols appear on the right side.

1. For preterminals, we set H to be a distri-
bution over sequences of terminal symbols
as follows: we generate each token in the
sequence i.i.d. from a uniform distribution
over a finite set of terminals and a special
stop symbol with probability φA. Once the
stop symbol is drawn, we have finished gen-

250

erating the rule. Note that we do not spec-
ify a set of domain-specific terminal sym-
bols in defining this distribution.

2. For interior nonterminals, we specify H
as a discrete distribution over a domain-
independent set of production rules. This
requires specifying a set of nonterminal
symbols, such as S, NP, VP, etc. Since these
production rules contain semantic transfor-
mation functions, they are specific to the
semantic formalism.

We emphasize that only the prior is specified
here, and we will use grammar induction to
infer the posterior. In principle, a more re-
laxed choice of H may enable grammar induc-
tion without pre-specified production rules,
and therefore without dependence on a partic-
ular semantic formalism or natural language,
if an efficient inference algorithm can be de-
veloped in such cases.

3 Induction

We describe grammar induction indepen-
dently of the choice of rule distribution. Let
θ be the random variables in the grammar: in
the case of the HDP prior, θ is the set of all dis-
tributions Gn at every node in the hierarchies.
Given a set of sentences y , {y1, . . . , yn} and
corresponding logical forms x , {x1, . . . , xn},
we wish to compute the posterior p(t,θ|x,y)
over the unobserved variables: the grammar
θ and the latent derivations/parse trees t ,
{t1, . . . , tn}. This is intractable to compute
exactly, and so we resort to Markov chain
Monte Carlo (MCMC) (Gelfand and Smith,
1990; Robert and Casella, 2010). To perform
blocked Gibbs sampling, we pick initial values
for t and θ and repeat the following:

1. For i = 1, . . . , n, sample ti|θ, xi, yi.
2. Sample θ|t.

However, since the sampling of each tree t de-
pends on θ, and we need to resample all n
parse trees before sampling θ, this Markov
chain can be slow to mix. Thus, we employ
collapsed Gibbs sampling by integrating out
θ. In this algorithm, we repeatedly sample
from ti|t−i, xi, yi where t−i = t \ {ti}.
p(ti|t−i, xi, yi) = (2)

1{yield(ti) = yi}
∏
A∈N

p

(⋂
{n∈ti :n

has label A}

rn

∣∣∣∣∣ t−i, xi
)
,

where the intersection is taken over tree nodes
n ∈ ti labeled with the nonterminal A, rn is
the production rule at node n, and 1{·} is 1 if
the condition is true and zero otherwise. With
θ integrated out, the probability does not nec-
essarily factorize over rules. In the case of the
HDP prior, selecting a rule will increase the
probability that the same rule is selected again
(due to the “rich get richer” effect observed in
the Chinese restaurant process). We instead
use a Metropolis-Hastings step to sample ti,
where the proposal distribution is given by the
fully factorized form:

p(t∗i |t−i, xi, yi) = (3)

1{yield(t∗i) = yi}
∏
n∈t∗i

p (rn | t−i, xni) .

After sampling t∗i , we choose to accept the new
sample with probability∏

n∈ti p(r
n|xn, t−i)

p
(⋂

n∈ti r
n|x, t−i

) p
(⋂

n∈t∗i r
n|x, t−i

)
∏

n∈t∗i p(r
n|xn, t−i) ,

where ti, here, is the old sample, and t∗i is the
newly proposed sample. In practice, this ac-
ceptance probability is very high. This ap-
proach is very similar in structure to that
in Johnson et al. (2007); Blunsom and Cohn
(2010); Cohn et al. (2010).

If an application requires posterior samples
of the grammar variables θ, we can obtain
them by drawing from θ|t after the collapsed
Gibbs sampler has mixed. Note that this algo-
rithm requries no further supervision beyond
the utterances y and logical forms x. However,
it is able to exploit additional information such
as supervised derivations/parse trees. For ex-
ample, a lexicon can be provided where each
entry is a terminal symbol yi with a corre-
sponding logical form label xi. We evaluate
our method with and without such a lexicon.

Refer to Saparov and Mitchell (2016) for
details on HDP inference and computing
p(rn|xn, t−i).

3.1 Sampling t∗i
To sample from equation (3), we use inside-
outside sampling (Finkel et al., 2006; John-
son et al., 2007), a dynamic programming
approach, where the inside step is imple-
mented using an agenda-driven chart parser
(Indurkhya and Damerau, 2010). The algo-
rithm fills a chart, which has a cell for every

251

nonterminal A, sentence start position i, end
position j, and logical form x. The algorithm
aims to compute the inside probability of ev-
ery chart cell: that is, for every cell (A, i, j, x),
we compute the probability that t∗i contains
a subtree rooted with the nonterminal A and
logical form x, spanning the sentence positions
(i, j). Let I(A,i,j,x) be the inside probability at
the chart cell (A, i, j, x):

I(A,i,j,x) =
∑

A→B1:f1...BK :fK∑
i=l1<...<lK+1=j

K∏
u=1

I(Bu,lu,lu+1,fu(x)). (4)

Each item in the agenda represents a snapshot
of the computation of this expression for a sin-
gle rule A → B1 : f1 . . . BK : fK . The agenda
item stores the current position in the rule k,
the set of sentence spans that correspond to
the first k right-hand side symbols l1, . . . , lk+1,
the span of the rule (i, j), the logical form x,
and the inside probability of the portion of the
rule computed so far. At every iteration, the
algorithm pops an item from the agenda and
adds it to the chart, and considers the next
right-hand side symbol Bk.
• If Bk is a terminal, it will match it against

the input sentence. If the terminal does not
match the sentence, this agenda item is dis-
carded and the algorithm continues to the
next iteration. If the terminal does match,
the algorithm increments the rule. That
is, for each possible value of lk+2, the al-
gorithm constructs a new agenda item con-
taining the same contents as the old agenda
item, but with rule position k + 1.
• If Bk is a nonterminal, the algorithm will

expand it (if it was not previously expanded
at this cell). The algorithm considers ev-
ery production rule of the form Bk → β,
and every possible end position for the next
nonterminal lk+2 = lk+1 + 1, . . . , j − 1,
and enqueues a new agenda item with rule
Bk → β, rule position set to 1, span set
to (lk, lk+1), logical form set to fk(x), and
inside probability initialized to 1. The orig-
inal agenda item is said to be “waiting” for
Bk to be completed later on in the algo-
rithm.
• If the rule is complete (there are no sub-

sequent symbols in the rule of this agenda
item), we can compute its inner probabil-

ity p(A → B1 :f1 . . . BK :fK |x, t−i). First,
we record that this rule was used to com-
plete the left-hand nonterminalA at the cell
(A, i, j, x). Then, we consider every agenda
item in the chart that is currently “wait-
ing” for the left-hand nonterminal A at this
sentence span. The search increments each
“waiting” item, adding a new item to the
agenda for each, whose log probability is
the sum of the log probability of the old
agenda item and the log probability of the
completed rule.

We prioritize items in the agenda by i − j
(so items with smaller spans are dequeued
first). This ensures that whenever the search
considers expanding Bk, if Bk was previously
expanded at this cell, its inside probabil-
ity is fully computed. Thus, we can avoid
re-expanding Bk and directly increment the
agenda item. The algorithm terminates when
there are no items in the agenda.

All that remains is the outside step: to sam-
ple the tree given the computed inside proba-
bilities. To do so, we begin with the chart cell
(S, 0, |yi|, xi) where |yi| is the length of sen-
tence yi, and we consider all completed rules
at this cell (these rules will be of the form
S → β). Each rule will have a computed inside
probability, and we can sample the rule from
the categorical distribution according to these
inside probabilities. Then, we consider the
right-hand side nonterminals in the selected
rule, and continue sampling recursively. The
end result is a tree sampled from equation (3).

4 Parsing

For a new sentence y∗, we aim to find the log-
ical form x∗ and derivation t∗ that maximizes

p(x∗, t∗|y∗,θ) ∝ p(x∗)p(y∗|t∗)p(t∗|x∗,θ),

= 1{yield(t∗) = y∗}p(x∗)
∏
n∈t∗

p(rn|xn∗ ,θ). (5)

Here, θ is a point estimate of the grammar,
which may be obtained from a single sample,
or from a Monte Carlo average over a finite set
of samples.

To perform parsing, we first describe an
algorithm to compute the derivation t∗ that
maximizes the above quantity, given the log-
ical form x∗ and input sentence y∗. We will
later demonstrate how this algorithm can be
used to find the optimal logical form and

252

derivation x∗, t∗. To find the optimal t∗, we
again use an agenda-driven chart parser to
perform the optimization, with a number of
important differences. Each agenda item will
keep track the derivation tree completed so far.

The algorithm is very similar in structure to
the inside algorithm described above. At every
iteration of the algorithm, an item is popped
from the agenda and added to the chart, ap-
plying one of the three operations available to
the inside algorithm. The algorithm begins by
expanding the root nonterminal S at (0, |y∗|)
with the logical form x∗.

4.1 Agenda prioritization

The most important difference from the in-
side algorithm is the prioritization of agenda
items. For a given agenda item with rule
A → B1 : f1 . . . BK : fK with logical form x
at sentence position (i, j), we aim to assign as
its priority an upper bound on equation (5) for
any derivation that contains this rule at this
position. To do so, we can split the product in
the objective

∏
n∈t∗ p(r

n|xn∗ ,θ) into a product
of two components: (1) the inner probability
is the product of the terms that correspond to
the subtree of t∗ rooted at the current agenda
item, and (2) the outer probability is the prod-
uct of the remaining terms, which correspond
to the parts of t∗ outside of the subtree rooted
at the agenda item. A schematic decomposi-
tion of a derivation tree is shown in Figure 4.

We define an upper bound on the log inner
probability I(A,i,j) for any subtree rooted at
nonterminal A at sentence span (i, j).

I(A,i,j) , (6)

max
A→B1...BK

(
max
x′

log p(A→ B1, . . . , BK |x′,θ)

+ max
l2<...<lK

K∑
k=1

I(Bk,lk,lk+1)

)
,

where l1 = i, lK+1 = j. Note that the left
term is a maximum over all logical forms x′,
and so this upper bound only considers syntac-
tic information. The right term can be maxi-
mized using dynamic programming in O(K2).
As such, classical syntactic parsing algorithms
can be applied to compute I for every chart
cell in O(n3). For any terminal symbol T , we
define I(T,i,j) = 0.

We similarly define O(A,i,j,x) representing a

bound on the outer probability at every cell.

O(A,i,j,x) , max
{t:yield(t)=y∗}

(
log p(x) (7)

+ log p(tL|x,θ) +
∑

(A′,i′,j′)∈r(tR)

I(A′,i′,j′)

)
,

where the maximum is taken over t which is a
derivation containing a subtree rooted at A at
sentence position (i, j). In this expression, tL
is the outer-left portion of the derivation tree
t, tR is the outer-right portion, and r(tR) is
the set of root vertices of the trees in tR.

Using these two upper bounds, we define the
priority of any agenda item with rule A →
B1 :f1 . . . BK :fK at rule position k, with log
probability score ρ, and logical form x as:

ρ+ max
lk+2<...<lK+1

K∑
u=k

I(Bu,lu,lu+1)+O(A,i,j,x). (8)

Thm 1. If the priority of agenda items is com-
puted as in equation (8), then at every itera-
tion of the chart parser, the priority of new
agenda items will be at most the priority of
the current item.

Proof. See supplementary material A.

Thus, the search is monotonic1. That is,
the maximum priority of items in the agenda
never increases.

This property allows us to compute the
outer probability bound O(A,i,j,x) for free.
Computing it directly is intractable. Consider
the expansion step for an agenda item with
rule A → B1 :f1 . . . BK :fK at rule position k,
with log probability score ρ, and logical form
x. The nonterminal Bk is expanded next at
sentence position (lk, lk+1), and its outer prob-
ability is simply

O(Bk,lk,lk+1,fk(x)) = ρ + (9)

max
lk+2<...<lK+1

K∑
u=k+1

I(Bu,lu,lu+1) +O(A,i,j,x).

The monotonicity of the search guarantees
that any subsequent expansion of Bk at
(lk, lk+1) will not yield a more optimal bound.

Monotonicity also guarantees that when the
algorithm completes a derivation for the root
nonterminal S, it is optimal (i.e. the Viterbi

1In the presentation of the algorithm as an A*
search, the heuristic is consistent.

253

S

NP

N

VP

V NP

N

PP

P N

full parse
=

S

NP

N

VP

V

left outer parse

+
NP

N

inner parse

+
PP

P N

right outer parse

Figure 4: Decomposition of a parse tree into its left outer parse, inner parse, and its right outer parse. This
is one example of such a decomposition. For instance, we may similarly produce a decomposition where the
prepositional phrase is the inner parse, or where the verb is the inner parse. The terminals are omitted and only
the syntactic portion of the parse is displayed here for conciseness.

parse). In this way, we can continue execu-
tion to obtain the k-best parses for the given
sentence.

4.2 Optimization over logical forms

The above algorithm finds the optimal deriva-
tion t∗, given a sentence y∗, logical form x∗,
and grammar θ. To jointly optimize over both
the derivation and logical form, given θ, imag-
ine running the above algorithm repeatedly
for every logical form. This approach, imple-
mented naively, is clearly infeasible due to the
sheer number of possible logical forms. How-
ever, there is a great deal of overlap across
the multiple runs, which corresponds to shared
substructures across logical forms, which we
can exploit to develop an efficient and exact
algorithm. At the first step of every run, the
root nonterminal is expanded for every logi-
cal form. This would create of a new agenda
item for every logical form, which are identi-
cal in every field except for the logical form
(and therefore, its prior probability). Thus,
we can represent this set of agenda items as a
single agenda item, where instead of an indi-
vidual logical form x, we store a logical form
set X. The outer probability bound is now
defined over sets of logical forms: O(A,i,j,X) ,
maxx∈X O(A,i,j,x). We can use this quantity in
equation (8) to compute the priority of these
“aggregated” agenda items. Thus, this algo-
rithm is a kind of branch-and-bound approach
to the combinatorial optimization problem. A
sparse representation of a set of logical forms
is essential for efficient parsing.

Another difference arises after completing
the parsing of a rule A → B1 : f1 . . . BK : fK
with a set of logical forms X, where we need
to compute log p(A → B1 :f1 . . . BK :fK |x,θ).
In the inside algorithm, this was straightfor-
ward since there was only a single logical
form. But in the parsing setting, X is a set
of logical forms, and the aforementioned prob-

ability can vary across instances within this
set (for the HDP prior, for example, the set
may correspond to multiple distinct paths in
the HDP hierarchy). Therefore, we divide X
into its equivalence classes. More precisely,
consider the set of disjoint subsets of X =
X1
⋃
. . .
⋃
Xm where Xi

⋂
Xj = ∅ for i 6= j,

such that p(A→ B1:f1 . . . BK :fK |x′,θ) is the
same for every x′ ∈ Xi. For each equivalence
class Xi, we create a “completed nonterminal”
item with the appropriate parse tree, log prob-
ability, and logical form set Xi. With these, we
continue inspecting the chart for search states
“waiting” for the nonterminal A.

The increment operation is also slightly dif-
ferent in the parser. When we increment a rule
A → B1 :f1 . . . BK :fK after completing pars-
ing for the symbol Bk with logical form set X,
we create a new agenda item with the same
contents as the old item, but with the rule po-
sition increased by one. The log probability
of the new agenda item is the sum of the log
probabilities of the old agenda item and the
completed subtree. Similarly the logical form
set of the new agenda item will be the inter-
section of {f−1

k (x) : x ∈ X} and the logical
forms in the old agenda item.

Our implementation is available for refer-
ence at github.com/asaparov/grammar and
github.com/asaparov/parser.

5 Semantic prior

The modular nature of the semantic prior al-
lows us to explore many different models of
logical forms. We experiment with a fairly
straightforward prior: Predicate instances are
generated left-to-right, conditioned only on
the last predicate instance that was sampled
for each variable. When a predicate instance
is sampled, its predicate, arity, and “direc-
tion”2 are simultaneously sampled from a cat-

2size(A), size(A,B), vs size(B,A), etc.

254

Method
Additional
Supervision

GeoQuery Jobs
P R F1 P R F1

WASP (Wong and Mooney, 2006) 1,2 87.2 74.8 80.5
λ-WASP (Wong and Mooney, 2007) 1,2,6 92.0 86.6 89.2
Extended GHKM (Li et al., 2013) 2,6 93.0 87.6 90.2

Zettlemoyer and Collins (2005) 3,5,6 96.3 79.3 87.0 97.3 79.3 87.4
Zettlemoyer and Collins (2007) 3,5,6 91.6 86.1 88.8
UBL (Kwiatkowski et al., 2010) 5 94.1 85.0 89.3
FUBL (Kwiatkowski et al., 2011) 5 88.6 88.6 88.6
TISP (Zhao and Huang, 2014) 5,6 92.9 88.9 90.9 85.0 85.0 85.0
GSG − lexicon − type-checking 4 86.9 75.7 80.9 89.5 67.1 76.7
GSG + lexicon − type-checking 4,5 88.4 81.8 85.0 91.4 75.7 82.8
GSG − lexicon + type-checking 4,6 89.3 77.9 83.2 93.2 69.3 79.5
GSG + lexicon + type-checking 4,5,6 90.7 83.9 87.2 97.4 81.4 88.7

Legend for sources of additional supervision are:
1. Training set containing 792 examples, 2. Domain-specific set of initial synchronous CFG rules,
3. Domain-independent set of lexical templates, 4. Domain-independent set of interior production rules,
5. Domain-specific initial lexicon, 6. Type-checking and type specification for entities.

Figure 5: The methods in the top part of the table were evaluated using 10-fold cross validation, whereas those
in the bottom part were evaluated with an independent test set.

Logical form: answer(A,smallest(A,state(A))) answer(A,largest(B,(state(A),population(A,B))))
Test sentence: “Which state is the smallest?” “Which state has the most population?”
Generated: “What state is the smallest?” “What is the state with the largest population?”

Figure 6: Examples of sentences generated from our trained grammar on logical forms in the GeoQuery test set.
Generation is performed by computing arg maxy∗ p(y∗|x∗,θ).

egorical distribution. Functions like largest,
shortest, etc, are sampled in the same pro-
cess. We again use an HDP to model the
discrete distribution conditioned on a discrete
random variable.

We also follow Wong and Mooney (2007); Li
et al. (2013); Zhao and Huang (2014) and ex-
periment with type-checking, where every en-
tity is assigned a type in a type hierarchy, and
every predicate is assigned a functional type.
We incorporate type-checking into the seman-
tic prior by placing zero probability on type-
incorrect logical forms. More precisely, logical
forms are distributed according to the original
prior, conditioned on the fact that the logical
form is type-correct. Type-checking requires
the specification of a type hierarchy. Our hi-
erarchy contains 11 types for GeoQuery and
12 for Jobs. We run experiments with and
without type-checking for comparison.

6 Results

To evaluate our parser, we use the GeoQuery
and Jobs datasets. Following Zettlemoyer and
Collins (2007), we use the same 600 Geo-
Query sentences for training and an indepen-
dent test set of 280 sentences. On Jobs, we
use the same 500 sentences for training and
140 for testing. We run our parser with two se-

tups: (1) with no domain-specific supervision,
and (2) using a small domain-specific lexicon
and a set of beliefs (such as the fact that Port-
land is a city). For each setup, we run the
experiments with and without type-checking,
for a total of 4 experimental setups. A given
output logical form is considered correct if it
is semantically equivalent to the true logical
form.3 We measure the precision and recall
of our method, where precision is the num-
ber of correct parses divided by the number of
sentences for which our parser provided out-
put, and recall is the number of correct parses
divided by the total number of sentences in
each dataset. Our results are shown compared
against many other semantic parsers in Figure
5. Our method is labeled GSG for “genera-
tive semantic grammar.” The numbers for the
baselines were copied from their respective pa-
pers, and so their specified lexicons/type hier-
archies may differ slightly.

Many sentences in the test set contain to-
kens previously unseen in the training set. In
such cases, the maximum possible recall is
88.2 and 82.3 on GeoQuery and Jobs, re-
spectively. Therefore, we also measure the ef-
fect of adding a domain-specific lexicon, which

3The result of execution of the output logical form
is identical to that of the true logical form, for any
grounding knowledge base/possible world.

255

maps semantic constants like maine to the
noun “maine” for example. This lexicon is
analogous to the string-matching and argu-
ment identification steps previous parsers. We
constructed the lexicon manually, with an en-
try for every city, state, river, and mountain
in GeoQuery (141 entries), and an entry for
every city, company, position, and platform in
Jobs (180 entries).

Aside from the lexicon and type hierarchy,
the only training information is given by the
set of sentences y, corresponding logical forms
x, and the domain-independent set of interior
production rules, as described in section 2.2.
In our experiments, we found that the sampler
converges rapidly, with only 10 passes over the
data. This is largely due to our restriction
of the interior production rules to a domain-
independent set.

We emphasize that the addition of type-
checking and a lexicon are mainly to enable a
fair comparison with past approaches. As ex-
pected, their addition greatly improves pars-
ing performance. Our method achieves state-
of-the-art F1 on the Jobs dataset. How-
ever, even without such domain-specific super-
vision, the parser performs reasonably well.

7 Related work

Our grammar formalism can be related to
synchronous CFGs (SCFGs) (Aho and Ull-
man, 1972) where the semantics and syntax
are generated simultaneously. However, in-
stead of modeling the joint probability of the
logical form and natural language utterance
p(x, y), we model the factorized probability
p(x)p(y|x). Modeling each component in isola-
tion provides a cleaner division between syntax
and semantics, and one half of the model can
be modified without affecting the other (such
as the addition of new background knowl-
edge, or changing the language/semantic for-
malism). We used a CFG in the syntactic
portion of our model (although our grammar
is not context-free, due to the dependence
on the logical form). Richer syntactic for-
malisms such as combinatory categorial gram-
mar (Steedman, 1996) or head-driven phrase
structure grammar (Pollard and Sag, 1994)
could replace the syntactic component in our
framework and may provide a more uniform
analysis across languages. Our model is simi-
lar to lexical functional grammar (LFG) (Ka-

plan and Bresnan, 1995), where f -structures
are replaced with logical forms. Nothing in our
model precludes incorporating syntactic infor-
mation like f-structures into the logical form,
and as such, LFG is realized in our framework.
Our approach can be used to define new gener-
ative models of these grammatical formalisms.
We implemented our method with a particu-
lar semantic formalism, but the grammatical
model is agnostic to the choice of semantic for-
malism or the language. As in some previous
parsers, a parallel can be drawn between our
parsing problem and the problem of finding
shortest paths in hypergraphs using A* search
(Klein and Manning, 2001, 2003; Pauls and
Klein, 2009; Pauls et al., 2010; Gallo et al.,
1993).

8 Discussion

In this article, we presented a generative model
of sentences, where each sentence is gener-
ated recursively top-down according to a se-
mantic grammar, where each step is condi-
tioned on the logical form. We developed a
method to learn the posterior of the gram-
mar using a Metropolis-Hastings sampler. We
also derived a Viterbi parsing algorithm that
takes into account the prior probability of the
logical forms. Through this semantic prior,
background knowledge and other information
can be easily incorporated to better guide the
parser during its search. Our parser provides
state-of-the-art results when compared with
past approaches.

As a generative model, there are promising
applications to interactive learning, caption
generation, data augmentation, etc. Richer
semantic priors can be applied to perform on-
tology learning, relation extraction, or con-
text modeling. Applying this work to semi-
supervised settings is also interesting. The av-
enues for future work are numerous.

Acknowledgments

We thank the anonymous reviewers for their
helpful feedback, and we also thank Em-
manouil A. Platanios for insightful discus-
sion and comments. This research is based
upon work supported in part by the Office of
the Director of National Intelligence (ODNI),
IARPA, and by DARPA under contract num-
ber FA8750-13-2-0005. The views and conclu-
sions contained herein are those of the authors

256

and should not be interpreted as necessar-
ily representing the official policies, either ex-
pressed or implied of ODNI, IARPA, DARPA,
or the US government. The US Government
is authorized to reproduce and distribute the
reprints for governmental purposed notwith-
standing any copyright annotation therein.

References

Albert V. Aho and Jeffery D. Ullman. 1972. The
Theory of Parsing, Translation, and Compiling ,
volume 1. Prentice-Hall, Englewood Cliffs, NJ.

Phil Blunsom and Trevor Cohn. 2010. Inducing
synchronous grammars with slice sampling. In
HLT-NAACL. The Association for Computa-
tional Linguistics, pages 238–241.

Noam Chomsky. 1956. Three models for the de-
scription of language. IRE Transactions on In-
formation Theory 2:113–124.

Trevor Cohn, Phil Blunsom, and Sharon Goldwa-
ter. 2010. Inducing tree-substitution grammars.
Journal of Machine Learning Research 11:3053–
3096.

Li Dong and Mirella Lapata. 2016. Language
to logical form with neural attention. CoRR
abs/1601.01280.

Jenny Rose Finkel, Christopher D. Manning, and
Andrew Y. Ng. 2006. Solving the problem
of cascading errors: approximate bayesian in-
ference for linguistic annotation pipelines. In
EMNLP ’06: Proceedings of the 2006 Confer-
ence on Empirical Methods in Natural Language
Processing . Association for Computational Lin-
guistics, Morristown, NJ, USA, pages 618–626.

Giorgio Gallo, Giustino Longo, and Stefano Pallot-
tino. 1993. Directed hypergraphs and applica-
tions. Discrete Applied Mathematics 42(2):177–
201.

Alan E. Gelfand and Adrian F. M. Smith.
1990. Sampling-based approaches to calculat-
ing marginal densities. Journal of the American
Statistical Association 85(410):398–409.

Nitin Indurkhya and Fred J. Damerau, editors.
2010. Handbook of Natural Language Process-
ing, Second Edition. Chapman and Hall/CRC.

M. Johnson, T. L. Griffiths, and S. Goldwater.
2007. Bayesian inference for PCFGs via Markov
chain Monte Carlo. In Proceedings of the North
American Conference on Computational Lin-
guistics (NAACL ’07).

Ronald M. Kaplan and Joan Bresnan. 1995.
Lexical-functional grammar: A formal system
for grammatical representation.

Dan Klein and Christopher D. Manning. 2001.
Parsing and hypergraphs. In IWPT . Tsinghua
University Press.

Dan Klein and Christopher D. Manning. 2003. A*
parsing: Fast exact viterbi parse selection. In
HLT-NAACL.

Tom Kwiatkowski, Eunsol Choi, Yoav Artzi, and
Luke S. Zettlemoyer. 2013. Scaling semantic
parsers with on-the-fly ontology matching. In
EMNLP . ACL, pages 1545–1556.

Tom Kwiatkowski, Luke S. Zettlemoyer, Sharon
Goldwater, and Mark Steedman. 2010. Induc-
ing probabilistic ccg grammars from logical form
with higher-order unification. In EMNLP . ACL,
pages 1223–1233.

Tom Kwiatkowski, Luke S. Zettlemoyer, Sharon
Goldwater, and Mark Steedman. 2011. Lexical
generalization in ccg grammar induction for se-
mantic parsing. In EMNLP . ACL, pages 1512–
1523.

Peng Li, Yang Liu, and Maosong Sun. 2013. An
extended ghkm algorithm for inducing lambda-
scfg. In Marie desJardins and Michael L.
Littman, editors, AAAI . AAAI Press.

Percy Liang, Michael I. Jordan, and Dan Klein.
2011. Learning dependency-based composi-
tional semantics. CoRR abs/1109.6841.

Adam Pauls and Dan Klein. 2009. K-best a*
parsing. In Keh-Yih Su, Jian Su, and Janyce
Wiebe, editors, ACL/IJCNLP . The Association
for Computer Linguistics, pages 958–966.

Adam Pauls, Dan Klein, and Chris Quirk. 2010.
Top-down k-best a* parsing. In Proceedings of
the ACL 2010 Conference Short Papers. Asso-
ciation for Computational Linguistics, Strouds-
burg, PA, USA, ACLShort ’10, pages 200–204.

Carl Pollard and Ivan A. Sag. 1994. Head-
driven phrase structure grammar . University of
Chicago Press, Chicago.

C. P. Robert and G. Casella. 2010. Monte Carlo
Statistical Methods. Springer, New York, NY.

Abulhair Saparov and Tom M. Mitchell. 2016. A
probabilistic generative grammar for semantic
parsing. In arXiv:1606.06361 .

Mark Steedman. 1996. Surface structure and in-
terpretation. Linguistic inquiry monographs, 30.
MIT Press.

Yee Whye Teh, Michael I. Jordan, Matthew J.
Beal, and David M. Blei. 2006. Hierarchical
dirichlet processes. Journal of the American
Statistical Association 101(476):1566–1581.

257

Yuk Wah Wong and Raymond J. Mooney. 2006.
Learning for semantic parsing with statistical
machine translation. In Robert C. Moore,
Jeff A. Bilmes, Jennifer Chu-Carroll, and Mark
Sanderson, editors, HLT-NAACL. The Associa-
tion for Computational Linguistics.

Yuk Wah Wong and Raymond J. Mooney. 2007.
Learning synchronous grammars for semantic
parsing with lambda calculus. In John A. Car-
roll, Antal van den Bosch, and Annie Zaenen,
editors, ACL. The Association for Computa-
tional Linguistics.

Luke S. Zettlemoyer and Michael Collins. 2005.
Learning to map sentences to logical form:
Structured classification with probabilistic cat-
egorial grammars. In UAI . AUAI Press, pages
658–666.

Luke S. Zettlemoyer and Michael Collins. 2007.
Online learning of relaxed ccg grammars for
parsing to logical form. In Jason Eisner, editor,
EMNLP-CoNLL. ACL, pages 678–687.

Kai Zhao and Liang Huang. 2014. Type-driven in-
cremental semantic parsing with polymorphism.
CoRR abs/1411.5379.

A Proof of Thm 1

Induct on the iteration of the algorithm. Let a
be the current agenda item, where the produc-
tion rule of the item is A → B1 :f1 . . . BK :fK ,
the rule position is k, the set of sentence spans
that correspond to the first k right-hand side
symbols is l1, . . . , lk+1, the span of the rule is
(i, j), the logical form is x, and the log proba-
bility of the first k right-hand side symbols is
ρ. For notational brevity, we let c(a) denote
the priority of the agenda item a as defined in
equation (8). There are three cases:

Case 1 If Bk is a terminal, a new agenda
item is created only if the terminal matches
the token in the input sentence. Then for each
possible value of lk+2, a new agenda item a′ is
created, where ρ is the same as that in the old
agenda item a. Since the logical form is the
same, and

I(Bk,lk,lk+1) + max
lk+3<...<lK+1

K∑
u=k+1

I(Bu,lu,lu+1)

≤ max
lk+2<...<lK+1

K∑
u=k

I(Bu,lu,lu+1),

the priority of the new agenda item is at most
that of the old item c(a′) ≤ c(a).

Case 2 If Bk is a nonterminal, it proceeds
to “expand” it. Suppose to the contrary that
we create an agenda item whose priority is
greater than that of the current item. This
implies that there exists a production rule
Bk → C1 . . . CK′ and a set of sentence spans
l′2 < . . . < l′K′+1 such that

c(a) =

ρ+ max
lk+2<...<lK+1

K∑
u=k

I(Bu,lu,lu+1) +O(A,i,j,x),

<

K′∑
u=1

I(Cu,l′u,l′u+1) +O(Bk,lk,lk+1,fk(x))

≤ I(Bk,lk,lk+1) +O(Bk,lk,lk+1,fk(x)),

where l′1 = lk and lK′+1 = lk+1. By defini-
tion of the bound on the outer probability,
the above inequality implies that there exists
a derivation t′ and logical form x′ such that
fk(x′) = fk(x) and

c(a) < log p(x′) + log p(t′L|x′,θ)

+ I(Bk,lk,lk+1) +
∑

(A′,i′,j′)∈r(t′R)

I(A′,i′,j′). (10)

Let D → E1 . . . EK′′ be the production rule in
t′ that contains theBk nonterminal at sentence
span (lk, lk+1), and so for some m, Em = Bk.
In addition, let s′i be the sibling derivation tree
rooted at Ei for all i = 1, . . . ,m − 1. There-
fore, there must exist an agenda item a′ with
the same production rule, with rule position
m, (lk, lk+1) as the sentence spans of Dm, log
probability of the first m right-hand side sym-
bols

∑m−1
i=1 log p(s′i|x′,θ), and logical form x′.

The priority of this rule state is

c(a′) =
m−1∑
i=1

log p(s′i|x′,θ)

+ max
lm+2<...<lK′′+1

K′′∑
u=m

I(Eu,lu,lu+1) +O(D,i′,j′,x′).

By definition of the outer probability
bound, we have O(D,i′,j′,x′) ≥ log p(x′) +
log p(t′′L|x′,θ) +

∑
(A′,i′,j′)∈r(t′′R) I(A′,i′,j′) where

t′′L is the outer-left portion of the derivation
tree t′ not containing the subtree rooted
at the nonterminal C, and t′′R is similarly
the outer-right portion. Thus, we can lower

258

bound c(a′)

c(a′) ≥

log p(x′) + log p(t′′L|x′,θ) +
m−1∑
i=1

log p(s′i|x′,θ)

+ max
lm+2<...<lK′′+1

K′′∑
u=m

I(Du,lu,lu+1) +
∑

(A′,i′,j′)∈r(t′′R)

I(A′,i′,j′),

which is at least the quantity in equation (10),
since

log p(t′L|x′,θ) =

log p(t′′L|x′,θ) +
m−1∑
i=1

log p(s′i|x′,θ),∑
(A′,i′,j′)∈r(t′R)

I(A′,i′,j′) ≤

max
lm+2<...<lK′′+1

K′′∑
u=m+1

I(Du,lu,lu+1) +
∑

(A′,i′,j′)∈r(t′′R)

I(A′,i′,j′).

Thus, c(a′) > c(a), and so by the inductive hy-
pothesis, a′ was processed by the algorithm at
an earlier iteration. However, this would mean
that the nonterminal Bk is expanded more
than once at the sentence location (lk, lk+1),
which is disallowed.

Case 3 If the rule is complete, the algo-
rithm looks for previously-processed agenda
items that are “waiting” for a derivation of
Bk at positions (lk, lk+1). The algorithm will
combine the completed derivation with the
waiting state and create a new agenda item
where the rule position is incremented by 1.
Suppose to the contrary that the new agenda
item a′ has priority greater than the current
item a. Let the production rule of a′ be
D → E1 : f1 . . . EK′ :: fK′ where Em = A for
some m, and so m is the rule position of a′.
Additionally, let the sentence spans of the first
m− 1 right-hand symbols be l′1, . . . , l′m−1, and
ρ′ is the log probability of the first m−1 right-
hand symbols, and the logical form is x′ where
fm(x′) = x. Therefore, we can write

c(a) = log p(t′A|x,θ) +O(A,i,j,x),

< ρ′ + log p(t′A|x,θ) +O(D,i′,j′,x′)

+ max
lm+3<...<lK′

K′∑
u=m+1

I(Du,l′u,l′u+1) = c(a′).

This expression implies

O(A,i,j,x) < ρ′ +

max
lm+3<...<lK′

K′∑
u=m+1

I(Du,l′u,l′u+1) +O(C,i′,j′,x′),

but this is not possible by the definition of
O(A,i,j,x) in equation (7), as we would have
found a derivation with a strictly better ob-
jective. �

259

Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017), pages 260–270,
Vancouver, Canada, August 3 - August 4, 2017. c©2017 Association for Computational Linguistics

Learning Contextual Embeddings for Structural Semantic Similarity
using Categorical Information

Massimo Nicosia♦ and Alessandro Moschitti
♦DISI, University of Trento 38123 Povo (TN), Italy

Qatar Computing Research Institute, HBKU, 34110, Doha, Qatar
{m.nicosia,amoschitti}@gmail.com

Abstract

Tree kernels (TKs) and neural networks
are two effective approaches for automatic
feature engineering. In this paper, we
combine them by modeling context word
similarity in semantic TKs. This way,
the latter can operate subtree matching by
applying neural-based similarity on tree
lexical nodes. We study how to learn
representations for the words in context
such that TKs can exploit more focused
information. We found that neural em-
beddings produced by current methods do
not provide a suitable contextual similar-
ity. Thus, we define a new approach based
on a Siamese Network, which produces
word representations while learning a bi-
nary text similarity. We set the latter con-
sidering examples in the same category as
similar. The experiments on question and
sentiment classification show that our se-
mantic TK highly improves previous re-
sults.

1 Introduction

Structural Kernels (Moschitti, 2006) can automat-
ically represent syntactic and semantic structures
in terms of substructures, showing high accuracy
in several tasks, e.g., relation extraction (Nguyen
et al., 2009; Nguyen and Moschitti, 2011; Plank
and Moschitti, 2013; Nguyen et al., 2015) and sen-
timent analysis (Nguyen and Shirai, 2015).

At the same time, deep learning has demon-
strated its effectiveness on a plethora of NLP tasks
such as Question Answering (QA) (Severyn and
Moschitti, 2015a; Rao et al., 2016), and pars-
ing (Andor et al., 2016), to name a few. Deep
learning models (DLMs) usually do not include
traditional features; they extract relevant signals

from distributed representations of words, by ap-
plying a sequence of linear and non linear func-
tions to the input. Word representations are
learned from large corpora, or directly from the
training data of the task at hand.

Clearly, joining the two approaches above
would have the advantage of easily integrating
structures with kernels, and lexical representations
with embeddings into learning algorithms. In this
respect, the Smoothed Partial Tree Kernel (SPTK)
is a noticeable approach for using lexical similar-
ity in tree structures (Croce et al., 2011). SPTK
can match different tree fragments, provided that
they only differ in lexical nodes. Although the
results were excellent, the used similarity did not
consider the fact that words in context assume dif-
ferent meanings or weights for the final task, i.e.,
it does not consider the context. In contrast, SPTK
would benefit to use specific word similarity when
matching subtrees corresponding to different con-
stituency. For example, the two questions:

– What famous model was married to Billy Joel?

– What famous model of the Universe was pro-
posed?

are similar in terms of structures and words but
clearly have different meaning and also different
categories: the first asks for a human (the answer
is Christie Brinkley) whereas the latter asks for
an entity (an answer could be the Expanding Uni-
verse). To determine that such questions are not
similar, SPTK would need different embeddings
for the word model in the two contexts, i.e., those
related to person and science, respectively.

In this paper, we use distributed representa-
tions generated by neural approaches for comput-
ing the lexical similarity in TKs. We carry out an
extensive comparison between different methods,
i.e., word2vec, using CBOW and SkipGram, and

260

Glove, in terms of their impact on convolution se-
mantic TKs for question classification (QC). We
experimented with composing word vectors and
alternative embedding methods for bigger unit of
text to obtain context specific vectors.

Unfortunately, the study above showed that
standard ways to model context are not effective.
Thus, we propose a novel application of Siamese
Networks to learn word vectors in context, i.e., a
representation of a word conditioned on the other
words in the sentence. Since a comprehensive and
large enough corpus of disambiguated senses is
not available, we approximate them with categori-
cal information: we derive a classification task that
consists in deciding if two words extracted from
two sentences belong to the same sentence cate-
gory. We use the obtained contextual word repre-
sentations in TKs. Our new approach tested on
two tasks, question and sentiment classification,
shows that modeling the context further improves
the semantic kernel accuracy compared to only us-
ing standard word embeddings.

2 Related Work

Distributed word representations are an effective
and compact way to represent text and are widely
used in neural network models for NLP. The re-
search community has also studied them in the
context of many other machine learning models,
where they are typically used as features.

SPTK is an interesting kernel algorithm that can
compute word to word similarity with embeddings
(Croce et al., 2011; Filice et al., 2015, 2016). In
our work, we go beyond simple word similarity
and improve the modeling power of SPTK using
contextual information in word representations.
Our approach mixes the syntactic and semantic
features automatically extracted by the TK, with
representations learned with deep learning models
(DLMs).

Early attempts to incorporate syntactic informa-
tion in DLMs use grammatical relations to guide
the composition of word embeddings, and recur-
sively compose the resulting substructural embed-
dings with parametrized functions. In Socher et al.
(2012) and Socher et al. (2013), a parse tree is used
to guide the composition of word embeddings, fo-
cusing on a single parametrized function for com-
posing all words according to different grammat-
ical relations. In Tai et al. (2015), several LSTM
architectures that follow an order determined by

syntax are presented. Considering embeddings
only, Levy and Goldberg (2014) proposed to learn
word representations that incorporate syntax from
dependency-based contexts. In contrast, we inject
syntactic information by means of TKs, which es-
tablish a hard match between tree fragments, while
the soft match is enabled by the similarities of dis-
tributed representations.

DLMs have been applied to the QC task. Con-
volutional neural neworks are explored in Kalch-
brenner et al. (2014) and Kim (2014). In Ma et al.
(2015), convolutions are guided by dependencies
linking question words, but it is not clear how
the word vectors are initialized. In our case, we
only use pre-trained word vectors and the output
of a parser, avoiding intensive manual feature en-
gineering, as in Silva et al. (2010). The accuracy
of these models are reported in Tab. 1 and can be
compared to our QC results (Table 4) on the com-
monly used test set. In addition, we report our re-
sults in a cross-validation setting to better assess
the generalization capabilities of the models.

To encode words in context, we employ a
Siamese Network, a DLM that has been widely
used to model sentence similarity. In a Siamese
setting, the same network is used to encode two
sentences, and during learning, the distance be-
tween the representations of similar sentences is
minimized. In Mueller and Thyagarajan (2016),
an LSTM is used to encode similar sentences, and
their Manhattan distance is minimized. In Necu-
loiu et al. (2016), a character level bidirectional
LSTM is used to determine the similarity between
job titles. In Tan et al. (2016), the problem of
question/answer matching is treated as a similar-
ity task, and convolutions and pooling on top of
LSTM states are used to extract the sentence rep-
resentations. The paper reports also experiments
that include neural attention. Those mechanisms
are excluded in our work, since we do not want to
break the symmetry of the encoding model.

In Siamese Networks, the similarity is typically
computed between pair of sentences. In our work,
we compute the similarity of word representations
extracted from the states of a recurrent network.
Such representations still depend on the entire sen-
tence, and thus encode contextual information.

3 Tree Kernels-based Lexical Similarity

TKs are powerful methods for computing the sim-
ilarity between tree structures. They can effec-

261

Model Features Accuracy

SVM Unigram, syntactic informa-
tion, parser output, WordNet
features, hand-coded features

95.0

DCNN Unsupervised vectors 93.0

CNNns CBOW fine-tuned vectors 93.6

DepCNN Depencency guided filters 95.6

SPTK SPTK and LSA word vectors 94.8

Table 1: QC accuracy (%) and description of SVM (Silva
et al., 2010), DCNN (Kalchbrenner et al., 2014), CNNns

(Kim, 2014), DepCNN, (Ma et al., 2015) and SPTK (Croce
et al., 2011) models.

tively encode lexical, syntactic and semantic infor-
mation in learning algorithms. For this purpose,
they count the number of substructures shared by
two trees. In most TKs, two tree fragments match
if they are identical. In contrast, Croce et al.
(2011) proposed the Smoothed Partial Tree Ker-
nel (SPTK), which can also match fragments dif-
fering in node labels. For example, consider two
constituency tree fragments which differ only for
one lexical node. SPTK can establish a soft match
between the two fragments by associating the lex-
icals with vectors and by computing the cosine
similarity between the latter. In previous work for
QC, vectors were obtained by applying Latent Se-
mantic Analysis (LSA) to a large corpus of tex-
tual documents. We use neural word embeddings
as in Filice et al. (2015) to encode words. Dif-
ferently from them, we explore specific embed-
dings by also deriving a vector representation for
the context around each word. Finally, we define
a new approach based on the category of the sen-
tence of the target word.

3.1 Smoothed Partial Tree Kernel

SPTK can be defined as follows: let the set F =
{f1, f2, . . . , f|F|} be a tree fragment space and
χi(n) be an indicator function, equal to 1 if the
target fi is rooted at node n, and equal to 0 other-
wise. A TK function over T1 and T2 is:

TK(T1, T2) =
∑

n1∈NT1

∑
n2∈NT2

∆(n1, n2),

whereNT1 andNT2 are the sets of nodes of T1 and
T2, and ∆(n1, n2) =

∑|F|
i=1 χi(n1)χi(n2). The

latter is equal to the number of common fragments
rooted in the n1 and n2 nodes. The ∆ function for

be::v

what::w bibliography::n ?::. ROOT VBZ

SBJ WP an::d annotate::v PRD NN P .

NMOD DT NMOD VBN

Figure 1: The Lexical Centered Tree (LCT) of the lemma-
tized sentence: ”What is an annotated bibliography?”.

SPTK1 defines a rich kernel space as follows:

1. If n1 and n2 are leaves then ∆σ(n1, n2) =
µλσ(n1, n2); else

2. ∆σ(n1, n2) = µσ(n1, n2)×
(
λ2 +

∑
~I1,~I2,l(~I1)=l(~I2)

λd(
~I1)+d(~I2)

l(~I1)∏
j=1

∆σ(cn1(~I1j), cn2(~I2j))
)
, (1)

where σ is any similarity between nodes, e.g., be-
tween their lexical labels, µ, λ ∈ [0, 1] are two
decay factors, ~I1 and ~I2 are two sequences of in-
dices, which index subsequences of children u,
~I = (i1, ..., i|u|), in sequences of children s, 1 ≤
i1 < ... < i|u| ≤ |s|, i.e., such that u = si1 ..si|u| , and
d(~I) = i|u|− i1 +1 is the distance between the first
and last child. c is one of the children of the node
n, also indexed by ~I . SPTK has been shown to
be rather efficient in practice (Croce et al., 2011,
2012).

3.2 Structural representation for text

Syntactic and semantic structures can play an im-
portant role in building effective representations
for machine learning algorithms. The automatic
extraction of features from tree structured repre-
sentations of text is natural within the TK frame-
work. Therefore, several studies have shown the
power of associating rich structural encoding with
TKs (Severyn et al., 2013; Tymoshenko and Mos-
chitti, 2015).

In Croce et al. (2011), a wide array of represen-
tations derived from the parse tree of a sentence
are evaluated. The Lexical Centered Tree (LCT) is
shown to be the best performing tree layout for the
QC task. An LCT, as shown in Figure 1, contains
lexicals at the pre-terminal levels, and their gram-
matical functions and POS-tags are added as left-
most children. In addition, each lexical node is
encoded as a word lemma, and has a suffix which
is composed by a special :: symbol and the first

1For a similarity score between 0 and 1, a normalization
in the kernel space, i.e. TK(T1,T2)√

TK(T1,T1)×TK(T2,T2)
is applied.

262

letter of the POS-tag of the word. These marked
lexical nodes are then mapped to their correspond-
ing numerical vectors, which are used in the kernel
computation. Only lemmas sharing the same POS-
tag are compared in the semantic kernel similarity.

4 Context Word Embeddings for SPTK

We propose to compute the similarity function σ
in SPTK as the cosine similarity of word em-
beddings obtained with neural networks. We
experimented with the popular Continuous Bag-
Of-Words (CBOW), SkipGram models (Mikolov
et al., 2013), and GloVe (Pennington et al., 2014).

4.1 Part-of-speech tags in word embeddings

As in (Croce et al., 2011), we observed that em-
beddings learned from raw words are not the most
effective in the TK computation. Thus, similarly
to Trask et al. (2015), we attach a special :: suf-
fix plus the first letter of the part-of-speech (POS)
to the word lemmas. This way, we differentiate
words by their tags, and learn specific embedding
vectors for each of them. This approach increases
the performance of our models.

4.2 Modeling the word context

Although a word vector encodes some information
about word co-occurrences, the context around a
word, as also suggested in Iacobacci et al. (2016),
can explicitly contribute to the word similarity, es-
pecially when the target words are infrequent. For
this reason, we also represent each word as the
concatenation of its embedding with a second vec-
tor, which is supposed to model the context around
the word. We build this vector as (i) a simple av-
erage of the embeddings of the other words in the
sentence, and (ii) with a method specifically de-
signed to embed longer units of text, namely para-
graph2vec (Le and Mikolov, 2014). This is similar
to word2vec: a network is trained to predict a word
given its context, but it can access to an additional
vector specific for the paragraph, where the word
and the context are sampled.

5 Recurrent Networks for Encoding Text

As described in Sec. 2, a Siamese Network en-
codes two inputs into a vectorial representation,
reusing the network parameters. In this section,
we briefly describe the standard units used in our
Siamese Network to encode sentences.

5.1 Recurrent neural network units

Recurrent Neural Networks (RNNs) constitute one
of the main architectures used to model sequences,
and they have seen a wide adoption in the NLP
literature. Vanilla RNNs consume a sequence of
vectors one step at the time, and update their inter-
nal state as a function of the new input and their
previous internal state. For this reason, at any
given step, the internal state depends on the en-
tire history of previous states. These networks suf-
fer from the vanishing gradient problem (Bengio
et al., 1994), which is mitigated by a popular RNN
variant, the Long Short Term Memory (LSTM)
network (Hochreiter and Schmidhuber, 1997). An
LSTM can control the amount of information from
the input that affects its internal state, the amount
of information in the internal state that can be for-
gotten, and how the internal state affects the output
of the network.

The Gated Recurrent Unit (GRU) (Chung et al.,
2014) is an LSTM variant with similar perfor-
mance and less parameters, thus faster to train.
Since we use this recurrent unit in our model, we
briefly review it. Let xt and st be the input vec-
tor and state at timestep t, given a sequence of in-
put vectors (x1, ..., xT), the GRU computes a se-
quence of states (s1, ..., sT) according to the fol-
lowing equations:

z = σ(xtU z + st−1W
z)

r = σ(xtU r + st−1W
r)

h = tanh(xtUh + (st−1 ◦ r)W h)
st = (1− z) ◦ h+ z ◦ st−1

The GRU has an update, z, and reset gate, r, and
does not have an internal memory beside the inter-
nal state. The U andW matrices are parameters of
the model. σ is the logistic function, the ◦ opera-
tor denotes the elementwise (Hadamard) product,
and tanh is the hyperbolic tangent function. All
the non-linearities are applied elementwise.

5.2 Bidirectional networks

The aforementioned recurrent units consume the
input sequence in one direction, and thus earlier
internal states do not have access to future steps.
Bidirectional RNNs (Schuster and Paliwal, 1997)
solve this issue by keeping a forward and back-
ward internal states that are computed by going
through the input sequence in both directions. The
state at any given step will be the concatenation of

263

the forward and backward state at that step, and,
in our case, will contain useful information from
both the left and right context of a word.

6 Contextual Word Similarity Network

The methods to model the context described in
Sec. 4.2 augment the target word vector with di-
mensions derived from the entire sentence. This
provides some context that may increase the dis-
criminative power of SPTK. The latter can thus
use a similarity between two words dependent on
the sentences which they belong to. For exam-
ple, when SPTK carries out a QC task, the sen-
tences above have higher probability to share sim-
ilar context if they belong to the same category.
Still, this approach is rather shallow as two words
of the same sentence would be associated with al-
most the same context vector. That is, the ap-
proach does not really transform the embedding
of a given word as a function of its context.

An alternative approach is to train the context
embedding using neural networks on a sense an-
notated corpus, which can remap the word em-
beddings in a supervised fashion. However, since
there are not enough large disambiguated corpora,
we need to approximate the word senses with
coarse-grained information, e.g., the category of
the context. In other words, we can train a net-
work to decide if two target words are sampled
from sentences belonging to the same category.
This way, the states of the trained network corre-
sponding to each word can be eventually used as
word-in-context embeddings.

In the next sections, we present the classifica-
tion task designed for this purpose, and then the
architecture of our Siamese Network for learning
contextual word embeddings.

6.1 Defining the derived classification task

The end task that we consider is the categorization
of a sentence s ∈ D = {s1, ..., sn} into one class
ci ∈ C = {c1, ..., cm}, where D is our collection
of n sentences, and C is the set of m sentence cat-
egories. Intuitively, we define the derived task as
determining if two words extracted from two dif-
ferent sentences share the same sentence category
or not. Our classifier learns word representations
while accessing to the entire sentence.

More formally, we sample a pair of labeled sen-
tences 〈si, ci〉, 〈sj , cj〉 from our training set, where
i 6= j. Then, we sample a word from each sen-

tence, wa ∈ si and wb ∈ sj , and we assign a label
y ∈ {0, 1} to the word pair. We set y = 0 if
ci 6= cj , and y = 1 if ci = cj .

Our goal is to learn a mapping f such that:

sim(f(si, wa), f(sj , wb)) ∈ [0, 1], (2)

where sim is a similarity function between two
vectors that should output values close to 1 when
y = 1, and values close to 0 when y = 0.

6.2 Data construction for the derived task

To generate sentence pairs, we randomly sample
sentences from different categories. Pairs labeled
as positive are constructed by randomly sampling
sentences from the same category, without re-
placement. Pairs labeled as negative are con-
structed by randomly sampling the first sentence
from one category, and the second sentence from
the remaining categories, again without replace-
ment. Note that we oversample low frequency cat-
egories, and sample positive and negative exam-
ples several times to collect diverse pairs. We re-
move duplicates, and stop the generation process
at approximately 500,000 sentence pairs.

6.3 Bidirectional GRUs for Word Similarity

We model the function f that maps a sentence and
one of its words into a fixed size representation as
a neural network. We aim at using the f encoder
to map different word/sentence pairs into the same
embedding space. Since the two input sentences
play a symmetric role in our desired similarity and
we need to use the same weights for both, we opt
for a Siamese architecture (Chopra et al., 2005).

In this setting, the same network is applied to
two input instances reusing the weights. Alter-
natively, the network can be seen as having two
branches that share all the parameter weights.

The optimization strategy is what differentiates
our Siamese Network from others that compute
textual similarity. We do not compute the similar-
ity (and thus the loss) between two sentences. In-
stead, we compute the similarity between the con-
textual representations of two random words from
the two sentences.

This is clearly depicted in Fig. 2. The input
words are mapped to integer ids, which are looked
up in an embedding matrix to retrieve the corre-
sponding embedding vectors. The sequence of
vectors is then consumed by a 3-layer Bidirec-
tional GRU (BiGRU). We selected a BiGRU for

264

Figure 2: The architecture of the Siamese Network. The net-
work computes sim(f(s1, 3), f(s2, 2)). The word embed-
dings of each sentence are consumed by a stack of 3 Bidi-
rectional GRUs. The two branches of the network share the
parameter weights.

our experiments as they are more efficient and ac-
curate than LSTMs for our tasks. We tried other
architectures, including convolutional networks,
but RNNs gave us better results with less complex-
ity and tuning effort. Note that the weights of the
RNNs are shared between the two branches.

Each RNN layer produces a state for each word,
which is consumed by the next RNN in the stack.
From the top layer, the state corresponding to
the word in the similarity pair is selected. This
state encodes the word given its sentential context.
Thus, the first layer, BiGRU ′, maps the sequence
of input vectors (x1, ..., xT), into a sequence of
states (s′1, ..., s′T), the second, BiGRU ′′, trans-
forms those states into (s′′1, ..., s′′T), and the third,
BiGRU ′′′, produces the final representations of
the words in context (s′′′1 , ..., s′′′T).

Eventually, the network computes the similarity
of a pair of encoded words, selected from the two
sentences. We optimize the cosine similarity to
match the similarity function used in SPTK. We
rescale the output similarity in the [0, 1] range and
train the network to minimize the log loss between
predictions and true labels.

7 Experiments

We compare SPTK models with our tree kernel
model using neural word embeddings (NSPTK)
on question classification (QC), a central task for
question answering, and on sentiment classfication
(SC).

7.1 Experimental setup

Data. The QC dataset (Li and Roth, 2006) con-
tains a set of questions labelled according to a two-
layered taxonomy, which describes their expected

CBOW SkipGram GloVe

hs ns hs ns -

dim
50 89.8 89.8 91.0 91.6 89.8
100 93.0 93.6 94.2 92.8 91.6
150 94.2 94.0 94.2 93.8 92.4
200 94.6 93.6 93.2 94.2 93.2
250 94.4 94.4 94.2 94.2 93.6
300 94.2 94.0 94.4 94.0 93.8
500 95.2 95.0 94.8 93.8 94.4
750 94.8 94.6 95.0 94.4 94.2

1000 93.4 95.2 95.2 94.6 94.0

Table 2: QC test set accuracies (%) of NSPTK, given em-
beddings with window size equal to 5, and dimensionality
ranging from 50 to 1,000.

answer type. The coarse layer maps each question
into one of 6 classes: Abbreviation, Description,
Entity, Human, Location and Number. Our exper-
imental setting mirrors the setting of the original
study: we train on 5,452 questions and test on 500.

The SC dataset is the one of SemEval
Twitter’13 for message-level polarity classifica-
tion (Nakov et al., 2013). The dataset is organized
in a training, development and test sets contain-
ing respectively 9,728, 1,654 and 3,813 tweets.
Each tweet is labeled as positive, neutral or neg-
ative. The only preprocessing step we perform on
tweets is to replace user mentions and url with a
<USER> and <URL> token, respectively.

In the cross-validation experiments, we use the
training data to produce the training and test folds,
whereas we use the original test set as our valida-
tion set for tuning the parameters of the network.
Word embeddings. Learning high quality word
embeddings requires large textual corpora. We
train all the vectors for QC on the ukWaC cor-
pus (Ferraresi et al., 2008), also used in Croce
et al. (2011) to obtain LSA vectors. The corpus
includes an annotation layer produced with Tree-
Tagger 2. We process the documents by attaching
the POS-tag marker to each lemma. We trained
paragraph2vec vectors using the Gensim3 toolkit.
Word embeddings for the SC task are learned on a
corpus of 50M English tweets collected from the
Twitter API over two months, using word2vec and
setting the dimension to 100.
Neural model. We use GloVe word embeddings
(300 dimensions), and we fix them during train-
ing. Embeddings for words that are not present in

2http://www.cis.uni-muenchen.de/ schmid/tools/TreeTagger/
3https://radimrehurek.com/gensim/

265

CBOW SkipGram GloVe LSA
hs hs - -

dim
100 84.47 84.63 82.92 -
250 85.75 85.85 85.04 85.39
500 86.48 86.32 85.73 -

Table 3: QC cross-validation accuracies (%) of NSPTK given
embeddings with the selected dimensionalities.

word context QC test accuracy QC CV accuracy

w2v - 95.2 86.48
w2v w2v 95.4 86.08†

w2v p2v 95.0 86.46
p2v - 92.8 82.65†

p2v p2v 93.6 83.47†

Table 4: QC accuracies for the word embeddings (CBOW
vectors with 500 dimensions, trained using hierarchical soft-
max) and paragraph2vec.

the embedding model are randomly initalized by
sampling a vector of the same dimension from the
uniform distribution U [−0.25, 0.25].

The size of the forward and backward states of
the BiGRUs is set to 100, so the resulting con-
catenated state has 200 dimensions. The num-
ber of stacked bidirectional networks is three and
it was tuned on a development set. This allows
the network to have high capacity, fit the data, and
have the best generalization ability. The final layer
learns higher order representations of the words in
context. We did not use dropout as a regularization
mechanism since it did not show a significant dif-
ference on the performance of the network. The
network parameters are trained using the Adam
optimizer (Kingma and Ba, 2014), with a learning
rate of 0.001.

The training examples are fed to the network
in mini-batches. The latter are balanced between
positive and negative examples by picking 32
pairs of sentences sharing the same category, and
32 pairs of sentences from different categories.
Batches of 64 sentences are fed to the network.
The number of words sampled from each sentence
is fixed to 4, and for this reason the final loss is
computed over 256 pairs of words in context, for
each mini-batch. The network is then trained for
5 epochs, storing the parameters corresponding to
the best registered accuracy on the validation set.
Those weights are later loaded and used to encode
the words in a sentence by taking their correspond-
ing output states from the last BiGRU unit.
Structural models. We trained the tree kernel

word context QC CV accuracy Std. dev

w2v - 86.48 .005
BiGRUs - 84.61† .027

w2v BiGRUs 88.32† .009

Table 5: QC accuracies for NSPTK, using the word-in-
context vector produced by the stacked BiGRU encoder
trained with the Siamese Network. Word vectors are trained
with CBOW (hs) and have 500 dimensions.

word context SC FPN
1

w2v - 48.65
w2v w2v 51.59
w2v BiGRUs 60.96

SemEval system SC FPN
1

Castellucci et al. (2013) 58.27
Dong et al. (2015) 72.8

Table 6: SC results for NSPTK with word embeddings and
the word-in-context embeddings. Runs of selected systems
are also reported.

models using SVM-Light-TK (Moschitti, 2004),
an SVM-Light extension (Joachims, 1999) with
tree kernel support. We modified the software to
lookup specific vectors for each word in a sen-
tence. We preprocessed each sentence with the
LTH parser4 and used its output to construct the
LCT. We used the parameters for the QC classi-
fiers from Croce et al. (2011), while we selected
them on the Twitter’13 dev. set for the SC task.

7.2 Context Embedding Results

Table 2 shows the QC accuracy of NSPTK with
CBOW, SkipGram and GloVe. The results are re-
ported for vector dimensions (dim) ranging from
50 to 1000, with a fixed window size of 5.

The performance for the CBOW hierarchical
softmax (hs) and negative sampling (ns), and for
the SkipGram hs settings are similar. For the
SkipGram ns settings, the accuracy is slightly
lower for smaller dimension sizes. GloVe embed-
dings yield a lower accuracy, which steadily in-
creases with the size of the embeddings. In gen-
eral, a higher dimension size produces higher ac-
curacy, but also makes the training more expen-
sive. 500 dimensions seem a good trade-off be-
tween performance and computational cost.

To better validate the performance of NSPTK,
and since the usual test set may have reached a
saturation point, we cross-validate some models.

4http://nlp.cs.lth.se

266

Question Wrong w2v Correct BiGRU

1) What is the occupation of Nicholas Cage ? enty hum
2) What level of government (...) is responsible for dealing with racism? num hum
3) What is the Motto for the State of Maryland? loc desc
4) What is a virtual IP address? loc desc
5) What function does a community’s water tower serve? loc desc

Table 7: Sample of sentences where NSPTK with word vectors fails, and the BiGRU model produces correct classifications.

We use the training set to perform a 5-fold strati-
fied cross-validation (CV), such that the distribu-
tion of labels in each fold is similar. Table 3 shows
the cross-validated results for a subset of word em-
bedding models. Neural embeddings seem to give
a slightly higher accuracy than LSA. A more sub-
stantial performance edge may come from model-
ing the context, thus we experimented with word
embeddings concatenated to context embeddings.

Table 4 shows the results of NSPTK using dif-
ferent word encodings. The word and context
columns refer to the model used for encoding the
word and the context, respectively. These mod-
els are word2vec (w2v) and paragraph2vec (p2v).
The word2vec vector for the context is produced
by averaging the embedding vectors of the other
words in the sentence, i.e., excluding the target
word. The paragraph2vec model has its own pro-
cedure to embed the words in the context. CV re-
sults marked with † are significant with a p-value
< 0.005. The cross-validation results reveal that
word2vec embeddings without context are a tough
baseline to beat, suggesting that standard ways to
model the context are not effective.

7.3 Results of our Bidirectional GRU for
Word Similarity

Table 5 shows the results of encoding the words
in context using a more sophisticated approach:
mapping the word to a representation learned with
the Siamese Network that we optimize on the de-
rived classification task presented in Section 6.1.
The NSPTK operating on word vectors (best vec-
tors from Table 3) concatenated with the word-
in-context vectors produced by the stacked Bi-
GRU encoder, registers a significant improvement
over word vectors alone. In this case, the results
marked with † are significant with a p-value <
0.002. This indicates that the strong similarity
contribution coming from word vectors is success-
fully affected by the word-in-context vectors from
the network. The original similarities are thus
modulated to be more effective for the final clas-

sification task. Another possible advantage of the
model is that unknown words, which do not partic-
ipate in the context average of simpler model, have
a potentially more useful representation in the in-
ternal states of the network.

7.4 Sentiment Classification

Table 6 reports the results on the SC task. This ex-
periment shows that incorporating the context in
the similarity computation slightly improves the
performance of the NSPTK. The real improve-
ment, 12.31 absolute percent points over using
word vectors alone, comes from modeling the
words in context with the BiGRU encoder, con-
firming it as an effective strategy to improve the
modeling capabilities of NSPTK.

Interestingly, our model with a single kernel
function and without complex text normaliza-
tion techniques outperforms a multikernel sys-
tem (Castellucci et al., 2013), when the word-in-
context embeddings are incorporated. The multik-
ernel system is applied on preprocessed text and
includes a Bag-Of-Words Kernel, a Lexical Se-
mantic Kernel, and a Smoothed Partial Tree Ker-
nel. State-of-the-art systems (Dong et al., 2015;
Severyn and Moschitti, 2015b) include many lex-
ical and clustering features, sentiment lexicons,
and distant supervision techniques. Our approach
does not include any of the former.

7.5 Wins of the BiGRU model

An error analysis on the QC task reveals the What
questions as the most ambiguous. Table 7 con-
tains some of the successes of the BiGRU model
with respect to the model using only word vec-
tors. Those wins can be explained by the effect
of the contextual word vectors on the kernel sim-
ilarity. In Question 1, the meaning of occupa-
tion is affected by the presence of a person name.
In Question 2, the word level loses its prevalent
association with quantities. In questions 3 to 5,
the underlined words are a strong indicator of lo-
cations/places, and the kernel similarity may be

267

dominated by their corresponding word vectors.
BiGRU vectors are instead able to effectively re-
modulate the kernel similarity and induce a correct
classification.

8 Conclusions

In this paper, we applied neural network mod-
els for learning representations with semantic
convolution tree kernels. We evaluated the
main distributional representation methods for
computing semantic similarity inside the kernel.
In addition, we augmented the vectorial repre-
sentations of words with information coming
from the sentential content. Word vectors alone
revealed to be difficult to improve upon. To better
model the context, we proposed word-in-context
representations extracted from the states of a
recurrent neural network. Such network learns
to decide if two words are sampled from sen-
tences which share the same category label. The
resulting embeddings are able to improve on the
selected tasks when used in conjunction with
the original word embeddings, by injecting more
contextual information for the modulation of the
kernel similarity. We show that our approach can
improve the accuracy of the convolution semantic
tree kernel.

Acknowledgments. This work has been
supported by the EC project CogNet, 671625
(H2020-ICT-2014-2, Research and Innovation
action). The first author was supported by the
Google Europe Doctoral Fellowship Award 2015.
Many thanks to the anonymous reviewers for their
valuable suggestions.

References

Daniel Andor, Chris Alberti, David Weiss, Aliak-
sei Severyn, Alessandro Presta, Kuzman Ganchev,
Slav Petrov, and Michael Collins. 2016. Glob-
ally Normalized Transition-Based Neural Networks.
In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers). Association for Computational
Linguistics, Berlin, Germany, pages 2442–2452.
http://www.aclweb.org/anthology/P16-1231.

Y. Bengio, P. Simard, and P. Frasconi. 1994. Learn-
ing Long-term Dependencies with Gradient De-
scent is Difficult. Trans. Neur. Netw. 5(2):157–166.
https://doi.org/10.1109/72.279181.

Giuseppe Castellucci, Simone Filice, Danilo Croce,

and Roberto Basili. 2013. UNITOR: Combin-
ing Syntactic and Semantic Kernels for Twit-
ter Sentiment Analysis. In Second Joint Con-
ference on Lexical and Computational Semantics
(*SEM), Volume 2: Proceedings of the Seventh In-
ternational Workshop on Semantic Evaluation (Se-
mEval 2013). Association for Computational Lin-
guistics, Atlanta, Georgia, USA, pages 369–374.
http://www.aclweb.org/anthology/S13-2060.

Sumit Chopra, Raia Hadsell, and Yann LeCun. 2005.
Learning a similarity metric discriminatively, with
application to face verification. In Computer Vision
and Pattern Recognition, 2005. CVPR 2005. IEEE
Computer Society Conference on. IEEE, volume 1,
pages 539–546.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho,
and Yoshua Bengio. 2014. Empirical evaluation of
gated recurrent neural networks on sequence model-
ing. arXiv preprint arXiv:1412.3555 .

Danilo Croce, Alessandro Moschitti, and Roberto
Basili. 2011. Structured Lexical Similar-
ity via Convolution Kernels on Dependency
Trees. In In EMNLP. Edinburgh, Scotland, UK.
http://www.aclweb.org/anthology/D11-1096.

Danilo Croce, Alessandro Moschitti, Roberto Basili,
and Martha Palmer. 2012. Verb Classification using
Distributional Similarity in Syntactic and Semantic
Structures. In ACL (1). The Association for Com-
puter Linguistics, pages 263–272.

Li Dong, Furu Wei, Yichun Yin, Ming Zhou, and
Ke Xu. 2015. Splusplus: A Feature-Rich Two-stage
Classifier for Sentiment Analysis of Tweets. In Pro-
ceedings of the 9th International Workshop on Se-
mantic Evaluation (SemEval 2015). Association for
Computational Linguistics, Denver, Colorado, pages
515–519. http://www.aclweb.org/anthology/S15-
2086.

Adriano Ferraresi, Eros Zanchetta, Marco Baroni, and
Silvia Bernardini. 2008. Introducing and evaluating
ukWaC, a very large web-derived corpus of English.
In Proceedings of the 4th Web as Corpus Workshop
(WAC-4) Can we beat Google?. page 47.

Simone Filice, Danilo Croce, Alessandro Moschitti,
and Roberto Basili. 2016. KeLP at SemEval-
2016 Task 3: Learning Semantic Relations be-
tween Questions and Answers. In Proceedings
of the 10th International Workshop on Semantic
Evaluation (SemEval-2016). Association for Com-
putational Linguistics, San Diego, California, pages
1116–1123. http://www.aclweb.org/anthology/S16-
1172.

Simone Filice, Giovanni Da San Martino, and
Alessandro Moschitti. 2015. Structural Repre-
sentations for Learning Relations between Pairs
of Texts. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Lin-
guistics and the 7th International Joint Confer-
ence on Natural Language Processing (Volume

268

1: Long Papers). Association for Computational
Linguistics, Beijing, China, pages 1003–1013.
http://www.aclweb.org/anthology/P15-1097.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation
9(8):1735–1780.

Ignacio Iacobacci, Mohammad Taher Pilehvar, and
Roberto Navigli. 2016. Embeddings for Word
Sense Disambiguation: An Evaluation Study. In
Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Vol-
ume 1: Long Papers). Association for Computa-
tional Linguistics, Berlin, Germany, pages 897–907.
http://www.aclweb.org/anthology/P16-1085.

Thorsten Joachims. 1999. Making Large-scale Support
Vector Machine Learning Practical. In Bernhard
Schölkopf, Christopher J. C. Burges, and Alexan-
der J. Smola, editors, Advances in Kernel Methods,
MIT Press, Cambridge, MA, USA, pages 169–184.
http://dl.acm.org/citation.cfm?id=299094.299104.

Nal Kalchbrenner, Edward Grefenstette, and Phil
Blunsom. 2014. A Convolutional Neural Net-
work for Modelling Sentences. In Proceedings
of the 52nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long
Papers). Baltimore, Maryland, pages 655–665.
http://www.aclweb.org/anthology/P14-1062.

Yoon Kim. 2014. Convolutional Neural Networks for
Sentence Classification. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP). Association for Com-
putational Linguistics, Doha, Qatar, pages 1746–
1751. http://www.aclweb.org/anthology/D14-1181.

Diederik P. Kingma and Jimmy Ba. 2014. Adam: A
Method for Stochastic Optimization. In Proceed-
ings of the 3rd International Conference on Learn-
ing Representations (ICLR).

Quoc V. Le and Tomas Mikolov. 2014. Dis-
tributed Representations of Sentences
and Documents. CoRR abs/1405.4053.
http://arxiv.org/abs/1405.4053.

Omer Levy and Yoav Goldberg. 2014. Dependency-
Based Word Embeddings. In Proceedings
of the 52nd Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 2:
Short Papers). Association for Computational Lin-
guistics, Baltimore, Maryland, pages 302–308.
http://www.aclweb.org/anthology/P14-2050.

Xin Li and Dan Roth. 2006. Learning question clas-
sifiers: the role of semantic information. Natural
Language Engineering 12(3):229–249.

Mingbo Ma, Liang Huang, Bowen Zhou, and Bing Xi-
ang. 2015. Dependency-based Convolutional Neu-
ral Networks for Sentence Embedding. In Proceed-
ings of the 53rd Annual Meeting of the Association

for Computational Linguistics and the 7th Interna-
tional Joint Conference on Natural Language Pro-
cessing (Volume 2: Short Papers). Association for
Computational Linguistics, Beijing, China, pages
174–179. http://www.aclweb.org/anthology/P15-
2029.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. ICLR Workshop .

Alessandro Moschitti. 2004. A Study on Convolution
Kernels for Shallow Semantic Parsing. In Proceed-
ings of the 42nd Annual Meeting on Association for
Computational Linguistics. Association for Compu-
tational Linguistics, Stroudsburg, PA, USA, ACL
’04.

Alessandro Moschitti. 2006. Efficient Convolution
Kernels for Dependency and Constituent Syntac-
tic Trees. In Proceedings of the 17th Euro-
pean Conference on Machine Learning. Springer-
Verlag, Berlin, Heidelberg, ECML’06, pages 318–
329. https://doi.org/10.1007/11871842 32.

Jonas Mueller and Aditya Thyagarajan. 2016.
Siamese Recurrent Architectures for Learning
Sentence Similarity. In Proceedings of the
Thirtieth AAAI Conference on Artificial Intelli-
gence. AAAI Press, AAAI’16, pages 2786–2792.
http://dl.acm.org/citation.cfm?id=3016100.3016291.

Preslav Nakov, Sara Rosenthal, Zornitsa Kozareva,
Veselin Stoyanov, Alan Ritter, and Theresa Wil-
son. 2013. SemEval-2013 Task 2: Sentiment
Analysis in Twitter. In Second Joint Conference
on Lexical and Computational Semantics (*SEM),
Volume 2: Proceedings of the Seventh Inter-
national Workshop on Semantic Evaluation (Se-
mEval 2013). Association for Computational Lin-
guistics, Atlanta, Georgia, USA, pages 312–320.
http://www.aclweb.org/anthology/S13-2052.

Paul Neculoiu, Maarten Versteegh, and Mihai Rotaru.
2016. Learning Text Similarity with Siamese Recur-
rent Networks. In Proceedings of the 1st Workshop
on Representation Learning for NLP. Association
for Computational Linguistics, Berlin, Germany,
pages 148–157. http://anthology.aclweb.org/W16-
1617.

Thien Hai Nguyen and Kiyoaki Shirai. 2015. Aspect-
Based Sentiment Analysis Using Tree Kernel Based
Relation Extraction. In Alexander Gelbukh, editor,
Computational Linguistics and Intelligent Text Pro-
cessing: 16th International Conference, CICLing
2015. Springer International Publishing, Cairo,
Egypt, pages 114–125.

Thien Huu Nguyen, Barbara Plank, and Ralph Grish-
man. 2015. Semantic Representations for Domain
Adaptation: A Case Study on the Tree Kernel-based
Method for Relation Extraction. In Proceedings
of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International

269

Joint Conference on Natural Language Processing
(Volume 1: Long Papers). Association for Compu-
tational Linguistics, Beijing, China, pages 635–644.
http://www.aclweb.org/anthology/P15-1062.

Truc Vien T. Nguyen and Alessandro Moschitti. 2011.
End-to-End Relation Extraction Using Distant Su-
pervision from External Semantic Repositories. In
Proceedings of the 49th Annual Meeting of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies. Association for Computational
Linguistics, Portland, Oregon, USA, pages 277–
282. http://www.aclweb.org/anthology/P11-2048.

Truc-Vien T. Nguyen, Alessandro Moschitti, and
Giuseppe Riccardi. 2009. Convolution Kernels on
Constituent, Dependency and Sequential Structures
for Relation Extraction. In Proceedings of the
2009 Conference on Empirical Methods in Natural
Language Processing. Association for Computa-
tional Linguistics, Singapore, pages 1378–1387.
http://www.aclweb.org/anthology/D/D09/D09-
1143.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. GloVe: Global Vectors
for Word Representation. In Empirical Methods
in Natural Language Processing. pages 1532–1543.
http://www.aclweb.org/anthology/D14-1162.

Barbara Plank and Alessandro Moschitti. 2013. Em-
bedding Semantic Similarity in Tree Kernels for
Domain Adaptation of Relation Extraction. In
Proceedings of the 51st Annual Meeting of the
Association for Computational Linguistics (Vol-
ume 1: Long Papers). Association for Compu-
tational Linguistics, Sofia, Bulgaria, pages 1498–
1507. http://www.aclweb.org/anthology/P13-1147.

Jinfeng Rao, Hua He, and Jimmy Lin. 2016. Noise-
Contrastive Estimation for Answer Selection with
Deep Neural Networks. In Proceedings of the 25th
ACM International on Conference on Information
and Knowledge Management. ACM, New York, NY,
USA, CIKM ’16, pages 1913–1916.

Mike Schuster and Kuldip K Paliwal. 1997. Bidirec-
tional recurrent neural networks. IEEE Transactions
on Signal Processing 45(11):2673–2681.

Aliaksei Severyn and Alessandro Moschitti. 2015a.
Learning to rank short text pairs with convolutional
deep neural networks. In Proceedings of the 38th
International ACM SIGIR Conference on Research
and Development in Information Retrieval. ACM,
pages 373–382.

Aliaksei Severyn and Alessandro Moschitti. 2015b.
UNITN: Training Deep Convolutional Neural Net-
work for Twitter Sentiment Classification. In Pro-
ceedings of the 9th International Workshop on Se-
mantic Evaluation (SemEval 2015). Association for
Computational Linguistics, Denver, Colorado, pages
464–469. http://www.aclweb.org/anthology/S15-
2079.

Aliaksei Severyn, Massimo Nicosia, and Alessandro
Moschitti. 2013. Learning Semantic Textual Sim-
ilarity with Structural Representations. In Pro-
ceedings of the 51st Annual Meeting of the ACL
(Volume 2: Short Papers). ACL, pages 714–718.
http://aclweb.org/anthology/P13-2125.

João Silva, Luı́sa Coheur, Ana Cristina Mendes, and
Andreas Wichert. 2010. From symbolic to sub-
symbolic information in question classification. Ar-
tificial Intelligence Review 35(2):137–154.

Richard Socher, Brody Huval, Christopher D. Man-
ning, and Andrew Y. Ng. 2012. Semantic
Compositionality through Recursive Matrix-Vector
Spaces. In Proceedings of the 2012 Joint Con-
ference on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Lan-
guage Learning. Association for Computational
Linguistics, Jeju Island, Korea, pages 1201–1211.
http://www.aclweb.org/anthology/D12-1110.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive Deep Mod-
els for Semantic Compositionality Over a Senti-
ment Treebank. In Proceedings of the 2013 Con-
ference on Empirical Methods in Natural Language
Processing. Association for Computational Linguis-
tics, Seattle, Washington, USA, pages 1631–1642.
http://www.aclweb.org/anthology/D13-1170.

Kai Sheng Tai, Richard Socher, and Christopher D.
Manning. 2015. Improved Semantic Representa-
tions From Tree-Structured Long Short-Term Mem-
ory Networks. In Proceedings of the 53rd An-
nual Meeting of the Association for Computa-
tional Linguistics and the 7th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers). Association for Compu-
tational Linguistics, Beijing, China, pages 1556–
1566. http://www.aclweb.org/anthology/P15-1150.

Ming Tan, Cicero dos Santos, Bing Xiang, and
Bowen Zhou. 2016. Improved Representation
Learning for Question Answer Matching. In
Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Vol-
ume 1: Long Papers). Association for Computa-
tional Linguistics, Berlin, Germany, pages 464–473.
http://www.aclweb.org/anthology/P16-1044.

Andrew Trask, Phil Michalak, and John Liu.
2015. sense2vec - A Fast and Accurate
Method for Word Sense Disambiguation In Neu-
ral Word Embeddings. CoRR abs/1511.06388.
http://arxiv.org/abs/1511.06388.

Kateryna Tymoshenko and Alessandro Moschitti.
2015. Assessing the Impact of Syntactic and Se-
mantic Structures for Answer Passages Reranking.
In Proceedings of the 24th ACM International on
Conference on Information and Knowledge Man-
agement, CIKM 2015, Melbourne, VIC, Australia,
October 19 - 23, 2015. pages 1451–1460.

270

Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017), pages 271–280,
Vancouver, Canada, August 3 - August 4, 2017. c©2017 Association for Computational Linguistics

Making Neural QA as Simple as Possible but not Simpler

Dirk Weissenborn Georg Wiese
Language Technology Lab, DFKI

Alt-Moabit 91c
Berlin, Germany

{dirk.weissenborn, georg.wiese, laura.seiffe}@dfki.de

Laura Seiffe

Abstract

Recent development of large-scale ques-
tion answering (QA) datasets triggered a
substantial amount of research into end-to-
end neural architectures for QA. Increas-
ingly complex systems have been con-
ceived without comparison to simpler neu-
ral baseline systems that would justify
their complexity. In this work, we propose
a simple heuristic that guides the develop-
ment of neural baseline systems for the ex-
tractive QA task. We find that there are
two ingredients necessary for building a
high-performing neural QA system: first,
the awareness of question words while
processing the context and second, a com-
position function that goes beyond simple
bag-of-words modeling, such as recurrent
neural networks. Our results show that
FastQA, a system that meets these two re-
quirements, can achieve very competitive
performance compared with existing mod-
els. We argue that this surprising finding
puts results of previous systems and the
complexity of recent QA datasets into per-
spective.

1 Introduction

Question answering is an important end-user task
at the intersection of natural language processing
(NLP) and information retrieval (IR). QA systems
can bridge the gap between IR-based search en-
gines and sophisticated intelligent assistants that
enable a more directed information retrieval pro-
cess. Such systems aim at finding precisely the
piece of information sought by the user instead of
documents or snippets containing the answer. A
special form of QA, namely extractive QA, deals
with the extraction of a direct answer to a question

from a given textual context.
The creation of large-scale, extractive QA

datasets (Rajpurkar et al., 2016; Trischler et al.,
2017; Nguyen et al., 2016) sparked research in-
terest into the development of end-to-end neural
QA systems. A typical neural architecture consists
of an embedding-, encoding-, interaction- and an-
swer layer (Wang and Jiang, 2017; Yu et al., 2017;
Xiong et al., 2017; Seo et al., 2017; Yang et al.,
2017; Wang et al., 2017). Most such systems de-
scribe several innovations for the different layers
of the architecture with a special focus on devel-
oping powerful interaction layer that aims at mod-
eling word-by-word interaction between question
and context.

Although a variety of extractive QA systems
have been proposed, there is no competitive neu-
ral baseline. Most systems were built in what we
call a top-down process that proposes a complex
architecture and validates design decisions by an
ablation study. Most ablation studies, however, re-
move only a single part of an overall complex ar-
chitecture and therefore lack comparison to a rea-
sonable neural baseline. This gap raises the ques-
tion whether the complexity of current systems is
justified solely by their empirical results.

Another important observation is the fact that
seemingly complex questions might be answer-
able by simple heuristics. Let’s consider the fol-
lowing example:

When did building activity occur on St. Kazimierz
Church?

Building activity occurred in numerous noble palaces
and churches [...]. One of the best examples [..] are
Krasinski Palace (1677-1683), Wilanow Palace
(1677-1696) and St. Kazimierz Church (1688-1692)

Although it seems that evidence synthesis of mul-
tiple sentences is necessary to fully understand the

271

relation between the answer and the question, an-
swering this question is easily possible by apply-
ing a simple context/type matching heuristic. The
heuristic aims at selecting answer spans that a)
match the expected answer type (a time as indi-
cated by “When”) and b) are close to important
question words (“St. Kazimierz Church”). The
actual answer “1688-1692” would easily be ex-
tracted by such a heuristic.

In this work, we propose to use the aforemen-
tioned context/type matching heuristic as a guide-
line to derive simple neural baseline architectures
for the extractive QA task. In particular, we de-
velop a simple neural, bag-of-words (BoW)- and a
recurrent neural network (RNN) baseline, namely
FastQA. Crucially, both models do not make use
of a complex interaction layer but model interac-
tion between question and context only through
computable features on the word level. FastQA’s
strong performance questions the necessity of ad-
ditional complexity, especially in the interaction
layer, which is exhibited by recently developed
models. We address this question by evaluating
the impact of extending FastQA with an addi-
tional interaction layer (FastQAExt) and find that
it doesn’t lead to systematic improvements. Fi-
nally, our contributions are the following: i) def-
inition and evaluation of a BoW- and RNN-based
neural QA baselines guided by a simple heuris-
tic; ii) bottom-up evaluation of our FastQA system
with increasing architectural complexity, reveal-
ing that the awareness of question words and the
application of a RNN are enough to reach state-
of-the-art results; iii) a complexity comparison be-
tween FastQA and more complex architectures as
well as an in-depth discussion of usefulness of an
interaction layer; iv) a qualitative analysis indi-
cating that FastQA mostly follows our heuristic
which thus constitutes a strong baseline for extrac-
tive QA.

2 A Bag-of-Words Neural QA System

We begin by motivating our architectures by defin-
ing our proposed context/type matching heuristic:
a) the type of the answer span should correspond
to the expected answer type given by the ques-
tion, and b) the correct answer should further be
surrounded by a context that fits the question, or,
more precisely, it should be surrounded by many
question words. Similar heuristics were frequently
implemented explicitly in traditional QA systems,

e.g., in the answer extraction step of Moldovan
et al. (1999), however, in this work our heuristic
is merely used as a guideline for the construction
of neural QA systems. In the following, we de-
note the hidden dimensionality of the model by n,
the question tokens by Q = (q1, ..., qLQ

), and the
context tokens by X = (x1, ..., xLX

).

2.1 Embedding
The embedding layer is responsible for mapping
tokens x to their corresponding n-dimensional
representation x. Typically this is done by map-
ping each word x to its corresponding word em-
bedding xw (lookup-embedding) using an embed-
ding matrix E, s.t. xw = Ex. Another approach
is to embed each word by encoding their corre-
sponding character sequence xc = (c1, ..., cLX

)
with C, s.t. xc = C(xc) (char-embedding). In
this work, we use a convolutional neural network
for C of filter width 5 with max-pooling over time
as explored by Seo et al. (2017), to which we refer
the reader for additional details. Both approaches
are combined via concatenation, s.t. the final em-
bedding becomes x = [xw; xc] ∈ Rd.

2.2 Type Matching
For the BoW baseline, we extract the span in the
question that refers to the expected, lexical an-
swer type (LAT) by extracting either the question
word(s) (e.g., who, when, why, how, how many,
etc.) or the first noun phrase of the question after
the question words “what” or “which” (e.g., “what
year did...”).1 This leads to a correct LAT for
most questions. We encode the LAT by concate-
nating the embedding of the first- and last word
together with the average embedding of all words
within the LAT. The concatenated representations
are further transformed by a fully-connected layer
followed by a tanh non-linearity into z̃ ∈ Rn.
Note that we refer to a fully-connected layer in
the following by FC, s.t. FC(u) = Wu + b,
W ∈ Rn×m, b ∈ Rn, u ∈ Rm.

We similarly encode each potential answer span
(s, e) in the context, i.e., all spans with a specified,
maximum number of words (10 in this work), by
concatenating the embedding of the first- and last
word together with the average embedding of all
words within the span. Because the surrounding
context of a potential answer span can give im-
portant clues towards the type of an answer span,

1More complex heuristics can be employed here but for
the sake of simplicity we chose a very simple approach.

272

for instance, through nominal modifiers left of the
span (e.g., “... president obama ...”) or through an
apposition right of the span (e.g., “... obama, pres-
ident of...”), we additionally concatenate the aver-
age embeddings of the 5 words to the left and to
the right of a span, respectively. The concatenated
span representation, which comprises in total five
different embeddings, is further transformed by
a fully-connected layer with a tanh non-linearity
into x̃s,e ∈ Rn.

Finally, the concatenation of the LAT represen-
tation, the span representation and their element-
wise product, i.e., [z̃; x̃s,e; z̃⊙x̃s,e], serve as input
to a feed-forward neural network with one hidden
layer which computes the type score gtype(s, e) for
each span (s, e).

2.3 Context Matching

In order to account for the number of surrounding
words of an answer span as a measure for ques-
tion to answer span match (context match), we in-
troduce two word-in-question features. They are
computed for each context word xj and explained
in the following

binary The binary word-in-question (wiqb) fea-
ture is 1 for tokens that are part of the question and
else 0. The following equation formally defines
this feature where I denotes the indicator function:

wiqb
j = I(∃i : xj = qi) (1)

weighted The wiqw
j feature for context word xj

is defined in Eq. 3, where Eq. 2 defines a ba-
sic similarity score between qi and xj based on
their word-embeddings. It is motivated on the one
hand by the intuition that question tokens which
rarely appear in the context are more likely to be
important for answering the question, and on the
other hand by the fact that question words might
occur as morphological variants, synonyms or re-
lated words in the context. The latter can be cap-
tured (softly) by using word embeddings instead
of the words themselves whereas the former is
captured by the application of the softmax oper-
ation in Eq. 3 which ensures that infrequent occur-
rences of words are weighted more heavily.

simi,j = vwiq(xj ⊙ qi) , vwiq ∈ Rn (2)

wiqw
j =

∑
i

softmax(simi,·)j (3)

A derivation that connects wiqw with the term-
frequencies (a prominent information retrieval
measure) of a word in the question and the con-
text, respectively, is provided in Appendix A.

Finally, for each answer span (s, e) we compute
the average wiqb and wiqw scores of the 5, 10 and
20 token-windows to the left and to the right of the
respective (s, e)-span. This results in a total of 2
(kinds of features)×3 (windows)×2 (left/right) =
12 scores which are weighted by trainable scalar
parameters and summed to compute the context-
matching score gctxt(s, e).

2.4 Answer Span Scoring

The final score g for each span (s, e) is the
sum of the type- and the context matching score:
g(s, e) = gtype(s, e) + gctxt(s, e). The model
is trained to minimize the softmax-cross-entropy
loss given the scores for all spans.

3 FastQA

Although our BoW baseline closely models our
intended heuristic, it has several shortcomings.
First of all, it cannot capture the compositional-
ity of language making the detection of sensible
answer spans harder. Furthermore, the semantics
of a question is dramatically reduced to a BoW
representation of its expected answer-type and the
scalar word-in-question features. Finally, answer
spans are restricted to a certain length.

To account for these shortcomings we introduce
another baseline which relies on the application of
a single bi-directional recurrent neural networks
(BiRNN) followed by a answer layer that sepa-
rates the prediction of the start and end of the an-
swer span. Lample et al. (2016) demonstrated that
BiRNNs are powerful at recognizing named en-
tities which makes them sensible choice for con-
text encoding to allow for improved type match-
ing. Context matching can similarly be achieved
with a BiRNN by informing it of the locations of
question tokens appearing in the context through
our wiq-features. It is important to recognize that
our model should implicitly learn to capture the
heuristic, but is not limited by it.

On an abstract level, our RNN-based model,
called FastQA, consists of three basic layers,
namely the embedding-, encoding- and answer
layer. Embeddings are computed as explained in
§2.1. The other two layers are described in detail
in the following. An illustration of the basic archi-

273

274

275

its own representation. For the sake of brevity
we describe technical details of this layer in Ap-
pendix B, because this extension is not the focus
of this work but merely serves as a representative
of the more complex architectures described in §4.

6 Experimental Setup

We conduct experiments on the following datasets.

SQuAD The Stanford Question Answering
Dataset (Rajpurkar et al., 2016)2 comprises
over 100k questions about paragraphs of 536
Wikipedia articles.

NewsQA The NewsQA dataset (Trischler et al.,
2017)3 contains 100k answerable questions from
a total of 120k questions. The dataset is built from
CNN news stories that were originally collected
by Hermann et al. (2015).

Performance on the SQuAD and NewsQA
datasets is measured in terms of exact match (ac-
curacy) and a mean, per answer token-based F1
measure which was originally proposed by Ra-
jpurkar et al. (2016) to also account for partial
matches.

6.1 Implementation Details
BoW Model The BoW model is trained on
spans up to length 10 to keep the computation
tractable. This leads to an upper bound of about
95% accuracy on SQuAD and 87% on NewsQA.
As pre-processing steps we lowercase all inputs
and tokenize it using spacy4. The binary word in
question feature is computed on lemmas provided
by spacy and restricted to alphanumeric words that
are not stopwords. Throughout all experiments we
use a hidden dimensionality of n = 150, dropout
at the input embeddings with the same mask for all
words (Gal and Ghahramani, 2015) and a rate of
0.2 and 300-dimensional fixed word-embeddings
from Glove (Pennington et al., 2014). We em-
ployed ADAM (Kingma and Ba, 2015) for op-
timization with an initial learning-rate of 10−3

which was halved whenever the F1 measure on
the development set dropped between epochs. We
used mini-batches of size 32.

FastQA The pre-processing of FastQA is
slightly simpler than that of the BoW model. We

2https://rajpurkar.github.io/
SQuAD-explorer/

3https://datasets.maluuba.com/NewsQA/
4http://spacy.io

tokenize the input on whitespaces (exclusive) and
non-alphanumeric characters (inclusive). The
binary word in question feature is computed on
the words as they appear in context. Throughout
all experiments we use a hidden dimensionality
of n = 300, variational dropout at the input em-
beddings with the same mask for all words (Gal
and Ghahramani, 2015) and a rate of 0.5 and 300-
dimensional fixed word-embeddings from Glove
(Pennington et al., 2014). We employed ADAM
(Kingma and Ba, 2015) for optimization with an
initial learning-rate of 10−3 which was halved
whenever the F1 measure on the development
set dropped between checkpoints. Checkpoints
occurred after every 1000 mini-batches each
containing 64 examples.

Cutting Context Length Because NewsQA
contains examples with very large contexts (up to
more than 1500 tokens) we cut contexts larger than
400 tokens in order to efficiently train our models.
We ensure that at least one, but at best all answers
are still present in the remaining 400 tokens. Note
that this restriction is only employed during train-
ing.

7 Results

7.1 Model Component Analysis

Model Dev
F1 Exact

Logistic Regression1 51.0 40.0

Neural BoW Baseline 56.2 43.8

BiLSTM 58.2 48.7
BiLSTM + wiqb 71.8 62.3
BiLSTM + wiqw 73.8 64.3
BiLSTM + wiqb+w (FastQA∗) 74.9 65.5

FastQA∗ + intrafusion 76.2 67.2
FastQA∗ + intra + inter (FastQAExt∗) 77.5 68.4

FastQA∗ + char-emb. (FastQA) 76.3 67.6
FastQAExt∗ + char-emb. (FastQAExt) 78.3 69.9

FastQA w/ beam-size 5 76.3 67.8
FastQAExt w/ beam-size 5 78.5 70.3

Table 1: SQuAD results on development set for
increasingly complex architectures. 1Rajpurkar
et al. (2016)

Table 1 shows the individual contributions of
each model component that was incrementally
added to a plain BiLSTM model without features,
character embeddings and beam-search. We see
that the most crucial performance boost stems

276

from the introduction of either one of our features
(≈ 15% F1). However, all other extensions also
achieve notable improvements typically between
1 and 2% F1. Beam-search slightly improves re-
sults which shows that the most probable start is
not necessarily the start of the best answer span.

In general, these results are interesting in many
ways. For instance, it is surprising that a simple
binary feature like wiqb can have such a dramatic
effect on the overall performance. We believe that
the reason for this is the fact that an encoder with-
out any knowledge of the actual question has to
account for every possible question that might be
asked, i.e., it has to keep track of the entire con-
text around each token in its recurrent state. An
informed encoder, on the other hand, can selec-
tively keep track of question related information.
It can further abstract over concrete entities to their
respective types because it is rarely the case that
many entities of the same type occur in the ques-
tion. For example, if a person is mentioned in the
question the context encoder only needs to remem-
ber that the “question-person” was mentioned but
not the concrete name of the person.

Another interesting finding is the fact that ad-
ditional character based embeddings have a no-
table effect on the overall performance which was
already observed by Seo et al. (2017); Yu et al.
(2017). We see further improvements when em-
ploying representation fusion to allow for more in-
teraction. This shows that a more sophisticated in-
teraction layer can help. However, the differences
are not substantial, indicating that this extension
does not offer any systematic advantage.

7.2 Comparing to State-of-the-Art

Our neural BoW baseline achieves good results
on both datasets (Tables 3 and 1)5. For instance,
it outperforms a feature rich logistic-regression
baseline on the SQuAD development set (Table 1)
and nearly reaches the BiLSTM baseline sys-
tem (i.e., FastQA without character embeddings
and features). It shows that more than half or
more than a third of all questions in SQuAD or
NewsQA, respectively, are (partially) answerable
by a very simple neural BoW baseline. How-
ever, the gap to state-of-the-art systems is quite
large (≈ 20%F1) which indicates that employing

5We did not evaluate the BoW baseline on the SQuAD
test set because it requires submitting the model to Rajpurkar
et al. (2016) and we find that comparisons on NewsQA and
the SQuAD development set give us enough insights.

Model Test
F1 Exact

Logistic Regression1 51.0 40.4
Match-LSTM2 73.7 64.7
Dynamic Chunk Reader3 71.0 62.5
Fine-grained Gating4 73.3 62.5
Multi-Perspective Matching5 75.1 65.5
Dynamic Coattention Networks6 75.9 66.2
Bidirectional Attention Flow7 77.3 68.0
r-net8 77.9 69.5

FastQA w/ beam-size k = 5 77.1 68.4
FastQAExt k = 5 78.9 70.8

Table 2: Official SQuAD leaderboard of single-
model systems on test set from 2016/12/29, the
date of submitting our model. 1Rajpurkar et al.
(2016), 2Wang and Jiang (2017), 3Yu et al. (2017),
4Yang et al. (2017), 5Wang et al. (2017), 6Xiong
et al. (2017), 7Seo et al. (2017), 8 not published.
Note that systems are regularly uploaded and im-
proved on SQuAD.

Model Dev Test
F1 Exact F1 Exact

Match-LSTM1 48.9 35.2 48.0 33.4
BARB2 49.6 36.1 48.3 34.1

Neural BoW Baseline 37.6 25.8 36.6 24.1
FastQA k = 5 56.4 43.7 55.7 41.9
FastQAExt k = 5 56.1 43.7 56.1 42.8

Table 3: Results on the NewsQA dataset.
1Wang and Jiang (2017) was re-implemented by
2Trischler et al. (2017).

more complex composition functions than averag-
ing, such as RNNs in FastQA, are indeed neces-
sary to achieve good performance.

Results presented in Tables 2 and 3 clearly
demonstrate the strength of the FastQA system. It
is very competitive to previously established state-
of-the-art results on the two datasets and even im-
proves those for NewsQA. This is quite surpris-
ing when considering the simplicity of FastQA
putting existing systems and the complexity of
the datasets, especially SQuAD, into perspective.
Our extended version FastQAExt achieves even
slightly better results outperforming all reported
results prior to submitting our model on the very
competitive SQuAD benchmark.

In parallel to this work Chen et al. (2017) in-
troduced a very similar model to FastQA, which
relies on a few more hand-crafted features and a
3-layer encoder instead of a single layer in this

277

work. These changes result in slightly better per-
formance which is in line with the observations in
this work.

7.3 Do we need additional interaction?

In order to answer this question we compare
FastQA, a system without a complex word-by-
word interaction layer, to representative models
that have an interaction layer, namely FastQAExt
and the Dynamic Coattention Network (DCN,
Xiong et al. (2017)). We measured both time-
and space-complexity of FastQAExt and a reim-
plementation of the DCN in relation to FastQA
and found that FastQA is about twice as fast as
the other two systems and requires 2 − 4× less
memory compared to FastQAExt and DCN, re-
spectively6.

In addition, we looked for systematic advan-
tages of FastQAExt over FastQA by comparing
SQuAD examples from the development set that
were answered correctly by FastQAExt and incor-
rectly by FastQA (589 FastQAExt wins) against
FastQA wins (415). We studied the average
question- and answer length as well as the ques-
tion types for these two sets but could not find
any systematic difference. The same observation
was made when manually comparing the kind of
reasoning that is needed to answer a certain ques-
tion. This finding aligns with the marginal em-
pirical improvements, especially for NewsQA, be-
tween the two systems indicating that FastQAExt
seems to generalize slightly better but does not
offer a particular, systematic advantage. There-
fore, we argue that the additional complexity in-
troduced by the interaction layer is not necessarily
justified by the incremental performance improve-
ments presented in §7.2, especially when memory
or run-time constraints exist.

7.4 Qualitative Analysis

Besides our empirical evaluations this section pro-
vides a qualitative error inspection of predictions
for the SQuAD development dataset. We analyse
55 errors made by the FastQA system in detail and
highlight basic abilities that are missing to reach
human level performance.

We found that most errors are based on a lack
of either syntactic understanding or a fine-grained
semantic distinction between lexemes with similar

6We implemented all models in TensorFlow (Abadi et al.,
2015).

meanings. Other error types are mostly related to
annotation preferences, e.g., answer is good but
there is a better, more specific one, or ambiguities
within the question or context.

Example FastQA errors. Predicted answers are under-
lined while correct answers are presented in boldface.

Ex. 1: What religion did the Yuan discourage, to
support Buddhism?

Buddhism (especially Tibetan Buddhism) flourished,
although Taoism endured ... persecutions... from the
Yuan government

Ex. 2: Kurt Debus was appointed what position for the
Launch Operations Center?

Launch Operations Center (LOC) ... Kurt Debus,
a member of Dr. Wernher von Braun’s ... team. Debus
was named the LOC’s first Director .

Ex. 3: On what date was the record low temperature in
Fresno?

high temperature for Fresno ... set on July 8, 1905,
while the official record low ... set on January 6, 1913

A prominent type of mistake is a lack of fine-
grained understanding of certain answer types (Ex.
1). Another error is the lack of co-reference reso-
lution and context sensitive binding of abbrevia-
tions (Ex. 2). We also find that the model some-
times struggles to capture basic syntactic struc-
ture, especially with respect to nested sentences
where important separators like punctuation and
conjunctions are being ignored (Ex. 3).

A manual examination of errors reveals that
about 35 out of 55 mistakes (64%) can directly
be attributed to the plain application of our heuris-
tic. A similar analysis reveals that about 44 out of
50 (88%) analyzed positive cases are covered by
our heuristic as well. We therefore believe that our
model and, wrt. empirical results, other models as
well mostly learn a simple context/type matching
heuristic.

This finding is important because it reveals that
an extractive QA system does not have to solve the
complex reasoning types of Chen et al. (2016) that
were used to classify SQuAD instances (Rajpurkar
et al., 2016), in order to achieve current state-of-
the-art results.

8 Related Work

The creation of large scale cloze datasets such
the DailyMail/CNN dataset (Hermann et al., 2015)

278

or the Children’s Book Corpus (Hill et al., 2016)
paved the way for the construction of end-to-end
neural architectures for reading comprehension. A
thorough analysis by Chen et al. (2016), however,
revealed that the DailyMail/CNN was too easy and
still quite noisy. New datasets were constructed to
eliminate these problems including SQuAD (Ra-
jpurkar et al., 2016), NewsQA (Trischler et al.,
2017) and MsMARCO (Nguyen et al., 2016).

Previous question answering datasets such as
MCTest (Richardson et al., 2013) and TREC-QA
(Dang et al., 2007) were too small to success-
fully train end-to-end neural architectures such as
the models discussed in §4 and required differ-
ent approaches. Traditional statistical QA sys-
tems (e.g., Ferrucci (2012)) relied on linguistic
pre-processing pipelines and extensive exploita-
tion of external resources, such as knowledge
bases for feature-engineering. Other paradigms
include template matching or passage retrieval
(Andrenucci and Sneiders, 2005).

9 Conclusion

In this work, we introduced a simple, context/type
matching heuristic for extractive question answer-
ing which serves as guideline for the development
of two neural baseline system. Especially FastQA,
our RNN-based system turns out to be an efficient
neural baseline architecture for extractive question
answering. It combines two simple ingredients
necessary for building a currently competitive QA
system: a) the awareness of question words while
processing the context and b) a composition func-
tion that goes beyond simple bag-of-words mod-
eling. We argue that this important finding puts
results of previous, more complex architectures as
well as the complexity of recent QA datasets into
perspective. In the future we want to extend the
FastQA model to address linguistically motivated
error types of §7.4.

Acknowledgments

We thank Sebastian Riedel, Philippe Thomas,
Leonhard Hennig and Omer Levy for comments
on an early draft of this work as well as the
anonymous reviewers for their insightful com-
ments. This research was supported by the
German Federal Ministry of Education and Re-
search (BMBF) through the projects ALL SIDES
(01IW14002), BBDC (01IS14013E), and Soft-
ware Campus (01IS12050, sub-project GeNIE).

References
Martin Abadi, Ashish Agarwal, Paul Barham, Eugene

Brevdo, Zhifeng Chen, Craig Citro, Greg Corrado,
Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Ian Goodfellow, Andrew Harp, Ge-
offrey Irving, Michael Isard, Yangqing Jia, Lukasz
Kaiser, Manjunath Kudlur, Josh Levenberg, Dan
Man, Rajat Monga, Sherry Moore, Derek Mur-
ray, Jonathon Shlens, Benoit Steiner, Ilya Sutskever,
Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan,
Oriol Vinyals, Pete Warden, Martin Wicke, Yuan Yu,
and Xiaoqiang Zheng. 2015. TensorFlow: Large-
Scale Machine Learning on Heterogeneous Dis-
tributed Systems .

Andrea Andrenucci and Eriks Sneiders. 2005. Auto-
mated question answering: Review of the main ap-
proaches. In ICITA.

Danqi Chen, Jason Bolton, and Christopher D Man-
ning. 2016. A Thorough Examination of the CNN /
Daily Mail Reading Comprehension Task. ACL .

Danqi Chen, Adam Fisch, Jason Weston, and Antoine
Bordes. 2017. Reading Wikipedia to Answer Open-
Domain Questions. ACL .

Hoa Trang Dang, Diane Kelly, and Jimmy J Lin. 2007.
Overview of the TREC 2007 Question Answering
Track. TREC .

D. A. Ferrucci. 2012. Introduction to ”This is Watson”.
IBM Journal of Research and Development .

Yarin Gal and Zoubin Ghahramani. 2015. Dropout as a
Bayesian Approximation : Representing Model Un-
certainty in Deep Learning. ICML .

Karl Moritz Hermann, Tomáš Kočiský, Edward
Grefenstette, Lasse Espeholt, Will Kay, Mustafa Su-
leyman, and Phil Blunsom. 2015. Teaching Ma-
chines to Read and Comprehend. NIPS .

Felix Hill, Antoine Bordes, Sumit Chopra, and Jason
Weston. 2016. The Goldilocks Principle: Reading
Children’s Books with Explicit Memory Represen-
tations. ICLR .

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
LONG SHORT-TERM MEMORY. Neural Compu-
tation .

Diederik Kingma and Jimmy Ba. 2015. Adam: A
Method for Stochastic Optimization. ICLR .

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural Architectures for Named Entity Recognition.
NAACL .

Peng Li, Wei Li, Zhengyan He, Xuguang Wang,
Ying Cao, Jie Zhou, and Wei Xu. 2016. Dataset
and Neural Recurrent Sequence Labeling Model
for Open-Domain Factoid Question Answering.
arXiv:1607.06275v1 [cs.CL] .

279

Dan I. Moldovan, Sanda M. Harabagiu, Marius Pasca,
Rada Mihalcea, Richard Goodrum, Roxana Girju,
and Vasile Rus. 1999. Lasso: A tool for surfing the
answer net. In TREC.

Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao,
Saurabh Tiwary, Rangan Majumder, and Li Deng.
2016. Ms Marco: a Human Generated Machine
Reading Comprehension Dataset. NIPS .

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. GloVe: Global Vectors for Word
Representation. EMNLP .

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ Questions
for Machine Comprehension of Text. EMNLP .

Matthew Richardson, Christopher J C Burges, and Erin
Renshaw. 2013. MCTest: A Challenge Dataset for
the Open-Domain Machine Comprehension of Text.
EMNLP .

Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and
Hananneh Hajishirzi. 2017. Bi-Directional Atten-
tion Flow for Machine Comprehension. In ICLR.

Yelong Shen, Po-Sen Huang, Jianfeng Gao, and
Weizhu Chen. 2016. ReasoNet: Learning
to Stop Reading in Machine Comprehension.
arXiv:1609.05284 .

Adam Trischler, Tong Wang, Xingdi Yuan, Justin Har-
ris, Alessandro Sordoni, Philip Bachman, and Ka-
heer Suleman. 2017. NewsQA: A Machine Com-
prehension Dataset. arXiv:1611.09830 .

Shuohang Wang and Jing Jiang. 2017. Machine
Comprehension Using Match-LSTM and Answer
Pointer. In ICLR.

Zhiguo Wang, Haitao Mi, Wael Hamza, and Radu Flo-
rian. 2017. Multi-Perspective Context Matching for
Machine Comprehension. arXiv:1612.04211 .

Caiming Xiong, Victor Zhong, and Richard Socher.
2017. Dynamic Coattention Networks for Question
Answering. ICLR .

Zhilin Yang, Bhuwan Dhingra, Ye Yuan, Junjie Hu,
William W Cohen, and Ruslan Salakhutdinov. 2017.
Words or Characters? Fine-grained Gating for Read-
ing Comprehension. ICLR .

Yang Yu, Wei Zhang, Kazi Hasan, Mo Yu, Bing Xiang,
and Bowen Zhou. 2017. End-to-End Reading Com-
prehension with Dynamic Answer Chunk Ranking.
In ArXiv.

280

Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017), pages 281–289,
Vancouver, Canada, August 3 - August 4, 2017. c©2017 Association for Computational Linguistics

Neural Domain Adaptation for Biomedical Question Answering

Georg Wiese1,2, Dirk Weissenborn2 and Mariana Neves1

1 Hasso Plattner Institute, August Bebel Strasse 88, Potsdam 14482 Germany
2 Language Technology Lab, DFKI, Alt-Moabit 91c, Berlin, Germany

georg.wiese@student.hpi.de,
dewe01@dfki.de, mariana.neves@hpi.de

Abstract

Factoid question answering (QA) has re-
cently benefited from the development of
deep learning (DL) systems. Neural net-
work models outperform traditional ap-
proaches in domains where large datasets
exist, such as SQuAD (≈ 100, 000 ques-
tions) for Wikipedia articles. However,
these systems have not yet been applied
to QA in more specific domains, such
as biomedicine, because datasets are gen-
erally too small to train a DL system
from scratch. For example, the BioASQ
dataset for biomedical QA comprises less
then 900 factoid (single answer) and list
(multiple answers) QA instances. In
this work, we adapt a neural QA system
trained on a large open-domain dataset
(SQuAD, source) to a biomedical dataset
(BioASQ, target) by employing various
transfer learning techniques. Our network
architecture is based on a state-of-the-
art QA system, extended with biomedical
word embeddings and a novel mechanism
to answer list questions. In contrast to ex-
isting biomedical QA systems, our system
does not rely on domain-specific ontolo-
gies, parsers or entity taggers, which are
expensive to create. Despite this fact, our
systems achieve state-of-the-art results on
factoid questions and competitive results
on list questions.

1 Introduction

Question answering (QA) is the task of retriev-
ing answers to a question given one or more con-
texts. It has been explored both in the open-
domain setting (Voorhees et al., 1999) as well as
domain-specific settings, such as BioASQ for the

biomedical domain (Tsatsaronis et al., 2015). The
BioASQ challenge provides≈ 900 factoid and list
questions, i.e., questions with one and several an-
swers, respectively. This work focuses on answer-
ing these questions, for example: Which drugs are
included in the FEC-75 regimen? → fluorouracil,
epirubicin, and cyclophosphamide.

We further restrict our focus to extractive QA,
i.e., QA instances where the correct answers can
be represented as spans in the contexts. Contexts
are relevant documents which are provided by an
information retrieval (IR) system.

Traditionally, a QA pipeline consists of named-
entity recognition, question classification, and an-
swer processing steps (Jurafsky, 2000). These
methods have been applied to biomedical datasets,
with moderate success (Zi et al., 2016). The cre-
ation of large-scale, open-domain datasets such as
SQuAD (Rajpurkar et al., 2016) have recently en-
abled the development of neural QA systems, e.g.,
Wang and Jiang (2016), Xiong et al. (2016), Seo
et al. (2016), Weissenborn et al. (2017), leading
to impressive performance gains over more tradi-
tional systems.

However, creating large-scale QA datasets for
more specific domains, such as the biomedical,
would be very expensive because of the need
for domain experts, and therefore not desirable.
The recent success of deep learning based meth-
ods on open-domain QA datasets raises the ques-
tion whether the capabilities of trained models
are transferable to another domain via domain
adaptation techniques. Although domain adapta-
tion has been studied for traditional QA systems
(Blitzer et al., 2007) and deep learning systems
(Chen et al., 2012; Ganin et al., 2016; Bousmalis
et al., 2016; Riemer et al., 2017; Kirkpatrick et al.,
2017), it has to our knowledge not yet been applied
for end-to-end neural QA systems.

To bridge this gap we employ various do-

281

main adaptation techniques to transfer knowl-
edge from a trained, state-of-the-art neural QA
system (FastQA, Weissenborn et al. (2017)) to
the biomedical domain using the much smaller
BioASQ dataset. In order to answer list questions
in addition to factoid questions, we extend FastQA
with a novel answering mechanism. We evaluate
various transfer learning techniques comprehen-
sively. For factoid questions, we show that mere
fine-tuning reaches state-of-the-art results, which
can further be improved by a forgetting cost reg-
ularization (Riemer et al., 2017). On list ques-
tions, the results are competitive to existing sys-
tems. Our manual analysis of a subset of the fac-
toid questions suggests that the results are even
better than the automatic evaluation states, reveal-
ing that many of the ”incorrect” answers are in fact
synonyms to the gold-standard answer.

2 Related Work

Traditional Question Answering Traditional
factoid and list question answering pipelines
can be subdivided into named-entity recognition,
question classification, and answer processing
components (Jurafsky, 2000). Such systems have
also been applied to biomedical QA such as the
OAQA system by Zi et al. (2016). Besides a num-
ber of domain-independent features, they incorpo-
rate a rich amount of biomedical resources, includ-
ing a domain-specific parser, entity tagger and the-
saurus to retrieve concepts and synonyms. A lo-
gistic regression classifier is used both for question
classification and candidate answer scoring. For
candidate answer generation, OAQA employs dif-
ferent strategies for general factoid/list questions,
choice questions and quantity questions.

Neural Question Answering Neural QA sys-
tems differ from traditional approaches in that the
algorithm is not subdivided into discrete steps. In-
stead, a single model is trained end-to-end to com-
pute an answer directly for a given question and
context. The typical architecture of such systems
(Wang and Jiang, 2016; Xiong et al., 2016; Seo
et al., 2016) can be summarized as follows:

1. Embedding Layer: Question and context to-
kens are mapped to a high-dimensional vec-
tor space, for example via GloVe embed-
dings (Pennington et al., 2014) and (option-
ally) character embeddings (Seo et al., 2016).

2. Encoding Layer: The token vectors are pro-
cessed independently for question and con-
text, usually by a recurrent neural network
(RNN).

3. Interaction Layer: This layer allows for in-
teraction between question and context rep-
resentations. Examples are Match-LSTM
(Wang and Jiang, 2016) and Coattention
(Xiong et al., 2016).

4. Answer Layer: This layer assigns start and
end scores to all of the context tokens, which
can be done either statically (Wang and Jiang,
2016; Seo et al., 2016) or by a dynamic de-
coding process (Xiong et al., 2016).

FastQA FastQA fits into this schema, but re-
duces the complexity of the architecture by re-
moving the interaction layer, while maintaining
state-of-the-art performance (Weissenborn et al.,
2017). Instead of one or several interaction lay-
ers of RNNs, FastQA computes two simple word-
in-question features for each token, which are ap-
pended to the embedding vectors before the en-
coding layer. We chose to base our work on this
architecture because of its state-of-the-art perfor-
mance, faster training time and reduced number of
parameters.

Unsupervised Domain Adaptation Unsuper-
vised domain adaptation describes the task of
learning a predictor in a target domain while la-
beled training data only exists in a different source
domain. In the context of deep learning, a com-
mon method is to first train an autoencoder on
a large unlabeled corpus from both domains and
then use the learned input representations as in-
put features to a network trained on the actual task
using the labeled source domain dataset (Glorot
et al., 2011; Chen et al., 2012). Another approach
is to learn the hidden representations directly on
the target task. For example, domain-adversarial
training optimizes the network such that it com-
putes hidden representations that both help pre-
dictions on the source domain dataset and are
indistinguishable from hidden representations of
the unlabeled target domain dataset (Ganin et al.,
2016). These techniques cannot be straightfor-
wardly applied to the question answering task, be-
cause they require a large corpus of biomedical
question-context pairs (albeit no answers are re-
quired).

282

Supervised Domain Adaptation In contrast to
the unsupervised case, supervised domain adapta-
tion assumes access to a small amount of labeled
training data in the target domain. The simplest
approach to supervised domain adaptation for neu-
ral models is to pre-train the network on data from
the source domain and then fine-tune its param-
eters on data from the target domain. The main
drawback of this approach is catastrophic forget-
ting, which describes the phenomenon that neu-
ral networks tend to ”forget” knowledge, i.e., its
performance in the source domain drops signifi-
cantly when they are trained on the new dataset.
Even though we do not directly aim for good per-
formance in the source domain, measures against
catastrophic forgetting can serve as a useful regu-
larizer to prevent over-fitting.

Progressive neural networks combat this is-
sue by keeping the original parameters fixed
and adding new units that can access previously
learned features (Rusu et al., 2016). Because this
method adds a significant amount of new parame-
ters which have to be trained from scratch, it is not
well-suited if the target domain dataset is small.
Riemer et al. (2017) use fine-tuning, but add an
additional forgetting cost term that punishes devi-
ations from predictions with the original parame-
ters. Another approach is to add an L2 loss which
punishes deviation from the original parameters.
Kirkpatrick et al. (2017) apply this loss selectively
on parameters which are important in the source
domain.

3 Model

Our network architecture is based on FastQA
(Weissenborn et al., 2017), a state-of-the-art neu-
ral QA system. Because the network architecture
itself is exchangeable, we treat it as a black box,
with subtle changes at the input and output layer
as well as to the decoding and training procedure.
These changes are described in the following. See
Figure 3 for an overview of the system.

3.1 Input Layer

In a first step, words are embedded into a high-
dimensional vector space. We use three sources
of embeddings, which are concatenated to form a
single embedding vector:

• GloVe embeddings: 300-dimensional GloVe
vectors (Pennington et al., 2014). These are

End Probabilities p(e|s)End Probabilities p(e|s)

End Scores e(s)End Scores e(s)

... ...
Biomedical Embeddings

GloVe Embeddings

Character Embeddings

Context Embeddings Question Embeddings

Start Scores ystart

Start Probabilities pstart

End Scores yend

End Probabilities pend
sigmoid softmax

Extractive QA System

Question Type Features

Figure 1: Network architecture of our system
for biomedical question answering. At its core,
it uses an extractive neural QA system as a black
box (we use FastQA (Weissenborn et al., 2017)).
The embedding layer is modified in order to in-
clude biomedical word embeddings and question
type features. The output layer is adjusted to add
the ability to answer list questions in addition to
factoid questions.

open-domain word vectors trained on 840 bil-
lion tokens from web documents. The vec-
tors are not updated during training.

• Character embeddings: As used in FastQA
(Weissenborn et al., 2017) and proposed orig-
inally by Seo et al. (2016), we employ a
1-dimensional convolutional neural network
which computes word embeddings from the
characters of the word.

• Biomedical Word2Vec embeddings: 200-
dimensional vectors trained using Word2Vec
(Mikolov et al., 2013) on about 10 million
PubMed abstracts (Pavlopoulos et al., 2014).
These vectors are specific to the biomedi-
cal domain and we expect them to help on
biomedical QA.

As an optional step, we add entity tag features
to the token embeddings via concatenation. En-
tity tags are provided by a dictionary-based entity
tagger based on the UMLS Metathesaurus. The
entity tag feature vector is a 127-dimensional bit
vector that for each of the UMLS semantic types
states whether the current token is part of an entity
of that type. This step is only applied if explicitly

283

noted.
Finally, a one-hot encoding of the question type

(factoid or list) is appended to all the input vec-
tors. With these embedding vectors as input, we
invoke FastQA to produce start and end scores for
each of the n context tokens. We denote start
scores by yi

start and end scores conditioned on a
predicted start at position i by yi,j

end, with start in-
dex i ∈ [1, n] and end index j ∈ [i, n].

3.2 Output Layer

In our adapted output layer, we convert the start
and end scores to span probabilities. The com-
putation of these probabilities is independent of
the question type. The interpretation, however,
depends on the question type: While for factoid
questions, the list of answer spans is interpreted as
a ranked list of answer candidates, for list ques-
tions, answers above a certain probability thresh-
old are interpreted as the set of answers to the
question.

Given the start scores y1
start, ..., y

n
start and end

scores yi,1
end, ..., y

i,n
end, we compute the start and end

probabilities as follows:

pi
start = σ(yi

start) (1)

pi,·
end = softmax(yi,·

end) (2)

where σ(x) is the sigmoid function. As a conse-
quence, multiple tokens can be chosen as likely
start tokens, but the network is expected to se-
lect a single end token for a given start token,
hence the softmax function. Finally, the proba-
bility that a given span (i, j) answers the question
is pi,j

span = pi
start · pi,j

end. This extension general-
izes the FastQA output layer such that multiple an-
swer spans with different start positions can have
a high probability, allowing us to retrieve multiple
answers for list questions.

3.3 Decoding

Given a trained model, start probabilities can be
obtained by running a forward pass and comput-
ing the start probability as in Equation 1. For the
top 20 starts, we compute the end probabilities as
given by Eq. 2. From the start and end probabil-
ities, we extract the top 20 answer spans ranked
by pi,j

span. As a simple post-processing step, we re-
move duplicate strings and retain only those with
the highest probability.

For factoid questions, we output the 5 most
likely answer spans as our ranked list of answers.
For list questions, we learn a probability cutoff
threshold t that defines the set of list answers
A = {(i, j)|pi,j

span ≥ t}. We choose t to be the
threshold that optimizes the list F1 score on the
respective development set.

3.4 Domain Adaptation

Fine-tuning Our training procedure consists of
two phases: In the pre-training phase, we train the
model on SQuAD, using a token F1 score as the
training objective as by Weissenborn et al. (2017).
We will refer to the resulting parameters as the
base model. In the fine-tuning phase, we initial-
ize the model parameters with the base model and
then continue our optimization on the BioASQ
dataset with a smaller learning rate.

Forgetting Cost Regularization To avoid
catastrophic forgetting during fine-tuning as a
means to regularize our model, we optionally
add an additional forgetting cost term Lfc, as
proposed by Riemer et al. (2017). It is defined
as the cross-entropy loss between the current
predictions and the base model’s predictions.

L2 Weight Regularization We also add an L2
loss term Ll2 which penalizes deviations from the
base model’s parameters. Note that a more ad-
vanced approach would be to apply this loss se-
lectively on weights which are particularly im-
portant in the source domain (Kirkpatrick et al.,
2017). The final loss is computed as Lfinal =
Loriginal + Cfc · Lfc + Cl2 · Ll2 where Cfc and
Cl2 are hyperparameters which are set to 0 unless
otherwise noted.

4 Experimental Setup

4.1 Datasets

SQuAD SQuAD (Rajpurkar et al., 2016) is a
dataset of≈ 100, 000 questions with relevant con-
texts and answers that sparked research interest
into the development of neural QA systems re-
cently. The contexts are excerpts of Wikipedia
articles for which crowd-source workers gener-
ated questions-answer pairs. Because of the large
amount of training examples in SQuAD, it lends
itself perfectly as our source dataset.

BioASQ The BioASQ challenge provides a
biomedical QA dataset (Tsatsaronis et al., 2015)

284

consisting of questions, relevant contexts (called
snippets) from PubMed abstracts and possible an-
swers to the question. It was carefully created with
the help of biomedical experts.

In this work, we focus on Task B, Phase B of the
BioASQ challenge, in which systems must answer
questions from gold-standard snippets. These
questions can be either yes/no questions, summary
questions, factoid questions, or list questions. Be-
cause we employ an extractive QA system, we re-
strict this study to answering factoid and list ques-
tions by extracting answer spans from the pro-
vided contexts.

The 2017 BioASQ training dataset contains
1, 799 questions, of which 413 are factoid and
486 are list questions. The questions have ≈ 20
snippets on average, each of which are on aver-
age ≈ 34 tokens long. We found that around 65%
of the factoid questions and around 92% of the list
questions have at least one extractable answer. For
questions with extractable answers, answers spans
are computed via a simple substring search in the
provided snippets. All other questions are ignored
during training and treated as answered incorrectly
during evaluation.

4.2 Training
We minimize the cross-entropy loss for the gold
standard answer spans. However, for multi-
ple answer spans that refer to the same answer
(e.g. synonyms), we only minimize the loss
for the span of the lowest loss. We use the
ADAM (Kingma and Ba, 2014) for optimization
on SQuAD with a learning rate starting at 10−3

which is halved whenever performance drops be-
tween checkpoints. During the fine-tuning phase,
we continue optimization on the BioASQ dataset
with a smaller learning rate starting at 10−4. Dur-
ing both phases, the model is regularized by vari-
ational dropout of rate 0.5 (Gal and Ghahramani,
2015).

4.3 Evaluation
The official evaluation measures from BioASQ are
mean reciprocal rank (MRR) for factoid questions
and F1 score for list questions 1. For factoid ques-
tions, the list of ranked answers can be at most
five entries long. The F1 score is measured on the
gold standard list elements. For both measures,

1The details can be found at http://
participants-area.bioasq.org/Tasks/b/
eval_meas/

case-insensitive string matches are used to check
the correctness of a given answer. A list of syn-
onyms is provided for all gold-standard answers.
If the system’s response matches one of them, the
answer counts as correct.

For evaluation, we use two different fine-
tuning datasets, depending on the experiment:
BioASQ3B, which contains all questions of the
first three BioASQ challenges, and BioASQ4B
which additionally contains the test questions of
the fourth challenge. BioASQ4B is used as the
training dataset for the fifth BioASQ challenge
whereas BioASQ3B was used for training during
the fourth challenge.

Because the datasets are small, we perform 5-
fold cross-validation and report the average per-
formance across the five folds. We use the larger
BioASQ4B dataset except when evaluating the en-
semble and when comparing to participating sys-
tems of previous BioASQ challenges.

All models were implemented using Tensor-
Flow (Abadi et al., 2016) with a hidden size of
100. Because the context in BioASQ usually com-
prises multiple snippets, they are processed in-
dependently in parallel for each question. An-
swers from all snippets belonging to a question are
merged and ranked according to their individual
probabilities.

5 Results

5.1 Domain Adaptation

In this section, we evaluate various domain adap-
tation techniques. The results of the experiments
are summarized in Table 1.

Baseline As a baseline without transfer learn-
ing, Experiment 1 trains the model on BioASQ
only. Because the BioASQ dataset by itself is
very small, a dropout rate of 0.7 was used, be-
cause it worked best in preliminary experiments.
We observe a rather low performance, which is
expected when applying deep learning to such a
small dataset.

Fine-tuning Experiments 2 and 3 evaluate the
pure fine-tuning approach: Our base model is
a system trained on SQuAD only and tested on
BioASQ (Experiment 2). For Experiment 3, we
fine-tuned the base model on the BioASQ4B train-
ing set. We observe that performance increases
significantly, especially on list questions. This in-
crease is expected, because the network is trained

285

Experiment Factoid MRR List F1

(1) Training on BioASQ only 17.9% 19.1%

(2) Training on SQuAD only 20.0% 8.1%
(3) Fine-tuning on BioASQ 24.6% 23.6%

(4) Fine-tuning on BioASQ w/o biomedical embeddings 21.3% 22.4%
(5) Fine-tuning on BioASQ w/ entity features 23.3% 23.8%

(6) Fine-tuning on BioASQ + SQuAD 23.9% 23.8%
(7) Fine-tuning on BioASQ w/ forgetting cost (Cfc = 100.0) 26.2% 21.1%
(8) Fine-tuning on BioASQ w/ L2 loss on original parameters (Cl2 = 0.3) 22.6% 20.4%

Table 1: Comparison of various transfer learning techniques. In Experiment 1, the model was trained on
BioASQ only. In Experiment 2, the model was trained on SQuAD and tested on BioASQ. We refer to it as
the base model. In Experiment 3, the base model parameters were fine-tuned on the BioASQ training set.
Experiments 4-5 evaluate the utility of domain dependent word vectors and features. Experiments 6-8
address the problem of catastrophic forgetting. All experiments have been conducted with the BioASQ4B
dataset and 5-fold cross-validation.

on biomedical- and list questions, which are not
part of the SQuAD dataset, for the first time. Over-
all, the performance of the fine-tuned model on
both question types is much higher than the base-
line system without transfer learning.

Features In order to evaluate the impact of us-
ing biomedical word embeddings, we repeat Ex-
periment 3 without them (Experiment 4). We see
a factoid and list performance drop of 3.3 and
1.2 percentage points, respectively, showing that
biomedical word embeddings help increase per-
formance.

In Experiment 5, we append entity features to
the word vector, as described in Section 3.1. Even
though these features provide the network with
domain-specific knowledge, we found that it actu-
ally harms performance on factoid questions. Be-
cause most of the entity features are only active
during fine-tuning with the small dataset, we con-
jecture that the performance decrease is due to
over-fitting.

Catastrophic Forgetting We continue our
study with techniques to combat catastrophic
forgetting as a means to regularize training during
fine-tuning. In Experiment 6 of Table 1 we
fine-tune the base model on a half-half mixture
of BioASQ and SQuAD questions (BioASQ
questions have been upsampled accordingly).
This form of joint training yielded no significant
performance gains. Experiment 7 regularizes the
model via an additional forgetting cost term, as

proposed by Riemer et al. (2017) and explained
in Section 3.4. We generally found that this
technique only increases performance for factoid
questions where the performance boost was
largest for Cfc = 100.0. The fact that the forget-
ting loss decreases performance on list questions
is not surprising, as predictions are pushed more
towards the predictions of the base model, which
has very poor performance on list questions.

Experiment 8 adds an L2 loss which penalizes
deviations from the base model’s parameters. We
found that performance decreases as we increase
the value of Cl2 which shows that this technique
does not help at all. For the sake of completeness
we report results for Cl2 = 0.3, the lowest value
that yielded a significant drop in performance.

5.2 Ensemble
Model ensembles are a common method to tweak
the performance of a machine learning system.
Ensembles combine multiple model predictions,
for example by averaging, in order to improve gen-
eralization and prevent over-fitting. We evaluate
the utility of an ensemble by training five mod-
els on the BioASQ3B dataset using 5-fold cross-
validation. Each of the models is evaluated on
the 4B test data, i.e., data which is not included
in BioASQ3B.

During application, we run an ensemble by av-
eraging the start and end scores of individual mod-
els before they are passed to the sigmoid / soft-
max functions as defined in Eq. 1 and 2. In Ta-
ble 2 we summarize the average performance of

286

Experiment Factoid MRR List F1

Average 23.4% 24.0%
Best 24.3% 27.7%
Ensemble 27.3% 28.6%

Table 2: Performance of a model ensemble.
Five models have been trained on the BioASQ3B
dataset and tested on the 4B test questions. We
report the average and best single model perfor-
mances, as well as the ensemble performance.

the five models, the best performance across the
five models, and the performance of the ensem-
ble. We observe performance gains of 3 percent-
age points on factoid questions and a less than 1
percentage point on list questions, relative to the
best single model. This demonstrates a small per-
formance gain that is consistent with the literature.

5.3 Comparison to competing BioASQ
systems

Because the final results of the fifth BioASQ chal-
lenge are not available at the time of writing, we
compare our system to the best systems in last
year’s challenge 2. For comparison, we use the
best single model and the model ensemble trained
on BioASQ3B (see Section 5.2). We then evaluate
the model on the 5 batches of last year’s challenge
using the official BioASQ evaluation tool. Each
batch contains 100 questions of which only some
are factoid and list questions. Note that the re-
sults underestimate our system’s performance, be-
cause our competing system’s responses have been
manually evaluated by humans while our system’s
responses are evaluated automatically using string
matching against a potentially incomplete list of
synonyms. In fact, our qualitative analysis in Sec-
tion 5.4 shows that many answers are counted as
incorrect, but are synonyms of the gold-standard
answer. The results are summarized in Table 3 and
compared to the best systems in the challenge in
each of the batches and question type categories.

With our system winning four out of five
batches on factoid questions, we consider it state-
of-the-art in biomedical factoid question answer-
ing, especially when considering that our results
might be higher on manual evaluation. The results
on list questions are slightly worse, but still very

2Last year’s results are available at http:
//participants-area.bioasq.org/results/
4b/phaseB/

competitive. This is surprising, given that the net-
work never saw a list question prior to the fine-
tuning phase. Due to small test set sizes, the sam-
pling error in each batch is large, causing the sin-
gle model to outperform the model ensemble on
some batches.

5.4 Qualitative Analysis

In order to get a better insight into the quality of
the predictions, we manually validated the predic-
tions for the factoid questions of batch 5 of the
fourth BioASQ challenge as given by the best sin-
gle model (see Table 3). There are in total 33 fac-
toid questions, of which 23 have as the gold stan-
dard answer a span in one of the contexts. Ac-
cording to the official BioASQ evaluation, only
4 questions are predicted correctly (i.e., the gold
standard answer is ranked highest). However,
we identified 10 rank-1 answers which are not
counted as correct but are synonyms to the gold
standard answer. Examples include ”CMT4D dis-
ease” instead of ”Charcot-Marie-Tooth (CMT) 4D
disease”, ”tafazzin” instead of ”Tafazzin (TAZ)
gene”, and ”β-glucocerebrosidase” instead of
”Beta glucocerebrosidase”. In total, we labeled
14 questions as correct and 24 questions as hav-
ing their correct answer in the top 5 predictions.

In the following, we give examples of mistakes
made by the system. Questions are presented in
italics. In the context, we underline predicted an-
swers and present correct answers in boldface.

We identified eight questions for which the se-
mantic type of the top answer differs from the
question answer type. Some of these cases are
completely wrong predictions. However, this cate-
gory also includes subtle mistakes like the follow-
ing:
In which yeast chromosome does

the rDNA cluster reside?

The rDNA cluster in
Saccharomyces cerevisiae is
located 450 kb from the left end
and 610 kb from the right end of
chromosome XII...

Here, it predicted a yeast species the rDNA
cluster is located in, but ignored that the question
is asking for a chromosome.

Another type of mistakes is that the top answer
is somewhat correct, but is missing essential in-
formation. We labeled four predictions with this
category, like the following example:

287

Factoid MRR List F1
Batch Best Participant Single Ensemble Best Participant Single Ensemble

1 12.2% (fa1) 25.2% 29.2% 16.8% (fa1) 29.1% 27.9%
2 22.6% (LabZhu-FDU) 16.4% 24.2% 15.5% (LabZhu-FDU) 25.8% 20.8%
3 24.4% (oaqa-3b-3) 24.7% 20.6% 48.3% (oaqa-3b-3) 31.8% 33.3%
4 32.5% (oaqa-3b-4) 34.0% 40.3% 31.2% (oaqa-3b-4) 29.0% 24.1%
5 28.5% (oaqa-3b-5) 23.7% 23.2% 29.0% (oaqa-3b-5) 23.5% 26.1%

Avg. 24.0% 24.8% 27.5% 28.1% 27.8% 26.5%

Table 3: Comparison to systems on last year’s (fourth) BioASQ challenge for factoid and list questions.
For each batch and question type, we list the performance of the best competing system, our single model
and ensemble. Note that our qualitative analysis (Section 5.4) suggests that our factoid performance on
batch 5 would be about twice as high if all synonyms were contained in the gold standard answers.

How early during pregnancy does
non-invasive cffDNA testing allow
sex determination of the fetus?
Gold Standard Answer: "6th to

10th week of gestation" or "first
trimester of pregnancy"
Given Top Answer: "6th-10th"
In summary, to our judgment, 14 of 33 ques-

tions (42.4%) are answered correctly, and 24 of 33
questions (72.7%) are answered correctly in one
of the top 5 answers. These are surprisingly high
numbers considering low MRR score of 23.7% of
the automatic evaluation (Table 3).

6 Discussion and future work

The most significant result of this work is that
state-of-the-art results in biomedical question an-
swering can be achieved even in the absence of
domain-specific feature engineering. Most com-
peting systems require structured domain-specific
resources, such as biomedical ontologies, parsers,
and entity taggers. While these resources are
available in the biomedical domain, they are not
available in most domains.

Our system, on the other hand, requires a large
open-domain QA dataset, biomedical word em-
beddings (which are trained in an unsupervised
fashion), and a small biomedical QA dataset. This
suggests that our methodology is easily transfer-
able to other domains as well.

Furthermore, we explored several supervised
domain adaptation techniques. In particular, we
demonstrated the usefulness of forgetting cost for
factoid questions. The decreased performance
on list questions is not surprising, because the
model’s performance on those questions is very

poor prior to fine-tuning which is due to the
lack of list questions in SQuAD. We believe that
large scale open-domain corpora for list questions
would enhance performance further.

Unsupervised domain adaptation could be an
interesting direction for future work, because the
biomedical domain offers large amounts of textual
data, some of which might even contain questions
and their corresponding answers. We believe that
leveraging these resources holds potential to fur-
ther improve biomedical QA.

7 Conclusion

In this paper, we described a deep learning ap-
proach to address the task of biomedical question
answering by using domain adaptation techniques.
Our experiments reveal that mere fine-tuning in
combination with biomedical word embeddings
yield state-of-the-art performance on biomedical
QA, despite the small amount of in-domain train-
ing data and the lack of domain-dependent fea-
ture engineering. Techniques to overcome catas-
trophic forgetting, such as a forgetting cost, can
further boost performance for factoid questions.
Overall, we show that employing domain adapta-
tion on neural QA systems trained on large-scale,
open-domain datasets can yield good performance
in domains where large datasets are not available.

Acknowledgments

This research was supported by the German
Federal Ministry of Education and Research
(BMBF) through Software Campus project GeNIE
(01IS12050).

288

References
Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene

Brevdo, Zhifeng Chen, Craig Citro, Greg S Corrado,
Andy Davis, Jeffrey Dean, Matthieu Devin, et al.
2016. Tensorflow: Large-scale machine learning on
heterogeneous distributed systems. arXiv preprint
arXiv:1603.04467 .

John Blitzer, Mark Dredze, Fernando Pereira, et al.
2007. Biographies, bollywood, boom-boxes and
blenders: Domain adaptation for sentiment classi-
fication. In ACL. volume 7, pages 440–447.

Konstantinos Bousmalis, George Trigeorgis, Nathan
Silberman, Dilip Krishnan, and Dumitru Erhan.
2016. Domain separation networks. In Advances in
Neural Information Processing Systems. pages 343–
351.

Minmin Chen, Zhixiang Xu, Kilian Weinberger, and
Fei Sha. 2012. Marginalized denoising autoen-
coders for domain adaptation. arXiv preprint
arXiv:1206.4683 .

Yarin Gal and Zoubin Ghahramani. 2015. Dropout
as a bayesian approximation: Representing model
uncertainty in deep learning. arXiv preprint
arXiv:1506.02142 2.

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan,
Pascal Germain, Hugo Larochelle, François Lavi-
olette, Mario Marchand, and Victor Lempitsky.
2016. Domain-adversarial training of neural net-
works. Journal of Machine Learning Research
17(59):1–35.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio.
2011. Domain adaptation for large-scale sentiment
classification: A deep learning approach. In Pro-
ceedings of the 28th international conference on ma-
chine learning (ICML-11). pages 513–520.

Dan Jurafsky. 2000. Speech & language processing.
Pearson Education India.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980 .

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz,
Joel Veness, Guillaume Desjardins, Andrei A Rusu,
Kieran Milan, John Quan, Tiago Ramalho, Ag-
nieszka Grabska-Barwinska, et al. 2017. Overcom-
ing catastrophic forgetting in neural networks. Pro-
ceedings of the National Academy of Sciences page
201611835.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems. pages 3111–3119.

Ioannis Pavlopoulos, Aris Kosmopoulos, and
Ion Androutsopoulos. 2014. Continuous

space word vectors obtained by applying
word2vec to abstracts of biomedical articles
http://bioasq.lip6.fr/info/BioASQword2vec/.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In Empirical Methods in Nat-
ural Language Processing (EMNLP). pages 1532–
1543. http://www.aclweb.org/anthology/D14-1162.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions
for machine comprehension of text. arXiv preprint
arXiv:1606.05250 .

Metthew Riemer, Elham Khabiri, and Richard Good-
win. 2017. Representation stability as a regular-
izer for improved text analytics transfer learning
https://openreview.net/pdf?id=HyenWc5gx.

Andrei A Rusu, Neil C Rabinowitz, Guillaume Des-
jardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell.
2016. Progressive neural networks. arXiv preprint
arXiv:1606.04671 .

Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and
Hannaneh Hajishirzi. 2016. Bidirectional attention
flow for machine comprehension. arXiv preprint
arXiv:1611.01603 .

George Tsatsaronis, Georgios Balikas, Prodromos
Malakasiotis, Ioannis Partalas, Matthias Zschunke,
Michael R Alvers, Dirk Weissenborn, Anastasia
Krithara, Sergios Petridis, Dimitris Polychronopou-
los, et al. 2015. An overview of the bioasq large-
scale biomedical semantic indexing and question an-
swering competition. BMC bioinformatics 16(1):1.

Ellen M Voorhees et al. 1999. The trec-8 question an-
swering track report. In Trec. volume 99, pages 77–
82.

Shuohang Wang and Jing Jiang. 2016. Machine com-
prehension using match-lstm and answer pointer.
arXiv preprint arXiv:1608.07905 .

Dirk Weissenborn, Georg Wiese, and Laura Seiffe.
2017. Making neural qa as simple as possible but
not simpler. arXiv preprint arXiv:1703.04816 .

Caiming Xiong, Victor Zhong, and Richard Socher.
2016. Dynamic coattention networks for question
answering. arXiv preprint arXiv:1611.01604 .

Yang Zi, Zhou Yue, and Eric Nyberg. 2016. Learning
to answer biomedical questions: Oaqa at bioasq 4b.
ACL 2016 page 23.

289

Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017), pages 290–300,
Vancouver, Canada, August 3 - August 4, 2017. c©2017 Association for Computational Linguistics

A phoneme clustering algorithm based on the obligatory contour principle

Mans Hulden
Department of Linguistics

University of Colorado
mans.hulden@colorado.edu

Abstract

This paper explores a divisive hierarchi-
cal clustering algorithm based on the well-
known Obligatory Contour Principle in
phonology. The purpose is twofold: to see
if such an algorithm could be used for un-
supervised classification of phonemes or
graphemes in corpora, and to investigate
whether this purported universal constraint
really holds for several classes of phono-
logical distinctive features. The algorithm
achieves very high accuracies in an unsu-
pervised setting of inferring a consonant-
vowel distinction, and also has a strong
tendency to detect coronal phonemes in an
unsupervised fashion. Remaining classes,
however, do not correspond as neatly
to phonological distinctive feature splits.
While the results offer only mixed support
for a universal Obligatory Contour Princi-
ple, the algorithm can be very useful for
many NLP tasks due to the high accuracy
in revealing consonant/vowel/coronal dis-
tinctions.

1 Introduction1

It has long been noted in phonology that there
seems to be a universal cross-linguistic tendency
to avoid redundancy or repetition of similar speech
features within a word or morpheme, especially if
the phonemes are adjacent to one another. Many
different names are given to variants of this gen-
eral phenomenon in the linguistic literature: “iden-
tity avoidance” (Yip, 1998), “similar place avoid-
ance” (Pozdniakov and Segerer, 2007), “oblig-
atory contour principle” (OCP) (Leben, 1973),
and “dissimilation” (Hempl, 1893). Some special

1All code data sets used are available at https://
github.com/cvocp/cvocp

cases such as haplology (avoidance of adjacent
identical syllables) also fall in this general cate-
gory of avoiding repetition along some dimension.

The general phenomenon itself is supported by
robust, although inconsistent, evidence across a
number of languages. An early example is the
observation of Spitta-Bey (1880),2 that the Ara-
bic language tends to favor combination of con-
sonant segments (phonemes) in morphemes that
have different places of articulation; this was also
later pointed out by Greenberg (1950) and those
Semitic root outliers that deviate from this pat-
tern were analyzed in depth in Frajzyngier (1979).
In Proto-Indo-European (PIE) roots, which are
mostly structured CVC, stop-V-stop combinations
have been found to be statistically underrepre-
sented (Iverson and Salmons, 1992). That is, PIE
seems to obey a cross-linguistic constraint that dis-
favors two similar consonants in a root. Another
specific example comes from Japanese, where the
phenomenon called Lyman’s law—which effec-
tively says that a morpheme may consist of max-
imally one voiced obstruent—can also be inter-
preted as avoidance (Itô and Mester, 1986).

In light of such evidence, proposals have been
put forth to define the concept of phoneme by
distributional properties alone as opposed to the
prevalent distinctive feature systems which are
largely based on articulatory features (Fischer-
Jørgensen, 1952). Elsewhere, after finding a sta-
tistical tendency to avoid similar place of articula-
tion in word-initial and word-medial consonants,
Pozdniakov and Segerer (2007) offer the argument

2Nun hat, wie schon längst bemerkt ist, die arabische
Sprache die Neigung, solche Buchstaben in einem Worte zu
vereinigen, deren Organe weit von einander entfernt liegen,
wie Kehllaute und Dentale. Translation: Now, the Arabic
language, as has long been noted, has the tendency to com-
bine such letters in a word where the place of articulation is
distant, such as gutturals and dentals (Spitta-Bey, 1880, p.
15).

290

that this phenomenon of “Similar Place Avoid-
ance” is a statistical universal.

This phenomenon is often filed under the
generic heading “obligatory contour principle”
(Leben, 1973; McCarthy, 1986; Yip, 1988; Odden,
1988; Meyers, 1997; Pierrehumbert, 1993; Rose,
2000; Frisch, 2004). Originally, the OCP was ap-
plied as a theoretical constraint only to tone lan-
guages, with the argument that adjacent identical
tones in underlying forms were rare, and this re-
flected an obligatory contour principle. The usage
has since spread, and is assumed to account for
segmental features other than tone.

It is unclear why the phenomenon is so
widespread and why it manifests itself in the di-
verse ways it does. Accounts range from informa-
tion compression to a diachronically visible hyper-
correction by listeners who misperceive the signal
and make the assumption that repetition is unlikely
(Ohala, 1981).

This paper explores the simplest incarnation of
the idea of similarity avoidance; namely, that two
adjacent segments are preferably different in some
way and that this difference reveals itself glob-
ally. That is, it is not assumed that the con-
straint is absolute; rather, an algorithm is devel-
oped that induces grouping of unknown phoneme
symbols so as to maximize potential alternation
of clusters in a sequence of symbols, i.e. a cor-
pus. If the OCP holds for phonological or phonetic
features—primarily places of articulation—such a
clustering algorithm could group phonemes along
the lines of distinctive features. While, as we
shall see, the observations do not support the pres-
ence of a strong universal OCP effect, the top-level
clusters discovered by the algorithm correspond
nearly 100% to the distinction of consonants and
vowels—or syllabic and non-syllabic elements if
expressed in terms of features. Furthermore, a tier-
based variant of the algorithm additionally groups
consonants somewhat reliably into coronal/non-
coronal places of articulation, and also often dis-
tinguishes front vowels from back vowels. This
is true even if the algorithm is run on alphabetic
representations. An evaluation of the ability to
detect C/V distinction against a data set of 503
Bible translations (Kim and Snyder, 2013) is in-
cluded, improving upon earlier work that attempts
to distinguish between consonants and vowels in
an unsupervised fashion (Kim and Snyder, 2013;
Goldsmith and Xanthos, 2009; Moler and Morri-

son, 1983; Sukhotin, 1962). The algorithm is also
more robust than earlier algorithms that perform
consonant-vowel separation and works with less
data, something that is also briefly evaluated.

This paper is structured as follows: an overview
of previous work is given in section 2, mostly
related to the simpler task of grouping conso-
nants and vowels without labeled data, rather than
identifying distinctive features. Following that,
the general algorithm is developed in section 3,
after which the experiments on both phonemic
and graphemic representations in section 4 are re-
ported. Four experiments are evaluated. The first
uses phonemic data from 9 languages for clus-
tering and evaluates clustering along distinctive
feature lines. The second is a graphemic exper-
iment that uses a data set of Bible translations
in 503 languages where the task is to distinguish
the vowels from the consonants; here, results are
compared to Kim and Snyder (2013) on the same
data set. That data is slightly noisy, motivating
the third experiment, which is also graphemic and
evaluates consonant-vowel distinctions on vetted
word lists from data taken from the ACL SIG-
MORPHON shared task on morphological reinflec-
tion (Cotterell et al., 2016). The ability of a tier-
based variant of the algorithm to separate coro-
nals from non-coronals is evaluated in a fourth ex-
periment where Universal Dependencies corpora
(Nivre et al., 2017) are used.

The main results are presented in section 5.
Given the high accuracy of the algorithm in C/V
distinction with very little data and its consequent
potential applicability to decipherment tasks, a
small practical example application is evaluated
which analyzes a fragment of text, a manuscript
of only 54 characters.

2 Related Work

The statistical experiments of Andrey
Markov (1913) on Alexander Pushkin’s poem
Eugene Onegin constitute what is probably one of
the earliest discoveries of the fact that significant
latent structure can be found by examining
immediate co-occurrence of graphemes in text.
Examining a 20,000-letter sample of the poem,
Markov found a strong statistical bias that favored
alternation of consonants and vowels. A number
of computational approaches have since been
investigated that attempt to reveal phonological
structure in corpora. Often, orthography is used

291

as a proxy for phonology since textual data
is easier to come by. A spectral method was
introduced by Moler and Morrison (1983) with
the explicit purpose of distinguishing consonants
from vowels by a dimensionality reduction on a
segment co-occurrence matrix through singular
value decomposition (SVD). An almost iden-
tical SVD-based approach was later applied to
phonological data by Goldsmith and Xanthos
(2009). Hidden Markov Models coupled with
the EM algorithm have also been used to learn
consonant-vowel distinctions (Knight et al.,
2006) as well as other latent structure, such as
vowel harmony (Goldsmith and Xanthos, 2009).
Kim and Snyder (2013) use Bayesian inference
supported by simultaneous language clustering to
infer C/V-distinctions in a large number of scripts
simultaneously. We compare our results against a
data set published in conjunction with that work.
More directly related to the current work are
Mayer et al. (2010) and Mayer and Rohrdantz
(2013) who work with models for visualizing
consonant co-occurrence in a corpus.

2.1 Sukhotin’s algorithm

Sukhotin’s algorithm (Sukhotin, 1962, 1973) is a
well-known algorithm for separating consonants
from vowels in orthographic data; good descrip-
tions of the algorithm are given in Guy (1991) and
Sassoon (1992). The idea is to start with the as-
sumption that all segments in a corpus are con-
sonants, then repeatedly and greedily find the seg-
ment that co-occurs most with other segments, and
declare that a vowel. This is performed until a
stopping condition is reached. The algorithm is
known to perform surprisingly well (Foster, 1992;
Goldsmith and Xanthos, 2009), although it is lim-
ited to the task it was designed to do—inferring
a C/V-distinction (with applications to decipher-
ment) without attempting to reveal any further
structure in the segments. All the syllabic/non-
syllabic distinction results in the current work are
compared with the performance of Sukhotin’s al-
gorithm.

3 General OCP-based algorithm

At the core of the new clustering algorithm is the
OCP-observation alluded to above, already empir-
ically established in (Markov, 1913, 2006), that
there is a systematic bias toward alternating ad-
jacent segments along some dimension. To reveal

this alternation, one can assume that there is a nat-
ural grouping of all segments into two initial sets,
called 0 and 1, in such a way that the total number
of 0-1 or 1-0 alternations between adjacent seg-
ments in a corpus is maximized. For example,
consider a corpus of a single string abc. This can
be split into two nonempty subsets in six different
ways: 0 = {ab} and 1 = {c}; 0 = {a} and 1 = {bc};
0 = {ac} and 1 = {b}, and their symmetric variants
which are produced by swapping 0 and 1. Out of
these, the best assignment is 0 = {ac} and 1 = {b},
since if reflects an alternation of sets where abc 7→
010. The ‘score’ of this assignment is based on the
number of adjacent alternations, in this case 2 (01
and 10).

Outside of such small examples which split per-
fectly into alternating sets, once this optimal divi-
sion of all segments into 0 and 1 is found, there
may remain some residue of adjacent segments in
the same class (0-0 and 1-1). The sets 0 and 1 can
then be partitioned anew into subsets 00, 01 (from
0) and 10 and 11 (from 1). Again, there may be
some residue, and the partitioning procedure can
be applied recursively until no further splitting is
possible, i.e. until all of the adjacent segments fall
into different clusters in the hierarchy.

More formally, given a corpus of words
w1, . . . , wn and where each word is a sequence of
symbols s1, . . . , sm, this top-level objective func-
tion that we want to maximize can be expressed
as

∑
w

∑
i

1(Group(si) 6= Group(si+1)) (1)

where Group(s) is the set that segment s is in.
Given a suggested split of all the segments in a

corpus into, say, the top-level disjoint sets 0 and
1, we obviously do not need to examine the whole
corpus to establish the score but can do so by sim-
ply examining bigram counts of the corpus.

Still, finding just the top-level split of segments
into 0 and 1 is computationally expensive if done
by brute force by trying all the possible assign-
ments of segments into 0 and 1 and evaluating the
score for each assignment. Since there are 2n ways
of partitioning a set of segments into two subsets
(ignoring the symmetry of 0 and 1), such an ap-
proach is feasible in reasonable time only for small
alphabets (< 25, roughly).

To address the computational search space
problem, the algorithm is implemented by a type

292

of simulated annealing (Kirkpatrick et al., 1983;
Černỳ, 1985) to quickly find the optimum. The al-
gorithm for the top-level split proceeds as follows:

(1) Randomly divide the set S into S′ and S′′

(2) Draw an integer p from Uniform(1. . . K),
where K depends on the cooling schedule

(3) Swap p random segments between S′ and S′′

(4) If score is higher after swap, keep swap else
discard swap. Go to (2).

The idea is to begin with an arbitrary partition
of S into S′ and S′′, then randomly trying succes-
sively smaller and smaller random swaps of seg-
ments between the two sets according to a cooling
schedule, always keeping the swap if the score im-
proves. The cooling schedule was tested against
corpora that use smaller alphabets where the an-
swer is known beforehand by a brute-force cal-
culation. The cooling was made slow enough to
give the correct answer in 100/100 tries on such
development corpora. In practice, this yields an
annealing schedule where early swaps (the size of
K) are sometimes as large as |S|, ending in K
equaling 1 for several iterations before termina-
tion. This splitting is repeated recursively to pro-
duce new sub-splits until no splitting is possible,
i.e. the score cannot improve by splitting a set into
two subsets.

3.1 A tier-based variant

Many identity avoidance effects have been doc-
umented that seem to operate not by strict adja-
cency, but over intervening material, such as con-
sonants and vowels, as discussed in the introduc-
tion. For example, Rose (2000) argues that OCP
effects apply to adjacent consonants across inter-
vening vowels in Semitic languages. This moti-
vates a tier-based variant of the algorithm. In this
modification, instead of repeatedly splitting sets
based on a residue of adjacent segments that be-
long to the same set, we instead modify the cor-
pus, removing segments after each split. Each
time we split a set S into S′ and S′′ based on a
corpus C, we also create new corpora C ′ and C ′′

where segments in S′′ are removed from C ′ and
segments in S′ are removed from C ′′. Splitting
then resumes recursively for S′ and S′′, where S′

uses the corpus C ′ and S′′ the corpus C ′′. Fig-
ure 1 shows an example of this. Here, the initial

telaka

tlk
101010

101
eaa
100

aa
x

e
x

l
x

tk
10

k
x

t
x

a e k l t

a e k l t

a e l k t

k t

0 1

00 01 10 11

110 111

corpus

set assignment

(a) (b)

Figure 1: Illustration of the tier-based variant of
the clustering algorithm. The left-hand side (a)
shows the original corpus (the single word telaka),
where each character is assigned a top-level group-
ing, after which the corpus is modified to remove
characters in the respective sets 0 and 1. The al-
gorithm is then applied recursively to the modified
corpora. The resulting clustering is shown in (b).

corpus C = telaka, and the initial segment set
S = {a, e, k, l, t} is split into S′ = {a, e} and
S′′ = {k, l, t} on a first iteration. Likewise, the
corpus is now modified by removing the S′ and
S′′ segments from C ′′ and C ′ respectively, yield-
ing new corpora C ′ = eaa and C ′′ = tlk, and
splitting proceeds on these subcorpora. This way,
if, say, consonants and vowels operate on different
tiers and get split first into top-level sets, the re-
maining consonants will become adjacent to each
other on the next iteration, as will the vowels.

4 Experiments

Four experiments are evaluated; the first exper-
iment performs a full hierarchical clustering on
phonemic data in 9 typologically divergent lan-
guages. The clusters are evaluated according to
the following simple criterion: counting the num-
ber of splits in the tree that correspond to a split
that could be expressed through a single phonolog-
ical ± feature. For example, if the top level split
in the tree produced corresponds to exactly the
consonants and vowels, it is counted as a 1, since
this corresponds to the partitioning that would be
produced by the phonological feature [±syllabic].
If there is no way to express the split through a
single distinctive feature, it is counted as a 0. A
standard phonological feature set like that given in
sources such as Hayes (2011) or PHOIBLE (Moran
et al., 2014) is assumed. As mentioned above,
the hypothesis under examination is that if the
OCP is a strong universal principle, some non-
significant number of subclusters coinciding with
single phonological distinctive features should be

293

Language Source Sample

Arapaho (Cowell and Moss Sr, 2008) towohei hiiTetiP tohnookeP tootheiPeihoo . . .
Basque Wikipedia + g2p meSikoko iriburuko espetSe batean sartu zuten eta meSiko . . .
English (Brent and Cartwright, 1996) ju want tu si D@ bUk lUk DErz @ bOI wID hIz hæt . . .
Finnish (Aho, 1884) + g2p vai oli eilen kolmekymmentæ kotoapæinkø se matti ajelee . . .
Hawaiian Wikipedia + g2p Po ka Pōlelo hawaiPi ka Pōlelo makuahine a ka poPe maoli . . .
Hungarian (Gervain and Erra, 2012) idZ nintS j6j dE tSEtSE hol 6 montSik6 hol v6n 6 montSi itt 6 . . .
Italian Wikipedia + g2p tSitta eterna kon abitanti e il komune piu popoloso ditalia . . .
Polish (Boruta and Jastrzebska, 2012) gdýie jest bartuC gdýie jest ñe ma xodý tu a kuku ţo xovaS . . .
Spanish (Taulé et al., 2008) + g2p un akueRdo entRe la patRonal i los sindikatos fRanTeses sobRe . . .

Table 1: The data used for the phonemic clustering experiment, with sources indicated and a sample.

found. Both the non-tier algorithm and the tier-
based algorithm is evaluated.

In the second experiment, the capacity of the
algorithm to distinguish between consonants and
vowels is evaluated, this time with graphemic data.
To separate consonants from vowels—the most
significant dimension of alternation between ad-
jacent segments—the algorithm is run only for the
top-level split, and it is assumed that the top two
subsets will represent the consonants and vow-
els. Here, the results are compared with those of
Kim and Snyder (2013), who train a hierarchical
Bayesian model to perform this distinction over all
the 503 languages at the same time. Sukhotin’s al-
gorithm is also used as another baseline.

In the third experiment, the capacity to distin-
guish consonants and vowels in graphemic data in
the form of word lists—i.e. where no frequency
data is known—is evaluated compared against
Sukhotin’s algorithm.

4.1 Phonemic splitting

Nine languages from a diverse set of sources were
used for this experiment (see Table 1). Some
of the language data were already represented as
phonemes (English, Hungarian, and Polish), while
for the others, which have close-to-phonemic writ-
ing systems, a number of grapheme-to-phoneme
(g2p) rules were created manually to convert the
data into an International Phonetic Alphabet (IPA)
representation. The conversion was on the level of
the phoneme—actual allophones (such as /n/ be-
ing velarized to [N] before /k/ in most languages or
/d/ being pronounced [D] intervocalically in Span-
ish) were not modeled. Table 1 summarizes the
data and gives a sample of each corpus.

For this data, the clustering algorithm was run
as described above and each split was annotated

a e d h i j k l m n ŋ o p r s t u v æ ø

a e i o u y æ ø

a e o æ ø

[-syllabic]

i u y h l ŋ p r s

h s

j k

u y a æ

e ø h tnpsy u ao

l ŋ r

æ

e ø

i l ŋ p r d m t v

l ŋ r

e o ø j k n

d m v

d j k m n t v

[+trill]

[-high]

d h j k l m n ŋ p r s t v

[+back]

[+round] [+low] [-del rel]

[+back] [+front] [+cons] [+sonorant] [-coronal] [+voice]

[+round]

Figure 2: Resulting Finnish clusters with manual
annotation of the distinctive feature splits.

with information about whether the split could be
defined in terms of a single distinctive feature.
Figure 2 shows the output of such a tree produced
by the algorithm, with manual feature annotations.

The percentage of correctly identified top-level
splits (which are syllabic/non-syllabic segments)
is also given, together with the corresponding
results from Sukhotin’s C/V-inference algorithm,
and Moler & Morrison’s SVD-based algorithm.

4.2 C/V distinction in Bible translations

This experiment relies on word lists and fre-
quency counts from Bible translations covering
503 distinct languages. Of these, 476 use a Latin
alphabet, 26 a Cyrillic alphabet, and one uses
Greek. The data covers a large number of lan-
guage groups, and has been used before by Kim
and Snyder (2013) to evaluate accuracy in unsu-
pervised C/V-distinction.

The algorithms were evaluated in two different
ways: one, on a task where each C and V set is
inferred separately for each language, and two, in

294

a task where all languages’ consonants and vowels
are learned at once, as if the corpus were one lan-
guage, for clearer comparison with earlier work.
Both token-level accuracy and type-level accuracy
are given, again, for comparability reasons. For
this data set, Sukhotin’s C/V-algorithm and Moler
& Morrison’s algorithm were used as baselines in
addition to the results of Kim and Snyder (2013).

4.3 C/V-distinction with word lists

An additional experiment evaluates the al-
gorithm’s capacity to perform C/V-distinction
against Sukhotin’s algorithm on a data set of 10
morphologically complex languages where lists of
inflected forms were taken from the ACL SIGMOR-
PHON shared task data (Cotterell et al., 2016). In
this case, we have no knowledge of the frequency
of the forms given, but need to rely only on type
information. The Arabic data was transliterated
into a latinate alphabet (by DIN 31635), with vow-
els marked. For the other languages, the native al-
phabet was used. Per-type accuracy is reported.

5 Results

On the first task, which uses phonemic data,
consonant/vowel distinction accuracy is 100%
throughout (see Table 2). Sukhotin’s algorithm
also performs very well in all except two lan-
guages. English, in particular, is a surprising out-
lier, with Sukhotin’s algorithm only classifying
21.62% correctly. This is probably due to there
existing a proportionately large number of syllabic
phonemes in English (13/37). Moler & Morrison’s
algorithm has less than perfect accuracy in three
languages. There is great variation in the OCP
algorithm’s capacity to produce splits that coin-
cide with phonological features in both the tier-
based and non-tier variants. Roughly speaking,
the larger the phoneme inventory, the less likely it
is for the splits to align themselves in accordance
with phonological features. Also, since the tier-
based variant naturally leads to more splits, the
figures appear higher since splits in lower levels of
the tree, which contain few phonemes, can almost
always be done along distinctive feature lines. The
depth of the induced tree also correlates with the
variety of syllable types permitted in the language.
An extreme example of this is Hawaiian (Figure
3), which only permits V and CV syllables, yield-
ing a very shallow tree where no consonants are
split beyond the first level. English and Polish lie

a e h i k l m n o p u w ʔ

h k l m n p w ʔa e i o u

e i u

e ui a o

e u

a o

Figure 3: Hawaiian clusters reveal a predomi-
nantly CV/V syllable type since the non-syllabic
branch of the tree is shallow.

at the other extreme, with 37 splits each. This cir-
cumstance may perhaps be further leveraged to in-
fer syllable types from unknown scripts.

On the C/V inference task for 503 languages,
the OCP algorithm outperforms Sukhotin’s algo-
rithm and Kim and Snyder (2013) (K&S) when
each language is inspected individually (see Fig-
ure 3). However, for the case where we learn all
distinctions at once, the OCP algorithm produces
an identical result with Sukhotin. Here the token
level accuracy also exceeds K&S with 99.89 vs.
98.55.

The already high accuracy rate of the OCP algo-
rithm on the Bible translation data is probably in
reality even higher, especially when all languages
are inspected at the same time. Out of the 343
grapheme types, OCP and Sukhotin only misclas-
sify 7, and upon closer manual inspection, it is
found that only two of these are bona fide errors.
Five are errors in the gold standard—all in the
Cyrillic-based data (see Table 5 for an overview
of the errors in the gold standard or the classifica-
tions). The first actual error, Cyrillic s, only occurs
in five word types in the entire corpus, and is al-
ways surrounded by other consonants. The other
error, ǒ, is more difficult to interpret—it occurs
in three typologically different languages: Akoose
(bss), Northern Grebo (gbo), and Peñoles Mixtec
(mil).

On the third task, where only word lists are
available from grapheme classification into C/V,
the OCP algorithm performs equally to Sukhotin’s
algorithm, except for one language (Navajo),

295

Language Splits Splits C/V C/V C/V Inventory
OCP OCP(tier) (OCP) (Sukh.) (M&M) size

Arapaho 9/14 (62.29) 11/15 (73.34) 100.0 100.0 100.0 16
Basque 8/14 (57.14) 16/20 (80.00) 100.0 100.0 100.0 21
English 3/12 (25.00) 15/25 (60.00) 100.0 21.62 94.59 37
Finnish 14/16 (87.50) 17/19 (89.47) 100.0 100.0 100.0 20
Hawaiian 4/5 (80.00) 8/12 (66.67) 100.0 100.0 92.30 13
Hungarian 10/20 (50.00) 21/31 (67.74) 100.0 96.97 100.0 33
Italian 7/11 (63.64) 15/20 (75.00) 100.0 100.0 100.0 22
Polish 10/21 (47.61) 23/33 (69.70) 100.0 100.0 97.30 37
Spanish 10/15 (66.67) 16/21 (76.19) 100.0 100.0 100.0 22

Table 2: Phonemic data: fraction of cluster splits that go exactly along single distinctive features (Splits
with OCP/OCP (tier)), together with percentage. Also given are C/V-distinction accuracy (per type) for
the OCP algorithm (OCP), Sukhotin’s algorithm (Sukh.), Moler and Morrison’s algorithm (M&M).

OCP Sukhotin M&M K&S

Individual
Type 95.10 92.50 94.15 −
Token 96.55 93.65 95.59 95.99

All
Type 96.43 96.43 89.79 −
Token 99.89 99.89 99.79 98.55

Table 3: Results on the 503-language Bible trans-
lations on consonant-vowel distinction. Both type
and token accuracy are included. The Individ-
ual column shows the macro-averaged results on
running all languages individually, and the All-
column shows the results of running all data at
once. Here, ‘OCP’ is the current algorithm;
‘Sukhotin’ is Sukhotin’s algorithm, ‘M&M’ is the
SVD-method in Moler & Morrison (1983), and
‘K&S’ is the method given in Kim & Snyder
(2013).

where the OCP algorithm misclassifies one sym-
bol less (see Figure 4).

6 Application to text fragments: the
arrow of the gods

Given that the algorithm performs very well
on consonant-vowel distinctions and groups seg-
ments along distinctive features better with small
alphabets, an additional experiment was per-
formed on a small manuscript to get a glimpse of
potential application to cryptography and the de-
cipherment of substitution ciphers. In this experi-
ment, the writing system is known to be alphabetic
(in fact Cyrillic), and the purpose is to examine the
clustering induced by so little available data.

Language OCP Sukhotin M&M

Arabic 1/40 (97.50) 1/40 (97.50) 1/40 (97.50)
Finnish 0/31 (100.0) 0/31 (100.0) 0/31 (100.0)
Georgian 1/33 (96.97) 1/33 (96.97) 0/33 (100.0)
German 1/30 (96.67) 1/30 (96.67) 2/30 (93.33)
Hungarian 1/33 (96.97) 1/33 (96.97) 1/33 (96.97)
Maltese 2/30 (93.33) 2/30 (93.33) 0/30 (100.0)
Navajo 2/30 (93.33) 3/30 (90.00) 1/30 (96.67)
Russian 0/34 (100.0) 0/34 (100.0) 2/34 (94.12)
Spanish 0/33 (100.0) 0/33 (100.0) 2/33 (93.94)
Turkish 0/34 (100.0) 0/34 (100.0) 0/34 (100.0)

Average 97.48 97.14 97.25

Table 4: Per type accuracy on C/V-distinction on
word lists. Listed are the number of misclassifica-
tions, and the accuracy per type.

The birch bark letter number 292 found in 1957
in excavations in Novgorod, Russia, is the oldest
known document in a Finnic language (Karelian),
stemming most likely from the early 13th century
(Haavio, 1964). The document consists of only
54 symbols, written in Cyrillic.3 The clustering
method (see Figure 4) identifies the vowels and
consonants, except for the grapheme y (/u/). This
is probably because the short manuscript renders
the word nuoli (Latinized form) ‘arrow’ inconsis-
tently in three different ways, with Cyrillic y = /u/
occurring in different places, making the segment
difficult for the algorithm. The high vowels /i/ and

3The exact translation of the contents is a matter of dis-
pute; the first translation given by Yuri Yeliseyev in 1959
reads as follows (Haavio, 1964): God’s arrow ten [is] your
name // This arrow is God’s own // [The] God directs judg-
ment.

296

Symbol Class Comments

s V Macedonian, only occurs four times.
ь V Cyrillic soft sign (neither vowel not consonant).
ѳ V Cyrillic; error, should be CYRILLIC SMALL LETTER BARRED O, a vowel.
| V Halh Mongolian, incorrect words in corpus.
й C Cyrillic, corresponds to the palatal approximant /j/, incorrect in gold.
ї C Ukrainian iotated vowel sounds /ji/, unclear if vowel or consonant.
ǒ C Bantu languages: high tone/long vowel in Bantu languages.

Table 5: The only misclassified segments in the 503-Bible test. The column Class gives this ‘incorrect’
classification of the OCP algorithm. Most of these are errors in the data/gold standard. Only the Cyrillic
s which occurs four times in the data (always adjacent to other consonants) and the ǒ-symbol are actually
incorrect.

/u/ (left) are also separated from the non-high vow-
els (right) /a/, /o/, and /e/ (the Cyrillic soft sign also
falls in this group). Sukhotin’s algorithm, which
only infers the consonants and vowels, makes one
more mistake than the current algorithm.

7 Identifying coronal segments with the
tier-based variant

Although the only really robust pattern reliably
discovered by the algorithm is the distinction be-
tween consonants and vowels, there are strong pat-
terns within some of the clusters that appear to
be cross-linguistically constant, specifically with
the tier-based variant. The first is that, when-
ever a five-vowel system is present (such as in
Basque, Spanish, and Italian), after the topmost
split which divides up the vowels and the conso-
nants, the first split within the vowel group is al-
most always {a, o, u} and {e, i}. A second pat-
tern concerns coronal segments. The first split
within the consonant group tends to divide the seg-
ments into coronal/non-coronal segments. This
is not an absolute trend, but happens far above
chance. This is also true when running the algo-
rithm on graphemic data, where coronals can be
identified. Table 6 gives an overview of how cross-
linguistically coherent the resulting first consonant
splits are. The data set is a selection of 14 lan-
guages from the Universal Dependencies 2.0 data
(Nivre et al., 2017).

8 Conclusion & future work

This paper has reported on a simple algorithm
that rests on the assumption that languages tend
to exhibit hierarchical alternation in adjacent
phonemes. While such alternation does not always
occur for any individual adjacent segment pair, on

Language Second Consonant Group #C

Basque (c) l n (ñ) r s x z 21

Catalan l n r s x z 22

Irish d l n r s 13

Dutch h l n r x z 19

Estonian h l n r s 16

Finnish h l n r s (š) (x) (z) 21

German j l n r s x z 21

Indonesian l n r s z 20

Italian h l n r s (y) 21

Latin d h l n r s 16

Latvian č j ķ l ļ n ņ r s z ž 24

Lithuanian j l n r s š z ž 19

Portuguese ç j l n (ñ) r s x 24

Slovak c ď j l ľ n ň r s š z ž 26

Table 6: The second consonant grouping found us-
ing the tier-based OCP algorithm. This is the split
below the top-level consonant/vowel split. The
characters in this set largely correspond to coro-
nal sounds. The data comes from 14 languages in
the Universal Dependencies 2.0 data set. Shown in
parentheses are symbols outside the native orthog-
raphy of the language (most likely from named en-
tities and borrowings found in the corpora). The
rightmost column shows the total number of iden-
tified consonants in the language. In particular, l,
n, and r are always in this set, while s is nearly
always present.

297

(a) (b)

юмолануолиїнимижи

ноулисѣханолиомобоу

юмоласоудьнииохови

(c)

а б в д ж и л м н о с у х ь ю ї ѣ

б в д ж л м н с у х

в д ж л м н с х б у

а и о ь ю ї ѣ

и ю ї а о ь ѣ

(d) (e)

C: б в ж л м н с у х ь

V: ѣ ю а д ї и о

C: б в ж л м н с у х

V: ѣ ь ю а д ї и о

(f)

C: б в д ж л м н с у х

V: ѣ ь ю а ї и о

Figure 4: Clustering the graphemes in the 54-
symbol birch bark letter 292 manuscript (a), with
transcription given in (b), and the results of OCP
clustering (c). Also given are the C/V classifica-
tions produced by the Moler and Morrison (1983)
algorithm (d), Sukhotin’s algorithm (e), and the
OCP algorithm (f), with errors marked with red
boxes.

the corpus level this alternation largely holds and
serves to reveal interesting structure in phonolog-
ical organization. The top cluster discovered by
the algorithm is also a highly reliable indicator
of syllabic vs. non-syllabic segments, i.e. con-
sonants and vowels, and improves upon the state-
of-the-art in this unsupervised task. Interestingly,
Sukhotin’s C/V algorithm, which has similar per-
formance (Sukhotin, 1962), can be interpreted as
a greedy approximation of the first iteration in
the current algorithm. A tier-based variant of the
algorithm tends to detect front/back vowel con-
trasts and coronal/non-coronal contrasts as well,
although this is more of a robust trend rather than
an absolute.

Lower levels in the clustering approach are less
reliable indicators of classical feature alternation,
but can serve effectively to reveal aspects of sylla-
ble structure. For example, it is obvious from the
Hawaiian clustering that the predominant syllable

in the language is CV. One is led to conclude that
the obligatory contour principle may be manifest
in larger classes of segments (such as [±syllabic]),
but not necessarily in on the fine-grained level.
Some resulting cluster splits such as for example
{m,p} vs. {b,f,t} (example from Basque) are often
not only inseparable by a single feature split, but
are not separable by any combination of features.
This lack of evidence for a strong OCP may be
in line with the vigorous debate in the phonologi-
cal literature on the universal role of the OCP (see
e.g. McCarthy (1986); Odden (1988)). Some lan-
guages (such as Finnish and Hawaiian) yield splits
that almost always coincide with a single phono-
logical feature, whereas other languages do not.
Smaller inventories typically yield more robust re-
sults, although this may be partly due to chance
factors—there are more ways to split a small set
according to distinctive features than large sets.

Of interest is the utility of the extracted clus-
ters in various supervised and semi-supervised
NLP applications. For example, in algorithms that
learn to inflect words from annotated examples
(Ahlberg et al., 2015; Cotterell et al., 2016), it is
often useful to have a subdivision of the segments
that alternate, since this allows one to general-
ize behavior of classes of segments or graphemes,
similar to the way e.g. Brown clusters (Brown
et al., 1992) generalize over classes of words. La-
beling segments with the position in a clustering
tree and using that as a feature, for instance, is a
cheap and straightforward way to inject this kind
of knowledge into supervised systems designed to
operate over many languages.

Acknowledgements

Thanks to Andy Cowell for help with the Ara-
paho and Hawaiian datasets, Mike Hammond
and Miikka Silfverberg for comments on an ear-
lier version of this paper, and Francis Tyers for
sharing his knowledge of Cyrillic writing sys-
tems and comments regarding the error analysis.
Thanks also to Zygmunt Frajzyngier and Sharon
Rose for general OCP-related discussion and com-
ments. Several anonymous reviewers raised help-
ful points. This work has been partly sponsored by
DARPA I20 in the program Low Resource Lan-
guages for Emergent Incidents (LORELEI) issued
by DARPA/I20 under Contract No. HR0011-15-
C-0113.

298

References
Malin Ahlberg, Markus Forsberg, and Mans Hulden.

2015. Paradigm classification in supervised
learning of morphology. In Proceedings of
NAACL-HLT . Association for Computational Lin-
guistics, Denver, Colorado, pages 1024–1029.
http://www.aclweb.org/anthology/N15-1107.

Juhani Aho. 1884. Rautatie [The Railroad]. Werner-
Söderström, Porvoo, Finland.

Luc Boruta and Justyna Jastrzebska. 2012. A phone-
mic corpus of Polish child-directed speech. In Pro-
ceedings of the eighth international conference on
Language Resources and Evaluation (LREC).

Michael R. Brent and Timothy A. Cartwright. 1996.
Distributional regularity and phonotactic constraints
are useful for segmentation. Cognition 61(1):93–
125.

Peter F. Brown, Peter V. deSouza, Robert L. Mer-
cer, Vincent J. Della Pietra, and Jenifer C. Lai.
1992. Class-based n-gram models of natural lan-
guage. Computational Linguistics 18(4):467–479.

Vladimı́r Černỳ. 1985. Thermodynamical approach to
the traveling salesman problem: An efficient simula-
tion algorithm. Journal of Optimization Theory and
Applications 45(1):41–51.

Ryan Cotterell, Christo Kirov, John Sylak-Glassman,
David Yarowsky, Jason Eisner, and Mans Hulden.
2016. The SIGMORPHON 2016 shared task—
morphological reinflection. In Proceedings of the
2016 Meeting of SIGMORPHON. Association for
Computational Linguistics, Berlin, Germany.

Andrew Cowell and Alonzo Moss Sr. 2008. The Ara-
paho Language. University Press of Colorado.

Eli Fischer-Jørgensen. 1952. On the definition of
phoneme categories on a distributional basis. Acta
linguistica 7(1-2):8–39.

Caxton C. Foster. 1992. A comparison of vowel iden-
tification methods. Cryptologia 16(3):282–286.

Zygmunt Frajzyngier. 1979. Notes on the R1R2R2

stems in Semitic. Journal of Semitic Studies
24(1):1–12.

Stefan A. Frisch. 2004. Language processing and seg-
mental OCP effects. In Bruce Hayes, Robert Mar-
tin Kirchner, and Donca Steriade, editors, Pho-
netically Based Phonology, Cambridge University
Press, pages 346–371.

Judit Gervain and Ramón Guevara Erra. 2012. The sta-
tistical signature of morphosyntax: A study of Hun-
garian and Italian infant-directed speech. Cognition
125(2):263–287.

John Goldsmith and Aris Xanthos. 2009. Learning
phonological categories. Language 85(1):4–38.

Joseph H. Greenberg. 1950. The patterning of root
morphemes in Semitic. Word 6(2):162–181.

Jacques B. M. Guy. 1991. Vowel identification: an old
(but good) algorithm. Cryptologia 15(3):258–262.

Martti Haavio. 1964. The oldest source of Finnish
mythology: Birchbark letter no. 292. Journal of the
Folklore Institute 1(1/2):45–66.

Bruce Hayes. 2011. Introductory Phonology. John Wi-
ley & Sons.

George Hempl. 1893. Loss of r in English through dis-
similation. Dialect Notes (1):279–281.

Junko Itô and Ralf-Armin Mester. 1986. The phonol-
ogy of voicing in Japanese: Theoretical conse-
quences for morphological accessibility. Linguistic
Inquiry pages 49–73.

Gregory K. Iverson and Joseph C. Salmons. 1992. The
phonology of the Proto-Indo-European root struc-
ture constraints. Lingua 87(4):293–320.

Young-Bum Kim and Benjamin Snyder. 2013. Unsu-
pervised consonant-vowel prediction over hundreds
of languages. In Proceedings of the 51st Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers). Association for
Computational Linguistics, Sofia, Bulgaria, pages
1527–1536.

S. Kirkpatrick, Jr. C. D. Gelatt, and M. P. Vecchi.
1983. Optimization by simulated annealing. Sci-
ence 220(4598):671–680.

Kevin Knight, Anish Nair, Nishit Rathod, and Kenji
Yamada. 2006. Unsupervised analysis for deci-
pherment problems. In Proceedings of the COL-
ING/ACL. Association for Computational Linguis-
tics, pages 499–506.

William Ronald Leben. 1973. Suprasegmental Phonol-
ogy. Ph.D. thesis, Massachusetts Institute of Tech-
nology.

A. A. Markov. 1913. Primer statisticheskogo issle-
dovaniya nad tekstom “Evgeniya Onegina”, il-
lyustriruyuschij svyaz ispytanij v cep. Izvestiya
Akademii Nauk Ser. 6(3):153–162.

A. A. Markov. 2006. An example of statistical inves-
tigation of the text “Eugene Onegin” concerning the
connection of samples in chains. Science in Context
19(4):591–600.

Thomas Mayer and Christian Rohrdantz. 2013. Phon-
Matrix: Visualizing co-occurrence constraints of
sounds. In Proceedings of the 51st Annual Meet-
ing of the Association for Computational Linguis-
tics: System Demonstrations. Association for Com-
putational Linguistics, Sofia, Bulgaria, pages 73–78.

299

Thomas Mayer, Christian Rohrdantz, Frans Plank, Pe-
ter Bak, Miriam Butt, and Daniel A Keim. 2010.
Consonant co-occurrence in stems across languages:
Automatic analysis and visualization of a phonotac-
tic constraint. In Proceedings of the 2010 Work-
shop on NLP and Linguistics: Finding the Common
Ground. Association for Computational Linguistics,
pages 70–78.

John J. McCarthy. 1986. OCP effects: Gemination and
antigemination. Linguistic Inquiry 17(2):207–263.

Scott Meyers. 1997. OCP effects in optimality theory.
Natural Language & Linguistic Theory 15(4):847–
892.

Cleve Moler and Donald Morrison. 1983. Singular
value analysis of cryptograms. American Mathe-
matical Monthly pages 78–87.

Steven Moran, Daniel McCloy, and Richard Wright,
editors. 2014. PHOIBLE Online. Max Planck
Institute for Evolutionary Anthropology, Leipzig.
http://phoible.org/.

Joakim Nivre, Željko Agić, Lars Ahrenberg, Maria Je-
sus Aranzabe, Masayuki Asahara, Aitziber Atutxa,
et al. 2017. Universal dependencies 2.0. LIN-
DAT/CLARIN digital library at the Institute of For-
mal and Applied Linguistics, Charles University in
Prague.

David Odden. 1988. Anti antigemination and the OCP.
Linguistic Inquiry 19(3):451–475.

John Ohala. 1981. The listener as a source of sound
change. In Carrie S. Masek, Roberta A. Hendrick,
and Mary Frances Miller, editors, Papers from the
Parasession on Language and Behavior, Chicago
Linguistic Society, pages 178–203.

Janet Pierrehumbert. 1993. Dissimilarity in the Arabic
verbal roots. In Proceedings of NELS. volume 23,
pages 367–381.

Konstantin Pozdniakov and Guillaume Segerer. 2007.
Similar place avoidance: A statistical universal. Lin-
guistic Typology 11(2):307–348.

Sharon Rose. 2000. Rethinking geminates, long-
distance geminates, and the OCP. Linguistic Inquiry
31(1):85–122.

George T. Sassoon. 1992. The application of
Sukhotin’s algorithm to certain non-English lan-
guages. Cryptologia 16(2):165–173.

Wilhelm Spitta-Bey. 1880. Grammatik des arabischen
Vulgärdialectes von Aegypten. Hinrichs, Leipzig.

Boris V. Sukhotin. 1962. Eksperimental’noe vydelenie
klassov bukv s pomoshch’ju EVM. Problemy struk-
turnoj lingvistiki pages 198–206.

Boris V. Sukhotin. 1973. Méthode de déchiffrage, outil
de recherche en linguistique. T. A. Informations
pages 1–43.

Mariona Taulé, Maria Antònia Martı́, and Marta Re-
casens. 2008. AnCora: Multilevel annotated cor-
pora for Catalan and Spanish. In Proceedings of
the sixth international conference on Language Re-
sources and Evaluation (LREC).

Moira Yip. 1988. The obligatory contour principle and
phonological rules: A loss of identity. Linguistic
Inquiry 19(1):65–100.

Moira Yip. 1998. Identity avoidance in phonology and
morphology. In Steven Lapointe, Diane Brentari,
and Patrick Farrell, editors, Morphology and its Re-
lation to Phonology and Syntax, CSLI, Stanford,
pages 216–246.

300

Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017), pages 301–310,
Vancouver, Canada, August 3 - August 4, 2017. c©2017 Association for Computational Linguistics

Learning Stock Market Sentiment Lexicon and Sentiment-Oriented

Word Vector from StockTwits

Quanzhi Li, Sameena Shah

Research and Development

Thomson Reuters

3 Times Square, New York, NY 10036

{quanzhi.li, sameena.shah@thomsonreuters.com}

Abstract

Previous studies have shown that investor

sentiment indicators can predict stock

market change. A domain-specific senti-

ment lexicon and sentiment-oriented word

embedding model would help the senti-

ment analysis in financial domain and

stock market. In this paper, we present a

new approach to learning stock market

lexicon from StockTwits, a popular finan-

cial social network for investors to share

ideas. It learns word polarity by predicting

message sentiment, using a neural net-

work. The sentiment-oriented word

embeddings are learned from tens of mil-

lions of StockTwits posts, and this is the

first study presenting sentiment-oriented

word embeddings for stock market. The

experiments of predicting investor senti-

ment show that our lexicon outperformed

other lexicons built by the state-of-the-art

methods, and the sentiment-oriented word

vector was much better than the general

word embeddings.

1 Introduction

Social media has provided a rich opinion content

that is valuable for diverse decision-making pro-

cesses (Montoyo et al., 2012; Oliveira 2016), and

sentiment analysis is being increasingly used to

predict stock market variables (Antweiler and

Frank 2014; Yu eta l., 2013; Schumaker et al.,

2012). In particular, social media messages are a

useful source for supporting stock market deci-

sions (Bollen et al., 2011; Oliveira et al., 2013).

Users of social media, such as StockTwits and

Twitter, post very frequently, and this makes

the real-time assessment possible, which can be

exploited during the trading day. The two im-

portant sentiment data that can help sentiment

analysis greatly are sentiment lexicons and word

embeddings learned from large amount of data.

Word embedding (word vector) has been used in

many NLP tasks and noticeably improved their

performance (Socher et al., 2013; Tang et al.,

2014b; Vo and Zhang, 2015; Li et al., 2017).

However, there has been little effort in construct-

ing sentiment lexicon for financial domain and

stock market, and in using social media as the

data source. Many terms in financial market have

different meanings, especially sentiment polarity,

from that in other domains or sources, such as

the general news articles and Twitter. For exam-

ple, terms long, short, put and call have special

meanings in stock market. Another example is

the term underestimate, which is a negative term

in general, but it can suggest an opportunity to

buy equities when is used in stock market mes-

sages. Domain independent lexicons or general

word embedding model may not perform well in

financial domain. Therefore, it is necessary and

important to built sentiment lexicons and word

embeddings specifically for stock market.

The automatic lexicon creation approaches in

previous studies are mainly based on statistic

measures. There are few studies exploiting ma-

chine learning models (Tang et al, 2014a; Vo and

Zhang 2016). In this study, we propose a new ap-

proach that is based on neural network, and our

experiment shows that it outperforms the state-of-

the-art methods. Most word embedding models

only consider the syntactic and semantic infor-

mation of a word, and the sentiment information

is not coded in the embeddings. In this study, we

extend the word vector model from (Collobert et

al., 2011) by incorporating the sentiment infor-

mation into the neural network to learn the

embeddings; it captures the sentiment information

of sentences as well as the syntactic contexts of

words.

301

The main contributions of this study are: first,

we proposed a new approach based on neural

network for constructing a large scale sentiment

lexicon for stock market. Second, we built a sen-

timent-oriented word embedding (SOWE) model

specifically for stock market. To our knowledge,

this is the first word embedding model for stock

market. The experiment shows that it outper-

forms the general embedding models. The lexi-

cons and embeddings are available at

https://github.com/quanzhili/stocklexicon.

2 Related Studies

There are three approaches to generating a sen-

timent lexicon (Liu, 2012; Al-Twairesh et al.,

2016): the manual approach, dictionary-based

approach, and corpus-based approach. The man-

ual approach is usually used in conjunction with

automated approaches to check the correction of

the resulting lexicons.

The dictionary based method exploits the

synonyms and antonyms of a word in dictionary.

It usually starts with a small set of seed senti-

ment words, and they are looked up in the dic-

tionary for their synonyms and antonyms, which

are then added to the seed set and a new iteration

process starts. Most studies adapting this ap-

proach use WordNet with different ways expand-

ing the seed list, such as graph-based methods

(Rao and Ravichandran, 2009) and distance-

based measures (Kamps, 2004; Williams and

Anand, 2009). The SentiWordNet lexicon creat-

ed by (Esuli and Sebastiani, 2005) is the first im-

portant work based on WordNet. SentiWordNet

was further expanded by (Esuli and Sebastiani,

2006; Baccianella et al., 2010) later. Bing Liu’s

lexicon (Hu and Liu, 2004) is also built using a

dictionary based method, in which WordNet is

used.

In the corpus-based approaches, the lexicon

words are extracted from the corpus. Usually

they also start with a set of seed sentiment words,

and then expand it by discovering words with

opposite or similar sentiment. For example,

Turney and Littman (2002) used search engines

to find a word’s sentiment. They first compute

the association strength between the word and a

set of positive words, and then the association

strength between the word and a set of negative

ones. The strength with positive words minus

the strength with negative ones is this word’s

sentiment score, which is negative if the result is

negative and positive if the result is positive.

Point-wise Mutual Information (PMI) is used to

measure the association strength, and it is also

used as one baseline method in our study. More

details on PMI will be given later. Another ex-

ample is the MPQA subjectivity lexicon (Wilson

et al., 2005), which was built manually by anno-

tating the subjective expressions in the MPQA

corpus. As social media became popular, several

studies have focused on developing sentiment

lexicons from social media data, especially Twit-

ter (Tang et al., 2014; Kiritchenko et al., 2014,

Vo and Zhang, 2016; Al-Twairesh et al., 2016).

There are very few lexicons built for stock

market or financial domain. A financial lexicon

was manually built by (Loughran and McDonald,

2011), using documents extracted from the U.S.

Securities and Exchange Commission portal

from 1994 to 2008. Mao et al. (2014) proposed a

procedure to automatically create a financial lex-

icon in Chinese, by exploiting a large news cor-

pus, whose documents are classified as positive

or negative according to the contemporaneous

stock returns. Oliveira et al. (2014; 2016) used

statistic measures, such as Information Gain

(IG), TF.IDF and PMI, to build sentiment lexi-

cons from StockTwits messages for stock mar-

ket. The TF.IDF and PMI methods are used as

two baseline methods in our study. Tang et al.

(2014a) use a neural network to learn word

embeddings from tweets, and then expand a set

of seed sentiment words by measuring the word

vector distance between seed words and other

words. Vo and Zhang’s approach (2016) is based

on a simple neural network, to learn polarity val-

ues of a term by optimizing the prediction accu-

racy of message sentiment using lexicons. Our

proposed approach is compared to this method.

Both (Tang et al., 2014a) and (Vo and Zhang,

2016) worked on Twitter data, not stock market

data.

Embeddings of a word capture both the syn-

tactic structure and semantics of the word. The

C&W model and the word2vec model are the

two popular word embedding models (Collobert

et al., 2011; Mikolov et al., 2013). Word

embeddings have been used in many NLP tasks

(Socher et al., 2014; Mass, 2012; Matt, 2015;

Tang et al., 2014b; Li et al., 2016; Li et al., 2017;

Vo and Zhang, 2015). Although there are quite a

few studies on word embedding for Twitter data,

there is no previous study on word embeddings

for stock market.

302

Year

Number of

StockTwits

Messages

Number of Mes-

sages with Sen-

timent Label

(Bullish or Bear-

ish)

% of Messages

with Sentiment

Label

Number of

Bullish Mes-

sages

Number of

Bearish

Messages

Ratio of Bull-

ish / Bearish

2010 517,435 20,307 3.92% 17,310 2,997 5.78

2011 1,182,172 62,186 5.26% 46,823 15,363 3.05

2012 2,823,990 128,832 4.56% 95,610 33,222 2.88

2013 6,039,500 784,067 12.98% 609,709 174,358 3.50

2014 10,833,688 2,168,000 20.01% 1,774,647 393,353 4.51

2015 15,390,934 3,253,027 21.14% 2,596,182 656,845 3.95

Total 36,787,719 6,416,419 17.44% 5,140,281 1,276,138 4.03

Table 1: Statistics of StockTwits data set. Sentiment labels (bullish or bearish) are provided by mes-

sage authors.

3 Learning Sentiment Lexicon and Sen-

timent Oriented Word Embeddings

(SOWE)

In this section, we first describe how we collect-

ed the data set from StockTwits and the neces-

sary preprocessing steps. The data set was used

for both the sentiment lexicon construction and

the SOWE model creation. Section 3.2 presents

the proposed approach for constructing the lexi-

con, and Section 3.3 explains the algorithm used

for building the SOWE model.

3.1 Data Collection and Preprocessing

Steps

In this subsection, we describe the StockTwits

data set, the basic data preprocessing steps, and

how we identify phrases from StockTwits mes-

sages.

StockTwits Data Set: StockTwits is a finan-

cial social network for sharing ideas among trad-

ers. Anyone on StockTwits can contribute con-

tent – short messages limited to 140 characters

that cover ideas on specific investments. Most

messages have a cashtag, which is a stock sym-

bol, such as $aapl, to specify the entity (stock)

this message is about. We received the permis-

sion from StockTwits to access their historical

message archive from year 2010 to 2015. We

used this data set to build sentiment lexicons and

SOWE for stock market and general financial

applications.

Similar to Twitter’s tweet, each StockTwits

message includes a userId, number of followers,

message text, timestamp, and other metadata.

About 17.44% of the StockTwits messages are

labeled as “bullish” or “bearish” by their authors,

to show their sentiment toward the mentioned

stocks. The rest of them do not have this bull-

ish/bearish metadata. Table 1 presents the basic

statistics of this data set. This table shows that

the total number of messages increased greatly

year by year. And we also see that the number of

messages labeled as Bullish is much higher than

that labeled as Bearish, with an overall ratio of

4.03. In this study, we extracted 6.4 million

messages with the Bullish or Bearish sentiment

label, and used them as the training data for our

lexicon construction and SOWE model creation.

Overall, we have about 5.1 million Bullish mes-

sages and 1.3 million Bearish messages. Below

are some examples of StockTwits messages:
- Love this company long time. $PYPL
- Most bullish stocks during this dip,

$GOLD
- Another Sell Rating, Sell Rating for

$AXP
- My favorite stock pick #in2010: $GMCR.
- Supermarket Stocks Rally as Tesco Plans

to Axe Non-core UK Assets. $MRW
- Long $AMZN Oct $240 Calls
- for the 2009, $AXP was the

$DJIA's best-performing compo-
nent, having garnered a 118% gain:

- $f ford has not seen $10 since 9/05, but
it’s still a bull, be careful.

Preprocessing Steps: Some preprocessing

steps are performed to clean the messages:

- Messages that contain only cashtags, URLs,

or mentions are discarded, since they do not

have meaningful terms.

- Message text is converted to lower case.

303

- All URLs are removed. Most URLs are

short URLs and located at the end of a mes-

sage.

- All mentions are converted to a special

symbol, for privacy reason. This includes

the mentions appearing in a regular message

and the user handles at the beginning of a

retweet, e.g. ``RT: @bullguy’’.

- All cashtags are replaced by a special sym-

bol, to avoid cashtags to gain a polarity val-

ue related to a particular time period.

- Numbers following +, – or white space, but

not followed by % (e.g. +23.3, +33, -5.52),

are converted to a set of special symbols.

These symbols reflect the value range of

these numbers, and the range of the number

determines which symbol it will be convert-

ed to. For example, +12.45 => #increase1,

+20.22=> #increase2, -21.45=> #decrease2.

These numbers are usually about stock price

change, and so they bear sentiment infor-

mation of the message. Different symbols

reflect different degrees of price change.

- Similar to the above step, numbers follow-

ing +, – or white space, and also followed

by % (e.g. +23.34%, -5.8%), are also con-

verted to a set of special symbols. These

numbers are usually about price or volume

changes. But they are based on percentage,

which is different from the numbers dis-

cussed in previous step. They also convey

important sentiment information.

After passing through the above prepro-

cessing steps, the tweets are used to learn the

sentiment lexicon and word embedding model.

Phrase Identification: Phrases usually con-

vey more specific meaning than single-term

words, and many phrases have a meaning that is

not a simple composition of the meanings of its

individual words. To identify phrases, we use the

approach described in (Mikolov et al. 2013). We

first find words that appear frequently together,

and infrequently in other contexts. For example,

“short sell” is identified as a phrase; while a bi-

gram “they have” is not. By using this approach,

we can form many reasonable phrases without

greatly increasing the vocabulary size. To identi-

fy phrases, a simple data-driven approach is used,

where phrases are formed based on the unigram

and bigram counts, using this scoring function:

)(*)(

),(
),(

ji

ji

ji
wCwC

wwC
wwScore


 (1)

Where C (wi, wj) is the frequency of word wi and

wj appearing together.  is a discounting coeffi-

cient to prevent too many phrases consisting of

infrequent words to be generated. The bigrams

with score above the chosen threshold are then

used as phrases. Then the process is repeated a

few passes over the training data with decreasing

threshold value, so we can identify longer

phrases having several words. For the

StockTwits data set, we empirically set the max-

imum length of a phrase to 4 words in this study.

Other parameters are set as the default values

used in (Mikolov et al. 2013).

Figure 1: The neural network model for building

sentiment lexicon for stock market.

3.2 Sentiment Lexicon Construction

The Proposed Approach: Most corpus-based

lexicon construction approaches mainly utilize

statistical measures, such as TF-IDF, GI and PMI

methods. Our approach is based on a neural net-

work model, inspired by the general network

structure for processing NLP tasks (Collobert at

al., 2011). Figure 1 shows the neural network we

employed for learning the polarity values of a

term, by predicting the sentiment value of a

StockTwits message. Following (Esuli and

Sebastiani, 2006; Vo and Zhang, 2016), we also

use two attributes to define the sentiment of a

term (word or phrase): positivity and negativity.

This means each term has the form of t = (p, n),

where p is the positivity value and n is the nega-

tivity value. The value range is from 0 to 1 for

both p and n. If the value of p is greater than n,

we can say that this term has a positive senti-

ment, and vise versa. If p and n are close to each

304

other, we can say that the term is neutral, bearing

little sentiment information.

There are five layers in Figure 1, and from top

to bottom, they are: lookup, convolutional, line-

ar, HardTanh and linear. Using the message in

this figure as an example, the words of this post

are the input of this feed-forward neural network.

In this example message, we assume there is no

phrase identified, so there are four input terms. If

there is a phrase, let’s say all-time high is detect-

ed as a phrase, then these two words will be

treated as one input term. The top layer is the

lookup table for term polarity values. Because

the training input is message, which varies in

length, we use a convolutional layer to extract

features that can be fed to standard affine layers.

There are different ways to generate the repre-

sentation of text segments with different lengths.

In this study, we use the concatenation convolu-

tional layer, which concatenates the layers of

max, min and average of the two polarity values

of all terms in the input message. This layer

gives the best performance, based on our pilot

experiments. The concatenation layer is ex-

pressed as follow:

 Z(m) = [Zp(m), Zn(m)] (2)

Zp(m) = [Zp,max(m), Zp,min(m), Zp,ave(m)] (3)

Zn(m) = [Zn,max(m), Zn,min(m), Zn,ave(m)] (4)

Where Z(m) is the representation of message m,

Zp(m) is for the positivity values of all the terms

in this message, and Zn(m) is for negativity val-

ues of the terms. Given the convolutional layer,

we can get the output of the first linear layer:

 (5)

The HardTanh layer:

 (6)

And the second linear layer, whose output, ,
is the sentiment score for input message m:

 (7)

Where w1, w2, b1, b2 are the parameters of the

linear layers. The non-linear HardTanh layer is to

extract highly non-linear features. Without the

HardTanh layer, the network would be a simple

linear model. Because the hard version of the

hyperbolic tangent is slightly cheaper to compute

and still keep the generalization performance un-

changed, it is chosen as the non-linear layer.

The HardTanh(x) function is defined as:

 -1, if x <= -1

HardTanh(x) = x, if -1 <= x <= 1 (8)

 1, if x > 1

Since we have just two labels for the output,

negative and positive, the dimension of the se-

cond linear layer is 2. If the polarity of a

StockTwits message is positive, the predicted

positive score is expected to be larger than the

predicted negative score, and vise versa.

The hinge loss of this model is defined as:

loss(m) = max(0, 1- g(m) fp(m) + g(m) fn(m)) (9)

Where g(m) is the gold value of message m (pos-

itive or negative), fp(m) is the predicted positive

score, and fn(m) is the predicted negative score.

Model Training: The data set used for train-

ing this model is already described in previous

section. To train this model, we take the deriva-

tive of the loss by back-propagation with respect

to the whole set of parameters, and use AdaGrad

to update the parameters (Collobert et al., 2011;

Duchi et al., 2011). Each term is first initialized

by randomly choosing a negative and positive

value less than 0.2. The same neural network and

parameters setting are used to learn the sentiment

polarity for both words and phrases. A validation

data set was used to tune the model hyper-

parameters.

Baseline Methods for Performance Com-

parison: We compare our method to three other

methods: TF.IDF, PMI and Vo & Zhang from

(Vo and Zhang, 2016), which is based on a sim-

ple neural network. PMI and TF.IDF are the two

most successful approaches building lexicons

based on statistic measures. The Vo & Zhang

method is the state-of-the-art approach utilizing

machine learning technology. We described them

briefly below.

TF.IDF is usually used for calculating the

weight of a term in text analysis tasks, and it has

been used in previous studies for lexicon con-

struction (Oliveira et al. 2014; Oliveira et al.,

2016; Al-Twairesh et al., 2016). To use it for

computing a term’s sentiment score, we first cre-

ated two documents composed by all the mes-

sages of each class (bullish document and bear-

ish document). Then, for each term, we compute

its TF.IDF value for the bullish and bearish clas-

ses, respectively. And finally we can compute

305

the sentiment score for term t, using the two

TF.IDF values:

 (10)

The final sentiment class depends on the value of

 . It is bullish if the value is positive

and bearish if it is negative.

PMI is a popular statistic measure used in

many previous studies to develop lexicons (Mo-

hammad et al., 2013; Oliveira et al., 2014;

Oliveira et al., 2016; Al-Twairesh et al., 2016;

Vo and Zhang, 2016). It is defined as:

 (11)

Where x and y are two objects, p(x) and p(y) are

the probabilities of occurring x and y in the cor-

pus, respectively, p(x, y) is the probability that

they co-occur together. If x and y are strongly as-

sociated, PMI will be largely positive. It is highly

negative if they are complementary. And if there

is no significant relationship between them, it is

near zero. To compute a term’s sentiment score,

we use both positive and negative PMI values of

a term. The score for term t is defined as

follow:

 (12)

Where bullish and bearish refer to the sentiment

label provided by the message author.

Vo & Zhang approach is a machine learning

method that also optimizes the prediction accura-

cy of message sentiment using lexicons (Vo and

Zhang, 2016). To leverage large amount of data,

they use a simple neural network to train the lex-

icon. In this method, each term also has two po-

larity values: positive and negative. It uses one

layer to compute the predicted sentiment proba-

bility, by adding the positive and negative values

of all the terms in the input message together.

Then a softmax function is used to get the pre-

dicted sentiment label for the input message.

The cross-entropy error is employed as the loss

function. Vo and Zhang tested their method on

Twitter, using the emotions in a tweet as the in-

dication of its polarity type. They didn’t use it in

the stock market domain.

3.3 Sentiment-Oriented Word Embedding

Word embedding is a dense, low-dimensional

and real-valued vector for a word. The

embeddings of a word capture both the syntactic

structure and semantics of the word. Traditional

bag-of-words and bag-of-n-grams hardly capture

the semantics of words (Collobert et al., 2011;

Mikolov et al. 2013).

The C&W (Collobert et al., 2011) model is a

popular word embedding model. It learns word

embeddings based on the syntactic contexts of

words. It replaces the center word with a random

word and derives a corrupted n-gram. The train-

ing objective is that the original n-gram is ex-

pected to obtain a higher language model score

than the corrupted n-gram. The original and cor-

rupted n-grams are treated as inputs of a feed-

forward neural network, respectively. SOWE ex-

tends the C&W model by incorporating the sen-

timent information into the neural network to

learn the embeddings (Collobert et al., 2011;

Tang et al., 2014b); it captures the sentiment in-

formation of messages as well as the syntactic

contexts of words. Given an original (or corrupt-

ed) n-gram and the polarity of a message as in-

put, it predicts a two-dimensional vector (f0, f1),

for each input n-gram, where (f0, f1) are the lan-

guage model score and sentiment score of the in-

put n-gram, respectively. There two training ob-

jectives: the original n-gram should get a higher

language model score than the corrupted n-gram,

and the polarity score of the original n-gram

should be more aligned to the polarity label of

the message than the corrupted one. The loss

function is the linear combination of two losses:

loss0 (t, t’) - the syntactic loss and loss1 (t, t’) -

the sentiment loss:

 loss (t, t’) = α * loss0 (t, t’) + (1-α) * loss1 (t, t’) (13)

The SOWE model used in this study was

trained from the same 6.4 million StockTwits

messages used for building sentiment lexicons;

this includes 5.1 million bullish and 1.3 million

bearish messages. The metadata of the SOWE

model will be presented in the Experiments sec-

tion

4 Experiments and Results

4.1 Evaluation of Sentiment Lexicons

In this experiment, we evaluated the lexicons

built by these approaches: TF.IDF, PMI, Vo &

Zhang, and our proposed approach. The same da-

ta set, which consists of 6.4 million labeled

StockTwits messages, is used by these four

methods. The messages are preprocessed accord-

ingly for each method. If the difference between

a term’s learned positive and negative values is

306

very small, then this term has a neutral senti-

ment. If we use 0.10 as the threshold to differen-

tiate neutral terms from positive and negative

terms (i.e. terms with |positive-negative| < 0.10

are neutral), our approach generated 42K senti-

ment words and phrases. The other three meth-

ods have slightly lower amount of sentiment

terms.

Sentiment Classification: The lexicons built

from these methods can be used in both unsuper-

vised and supervised sentiment classifiers. The

former is implemented by summing the senti-

ment scores of all tokens contained in a given

message (Taboada et al., 2011; Kiritchenko et al.,

2014; Vo and Zhang, 2016). If the total senti-

ment score is larger than 0, then the message is

classified as positive. Here only one positivity at-

tribute is required to represent a lexicon, so for

lexicons with both positive and negative values

for a term, the value of (positive − negative) is

used as the score.

In this experiment, we used a supervised

method for performance evaluation. There are

different ways to generate features for a message

using a lexicon. In this study, we follow the

method used in previous studies (Zhu et al., 2014;

Vo and Zhang 2016). If a lexicon has both posi-

tive and negative values for a term, then a unified

score is first computed (i.e. positive – negative),

and it is used to generate features described be-

low. Given a message m, the features are:
- The number of sentiment tokens in m,

where sentiment tokens are words or
phrases whose sentiment scores are not ze-
ro in a lexicon.

- The total scores of negative and positive
terms.

- The maximal score of all the terms in this
message.

- The total sentiment score of the message.
- The sentiment score of the last term in m.

Data Set: we selected 30K messages that

were already labeled as bullish or bearish from

StockTwits’s 2016 data set. They were not in-

cluded in the data set used for constructing the

lexicons. The amounts of bullish and bearish

messages in the data set are roughly about 70%

vs. 30%. We split this data set into three parts:

70% as training data, 10% as validation data and

20% for testing.

Classifier and Performance Metrics: we

tried several classifiers, such as LibLiner, logistic

regression and SMO. SMO gave the best results

for most cases, and so we used it to compare the

four lexicons. SMO is a sequential minimal op-

timization algorithm for training a support vector

classifier. The F1 measure and accuracy are used

as the performance metrics, which have been

used by many previous studies.

Figure 2: Sentiment classification result, based

on lexicons generated by different approaches.

Result: Figure 2 presents the results. It shows

that the two methods based on neural network

performed better than the two statistic measures.

PMI outperformed TF.IDF, which is also demon-

strated by other studies (Oliveira et al. 2016). For

the two models using neural networks, our pro-

posed model outperformed the Vo & Zhang

model, and the result was statistically significant

at p=0.01 using t-test. This result also shows

that learning lexicon by predicting the accuracy

of message is better than the approaches using

statistic measures.

Metadata

Model

SOWE StockTwitsWE TwitterWE

Number of

messages

6.4

million
37 million 200 million

Number of

words in

training data

87

million
505 million 2.9 billion

Number of

unique words

in the em-

bedding

model

165K 616K 3.5 million

Vector di-

mension size
300 300 300

Term fre-

quency

threshold

5 5 5

Learning

context win-

dows size

8 8 8

Table 2: Metadata of word embedding models

70

72

74

76

78

80

82

84

86

PMI TF.IDF Vo&Zhang Our Model

P
e

rf
o

rm
an

ce
 (0

 t
o

 1
0

0
)

Method

F1 measure

Accuracy

307

4.2 Evaluation of the SOWE Model

In this experiment, we evaluated the SOWE

embeddings, which encode both the syntactic

and sentiment information and are generated

specifically for stock market. We also use senti-

ment classification task to do the evaluation. We

compare SOWE to only embedding models, not

lexicons. The reason is that they are the same

type of data, and so we can use the same feature

setting for them, and the experiment setting

would not affect the performance comparison re-

sult. We didn’t compare the SOWE to the lexi-

cons, because they are different types of data and

we need to use different approaches to generate

features for them, and this will inevitably affect

their performance, and make an unfair compari-

son. We leave this type of comparison for future

research.

Word Embedding Models for Comparison:
The SOWE model is compared to two types of

embeddings:

StockTwitsWE: this is a general word embed-

ding model built from StockTwits data set. This

model does not have sentiment information en-

coded. But because the general embeddings cap-

ture both the syntactic structure and semantics of

the word, it may know that the term long and buy

have similar meaning in the stock market.

TwitterWE: this is a general word embedding

model built from Twitter data set. This model is

purely based on Twitter tweets. Although there

are some tweets talking about stocks, most of the

tweets are about other topics, such as sports and

celebrities. We wanted to see how SOWE per-

forms, compared to the embedding model

learned from messages of a different social me-

dia platform.

These two models are built using word2vec

(Mikolov et al., 2013). For StockTwitsWE, we

collected 37 million StockTwits messages, which

include both the labeled (bullish or bearish) and

unlabeled messages. They are preprocessed using

the same steps as the data set for creating senti-

ment lexicon. About 200 million tweets were

collected from Twitter for building the

TwitterWE model. The tweets date from October

2014 to October 2016. They were acquired

through Twitter’s public streaming API and the

Decahose data (10% of Twitter’s streaming da-

ta). The basic information of the three models is

presented in Table 2. The embedding dimension

size, word frequency threshold and window size

are set based on our pilot experiments.

Experiment Settings: In this experiment, we

used the same data set used in last evaluation,

which consists of 30K messages. The perfor-

mance metrics used are also F1 measure and ac-

curacy. The classifier used is still SMO, which

gave the best performance among several classi-

fiers we tried.

Message Representation from Term

Embeddings: In this experiment, to derive the

message representation from embeddings of its

terms, we use the concatenation convolutional

layer, which concatenates the layers of max, min

and average of message terms. This layer gave

the best performance based on our pilot experi-

ments. . The concatenation layer is expressed as

follow:

 Z(t) = [Zmax(t), Zmin(t), Zave(t)] (14)

where Z(t) is the representation of tweet t.

Figure 3: Comparison of the three word embed-

ding models

Result: Figure 3 shows the comparison result

of the three models. As we expected, the SOWE

models performed the best, and the difference

was statistically significant at p =0.01 using t-

test. This proves that by integrating the sentiment

information into word embeddings, we can great-

ly improve the sentiment classification perfor-

mance, although its training data set is much

smaller compared to the other two models. The

result also shows that the general embedding

model trained on StockTwits messages per-

formed better than the model trained on Twitter

data set. One reason is that some terms in

StockTwits have different sentiment meanings

from the same terms in Twitter, such as put and

call.

75

80

85

90

TwitterWE StockTwitsWE SOWE

P
e

rf
o

rm
an

ce
 (0

 t
o

 1
0

0
)

Word Embedding Model

F1
measure

Accuracy

308

5 Conclusion

In this paper, we described a new approach based

on neural network for building a large scale sen-

timent lexicon for stock market. We also pre-

sented a sentiment-oriented word embedding

model, learned from millions of labeled messag-

es on stock market. The experiment of measur-

ing investor sentiment shows that our lexicon

construction approach outperformed the state-of-

the-art methods, and the sentiment-oriented word

embedding model performed well on predicting a

message’s bullish/bearish polarity. The lexicons

and word embedding presented in this study are

available to researchers and others interested in

sentiment analysis and stock market move pre-

diction. One of our future studies is to apply our

lexicon and SOWE on predicting stock market.

References
Alfred. V. Aho and Jeffrey D. Ullman. 1972. The The-

ory of Parsing, Translation and Compiling, volume

1. Prentice-Hall, Englewood Cliffs, NJ.

Nora Al-Twairesh, Hend Al-Khalifa, AbdulMalik Al-

Salman, AraSenTi: Large-Scale Twitter-Specific

Arabic Sentiment Lexicons, ACL 2016

W. Antweiler, M. Z. Frank, Is all that talk just noise?
the information content of internet stock message
boards, The Journal of Finance 59 (3) (2004)

Stefano Baccianella, Andrea Esuli, and Fabrizio
Sebastiani. 2010. SentiWordNet 3.0: An Enhanced
Lexical Resource for Sentiment Analysis and
Opinion Mining. In LREC, volume 10

J. Bollen, H. Mao, X. Zeng, Twitter mood predicts the
stock market, Journal of Computational Science 2
(1), 2011

Collobert, Ronan, Jason Weston, Leon Bottou, Mi-
chael Karlen, Koray Kavukcuoglu, and Pavel
Kuksa. Natural language processing (almost) from
scratch. The Journal of Machine Learning Re-
search, 2011

John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learning
and stochastic optimization. The Journal of Ma-
chine Learning Research

Andrea Esuli and Fabrizio Sebastiani. 2005. Deter-
mining the semantic orientation of terms through
gloss classification. CIKM 2005.

Andrea Esuli and Fabrizio Sebastiani. 2006.
Sentiwordnet: A publicly available lexical re-
source for opinion mining. LREC’06, volume 6

Minqing Hu and Bing Liu. 2004. Mining and summa-
rizing customer reviews. KDD 2004

Jaap Kamps. 2004. Using Wordnet to measure seman-
tic orientations of adjectives. LREC 2004

Svetlana Kiritchenko, Xiaodan Zhu, and Saif M. Mo-
hammad. 2014. Sentiment analysis of short infor-
mal texts. Journal. of Artificial Intelligence. Re-
search, 50:723–762.

Quanzhi Li, Sameena Shah, Xiaomo Liu, Armineh
Nourbakhsh, Word Embeddings Learned from
Tweets and General Data, The 11th International
AAAI Conference on Web and Social Media
(ICWSM-17). May, 2017.

Quanzhi Li, S. Shah, X. Liu, A. Nourbakhsh & R.
Fang, TweetSift: Tweet Topic Classification
Based on Entity Knowledge Base and Topic En-
hanced Word Embedding, CIKM 2016

Bing Liu. 2012. Sentiment analysis and opinion min-
ing. Synthesis Lectures on Human Language
Technologies, 5(1)

T. Loughran, B. McDonald, When is a liability not a
liability? Textual analysis, dictionaries, and 10-
Ks., Journal of Finance, 66 (1) (2011)

Maas, A.; Daly, R.; Pham, P.; Huang, D.; Ng, A. and
Potts, C., Learning word vectors for sentiment
analysis, ACL 2012

H. Mao, P. Gao, Y. Wang, J. Bollen, Automatic con-
struction of financial semantic orientation lexicon
from large-scale Chinese news corpus, Financial
Risks International Forum, 2014.

Matt, T., Document Classification by Inversion of
Distributed Language Representations, 2015. ACL
2015

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg
Corrado, and Jeffrey Dean. Distributed Represen-
tations of Words and Phrases and their Composi-
tionality. NIPS, 2013.

Saif M. Mohammad, Svetlana Kiritchenko, and
Xiaodan Zhu. 2013. Nrc-canada: Building the
state-of-the-art in sentiment analysis of tweets.
SemEval-2013

Montoyo, P. Martnez-Barco, A. Balahur, Subjectivity
and sentiment analysis: An overview of the current
state of the area and envisaged developments, De-
cision Support Systems 53 (4) (2012)

N. Oliveira, P. Cortez, N. Areal, On the predictability
of stock market behavior using StockTwits senti-
ment and posting volume, Progress in Artificial
Intelligence, 2013

N. Oliveira, P. Cortez, N. Areal, Automatic Creation
of Stock Market Lexicons for Sentiment Analysis
Using StockTwits Data, IDES 2014.

N. Oliveira, P. Cortez, N. Areal, stock market senti-
ment lexicon acquisition using microblogging data
and statistical measures, Decision Support Sys-
tems, 2012.

Delip Rao and Deepak Ravichandran. 2009. Semi-
supervised polarity lexicon induction. European
Chapter of the Association for Computational Lin-
guistics, 2009.

309

R. P. Schumaker, Y. Zhang, C.-N. Huang, H. Chen,
Evaluating sentiment in financial news articles,
Decision Support Systems 53 (3) (2012)

Socher, R.; Perelygin, A.; Wu, J.; Chuang, J.; Man-
ning, C.; Ng, A. and Potts, C., Recursive Deep
Models for Semantic Compositionality Over a
Sentiment Treebank, EMNLP 2014.

Maite Taboada, Julian Brooke, Milan Tofiloski, Kim-
berly Voll, and Manfred Stede. 2011. Lexicon-
based methods for sentiment analysis. Computa-
tional linguistics, 2011

Duyu Tang, Furu Wei, Bing Qin, Ming Zhou, and
Ting Liu. 2014a. Building large-scale twitter-
specific sentiment lexicon: A representation learn-
ing approach. COLING 2014

Duyu Tang, Furu Wei, Nan Yang, Ming Zhou, Ting
Liu, and Bing Qin. 2014b. Learning sentiment
specific word embedding for Twitter sentiment
classification. ACL 2014

Peter Turney and Michael L Littman. 2002. Unsuper-
vised learning of semantic orientation from a hun-
dred-billion-word corpus. Technical report, NRC
Institute for Information Technology; National
Research Council Canada.

D. Vo and Y. Zhang, Target-dependant twitter senti-
ment classification with rich automatic features,
IJCAI 2015.

D. Vo and Y. Zhang, Don’t Count, Predict! An Au-
tomatic Approach to Learning Sentiment,
ACL2016.

Gbolahan K Williams and Sarabjot Singh Anand.
2009. Predicting the Polarity Strength of Adjec-
tives Using WordNet. ICWSM 2009

Theresa Wilson, Janyce Wiebe, and Paul Hoffmann.
2005. Recognizing contextual polarity in phrase-
level sentiment analysis. EMNLP 2005

Xiaodan Zhu, Svetlana Kiritchenko, and Saif Mo-
hammad. 2014. Nrc-canada-2014: Recent im-
provements in the sentiment analysis of tweets. In
Proceedings of SemEval-2014

310

Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017), pages 311–321,
Vancouver, Canada, August 3 - August 4, 2017. c©2017 Association for Computational Linguistics

Learning local and global contexts using a convolutional recurrent
network model for relation classification in biomedical text

Desh Raj and Sunil Kumar Sahu and Ashish Anand
Department of Computer Science and Engineering

Indian Institute of Technology Guwahati
Guwahati, India

Abstract
The task of relation classification in the
biomedical domain is complex due to the
presence of samples obtained from het-
erogeneous sources such as research ar-
ticles, discharge summaries, or electronic
health records. It is also a constraint
for classifiers which employ manual fea-
ture engineering. In this paper, we pro-
pose a convolutional recurrent neural net-
work (CRNN) architecture that combines
RNNs and CNNs in sequence to solve this
problem. The rationale behind our ap-
proach is that CNNs can effectively iden-
tify coarse-grained local features in a sen-
tence, while RNNs are more suited for
long-term dependencies. We compare our
CRNN model with several baselines on
two biomedical datasets, namely the i2b2-
2010 clinical relation extraction challenge
dataset, and the SemEval-2013 DDI ex-
traction dataset. We also evaluate an at-
tentive pooling technique and report its
performance in comparison with the con-
ventional max pooling method. Our re-
sults indicate that the proposed model
achieves state-of-the-art performance on
both datasets.1

1 Introduction

Relation classification is the task of identifying
the semantic relation present between a given
pair of entities in a piece of text. Since most
search queries are some forms of binary fac-
toids (Agichtein et al., 2005), modern question-
answering systems rely heavily upon relation clas-
sification as a preprocessing step (Fleischman

1The code for the can be found at:
https://github.com/desh2608/
crnn-relation-classification.

et al., 2003; Lee et al., 2007). Accurate relation
classification also facilitates discourse processing
and precise sentence interpretations. Hence, this
task has witnessed a great deal of attention over
the last decade (Mintz et al., 2009; Surdeanu et al.,
2012).

In the biomedical domain, in particular, extract-
ing such tuples from data may be essential for
identifying protein and drug interactions, symp-
toms and causes of diseases, among others. Fur-
ther, since clinical data tends to be obtained from
multiple (and diverse) information sources such as
journal articles, discharge summaries, and elec-
tronic patient records, relation classification be-
comes a more challenging task.

To identify relations between entities, a vari-
ety of lexical, syntactic, or pragmatic cues may
be exploited, which results in a challenging vari-
ability in the type of features used for classifi-
cation purpose. Due to this variability, a num-
ber of approaches have been suggested, some of
which rely on features extracted from POS tag-
ging, morphological analysis, dependency pars-
ing, and world knowledge (Kambhatla, 2004; San-
tos et al., 2015; Suchanek et al., 2006; Mooney
and Bunescu, 2005; Bunescu and Mooney, 2005).
Deep learning architectures have recently gathered
much interest because of their ability to conve-
niently extract relevant features without the need
of explicit feature engineering. For this reason, a
number of convolutional and recurrent neural net-
work models (Zeng et al., 2014; Xu et al., 2015b)
have been used for this task.

In this paper, we propose a model that uses
recurrent neural networks (RNNs) and convolu-
tional neural networks (CNNs) in sequence to
learn global and local context, respectively. We re-
fer to this as CRNN, following the naming conven-
tion used in (Huynh et al., 2016). We argue that in
order for any classification task to be effective, the

311

regression layer must see a complete representa-
tion of the sentence, i.e., both short and long-term
dependencies must be appropriately represented in
the sentence embedding. This argument forms the
basis of our approach. In a deep learning frame-
work, since the complete information available to
the classifier at the top-level is obtained through
manipulation of the sentence embedding itself, the
task of relation classification essentially emulates
other popular objectives such as text classification
and sentiment analysis if the representation for the
entity types are integrated in the sentence. Al-
though our proposed model uses RNNs and CNNs
in sequence, it is only two layers deep, as op-
posed to the very deep architectures proposed ear-
lier (Conneau et al., 2016). This simplicity al-
lows for intuitive understanding of each level of
the model, while still learning a sufficiently com-
plex representation of the input sentence.

In addition to local and global contexts, we also
experiment with attention for relation classifica-
tion. Although attention as a concept is relatively
well-known, especially in computational neuro-
science (Itti et al., 1998; Desimone and Duncan,
1995), it became popular only recently with appli-
cations to image captioning and machine transla-
tion (Xu et al., 2015a; Vinyals et al., 2015; Bah-
danau et al., 2014). Attention has also been em-
ployed to some success in relation classification
tasks (Wang et al., 2016a; Zhou et al., 2016a). In
our experiments, we use an attention-based pool-
ing strategy and compare the results with those ob-
tained using conventional pooling methods. Our
model variants are accordingly named CRNN-
Max and CRNN-Att, depending upong the pool-
ing scheme used.

Our model is distinctive in that it does not
rely upon any linguistic feature for relation clas-
sification. In domains such as biomedicine,
texts may not always be written in syntacti-
cally/grammatically correct form. Furthermore,
lack of necessary training data may not provide
good feature extractors such as those in generic
domains. Hence, we explored only models with-
out any extra features. Of course, adding other fea-
tures such as part-of-speech taggers or dependency
parsers, if they are available easily, may improve
the performance further. Our key contributions in
this paper are as follows:

• We propose and validate a two-layer archi-
tecture comprising RNNs and CNNs in se-

quence for relation classification in biomed-
ical text. Our model’s performance is com-
parable to the state-of-the-art on two bench-
mark datasets, namely the i2b2-2010 clin-
ical relation extraction challenge, and the
SemEval-2013 DDI extraction dataset, with-
out any need for handcrafted features.

• We analyze and discuss why such a model ef-
fectively captures short and long-term depen-
dencies in a sentence, and demonstrate why
this representation facilitates classification.

• We evaluate an attention-based pooling tech-
nique and compare its performance with con-
ventional pooling strategies.

• We provide evidence to further the argument
in favor of using RNNs to obtain regional em-
beddings in a sentence.

2 Related Research

CNNs have been effectively employed in NLP
tasks such as text classification (Kim, 2014), sen-
timent analysis (Dos Santos and Gatti, 2014), re-
lation classification (Zeng et al., 2014; Nguyen
and Grishman, 2015b), and so on. Similarly,
RNN models have also been used for similar
tasks (Johnson and Zhang, 2016). The improved
performance of these models is due to several rea-
sons:

1. Pretrained word vectors are used as inputs
for most of these models. These embed-
dings capture the semantic similarity between
words in a global context better than one-hot
representations.

2. CNNs are capable of learning local features
such as short phrases or recurring n-grams,
similar to the way they provide translational,
rotational and scale invariance in vision.

3. RNNs utilize the word order in the sentence,
and are also able to learn the long-term de-
pendencies.

These observations amply motivate a model
which captures both short-term and long-term de-
pendencies using a combination of CNNs and
RNNs to form a robust representation of the sen-
tence. Earlier, researchers have proposed RCNN
models that compute “regional embeddings” us-
ing a CNN at the first level, and these embeddings

312

(a) CRNN-Max (b) CRNN-Att

Figure 1: Architecture of the proposed models. For representation purpose, the following configuration has been used: d = nO

= 3, f1 = f2 = 2, nc = 4, and |C| = 3.

are then fed into an RNN layer which uses se-
quence information to generate the sentence repre-
sentation (Huynh et al., 2016; Wang et al., 2016b;
Chen et al., 2017; Nguyen and Grishman, 2015a).
These models are similar to ones that have also
been employed to some success for visual recog-
nition (Donahue et al., 2015). However, such mod-
els are still limited because the RNN may “forget”
features that occurred in the past if the sequence is
very long.

We solve this problem by obtaining the output
of the RNN at each time step (or word), and then
pooling small phrases. This method of using a “re-
current+pooling” module for regional embedding
is inspired from (Johnson and Zhang, 2016), who
showed that for text categorization, embeddings of
text regions, which can convey higher-level con-
cepts than single words in isolation, are more use-
ful than word embeddings. We also experiment
with attention-pooling to integrate weighted fea-
tures from discontinuous regions in the sentence.

3 Proposed Method

Given a sentence S with marked entities e1 and e2,
belonging to entity types t1 and t2, respectively,
and a set of relation classes C = {c1, . . . , cm} we
formulate the task of identifying the semantic re-
lation as a supervised classification problem, i.e.,
we learn a function f : (S, E, T) → C, where
S is the set of all sentences, E is the set of en-
tity pairs, and T denotes the set of entity types.
Our training objective is to learn a joint represen-
tation of the sentence and the entity types, such
that a softmax regression layer predicts the cor-
rect label. To learn such an embedding, we pro-
pose a two-layer neural network architecture con-

sisting of a “recurrent+pooling” layer and a “con-
volutional+pooling” layer in sequence. This ar-
chitecture is diagrammatically described in Fig. 1,
and the remainder of this section explains each of
the layers in detail.

3.1 Embedding layer

The only features we use from S are the words
themselves. The vector representation of these
words is obtained using the GloVe method (Pen-
nington et al., 2014).

Pre-trained word vectors are used for the word
embeddings and the words not present in the em-
beddings list are initialized randomly. All the
word vectors are updated during training.

3.2 Recurrent layer

RNN is a class of artificial neural networks which
utilizes sequential information and maintains his-
tory through its intermediate layers (Graves et al.,
2009). We use long short-term memory (LSTM)
based model (Hochreiter and Schmidhuber, 1997),
which uses memory and gated mechanism to com-
pute the hidden state. In particular we use a bidi-
rectional LSTM model (Bi-LSTM) similar to the
ones used in (Graves, 2013; Huang et al., 2015).

Let h(t)
l and h(t)

r be the outputs obtained from
the forward and backward direction of the LSTM
at time t. Then the combined output is given as

z(t) = h
(t)
l : h(t)

r , z(t) ∈ RnO . (1)

where : denotes the concatenation operation. We
obtain the output at each word and pass it to the
first pooling layer.

313

3.3 First pooling layer
The recurrent layer generates word-level embed-
dings that incorporate information from the past
and future context. Sometimes the word itself may
not be important for the sentence representation,
and in such cases, it may be better to extract the
most important features from short phrases using
a pooling technique. If f1 denotes the length of
the filter used for pooling, and (z1, . . . , zm) is the
sequence of vectors obtained from the previous
layer, then

p = (p1, p2, . . . , pm−f1+1), (2)

where pi ∈ RnO is given as

pi = max
1≤j≤f1

[zi+j], (3)

i.e. the maximum among all vectors zi+1 to zi+f1 .

3.4 Convolutional layer
We apply convolution on p to get local features
from each part of the sentence (Collobert and
Weston, 2008). Consider a convolutional filter
parametrized by weight vector wc ∈ RnO∗f2 ,
where f2 is the length of filter. Then the output
sequence of convolution layer would be

hic = f(wc · pi:i+f2−1 + bc), (4)

where i = 1, 2, . . . ,m − f1 − f2 + 2, · is dot
product, f is the rectifier linear unit (ReLU) func-
tion (f(x) = max{0, x}), and bc ∈ R is the bias
term. The parameters wc and bc are shared across
all convolutions i = 1, 2, . . . ,m − f1 − f2 + 2.
On applying nc such filters, we obtain an output
matrix Hc ∈ Rnc×(m−f1−f2+2).

3.5 Second pooling layer
The output of the convolutional layer is of vari-
able length (m − f1 − f2 + 2), since it depends
on the length m of the input sentence. To ob-
tain fixed length global features for the entire sen-
tence, we apply pooling over the entire sequence.
For this, we experiment with two different pool-
ing schemes based on which our model has two
variations, namely CRNN-Max and CRNN-Att.

3.5.1 Max pooling over time
Max pooling over time (Collobert and Weston,
2008) takes the maximum over the entire sentence,
with the assumption that all the relevant informa-
tion is accumulated in that position. Since the in-
put to this layer are the local convolved vectors,

this strategy essentially extracts the most impor-
tant features from several short phrases. The out-
put is then given as

zpool = max
1≤i≤(m−f1−f2+2)

[hic], (5)

where zpool ∈ Rnc is the dimension-wise maxi-
mum over all hic’s.

3.5.2 Attention-based pooling
A max pooling scheme may fail when impor-
tant cues are distributed across different clauses
in the sentence. We solve this problem by us-
ing an attention-based pooling scheme, which ob-
tains an optimal feature dimension-wise by tak-
ing weighted linear combinations of the vec-
tors. These weights are trained using an atten-
tion mechanism such that more important fea-
tures are weighed higher (Bahdanau et al., 2014;
Yang et al., 2016; Zhou et al., 2016b). The at-
tention mechanism produces a vector α of size
m − f1 − f2 + 2, and the values in this vector
are the weights for each phrase obtained from the
convolutional layer feature vectors.

Hatt = tanh(Wα
1 Hc)

α = Softmax(Wα
2
THatt)

zatt = αHT
c (6)

Here, Hc is the matrix of CNN output vec-
tors, Wα

1 ,W
α
2 ∈ Rnc×nc is the parameter matrix,

α ∈ Rm−f1−f2+2 are the attention weights, and
zatt ∈ Rnc is the output of the pooling layer. The
attention weights are a function of the input sen-
tence, and hence α is different for every sentence.

3.6 Fully connected and softmax
To obtain a classifier over the extracted global fea-
tures, we use a fully connected layer consisting of
|C| nodes, where C is the set of all possible rela-
tion classes, followed by a softmax layer to gen-
erate a probability distribution over the set of all
possible labels. The final output is given as

p(ci|x) = Softmax(W o
i z + boi), (7)

where W o and bo are the weight and bias param-
eters, and z may be either zpool or zatt, depend-
ing on the second pooling layer scheme. The pre-
dicted output y′ is obtained as

y′ = arg max
ci∈C

p(ci|x). (8)

314

Class Train size Test size
TrCP 436 108
TrAP 2131 532
TrWP 109 26
TrIP 165 41

TrNAP 140 34
TeRP 2457 614
TeCP 409 101
PIP 1776 443

None 44588 11146
Total 52211 13045

Table 1: Number of training and testing instances for each
relation type in the i2b2 dataset.

4 Experiments

4.1 Datasets

We have used 2 datasets for experimentation,
namely the i2b2-2010 clinical relation extrac-
tion challenge dataset (Sun et al., 2013), and
the SemEval-2013 DDI extraction dataset (Se-
gura Bedmar et al., 2013).

i2b2-2010 relation extraction
This dataset contains sentences from discharge
summaries collected from three different hospi-
tals and have 8 relation types: treatment caused
medical problems (TrCP), treatment administered
medical problem (TrAP), treatment worsen med-
ical problem (TrWP), treatment improve or cure
medical problem (TrIP), treatment was not ad-
ministered because of medical problem (TrNAP),
test reveal medical problem (TeRP), test con-
ducted to investigate medical problem (TeCP),
and medical problem indicates medical problem
(PIP). If a sentence has more than two entities, we
make an instance for each pair. Since only 170 of
the 394 original training documents and 256 of the
477 testing documents were available for down-
load, we combined all the training and testing in-
stances, and then split it in a 80:20 ratio for train-
ing and test sets respectively. The statistics of the
dataset are described in Table 1.

SemEval 2013 DDI extraction
This dataset contains annotated sentences from
two sources, Medline abstracts (biomedical re-
search articles) and DrugBank database (docu-
ments written by medical practitioners). The
dataset is annotated with following four kinds of
interactions: advice (opinion or consultation re-
lated to the simultaneous use of the two drugs),
effect (effect of the DDI together with pharma-
codynamic effect or mechanism of interaction),

Class Train Test
Before After Before After

Mechanism 1318 1264 302 302
Effect 1685 1620 360 360
Advice 826 820 221 221
Int 189 140 96 96
None 23756 12651 4737 3046
Total 4018 3844 979 979

Table 2: Number of training and testing instances for each
relation type in the DDI extraction dataset.

mechanism (pharmacokinetic mechanism), and int
(drug interaction without any other information).
Dataset provides the training and test instances
by sentences. Similar to i2b2 relation extrac-
tion dataset if a sentence has more than two drug
names, all possible pairs of drugs in the sentence
have been separately annotated, such that a single
sentence having multiple drug names leads to sep-
arate instances of drug pairs and corresponding in-
teraction. Statistics of the dataset (along with neg-
ative instance filtering, discussed in Section 4.1.1)
is shown in Table 2.

4.1.1 Preprocessing
As a preprocessing step, we replace the enti-
ties in the i2b2 dataset with the corresponding
entity types. For instance, the sentence: “He
was given Lasix to prevent him from conges-
tive heart failure.” was converted to: “He was
given TREATMENT A to prevent him from PROB-
LEM B.” Similarly, for the DDI extraction dataset,
the two targeted drug names are replaced with
DRUG-A and DRUG-B respectively, and other
drug names in the same sentence are replaced
with DRUG-N. Further, all numbers were replaced
with the keyword NUM. Similar to the earlier
studies (Sahu and Anand, 2017; Liu et al., 2016;
Rastegar-Mojarad et al., 2013), negative instances
were filtered from training sets.

4.2 Implementation details

Pretrained 100-dimensional word vectors in the
embedding layer are obtained using the GloVe
method (Pennington et al., 2014) trained on a
corpus of PubMed open source articles (Muneeb
et al., 2015), and are updated during the train-
ing process. We use both l2 regularization and
dropout (Srivastava et al., 2014) techniques for
regularization. Dropout is applied only on the out-
put of the second pooling layer, and it prevents
co-adaptation of hidden units by randomly drop-
ping few nodes. After tuning the hyperparameters
on a validation set (20% of training set), the val-

315

ues of 0.01 (0.001) and 0.7 (0.5) were found op-
timal for the regularization parameter and dropout
for the i2b2 (DDI extraction) dataset, respectively.
We use Adam technique (Kingma and Ba, 2014)
to optimize our loss function, with a learning rate
of 0.01. For all the models, nO and nC were tuned
on the validation set, and values of 200 and 100
were found to be optimal. Hyperparameters of
baseline methods were taken from the values sug-
gested in the respective papers. Entire neural net-
work parameters and feature vectors are updated
while training. We have implemented the pro-
posed model in Python language using the Tensor-
flow package (Abadi et al., 2016). We experiment
with different filter sizes for f1 and f2 and discuss
the results in Section 5.1.

4.3 Baseline methods

We compare our models with 5 methods that have
earlier been used for relation classification to satis-
factory results. These baselines were selected for
one of the following three purposes.

Feature-based methods
We selected a feature-based SVM classifier (Rink
et al., 2011) that uses several handcrafted features
such as distance of word from entities, POS tags,
chunk tags, etc., to compare whether our mod-
els were able to outperform classifiers with rigor-
ous feature engineering. It is to be noted that we
use our own implementation of the SVM classifier
(using the scikit-learn (Pedregosa et al., 2011) li-
brary), using features as described in (Sahu et al.,
2016).

Single-layer neural networks
We selected a multiple-filter CNN with max-
pooling (Sahu et al., 2016) and an LSTM model
with max and attentive pooling (Sahu and Anand,
2017). In Section 5.5, we compare our models
with these single layer models to justify using a
combination of RNN and CNN to learn long-term
and short-term dependencies, respectively. To ob-
serve the effect of the network model independent
of the feature set, we use only the word embed-
dings as features for each of these models. Further,
we used the same hyperparameters as mentioned
in the respective papers.

Recurrent convolutional neural network
This model, inspired from (Wang et al., 2016b),
obtains regional embeddings using a convolutional

f1\f2 2 3 4 5 6
1 59.97 58.96 59.30 59.18 60.03
2 59.84 56.69 60.89 62.45 61.03
3 60.46 61.77 58.85 57.34 59.81

Table 3: Average F1 scores on varying filter sizes f1 and f2
in the CRNN-Att model for i2b2 dataset.

layer. These are then fed into a recurrent layer and
a single output is obtained after traversing the en-
tire sequence. We compare our models with this
RCNN model to observe the effect of obtaining
outputs at every word, as opposed to at the end of
the sequence.

5 Results and Discussion

5.1 Effect of filter sizes f1 and f2

We experiment with various combinations of fil-
ter sizes f1 and f2 on the i2b2 dataset using our
CRNN-Att model. Since f1 denotes the size of
the first pooling filter, it essentially represents the
amount of information present in a regional em-
bedding that is fed into the convolutional layer.
If f1 is too small (f1 = 1, i.e., no pooling), em-
beddings from seemingly unimportant words may
get through, and if it is large (f1 ≥ 3), individ-
ual embeddings may get pooled such that a few
words dominate the majority of regions. For the
filter size f2 in the convolutional layer, a mid-
range value (4 to 6) was found to work well. This
may be because this layer learns to identify short
phrases which are usually of this length. These
observations were common for both datasets. The
F1 scores for various combinations of filter sizes
on the i2b2 data are shown in Table 3. In the re-
maining experiments, we choose (f1,f2) = (2,5)
for both our model variants.

5.2 Initialization and tuning of word
embeddings

The only feature used in our models is the word
vectors for every word in the sentence. We per-
form several experiments on the i2b2 data to ob-
serve the effect of word vector initialization and
update on the model performance. The results are
summarized in Table 5.

Interestingly, the best performing model uses
randomly initialized word embeddings that are not
updated during training. This is in contrast to
earlier studies (Sahu and Anand, 2017; Collobert
and Weston, 2008) where pretrained embeddings

316

Model i2b2-2010 DDI extraction
Precision Recall F1 score Precision Recall F1 score

SVM (Rink et al., 2011) 67.44 57.85 59.31 65.39 40.13 49.74
CNN-Max (Sahu et al., 2016) 55.73 50.08 49.42 68.15 46.58 54.05
LSTM-Max (Sahu and Anand, 2017) 57.54 55.40 55.60 73.98 59.96 65.41
LSTM-Att (Sahu and Anand, 2017) 65.23 56.77 60.04 53.43 64.86 58.27
RCNN (Wang et al., 2016b) 50.07 45.34 46.47 – – –
CRNN-Max 67.91 61.98 64.38 72.91 60.88 65.89
CRNN-Att 64.62 62.14 62.45 69.03 59.04 63.24

Table 4: Comparison of our proposed models CRNN-Max and CRNN-Att, with baselines, on the i2b2-2010 and DDI extraction
datasets.

Initialization update CRNN-Max CRNN-Att
Random Trainable 62.78 61.19
Random Non-trainable 64.38 61.51
PubMed Trainable 60.60 62.45
PubMed Non-trainable 58.49 59.35

Table 5: Effect of initialization and update of word embed-
dings in our proposed models, in terms of F1 score, using the
i2b2-2010 datset.

Class Size SVM CNN LSTM-Max RCNN CRNN-Max CRNN-Att
TrCP 108 34.90 34.01 35.48 18.30 43.18 47.66
TrAP 532 63.48 46.69 58.74 45.15 67.39 63.94
TrWP 26 7.41 10.26 0.00 0.00 16.67 9.52
TrIP 41 9.09 21.74 0.00 0.00 25.71 34.48

TrNAP 34 5.13 15.87 0.00 0.00 36.36 18.60
TeRP 614 80.44 63.52 73.50 67.01 80.32 76.31
TeCP 101 30.30 27.63 25.20 11.48 39.46 39.76
PIP 443 49.44 49.30 51.54 45.05 58.04 55.53

Table 6: Classwise performance (in terms of F1 score) of
various models on the i2b2 dataset.

usually improved model performances by 3-4%.
However, this result aligns with the observations
made in (Johnson and Zhang, 2015) and supports
the argument for one-hot LSTMs. It may be en-
lightening to discuss why such a result is obtained.

First, we note that in the formulas for LSTM,
e.g., ut = tanh(W(u)xt + U(u)ht−1 + b(u)),
if xt is the one-hot representation of a word, the
term W(u)xt serves as a word embedding. Thus,
a one-hot LSTM inherently includes a word em-
bedding in its computation. Further, a word vector
lookup is a linear operation, and hence it may be
merged into the LSTM layer itself by multiplying
the LSTM weights by the word embedding matrix.
This means that the expressive power of an LSTM
which uses pretrained vectors is the same as that
of one which uses randomly initialized word em-
beddings. It has also been shown in earlier stud-
ies that pretrained embeddings do not improve the
performance of networks as the number of layers
increases.

Johnson et al. (2015) even argued that the em-
bedding layer can be replaced with a one-hot

representation without compromising on the per-
formance. Empirically, inclusion of an embed-
ding layer makes training from scratch more diffi-
cult, even with the help of adaptive learning rates.
Similar observations have been made regarding
CNNs (Kim, 2014; Johnson and Zhang, 2014).

5.3 Comparison with baseline methods
Table 4 shows the results obtained on the i2b2 and
DDI extraction datasets using our proposed mod-
els, as compared to the baseline methods. Our
models outperform the baselines even without the
need for explicit feature engineering. It is interest-
ing to note that our CRNN-Max performs better
than the CRNN-Att, and a similar result has also
been observed earlier in (Sahu and Anand, 2017).

Class-wise performance analysis
We compare class-wise performance of our mod-
els on the i2b2 dataset with some of the baselines,
and this is summarized in Table 6. It is evident
that performances improve with training size, and
from the confusion matrices (not shown here), we
found that samples of a lower frequency class were
misclassified into a higher frequency class com-
prising the same entity types. For instance, sam-
ples belonging to TrWP (Treatment Worsen medi-
cal Problem) were often classified as TrAP (Treat-
ment Administered medical Problem).

5.4 Effect of attention-based pooling
Our CRNN-Att model uses an attention-based
technique in the final pooling layer, i.e. it obtains
a weighted linear combination of different phrases
depending upon their relative importance in the
sentence embedding. To confirm this, we visual-
ize attention weights in a CRNN-Att model with
(f1, f2) = (1, 3), for 5 samples in the i2b2 dataset
through a heat map as shown in Figure 2. Since
weights are assigned to phrases rather than words,
to obtain attention for each word we take the mean

317

Figure 2: Attention heatmap for 5 sentences selected from the i2b2-2010 dataset. A darker background corresponds to a larger
attention weight.

of weights of all phrases that the word is present
in. The figure shows that the attentive pooling
scheme is able to select important phrases depend-
ing upon the classification label. It is evident that
the model assigns a higher weight to semantically
relevant words such as “showed,” “question,” and
“revealed”.

5.5 Long and short term dependencies

We conjecture that our proposed CRNN models
perform better than single layer CNNs or RNNs
because they capture both local and global con-
texts efficiently. To confirm our hypothesis, we
determine the average sentence lengths and entity
separations for several sets of sentences belong-
ing to classes where our models performed well,
and for classes where either the CNN model or the
LSTM-Max model performed relatively well, for
the i2b2-2010 dataset. These results are visualized
in the box plots shown in Fig. 3.

From the figure, we note that our models
CRNN-Max and CRNN-Att perform significantly
better than a CNN model in classifying long sen-
tences with large entity separation, while CNN
models work well with shorter sentences where
the entities are less separated. This is evident by
observing the median and range of lower to up-
per quartile values in the figure. This confirms
our conjecture that our models learn long-term
dependencies better than a simple CNN model.
Similarly, our proposed models perform better on
a larger range of sentence lengths than LSTMs,
which may be due to more effective modeling of
local contexts.

(a)

(b)

Figure 3: Box plots for distribution of (a) sentence lengths
and (b) entity separation for sentence sets. A representation
of the form {X}\{˜Y} denotes the set of sentences correctly
classified by model X but wrongly classified by model Y. The
numbers at the top are the median values for each box.

5.6 Effect of linguistic features

The SVM baseline model described earlier con-
sists of the following features obtained for each
word in the sentence: word embedding, part-of-
speech (POS) tag, chunk tag, distance from first
entity, distance from second entity, and entity type.
Of these, the entity type feature is already used
in our CRNN model in the preprocessing step

318

Class Size SVM CRNN-Max #1 #2
TrCP 108 34.90 36.91 11 30
TrAP 532 63.48 68.85 83 93
TrWP 26 7.41 0.00 1 0
TrIP 41 9.09 0.00 2 0

TrNAP 34 5.13 0.00 1 0
TeRP 614 80.44 81.29 69 83
TeCP 101 30.30 36.90 5 14
PIP 443 49.44 60.66 45 110

Total 1899 59.31 63.78 217 330

Table 7: Classwise performance comparison between SVM
and CRNN-Max using linguistic features. #1 denotes num-
ber of sentences of a class classified correctly by SVM but
incorrectly by CRNN-Max; #2 denotes vice-versa.

by replacing the entities with their corresponding
types. Furthermore, we have also described ex-
periments with initialization and update of word
embeddings.

In this section, we add the four other linguis-
tic features in our proposed model to observe its
performance in comparison with the SVM model.
Table 7 summarizes this comparison.

Although the F1 scores for the models are rel-
atively close, the precision (P) and recall (R) vary
significantly: P is 67.44 and 61.00, while R is
57.85 and 67.54, for the SVM and CRNN-Max
models, respectively. Our CRNN-Max model,
therefore, is more sensitive while the SVM clas-
sifier has a higher specificity. Furthermore, it is
evident that SVM outperforms our model only
on classes with a disproportionately low instance
count. We may argue that due to the presence
of more features and less number of records, our
model gets over-trained only on the larger classes.
This problem may then be avoided with better reg-
ularization, to achieve even higher performance.

6 Conclusion

In this work, we proposed and evaluated a two-
layer architecture comprising recurrent and con-
volutional layers in sequence to learn global and
local contexts in a sentence, which was then
used for relation classification. To the best of
our knowledge, this is the first attempt at com-
bining CNNs and RNNs in sequence for a re-
lation classification task in biomedical domain.
Two variants of the model, namely CRNN-Max
and CRNN-Att, were evaluated on the i2b2-2010
dataset and the SemEval 2013 DDI extraction
dataset, and max-pooling was found to perform
better than attentive pooling. Even though our
method employed only word embeddings as in-

put feature, it was able to conveniently outper-
form state-of-the-art techniques that use extensive
feature engineering. Finally, our results indicated
that a “recurrent+pooling” layer effectively gener-
ates regional embedding without the need for pre-
trained word vectors. It would be interesting to
see whether one-hot word vectors perform better
than randomly initialized embeddings. We may
also benefit from probing whether tree-based or
non-continuous convolutions work as well as our
CRNN models for learning long and short term de-
pendencies for relation classification.

References
Martın Abadi, Ashish Agarwal, Paul Barham, Eugene

Brevdo, Zhifeng Chen, Craig Citro, Greg S Corrado,
Andy Davis, Jeffrey Dean, Matthieu Devin, et al.
2016. Tensorflow: Large-scale machine learning on
heterogeneous distributed systems. arXiv preprint
arXiv:1603.04467 .

Eugene Agichtein, Silviu Cucerzan, and Eric Brill.
2005. Analysis of factoid questions for effective
relation extraction. In Proceedings of the 28th an-
nual international ACM SIGIR conference on Re-
search and development in information retrieval.
ACM, pages 567–568.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473 .

Razvan C Bunescu and Raymond J Mooney. 2005. A
shortest path dependency kernel for relation extrac-
tion. In Proceedings of the conference on human
language technology and empirical methods in nat-
ural language processing. Association for Compu-
tational Linguistics, pages 724–731.

Guibin Chen, Deheng Ye, Erik Cambria, Jieshan Chen,
and Zhenchang Xing. 2017. Ensemble application
of convolutional and recurrent neural networks for
multi-label text categorization. IJCNN.

Ronan Collobert and Jason Weston. 2008. A unified
architecture for natural language processing: Deep
neural networks with multitask learning. In Pro-
ceedings of the 25th international conference on
Machine learning. ACM, pages 160–167.

Alexis Conneau, Holger Schwenk, Loı̈c Barrault, and
Yann Lecun. 2016. Very deep convolutional net-
works for natural language processing. arXiv
preprint arXiv:1606.01781 .

Robert Desimone and John Duncan. 1995. Neural
mechanisms of selective visual attention. Annual re-
view of neuroscience 18(1):193–222.

319

Jeffrey Donahue, Lisa Anne Hendricks, Sergio Guadar-
rama, Marcus Rohrbach, Subhashini Venugopalan,
Kate Saenko, and Trevor Darrell. 2015. Long-term
recurrent convolutional networks for visual recogni-
tion and description. In Proceedings of the IEEE
conference on computer vision and pattern recogni-
tion. pages 2625–2634.

Cı́cero Nogueira Dos Santos and Maira Gatti. 2014.
Deep convolutional neural networks for sentiment
analysis of short texts. In COLING. pages 69–78.

Michael Fleischman, Eduard Hovy, and Abdessamad
Echihabi. 2003. Offline strategies for online ques-
tion answering: Answering questions before they
are asked. In Proceedings of the 41st Annual Meet-
ing on Association for Computational Linguistics-
Volume 1. Association for Computational Linguis-
tics, pages 1–7.

Alex Graves. 2013. Generating sequences with
recurrent neural networks. arXiv preprint
arXiv:1308.0850 .

Alex Graves, Marcus Liwicki, Santiago Fernández,
Roman Bertolami, Horst Bunke, and Jürgen
Schmidhuber. 2009. A novel connectionist system
for unconstrained handwriting recognition. IEEE
transactions on pattern analysis and machine intel-
ligence 31(5):855–868.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation
9(8):1735–1780.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidirec-
tional lstm-crf models for sequence tagging. arXiv
preprint arXiv:1508.01991 .

Trung Huynh, Yulan He, Allistair Willis, and Stefan
Rüger. 2016. Adverse drug reaction classification
with deep neural networks .

Laurent Itti, Christof Koch, Ernst Niebur, et al. 1998.
A model of saliency-based visual attention for rapid
scene analysis. IEEE Transactions on pattern anal-
ysis and machine intelligence 20(11):1254–1259.

Rie Johnson and Tong Zhang. 2014. Effective
use of word order for text categorization with
convolutional neural networks. arXiv preprint
arXiv:1412.1058 .

Rie Johnson and Tong Zhang. 2015. Semi-supervised
convolutional neural networks for text categoriza-
tion via region embedding. In Advances in neural
information processing systems. pages 919–927.

Rie Johnson and Tong Zhang. 2016. Super-
vised and semi-supervised text categorization us-
ing lstm for region embeddings. arXiv preprint
arXiv:1602.02373 .

Nanda Kambhatla. 2004. Combining lexical, syntac-
tic, and semantic features with maximum entropy
models for extracting relations. In Proceedings of

the ACL 2004 on Interactive poster and demonstra-
tion sessions. Association for Computational Lin-
guistics, page 22.

Yoon Kim. 2014. Convolutional neural net-
works for sentence classification. arXiv preprint
arXiv:1408.5882 .

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980 .

Changki Lee, Yi-Gyu Hwang, and Myung-Gil Jang.
2007. Fine-grained named entity recognition and
relation extraction for question answering. In Pro-
ceedings of the 30th annual international ACM SI-
GIR conference on Research and development in in-
formation retrieval. ACM, pages 799–800.

Shengyu Liu, Buzhou Tang, Qingcai Chen, and Xiao-
long Wang. 2016. Drug-drug interaction extraction
via convolutional neural networks. Computational
and mathematical methods in medicine 2016.

Mike Mintz, Steven Bills, Rion Snow, and Dan Ju-
rafsky. 2009. Distant supervision for relation ex-
traction without labeled data. In Proceedings of
the Joint Conference of the 47th Annual Meeting of
the ACL and the 4th International Joint Conference
on Natural Language Processing of the AFNLP:
Volume 2-Volume 2. Association for Computational
Linguistics, pages 1003–1011.

Raymond J Mooney and Razvan C Bunescu. 2005.
Subsequence kernels for relation extraction. In Ad-
vances in neural information processing systems.
pages 171–178.

TH Muneeb, Sunil Kumar Sahu, and Ashish Anand.
2015. Evaluating distributed word representations
for capturing semantics of biomedical concepts.
Proceedings of ACL-IJCNLP page 158.

Thien Huu Nguyen and Ralph Grishman. 2015a.
Combining neural networks and log-linear mod-
els to improve relation extraction. arXiv preprint
arXiv:1511.05926 .

Thien Huu Nguyen and Ralph Grishman. 2015b. Rela-
tion extraction: Perspective from convolutional neu-
ral networks. In Proceedings of NAACL-HLT . pages
39–48.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. 2011. Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research
12:2825–2830.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word
representation. In EMNLP. volume 14, pages 1532–
1543.

320

Majid Rastegar-Mojarad, Richard D Boyce, and
Rashmi Prasad. 2013. UWM-TRIADS: classify-
ing drug-drug interactions with two-stage SVM and
post-processing. In Proceedings of the 7th Inter-
national Workshop on Semantic Evaluation. pages
667–674.

Bryan Rink, Sanda Harabagiu, and Kirk Roberts. 2011.
Automatic extraction of relations between medical
concepts in clinical texts. Journal of the American
Medical Informatics Association 18(5):594–600.

Sunil Kumar Sahu and Ashish Anand. 2017. Drug-
drug interaction extraction from biomedical text us-
ing long short term memory network. arXiv preprint
arXiv:1701.08303 .

Sunil Kumar Sahu, Ashish Anand, Krishnadev Oru-
ganty, and Mahanandeeshwar Gattu. 2016. Relation
extraction from clinical texts using domain invari-
ant convolutional neural network. arXiv preprint
arXiv:1606.09370 .

Cicero Nogueira dos Santos, Bing Xiang, and Bowen
Zhou. 2015. Classifying relations by ranking with
convolutional neural networks. arXiv preprint
arXiv:1504.06580 .

Isabel Segura Bedmar, Paloma Martı́nez, and Marı́a
Herrero Zazo. 2013. Semeval-2013 task 9: Ex-
traction of drug-drug interactions from biomedical
texts (ddiextraction 2013). Association for Compu-
tational Linguistics.

Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. Journal of Machine Learning Re-
search 15(1):1929–1958.

Fabian M Suchanek, Georgiana Ifrim, and Gerhard
Weikum. 2006. Combining linguistic and statistical
analysis to extract relations from web documents.
In Proceedings of the 12th ACM SIGKDD interna-
tional conference on Knowledge discovery and data
mining. ACM, pages 712–717.

Weiyi Sun, Anna Rumshisky, and Ozlem Uzuner. 2013.
Evaluating temporal relations in clinical text: 2012
i2b2 challenge. Journal of the American Medical
Informatics Association 20(5):806–813.

Mihai Surdeanu, Julie Tibshirani, Ramesh Nallapati,
and Christopher D Manning. 2012. Multi-instance
multi-label learning for relation extraction. In Pro-
ceedings of the 2012 Joint Conference on Empirical

Methods in Natural Language Processing and Com-
putational Natural Language Learning. Association
for Computational Linguistics, pages 455–465.

Oriol Vinyals, Alexander Toshev, Samy Bengio, and
Dumitru Erhan. 2015. Show and tell: A neural im-
age caption generator. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recog-
nition. pages 3156–3164.

Linlin Wang, Zhu Cao, Gerard de Melo, and Zhiyuan
Liu. 2016a. Relation classification via multi-level
attention cnns. In ACL.

Xingyou Wang, Weijie Jiang, and Zhiyong Luo. 2016b.
Combination of convolutional and recurrent neural
network for sentiment analysis of short texts. In
Proceedings of the 26th International Conference on
Computational Linguistics. pages 2428–2437.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho,
Aaron Courville, Ruslan Salakhutdinov, Richard S
Zemel, and Yoshua Bengio. 2015a. Show, attend
and tell: Neural image caption generation with vi-
sual attention. arXiv preprint arXiv:1502.03044
2(3):5.

Kun Xu, Yansong Feng, Songfang Huang, and
Dongyan Zhao. 2015b. Semantic relation clas-
sification via convolutional neural networks
with simple negative sampling. arXiv preprint
arXiv:1506.07650 .

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He,
Alex Smola, and Eduard Hovy. 2016. Hierarchical
attention networks for document classification. In
Proceedings of NAACL-HLT . pages 1480–1489.

Daojian Zeng, Kang Liu, Siwei Lai, Guangyou Zhou,
Jun Zhao, et al. 2014. Relation classification via
convolutional deep neural network. In COLING.
pages 2335–2344.

Peng Zhou, Wei Shi, Jun Tian, Zhenyu Qi, Bingchen
Li, Hongwei Hao, and Bo Xu. 2016a. Attention-
based bidirectional long short-term memory net-
works for relation classification. In ACL.

Peng Zhou, Wei Shi, Jun Tian, Zhenyu Qi, Bingchen
Li, Hongwei Hao, and Bo Xu. 2016b. Attention-
based bidirectional long short-term memory net-
works for relation classification. In The 54th Annual
Meeting of the Association for Computational Lin-

guistics. page 207.

321

Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017), pages 322–332,
Vancouver, Canada, August 3 - August 4, 2017. c©2017 Association for Computational Linguistics

Idea density for predicting Alzheimer’s disease from transcribed speech

Kairit Sirts1, Olivier Piguet2,3 and Mark Johnson4

1Institute of Computer Science, University of Tartu
2School of Psychology and Brain & Mind Centre, The University of Sydney

3Neuroscience Research Australia, The University of New South Wales
4Department of Computing, Macquarie University

kairit.sirts@ut.ee, olivier.piguet@sydney.edu.au
mark.johnson@mq.edu.au

Abstract

Idea Density (ID) measures the rate at
which ideas or elementary predications
are expressed in an utterance or in a text.
Lower ID is found to be associated with an
increased risk of developing Alzheimer’s
disease (AD) (Snowdon et al., 1996; Engel-
man et al., 2010). ID has been used in two
different versions: propositional idea den-
sity (PID) counts the expressed ideas and
can be applied to any text while semantic
idea density (SID) counts pre-defined infor-
mation content units and is naturally more
applicable to normative domains, such as
picture description tasks. In this paper, we
develop DEPID, a novel dependency-based
method for computing PID, and its version
DEPID-R that enables to exclude repeat-
ing ideas—a feature characteristic to AD
speech. We conduct the first comparison
of automatically extracted PID and SID in
the diagnostic classification task on two
different AD datasets covering both closed-
topic and free-recall domains. While SID
performs better on the normative dataset,
adding PID leads to a small but significant
improvement (+1.7 F-score). On the free-
topic dataset, PID performs better than SID
as expected (77.6 vs 72.3 in F-score) but
adding the features derived from the word
embedding clustering underlying the auto-
matic SID increases the results consider-
ably, leading to an F-score of 84.8.

1 Introduction

Idea density (ID) measures the rate of propositions
or ideas expressed per word in a text and it is con-
nected to some very interesting results from neu-
roscience related to Alzheimer’s disease (AD). In

The old gray [MARE] has a very large [NOSE].

Dependencies Propositions

det(The, mare)
amod(old, mare) (OLD, MARE)
amod(gray, mare) (GRAY, MARE)
nsubj(mare, has) (HAS, MARE, NOSE)
det(a, nose)
advmod(very, large) (VERY, (LARGE, NOSE))
amod(large, nose) (LARGE, NOSE)
dobj(nose, has) (HAS, MARE, NOSE)
punct(., has)

Table 1: The alignment of the dependency and
propositional structures. The example sentence
is due to Brown et al. (2008). The predicative
proposition (HAS, MARE, NOSE) is represented by
two dependency arcs.

particular, two longitudinal studies—the Nun Study
(Snowdon et al., 1996) and the Precursors Study
(Engelman et al., 2010)—suggest that lower ID, as
measured from the essays written in young age, is
associated with the higher probability of develop-
ing AD in later life.

Two alternative definitions of idea density have
been used in relation to AD. Propositional idea
density (PID) counts the number of any ideas ex-
pressed in the text, setting no restriction to the topic
(Turner and Greene, 1977; Chand et al., 2010). An
example sentence with its ideas or propositions is
given in Table 1. Based on each proposition a ques-
tion can be formulated with a yes or no answer. Re-
moving a proposition from a sentence changes the
semantic meaning of that sentence. For instance,
removing the proposition (GRAY, MARE) from the
example makes the overall meaning of the sentence
more general. The PID is then computed by nor-
malising the proposition count with the token count
and thus the PID of the example given in Table 1 is
6/9 ≈ 0.667.

The existing tool for automatic PID computation,

322

CPIDR (Brown et al., 2008), is based on counting
POS tags. However, we noticed that the proposi-
tional structure of a sentence is very similar to its
dependency structure, see the first column in Ta-
ble 1. This motivated us to come up with DEPID, a
method for computing PID from dependency struc-
tures. In addition, DEPID more easily enables to
consider idea repetition which has been shown to
be a characteristic feature in Alzheimer’s speech
(Bayles et al., 1985; Tomoeda et al., 1996; Bayles
et al., 2004), resulting in a modified PID version
DEPID-R which excludes the repeated ideas.

Semantic idea density (SID) (Ahmed et al.,
2013a,b) relies on a set of pre-defined informa-
tion content units (ICU). ICU is an object or action
that can be seen on the picture or is told in the story
and is expected to be mentioned in the narrative.
For instance, assuming that the words in capital
letters and square brackets in the example sentence
shown in Table 1 belong to the set of pre-defined
ICUs the SID is computed by normalising the ICU
count with the token count: 2/9 ≈ 0.222. Recently,
Yancheva and Rudzicz (2016), proposed a method
for computing SID based on word embedding clus-
ters. We use their method for computing SID as
it does not rely on any pre-defined ICU inventory
and thus is applicable also on free-topic datasets.

PID and SID are complementary definitions of
idea density with SID being naturally applicable in
standardised picture description or story re-telling
tasks while PID is more suitable on datasets of
spontaneous speech on free topics.

In this paper we study the predictiveness of both
PID and SID features in the diagnostic classifica-
tion task for predicting AD. To that end, we conduct
experiments on two very different datasets: Demen-
tiaBank, which consists of transcriptions of a nor-
mative picture description task, and AMI, which
contains autobiographical memory interviews de-
scribing life events freely chosen by the subjects.

We show that on the DementiaBank data the
POS-based PID scores are actually higher for AD
patients than they are for normal controls, con-
trary to the expectations from the AD literature
(Engelman et al., 2010; Chand et al., 2012; Kem-
per et al., 2001). By studying the characteristics
of the DementiaBank we are able to adapt DEPID
such that its PID values become significantly differ-
ent between the patient and control groups in the
expected direction. Thus, we believe that our pro-
posed DEPID is a better tool for measuring PID as

described by neurolinguists on spontaneous speech
transcripts than the POS-based CPIDR.

Secondly, we show that the SID performs bet-
ter than PID on the constrained-domain Dementia-
Bank corpus but adding the PID feature leads to a
small but significant improvement.

Thirdly, we show that on the free-topic AMI
dataset the PID performs better than the automati-
cally extracted SID, but adding the features derived
from the word embedding clustering underlying
the SID, modeling the broad discussion topics, in-
creases the results considerably—an effect which
is less visible on the constrained topic Dementia-
Bank.

The contributions of this paper are the following:

1. Development of DEPID, the new dependency-
based method for automatically computing
PID and its version DEPID-R which enables
to detect and exclude idea repetitions;

2. Analysis of the characteristic features of the
DementiaBank dataset and the proposal for
modifying DEPID to make it applicable to
this and other similar closed-topic datasets.

3. Results of extensive diagnostic classification
experiments using PID, SID and several re-
lated baselines on two very different AD
datasets.

2 Idea density and Alzheimer’s disease

ID was first associated with AD in the Nun Study
(Snowdon et al., 1996), based on a cohort of elderly
nuns participating in a longitudinal study of aging
and Alzheimer’s disease. In this work, they studied
the autobiographical essays the nuns had written
decades ago in their youth. The nuns were divided
into three groups based on their ID score computed
from the essays, so that each group covered 33.3%
percentile of the whole range of ID values. The
lowest group was labeled as having low ID and
the medium and highest group as having high ID.
These groups were established from a sample of
93 nuns. The association between AD and ID was
studied on a sample of 25 nuns who had died by the
time of the study, for 10 of whom the cause of death
had been marked as AD. The study found that most
subjects with AD belonged to the low ID group
while most of those, who did not develop AD, be-
longed to the group with high ID, thus suggesting
that the low ID in youth might be associated with
the development of the AD in later life.

323

Similar work was conducted on a group of medi-
cal students for whom essays from the time of their
admission to the medical school several decades
earlier were available (Engelman et al., 2010). The
results of this study also showed a significantly
lower ID on the AD group as compared to the
healthy controls, suggesting that ID could be an
important discriminative feature for predicting AD.

2.1 Propositional and semantic idea density

Two different versions of ID have been developed
over time, both derived from the propositional base
structure developed by Kintsch and Keenan (1973)
to describe the semantic complexity of texts in read-
ing experiments.

Propositional idea density (PID), which was
used both in the Nun Study and the medical stu-
dents study, is based on counting the semantic
propositions as defined by Turner and Greene
(1977) and later refined by Chand et al. (2012).
Three main types of propositions where described:
1) predications that are based on verb frames;
2) modifications that include all sorts of modifiers,
e.g. adjectival, adverbial, quantifying, qualifying
etc.; and 3) connections that join simple proposi-
tions into complex ones. For each proposition, a
question can be formed with a yes or no answer.
For instance, based on the example in Table 1, we
could form the following questions:

1. Is the mare old?
2. Is the mare gray?
3. Has the mare a nose?
4. Is the nose large?
5. Is the nose very large?
Each of those questions inquires about a different

aspect of the whole sentence and is a basis of an
idea or proposition.

Semantic idea density (SID) has retained its re-
lation to the propositional base of some text. It
relies on a set of information content units (ICUs)
that have been pre-defined for a closed-topic task,
such as picture description or story re-telling. For
instance, different inventories of 7-25 ICUs have
been described for the Cookie Theft picture task
(Goodglass and Kaplan, 1983), listing objects visi-
ble on the picture such as “boy”, “girl”, “cookie”
or “kitchen” or actions performed on the scene
such as “boy stealing cookies” or “woman drying
dishes”. SID is computed by counting the number
of ICUs mentioned in the text and then normalising
by the total number of word tokens.

2.2 Related work on AD using ID

PID, computed with CPIDR, has been used in few
previous works for predicting AD. Jarrold et al.
(2010) used PID as one among many features and
reported it as significant. They obtained a classi-
fication accuracy of 73% on their dataset, which
contained short structured clinical interviews, with
their best model and feature set that also included
the PID feature. PID was also used by Roark et al.
(2011) to detect mild cognitive impairment on a
story re-telling dataset. However, they found no sig-
nificant difference between groups in terms of PID
and thus, their feature selection procedure most
probably filtered it out.

In terms of SID, most previous work has relied
on manually defined ICUs (Ahmed et al., 2013b,a).
Fraser et al. (2015) extracted binary and frequency-
based ICU features. They searched for words re-
lated to the ICU objects and looked at the nsubj-
relations in the dependency parses to detect the
ICUs referring to actions. The binary feature was
set when any word related to an ICU was men-
tioned in the text, while frequency-based features
counted the total number of times any word refer-
ring to an ICU was mentioned.

Recently, Yancheva and Rudzicz (2016) pro-
posed a method for automatically extracting ICUs
and computing SID without relying on a manually
defined ICU inventory. This work will be reviewed
in more detail in section 4. They found that the
automatically extracted ICUs and SID performed
as well in a diagnostic AD classification task as the
human-defined ICUs.

3 Computation of PID

Automating the computation of PID is difficult be-
cause it is essentially a semantic measure. The
instructions given by Turner and Greene (1977) for
counting the propositions assume the comprehen-
sion of the semantic meaning of the text, while
the raw text lacks the necessary semantic annota-
tions. However, it has been noticed that the propo-
sitions roughly correspond to certain POS tags. In
particular, Snowdon et al. (1996) mention that el-
ementary propositions are expressed using verbs,
adjectives, adverbs and prepositions. This obser-
vation is the basis of the CPIDR program (Brown
et al., 2008), a tool for automatically computing
PID scores from text. CPIDR first processes the
text with a POS-tagger, then counts all verbs, ad-
jectives, adverbs, prepositions and coordinating

324

Dep rel Proposition type
advcl Causal connection
advmod Qualifying modification
amod Qualifying modification
appos Referencial predication
cc Conjunctive connective
csubj Predication with a clausal subject
csubjpass Predication with a passive clausal

subject
deta Quantifying modification
neg Negative modification
npadvmod Qualifying modification
nsubjb Predication subject
nsubjpass Predication with passive subject
nummod Quantifying modification
poss Possessive modification
predet Qualifying modification
preconj Conjunctive or disjunctive

connection
prep Proposition denoting purpose,

location, intention, etc.
quantmod Quantifying modification
tmod Qualifying modification
vmod Qualifying modification

Table 2: Dependency relations encoding propo-
sitions.

aexcept a, an and the
bexcept it and this

conjunctions as propositions, and then applies a set
of 37 rules to adjust the final proposition count.

3.1 DEPID—dependency-based PID

We propose that the dependency structure is bet-
ter suited for PID computation than the POS tag
counting approach adopted by the existing CPIDR
program (Brown et al., 2008) because the depen-
dency structure resembles more closely the seman-
tic propositional structure, see Table 1. We treat
each dependency type as a separate feature and
manually set the feature weights to either one or
zero depending on whether this dependency rela-
tion encodes a proposition or not. We make these
decisions based on the dependency type descrip-
tions in the Stanford dependency manual (de Marn-
effe and Manning, 2008). The dependency types
with non-zero weights are listed in Table 2. The
PID is then computed by summing the counts of
those dependency relations and normalising by the
number of word tokens. We call our dependency-
based PID computation method DEPID.

We computed the Spearman correlations be-
tween CPIDR, DEPID and manual proposition
counts on the 69 example sentences given in chap-
ter 2 in (Turner and Greene, 1977)1 and the 177

1Similar to Brown et al. (2008), we exclude the example

Spearman r
CPIDR vs Manual 0.795
DEPID vs Manual 0.839
DEPID vs CPIDR 0.864

Table 3: Spearman correlations between CPIDR,
DEPID and manual proposition counts on the exam-
ples given in Turner and Greene (1977) and Chand
et al. (2010).

example sentences given in (Chand et al., 2010),
making up the total of 276 sentences. These corre-
lations are given in Table 3. We observe that by just
counting the dependency relations given in Table 2,
we obtain proposition counts that correlate better
with the manual counts than the POS-based CPIDR
counts.

3.2 DEPID-R
It is known that the Alzheimer’s language is gen-
erally fluent and grammatical but in order to main-
tain the fluency the deficiencies in semantic or
episodic memory are compensated with empty
speech (Nicholas et al., 1985), such as repetitions,
both on the word level but also on the idea, sen-
tence or narrative level. DEPID easily enables to
track repeated ideas in the narrative. We consider a
proposition as repetition of a previous idea when
the deprel(DEPENDENT LEMMA, HEAD LEMMA)
tuples of the two propositions match. For instance,
a sentence “I had a happy life.” contains three
propositions: nsubj(I, HAVE), dobj(LIFE, HAVE)
and amod(HAPPY, LIFE). Another sentence “I’ve
had a very happy life.” later in the same narrative
only adds a single proposition to the total count—
advmod(VERY, HAPPY)—as this is the only new
piece of information that was added.

We modify DEPID to exclude the repetitive
ideas of a narrative by only counting the propo-
sition types expressed with the lexicalised de-
prel(DEPENDENT LEMMA, HEAD LEMMA) de-
pendency arcs. We call this modified version
of dependency-based PID computation method
DEPID-R. The relation between DEPID-R and DE-
PID is that DEPID counts the tokens of the same
propositions.

4 Computation of SID

Recently, Yancheva and Rudzicz (2016) proposed
a method for automatically computing SID without

17, but for examples 18, 54, 55, 56, we include all paraphrases.

325

DB AMI
AD Ctrl AD Ctrl

Subjects 169 98 20 20
Samples 257 241 36 20
Mean samples 1.52 2.46 1.80 1.00
Mean words 104 114 1674 1509
Std words 58 59 778 688

Table 4: Statistics of the DementiaBank (DB) and
AMI datasets. Mean samples is the average number
of samples per subject. Mean and std words are
the mean number of words per sample and the
respective standard deviation.

the use of manually defined ICUs. Their method
relies on clustering word embeddings of the nouns
and verbs found in the transcriptions, assuming that
the embeddings of the words related to the same
semantic unit are clustered together.

They first perform K-means clustering on the
word embeddings. Then, for each cluster they
compute the mean distance µcl and its standard
deviation σcl. The mean distance is the average
Euclidean distance of all vectors assigned to a clus-
ter from the centroid of that cluster. Finally, for
each word they compute the scaled distance as a
z-score of the Euclidean distance dE between the
word embedding and its closest cluster centroid:

dscaled =
dE − µcl

σcl

The words with dscaled < 3 are counted as auto-
matic ICUs. SID is then computed by dividing
the number of ICUs with the total number of word
tokens in the transcription.

In addition to SID, Yancheva and Rudzicz (2016)
experiment with distance-based features also de-
rived from the same clustering. The distance fea-
ture for each cluster is computed as the average of
the scaled distances of the words (nouns or verbs)
in the transcript assigned to that cluster. These clus-
ter features are not directly related to the concept
of SID but they could be viewed as an automatic
approximation of features derived from the human
annotated ICUs.

5 Experiments

5.1 Data
We conduct experiments on two very different AD
datasets. The first dataset is derived from the De-
mentiaBank (Becker et al., 1994), which is part of a

publicly available Talkbank corpus.2 It contains de-
scriptions of the Cookie Theft picture (Goodglass
and Kaplan, 1983) produced by subjects diagnosed
with dementia as well as of healthy control cases.
The data is manually transcribed and annotated in
the CHAT format (MacWhinney, 2000), contain-
ing a range of annotations denoting various speech
events. This is the same dataset used by Yancheva
and Rudzicz (2016) and similar to them, we use
the interviews of all control subjects and subjects
whose diagnose is either AD or probable AD.

The second dataset, collected at NeuRA3, con-
tains autobiographical memory interviews (AMI)
of both AD patients and healthy control subjects.
Each interview consists of four stories, each story
describing events from a particular period of the
subject’s life: teenage years, early adulthood, mid-
dle adulthood and last year. Each story has three
logical parts: free recall, general probe and specific
probe. In the free recall part the subject is asked
to talk freely about events he remembers from the
given life period. In the general recall part the
interviewer helps to narrow down to a particular
specific event. In the specific probe part the in-
terviewer asks a number of predefined questions
about this specific event. We use all four stories
of an interview as a single sample but extract only
the free recall part of each story as this is the most
spontaneous part of the interview.

We preprocess both data sets similarly, follow-
ing the procedure described in (Fraser et al., 2015)
as closely as possible. We first extract only the
patient’s dialogue turns. Then we remove any to-
kens that are not words (e.g. laughs). In Demen-
tiaBank corpus, such tokens can be detected by
various CHAT annotations. We also remove filled
pauses such as um, uh, er, ah. The statistics of both
datasets are given in Table 4.

5.2 Analysis of the idea density

First, we perform a statistical analysis of the differ-
ent ID measures in Table 5 on both datasets using
the indepedent samples Wilcoxon rank-sum test to
test the difference between group means.

The DEPID computed PID values are systemati-
cally lower than the CPIDR values on both datasets,
suggesting that either CPIDR overestimates or the
DEPID underestimates the number of propositions.
In order to check that we manually annotated the

2https://talkbank.org/DementiaBank/
3Neuroscience Research Australia

326

Data Method AD mean (sd) Ctrl mean (sd)
DB CPIDR* 0.518 (0.069) 0.491 (0.057)
DB DEPID* 0.371 (0.052) 0.356 (0.046)
DB DEPID-R 0.339 (0.049) 0.334 (0.042)
DB DEPID-R-ADD* 0.168 (0.064) 0.194 (0.059)
DB SID* 0.380 (0.051) 0.427 (0.045)

AMI CPIDR 0.524 (0.023) 0.532 (0.017)
AMI DEPID 0.468 (0.022) 0.473 (0.017)
AMI DEPID-R* 0.334 (0.027) 0.366 (0.027)
AMI DEPID-R-ADD+* 0.291 (0.032) 0.337 (0.032)
AMI SID* 0.346 (0.034) 0.385 (0.024)

Table 5: The statistics of the ID values for AD
and control groups. DEPID-R ignores the repeated
ideas. DEPID-R-ADD for DementiaBank addition-
ally excludes conjunctions, sentences with I and
you subjects and sentences with vague meaning.
DEPID-R-ADD+ for AMI only ignores sentences
with vague meaning. SID is computed based on the
clustering of the whole dataset. Star (*) after the
method name indicates that the difference in group
means is statistically significant (p < 0.001).

propositions of 20 interviews from DementiaBank
according to the guidelines given by Chand et al.
(2012). We found that both CPIDR and DEPID
overestimate the PID values although CPIDR does
it to much greater extent. CPIDR both overesti-
mates the number of propositions and underesti-
mates the number of tokens in certain cases leading
to higher PID scores. For example, CPIDR does
not count contracted forms, such as “’s” in “it’s” or

“n’t” in “don’t” as distinct tokens. Because there
are many such forms in DementiaBank transcrip-
tions, this behaviour considerably lowers CPIDR
token counts. Also, CPIDR counts each auxiliary
verb in present participle constructions as a sep-
arate proposition although these auxiliaries only
mark syntax, thus leading to an artificially high
proposition count. For instance, the clauses “she
is reaching” and “he is taking” both contain two
propositions according to CPIDR, whereas they
both really contain only one semantic idea.

Both CPIDR and DEPID PID values differ sig-
nificantly between AD and control groups on De-
mentiaBank but the mean values are opposite to
what was expected—AD patients have significantly
higher PID than controls. When the repeated ideas
are not counted (DEPID-R), the difference between
groups becomes non-significant. However, we
were curious about why the association between
the lower PID values and the AD diagnosis cannot
be observed on DementiaBank. Thus, we investi-
gated this issue and found that the DementiaBank

interviews have certain additional characteristics
that contribute to the automatic proposition count
being too high.

Conjunctive propositions First, we noticed that
most and-conjunctions are used as lexical fillers in
DementiaBank, whereas both CPIDR and DEPID
count all conjunctions as propositions. In order
to address this problem we excluded the cc depen-
dency type from the set of propositions.

Sentences with pronominal subjects Secondly,
we noticed that the sentences with subject either I
or you most probably do not say anything about the
picture but rather belong to the meta conversation.
Two examples of such sentences are for instance

“what else can I tell you about the picture?” or “I’d
say that’s about all.”. To solve this problem we did
not count propositions from sentences, where the
subject was either I or you.

Vague sentences Finally, we observed that the
AD patients seem to utter more vague sentences
that do not contain any concrete ideas, such as for
instance “the upper one is there” or “they’re do-
ing more things on the outside.”. Both CPIDR
and DEPID extract propositions from syntactic
structures and thus they count pseudo-ideas from
those sentences as well. To detect such vague
sentences we evaluated the specificity of all sen-
tences using SpeciTeller (Li and Nenkova, 2015).
SpeciTeller predicts a specificity score between 0
and 1 for each sentence using features extracted
from the sentence surface-level, specific dictionar-
ies and distributional word embeddings. We did
not count propositions from sentences whose speci-
ficity score was lower than 0.01.

After incorporating all those three measures to
DEPID we finally obtain PID values on Dementia-
Bank that are significantly different for patients and
controls in the expected direction—the AD patients
have significantly lower PID values than control
subjects. Note that those measures only affect the
proposition count and not the number of tokens.
Also note that although these measures were moti-
vated by the observations made on one particular
(DementiaBank) dataset, they can be expected to
be applicable to other similar closed-topic datasets,
containing picture descriptions or story re-tellings.4

4Unfortunately, aside from DementiaBank there are no
other publicly available AD datasets and thus we could not
test whether our expectations hold true.

327

On AMI data, the difference between group
means is non-significant for both CPIDR and DE-
PID values. However, when the repeated ideas are
excluded (DEPID-R), the mean PID for AD pa-
tients is significantly lower than for controls, as
expected. It should be noted that the first two prob-
lems observed on DementiaBank—conjunctions
and pronominal subjects—are not actual on the
free-recall AMI data. In autobiographical memory
interviews many sentences are expected to have I
as subject. Also, the and-conjunctions are more
likely to convey real ideas there rather than carry
the role of lexical fillers. However, AD patients
can utter more sentences with very vague meaning
in AMI data as well and thus, in the last row of the
Table 5 we show the DEPID PID values with vague
sentences excluded for AMI dataset as well. We
see that the PID values decrease for both patients
and controls and the difference between groups
remains statistically significant.

SID values differ significantly between the AD
and control groups on both datasets with AD pa-
tients having significantly lower SID values as ex-
pected. The clustering underlying the automatically
computed SID is trained on the whole dataset for
both DementiaBank and AMI data.

5.3 Classification setup

We test both PID and SID in the diagnostic binary
classification task on both DementiaBank and AMI
datasets. When computing PID, the repeated ideas
are excluded (DEPID-R). In addition, for Demen-
tiaBank, we also use the additional measures de-
scribed in Section 5.2 (DEPID-R-ADD) as, accord-
ing to Table 5, just DEPID-R cannot be expected to
be predictive on that type of dataset. We compute
the SID as described in Section 4. In following
(Yancheva and Rudzicz, 2016), we cluster the 50-
dimensional Glove embeddings5 of all nouns and
verbs found in the transcripts with k-means. Simi-
lar to them, we set the number of clusters to 10 on
both datasets.

For single feature models (SID or PID) we use
a simple logistic regression classifier. For mod-
els with multiple features we use the elastic net
logistic regression with an elastic net hyperparam-
eter α = 0.5. We train and test with 10-fold
cross-validation on subjects and repeat each ex-
periment 100 times. We report the mean and stan-

5http://nlp.stanford.edu/projects/
glove/

Data Features Precision Recall F-score
DB CPIDR 59.8 (0.7) 59.1 (0.5) 58.8 (0.5)
DB PID 61.1 (0.7) 60.3 (0.6) 60.0 (0.5)
DB SID 71.4 (0.6) 70.7 (0.5) 70.5 (0.5)
DB SID+PID 73.7 (0.9) 72.1 (0.6) 72.2 (0.6)

AMI CPIDR 45.1 (3.2) 63.4 (1.8) 51.9 (2.3)
AMI PID 79.2 (1.9) 80.0 (0.5) 77.6 (0.9)
AMI SID 73.7 (3.0) 75.3 (1.5) 72.3 (2.1)
AMI SID+PID 82.9 (3.8) 78.0 (1.8) 77.7 (1.8)

Table 6: Classification results of various ID mea-
sures. The PID is DEPID-R-ADD for Dementia-
Bank and DEPID-R for AMI.

dard deviation of the 100 macro-averaged cross-
validated runs. For each experiment we report
class-weighted precision, recall and F-score.6

5.4 Classification results

The classification results using various ID mea-
sures are shown in Table 6. On both datasets, PID
and SID are better from the CPIDR baseline al-
though the difference is considerably larger on the
free-recall AMI dataset. On DementiaBank, SID
performs better than PID and combining SID and
PID also gives a small consistent cumulative effect,
improving the F-score by 1.7%. On AMI data, the
SID performs surprisingly well, considering that
the automatic ICUs were extracted from only 10
clusters and the number of clusters was not tuned
to that dataset at all. However, PID performs ca 5%
better than SID in terms of all measures. Combin-
ing PID and SID gives some improvements in pre-
cision at the cost the decrease in recall and gives no
cumulative gains in F-score. These results are fully
in line with our expectations that the syntax-based
DEPID performs better on the free-topic dataset,
while the SID is better on closed-domain dataset.

For better comparison with Yancheva and Rudz-
icz (2016) we also experimented with the distance-
based cluster features, which are derived from the
clusters underlying the automatic SID (see sec-
tion 4). We also show additional semantic baselines
using LIWC features (Tausczik and Pennebaker,
2010) and bag-of-word (BOW) features extracting
the counts of nouns and verbs normalised by the
number of tokens. These results are shown in Ta-
ble 7. On DementiaBank dataset, cluster features
alone do not perform too well and using cluster
features together with PID and SID gives only mi-
nor improvements. On the other hand, both the

6Classification accuracy is omitted because it is equivalent
to the class-weighted recall.

328

Data Features Precision Recall F-score
DB Clusters 62.3 (1.6) 62.2 (1.7) 62.2 (1.7)
DB C+PID 67.4 (1.7) 64.9 (1.5) 65.1 (1.5)
DB C+SID 73.4 (1.4) 71.5 (1.3) 71.6 (1.3)
DB C+SID+PID 74.4 (1.5) 72.5 (1.2) 72.7 (1.2)
DB LIWC 80.0 (0.9) 78.4 (0.7) 78.5 (0.7)
DB BOW 80.6 (1.1) 79.1 (1.0) 79.3 (1.0)

AMI Clusters 76.9 (7.7) 71.2 (5.2) 70.5 (5.8)
AMI C+PID 81.2 (5.0) 75.7 (3.8) 75.3 (3.8)
AMI C+SID 83.5 (5.0) 77.9 (4.1) 77.7 (4.4)
AMI C+SID+PID 84.6 (4.4) 78.1 (3.8) 78.4 (4.0)
AMI LIWC 74.2 (4.7) 67.8 (3.5) 66.8 (3.3)
AMI BOW 65.1 (7.2) 65.3 (4.1) 61.6 (4.7)

Table 7: Classification results on DementiaBank
(DB) and AMI using cluster features (C) combined
with PID and SID, and LIWC and BOW baselines.
The PID is DEPID-R-ADD for DementiaBank and
DEPID-R for AMI.

Data Features Precision Recall F-score
DB Clusters 68.0 (1.2) 65.5 (0.9) 65.7 (0.8)
DB C+PID 69.6 (1.1) 67.1 (0.7) 67.4 (0.7)
DB C+SID 75.3 (1.0) 73.3 (0.7) 73.5 (0.7)
DB C+SID+PID 76.6 (1.1) 74.8 (0.8) 75.0 (0.7)

AMI Clusters 86.0 (3.6) 80.4 (2.2) 80.5 (2.1)
AMI C+PID 88.4 (3.9) 83.0 (2.7) 83.2 (2.8)
AMI C+SID 88.6 (3.0) 84.8 (1.7) 84.8 (1.7)
AMI C+SID+PID 87.3 (3.8) 82.4 (2.6) 82.7 (2.7)

Table 8: Classification results on DementiaBank
(DB) and AMI using cluster features (C) combined
with PID and SID. The clusters are pre-trained on
the whole dataset. The PID is DEPID-R-ADD for
DementiaBank and DEPID-R for AMI.

LIWC and BOW baselines perform very well on
DementiaBank with BOW features giving the total
highest precision of 80.6%, recall of 79.1% and
F-score of 79.3%. In fact, these results are very
close to the state-of-the-art on this dataset: a recall
of 81.9% (Fraser et al., 2015) and an F-score of
80.0% (Yancheva and Rudzicz, 2016). Note how-
ever that the BOW features are conceptually much
simpler than the acoustic and lexicosyntactic fea-
tures extracted by Yancheva and Rudzicz (2016)
and Fraser et al. (2015).

On the free-recall AMI data, the cluster features
perform surprisingly well while the results of the
LIWC and BOW baselines are lower. Adding clus-
ter features to ID behaves inconsistently—in case
of SID the F-score improves while adding cluster
features to PID lowers the F-score. It is also worth
noticing that results on AMI data including clus-
ter features vary quite a bit, in some cases having
standard deviation even as high as 7.7%.

Finally, we experimented with a scenario where

the word embedding clusters are pre-trained on the
whole dataset, in which case the clustering and thus
also the SID feature reflect the structure of both
training and test folds. This scenario assumes re-
training the clustering and the classification model
for each new test item/set. Although the classifica-
tion model is then informed by the test set, we do
not see it as test set leakage as the clustering is unsu-
pervised. These results, given in Table 8, show that
all results on both datasets improve, whereas the im-
provements are considerably larger on AMI dataset,
which is expected because the model trained on the
free-topic AMI data is likely to gain more on know-
ing the topics discussed in the test item/set. This
scenario gives the highest F-score of 84.8% on this
dataset when adding cluster features to SID.

Note, that the cluster features F-score trained
on the full dataset is slightly lower than the 68%
reported by Yancheva and Rudzicz (2016). This
difference is probably due to the differences in
hyperparameters and experimental setup: we use
an elastic-net regularised logistic regression classi-
fier while they used a random forest, we perform
10-fold cross-validation while they divided the De-
mentiaBank into 60-20-20 train-dev-test partitions.
However, the classification performance of cluster
features together with SID are in the same range as
their reported 74%.

6 Discussion

This is the first work we are aware of that com-
pares the same methods for predicting AD on two
different datasets. Moreover, most previous work
has been conducted either on constrained-topic
datasets, containing picture descriptions (Orimaye
et al., 2014; Fraser et al., 2015; Yancheva and
Rudzicz, 2016; Rentoumi et al., 2014), or semi-
constrained structured interviews about some par-
ticular topic (Thomas et al., 2005; Jarrold et al.,
2010, 2014), while our AMI dataset contains free
recall samples and thus is probably more sponta-
neous than the previously used datasets.

We expected PID to perform well on the free-
recall AMI dataset, which proved to be the case.
However, we were surprised that the small num-
ber of automatically extracted clusters perform so
well on that dataset too. This raises the natural
question what topics those clusters represent. To
shed light on this question, we studied the clus-
tering trained on the whole AMI dataset. There
were three clusters for which values differed sig-

329

nificantly7 between AD and control subjects: C0
(p < 0.001), C6 (p < 0.001) and C9 (p = 0.0044).
C0, which could be denoted as a cluster describ-
ing experiences, contained a diverse mix of words,
which close to the cluster center denoted specific
aspects of something or connoted emotions such
as “rudeness”, “flirting” and “usher”, while the
farther words contained a range of aspects relevant
to people’s lives such as “billiards”, “bronchitis”
and “depression”. C6 contained close to the cluster
center simple work-related words, e.g. “working”,

“employed” and “student”, while farther from the
center there were more words referring to family
members and even further away became the words
referring to specific professions such as “psychol-
ogists”, “barrister” and “chemist”. The values
of C6 feature for AD patients were significantly
lower than for controls. Finally, the cluster C9
contained simple business-related words close to
the cluster center, such as “manage”, “product”
and “account”, while the words got more specific
farther away from the centroid, e.g. “licensed”,

“reorganisation” and “textile”.
Also, we checked how many words were con-

sidered as ICUs (words with dscaled < 3.0 to their
closest cluster center) on AMI data and found that
most words were counted. This suggests that the
automatically computed SID is in fact very close
to the simple proportion of nouns and verbs in the
transcripts. In order to check this, we extracted
the normalised counts of nouns and verbs from
all transcripts in both datasets and used it to train
single feature logistic regression classifiers. We
obtained the precision 67.6, recall 66.8 and F-score
66.6 on DementiaBank and precision 77.1, recall
76.0 and F-score 74.3 on AMI dataset. Also, we
found that on DementiaBank the simple bag-of-
words baseline obtained the results very close to
the current state-of-the-art that uses much more
complex feature sets, including both acoustic and
lexicosyntactic features (Fraser et al., 2015). These
two observations suggest that there is still room for
studying simple feature sets for predicting AD.

7 Conclusion

We experimented with two different definitions of
idea density—propositional idea density and se-
mantic idea density—in the classification task for
predicting Alzheimer’s disease. In the AD and psy-
cholinguistic literature, PID has been automatically

7We used the Wilcoxon signed rank test.

calculated using CPIDR (Engelman et al., 2010;
Ferguson et al., 2014; Bryant et al., 2013; Moe
et al., 2016). We show that CPIDR has a number of
flaws when applied to AD speech, and we propose
a new PID computation method DEPID which is
more highly correlated with manual estimates of
PID. We recommend that AD researchers use our
automatic measure, DEPID-R, which also excludes
repeating ideas from the total idea count, in place
of CPIDR.

This is the first comparison between PID and
SID and also the first computational study that eval-
uates the predictive models for Alzheimer’s disease
on two very different datasets. While on the closed-
topic picture description dataset SID performs bet-
ter, including PID also adds a small improvement
to the classification results. On the open-domain
dataset we found that the PID was more predictive
than SID as expected. However, the small number
of automatically extracted cluster features underly-
ing the SID, modeling the broad discussion topics,
led to even better results.

In future we plan to study the usefulness and
applicability of both PID and SID also in other
clinical tasks, such as in clinical diagnostic tasks
for depression or schizophrenia. Another possible
avenue for future work would include combining
dependency-base PID and embedding-based SID
into a unified idea density measure that would take
into account both the propositional structure as well
as the semantic content of words.

Acknowledgements

This research was supported by a Google award
through the Natural Language Understanding Fo-
cused Program, and under the Australian Research
Council’s Discovery Projects funding scheme
(project number DP160102156), and in part by
funding to ForeFront, a collaborative research
group dedicated to the study of frontotemporal
dementia and motor neuron disease, from the
National Health and Medical Research Council
(NHMRC) (APP1037746), and the Australian Re-
search Council (ARC) Centre of Excellence in
Cognition and its Disorders Memory Program
(CE11000102). OP is supported by an NHMRC
Senior Research Fellowship (APP1103258).

References
Samrah Ahmed, Celeste A. de Jager, Anne-Marie

Haigh, and Peter Garrard. 2013a. Semantic process-

330

ing in connected speech at a uniformly early stage of
autopsy-confirmed Alzheimer’s disease. Neuropsy-
chology 27(1):79–85.

Samrah Ahmed, Anne-Marie F. Haigh, Celeste A.
de Jager, and Peter Garrard. 2013b. Connected
speech as a marker of disease progression in autopsy-
proven Alzheimer’s disease. Brain 136(12):3727–
3737.

Kathryn A. Bayles, Cheryl K. Tomoeda, Alfred W.
Kaszniak, Lawrence Z. Stern, and Karen K. Eagans.
1985. Verbal perseveration of dementia patients.
Brain and Language 25(1):102–116.

Kathryn A. Bayles, Cheryl K. Tomoeda, Patrick E.
McKnight, Nancy Helm-Estabrooks, and Josh N.
Hawley. 2004. Verbal perseveration in individuals
with Alzheimer’s disease. Seminars in Speech and
Language 25(4):335–347.

James T. Becker, Francois Boller, Oscar L. Lopez, Ju-
dith Saxton, and Karen L. McGonigle. 1994. The
natural history of Alzheimer’s disease. Description
of study cohort and accuracy of diagnosis. Archives
of Neurology 51(6):585–594.

Cati Brown, Tony Snodgrass, Susan J. Kemper, Ruth
Herman, and Michael A. Covington. 2008. Au-
tomatic measurement of propositional idea density
from part-of-speech tagging. Behavior research
methods 40(2):540–545.

Lucy Bryant, Elizabeth Spencer, Alison Ferguson,
Hugh Craig, Kim Colyvas, and Linda Worrall. 2013.
Propositional Idea Density in aphasic discourse.
Aphasiology 27(8):992–1009.

Vineeta Chand, Kathleen Baynes, Lisa M. Bonnici, and
Sarah Tomaszewski Farias. 2010. Analysis of Idea
Density (AID): A Manual. Technical report, Univer-
sity of California at Davis.

Vineeta Chand, Kathleen Baynes, Lisa M. Bonnici, and
Sarah Tomaszewski Farias. 2012. A rubric for ex-
tracting idea density from oral language samples.
Current Protocols in Neuroscience 1.

Marie-Catherine de Marneffe and Christopher D. Man-
ning. 2008. Stanford Dependencies manual. Techni-
cal report, Stanford University.

Michal Engelman, Emily M. Agree, Lucy A. Meoni,
and Michael J. Klag. 2010. Propositional density
and cognitive function in later life: findings from
the Precursors Study. Journals of Gerontology - Se-
ries B Psychological Sciences and Social Sciences
65(6):706–711.

Alison Ferguson, Elizabeth Spencer, Hugh Craig, and
Kim Colyvas. 2014. Propositional idea density in
women’s written language over the lifespan: com-
puterized analysis. Cortex 55:107–121.

Kathleen C. Fraser, Jed A. Meltzer, and Frank Rudz-
icz. 2015. Linguistic Features Identify Alzheimer’s
Disease in Narrative Speech. Journal of Alzheimer’s
disease 49(2):407–422.

Harold Goodglass and Edith Kaplan. 1983. The As-
sessment of Aphasia and Related Disorders. Lea &
Febiger.

William Jarrold, Bart Peintner, David Wilkins, Dim-
itra Vergryi, Colleen Richey, Maria Luisa Gorno-
Tempini, and Jennifer Ogar. 2014. Aided diagnosis
of dementia type through computer-based analysis
of spontaneous speech. In Proceedings of the Work-
shop on Computational Linguistics and Clinical Psy-
chology: From Linguistic Signal to Clinical Reality.
pages 27–37.

William L. Jarrold, Bart Peintner, Eric Yeh, Ruth Kras-
now, Harold S. Javitz, and Gary E. Swan. 2010.
Language analytics for assessing brain health: Cog-
nitive impairment, depression and pre-symptomatic
alzheimer’s disease. In Proceedings of the 2010 In-
ternational Conference on Brain Informatics. pages
299–307.

Susan Kemper, Janet Marquis, and Marilyn Thompson.
2001. Longitudinal change in language production:
effects of aging and dementia on grammatical com-
plexity and propositional content. Psychology and
Aging 16(4):600–614.

Walter Kintsch and Janice Keenan. 1973. Reading rate
and retention as a function of the number of propo-
sitions in the base structure of sentences. Cognitive
Psychology 5(3):257–274.

Junyi Jessy Li and Ani Nenkova. 2015. Fast and accu-
rate prediction of sentence specificity. In Proceed-
ings of the Twenty-Ninth AAAI Conference on Artifi-
cial Intelligence. pages 2281–2287.

Brian MacWhinney. 2000. The CHILDES Project:
Tools for analyzing talk, 3rd edition.. Lawrence Erl-
baum Associates.

Aubrey M. Moe, Nicholas J. K. Breitborde, Mo-
hammed K. Shakeel, Colin J. Gallagher, and
Nancy M. Docherty. 2016. Idea density in the life-
stories of people with schizophrenia: Associations
with narrative qualities and psychiatric symptoms.
Schizophrenia Research 172(1):201–205.

Marjorie Nicholas, Loraine K. Obler, Martin L. Albert,
and Nancy Helm-Estabrooks. 1985. Empty Speech
in Alzheimer’s Disease and Fluent Aphasia. Journal
of Speech and Hearing Research 28(3):405–410.

Sylvester O. Orimaye, Jojo Sze-Meng Wong, and
Karen J. Golden. 2014. Learning Predictive Lin-
guistic Features for Alzheimer’s Disease and related
Dementias using Verbal Utterances. In Proceedings
of the Workshop on Computational Linguistics and
Clinical Psychology: From Linguistic Signal to Clin-
ical Reality. pages 78–87.

331

Vassiliki Rentoumi, Ladan Raoufian, Samrah Ahmed,
Celeste A. de Jager, and Peter Garrard. 2014. Fea-
tures and machine learning classification of con-
nected speech samples from patients with autopsy
proven Alzheimer’s disease with and without addi-
tional vascular pathology. Journal of Alzheimer’s
disease 42(S3):3–17.

Brian Roark, Margaret Mitchell, John-Paul Hosom,
Kristy Hollingshead, and Jeffrey Kaye. 2011. Spo-
ken Language Derived Measures for Detecting Mild
Cognitive Impairment. IEEE transactions on audio,
speech, and language processing 19(7):2081–2090.

David A. Snowdon, Susan J. Kemper, James A. Mor-
timer, Lydia H. Greiner, David R. Wekstein, and
William R. Markesbery. 1996. Linguistic ability in
early life and cognitive function and Alzheimer’s dis-
ease in late life. Findings from the Nun Study. JAMA
275(7):528–532.

Yla R. Tausczik and James W. Pennebaker. 2010. The
Psychological Meaning of Words: LIWC and Com-
puterized Text Analysis Methods. Journal of Lan-
guage and Social Psychology 29(1):24–54.

Calvin Thomas, Vlado Keselj, Nick Cercone, Kenneth
Rockwood, and Elissa Asp. 2005. Automatic de-
tection and rating of dementia of Alzheimer type
through lexical analysis of spontaneous speech. In
IEEE International Conference Mechatronics and
Automation, 2005. pages 1569–1574.

Cheryl K. Tomoeda, Kathryn A. Bayles, Michael W.
Trosset, Tamiko Azuma, and Anna McGeagh. 1996.
Cross-sectional analysis of Alzheimer disease ef-
fects on oral discourse in a picture description
task. Alzheimer Disease and Associated Disorders
10(4):204–215.

Althea Turner and Edith Greene. 1977. The construc-
tion and use of a propositional text base. Technical
report, University of Colorado.

Maria Yancheva and Frank Rudzicz. 2016. Vector-
space topic models for detecting Alzheimer’s dis-
ease. In Proceedings of the 54th Annual Meeting
of the Association for Computational Linguistics.
pages 2337–2346.

332

Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017), pages 333–342,
Vancouver, Canada, August 3 - August 4, 2017. c©2017 Association for Computational Linguistics

Zero-Shot Relation Extraction via Reading Comprehension

Omer Levy1 Minjoon Seo1 Eunsol Choi1 Luke Zettlemoyer1,2

1Paul G. Allen School of Computer Science and Engineering
University of Washington, Seattle WA

{omerlevy,minjoon,eunsol,lsz}@cs.washington.edu
2Allen Institute for Artificial Intelligence, Seattle, WA

Abstract

We show that relation extraction can be re-
duced to answering simple reading com-
prehension questions, by associating one
or more natural-language questions with
each relation slot. This reduction has sev-
eral advantages: we can (1) learn relation-
extraction models by extending recent
neural reading-comprehension techniques,
(2) build very large training sets for those
models by combining relation-specific
crowd-sourced questions with distant su-
pervision, and even (3) do zero-shot learn-
ing by extracting new relation types that
are only specified at test-time, for which
we have no labeled training examples. Ex-
periments on a Wikipedia slot-filling task
demonstrate that the approach can gen-
eralize to new questions for known rela-
tion types with high accuracy, and that
zero-shot generalization to unseen relation
types is possible, at lower accuracy levels,
setting the bar for future work on this task.

1 Introduction

Relation extraction systems populate knowledge
bases with facts from an unstructured text corpus.
When the type of facts (relations) are predefined,
one can use crowdsourcing (Liu et al., 2016) or
distant supervision (Hoffmann et al., 2011) to col-
lect examples and train an extraction model for
each relation type. However, these approaches
are incapable of extracting relations that were not
specified in advance and observed during training.
In this paper, we propose an alternative approach
for relation extraction, which can potentially ex-
tract facts of new types that were neither specified
nor observed a priori.

Relation Question Template

educated at(x, y)
Where did x graduate from?
In which university did x study?
What is x’s alma mater?

occupation(x, y)
What did x do for a living?
What is x’s job?
What is the profession of x?

spouse(x, y)
Who is x’s spouse?
Who did x marry?
Who is x married to?

Figure 1: Common knowledge-base relations de-
fined by natural-language question templates.

We show that it is possible to reduce relation ex-
traction to the problem of answering simple read-
ing comprehension questions. We map each re-
lation type R(x, y) to at least one parametrized
natural-language question qx whose answer is y.
For example, the relation educated at(x, y) can
be mapped to “Where did x study?” and “Which
university did x graduate from?”. Given a par-
ticular entity x (“Turing”) and a text that men-
tions x (“Turing obtained his PhD from Prince-
ton”), a non-null answer to any of these questions
(“Princeton”) asserts the fact and also fills the slot
y. Figure 1 illustrates a few more examples.

This reduction enables new ways of framing
the learning problem. In particular, it allows us
to perform zero-shot learning: define new rela-
tions “on the fly”, after the model has already
been trained. More specifically, the zero-shot sce-
nario assumes access to labeled data forN relation
types. This data is used to train a reading compre-
hension model through our reduction. However, at
test time, we are asked about a previously unseen
relation typeRN+1. Rather than providing labeled
data for the new relation, we simply list questions
that define the relation’s slot values. Assuming we
learned a good reading comprehension model, the
correct values should be extracted.

Our zero-shot setup includes innovations both

333

in data and models. We use distant supervision
for a relatively large number of relations (120)
from Wikidata (Vrandečić, 2012), which are easily
gathered in practice via the WikiReading dataset
(Hewlett et al., 2016). We introduce a crowd-
sourcing approach for gathering and verifying the
questions for each relation. This process pro-
duced about 10 questions per relation on average,
yielding a dataset of over 30,000,000 question-
sentence-answer examples in total. Because ques-
tions are paired with relation types, not instances,
this overall procedure has very modest costs.

The key modeling challenge is that most ex-
isting reading-comprehension problem formula-
tions assume the answer to the question is always
present in the given text. However, for relation ex-
traction, this premise does not hold, and the model
needs to reliably determine when a question is not
answerable. We show that a recent state-of-the-art
neural approach for reading comprehension (Seo
et al., 2016) can be directly extended to model an-
swerability and trained on our new dataset. This
modeling approach is another advantage of our re-
duction: as machine reading models improve with
time, so should our ability to extract relations.

Experiments demonstrate that our approach
generalizes to new paraphrases of questions from
the training set, while incurring only a minor
loss in performance (4% relative F1 reduction).
Furthermore, translating relation extraction to the
realm of reading comprehension allows us to ex-
tract a significant portion of previously unseen re-
lations, from virtually zero to an F1 of 41%. Our
analysis suggests that our model is able to gen-
eralize to these cases by learning typing informa-
tion that occurs across many relations (e.g. the an-
swer to “Where” is a location), as well as detect-
ing relation paraphrases to a certain extent. We
also find that there are many feasible cases that
our model does not quite master, providing an in-
teresting challenge for future work.

2 Related Work

We are interested in a particularly harsh zero-shot
learning scenario: given labeled examples for N
relation types during training, extract relations of a
new type RN+1 at test time. The only information
we have about RN+1 are parametrized questions.

This setting differs from prior art in relation ex-
traction. Bronstein et al. (2015) explore a similar
zero-shot setting for event-trigger identification, in

which RN+1 is specified by a set of trigger words
at test time. They generalize by measuring the
similarity between potential triggers and the given
seed set using unsupervised methods. We focus
instead on slot filling, where questions are more
suitable descriptions than trigger words.

Open information extraction (open IE) (Banko
et al., 2007) is a schemaless approach for extract-
ing facts from text. While open IE systems need
no relation-specific training data, they often treat
different phrasings as different relations. In this
work, we hope to extract a canonical slot value in-
dependent of how the original text is phrased.

Universal schema (Riedel et al., 2013) rep-
resents open IE extractions and knowledge-base
facts in a single matrix, whose rows are entity
pairs and columns are relations. The redundant
schema (each knowledge-base relation may over-
lap with multiple natural-language relations) en-
ables knowledge-base population via matrix com-
pletion techniques. Verga et al. (2017) predict
facts for entity pairs that were not observed in
the original matrix; this is equivalent to extracting
seen relation types with unseen entities (see Sec-
tion 6.1). Rocktäschel et al. (2015) and Demeester
et al. (2016) use inference rules to predict hidden
knowledge-base relations from observed natural-
language relations. This setting is akin to gener-
alizing across different manifestations of the same
relation (see Section 6.2) since a natural-language
description of each target relation appears in the
training data. Moreover, the information about the
unseen relations is a set of explicit inference rules,
as opposed to implicit natural-language questions.

Our zero-shot scenario, in which no manifesta-
tion of the test relation is observed during train-
ing, is substantially more challenging (see Sec-
tion 6.3). In universal-schema terminology, we
add a new empty column (the target knowledge-
base relation), plus a few new columns with a sin-
gle entry each (reflecting the textual relations in
the sentence). These columns share no entities
with existing columns, making the rest of the ma-
trix irrelevant. To fill the empty column from the
others, we match their descriptions. Toutanova
et al. (2015) proposed a similar approach that
decomposes natural-language relations and com-
putes their similarity in a universal schema set-
ting; however, they did not extend their method
to knowledge-base relations, nor did they attempt
to recover out-of-schema relations as we do.

334

3 Approach

We consider the slot-filling challenge in relation
extraction, in which we are given a knowledge-
base relation R, an entity e, and a sentence s.
For example, consider the relation occupation,
the entity “Steve Jobs”, and the sentence “Steve
Jobs was an American businessman, inventor,
and industrial designer”. Our goal is to find
a set of text spans A in s for which R(e, a)
holds for each a ∈ A. In our example, A =
{businessman, inventor, industrial designer}. The
empty set is also a valid answer (A = ∅) when s
does not contain any phrase that satisfies R(e, ?).
We observe that given a natural-language question
q that expressesR(e, ?) (e.g. “What did Steve Jobs
do for a living?”), solving the reading comprehen-
sion problem of answering q from s is equivalent
to solving the slot-filling challenge.

The challenge now becomes one of querifica-
tion: translating R(e, ?) into q. Rather than quer-
ifyR(e, ?) for every entity e, we propose a method
of querifying the relation R. We treat e as a vari-
able x, querify the parametrized query R(x, ?)
(e.g. occupation(x, ?)) as a question template qx
(“What did x do for a living?”), and then instan-
tiate this template with the relevant entities, creat-
ing a tailored natural-language question for each
entity e (“What did Steve Jobs do for a living?”).
This process, schema querification, is by an order
of magnitude more efficient than querifying indi-
vidual instances because annotating a relation type
automatically annotates all of its instances.

Applying schema querification to N relations
from a pre-existing relation-extraction dataset
converts it into a reading-comprehension dataset.
We then use this dataset to train a reading-
comprehension model, which given a sentence s
and a question q returns a set of text spans A
within s that answer q (to the best of its ability).

In the zero-shot scenario, we are given a new
relation RN+1(x, y) at test-time, which was nei-
ther specified nor observed beforehand. For ex-
ample, the deciphered(x, y) relation, as in “Tur-
ing and colleagues came up with a method for ef-
ficiently deciphering the Enigma”, is too domain-
specific to exist in common knowledge-bases. We
then querifyRN+1(x, y) into qx (“Which code did
x break?”) or qy (“Who cracked y?”), and run
our reading-comprehension model for each sen-
tence in the document(s) of interest, while instan-
tiating the question template with different entities

that might participate in this relation.1 Each time
the model returns a non-null answer a for a given
question qe, it extracts the relation RN+1(e, a).

Ultimately, all we need to do for a new rela-
tion is define our information need in the form
of a question.2 Our approach provides a natural-
language API for application developers who are
interested in incorporating a relation-extraction
component in their programs; no linguistic knowl-
edge or pre-defined schema is needed. To im-
plement our approach, we require two compo-
nents: training data and a reading-comprehension
model. In Section 4, we construct a large relation-
extraction dataset and querify it using an efficient
crowdsourcing procedure. We then adapt an exist-
ing state-of-the-art reading-comprehension model
to suit our problem formulation (Section 5).

4 Dataset

To collect reading-comprehension examples as
in Figure 2, we first gather labeled examples
for the task of relation-slot filling. Slot-filling
examples are similar to reading-comprehension
examples, but contain a knowledge-base query
R(e, ?) instead of a natural-language question;
e.g. spouse(Angela Merkel, ?) instead of “Who
is Angela Merkel married to?”. We collect many
slot-filling examples via distant supervision, and
then convert their queries into natural language.

Slot-Filling Data We use the WikiReading
dataset (Hewlett et al., 2016) to collect labeled
slot-filling examples. WikiReading was collected
by aligning each Wikidata (Vrandečić, 2012) re-
lation R(e, a) with the corresponding Wikipedia
article D for the entity e, under the reasonable as-
sumption that the relation can be derived from the
article’s text. Each instance in this dataset con-
tains a relation R, an entity e, a document D, and
an answer a. We used distant supervision to se-
lect the specific sentences in which each R(e, a)
manifests. Specifically, we took the first sentence
s in D to contain both e and a. We then grouped
instances by R, e, and s to merge all the answers
for R(e, ?) given s into one answer set A.

1This can be implemented efficiently by constrain-
ing potential entities with existing facts in the knowl-
edge base. For example, any entity x that satisfies
occupation(x, cryptographer) or any entity y for which
subclass of(y, cipher) holds. We leave the exact imple-
mentation details of such a system for future work.

2While we use questions, one can also use sentences with
slots (clozes) to capture an almost identical notion.

335

Relation Question Sentence & Answers

educated at What is Albert Einstein’s alma mater? Albert Einstein was awarded a PhD by the University
of Zürich, with his dissertation titled...

occupation What did Steve Jobs do for a living? Steve Jobs was an American businessman, inventor,
and industrial designer.

spouse Who is Angela Merkel married to? Angela Merkel’s second and current husband is quantum
chemist and professor Joachim Sauer, who has largely...

Figure 2: Examples from our reading-comprehension dataset. Each instance contains a relation R, a
question q, a sentence s, and an answer set A. The question explicitly mentions an entity e, which also
appears in s. For brevity, answers are underlined instead of being displayed in a separate column.

(1) The wine is produced in the X region of France.
(2) X, the capital of Mexico, is the most populous city in North America.
(3) X is an unincorporated and organized territory of the United States.
(4) The X mountain range stretches across the United States and Canada.

Figure 3: An example of the annotator’s input when querifying the country(x, ?) relation. The annotator
is required to ask a question about x whose answer is, for each sentence, the underlined spans.

Schema Querification Crowdsourcing querifi-
cation at the schema level is not straightforward,
because the task has to encourage workers to (a)
figure out the relation’s semantics (b) be lexically-
creative when asking questions. We therefore ap-
ply a combination of crowdsourcing tactics over
two Mechanical Turk annotation phases: collec-
tion and verification.

For each relation R, we present the annotator
with 4 example sentences, where the entity e in
each sentence s is masked by the variable x. In
addition, we underline the extractable answers a ∈
A that appear in s (see Figure 3). The annotator
must then come up with a question about x whose
answer, given each sentence s, is the underlined
span within that sentence. For example, “In which
country is x?” captures the exact set of answers for
each sentence in Figure 3. Asking a more general
question, such as “Where is x?” might return false
positives (“North America” in sentence 2).

Each worker produced 3 different question tem-
plates for each example set. For each relation,
we sampled 3 different example sets, and hired 3
different annotators for each set. We ran one in-
stance of this annotation phase where the workers
were also given, in addition to the example set, the
name of the relation (e.g. country), and another
instance where it was hidden. Out of a potential
54 question templates, 40 were unique on average.

In the verification phase, we measure the ques-
tion templates’ quality by sampling additional sen-
tences and instantiating each question template
with the example entity e. Annotators are then
asked to answer the question from the sentence s,
or mark it as unanswerable; if the annotators’ an-

swers match A, the question template is valid. We
discarded the templates that were not answered
correctly in the majority of the examples (6/10).3

Overall, we applied schema querification to 178
relations that had at least 100 examples each (ac-
counting for 99.77% of the data), costing roughly
$1,250. After the verification phase, we were left
with 1,192 high-quality question templates span-
ning 120 relations.4 We then join these templates
with our slot-filling dataset along relations, instan-
tiating each template qx with its matching enti-
ties. This process yields a reading-comprehension
dataset of over 30,000,000 examples, where each
instance contains the original relation R (unob-
served by the machine), a question q, a sentence
s, and the set of answers A (see Figure 2).

Negative Examples To support relation extrac-
tion, our dataset deviates from recent reading com-
prehension formulations (Hermann et al., 2015;
Rajpurkar et al., 2016), and introduces negative
examples – question-sentence pairs that have no
answers (A = ∅). Following the methodology
of InfoboxQA (Morales et al., 2016), we gener-
ate negative examples by matching (for the same
entity e) a question q that pertains to one relation
with a sentence s that expresses another relation.
We also assert that the sentence does not contain
the answer to q. For instance, we match “Who

3We used this relatively lenient measure because many
annotators selected the correct answer, but with a slightly in-
correct span; e.g. “American businessman” instead of “busi-
nessman”. We therefore used token-overlap F1 as a sec-
ondary filter, requiring an average score of at least 0.75.

458 relations had zero questions after verification due to
noisy distant supervision and little annotator quality control.

336

is Angela Merkel married to?” with a sentence
about her occupation: “Angela Merkel is a Ger-
man politician who is currently the Chancellor of
Germany”. This process generated over 2 million
negative examples. While this is a relatively naive
method of generating negative examples, our anal-
ysis shows that about a third of negative examples
contain good distractors (see Section 7).

Discussion Some recent QA datasets were col-
lected by expressing knowledge-base assertions
in natural language. The Simple QA dataset
(Bordes et al., 2015) was created by annotat-
ing questions about individual Freebase facts
(e.g. educated at(Turing, Princeton)), collect-
ing roughly 100,000 natural-language questions to
support QA against a knowledge graph. Morales
et al. (2016) used a similar process to collect
questions from Wikipedia infoboxes, yielding the
15,000-example InfoboxQA dataset. For the task
of identifying predicate-argument structures, QA-
SRL (He et al., 2015) was proposed as an open
schema for semantic roles, in which the rela-
tion between an argument and a predicate is ex-
pressed as a natural-language question containing
the predicate (“Where was someone educated?”)
whose answer is the argument (“Princeton”). The
authors collected about 19,000 question-answer
pairs from 3,200 sentences.

In these efforts, the costs scale linearly in the
number of instances, requiring significant invest-
ments for large datasets. In contrast, schema quer-
ification can generate an enormous amount of data
for a fraction of the cost by labeling at the rela-
tion level; as evidence, we were able to gener-
ate a dataset 300 times larger than Simple QA.
To the best of our knowledge, this is the first ro-
bust method for collecting a question-answering
dataset by crowd-annotating at the schema level.

5 Model

Given a sentence s and a question q, our algorithm
either returns an answer span5 a within s, or indi-
cates that there is no answer.

The task of obtaining answer spans to natural-
language questions has been recently studied on
the SQuAD dataset (Rajpurkar et al., 2016; Xiong
et al., 2016; Lee et al., 2016; Wang et al., 2016).
In SQuAD, every question is answerable from the

5While our problem definition allows for multiple answer
spans per question, our algorithm assumes a single span; in
practice, less than 5% of our data has multiple answers.

text, which is why these models assume that there
exists a correct answer span. Therefore, we mod-
ify an existing model in a way that allows it to
decide whether an answer exists. We first give a
high-level description of the original model, and
then describe our modification.

We start from the BiDAF model (Seo et al.,
2016), whose input is two sequences of words: a
sentence s and a question q. The model predicts
the start and end positions ystart,yend of the an-
swer span in s. BiDAF uses recurrent neural net-
works to encode contextual information within s
and q alongside an attention mechanism to align
parts of q with s and vice-versa.

The outputs of the BiDAF model are the con-
fidence scores of ystart and yend, for each po-
tential start and end. We denote these scores as
zstart, zend ∈ RN , where N is the number of
words in the sentence s. In other words, zstart

i

indicates how likely the answer is to start at posi-
tion i of the sentence (the higher the more likely);
similarly, zend

i indicates how likely the answer
is to end at that index. Assuming the answer
exists, we can transform these confidence scores
into pseudo-probability distributions pstart,pend

via softmax. The probability of each i-to-j-span
of the context can therefore be defined by:

P (a = si...j) = pstart
i pend

j (1)

where pi indicates the i-th element of the vector
pi, i.e. the probability of the answer starting at i.
Seo et al. (2016) obtain the span with the highest
probability during post-processing.

To allow the model to signal that there is no
answer, we concatenate a trainable bias b to the
end of both confidences score vectors zstart, zend.
The new score vectors z̃start, z̃end ∈ RN+1 are
defined as z̃start = [zstart; b] and similarly for
z̃end, where [;] indicates row-wise concatenation.
Hence, the last elements of z̃start and z̃end indicate
the model’s confidence that the answer has no start
or end, respectively. We apply softmax to these
augmented vectors to obtain pseudo-probability
distributions, p̃start, p̃end. This means that the
probability the model assigns to a null answer is:

P (a = ∅) = p̃start
N+1p̃

end
N+1. (2)

If P (a = ∅) is higher than the probability of the
best span, arg maxi,j≤N P (a = si...j), then the
model deems that the question cannot be answered
from the sentence. Conceptually, adding the bias

337

enables the model to be sensitive to the absolute
values of the raw confidence scores zstart, zend.
We are essentially setting and learning a thresh-
old b that decides whether the model is sufficiently
confident of the best candidate answer span.

While this threshold provides us with a dynamic
per-example decision of whether the instance is
answerable, we can also set a global confidence
threshold pmin; if the best answer’s confidence is
below that threshold, we infer that there is no an-
swer. In Section 6.3 we use this global threshold to
get a broader picture of the model’s performance.

6 Experiments

To understand how well our method can generalize
to unseen data, we design experiments for unseen
entities (Section 6.1), unseen question templates
(Section 6.2), and unseen relations (Section 6.3).

Evaluation Metrics Each instance is evaluated
by comparing the tokens in the labeled answer set
with those of the predicted span.6 Precision is the
true positive count divided by the number of times
the system returned a non-null answer. Recall is
the true positive count divided by the number of
instances that have an answer.

Hyperparameters In our experiments, we ini-
tialized word embeddings with GloVe (Penning-
ton et al., 2014), and did not fine-tune them. The
typical training set was an order of 1 million ex-
amples, for which 3 epochs were enough for con-
vergence. All training sets had a ratio of 1:1 pos-
itive and negative examples, which was chosen to
match the test sets’ ratio.

Comparison Systems We experiment with sev-
eral variants of our model. In KB Relation, we
feed our model a relation indicator (e.g. R17)
instead of a question. We expect this variant to
generalize reasonably well to unseen entities, but
fail on unseen relations. The second variant (NL
Relation) uses the relation’s name (as a natural-
language expression) instead of a question (e.g.
educated at as “educated at”). We also consider
a weakened version of our querification approach
(Single Template) where, during training, only one
question template per relation is observed. The
full variant of our model, Multiple Templates, is

6We ignore word order, case, punctuation, and articles
(“a”, “an”, “the”). We also ignore “and”, which often ap-
pears when a single span captures multiple correct answers
(e.g. “United States and Canada”).

trained on a more diverse set of questions. We ex-
pect this variant to have significantly better para-
phrasing abilities than Single Template.

We also evaluate how asking about the same
relation in multiple ways improves performance
(Question Ensemble). We create an ensemble by
sampling 3 questions per test instance and predict-
ing the answer for each. We then choose the an-
swer with the highest sum of confidence scores.

In addition to our model, we compare three
other systems. The first is a random baseline
that chooses a named entity in the sentence that
does not appear in the question (Random NE).
We also reimplement the RNN Labeler that was
shown to have good results on the extractive por-
tion of WikiReading (Hewlett et al., 2016). Lastly,
we retrain an off-the-shelf relation extraction sys-
tem (Miwa and Bansal, 2016), which has shown
promising results on a number of benchmarks.
This system (and many like it) represents relations
as indicators, and cannot extract unseen relations.

6.1 Unseen Entities

We show that our reading-comprehension ap-
proach works well in a typical relation-extraction
setting by testing it on unseen entities and texts.

Setup We partitioned our dataset along entities
in the question, and randomly clustered each en-
tity into one of three groups: train, dev, or test.
For instance, Alan Turing examples appear only in
training, while Steve Jobs examples are exclusive
to test. We then sampled 1,000,000 examples for
train, 1,000 for dev, and 10,000 for test. This parti-
tion also ensures that the sentences at test time are
different from those in train, since the sentences
are gathered from each entity’s Wikipedia article.

Results Table 1 shows that our model general-
izes well to new entities and texts, with little vari-
ance in performance between KB Relation, NL Re-
lation, Multiple Templates, and Question Ensem-
ble. Single Template performs significantly worse
than these variants; we conjecture that simpler re-
lation descriptions (KB Relation & NL Relation)
allow for easier parameter tying across different
examples, whereas learning from multiple ques-
tions allows the model to acquire important para-
phrases. All variants of our model outperform
off-the-shelf relation extraction systems (RNN La-
beler and Miwa & Bansal) in this setting, demon-
strating that reducing relation extraction to reading

338

Precision Recall F1
Random NE 11.17% 22.14% 14.85%
RNN Labeler 62.55% 62.25% 62.40%
Miwa & Bansal 96.07% 58.70% 72.87%
KB Relation 89.08% 91.54% 90.29%
NL Relation 88.23% 91.02% 89.60%
Single Template 77.92% 73.88% 75.84%
Multiple Templates 87.66% 91.32% 89.44%
Question Ensemble 88.08% 91.60% 89.80%

Table 1: Performance on unseen entities.

Precision Recall F1
Seen 86.73% 86.54% 86.63%
Unseen 84.37% 81.88% 83.10%

Table 2: Performance on seen/unseen questions.

comprehension is indeed a viable approach for our
Wikipedia slot-filling task.

An analysis of 50 examples that Multiple Tem-
plates mispredicted shows that 36% of errors can
be attributed to annotation errors (chiefly missing
entries in Wikidata), and an additional 42% result
from inaccurate span selection (e.g. “8 February
1985” instead of “1985”), for which our model is
fully penalized. In total, only 18% of our sam-
ple were pure system errors, suggesting that our
model is very close to the performance ceiling of
this setting (slightly above 90% F1).

6.2 Unseen Question Templates
We test our method’s ability to generalize to new
descriptions of the same relation, by holding out a
question template for each relation during training.

Setup We created 10 folds of train/dev/test sam-
ples of the data, in which one question template
for each relation was held out for the test set, and
another for the development set. For instance,
“What did x do for a living?” may appear only
in the training set, while “What is x’s job?” is
exclusive to the test set. Each split was strati-
fied by sampling N examples per question tem-
plate (N = 1000, 10, 50 for train, dev, test, re-
spectively). This process created 10 training sets
of 966,000 examples with matching development
and test sets of 940 and 4,700 examples each.

We trained and tested Multiple Templates on
each one of the folds, yielding performance on
unseen templates. We then replicated the exist-
ing test sets and replaced the unseen question tem-
plates with templates from the training set, yield-
ing performance on seen templates. Revisiting our
example, we convert test-set occurrences of “What
is x’s job?” to “What did x do for a living?”.

Precision Recall F1
Random NE 9.25% 18.06% 12.23%
RNN Labeler 13.28% 5.69% 7.97%
Miwa & Bansal 100.00% 0.00% 0.00%
KB Relation 19.32% 2.54% 4.32%
NL Relation 40.50% 28.56% 33.40%
Single Template 37.18% 31.24% 33.90%
Multiple Templates 43.61% 36.45% 39.61%
Question Ensemble 45.85% 37.44% 41.11%

Table 3: Performance on unseen relations.

Figure 4: Precision/Recall for unseen relations.

Results Table 2 shows that our approach is
able to generalize to unseen question templates.
Our system’s performance on unseen questions is
nearly as strong as for previously observed tem-
plates (losing roughly 3.5 points in F1).

6.3 Unseen Relations

We examine a pure zero-shot setting, where test-
time relations are unobserved during training.

Setup We created 10 folds of train/dev/test sam-
ples, partitioned along relations: 84 relations for
train, 12 dev, and 24 test. For example, when
educated at is allocated to test, no educated at
examples appear in train. Using stratified sam-
pling of relations, we created 10 training sets of
840,000 examples each with matching dev and test
sets of 600 and 12,000 examples per fold.

Results Table 3 shows each system’s perfor-
mance; Figure 4 extends these results for variants
of our model by applying a global threshold on
the answers’ confidence scores to generate preci-
sion/recall curves (see Section 5). As expected,
representing knowledge-base relations as indica-
tors (KB Relation and Miwa & Bansal) is insuf-
ficient in a zero-shot setting; they must be inter-
preted as natural-language expressions to allow for

339

Verbatim
Relation András Dombai plays for what team?

András Dombai... ...currently plays as a goalkeeper for FC Tatabánya.

Type Which airport is most closely associated with Royal Jordanian?
Royal Jordanian Airlines... ...from its main base at Queen Alia International Airport...

Global
Relation Who was responsible for directing Les petites fugues?

Les petites fugues is a 1979 Swiss comedy film directed by Yves Yersin.

Type When was The Snow Hawk released?
The Snow Hawk is a 1925 film...

Specific
Relation Who started Fürstenberg China?

The Fürstenberg China Factory was founded... ...by Johann Georg von Langen...

Type What voice type does Étienne Lainez have?
Étienne Lainez... ...was a French operatic tenor...

Figure 5: The different types of discriminating cues we observed among positive examples.

some generalization. The difference between us-
ing a single question template (Single Template)
and the relation’s name (NL Relation) appears to
be minor. However, training on a variety of ques-
tion templates (Multiple Templates) substantially
increases performance. We conjecture that mul-
tiple phrasings of the same relation allows our
model to learn answer-type paraphrases that oc-
cur across many relations (see Section 7). There is
also some advantage to having multiple questions
at test time (Question Ensemble).

7 Analysis

To understand how our method extracts unseen
relations, we analyzed 100 random examples, of
which 60 had answers in the sentence and 40 did
not (negative examples).

For negative examples, we checked whether a
distractor – an incorrect answer of the correct an-
swer type – appears in the sentence. For exam-
ple, the question “Who is John McCain married
to?” does not have an answer in “John McCain
chose Sarah Palin as his running mate”, but “Sarah
Palin” is of the correct answer type. We noticed
that 14 negative examples (35%) contain distrac-
tors. When pairing these examples with the re-
sults from the unseen relations experiment in Sec-
tion 6.3, we found that our method answered 2/14
of the distractor examples incorrectly, compared
to only 1/26 of the easier examples. It appears that
while most of the negative examples are easy, a
significant portion of them are not trivial.

For positive examples, we observed that some
instances can be solved by matching the relation
in the sentence to that in the question, while oth-
ers rely more on the answer’s type. Moreover, we
notice that each cue can be further categorized ac-
cording to the type of information needed to detect
it: (1) when part of the question appears verba-

Relation Type
Verbatim 12% 5%
Global 8% 25%

Specific 22% 28%

Table 4: The distribution of cues by type, based on
a sample of 60.

Relation Type
Verbatim 43% 33%
Global 60% 73%

Specific 46% 18%

Table 5: Our method’s accuracy on subsets of ex-
amples pertaining to different cue types. Results
in italics are based on a sample of less than 10.

tim in the text, (2) when the phrasing in the text
deviates from the question in a way that is typi-
cal of other relations as well (e.g. syntactic vari-
ability), (3) when the phrasing in the text deviates
from the question in a way that is unique to this
relation (e.g. lexical variability). We name these
categories verbatim, global, and specific, respec-
tively. Figure 5 illustrates all the different types of
cues we discuss in our analysis.

We selected the most important cue for solv-
ing each instance. If there were two important
cues, each one was counted as half. Table 4
shows their distribution. Type cues appear to be
somewhat more dominant than relation cues (58%
vs. 42%). Half of the cues are relation-specific,
whereas global cues account for one third of the
cases and verbatim cues for one sixth. This is
an encouraging result, because we can potentially
learn to accurately recognize verbatim and global
cues from other relations. However, our method
was only able to exploit these cues partially.

We paired these examples with the results from
the unseen relations experiment in Section 6.3 to
see how well our method performs in each cate-
gory. Table 5 shows the results for the Multiple

340

Templates setting. On one hand, the model ap-
pears agnostic to whether the relation cue is verba-
tim, global, or specific, and is able to correctly an-
swer these instances with similar accuracy (there
is no clear trend due to the small sample size). For
examples that rely on typing information, the trend
is much clearer; our model is much better at de-
tecting global type cues than specific ones.

Based on these observations, we think that the
primary sources of our model’s ability to gener-
alize to new relations are: global type detection,
which is acquired from training on many different
relations, and relation paraphrase detection (of
all types), which probably relies on its pre-trained
word embeddings.

8 Conclusion

We showed that relation extraction can be reduced
to a reading comprehension problem, allowing us
to generalize to unseen relations that are defined
on-the-fly in natural language. However, the prob-
lem of zero-shot relation extraction is far from
solved, and poses an interesting challenge to both
the information extraction and machine reading
communities. As research into machine reading
progresses, we may find that more tasks can bene-
fit from a similar approach. To support future work
in this avenue, we make our code and data publicly
available.7

Acknowledgements

The research was supported in part by DARPA
under the DEFT program (FA8750-13-2-0019),
the ARO (W911NF-16-1-0121), the NSF (IIS-
1252835, IIS-1562364), gifts from Google, Ten-
cent, and Nvidia, and an Allen Distinguished In-
vestigator Award. We also thank Mandar Joshi,
Victoria Lin, and the UW NLP group for helpful
conversations and comments on the work.

References
Michele Banko, Michael J. Cafarella, Stephen

Soderland, Matt Broadhead, and Oren Et-
zioni. 2007. Open information extraction from
the web. In Proceedings of the 20th Interna-
tional Joint Conference on Artifical Intelligence.
Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA, IJCAI’07, pages 2670–2676.
http://dl.acm.org/citation.cfm?id=1625275.1625705.

7http://nlp.cs.washington.edu/zeroshot

Antoine Bordes, Nicolas Usunier, Sumit Chopra, and
Jason Weston. 2015. Large-scale simple question
answering with memory networks. arXiv preprint
arXiv:1506.02075 .

Ofer Bronstein, Ido Dagan, Qi Li, Heng Ji, and Anette
Frank. 2015. Seed-based event trigger labeling:
How far can event descriptions get us? In Proceed-
ings of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th Interna-
tional Joint Conference on Natural Language Pro-
cessing (Volume 2: Short Papers). Association for
Computational Linguistics, Beijing, China, pages
372–376. http://www.aclweb.org/anthology/P15-
2061.

Thomas Demeester, Tim Rocktäschel, and Sebas-
tian Riedel. 2016. Lifted rule injection for re-
lation embeddings. In Proceedings of the 2016
Conference on Empirical Methods in Natural
Language Processing. Association for Computa-
tional Linguistics, Austin, Texas, pages 1389–1399.
https://aclweb.org/anthology/D16-1146.

Luheng He, Mike Lewis, and Luke Zettlemoyer.
2015. Question-answer driven semantic role la-
beling: Using natural language to annotate natu-
ral language. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Lan-
guage Processing. Association for Computational
Linguistics, Lisbon, Portugal, pages 643–653.
http://aclweb.org/anthology/D15-1076.

Karl Moritz Hermann, Tomáš Kočiský, Edward
Grefenstette, Lasse Espeholt, Will Kay, Mustafa
Suleyman, and Phil Blunsom. 2015. Teach-
ing machines to read and comprehend. In Ad-
vances in Neural Information Processing Systems.
http://arxiv.org/abs/1506.03340.

Daniel Hewlett, Alexandre Lacoste, Llion Jones, Illia
Polosukhin, Andrew Fandrianto, Jay Han, Matthew
Kelcey, and David Berthelot. 2016. Wikireading: A
novel large-scale language understanding task over
wikipedia. In Proceedings of the Conference of the
Association for Computational Linguistics.

Raphael Hoffmann, Congle Zhang, Xiao Ling, Luke
Zettlemoyer, and Daniel S Weld. 2011. Knowledge-
based weak supervision for information extraction
of overlapping relations. In Proceedings of the 49th
Annual Meeting of the Association for Computa-
tional Linguistics: Human Language Technologies-
Volume 1. Association for Computational Linguis-
tics, pages 541–550.

Kenton Lee, Tom Kwiatkowski, Ankur Parikh, and Di-
panjan Das. 2016. Learning recurrent span repre-
sentations for extractive question answering. arXiv
preprint arXiv:1611.01436 .

Angli Liu, Stephen Soderland, Jonathan Bragg,
Christopher H. Lin, Xiao Ling, and Daniel S. Weld.
2016. Effective crowd annotation for relation ex-
traction. In Proceedings of the 2016 Conference

341

of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Lan-
guage Technologies. Association for Computational
Linguistics, San Diego, California, pages 897–906.
http://www.aclweb.org/anthology/N16-1104.

Makoto Miwa and Mohit Bansal. 2016. End-to-end re-
lation extraction using lstms on sequences and tree
structures. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers). Association for Compu-
tational Linguistics, Berlin, Germany, pages 1105–
1116. http://www.aclweb.org/anthology/P16-1105.

Alvaro Morales, Varot Premtoon, Cordelia Avery, Sue
Felshin, and Boris Katz. 2016. Learning to answer
questions from wikipedia infoboxes. In Proceed-
ings of the 2016 Conference on Empirical Meth-
ods in Natural Language Processing. Association
for Computational Linguistics, Austin, Texas, pages
1930–1935. https://aclweb.org/anthology/D16-
1199.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP). Association for Computa-
tional Linguistics, Doha, Qatar, pages 1532–1543.
http://www.aclweb.org/anthology/D14-1162.

P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang. 2016.
Squad: 100,000+ questions for machine comprehen-
sion of text. In Proceedings of the Conference of the
Empirical Methods in Natural Language Process-
ing.

Sebastian Riedel, Limin Yao, Andrew McCallum,
and Benjamin M. Marlin. 2013. Relation ex-
traction with matrix factorization and universal
schemas. In Proceedings of the 2013 Confer-
ence of the North American Chapter of the As-
sociation for Computational Linguistics: Human
Language Technologies. Association for Computa-
tional Linguistics, Atlanta, Georgia, pages 74–84.
http://www.aclweb.org/anthology/N13-1008.

Tim Rocktäschel, Sameer Singh, and Sebastian
Riedel. 2015. Injecting logical background
knowledge into embeddings for relation extrac-
tion. In Proceedings of the 2015 Conference
of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Lan-
guage Technologies. Association for Computational
Linguistics, Denver, Colorado, pages 1119–1129.
http://www.aclweb.org/anthology/N15-1118.

Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and
Hannaneh Hajishirzi. 2016. Bidirectional attention
flow for machine comprehension. arXiv preprint
arXiv:1611.01603 .

Kristina Toutanova, Danqi Chen, Patrick Pantel, Hoi-
fung Poon, Pallavi Choudhury, and Michael Ga-
mon. 2015. Representing text for joint embedding

of text and knowledge bases. In Proceedings of
the 2015 Conference on Empirical Methods in Nat-
ural Language Processing. Association for Compu-
tational Linguistics, Lisbon, Portugal, pages 1499–
1509. http://aclweb.org/anthology/D15-1174.

Patrick Verga, Arvind Neelakantan, and Andrew Mc-
Callum. 2017. Generalizing to unseen entities and
entity pairs with row-less universal schema. In Pro-
ceedings of the 15th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Volume 1, Long Papers. Association for
Computational Linguistics, Valencia, Spain, pages
613–622. http://www.aclweb.org/anthology/E17-
1058.

Denny Vrandečić. 2012. Wikidata: A new platform for
collaborative data collection. In Proceedings of the
21st international conference companion on World
Wide Web. ACM, pages 1063–1064.

Zhiguo Wang, Haitao Mi, Wael Hamza, and Radu
Florian. 2016. Multi-perspective context match-
ing for machine comprehension. arXiv preprint
arXiv:1612.04211 .

Caiming Xiong, Victor Zhong, and Richard Socher.
2016. Dynamic coattention networks for question
answering. arXiv preprint arXiv:1611.01604 .

342

Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017), pages 343–353,
Vancouver, Canada, August 3 - August 4, 2017. c©2017 Association for Computational Linguistics

The Covert Helps Parse the Overt

Xun Zhang, Weiwei Sun and Xiaojun Wan
Institute of Computer Science and Technology, Peking University

The MOE Key Laboratory of Computational Linguistics, Peking University
{zhangxunah,ws,wanxiaojun}@pku.edu.cn

Abstract

This paper is concerned with whether
deep syntactic information can help sur-
face parsing, with a particular focus on
empty categories. We design new al-
gorithms to produce dependency trees in
which empty elements are allowed, and
evaluate the impact of information about
empty category on parsing overt elements.
Such information is helpful to reduce the
approximation error in a structured pars-
ing model, but increases the search space
for inference and accordingly the estima-
tion error. To deal with structure-based
overfitting, we propose to integrate disam-
biguation models with and without empty
elements, and perform structure regular-
ization via joint decoding. Experiments on
English and Chinese TreeBanks with dif-
ferent parsing models indicate that incor-
porating empty elements consistently im-
proves surface parsing.

1 Introduction

In the last two decades, there was an increas-
ing interest in producing rich syntactic annota-
tions that are not limited to surface analysis. See,
among others, (Callmeier, 2000; Kaplan et al.,
2004; Clark and Curran, 2007; Miyao and Tsu-
jii, 2008; Zhang et al., 2016). Such analysis,
e.g. deep dependency structures (King et al.,
2003), is usually coupled with grammars un-
der deep formalisms, e.g. Combinatory Cate-
gorial Grammar (CCG; Steedman, 2000), Head-
driven Phrase-Structure Grammar (HPSG; Pollard
and Sag, 1994) and Lexical-Functional Grammar
(LFG; Bresnan and Kaplan, 1982). Although deep
grammar formalisms allow information beyond
local construction to be constructed, it is still not

clear whether such additional information is help-
ful for surface syntactic analysis. This is partly
because analysis grounded on different grammar
formalisms, e.g. HPSG and CFG, are not directly
comparable.

In the Government and Binding (GB; Chom-
sky, 1981) theory, empty category is a key con-
cept bridging S-Structure and D-Structure, due to
its possible contribution to trace movements. Fol-
lowing the linguistic insights underlying GB, a tra-
ditional dependency analysis can be augmented
with empty elements, viz. covert elements (Xue
and Yang, 2013). See Figure 1 for an example.
The new representation provides a considerable
amount of deep syntactic information, while keep-
ing intact all dependencies of overt words. Inte-
grating both overt and covert elements in one uni-
fied representation provides an effective yet light-
weight way to achieve deeper language under-
standing beyond surface syntax1. Even more im-
portant, this modest way to modify tree analysis
makes possible fair evaluation of the influence of
deep syntactic elements on surface parsing.

We study graph-based parsing models for this
new representation with a particular focus on the
impact of information about the covert on parsing
the overt. The major advantage of the graph-based
approach to dependency parsing is that its con-
strained factorization enables the design of poly-
nomial time algorithms for decoding, especially
for projective structures. Following GB, an empty
element can be only a dependent. Furthermore,
the number and distribution of empty elements in
one sentence is highly constrained. These prop-
erties makes polynomial time decoding for joint
empty element detection and dependency parsing
still plausible. To exemplify our idea, we design
novel second- and third-order algorithms for the

1 In this paper, we arguably call dependencies among
overt words only surface analysis.

343

But it ∅1 is n’t clear how long GM would be willing ∅2 to fight Ford for Jaguar ∅3

root

Figure 1: An example from PTB. The dependency structure is according to Stanford Dependency
(de Marneffe et al., 2006). “∅” denotes an empty element. “∅1” indicates an expletive construction; “∅2”
indicates that the subject for fight, i.e. GM, is located in another place; “∅3” indicates a wh-movement.

new problem.

The influence of incorporating empty elements
is twofold. On the one hand, the extra informa-
tion enriches the structural information of the out-
puts, which is important to reduce the approxi-
mation error in a structured prediction problem.
On the other hand, predicting empty elements in-
creases the search space for decoding, and thus in-
creases the difficulty of parameter estimation for
disambiguation. Our experiments on English Penn
TreeBank (PTB; Marcus et al., 1993) and Chinese
TreeBank (CTB; Xue et al., 2005) shows that the
second effect is prominant. The accuracy of pre-
dicting dependencies among overt words some-
times declines slightly.

To ensure that predicting the empty elements
helps parse the overt, we need to reduce the new
estimation error. To this end, we propose to inte-
grate scores from parsing models with and with-
out empty elements and perform joint decoding.
The intuition is to leverage parameters estimated
without empty elements as a backoff, which ex-
hibit better generalization ability. We evaluate two
joint decoders: One is based on chart merging and
the other is based on dual decomposition. Ex-
periments demonstrate that information about the
covert improves surface analysis in this way. Ac-
curacy evaluated using parsing models with differ-
ent factorizations and on data sets from different
languages is consistently improved. Especially,
for those sentences in which there is no empty el-
ement, accuracy is improved too. This highlights
the fact that empty category can help reduce the
approximation error for surface analysis.

The remaining part of the paper is organized as
follows. Section 2 is a brief introduction to the
problem. Section 3 describes existing algorithms
for parsing for overt words only, while Section 4
gives the details of our new algorithms for parsing
with empty elements. Section 5 describes the de-

tails of the joint models as well as the decoding al-
gorithms. Section 6 presents experimental results
and empirical analyses. Section 7 concludes the
paper.

2 Syntactic Analysis with Empty
Category

In GB, empty categories are an important piece of
machinery in representing the syntactic structure
of a sentence. An empty category is a covert nomi-
nal element that is unpronounced, such as dropped
pronouns and traces of dislocated elements. In
treebanks, empty categories have been used to in-
dicate long-distance dependencies, discontinuous
constituents, and certain dropped elements (Mar-
cus et al., 1993; Xue et al., 2005). Together with
labeled brackets and function tags, they make up
the full syntactic representation of a sentence.

Empty category is one key concept bridging S-
Structure and D-Structure, given that they contain
essential information to trace movements, i.e. the
transformation procedure to convert a D-Structure
to an S-Structure. When representing empty cate-
gories in dependency trees, we can use a null sym-
bol to depict the idea that there is a mental cate-
gory at the level being represented. See Figure 1
for an example.

Detecting empty elements is important to the
interpretation of the syntactic structure of a sen-
tence. For example, Chung and Gildea (2010)
reported preliminary work that has shown a pos-
itive impact of automatic empty element detec-
tion on statistical machine translation. There are
three strategies to find empty categories. Dienes
and Dubey (2003) introduced a model that utilizes
clues from word forms and POS tags to predict the
existence of empty categories. In their method,
syntactic parsing was treated as a next-step task
and therefore had no influence on finding empty
elements. Johnson (2002) and Xue and Yang

344

(2013) proposed to identify empty categories after
syntactic parsing. Different from the above pre-
processing strategy, their post-processing models
can not use information about empty category to
improve parsing. Cai et al. (2011) introduced an
integrated model, where empty category detection
and phrase-structure parsing are combined in a
single model. They, however, did not report any
improvement for parsing.2

Seeker et al. (2012) evaluted all above strate-
gies to include empty nodes in dependency pars-
ing for German and Hungarian. To predict both
empty nodes and dependency relations, they en-
riched the information encoded in dependency la-
bels. They showed that both pre-processing and
integrated strategies failed to leverage empty cat-
egories to improve parsing. Especially, their pre-
processing method significantly descreased pars-
ing accuracy.

Although empty categories are very important
in theory, it is still unclear that they can help pars-
ing in practice.

3 The Existing Parsing Algorithms

Data-driven dependency parsing has received an
increasing amount of attention in the past decade.
Such approaches, e.g. transition-based (Yamada
and Matsumoto, 2003; Nivre, 2008; Andor et al.,
2016) and graph-based (McDonald, 2006; Tor-
res Martins et al., 2009; Lei et al., 2014) models
have attracted the most attention of dependency
parsing in recent years. A graph-based system ex-
plicitly parameterizes models over substructures
of a dependency tree, and formulates parsing as
a Maximum Spanning Tree problem (McDonald
et al., 2005). A number of dynamic program-
ming (DP) algorithms have been designed. Here
we summarize the design of two widely used al-
gorithms for second- and third-order factorization,
since it is the basis of our new algorithms.

3.1 Algorithm 1: Sibling Factorization

Eisner (1996) introduced a widely-used DP algo-
rithm for first-order parsing. Their algorithm in-
cludes two interrelated types of DP structures: (1)
complete spans, which consist of a head-word and
its descendents on one side, and (2) incomplete
spans, which consist of a dependency and the re-
gion between the head and modifier. To include

2 Comparing their numeric results with other papers’, we
find that their model does not result in improved parsing.

rl

=

ml
+

rm

rl

=

ml

+

rm+1

rl

=

ml
+

rm

Figure 2: The DP structures and derivations of the
standard sibling algorithm. Complete spans are
depicted as triangles, incomplete spans as trape-
zoids, and sibling spans as rectangles. A new de-
pendency is created by applying the last rule. Es-
pecially, the score associated with the last rule is
determined by a sibling part. For brevity, we elide
the right-headed versions.

rml

=

mnl
+

rm

Figure 3: The modified construction rule for the
tri-sibling algorithm.

second-order sibling parts, McDonald and Pereira
(2006) extended Eisner’s algorithm with a third
structure, viz. (3) sibling spans, which represent
the region between successive modifiers of same
head. The second-order algorithm visits all the
spans from bottom to top, finding the best com-
bination of smaller structures to form a new one.
Each type of span is created by recursively com-
bining two smaller, adjacent spans. The DP struc-
tures and their constructions are specified graphi-
cally in Figure 2.

3.2 Algorithm 2: Tri-sibling Factorization

It is easy to extend the second-order sibling factor-
ization to parts containing multiple siblings. For
example, Koo and Collins (2010) introduced tri-
sibling factorization in which a triple of three suc-
cessive edges on the same side. Here, we consider
parsing for tri-sibling factorization only. To this
end, we augment the incomplete span structure
with an internal index. The modified construction
rule is specified graphically in Figure 3. Note that
the presentation is slightly different from Koo and
Collins’s.

345

h ∅1 n
... ...

∅2

a h1 ∅1 ∅2 ∅3 ∅4 h2

...

Figure 4: Prototypes of structures related to
empty categories.

4 The New Algorithms

We propose three novel algorithms for the new
parsing problem. We only consider projective
structures. For sake of concision, we call an edge
with an empty child empty edge, and call other
edges normal ones. Not only normal edges but
also empty edges do not cross with each other. We
illustrate several properties of empty elements that
are fundamental requirements of our algorithms,
and then give details of our new algorithms.

4.1 Properties of empty elements
Two theoretical and empirical properties of empty
elements results in the design of exact parsing al-
gorithms for simultaneously predicting dependen-
cies as well detecting empty elements.

1. According to GB, an empty element cannot
be regarded as a head word.

2. There are very limited number of successive
empty elements in between two successive
overt words. Therefore, we can treat all suc-
cessive empty elements governed by same
head as one word. We can use the label as-
sociated to the corresponding empty edge to
distinguish how many empty nodes are there.

According to the first property, we have two
prototype structures of empty nodes and their as-
sociated edges. If there are two empty elements
that are governed by the same head, the overt
words in between them must be their siblings or
dominated by their siblings. We graphically show
this case as the upper figure in Figure 4. If there
is a sequence of successive empty elements in be-
tween two overt words, the prototype structure is
shown as the bottom figure in Figure 4.

Now we consider the emprical coverage of the
second property on PTB and CTB. The coverage
is evaluated using sentences in the training sets (as

Length English Chinese
1 54800 13115
2 2534 385
3 8 18

Total 57342 13518

Table 1: Coverage relative to the number of suc-
cessive empty elements that have the same head.

defined in Section 6). We show the statistics in
Table 1. The length indicates the number of suc-
cessive empty elements that are governed by the
same overt word. At most three empty elements
are next to each other.

4.2 Algorithm 3: Partial Sibling Model

4.2.1 DP Structures

Now we consider parsing with empty category de-
tection by extending Algorithm 1. We consider
six DP structures when we construct a tree with
empty elements on a given span [i, k] of vertices.
See Figure 5 for graphical visualization. The first
two are adapted in concord with Algorithm 1, and
we introduce four new DP structures, transformed
from incomplete constituent, which can manipu-
late the empty nodes. These new DP structures are
explained below. Without loss of generality, we
only illustrate the left-headed versions.

Overt-outside Incomplete Span. The right-
most word must be an overt word.

Overt-both Incomplete Span. Both the right-
most mode and the inner sibling of incomplete
spans are overt words. An incomplete span struc-
ture is associated with an edge that crosses the
whole span. We also care about its left sibling,
and thus record it using an extra index. We call
this sibling the inner sibling.

Covert-inside Incomplete Span. The rightmost
word must be an overt word, while the inner sib-
ling of incomplete span is a covert word.

Covert-ouside Incomplete Span. The right-
most word must be a covert word, while the inner
sibling of incomplete span is an overt word.

Note that we already combine all successive
empty nodes as one, so there is no covert-both in-
complete span.

346

rl

=

ml
+

rm

or

rl
[complete span]

rl

=

ml

+

rm+ 1
[sibling span]

rl

=

ml
+

rm
[overt-both incomplete span]

rl

=

rl

or

rl
[overt-outside incomplete span]

rl

=

ml
+

rm
+

r
[covert-outside incomplete span]

rl

=

ml
+

rm+ 1
[covert-inside incomplete span]

Figure 5: Graphic representations of new DP
structures and their derivations of Algorithm 3.
For brevity, we elide the right-headed versions.

4.2.2 Construction Rules
Figure 5 provides a graphical specification of the
construction of all six DP structures. The follow-
ing is the explaination for each construction rule.

1. The rightmost child of the head in a com-
plete span may be an empty node. If so, the
empty node must located at the boundary, be-
cause no empty node can be a head. There-
fore a complete span itself is a covert-outside
incomplete span. Otherwise, the rightmost
child separates the complete span into an
overt-outside incomplete span and another
smaller complete span.

2. A sibling span is decomposed in the same
way to Algorithm 1.

3. An overt-outside incomplete span is the ex-
tension of the incomplete span from the old
algorithm. We consider two cases according
to the type of the inner sibling. So it is ei-
ther an overt-both or a covert-inside incom-
plete span.

4. Like a standard incomplete span in Algo-
rithm 1, an overt-both incomplete span is

made of an overt-outside incomplete span
and a sibling span. A normal edge is created
during the construction.

5. A covert-inside incomplete span is built from
a covert-outside incomplete span and a com-
plete span in the opposite direction rather
than a sibling span. This is because the empty
node does not have any child. A normal edge
is also created here.

6. A covert-outside incomplete span is made up
of an overt-outside incomplete span, an adje-
cent complete span and a new covert word.
In this step, we add a new empty element as
well as an empty edge.

4.2.3 Complexity

The set of complete or sibling spans has O(n2) el-
ements, while the set of each type of incomplete
spans has O(n2) elements. Therefore, the space
requirement is of O(n2). To build a new DP struc-
ture in any type, we either change the type of an
existing DP structure or search for the best posi-
tion to separate the whole structure into two parts.
The second case is worse and needs time ofO(n3).
As a result, Algorithm 3 runs in time of O(n3).

4.3 Algorithm 4: Full Sibling Model

Now consider the difference between Algorithm 1
and 3. It is easy to figure out that not all sibling
factors summed by Algorithm 1 are included by
Algorithm 3. Specifically, if two normal edges that
are adjacent to each other (say e1 and e2) are in-
serted with an empty edge, e1 and e2 are taken as a
sibling part by Algorithm 1 but not 3. Now we are
going to modify Algorithm 3 to include all such
sibling parts. To this end, we modify the covert-
inside span structure as well as its the construction
rule. In particular, we explictly utilize the index of
the inner child provided by a covert-inside span.
Figure 6 gives a specification.

rml

=

ml
+

rm+ 1
[covert-inside span]

Figure 6: The modified construction rule for overt-
both incomplete span in Algorithm 4. For brevity,
we elide the right-headed versions.

347

rl

=

mnl
+

rm

or

rml

rl

=

ml

+

rm+1

rml

=

mnl
+

rm

rml

=

rml

or

rml

rml

=

mnl
+

rm
+

r

rml

=

mnl
+

rm+1

Figure 7: Graphic representations of new DP
structures and their derivations of Algorithm 5.
For brevity, we elide the right-headed versions.

The modification of the construction rule for the
covert-inside incomplete span increases the com-
plexity. The time and space requirements of Al-
gorithm 4 are O(n4) and O(n3) respectively, be-
cause we must consider the position of the inner
sibling, viz. m, in Figure 6.

4.4 Algorithm 5: Partial Tri-sibling Model

Previous work shows that it is relatively easy to ex-
tend the second-order sibling factorization to parts
containing multiple siblings for standard parsing.
It is similar when empty elements are taken into
account. Adding the index of one more inner mod-
ifier to all incomplete span structures allows tri-
sibling features to be calculated. We sketch the
idea in Figure 7.

We add one more index to all the four incom-
plete DP structures in Algorithm 3. The time
and space complexity are increased by a factor of
O(n). The analysis of the complexity of Algo-
rithm 5 is similar to Algorithm 3. In short, Algo-
rithm 5 runs in time O(n4) with a space require-
ment ofO(n3). We can also extend Algorithm 5 to
a full version, like what we have done for sibling
models. The time complexity will go up toO(n5),
which makes the algorithm somehow impractical.

5 Structure Regularization via Joint
Decoding

We can see from the definition of the extended al-
gorithms that the search space for decoding is sig-
nificantly increased. This results in a side effect
for practical parsing. Given the limit of available
annotations for training, searching for more com-
plicated structures in a larger space is harmful to
the generalization ability in structured prediction
(Sun, 2014). Incorporating empty elements sig-
nificantly increases the difficulty for parameter es-
timation, and therefore it is harder to find a good
disambiguation model. To control structure-based
overfitting, we propose a new way to perform
structure regularization: combining the two score
functions learned from models with and without
empty elements.

We formalize the idea as follows. Consider
a sentence s = w1w2 · · ·wn. We denote the
index set of all possible dependencies as I =
{(i, j)|i, j ∈ {1, · · · , n}, i 6= j}. A dependency
parse then can be represented as a vector

y = {y(i, j) : (i, j) ∈ I}

where y(i, j) = 1 if there is an arc i → j in
the graph, 0 otherwise. Let Y denote the set of
all possible y. We use another index set I ′ =
{(i, j)|i, j ∈ {1, · · · , n+ 12}}, where i > n in-
dicates an empty node. Then a dependency parse
with empty nodes can be represented as a vector
similar to y:

z = {z(i, j) : (i, j) ∈ I ′}.

Let Z denote the set of all possible z. Assume
that f : Y → R and g : Z → R assign scores
to parse trees without and with empty elements. A
reasonable model to integrate f and g is to find the
optimal parse by solving the following optimiza-
tion problem:

max. λf(y) + (1− λ)g(z)
s.t. y ∈ Y, z ∈ Z

y(i, j) = z(i, j), ∀(i, j) ∈ I
(1)

λ is a weight for combining scores. We use the
validation data to get an appropriate value for λ3.

3Given the similarity of the parsing models with and with-
out empty elements, λ = 0.5 usually achieves optimal per-
formance.

348

1 u(0) ← 0
2 for k ← 0..T do
3 y ← arg maxy∈Y(f(y) +

∑
i,j u(i, j)y(i, j))

4 z ← arg maxz∈Z(g(z)−∑i,j u(i, j)z(i, j))
5 if ∀(i, j) ∈ I, y(i, j) = z(i, j) then
6 return z
7 else
8 u(k+1) ← u(k) − α(k)(y − z)
9 return z

Figure 8: Joint decoding based on dual decompo-
sition.

5.1 Chart Merging
The optimization problem (1) can be solved using
Algorithm 3 to 5. For example, if we try to com-
bine models coupled with Algorithm 1 and 3, or
Algorithm 1 and 4, we can merge the local scores
of all sibling parts and then apply Algorithm 4 for
solutions. Note that Algorithm 3 here cannot pro-
duce the exact solution. If we try to combine mod-
els coupled with Algorithm 2 and 5, we can use an
algorithm of which the time complexity is O(n5).
We have mentioned such an algorithm at the end of
Section 4.4. Similar to sibling factorization, Algo-
rithm 5 can only produce approximate solutions.

5.2 Dual Decomposition
The chart merging method can be applied to al-
gorithms that have highly coherent DP structures.
Dual decomposition is an alternative yet more
flexible method for solving the optimization prob-
lem (1). Heterogeneous models can be combined,
and for the majority of input sentences exact solu-
tions can be found in a few iterations. We sketch
the solution as follows.

The Lagrangian of (1), i.e. L(y, z; u), is

f(y) + g(z) +
∑

(i,j)∈I
u(i, j)(y(i, j)− z(i, j))

where u is the Lagrangian multiplier. Then the
dual is

L(u) = max
y∈Y,z∈Z

L(y, z; u)

= max
y∈Y

(f(y) +
∑

(i,j)∈I
u(i, j)y(i, j))

+ max
z∈Z

(g(z)−
∑

(i,j)∈I
u(i, j)z(i, j))

We instead try to find the solution for minu L(u).
By using a subgradient method for this optimiza-

#{Sent} #{Overt} #{Covert}
En train 38667 909114 57342

test 2336 54242 3447
Ch train 8605 193417 13518

test 941 21797 1520

Table 2: Numbers of sentences, overt and covert
elements in training and test sets.

tion problem, we have another joint decoding al-
gorithm, as shown in Figure 8.

6 Experiments

6.1 Data Sets
We conduct experiments on both English and Chi-
nese treebanks. In particular, PTB and CTB are
used. Because PTB and CTB are phrase-structure
treebanks, we need to convert them into depen-
dency annotations. To do so, we use the tool pro-
vided by Stanford CoreNLP to process PTB, and
the tool provided by Xue and Yang (2013) to pro-
cess CTB 5.0. We use gold-standard POS to derive
features for disambiguation.

To simpify our experiments, we preprocess the
obtained dependency tree in the following way.

1. We combine successive empty elements with
identical head into one new empty node
which is still linked to the common head
word.

2. Because the high-order algorithm spends is
very expensive, we only use relatively short
sentence. Here we only keep sentences less
than 64 tokens.

3. We focus on unlabeled parsing.

The statistics of the data after cleaning is shown
in Table 2

We use standard training, validation, and test
splits to facilitate comparisons. Accuracy is mea-
sured with unlabeled attachment score for all overt
words (UASo): the percentage of overt words with
the correct head. We are also concerned with the
prediction accuracy for empty elements. To evalu-
ate performance on empty nodes, we consider the
correctness of empty edges. We report the percent-
age of empty words in right slot with correct head.
The i-th slot in the sentence means that the posi-
tion immediately after the i-th concrete word. So
if we have a sentence with length n, we get n+ 1
slots.

349

funi(X):
X.w, Y.p, X.w ◦X.p
fbi(X,Y):
X.wp ◦ Y.w, X.wp ◦ Y.p, X.w ◦ Y.wp, X.p ◦
Y.wp, X.wp ◦ Y.wp
fcontext(X,Y):
X.p◦Y.p◦X1.p◦Y−1.p, X.p◦Y.p◦X−1.p◦
Y−1.p, X.p ◦ Y.p ◦ X1.p ◦ Y1.p, X.p ◦ Y.p ◦
X−1.p ◦ Y1.p
X.p ◦Y.p ◦Z.p, Z is token between X and Y
fsib(X,Y):
X.w ◦ Y.w, X.w ◦ Y.p, X.p ◦ Y.w, X.p ◦ Y.p
fsib(X,Y, Z):
X.p ◦ Y.p ◦ Z.p
ftsib(X,Y, Z,W):
X.w◦Y.w◦Z.p◦W.p,X.w◦Y.p◦Z.w◦W.p,
X.w◦Y.p◦Z.p◦W.w,X.p◦Y.w◦Z.w◦W.p,
X.p◦Y.w◦Z.p◦W.w,X.p◦Y.p◦Z.w◦W.w,
X.w ◦Y.p◦Z.p◦W.p, X.p◦Y.w ◦Z.p◦W.p,
X.p◦Y.p◦Z.w ◦W.p, X.p◦Y.p◦Z.p◦W.w

Table 3: Feature template functions.

6.2 Statistical Disambiguation
In the context of data-driven parsing, we still need
an extra disambiguation model for building a prac-
tical parser. As with many other parsers, we em-
ploy a global linear model. To estimate parame-
ters, we utilize the averaged perceptron algorithm
(Collins, 2002). Developing features has been
shown crucial to advancing the state-of-the-art in
dependency parsing. We adopt features from pre-
vious work.

We refer to the head/child of the arc as h/c, the
k-th inner split point as mk, and the grand point
as g. We list features selected by different algo-
rithm as follows, and all following features should
be concatenated with direction and distance of the
arc.

• arc features: funi(h),
funi(c), fbi(h, c), fcontext(h, c).

• sibling features: fsib(c,m0), fsib(h, c,mk).

• tri-sibling features: fsib(h, c,m1),
ftsib(h, c,m,m1).

6.3 Results of Individual Models
Table 4 lists the accuracy of individual models
coupled with different decoding algorithms on the
test sets. We focus on the prediction for overt

Algo English Chinese
1 91.73 89.16
3 91.70 (−0.03) 89.20 (+0.04)
4 91.72 (−0.01) 89.28 (+0.12)
2 92.23 90.00
5 92.41 (+0.18) 89.82 (−0.18)

Table 4: UASo of different individual models on
test data. The upper and bottom blocks present
results obtained by sibling and tri-sibling models
respectively.

Algo English Chinese
CM 1+3 91.94 (+0.21) 89.53 (+0.37)

1+4 91.88 (+0.15) 89.44 (+0.28)
DD 1+3 91.96 (+0.23) 89.53 (+0.37)

1+4 91.94 (+0.21) 89.53 (+0.37)
CM 2+5 92.60 (+0.37) 90.35 (+0.35)
DD 2+5 92.71 (+0.48) 90.38 (+0.38)

Table 5: UASo of different joint decoding mod-
els on test data. “CM” and “DD” are short for
joint decoders based on chart merging and dual
decomposition respectively. The upper and bot-
tom blocks present results obtained by sibling and
tri-sibling models respectively. All improvements
are statistically significant.

words only. Models coupled with Algorithm 1, 3
and 4 are second-order models, while with 2 and
5 third-order ones. When we take into account
empty categories, more information is available.
The empirical results suggest that deep linguis-
tic information does not necessarily help surface
analysis.

6.4 Results of Joint Decoding

Table 5 lists the accuracy of different joint de-
coding models on the test sets. We can see that
the joint decoding framework is effective to deal
with structure-based overfitting. This time, the
accuracy of analysis for overt words is consis-
tently improved across a wide range of condi-
tions. Especially, the third-order model is im-
proved more. We use the Hypothesis Tests method
(Berg-Kirkpatrick et al., 2012) to evaluate the im-
provements. When the p-value is set to 0.05, all
improvements in Figure 5 is statistically signifi-
cant.

We separate all sentences in test data set into
two subsets: One contains sentences that have no

350

English Chinese
Algo −EC +EC −EC +EC

3 92.50 91.53 90.92 88.60
1+3 92.83 91.77 91.12 88.97

4 92.82 91.48 91.29 88.58
1+4 92.84 91.74 91.10 88.98

5 93.68 92.13 92.00 89.06
2+5 93.99 92.43 92.10 89.77

Table 6: UASo evaluated using different types of
sentences. Dual decomposition is used for joint
decoding.

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 5 10 15 20 25 30 35 40 45 50

P
er

ce
n

ta
g

e
o

f
d

ec
o

d
in

g
 t

er
m

in
at

io
n

Iteration

1+3 (en)
1+4 (en)
2+5 (en)
1+3 (cn)
1+4 (cn)
2+5 (cn)

Figure 9: The exact decoding rate on development
data.

empty elements and the other contains other sen-
tences. The accuracy evaluated on the two sets
are summarized in Table 6. For those sentences
in which there is no empty element, accuracy is
improved as well. This indicates that empty cate-
gory can help reduce the approximation error for
surface analysis.

6.5 Efficiency of Joint Decoding

One thing worth noting is that the chart merging
method with an approximate decoder is compara-
ble to other more complex solutions that produce
exact or nearly exact results. Chart merging with
approximate decoders only modifies scores as-
signed to secord- or third-order parts, while keep-
ing intact the decoding procedure. As a result, the
efficiency of approximate chart merging is compa-
rable to individual models.

Dual decomposition-based joint decoder itera-
tively calls individual decoders. Due to the simi-
larity of models with and without empty elements,
this iteration procedure usually terminates very
fast. We calculate the percentage of finding ex-
act decoding below k iterations, and the result is
show in Figure 9. For most sentences, dual de-

composition practically gives the exact solutions
in a few iterations. One advantage relevant is that
such a decoder can integrate parsing models that
are somehow heterogeneous. Refer to (Koo et al.,
2010) for example.

7 Discussion and Conclusion

Can deep syntactic information help surface pars-
ing, which is the mainstream focus of NLP re-
search. In this paper, we investigate this topic
under the umbrella of Transformational Grammar,
GB in particular. We focused on empty category
augmented dependency analysis. We demonstrate
that on the one hand deep information helps re-
duce the approximation error for traditional (sur-
face) parsing, while on the other hand traditional
parsing helps reduce the estimation error for deep
parsing. Coupling surface and deep information
in an appropriate way is able to produce better
syntactic analysis. A natural avenue for further
research would be the integrating parsing models
under deep and shallow grammar formalisms.

In addition to empty category detection, empty
categories should be linked to an overt element if
possible. Take the second empty element in Fig-
ure 1 for example. The information about its exis-
tance is valuable, but knowing it acturally refers
to GM is more helpful. However, adding such
coreference information makes the syntactic rep-
resentation no long trees and thus brings along
new challenges for designing algorithms. How to
deal with empty category detection and resolution
in one unified model? It would be an interesting
topic for future investigation.

Acknowledgments

This work was supported by 863 Program of China
(2015AA015403), NSFC (61331011), and Key
Laboratory of Science, Technology and Standard
in Press Industry (Key Laboratory of Intelligent
Press Media Technology). Weiwei Sun is the cor-
responding author.

References
Daniel Andor, Chris Alberti, David Weiss, Aliak-

sei Severyn, Alessandro Presta, Kuzman Ganchev,
Slav Petrov, and Michael Collins. 2016. Glob-
ally normalized transition-based neural networks.
In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers). Association for Computational

351

Linguistics, Berlin, Germany, pages 2442–2452.
http://www.aclweb.org/anthology/P16-1231.

Taylor Berg-Kirkpatrick, David Burkett, and Dan
Klein. 2012. An empirical investigation of statis-
tical significance in nlp. In Proceedings of the 2012
Joint Conference on Empirical Methods in Natu-
ral Language Processing and Computational Natu-
ral Language Learning. Association for Computa-
tional Linguistics, Jeju Island, Korea, pages 995–
1005. http://www.aclweb.org/anthology/D12-1091.

J. Bresnan and R. M. Kaplan. 1982. Introduction:
Grammars as mental representations of language.
In J. Bresnan, editor, The Mental Representation
of Grammatical Relations, MIT Press, Cambridge,
MA, pages xvii–lii.

Shu Cai, David Chiang, and Yoav Goldberg.
2011. Language-independent parsing with empty
elements. In Proceedings of the 49th An-
nual Meeting of the Association for Compu-
tational Linguistics: Human Language Tech-
nologies. Association for Computational Linguis-
tics, Portland, Oregon, USA, pages 212–216.
http://www.aclweb.org/anthology/P11-2037.

Ulrich Callmeier. 2000. Pet. a platform for experi-
mentation with efficient hpsg processing techniques.
Journal of Natural Language Engineering 6(1):99–
108.

Noam Chomsky. 1981. Lectures on Government and
Binding. Foris Publications, Dordecht.

Tagyoung Chung and Daniel Gildea. 2010. Ef-
fects of empty categories on machine transla-
tion. In Proceedings of the 2010 Confer-
ence on Empirical Methods in Natural Lan-
guage Processing. Association for Computational
Linguistics, Cambridge, MA, pages 636–645.
http://www.aclweb.org/anthology/D10-1062.

Stephen Clark and James R. Curran. 2007.
Wide-coverage efficient statistical pars-
ing with CCG and log-linear models.
Computational Linguistics 33(4):493–552.
https://doi.org/10.1162/coli.2007.33.4.493.

Michael Collins. 2002. Discriminative training meth-
ods for hidden markov models: Theory and ex-
periments with perceptron algorithms. In Pro-
ceedings of the 2002 Conference on Empirical
Methods in Natural Language Processing. Asso-
ciation for Computational Linguistics, pages 1–8.
https://doi.org/10.3115/1118693.1118694.

Marie-Catherine de Marneffe, Bill MacCartney, and
Christopher D. Manning. 2006. Generating typed
dependency parses from phrase structure parses. In
IN PROC. INT’L CONF. ON LANGUAGE RE-
SOURCES AND EVALUATION (LREC. pages 449–
454.

Pétr Dienes and Amit Dubey. 2003. Deep syn-
tactic processing by combining shallow meth-
ods. In Proceedings of the 41st Annual
Meeting of the Association for Computational
Linguistics. Association for Computational
Linguistics, Sapporo, Japan, pages 431–438.
https://doi.org/10.3115/1075096.1075151.

Jason M. Eisner. 1996. Three new probabilistic models
for dependency parsing: an exploration. In Proceed-
ings of the 16th conference on Computational lin-
guistics - Volume 1. Association for Computational
Linguistics, Stroudsburg, PA, USA, pages 340–345.

Mark Johnson. 2002. A simple pattern-matching al-
gorithm for recovering empty nodes and their an-
tecedents. In Proceedings of 40th Annual Meet-
ing of the Association for Computational Linguis-
tics. Association for Computational Linguistics,
Philadelphia, Pennsylvania, USA, pages 136–143.
https://doi.org/10.3115/1073083.1073107.

Ron Kaplan, Stefan Riezler, Tracy H King, John T
Maxwell III, Alex Vasserman, and Richard Crouch.
2004. Speed and accuracy in shallow and deep
stochastic parsing. In Daniel Marcu Susan Du-
mais and Salim Roukos, editors, HLT-NAACL 2004:
Main Proceedings. Association for Computational
Linguistics, Boston, Massachusetts, USA, pages
97–104.

Tracy Holloway King, Richard Crouch, Stefan Riezler,
Mary Dalrymple, and Ronald M. Kaplan. 2003. The
PARC 700 dependency bank. In In Proceedings of
the 4th International Workshop on Linguistically In-
terpreted Corpora (LINC-03). pages 1–8.

Terry Koo and Michael Collins. 2010. Efficient third-
order dependency parsers. In Proceedings of the
48th Annual Meeting of the Association for Com-
putational Linguistics. Association for Computa-
tional Linguistics, Uppsala, Sweden, pages 1–11.
http://www.aclweb.org/anthology/P10-1001.

Terry Koo, Alexander M. Rush, Michael Collins,
Tommi Jaakkola, and David Sontag. 2010. Dual
decomposition for parsing with non-projective head
automata. In Proceedings of the 2010 Con-
ference on Empirical Methods in Natural Lan-
guage Processing. Association for Computational
Linguistics, Cambridge, MA, pages 1288–1298.
http://www.aclweb.org/anthology/D10-1125.

Tao Lei, Yu Xin, Yuan Zhang, Regina Barzilay,
and Tommi Jaakkola. 2014. Low-rank tensors
for scoring dependency structures. In Proceed-
ings of the 52nd Annual Meeting of the Asso-
ciation for Computational Linguistics (Volume 1:
Long Papers). Association for Computational Lin-
guistics, Baltimore, Maryland, pages 1381–1391.
http://www.aclweb.org/anthology/P14-1130.

Mitchell P. Marcus, Mary Ann Marcinkiewicz, and
Beatrice Santorini. 1993. Building a large

352

annotated corpus of english: the penn tree-
bank. Computational Linguistics 19(2):313–330.
http://dl.acm.org/citation.cfm?id=972470.972475.

Ryan McDonald. 2006. Discriminative learning and
spanning tree algorithms for dependency parsing.
Ph.D. thesis, University of Pennsylvania, Philadel-
phia, PA, USA.

Ryan McDonald and Fernando Pereira. 2006. Online
learning of approximate dependency parsing algo-
rithms. In Proceedings of 11th Conference of the
European Chapter of the Association for Computa-
tional Linguistics (EACL-2006)). volume 6, pages
81–88.

Ryan McDonald, Fernando Pereira, Kiril Ribarov, and
Jan Hajic. 2005. Non-projective dependency pars-
ing using spanning tree algorithms. In Proceedings
of Human Language Technology Conference and
Conference on Empirical Methods in Natural Lan-
guage Processing. Association for Computational
Linguistics, Vancouver, British Columbia, Canada,
pages 523–530.

Yusuke Miyao and Jun’ichi Tsujii. 2008. Fea-
ture forest models for probabilistic hpsg pars-
ing. Computational Linguistics 34(1):35–80.
https://doi.org/10.1162/coli.2008.34.1.35.

Joakim Nivre. 2008. Algorithms for de-
terministic incremental dependency pars-
ing. Computational Linguistics 34:513–553.
https://doi.org/http://dx.doi.org/10.1162/coli.07-
056-R1-07-027.

Carl Pollard and Ivan A. Sag. 1994. Head-Driven
Phrase Structure Grammar. The University of
Chicago Press, Chicago.

Wolfgang Seeker, Richárd Farkas, Bernd Bohnet, Hel-
mut Schmid, and Jonas Kuhn. 2012. Data-driven de-
pendency parsing with empty heads. In Proceedings
of COLING 2012: Posters. The COLING 2012 Or-
ganizing Committee, Mumbai, India, pages 1081–
1090. http://www.aclweb.org/anthology/C12-2105.

Mark Steedman. 2000. The syntactic process. MIT
Press, Cambridge, MA, USA.

Xu Sun. 2014. Structure regularization for struc-
tured prediction. In Z. Ghahramani, M. Welling,
C. Cortes, N. D. Lawrence, and K. Q. Weinberger,
editors, Advances in Neural Information Processing
Systems 27, Curran Associates, Inc., pages 2402–
2410. http://papers.nips.cc/paper/5563-structure-
regularization-for-structured-prediction.pdf.

Andre Torres Martins, Noah Smith, and Eric Xing.
2009. Concise integer linear programming for-
mulations for dependency parsing. In Proceed-
ings of the Joint Conference of the 47th An-
nual Meeting of the ACL and the 4th Interna-
tional Joint Conference on Natural Language Pro-
cessing of the AFNLP. Association for Computa-
tional Linguistics, Suntec, Singapore, pages 342–

350. http://www.aclweb.org/anthology/P/P09/P09-
1039.

Naiwen Xue, Fei Xia, Fu-dong Chiou, and Marta
Palmer. 2005. The penn Chinese treebank:
Phrase structure annotation of a large corpus.
Natural Language Engineering 11:207–238.
https://doi.org/10.1017/S135132490400364X.

Nianwen Xue and Yaqin Yang. 2013. Dependency-
based empty category detection via phrase struc-
ture trees. In Proceedings of the 2013 Confer-
ence of the North American Chapter of the As-
sociation for Computational Linguistics: Human
Language Technologies. Association for Computa-
tional Linguistics, Atlanta, Georgia, pages 1051–
1060. http://www.aclweb.org/anthology/N13-1125.

Hiroyasu Yamada and Yuji Matsumoto. 2003. Statis-
tical dependency analysis with support vector ma-
chines. In The 8th International Workshop of Pars-
ing Technologies (IWPT2003). pages 195–206.

Xun Zhang, Yantao Du, Weiwei Sun, and Xiaojun
Wan. 2016. Transition-based parsing for deep de-
pendency structures. Computational Linguistics
42(3):353–389. http://aclweb.org/anthology/J16-
3001.

353

Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017), pages 354–367,
Vancouver, Canada, August 3 - August 4, 2017. c©2017 Association for Computational Linguistics

German in Flux:
Detecting Metaphoric Change via Word Entropy

Dominik Schlechtweg∗†, Stefanie Eckmann‡, Enrico Santus3,
Sabine Schulte im Walde∗, Daniel Hole†

∗Inst. for Natural Language Processing, University of Stuttgart, Germany
†Dept. of Linguistics/German Studies, University of Stuttgart, Germany
‡Historical and Indo-European Linguistics, LMU Munich, Germany

3Singapore University of Technology and Design, Singapore
dominik.schlechtweg@gmx.de, stefanie.eckmann@campus.lmu.de,

esantus@mit.edu, schulte@ims.uni-stuttgart.de, holedan@gmail.com

Abstract

This paper explores the information-
theoretic measure entropy to detect
metaphoric change, transferring ideas
from hypernym detection to research
on language change. We also build the
first diachronic test set for German as a
standard for metaphoric change annota-
tion. Our model shows high performance,
is unsupervised, language-independent
and generalizable to other processes of
semantic change.

1 Introduction

Recently, computational linguistics has shown an
increasing interest in language change. This inter-
est is focused on making semantic change mea-
surable. However, even though different types
of semantic change are well-known in historical
linguistics, little effort has been made to distin-
guish between them. A very basic distinction
in historical linguistics is the one between inno-
vative meaning change (also polysemization)—
e.g., German brüten ‘breed’ > ‘breed, brood over
sth.’—and reductive meaning change—e.g., Ger-
man schinden ‘to skin, torture’ > ‘to torture’
(cf. Koch, 2016, p. 24–27). Metaphoric mean-
ing change is an important sub-process of inno-
vative meaning change. Hence, a computational
model of semantic change should be able to dis-
tinguish metaphoric change from other—typically
less strong—types of change. Such a model,
particularly if applicable to different languages,
would be beneficial for a number of areas: (i), his-
torical linguists may test their theoretical claims
about semantic change on a large-scale empirical
basis going beyond the traditional corpus-based
approaches; (ii), linguists and psychologists work-
ing on metaphor in language or cognition may

benefit by gaining new insights into the diachronic
aspects of metaphor which are not yet as central
in these fields as the synchronic aspects; and, fi-
nally, (iii), the Natural Language Processing re-
search community may benefit by applying the
model presented here to a wide range of tasks in
which polysemy and non-literalness are involved.

Our aim is to build an unsupervised and
language-independent computational model
which is able to distinguish metaphoric change
from semantic stability. We apply entropy (a
measure of uncertainty inherited from informa-
tion theory) to a Distributional Semantic Model
(DSM). In particular, we exploit the idea of se-
mantic generality applied in hypernym detection,
to detect metaphoric change as a special process
of meaning innovation. German will serve as a
sample language, since there is a rich historical
corpus available covering a large time period.
Nevertheless, our model is presumably applicable
to other languages requiring only minor adjust-
ments. With the model, we introduce the first
resource for evaluation of models of metaphoric
change and propose a structured annotation pro-
cess that is generalizable to the creation of gold
standards for other types of semantic change.1

In the next section, we give an overview of re-
lated work on semantic change and automatic de-
tection of metaphor. In Section 3, the basic lin-
guistic notions we focus on are introduced and
connected to their distributional properties, fol-
lowed by a description of the corpus used to ob-
tain vector representations of words in Section 4.
In Section 5, the information-theoretic measures
we apply to word vectors are described. Section 6
presents the annotation study conducted to create a

1The test set is provided together with the annotation
data and the model code (which is based on Shwartz et al.
(2016)’s code): https://github.com/Garrafao/
MetaphoricChange

354

metaphoric change test set for German. Section 7
illustrates how the measures’ predictions shall be
evaluated. The results are presented and discussed
in Section 8. Section 9 will then conclude and give
a short outlook to further research objectives.

2 Related Work

There is a number of recent approaches to trace
semantic change via distributional methods. This
includes mainly (i), semantic similarity models as-
suming one sense for each word and then measur-
ing its spatial displacement by a similarity metric
(such as cosine) in a semantic vector space (Gu-
lordava and Baroni, 2011; Kim et al., 2014; Xu
and Kemp, 2015; Eger and Mehler, 2016; Hell-
rich and Hahn, 2016; Hamilton et al., 2016a,b) and
(ii), word sense induction models (WSI) inferring
for each word a probability distribution over dif-
ferent word senses (or topics) in turn modeled as
a distribution over words (Wang and Mccallum,
2006; Bamman and Crane, 2011; Wijaya and Yen-
iterzi, 2011; Lau et al., 2012; Mihalcea and Nas-
tase, 2012; Frermann and Lapata, 2016).

Most of the similarity models seem to be lim-
ited to quantify the degree of overall change rather
than being able to qualify different types of seman-
tic change.2 Similarity metrics, in particular, were
shown not to distinguish well between words on
different levels of the semantic hierarchy (Shwartz
et al., 2016). Thus, we cannot expect diachronic
similarity models to reflect changes in the seman-
tic generality of a word over time, which was de-
scribed to be a central effect of semantic change
(cf. Bybee, 2015, p. 197). Additionally, they often
pose the problem of vector space alignment (espe-
cially when relying on word embeddings), occur-
ring when word vectors from different time peri-
ods have to be mapped to a common coordinate
axis (cf. Hamilton et al., 2016b, p. 1492).

Diachronic WSI models, on the contrary, are
able to detect at least innovative (and reductive)
meaning change, as they are designed to induce
newly arising senses of words. However, they
do not measure how these senses relate to each
other in terms of semantic generality. Hence, ad
hoc, they may not be able to distinguish differ-
ent subtypes of innovative meaning change such as
metaphoric vs. metonymic change. They may fail

2With the exception of Hamilton et al. (2016a, p. 1)
making the rather coarse-grained distinction between cultural
shift and “regular processes of linguistic drift”.

to detect meaning changes where no new senses
can be induced as, e.g., in grammaticalization.
Moreover, some models require elaborate training
(e.g., Frermann and Lapata, 2016).

Apart from similarity and WSI models, Sagi
et al. (2009) measure semantic broadening and
narrowing of words (shifting upwards and down-
wards in the semantic taxonomy respectively) via
semantic density calculated as the average cosine
of its context word vectors. Just as word en-
tropy, semantic density is based on the measure-
ment of linguistic context dispersion (see Section
3.1). However, this method is only applied in a
case study with very limited scope in terms of the
number of phenomena covered and there is no ver-
ification of the test items via annotation. Hence,
it remains to be shown that the method can gener-
ally distinguish broadening and narrowing or other
types of meaning innovation.

Two previous approaches to language change
exploit the notion of entropy. Juola (2003) de-
scribes language change on a very general level by
computing the relative entropy (or KL-divergence)
of language stages, i.e. intuitively speaking, mea-
suring how well later stages of English encode a
prior stage. Kisselew et al. (2016) are interested
in the diachronic properties of conversion using—
among other measures—a word entropy measure.

Finally, research on synchronic metaphor iden-
tification has applied a wide range of approaches,
including binary classification relying on standard
distributional similarity (Birke and Sarkar, 2006),
text cohesion measures (Li and Sporleder, 2009),
classification relying on abstractness cues (Turney
et al., 2011; Köper and Schulte im Walde, 2016) or
cross-lingual information (Tsvetkov et al., 2014),
and soft clustering (Shutova et al., 2013), among
others. As to our knowledge, no previous work has
explicitly exploited the idea of generalization (via
hypernymy models) in metaphor detection yet.

3 Metaphoric Change

Metaphoric change plays a fundamental role in
semantic change (cf. e.g. Ferraresi, 2014, p. 15).
Within the framework of Conceptual Metaphor
Theory (Lakoff and Johnson, 1980) the metaphor-
ical effect can be described as a mapping from a
source domain to a target domain. Following the
terminology from Koch (2016, p. 24) innovative
meaning change, as opposed to reductive meaning
change, is where the existing meaning MA (the

355

source concept) of a word acquires a new meaning
MB (the target concept). Metaphoric Change is,
then, a subcategory of innovative meaning change
where MB is related to MA by similarity or a
reduced comparison (cf. Koch, 2016, p. 47, and
also Steen, 2010, p. 10). While language is of-
ten used ad hoc in a non-literal meaning in dis-
course, not every of these uses constitutes an
instance of metaphoric change. Only when a
metaphoric innovation is conventionalized within
the language, we can speak of metaphoric mean-
ing change (cf. Koch, 2016, p. 27). Consider
German umwälzen as an example. In Early New
High German the word was only used in the sense
‘to turn around something or someone physically’
(MA) as in (1).3 In Contemporary New High Ger-
man, though, the word is also frequently used in
the sense ‘to change something (possibly abstract)
radically’ (MB) as in (2).

(1) ...muß ich mich vmbweltzen / vnd kan keinen
schlaff in meine augen bringen 4

‘...I have to turn around and cannot bring
sleep into my eyes.’

(2) Kinadon wollte den Staat umwälzen... 5

‘Kinadon wanted to revolutionize the state...’

3.1 Distributional Properties
As Bybee (2015) notes, and is also commonly
agreed-upon, “metaphorical meaning changes cre-
ate polysemy” (p. 199, her italics). Campbell
(1998, p. 258) describes this effect as “exten-
sions in the meaning of a word” occurring through
metaphoric change. It is only logical to assume
that such extensions in meaning range imply an
extension in the range of linguistic contexts a word
occurs in. This extension, then, distinguishes
words undergoing such a change from semanti-
cally stable words, but also from words undergo-
ing different types of meaning change such as re-
ductive meaning change where we expect an oppo-
sitional effect: a reduction of the range of contexts
a word occurs in. Polysemization (and thus con-
text extension) is, yet, not only a typical property
of metaphoric change but of all types of innovative
meaning change such as metonymic change, gen-
eralization, specialization, and grammaticaliza-
tion (cf. Heine and Kuteva, 2007, p. 35). However,

3Early New High German: ca. 1350-1650; Contemporary
New High German: 1650-today (cf. Fleischer, 2011, p. 24)

4Neomenius, J.: Christliche Leichpredigt. Brieg, 1616.
5Müller, K. O.: Die Dorier. Vier Bücher. Bd. 2, 1824.

recall that metaphor involves a mapping between
two different domains (as introduced in Lakoff and
Johnson 1980) in contrast to other types of mean-
ing change, which is why we would expect a rel-
atively strong effect on the contextual distribution
here.

Moreover, not only the range of a word’s mean-
ings influences the range of contexts it occurs in,
but also the particular nature of the individual
meanings has an influence. As research in hy-
pernymy detection shows, words at different lev-
els of semantic generality have different distri-
butional properties (Rimell, 2014; Santus et al.,
2014; Shwartz et al., 2016). According to the dis-
tributional informativeness hypothesis, semanti-
cally more general words are less informative than
special words as they occur in more general con-
texts (Rimell, 2014; Santus et al., 2014). Hence,
differences in semantic generality of source and
target concept should be reflected by their con-
textual distribution.6 Such differences occur par-
ticularly with taxonomic meaning changes like
generalization and specialization, but also with
metaphoric change, as it often results in the emer-
gence of more abstract meanings of a word. Con-
sider, e.g., the development of German glänzend
with ‘luminous’ as source and ‘very good’ as tar-
get concept. The source concept only applies to a
rather limited range of entities, i.e., physical ones.
The target concept, on the contrary, given its ab-
stractness, applies to nearly every entity. Inter-
preting such changes of words as a change in their
semantic generality, we now aim to examine how
well it is measurable with distributional methods.

4 Corpus

For our investigation, we use the corpus of
Deutsches Textarchiv (erweitert) (DTA), which
is accessible online and downloadable for free.7

The DTA provides more than 2447 lemmatized
and POS-tagged texts (with more than 140M to-
kens), covering a time period from the late 15th

to the early 20th century. Thus, it covers the
developments of German from (late) Early New
High German to Contemporary New High Ger-
man. The corpus is POS-tagged using the STTS
tagset (Schiller et al., 1999). The texts used by
DTA include literary and scientific texts as well as

6Related ideas are also indicated, e.g., by Fortson (2003,
p. 650) and Bybee (2015, p. 202).

7http://www.deutschestextarchiv.de/

356

functional writings, e.g., cookbooks. DTA aims at
providing a corpus with a roughly equivalent num-
ber of texts from each of the aforementioned gen-
res. The corpus is preprocessed in standard ways.
(Find details in Appendix A.) For the creation of
the co-occurrence matrices, from which we calcu-
late word entropy and the other measures, a stan-
dard model of distributional semantics with a sym-
metric window of size 2 is used.

5 Entropy

In hypernym detection a number of well-
established measures compare the semantic gen-
erality of words on the basis of their distributional
generality (Weeds and Weir, 2003; Clarke, 2009;
Kotlerman et al., 2009). A promising candidate
measure seems to be word entropy, which is intro-
duced in Santus (2013) and Santus et al. (2014).
Amongst other advantages, word entropy is inde-
pendently measurable over time, which avoids the
problem of vector space alignment.

5.1 Entropy in Information Theory
The term ‘Entropy’ was first introduced by Shan-
non (1948) who laid the foundations of infor-
mation theory. Intuitively, it measures the un-
predictability of a system. The entropy H of a
discrete random variable X with possible values
{x1, ..., xn} and probability mass function P (X)
(a probability distribution) is

H(X) = −
n∑

i=1

P (xi) logb P (xi) (3)

where b is typically equal to 2 or 10 (Shannon,
1948, cf. p. 11).

Word Entropy. Examining language statisti-
cally, a word w may be represented by its dis-
tribution in a corpus. This distribution is deter-
mined by the contexts of w, i.e., the words it co-
occurs with, and how often it co-occurs with them.
The distribution of w is usually recorded in a ma-
trix, intuitively a table where rows correspond to
target word distributions and columns to context
word distributions. Rows are typically referred
to as vectors and the whole matrix spans a vec-
tor space. We can interpret w’s (normalized) vec-
tor then as a probability distribution where word
co-occurrences of w with any other corpus word
w′ correspond to events in the probability distribu-
tion. More specifically, assuming that C and T are

discrete random variables of occurrences of con-
text and target words respectively, we say that w’s
vector estimates the conditional probability distri-
bution of context words given target word w with
discrete random variable C and a probability mass
function defined by P (C | T = w). For every
c ∈ C, P (c | w) (the probability that the context
word c will occur given the occurrence of w as tar-
get word) is estimated by Freq(w,c)

Freq(w) .8 Now, we can
apply any notion from probability theory to this
distribution. Hence, the entropy of w’s probability
distribution is given by

H(C) = −
n∑

i=1

P (ci | w) log2 P (ci | w) (4)

The entropy of w’s estimated probability
distribution—for the sake of convenience we will
just write H(w)—measures the unpredictability
of w’s co-occurrences, i.e., how hard it is to
predict with which word w will co-occur if we
look at a random occurrence of w. In hypernym
detection, word entropy is assumed to reflect
semantic generality. While here it is mostly
used to compare pairs of different words for
their semantic relations, e.g., whether one is the
hypernym of the other, we will compare the word
entropy of one and the same word w in different
time periods assuming this to reflect w’s semantic
development with respect to its generality.

Normalization
Depending on corpus size and other factors, the
frequency of each target word will vary strongly.
On top of that, the number of types in the cor-
pus increases with the progression of time. These
factors influence word entropy (and also other
measures) without being tied to semantic change.
Hence, we need a way to normalize for them. We
test essentially two ways of normalizing word en-
tropy for word frequency:

Matching Occurrence Number (MON). The
first strategy assumes that, for the most part, the in-
fluence of word frequency on word entropy comes
from the increasing number of context types with
increasing number of contexts n used to construct
a word vector (where n is dependent on word fre-
quency). Hence, we can suppress the influence of
word frequency by comparing only word vectors

8For convenience, here, we do not distinguish between
a word and the mathematical structure corresponding to the
event of the occurrence of the word.

357

constructed from an equal number of contexts (cf.
Kisselew et al., 2016). In order to make the vectors
of all target words from all time periods compara-
ble, we choose a common number of contexts n
for all target words. Additionally, in order to di-
minish the influence of chance (because we do not
use all contexts, we have to pick a random sub-
set), we average over the entropies computed for a
number of k vectors, each constructed from a dif-
ferent n-sized set of contexts. (Find information
on the setting of hyperparameters in Appendix A.)

Ordinary Least Squares Regression (OLS).
Another way of normalizing entropy for frequency
relies on the observation that there is a correlation
between word entropy and word frequency. We
try to approximate this relationship by fitting an
OLS model to the observations from the corpus,
where each observed word type is a data point.
This approximation can then serve as a prediction
for the expected change of a word’s entropy given
a certain change in the word’s frequency. Devi-
ations from this expectation can further be inter-
preted as the change in entropy solely related to
semantic generality. In order to get a good approx-
imation for each target word we only fit the model
to the local n data points next to the target word in
the independent variable (frequency). In Figure 1
we see the result of fitting the model described by
Equation 5 to the 1000 data points (from a specific
time period) next to the data point for the adjective
locker, ‘loose’, in the independent variable. As
we can see, the data point for locker slightly devi-
ates from the regression curve, more precisely, by
∆ = 0.136. Taking this as a starting point for the
semantic development of locker (reference time)
we can now calculate locker’s ∆ in a later time pe-
riod (focus time). We assume that ∆ stays approx-
imately equal if only locker’s frequency changes.
If ∆, however, increases, we assume that the word
underwent meaning innovation. We apply an anal-
ogous procedure to all target words.

entropy ∼ α+ β ln(frequency) (5)

5.2 Other Measures
Word Frequency. Concerning frequency, a sim-
ilar argument can be brought forward as in Section
3.1: When a word acquires a new meaning and
can be applied to a wider range of entities, then
we would expect the word to be used more often.
Furthermore, it is well known that certain types

Figure 1: Example of OLS for locker

of semantic change correlate with frequency. For
instance, desemanticization comes with a strong
increase in frequency (cf. Bybee, 2015, p. 133).
For this, we use the frequency of a word w as a
baseline to word entropy (parallel to the practice
in hypernym detection). In order to diminish the
influence of corpus size we normalize word fre-
quency Freq(w) by the number of tokens N in
the relevant slice of the corpus:

Freqn(w) =
Freq(w)

N
(6)

Second-Order Word Entropy. A variant of
word entropy used in hypernym detection is
second-order word entropy where entropy is not
calculated directly for the word w, but rather for
its most-associated context words. Then the me-
dian of these is w’s second-order word entropy
(cf. Santus et al., 2014, p. 40). This measure re-
lies on the hypothesis that the more semantically
general a word is, the more it co-occurs with gen-
eral context words. Presumably, this measure is
more immune to the influence of word frequency,
because not w’s own frequency plays a role, but
rather the frequency of its most-associated context
words. This may be helpful where we have rather
accidental differences in the frequency of a word
in different time periods, e.g., due to corpus size or
text sort. In such a setting we reckon regular (first-
order) word entropy to be more prone to these ac-
cidental factors than second-order word entropy.

6 Diachronic Metaphor Annotation

Humans often have different intuitions about what
is a metaphor and what is not. According to

358

Steen (2010, p. 2) “the identification of metaphoric
language has become a matter of controversy”.
Therefore, we did not want to rely solely on our
own intuitions, but identify metaphoric change of
words via annotation. A number of structured an-
notation guidelines for synchronic metaphor iden-
tification have been proposed (Pragglejaz Group,
2007; Steen, 2010; Shutova, 2015). Steen (cf.
2010, p. 8) distinguishes between linguistic and
conceptual metaphor annotation. We adopted the
former approach, since we were less interested in
the exact mapping underlying a metaphoric use
of a word. The crucial difference to synchronic
metaphor identification is that we did not want
annotators to judge individual uses but pairs of
uses of lexical units.9 The metaphoric relation be-
tween the source and the target concept involved
in the metaphoric change of a word w should be
reflected in w’s individual uses which is a com-
mon methodological assumption in historical lin-
guistics. Individual uses bearing the meaning of
source or target concept allow humans to infer
these meanings which can then be judged as being
(non-)metaphorical to each other. We operational-
ize this observation as annotation procedure.

Target Selection. We preselected the target
items for annotation so that they were likely to
have undergone metaphoric change. For this,
we scanned the literature on metaphoric change
in German such as Fritz (2006) and Keller and
Kirschbaum (2003). The richest list we found in
Paul (2002) (ca. 140 items). However, this could
not be taken directly as a gold standard. We first
checked for every item whether we could attest
metaphoric change in the corpus. If so, we deter-
mined a rough date of change according to when
we found the metaphoric meaning clearly estab-
lished in the corpus. We then checked whether the
item had an occurrence frequency above a thresh-
old of 40 around the date of change. Only then the
item was added to the test set for annotation.10

For every metaphoric target word m in the test
set we added a semantically stable word s with
the same POS-tag from the same frequency area.
For this, we checked the words in the immediate
vicinity to m in the total frequency rank (of the
first half of the century in which m’s change oc-

9A similar procedure is used in Erk et al. (2009, 2013) for
annotation of usage similarity.

10We provide both: the full list of items and the one filtered
for frequency.

curred) in DWDS, a rich online etymological dic-
tionary of German.11 If there was no meaning
change indicated and we could not attest a clear
meaning change in the corpus, we added the word
to the test set. Thereby, we balanced metaphoric
and stable words with respect to frequency. Sta-
ble words comprise concrete words, e.g. Palast
‘palace’, as well as more abstract words, e.g. fre-
undlich ‘friendly’. The test set contains nouns,
verbs and adjectives. (Find it in Appendix C.)

Next, parallel to the corpus slicing (see Section
7), we selected 20 contexts from two time peri-
ods. These periods were set in such a way that one
was located before and one after the pre-identified
date of change. Supposing that a word occurs in
n contexts in a certain time period, we ordered
them according to publication date and picked ev-
ery (n/20)th context guaranteeing that contexts
are well-distributed over authors and the time pe-
riod. Contexts with less than 10 words and obvi-
ous parsing errors were excluded in order to pro-
vide enough information for the annotators and to
avoid contexts excluded by them.

Finally, contexts from the earlier period were
combined randomly with contexts from the later
period yielding 20 context pairs for every target.
The order of every second pair was switched, min-
imizing the possibility that annotators infer the
chronology of contexts. The pairs of all 28 tar-
get words were randomly sampled such that in-
dividual judgments were less influenced by earlier
judgments of the same target, resulting in 560 con-
text pairs presented to the annotators.

Annotation Procedure. Three annotators were
asked to judge for each of the 560 context pairs
whether one of the contexts admitted inference
of a meaning of the target word which is related
metaphorically to the meaning in the other con-
text. (Find an example in Appendix B.) The anno-
tators were linguists, two of them were marginally
acquainted with historical linguistics. The anno-
tation guidelines are a combination and modifi-
cation of the processes described by Pragglejaz
Group (2007), Steen (2010) and Shutova (2015).
Whether a meaning of a target word in context 2
(M2) is metaphorically related to the meaning in
context 1 (M1) should be identified in 3 steps:

1. For each word its meaning in context is es-
tablished;

11https://dwds.de/

359

2. It is decided whether M1 can be seen as a
more basic meaning than M2. This is the case
when M2 is related to M1 in one or more of
the following ways: (i), M2 is less concrete
than M1; (ii), M2 is less human-oriented than
M1; (iii), M2 is not related to bodily action in
contrast to M1; (iv), M2 is less precise than
M1.

3. If this is the case, then it is decided whether
M2 contrasts with M1 but can be understood
in comparison with it. If yes, M2 is judged
as being metaphorically related to M1, oth-
erwise as not being metaphorically related to
M1.

Step 2 is intended to exclude cases of non-
metaphorical polysemy, for which a more basic
meaning should not be identifiable (cf. Pragglejaz
Group, 2007, p. 30). It is a rather liberal varia-
tion of the existing guidelines in that already the
fact that one of the criteria holds is sufficient to
consider M1 to be more basic than M2. This is
because of cases like Feder, ‘feather, springclip’,
Blatt, ‘leaf, sheet, newspaper’, and Haube, ‘cap,
cover, marriage, crest’, whose meaning change
would else not be captured, although we reckon
it metaphoric: The change of Feder ‘feather’ >
‘feather, springclip’ does not fall under all crite-
ria in step 2, e.g., there is no mapping from con-
crete to abstract. The existing guidelines seem to
implicitly exclude such cases of metaphors, which
we want to overcome. Future studies may opt for
different decisions here.

Step 3 guarantees that the two meanings identi-
fied are sufficiently distinct and that there can be
a mapping established between them. We cannot
guarantee that annotators judge the context pairs
in exactly the way we prescribe in the guidelines.
(Find the full guidelines in Appendix B.)

Annotation Results. Annotators reported that
they found the task hard, which is not surprising
given that some contexts dated back 400 years
making it sometimes difficult to interpret them.
Accordingly, we expected this to be reflected in
the inter-annotator agreement. Annotator 1 and
Annotator 2 had a moderate agreement of κ = .40
(Fleiss’ Kappa) for earlier and .46 for later con-
texts, while Annotator 3 had poor agreement with
both, Annotator 1 (.26, .26) and Annotator 2 (.32,
.29). Given this deviation, we excluded Annota-
tor 3 from the evaluation. (Further evaluation is

performed for the judgments of Annotator 1 and
Annotator 2.) The agreement we found is only
slightly lower than in comparable synchronic stud-
ies. Pragglejaz Group (2007, p. 21), e.g., report a κ
between 0.56 and 0.72 for different tasks. We can
attribute the difference in agreement to the higher
level of difficulty of the task the annotators were
faced with.

The annotation results are summarized in Ta-
ble 1. Target words are ordered decreasingly ac-
cording to the increase in metaphorically tagged
contexts over time (last column). In addition to κ
we also give the share of items with perfect agree-
ment (%A), since κ underestimates agreement on
rare effects (Feinstein and Cicchetti, 1990). As
you can see, the annotators overall confirmed our
judgments of the targets, as most metaphoric tar-
gets are at the top of the list. Target words dif-
fer strongly in the strength of metaphoric change
assigned to them: between 82% (Donnerwet-
ter) and -14% (Haube). Yet, most targets ex-
hibit positive judgment, which we would expect
from a test set containing metaphoric and sta-
ble targets. Striking is the position of Feder and
Haube at the bottom, which are tagged even neg-
atively metaphoric. This means that the share
of metaphorically tagged contexts was higher for
the earlier contexts. We conjecture that the rea-
son for this is that both words were already used
in other metaphoric meanings in earlier contexts.
The high position of freundlich and fett presum-
ably results from the fact that they are abstract ad-
jectives. Metaphor identification for adjectives is
more difficult than for nouns and verbs, because
their meanings tend to be less concrete and pre-
cise (cf. Pragglejaz Group, 2007, p. 28). They are
typically applicable to a wider range of entities, in-
creasing the probability to encounter a context pair
in our study with two uses differing in abstractness
and preciseness. We will pay particular attention
to the targets rated differently by us and the anno-
tators in the analysis of the measures’ predictions.

7 Evaluation

As with Gulordava and Baroni (2011) or Hamil-
ton et al. (2016b), we assess the measures’ perfor-
mance by comparing their predictions in a corpus
against a gold standard. Our gold standard is the
rank of target words in Table 1 obtained by annota-
tion. We obtain the measures’ predictions for the
target words by first calculating their values in a

360

lexeme type earlier contexts later contexts
∆%+time %+ %A κ time %+ %A κ

Donnerwetter met 1700-1800 .00 1.00 - 1850-1926 .82 .85 .57 .82
peinlich met 1600-1700 .00 .80 -.11 1800-1900 .67 .60 .17 .67
glänzend met 1600-1700 .06 .85 .31 1800-1900 .63 .95 .89 .57
erhaben met 1600-1700 .12 .85 .49 1800-1900 .55 .55 .14 .43

geharnischt met 1700-1800 .00 .95 -.03 1850-1926 .42 .95 .90 .42
freundlich sta 1600-1700 .07 .70 .10 1800-1900 .38 .65 .35 .31

fett sta 1600-1700 .08 .65 .06 1800-1900 .27 .55 .17 .20
flott met 1700-1800 .00 .85 .72 1850-1926 .20 .75 .59 .20
Blatt met 1500-1600 .00 .75 -.10 1700-1800 .17 .60 .16 .17

Rausch met 1600-1700 .00 .85 .50 1800-1900 .15 .65 .36 .15
locker met 1700-1800 .11 .90 .70 1850-1926 .23 .65 .30 .12

ausstechen met 1600-1700 .10 1.00 1.00 1800-1900 .21 .95 .86 .11
eitel met 1600-1700 .00 .35 -.27 1800-1900 .11 .45 -.07 .11

ahnen sta 1600-1700 .00 .70 .20 1800-1900 .09 .55 .11 .09
brüten met 1600-1700 .11 .90 .66 1800-1900 .19 .80 .48 .08

erdenklich sta 1700-1800 .00 .60 -.25 1850-1926 .06 .80 .22 .06
aufwecken sta 1600-1700 .24 .85 .62 1800-1900 .27 .75 .43 .03

stillschweigend sta 1700-1800 .07 .75 .13 1850-1926 .08 .60 -.07 .02
bewachsen sta 1700-1800 .00 .85 -.08 1850-1926 .00 1.00 - .00

Palast sta 1700-1800 .00 .80 -.11 1850-1926 .00 .80 -.11 .00
Fenchel sta 1600-1700 .00 .95 -.03 1800-1900 .00 1.00 - .00

Wohngebäude sta 1700-1800 .00 .95 -.03 1850-1926 .00 1.00 - .00
adelig sta 1600-1700 .08 .65 .11 1800-1900 .07 .70 .10 -.01

Evangelium sta 1500-1600 .05 .95 .64 1700-1800 .00 .90 -.05 -.05
Unhöflichkeit sta 1600-1700 .05 .95 .64 1800-1900 .00 .65 -.21 -.05

heil sta 1600-1700 .13 .40 -.01 1800-1900 .00 .50 .03 -.13
Feder met 1700-1800 .28 .90 .76 1850-1926 .13 .75 .28 -.14
Haube met 1600-1700 .20 .75 .37 1800-1900 .06 .90 .44 -.14

all - - .06 .80 .40 - .20 .74 .46 .14

Table 1: Annotation results divided into judgments for ear-
lier and later contexts. %+ contains the share of metaphori-
cally tagged items in all items for the respective target word
on which there was perfect agreement. %A gives the share of
items with perfect agreement and κ the Fleiss’ Kappa score
for all annotators. The last column, ∆%+, contains the rela-
tive increase or decrease in metaphorically tagged items over
time calculated by (%+later) − (%+earlier). Rows are or-
dered decreasingly according to the values in ∆%+.

time period 1 before the starting point of change
and in a time period 2 after that. We then compute
the difference d in values between period 1 and
2 for each target word and further rank the target
words according to d. Next, we compute the rank
correlation between each of these predicted ranks
and the gold rank as a performance measure.

Time period 1 is usually the century before and
period 2 the century after the century of change,
e.g., ausstechen (1739) will be compared in 1600-
1700 and 1800-1900. (Only for targets from 1800-
1900 time period 2 is different, i.e., 1850-1926,
since the corpus version we use only contains texts
until 1926.) Stable words are compared in the
same time periods as their metaphoric counter-
parts (see Section 6). With this procedure we have
the possibility to evaluate the measures (i), only
on targets from the same century, fixing influential
side factors such as corpus size, and (ii), on all tar-
gets, which is a much harder task. (Find a list of
time periods with corpus sizes in Appendix A.)

8 Results

Table 2 shows Spearman’s ρ quantifying the corre-
lation between the measures’ predicted ranks and
the gold standard rank. We can directly see that
word entropy (H) correlates significantly with the
gold rank in different conditions. Moreover, the

ranking it predicts for targets from 1700-1800 cor-
relates much stronger (.64) with the gold rank than
the other measures’ predictions. Note that the cor-
relation is highly significant despite the relatively
small sample size. In the harder condition, where
we look at the ranks across different time periods,
H still correlates significantly and stronger than all
other measures with the gold rank. However, apart
from H, the conclusions we can draw about the
other measures can only be preliminary, as there is
no significance for their predicted ranks.

At first glance, the normalized versions of en-
tropy do not perform as expected: HMON never out-
performs frequency and shows even negative cor-
relation in one time period. Since we reckoned
that the reason for this is the low setting of the hy-
perparameter n = 29 (which we adopted with the
intention to construct all vectors from a common
number of contexts), we also tested the measure
on target words from 1700-1800 with a setting of
n such that the maximum number of contexts is
used to construct the word vector and the number
of vectors to average over k = 10. In this setting
HMON’s prediction has a highly significant corre-
lation with the gold rank which is comparable in
strength to H.

Notably, HOLS has the best performance for
targets from 1800-1900. We tried out differ-
ent hyperparameter settings and found that our
initial choice of the data window size n =
1000 may also not have been optimal, as
higher n yield better, yet non-significant, re-
sults: n = 500/10000/20000/50000 yields ρ =
0.19/0.32/0.31/0.21 respectively, for targets from
1700-1800. Another factor possibly biasing HOLS

are different variances in different corpora or fre-
quency areas which may also connect to our obser-
vation that the measure correlates negatively with
absolute changes in frequency, i.e., decrease in fre-
quency often leads to increase in HOLS and vice
versa.

H2 consistently performs poorly. Moreover,
testing of different values for N yields a wide
range of ρ values between -0.29 and 0.42 for tar-
gets from 1700-1800, not allowing conclusions on
the performance of the measure because the corre-
lation is not significant.

Analyzing the predicted ranks reveals interest-
ing insights. H and its normalized siblings rank
Donnerwetter, which is at the top of the gold rank,
at the very bottom. This is, presumably, because

361

in its later metaphoric sense ‘blowup’ the word can
be used as an interjection in very short sentences
as in (7).

(7) Potz Donnerwetter! 12

‘Man alive!’

This narrows down Donnerwetter’s contextual
distribution due to our model only considering
words within a sentence as context. H2 and fre-
quency are not sensitive to this and rank the word
much higher. This shows that, (i), different factors
play a role in determining the contextual distribu-
tion of a word suggesting that a model of semantic
change should incorporate different types of infor-
mation and, (ii), that H2 and frequency may still be
helpful in detecting metaphoric change in certain
settings. The dominance of H may also be a hint to
this direction: Word entropy combines frequency
and contextual distribution as it is influenced by
both.

Feder and Haube from the very bottom of the
gold rank are not beyond the bottom-items of any
measure’s prediction. In H’s prediction, which is
the best-performing measure, they rank near the
middle (12, 18). This indicates that their position
at the bottom of the gold rank may not accurately
reflect the semantic change they underwent. Sim-
ilarly for the adjectives freundlich and fett ranking
in all predictions near middle or lower (for H: 18,
10). We still have to assess how these words be-
have in future studies.

1600-1700 1700-1800 1800-1900 all
H 1.00 .64*** .10 .39*
HMON 1.00 .19 -.10 .06
HOLS 1.00 .20 .29 .26
H2 1.00 .06 .02 .13
Freqn 1.00 .29 -.07 .26

Table 2: Summary of the predictions of word entropy
(H), H normalized via MON (HMON), H normalized via OLS
(HOLS), second-order word entropy (H2) and normalized fre-
quency (Freqn) for the respective subset of target words from
our test set for each time period. Values in cells refer to Spear-
man’s rank correlation coefficient ρ between the individual
measure’s predicted rank and the relevant subrank from the
annotated gold standard (Table 1).

9 Conclusion

Semantic generality is an important indicator of
semantic change. As Bybee (cf. 2015, p. 197) puts
it, generalization and specialization are two ba-
sic principles of meaning change. We proposed a

12Hauptmann, Gerhart: Der Biberpelz. Berlin, 1893.

way to detect metaphoric change based on seman-
tic generality and built a test set for the evaluation
of computational models of metaphoric change
in German. We proposed an annotation proce-
dure strictly derived from comparable synchronic
work and showed that annotators can show rea-
sonable agreement. Different distributional mea-
sures based on the information-theoretic concept
of entropy were compared against the annotators
judgments and it was found that raw word entropy
correlates strongly and significantly with the gold
rank in different settings in contrast to most other
entropy measures and frequency. We found evi-
dence that HMON predicts well with certain param-
eter settings.

Both, the annotation procedure and the compu-
tational model, are generalizable to different types
of semantic change. Moreover, our model is un-
supervised and language-independent as it relies,
in principle, on minimal linguistic input, since en-
tropy can be computed already from a raw token
co-occurrence matrix. Yet, the model profits from
richer input as indicated in Shwartz et al. (2016).

Future studies should test how well word en-
tropy distinguishes metaphoric change from other
types of meaning innovation and how well it de-
tects innovative and reductive meaning change in
general. The latter may be tested straightfor-
wardly on the English data of Gulordava and Ba-
roni (2011) and Hamilton et al. (2016b). In doing
so, it will be interesting to see how our model per-
forms in comparison to diachronic similarity and
WSI models.

Acknowledgments

We thank Prof. Dr. Sebastian Padó (Institute
for Natural Language Processing, University of
Stuttgart) for pointing out his idea to normal-
ize word entropy via OLS. We are very grate-
ful to Prof. Dr. Olav Hackstein (Historical and
Indo-European Linguistics, LMU Munich) and
his research colloquium for valuable discussions
and comments and to Sascha Schlechtweg for
statistical advice. We would like to thank An-
drew Wigman for careful proof-reading as well as
Jörg Förstner, Michael Frotscher, Altina Mujkic,
Edona Neziri, Cornelia van Scherpenberg, Chris-
tian Soetebier and Veronika Vasileva for help re-
lated to the annotation process. Last but not least,
we thank the reviewers for constructive criticism
helping us to improve the paper substantially.

362

References
D. Bamman and G. Crane. 2011. Measuring Historical

Word Sense Variation. In Proceedings of the 11th
Annual International ACM/IEEE Joint Conference
on Digital Libraries. ACM, New York, NY, USA,
JCDL ’11, pages 1 – 10.

Julia Birke and Anoop Sarkar. 2006. A Clustering Ap-
proach for the Nearly Unsupervised Recognition of
Nonliteral Language. In Proceedings of the 11th
Conference of the European Chapter of the ACL.
Trento, Italy, pages 329–336.

Joan L. Bybee. 2015. Language change. Cambridge
University Press, Cambridge, United Kingdom.

L. Campbell. 1998. Historical Linguistics: An Intro-
duction. Edinburgh University Press.

Daoud Clarke. 2009. Context-theoretic semantics for
natural language: an overview. In Proceedings
of the Workshop on Geometrical Models of Natu-
ral Language Semantics. Association for Computa-
tional Linguistics, Athens, Greece, pages 112–119.

Steffen Eger and Alexander Mehler. 2016. On the lin-
earity of semantic change: Investigating meaning
variation via dynamic graph models. In Proceed-
ings of the 54th Annual Meeting of the Association
for Computational Linguistics, ACL 2016, August 7-
12, 2016, Berlin, Germany, Volume 2: Short Papers.

Katrin Erk, Diana McCarthy, and Nicholas Gaylord.
2009. Investigations on word senses and word us-
ages. In In Proceedings of ACL-09.

Katrin Erk, Diana McCarthy, and Nicholas Gaylord.
2013. Measuring word meaning in context. Com-
putational Linguistics 39(3):511–554.

A. R. Feinstein and D. V. Cicchetti. 1990. High agree-
ment but low Kappa: I. The problems of two para-
doxes. Journal of Clinical Epidemiology 43(6):543
– 549.

Gisella Ferraresi. 2014. Grammatikalisierung. Kurze
Einführungen in die germanistische Linguistik.
Winter, Heidelberg.

J. Fleischer. 2011. Historische Syntax des Deutschen.
Narr, Tübingen.

Benjamin Fortson. 2003. The Handbook of Histori-
cal Linguistic, Blackwell, Oxford, chapter An Ap-
proach to Semantic Change, pages 648–666. The
Handbook of Historical Linguistics.

Lea Frermann and Mirella Lapata. 2016. A bayesian
model of diachronic meaning change. TACL 4:31–
45.

Gerd Fritz. 2006. Historische Semantik. Metzler,
Stuttgart/Weimar.

K. Gulordava and M. Baroni. 2011. A distributional
similarity approach to the detection of semantic
change in the Google Books Ngram corpus. In Pro-
ceedings of GEMS.

W. L. Hamilton, J. Leskovec, and D. Jurafsky. 2016a.
Cultural Shift or Linguistic Drift? Comparing Two
Computational Measures of Semantic Change. In
Emnlp.

W. L. Hamilton, J. Leskovec, and D. Jurafsky. 2016b.
Diachronic Word Embeddings Reveal Statistical
Laws of Semantic Change. CoRR abs - 1605 -
09096.

Bernd Heine and Tania Kuteva. 2007. The Genesis
of Grammar: A Reconstruction. Oxford University
Press.

J. Hellrich and U. Hahn. 2016. Bad Company—
Neighborhoods in Neural Embedding Spaces Con-
sidered Harmful. Proceedings of COLING 2016
pages 2785 – 2796.

Patrick Juola. 2003. The Time Course of Language
Change. Computers and the Humanities 37(1):77–
96.

R. Keller and I. Kirschbaum. 2003. Bedeutungswan-
del: eine Einführung. De Gruyter Studienbuch. De
Gruyter.

Y. Kim, Y.-I. Chiu, K. Hanaki, D. Hegde, and S. Petrov.
2014. Temporal Analysis of Language through Neu-
ral Language Models. ArXiv e-prints .

Max Kisselew, Laura Rimell, Alexis Palmer, and Se-
bastian Pado. 2016. Predicting the direction of
derivation in english conversion. In Proceedings
of the 14th SIGMORPHON Workshop on Computa-
tional Research in Phonetics, Phonology, and Mor-
phology. Berlin, Germany.

Peter Koch. 2016. Meaning change and semantic
shifts. In Maria Koptjevskaja-Tamm Pänivi Juvo-
nen, editor, The Lexical Typology of Semantic Shifts,
De Gruyter Mouton.

Maximilian Köper and Sabine Schulte im Walde. 2016.
Distinguishing Literal and Non-Literal Usage of
German Particle Verbs. In Proceedings of the Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technolog ies. San Diego, California, USA,
pages 353–362.

Lili Kotlerman, Ido Dagan, Idan Szpektor, and Maayan
Zhitomirsky-Geffet. 2009. Directional distribu-
tional similarity for lexical expansion. In Proceed-
ings of the ACL-IJCNLP 2009 Conference Short
Papers. Association for Computational Linguistics,
Stroudsburg, PA, USA, ACLShort ’09, pages 69–72.

G. Lakoff and M. Johnson. 1980. Metaphors We Live
By. Phoenix books. University of Chicago Press.

363

J. H. Lau, P. Cook, D. McCarthy, D. Newman, and
T. Baldwin. 2012. Word Sense Induction for Novel
Sense Detection. In Proceedings of the 13th Confer-
ence of the European Chapter of the Association for
Computational Linguistics. Association for Compu-
tational Linguistics, Stroudsburg, PA, USA, EACL
’12, pages 591 – 601.

Linlin Li and Caroline Sporleder. 2009. Classifier
Combination for Contextual Idiom Detection With-
out Labelled Data. In Proceedings of the Confer-
ence on Empirical Methods in Natural Language
Processing. Singapore, pages 315–323.

R. Mihalcea and V. Nastase. 2012. Word Epoch Dis-
ambiguation: Finding How Words Change Over
Time. In Proceedings of the 50th Annual Meeting
of ACL.

H. Paul. 2002. Deutsches Wörterbuch: Bedeu-
tungsgeschichte und Aufbau unseres Wortschatzes.
Niemeyer, Tübingen, 10 edition.

Pragglejaz Group. 2007. MIP: A method for iden-
tifying metaphorically used words in discourse.
Metaphor and Symbol 22:1–39.

Laura Rimell. 2014. Distributional lexical entailment
by topic coherence. In Proceedings of the 14th Con-
ference of the European Chapter of the Association
for Computational Linguistics, EACL 2014, April
26-30, 2014, Gothenburg, Sweden. pages 511–519.

E. Sagi, S. Kaufmann, and B. Clark. 2009. Seman-
tic Density Analysis: Comparing Word Meaning
Across Time and Phonetic Space. In Proceedings
of the Workshop on Geometrical Models of Natu-
ral Language Semantics. Association for Compu-
tational Linguistics, Stroudsburg, PA, USA, GEMS
’09, pages 104 – 111.

Enrico Santus. 2013. SLQS: An entropy measure. Un-
published Master Thesis, University of Pisa.

Enrico Santus, Alessandro Lenci, Qin Lu, and Sabine
Schulte Im Walde. 2014. Chasing hypernyms in
vector spaces with entropy. In Proceedings of the
14th Conference of the European Chapter of the As-
sociation for Computational Linguistics, volume 2:
Short Papers. pages 38–42.

Anne Schiller, Simone Teufel, Christine Stöckert, and
Christine Thielen. 1999. Guidelines für das Tag-
ging deutscher Textcorpora mit STTS. Technical
report, Institut für maschinelle Sprachverarbeitung,
Stuttgart.

Claude E. Shannon. 1948. A Mathematical Theory of
Communication. CSLI Publications.

E. Shutova. 2015. Annotation of Linguistic and Con-
ceptual Metaphor, Springer.

Ekaterina Shutova, Simone Teufel, and Anna Korho-
nen. 2013. Statistical Metaphor Processing. Com-
putational Linguistics 39(2):301–353.

V. Shwartz, E. Santus, and D. Schlechtweg. 2016. Hy-
pernyms under Siege: Linguistically-motivated Ar-
tillery for Hypernymy Detection. CoRR abs - 1612
- 04460.

G. Steen. 2010. A Method for Linguistic Metaphor
Identification: From MIP to MIPVU. Converging
evidence in language and communication research.
John Benjamins Publishing Company.

Yulia Tsvetkov, Leonid Boytsov, Anatole Gershman,
Eric Nyberg, and Chris Dyer. 2014. Metaphor De-
tection with Cross-Lingual Model Transfer. In Pro-
ceedings of the 52nd Annual Meeting of the As-
sociation for Computational Linguistics. Baltimore,
Maryland, pages 248–258.

Peter Turney, Yair Neuman, Dan Assaf, and Yohai Co-
hen. 2011. Literal and Metaphorical Sense Identi-
fication through Concrete and Abstract Context. In
Proceedings of the Conference on Empirical Meth-
ods in Natural Language Processing. Edinburgh,
UK, pages 680–690.

X. Wang and A. Mccallum. 2006. Topics over time:
A non-Markov continuous-time model of topical
trends. In In SIGKDD.

Julie Weeds and David Weir. 2003. A general frame-
work for distributional similarity. In EMNLP. pages
81–88.

D. T. Wijaya and R. Yeniterzi. 2011. Understanding
Semantic Change of Words over Centuries. In Pro-
ceedings of the 2011 International Workshop on DE-
Tecting and Exploiting Cultural diversiTy on the So-
cial Web. ACM, New York, NY, USA, DETECT ’11,
pages 35–40.

Y. Xu and C. Kemp. 2015. A Computational Evalu-
ation of Two Laws of Semantic Change. In Pro-
ceedings of the 37th Annual Meeting of the Cogni-
tive Science Society, CogSci 2015, Pasadena, Cali-
fornia, USA, July 22-25, 2015.

A Hyperparameters and Corpus
Preprocessing Details

A.1 Hyperparameters
Second-order word entropy has 3 hyperparame-
ters: (i), the number of positively associated con-
texts N to compute the average/median from; (ii),
whether to use median or average entropy among
the top N contexts;13 and (iii), the association
metric used to sort the contexts by relevance (i.e.,
PPMI or PLMI). We choose the following combi-
nation of hyperparameters: 〈100, median, PLMI〉,

13Note that for any test pair, N is the maximal number of
associated contexts, which is reduced toM if a test target has
only M (< N) positively associated contexts in one of the
two matrices to compare.

364

which is suggested by the work of Shwartz et al.
(2016).

For MON entropy normalization we choose
n = 29, because that is the lowest context num-
ber of a word in one of its two relevant time peri-
ods, and k = 10000. For OLS normalization we
choose n = 1000.

A.2 Corpus Preprocessing
Words that occur less than 5 times in the whole
corpus, functional words and punctuation are
deleted. As functional words we regard those
which are not tagged with a POS-tag starting
with either ‘N’, ‘V’ or ‘AD’. Every token is then
replaced by its lemma form combined with the
starting of its POS-tag, e.g., geht is replaced by
gehen:V. Note that both diachronic lemmatization
and POS-tagging are provided by DTA.

time period 1500-1600 1600-1700 1700-1800 1800-1900 1850-1926
corpus size 0.2M 13M 23M 34M 23M

Table 3: Time periods for evaluation and their re-
spective corpus sizes after preprocessing.

B Annotation Guidelines

B.1 Introduction
Following the terminology from Koch (cf. 2016,
p. 24) innovative meaning change, as opposed to
reductive meaning change, is where the existing
meaning MA of a word acquires a new meaning
MB , where this normally happens over a long pe-
riod of time.

Metaphoric Change is, then, a subcategory
of innovative meaning change (besides
metonymic change, generalization...) where
MB is related to MA by similarity or a re-
duced comparison Koch (cf. 2016, p. 47).
(cf. also Steen, 2010, p. 10)

Note that the annotation process described be-
low is a combination and modification of the
processes described by Pragglejaz Group (2007),
Steen (2010) and Shutova (2015).

B.2 Annotation Process
You will be given an OpenOffice table document
with approximately 560 lines. In every line you
will see in columns 2 and 3 two uses of a word (the
target word contained in column 1) with its sur-
rounding contexts. The relevant word is marked in
bold font in both contexts.

1. For each such use of a word establish its
meaning in context, that is, how it applies
to an entity, relation, or attribute in the sit-
uation evoked by the text (contextual mean-
ing). Take into account what comes before
and after the word. Note that the word might
be used differently from what you are famil-
iar with. Don’t let yourself be confused by
alternative spelling.

2. Try to find an interpretation where the mean-
ing in the second context (M2) is related to
the meaning in the first context (M1) in one
or more of the following ways:

• M2 is less concrete than M1 (what it
evokes is harder to imagine, see, hear,
feel, smell, and taste);
• M2 is less human-oriented than M1;
• M2 is not related to bodily action in con-

trast to M1;
• M2 is less precise than M1 (precise as

opposed to vague).

3. If M2 is indeed related to M1 in one or more
of these ways, decide whether M2 contrasts
with M1 but can be understood in comparison
with it. (See below for an example.)

4. (i) If yes, fill in 1 into the column
headed by ‘M2 is metaphorically
related to M1’, judging M2 as
being metaphorically related to M1.

(ii) If no, fill in 0 into the column
headed by ‘M2 is is metaphori-
cally related to M1’, judging M2 as
not being metaphorically related to M1.

(iii) If you cannot decide, e.g., because
the word marked in bold font doesn’t
match the word shown in column 1
in meaning or part of speech, you
don’t understand either of the con-
texts, one is too unspecific or other
reasons, don’t perform evaluation,
fill in a 1 into the comments column
and go on to the next test item.

5. Compare the two meanings in the other di-
rection, i.e., decide whether M1 is metaphor-
ically related to M2 by going through steps
2 to 4 and fill your judgment into the col-
umn headed by ‘M1 is metaphoric compared
to M2’.

365

Please make sure that you don’t change any-
thing in the file apart from column width, your
judgments and comments. Finally, return the an-
notated document to the above-mentioned email
address. If you have any further questions on the
task, don’t hesitate to ask.

B.3 Annotation Example
The following example illustrates how the proce-
dure operates in practice. Consider Table 4 as an
example table similar to the one you will receive
for annotation.

In line 1 you need to compare two uses of the
word umwälzen. In context 1 umwälzen is used in
the sense ‘to turn around something or someone
physically’ (M1). This contrasts with its use in
context 2 where it is used in the sense ‘to change
something radically’ (M2). M2 is clearly less con-
crete than M1 and not necessarily related to bod-
ily action. Moreover, M2 is less precise, since
we may have greater disagreement about the ques-
tion whether something ‘changed radically’ than
we may have on the question whether someone or
something (was) turned around. (You may have a
different intuition here, which should then be re-
flected in your judgment accordingly.)

Now, as we saw, M2 contrasts with M1. How-
ever, it can be understood in comparison with it:
We can understand abstract change in terms of
physical or local change. Consequently, we fill in
1 in the column headed by ‘M2 is metaphorically
related to M1’, judging M2 to be metaphorically
related to M1. And, for the same reasons as men-
tioned above, we fill in a 0 in the column headed
by ‘M1 is metaphorically related to M2’.

In line 2 both meanings of umwälzen, M1 and
M2, are similarly concrete, human-oriented, re-
lated to bodily action and precise. They don’t
contrast with each other. (You may want to say
that they are equal.) Hence, neither meaning has
a metaphoric relation to the other. Consequently,
we fill in 0 into both columns.

366

target word Context 1 Context 2 M1 is metaphori-
cally related to M2

M2 is metaphori-
cally related to M1

comments

umwälzen Ein Knecht vnd Tagelöhner hat
doch auff den abendt sein Brodt
/ lohn vnd ruhe / Ein Kriegs-
man seinen Monat soldt / ich
aber mus der elenden nächte
viel haben / da mich mein
außwendiger schmertz vnd in-
wendige hertzen angst nit schlaf-
fen lest / ja ich bin der elen-
deste Mensch auff Erden / wann
andere Leute / auch das tumme
Vieh in jhrem Stalle jhre leib-
liche bequeme nachtruhe haben /
muß ich mich vmbweltzen/ vnd
kan keinen schlaff in meine au-
gen bringen

Kinadon wollte den Staat
umwälzen, weil er nicht, ob-
gleich von starkem und thäigem
Geiste, zu den Gleichen gehörte.

0 1

umwälzen Bey diesen und ähnlichen Hand-
lungen ist das Auge entweder
offen, oder verschlossen, aber
in beyden Fällen der Augapfel
krampfhaft umgewälzt, so dass
nur der Rand der Iris unter dem
obern Augenliede hervorscheint,
die Pupille erweitert, und die
Netzhaut unempfindlich selbst
gegen die heftigsten Reitzmittel.

Und was sagestu? habe ich
deinen so hochgerühmten Rit-
ter dann auch vom Pferde geza-
ubert / da er sich im Sande
umweltzete?

0 0

...

Table 4: Example Annotation Table

C Metaphoric Change Test Set

lexeme POS type old meaning > new meaning date freq.
eitel AD met ‘empty’ > ‘arrogant’ 1764 1320
freundlich AD sta ‘cordial, benevolent’ 1516 1351
erhaben AD met ‘pronounced, prominent’ > ‘distinguished,

great’
1725 1003

fett AD sta ‘obese, greasy, fatty (food)’ 1557 951
glänzend AD met ‘sparkling, luminous’ > ‘sparkling, lumi-

nous, very good’
1753 496

adelig AD sta ‘aristocratic, noble, virtuous’ 1585 481
peinlich AD met ‘painful’ > ‘painful, diligent, embarrassing’ 1788 440
heil AD sta ‘safe, sound’ 1494 423
locker AD met ‘not tense/tight’ > ‘frivolous, loose’ 1800 407
stillschweigend AD sta ‘silent’ 1603 498
geharnischt AD met ‘armoured’ > ‘sharply-worded, strong’ 1825 50
bewachsen AD sta ‘overgrown’ 1603 52
flott AD met ‘afloat’ > ‘lively, quick, dressy’ 1800 42
erdenklich AD sta ‘imaginable’ 1647 44
Feder N met ‘feather’ > ‘feather, springclip’ 1852 1121
Palast N sta ‘palace, chateau’ 1500 1111
Blatt N met ‘leaf’ > ‘leaf, sheet, newspaper’ 1638 410
Evangelium N sta ‘the Gospel’ 1521 405
Haube N met ‘cap’ > ‘cap, cover, marriage, crest’ 1712 138
Fenchel N sta ‘fennel’ 1531 138
Rausch N met ‘intoxication (due to use of mind-altering sub-

stances)’ > ‘inebriation’
1756 65

Unhöflichkeit N sta ‘discourtesy’ 1605 65
Donnerwetter N met ‘thunderstorm’ > ‘thunderstorm, blowup’ 1805 49
Wohngebäude N sta ‘residential building’ 1737 49
brüten V met ‘breed’ > ‘breed, brood over sth.’ 1754 184
aufwecken V sta ‘wake up (so.)’ 1585 183
ausstechen V met ‘excise’ > ‘excise, outrival’ 1739 53
ahnen V sta ‘suspect’ 1500 53

Table 5: Historical data: sta (stable), met (metaphoric).
The date column indicates the year of the occurrence of the
change for metaphoric items, but the year of the first occur-
rence for stable items. The last column (freq.) lists the fre-
quency of the lexeme in the first half of the century in which
the corresponding metaphoric change occurs.

367

Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017), pages 368–378,
Vancouver, Canada, August 3 - August 4, 2017. c©2017 Association for Computational Linguistics

Encoding of phonology in a recurrent neural model of grounded speech

Afra Alishahi
Tilburg University

a.alishahi@uvt.nl

Marie Barking
Tilburg University

m.barking@uvt.nl

Grzegorz Chrupała
Tilburg University

g.chrupala@uvt.nl

Abstract

We study the representation and encod-
ing of phonemes in a recurrent neural net-
work model of grounded speech. We
use a model which processes images and
their spoken descriptions, and projects the
visual and auditory representations into
the same semantic space. We perform
a number of analyses on how informa-
tion about individual phonemes is encoded
in the MFCC features extracted from the
speech signal, and the activations of the
layers of the model. Via experiments with
phoneme decoding and phoneme discrim-
ination we show that phoneme represen-
tations are most salient in the lower lay-
ers of the model, where low-level signals
are processed at a fine-grained level, al-
though a large amount of phonological
information is retain at the top recurrent
layer. We further find out that the at-
tention mechanism following the top re-
current layer significantly attenuates en-
coding of phonology and makes the utter-
ance embeddings much more invariant to
synonymy. Moreover, a hierarchical clus-
tering of phoneme representations learned
by the network shows an organizational
structure of phonemes similar to those pro-
posed in linguistics.

1 Introduction

Spoken language is a universal human means of
communication. As such, its acquisition and rep-
resentation in the brain is an essential topic in the
study of the cognition of our species. In the field
of neuroscience there has been a long-standing
interest in the understanding of neural represen-
tations of linguistic input in human brains, most

commonly via the analysis of neuro-imaging data
of participants exposed to simplified, highly con-
trolled inputs. More recently, naturalistic data has
been used and patterns in the brain have been cor-
related with patterns in the input (e.g. Wehbe et al.,
2014; Khalighinejad et al., 2017).

This type of approach is relevant also when the
goal is the understanding of the dynamics in com-
plex neural network models of speech understand-
ing. Firstly because similar techniques are of-
ten applicable, but more importantly because the
knowledge of how the workings of artificial and
biological neural networks are similar or different
is valuable for the general enterprise of cognitive
science.

Recent studies have implemented models which
learn to understand speech in a weakly and in-
directly supervised fashion from correlated audio
and visual signal: Harwath et al. (2016); Har-
wath and Glass (2017); Chrupała et al. (2017a).
This is a departure from typical Automatic Speech
Recognition (ASR) systems which rely on large
amounts of transcribed speech, and these recent
models come closer to the way humans acquire
language in a grounded setting. It is thus es-
pecially interesting to investigate to what extent
the traditional levels of linguistic analysis such
as phonology, morphology, syntax and semantics
are encoded in the activations of the hidden lay-
ers of these models. There are a small number
of studies which focus on the syntax and/or se-
mantics in the context of neural models of writ-
ten language (e.g. Elman, 1991; Frank et al., 2013;
Kádár et al., 2016; Li et al., 2016a; Adi et al.,
2016; Li et al., 2016b; Linzen et al., 2016). Taking
it a step further, Gelderloos and Chrupała (2016)
and Chrupała et al. (2017a) investigate the levels
of representations in models which learn language
from phonetic transcriptions and from the speech
signal, respectively. Neither of these tackles the

368

representation of phonology in any great depth.
Instead they work with relatively coarse-grained
distinctions between form and meaning.

In the current work we use controlled synthetic
stimuli, as well as alignment between the audio
signal and phonetic transcription of spoken ut-
terances to extract phoneme representation vec-
tors based on the activations on the hidden layers
of a model of grounded speech perception. We
use these representations to carry out analyses of
the representation of phonemes at a fine-grained
level. In a series of experiments, we show that
the lower layers of the model encode accurate rep-
resentations of the phonemes which can be used
in phoneme identification and classification with
high accuracy. We further investigate how the
phoneme inventory is organised in the activation
space of the model. Finally, we tackle the general
issue of the representation of phonological form
versus meaning with a controlled task of synonym
discrimination.

Our results show that the bottom layers in the
multi-layer recurrent neural network learn invari-
ances which enable it to encode phonemes inde-
pendently of co-articulatory context, and that they
represent phonemic categories closely matching
usual classifications from linguistics. Phonologi-
cal form becomes harder to detect in higher lay-
ers of the network, which increasingly focus on
representing meaning over form, but encoding of
phonology persists to a significant degree up to the
top recurrent layer.

We make the data and open-source code
to reproduce our results publicly available at
github.com/gchrupala/encoding-of-phonology.

2 Related Work

Research on encoding of phonology has been car-
ried out from a psycholinguistics as well as com-
putational modeling perspectives. Below we re-
view both types of work.

2.1 Phoneme perception

Co-articulation and interspeaker variability make
it impossible to define unique acoustic patterns for
each phoneme. In an early experiment, Liberman
et al. (1967) analyzed the acoustic properties of
the /d/ sound in the two syllables /di/ and /du/.
They found that while humans easily noticed dif-
ferences between the two instances when /d/ was
played in isolation, they perceived the /d/ as be-

ing the same when listening to the complete syl-
lables. This phenomenon is often referred to as
categorical perception: acoustically different stim-
uli are perceived as the same. In another exper-
iment Lisker and Abramson (1967) used the two
syllables /ba/ and /pa/ which only differ in their
voice onset time (VOT), and created a continuum
moving from syllables with short VOT to syllables
with increasingly longer VOT. Participants identi-
fied all consonants with VOT below 25 msec as be-
ing /b/ and all consonant with VOT above 25 msec
as being /p/. There was no grey area in which both
interpretations of the sound were equally likely,
which suggests that the phonemes were perceived
categorically. Supporting findings also come from
discrimination experiments: when one consonant
has a VOT below 25 msec and the other above,
people perceive the two syllables as being differ-
ent (/ba/ and /pa/ respectively), but they do not
notice any differences in the acoustic signal when
both syllables have a VOT below or above 25 msec
(even when these sounds are physically further
away from each other than two sounds that cross
the 25 msec dividing line).

Evidence from infant speech perception stud-
ies suggests that infants also perceive phonemes
categorically (Eimas et al., 1971): one- and four-
month old infants were presented with multiple
syllables from the continuum of /ba/ to /pa/ sounds
described above. As long as the syllables all came
from above or below the 25 msec line, the infants
showed no change in behavior (measured by their
amount of sucking), but when presented with a
syllable crossing that line, the infants reacted dif-
ferently. This suggests that infants, just like adults,
perceive speech sounds as belonging to discrete
categories. Dehaene-Lambertz and Gliga (2004)
also showed that the same neural systems are acti-
vated for both infants and adults when performing
this task.

Importantly, languages differ in their phoneme
inventories; for example English distinguishes /r/
from /l/ while Japanese does not, and children
have to learn which categories to use. Experi-
mental evidence suggests that infants can discrim-
inate both native and nonnative speech sound dif-
ferences up to 8 months of age, but have difficulty
discriminating acoustically similar nonnative con-
trasts by 10-12 months of age (Werker and Hen-
sch, 2015). These findings suggest that by their
first birthday, they have learned to focus only on

369

those contrasts that are relevant for their native
language and to neglect those which are not. Psy-
cholinguistic theories assume that children learn
the categories of their native language by keep-
ing track of the frequency distribution of acous-
tic sounds in their input. The forms around peaks
in this distribution are then perceived as being a
distinct category. Recent computational models
showed that infant-directed speech contains suffi-
ciently clear peaks for such a distributional learn-
ing mechanism to succeed and also that top-down
processes like semantic knowledge and visual in-
formation play a role in phonetic category learning
(ter Schure et al., 2016).

From the machine learning perspective categor-
ical perception corresponds to the notion of learn-
ing invariances to certain properties of the input.
With the experiments in Section 4 we attempt to
gain some insight into this issue.

2.2 Computational models

There is a sizeable body of work on using re-
current neural (and other) networks to detect
phonemes or phonetic features as a subcompo-
nent of an ASR system. King and Taylor (2000)
train recurrent neural networks to extract phono-
logical features from framewise cepstral represen-
tation of speech in the TIMIT speaker-independent
database. Frankel et al. (2007) introduce a dy-
namic Bayesian network for articulatory (pho-
netic) feature recognition as a component of an
ASR system. Siniscalchi et al. (2013) show that
a multilayer perceptron can successfully classify
phonological features and contribute to the accu-
racy of a downstream ASR system.

Mohamed et al. (2012) use a Deep Belief Net-
work (DBN) for acoustic modeling and phone
recognition on human speech. They analyze the
impact of the number of layers on phone recogni-
tion error rate, and visualize the MFCC vectors as
well as the learned activation vectors of the hid-
den layers of the model. They show that the repre-
sentations learned by the model are more speaker-
invariant than the MFCC features.

These works directly supervise the networks
to recognize phonological information. Another
supervised but multimodal approach is taken by
Sun (2016), which uses grounded speech for im-
proving a supervised model of transcribing utter-
ances from spoken description of images. We on
the other hand are more interested in understand-

ing how the phonological level of representation
emerges from weak supervision via correlated sig-
nal from the visual modality.

There are some existing models which learn
language representations from sensory input in
such a weakly supervised fashion. For example
Roy and Pentland (2002) use spoken utterances
paired with images of objects, and search for seg-
ments of speech that reliably co-occur with visual
shapes. Yu and Ballard (2004) use a similar ap-
proach but also include non-verbal cues such as
gaze and gesture into the input for unsupervised
learning of words and their visual meaning. These
language learning models use rich input signals,
but are very limited in scale and variation.

A separate line of research has used neural net-
works for modeling phonology from a (neuro)-
cognitive perspective. Burgess and Hitch (1999)
implement a connectionist model of the so-called
phonological loop, i.e. the posited working mem-
ory which makes phonological forms available
for recall (Baddeley and Hitch, 1974). Gasser
and Lee (1989) show that Simple Recurrent Net-
works are capable of acquiring phonological con-
straints such as vowel harmony or phonological
alterations at morpheme boundaries. Touretzky
and Wheeler (1989) present a connectionist archi-
tecture which performs multiple simultaneous in-
sertion, deletion, and mutation operations on se-
quences of phonemes. In this body of work the
input to the network is at the level of phonemes
or phonetic features, not acoustic features, and it
is thus more concerned with the rules governing
phonology and does not address how representa-
tions of phonemes arise from exposure to speech
in the first place. Moreover, the early connection-
ist work deals with constrained, toy datasets. Cur-
rent neural network architectures and hardware en-
able us to use much more realistic inputs with the
potential to lead to qualitatively different results.

3 Model

As our model of language acquisition from
grounded speech signal we adopt the Recurrent
Highway Network-based model of Chrupała et al.
(2017a). This model has two desirable properties:
firstly, thanks to the analyses carried in that work,
we understand roughly how the hidden layers dif-
fer in terms of the level of linguistic representation
they encode. Secondly, the model is trained on
clean synthetic speech which makes it appropri-

370

ate to use for the controlled experiments in Sec-
tion 5.2. We refer the reader to Chrupała et al.
(2017a) for a detailed description of the model ar-
chitecture. Here we give a brief overview.

The model exploits correlations between two
modalities, i.e. speech and vision, as a source
of weak supervision for learning to understand
speech; in other words it implements language ac-
quisition from the speech signal grounded in vi-
sual perception. The architecture is a bi-modal
network whose learning objective is to project
spoken utterances and images to a joint semantic
space, such that corresponding pairs (u, i) (i.e. an
utterance and the image it describes) are close in
this space, while unrelated pairs are far away, by a
margin α:

(1)

∑
u,i

(∑
u′

max[0, α+d(u, i)−d(u′, i)]

+
∑
i′

max[0, α+ d(u, i)− d(u, i′)]
)

where d(u, i) is the cosine distance between the
encoded utterance u and encoded image i.

The image encoder part of the model uses im-
age vectors from a pretrained object classifica-
tion model, VGG-16 (Simonyan and Zisserman,
2014), and uses a linear transform to directly
project these to the joint space. The utterance en-
coder takes Mel-frequency Cepstral Coefficients
(MFCC) as input, and transforms it successively
according to:

encu(u) = unit(Attn(RHNk,L(Convs,d,z(u))))
(2)

The first layer Convs,d,z is a one-dimensional con-
volution of size swhich subsamples the input with
stride z, and projects it to d dimensions. It is fol-
lowed by RHNk,L which consists of k residual-
ized recurrent layers. Specifically these are Recur-
rent Highway Network layers (Zilly et al., 2016),
which are closely related to GRU networks, with
the crucial difference that they increase the depth
of the transform between timesteps; this is the re-
currence depth L. The output of the final recurrent
layer is passed through an attention-like lookback
operator Attn which takes a weighted average of
the activations across time steps. Finally, both ut-
terance and image projections are L2-normalized.
See Section 4.1 for details of the model configura-
tion.

Vowels i I U u
e E @ Ä OI O o
aI æ 2 A aU

Approximants j ô l w
Nasals m n N
Plosives p b t d k g
Fricatives f v T D s z S Z h
Affricates Ù Ã

Table 1: Phonemes of General American English.

4 Experimental data and setup

The phoneme representations in each layer are cal-
culated as the activations averaged over the dura-
tion of the phoneme occurrence in the input. The
average input vectors are similarly calculated as
the MFCC vectors averaged over the time course
of the articulation of the phoneme occurrence.
When we need to represent a phoneme type we do
so by averaging the vectors of all its occurrences
in the validation set. Table 1 shows the phoneme
inventory we work with; this is also the inventory
used by Gentle/Kaldi (see Section 4.3).

4.1 Model settings

We use the pre-trained version of the
COCO Speech model, implemented in Theano
(Bastien et al., 2012), provided by Chrupała et al.
(2017a).1 The details of the model configuration
are as follows: convolutional layer with length 6,
size 64, stride 3, 5 Recurrent Highway Network
layers with 512 dimensions and 2 microsteps,
attention Multi-Layer Perceptron with 512 hid-
den units, Adam optimizer, initial learning rate
0.0002. The 4096-dimensional image feature
vectors come from the final fully connect layer of
VGG-16 (Simonyan and Zisserman, 2014) pre-
trained on Imagenet (Russakovsky et al., 2014),
and are averages of feature vectors for ten crops
of each image. The total number of learnable
parameters is 9,784,193. Table 2 sketches the
architecture of the utterance encoder part of the
model.

4.2 Synthetically Spoken COCO

The Speech COCO model was trained on the Syn-
thetically Spoken COCO dataset (Chrupała et al.,
2017b), which is a version of the MS COCO

1Code, data and pretrained models available from
https://github.com/gchrupala/visually-grounded-speech.

371

Attention: size 512
Recurrent 5: size 512
Recurrent 4: size 512
Recurrent 3: size 512
Recurrent 2: size 512
Recurrent 1: size 512

Convolutional: size 64, length 6, stride 3
Input MFCC: size 13

Table 2: COCO Speech utterance encoder archi-
tecture.

dataset (Lin et al., 2014) where speech was syn-
thesized for the original image descriptions, using
high-quality speech synthesis provided by gTTS.2

4.3 Forced alignment

We aligned the speech signal to the corresponding
phonemic transcription with the Gentle toolkit,3

which in turn is based on Kaldi (Povey et al.,
2011). It uses a speech recognition model for En-
glish to transcribe the input audio signal, and then
finds the optimal alignment of the transcription to
the signal. This fails for a small number of utter-
ances, which we remove from the data. In the next
step we extract MFCC features from the audio sig-
nal and pass them through the COCO Speech ut-
terance encoder, and record the activations for the
convolutional layer as well as all the recurrent lay-
ers. For each utterance the representations (i.e.
MFCC features and activations) are stored in a
tr × Dr matrix, where tr and Dr are the num-
ber of times steps and the dimensionality, respec-
tively, for each representation r. Given the align-
ment of each phoneme token to the underlying au-
dio, we then infer the slice of the representation
matrix corresponding to it.

5 Experiments

In this section we report on four experiments
which we designed to elucidate to what extent in-
formation about phonology is represented in the
activations of the layers of the COCO Speech
model. In Section 5.1 we quantify how easy it is
to decode phoneme identity from activations. In
Section 5.2 we determine phoneme discriminabil-
ity in a controlled task with minimal pair stimuli.
Section 5.3 shows how the phoneme inventory is

2Available at https://github.com/pndurette/gTTS.
3Available at https://github.com/lowerquality/gentle.

organized in the activation space of the model. Fi-
nally, in Section 5.4 we tackle the general issue
of the representation of phonological form versus
meaning with the controlled task of synonym dis-
crimination.

5.1 Phoneme decoding
In this section we quantify to what extent phoneme
identity can be decoded from the input MFCC fea-
tures as compared to the representations extracted
from the COCO speech. As explained in Sec-
tion 4.3, we use phonemic transcriptions aligned
to the corresponding audio in order to segment
the signal into chunks corresponding to individual
phonemes.

We take a sample of 5000 utterances from the
validation set of Synthetically Spoken COCO, and
extract the force-aligned representations from the
Speech COCO model. We split this data into 2

3
training and 1

3 heldout portions, and use super-
vised classification in order to quantify the recov-
erability of phoneme identities from the represen-
tations. Each phoneme slice is averaged over time,
so that it becomes a Dr-dimensional vector. For
each representation we then train L2-penalized lo-
gistic regression (with the fixed penalty weight
1.0) on the training data and measure classifica-
tion error rate on the heldout portion.

Figure 1 shows the results. As can be seen from
this plot, phoneme recoverability is poor for the
representations based on MFCC and the convolu-
tional layer activations, but improves markedly for
the recurrent layers. Phonemes are easiest recov-
ered from the activations at recurrent layers 1 and
2, and the accuracy decreases thereafter. This sug-
gests that the bottom recurrent layers of the model
specialize in recognizing this type of low-level
phonological information. It is notable however
that even the last recurrent layer encodes phoneme
identity to a substantial degree.

The MFCC features do much better than ma-
jority baseline (89% error rate) but poorly rel-
tive to the the recurrent layers. Averaging across
phoneme durations may be hurting performance,
but interestingly, the network can overcome this
and form more robust phoneme representations in
the activation patterns.

5.2 Phoneme discrimination
Schatz et al. (2013) propose a framework for eval-
uating speech features learned in an unsupervised
setup that does not depend on phonetically labeled

372

●●●

●●●●

●

●●●●

●

●●●●

●●

●

●

●

●●
●
●

● ●

●

●●

●●

●●●

●

●●

●

●●●

●●

●●

●●

●

●

●

●●

●

0.3

0.4

0.5

MFCC Conv Rec1 Rec2 Rec3 Rec4 Rec5
Representation

E
rr

or
 r

at
e

Figure 1: Accuracy of phoneme decoding with
input MFCC features and COCO Speech model
activations. The boxplot shows error rates boot-
strapped with 1000 resamples.

data. They propose a set of tasks called Minimal-
Pair ABX tasks that allow to make linguistically
precise comparisons between syllable pairs that
only differ by one phoneme. They use variants of
this task to study phoneme discrimination across
talkers and phonetic contexts as well as talker dis-
crimination across phonemes.

Here we evaluate the COCO Speech model on
the Phoneme across Context (PaC) task of Schatz
et al. (2013). This task consists of presenting a se-
ries of equal-length tuples (A,B,X) to the model,
where A and B differ by one phoneme (either a
vowel or a consonant), as do B and X , but A and
X are not minimal pairs. For example, in the tuple
(be /bi/, me /mi/, my /maI/), the task is to identify
which of the two syllables /bi/ or /mi/ is closer to
/maI/. The goal is to measure context invariance
in phoneme discrimination by evaluating how of-
ten the model recognizes X as the syllable closer
to B than to A.

We used a list of all attested consonant-vowel
(CV) syllables of American English according to
the syllabification method described in Gorman
(2013). We excluded the ones which could not be
unambiguously represented using English spelling
for input to the TTS system (e.g. /baU/). We then
compiled a list of all possible (A,B,X) tuples
from this list where (A,B) and (B,X) are min-
imal pairs, but (A,X) are not. This resulted in
34,288 tuples in total. For each tuple, we measure
sign(dist(A,X) − dist(B,X)), where dist(i, j)
is the euclidean distance between the vector rep-

●

●●

●

●

●

●●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

0.5

0.6

0.7

0.8

0.9

mfcc conv rec1 rec2 rec3 rec4 rec5 emb
Representation

A
cc

ur
ac

y

Class
●

●

●

●

●

●

affricate
approximant

fricative
nasal

plosive
vowel

Figure 2: Accuracies for the ABX CV task for the
cases where the target and the distractor belong to
the same phoneme class. Shaded area extends ±1
standard error from the mean.

resentations of syllables i and j. These represen-
tations are either the audio feature vectors or the
layer activation vectors. A positive value for a tu-
ple means that the model has correctly discrim-
inated the phonemes that are shared or different
across the syllables.

Table 3 shows the discrimination accuracy in
this task using various representations. The pat-
tern is similar to what we observed in the phoneme
identification task: best accuracy is achieved using
representation vectors from recurrent layers 1 and
2, and it drops as we move further up in the model.
The accuracy is lowest when final embedding fea-
tures are used for this task.

However, the PaC task is most meaningful and

Table 3: Accuracy of choosing the correct target
in an ABX task using different representations.

Representation Accuracy

MFCC 0.72
Convolutional 0.73
Recurrent 1 0.83
Recurrent 2 0.84
Recurrent 3 0.80
Recurrent 4 0.77
Recurrent 5 0.75
Embeddings 0.67

373

●

●

●

●

●

●
0.7

0.8

0.9

conv rec0 rec1 rec2 rec3 rec4
Representation

P
ea

rs
on

's
 r

Figure 3: Pearson’s correlation coefficients r be-
tween the distance matrix of MFCCs and distance
matrices on activation vectors.

challenging where the target and the distractor
phonemes belong to the same phoneme class. Fig-
ure 2 shows the accuracies for this subset of cases,
broken down by class. As can be seen, the model
can discriminate between phonemes with high ac-
curacy across all the layers, and the layer activa-
tions are more informative for this task than the
MFCC features. Again, most phoneme classes
seem to be represented more accurately in the
lower layers (1–3), and the performance of the
model in this task drops as we move towards
higher hidden layers. There are also clear dif-
ferences in the pattern of discriminability for the
phoneme classes. The vowels are especially easy
to tell apart, but accuracy on vowels drops most
acutely in the higher layers. Meanwhile the ac-
curacy on fricatives and approximants starts low,
but improves rapidly and peaks around recurrent
layer 2. The somewhat erratic pattern for nasals
and affricates is most likely due to small sample
size for these classes, as evident from the wide
standard error.

5.3 Organization of phonemes

In this section we take a closer look at the un-
derlying organization of phonemes in the model.
Our experiment is inspired by Khalighinejad et al.
(2017) who study how the speech signal is repre-
sented in the brain at different stages of the au-
ditory pathway by collecting and analyzing elec-
troencephalography responses from participants
listening to continuous speech, and show that
brain responses to different phoneme categories
turn out to be organized by phonetic features.

We carry out an analogous experiment by an-
alyzing the hidden layer activations of our model
in response to each phoneme in the input. First,
we generated a distance matrix for every pair of
phonemes by calculating the Euclidean distance
between the phoneme pair’s activation vectors for

each layer separately, as well as a distance matrix
for all phoneme pairs based on their MFCC fea-
tures. Similar to what Khalighinejad et al. (2017)
report, we observe that the phoneme activations on
all layers significantly correlate with the phoneme
representations in the speech signal, and these cor-
relations are strongest for the lower layers of the
model. Figure 3 shows the results.

We then performed agglomerative hierarchical
clustering on phoneme type MFCC and activation
vectors, using Euclidean distance as the distance
metric and the Ward linkage criterion (Ward Jr,
1963). Figure 5 shows the clustering results for
the activation vectors on the first hidden layer. The
leaf nodes are color-coded according to phoneme
classes as specified in Table 1. There is substan-
tial degree of matching between the classes and
the structure of the hierarchy, but also some mix-
ing between rounded back vowels and voiced plo-
sives /b/ and /g/, which share articulatory features
such as lip movement or tongue position.

●

●

●

● ●

● ●

0.12

0.16

0.20

0.24

mfcc conv rec1 rec2 rec3 rec4 rec5
Representation

A
dj

us
te

d
R

an
d

In
de

x

Figure 4: Adjusted Rand Index for the compari-
son of the phoneme type hierarchy induced from
representations against phoneme classes.

We measured the adjusted Rand Index for the
match between the hierarchy induced from each
representation against phoneme classes, which
were obtained by cutting the tree to divide the
cluster into the same number of classes as there are
phoneme classes. There is a notable drop between
the match from MFCC to the activation of the con-
volutional layer. We suspect this may be explained
by the loss of information caused by averaging
over phoneme instances combined with the lower
temporal resolution of the activations compared to
MFCC. The match improves markedly at recurrent
layer 1.

5.4 Synonym discrimination
Next we simulate the task of distinguishing be-
tween pairs of synonyms, i.e. words with differ-
ent acoustic forms but the same meaning. With
a representation encoding phonological form, our

374

Figure 5: Hierarchical clustering of phoneme activation vectors on the first hidden layer.

expectation is that the task would be easy; in con-
trast, with a representation which is invariant to
phonological form in order to encode meaning, the
task would be hard.

We generate a list of synonyms for each noun,
verb and adjective in the validation data using
Wordnet (Miller, 1995) synset membership as a
criterion. Out of these generated word pairs, we
select synonyms for the experiment based on the
following criteria:
• both forms clearly are synonyms in the sense

that one word can be replaced by the other
without changing the meaning of a sentence,
• both forms appear more than 20 times in the

validation data,
• the words differ clearly in form (i.e.

they are not simply variant spellings like
donut/doughnut, grey/gray),
• the more frequent form constitutes less than

95% of the occurrences.
This gives us 2 verb, 2 adjective and 21 noun pairs.

For each synonym pair, we select the sentences
in the validation set in which one of the two forms
appears. We use the POS-tagging feature of NLTK
(Bird, 2006) to ensure that only those sentences
are selected in which the word appears in the cor-
rect word category (e.g. play and show are syn-
onyms when used as nouns, but not when used
as verbs). We then generate spoken utterances in
which the original word is replaced by its syn-
onym, resulting in the same amount of utterances
for both words of each synonym pair.

For each pair we generate a binary classification
task using the MFCC features, the average activa-
tions in the convolutional layer, the average unit

●

●

● ● ●

●

●

●

●

●

●
● ● ● ●

●
● ● ●

●
●

● ● ●
●

●

●
● ●

●

● ● ● ●
●

●

●
● ●

●

●
● ●

●

●

●

●
●

●
●

● ● ● ●
●●

● ● ●

●●
●

●
● ●

●

● ●
● ●

●

● ● ● ●

●

● ● ●

●

●

● ●
●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●●

● ●

● ●
●

●

●

●

●
●

●

●

●

●

●
● ●

●
●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

0.0

0.1

0.2

0.3

mfcc conv rec1 rec2 rec3 rec4 rec5 emb
Representation

E
rr

or

Pair
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

couch/sofa
tv/television
vegetable/veggie
bicycle/bike
store/shop
rock/stone
sidewalk/pavement
kid/child
slice/piece
pier/dock
person/someone
carpet/rug
photograph/picture

photo/picture
assortment/variety
purse/bag
picture/image
spot/place
small/little
large/big
photograph/photo
slice/cut
make/prepare
bun/roll
direction/way

Figure 6: Synonym discrimination error rates, per
representation and synonym pair.

activations per recurrent layer, and the sentence
embeddings as input features. For every type of
input, we run 10-fold cross validation using Logis-
tic Regression to predict which of the two words
the utterance contains. We used an average of
672 (minimum 96; maximum 2282) utterances for
training the classifiers.

Figure 6 shows the error rate in this classifica-
tion task for each layer and each synonym pair.
Recurrent layer activations are more informative
for this task than MFCC features or activations

375

of the convolutional layer. Across all the recur-
rent layers the error rate is small, showing that
some form of phonological information is present
throughout this part of the model. However, sen-
tence embeddings give relatively high error rates
suggesting that the attention layer acts to focus
on semantic information and to filter out much of
phonological form.

6 Discussion

Understanding distributed representations learned
by neural networks is important but has the reputa-
tion of being hard or even impossible. In this work
we focus on making progress on this problem for
a particular domain: representations of phonology
in a multilayer recurrent neural network trained on
grounded speech signal. We believe it is impor-
tant to carry out multiple analyses using diverse
methodology: any single experiment may be mis-
leading as it depends on analytical choices such as
the type of supervised model used for decoding,
the algorithm used for clustering, or the similarity
metric for representational similarity analysis. To
the extent that more than one experiment points to
the same conclusion our confidence in the reliabil-
ity of the insights gained will be increased.

Earlier work (Chrupała et al., 2017a) shows
that encoding of semantics in our RNN model
of grounded speech becomes stronger in higher
layers, while encoding of form becomes weaker.
The main high-level results of our study confirm
this pattern by showing that the representation of
phonological knowledge is most accurate in the
lower layers of the model. This general pattern is
to be expected as the objective of the utterance en-
coder is to transform the input acoustic features in
such a way that it can be matched to its counterpart
in a completely separate modality. Many of the
details of how this happens, however, are far from
obvious: perhaps most surprisingly we found that
a large amount of phonological information is still
available up to the top recurrent layer. Evidence
for this pattern emerges from the phoneme decod-
ing task, the ABX task and the synonym discrim-
ination task. The last one also shows that the at-
tention layer filters out and significantly attenuates
encoding of phonology and makes the utterance
embeddings much more invariant to synonymy.

Our model is trained on synthetic speech, which
is easier to process than natural human-generated
speech. While small-scale databases of natural

speech and image are available (e.g. the Flickr8k
Audio Caption Corpus, Harwath and Glass, 2015),
they are not large enough to reliably train mod-
els such as ours. In future we would like to
collect more data and apply our methodology to
grounded human speech and investigate whether
context and speaker-invariant phoneme represen-
tations can be learned from natural, noisy input.
We would also like to make comparisons to the re-
sults that emerge from similar analyses applied to
neuroimaging data.

References
Yossi Adi, Einat Kermany, Yonatan Belinkov, Ofer

Lavi, and Yoav Goldberg. 2016. Fine-grained anal-
ysis of sentence embeddings using auxiliary predic-
tion tasks. arXiv preprint arXiv:1608.04207 .

Alan D Baddeley and Graham Hitch. 1974. Work-
ing memory. Psychology of learning and motivation
8:47–89.

Frédéric Bastien, Pascal Lamblin, Razvan Pascanu,
James Bergstra, Ian J. Goodfellow, Arnaud Berg-
eron, Nicolas Bouchard, and Yoshua Bengio. 2012.
Theano: new features and speed improvements.
Deep Learning and Unsupervised Feature Learning
NIPS 2012 Workshop.

Steven Bird. 2006. NLTK: the natural language toolkit.
In Proceedings of the COLING/ACL on Interac-
tive presentation sessions. Association for Compu-
tational Linguistics, pages 69–72.

Neil Burgess and Graham J Hitch. 1999. Memory
for serial order: a network model of the phono-
logical loop and its timing. Psychological Review
106(3):551.

Grzegorz Chrupała, Lieke Gelderloos, and Afra Al-
ishahi. 2017a. Representations of language in a
model of visually grounded speech signal. In Pro-
ceedings of the 55th Annual Meeting of the Associa-
tion for Computational Linguistics.

Grzegorz Chrupała, Lieke Gelderloos, and Afra Al-
ishahi. 2017b. Synthetically spoken COCO.
https://doi.org/10.5281/zenodo.400926.

Ghislaine Dehaene-Lambertz and Teodora Gliga. 2004.
Common neural basis for phoneme processing in in-
fants and adults. Journal of Cognitive Neuroscience
16(8):1375–1387.

Peter D Eimas, Einar R Siqueland, Peter Juscyk, and
James Vigorito. 1971. Speech perception in infants.
Science 171(3968):303–306.

Jeffrey L Elman. 1991. Distributed representations,
simple recurrent networks, and grammatical struc-
ture. Machine learning 7(2-3):195–225.

376

Robert Frank, Donald Mathis, and William Badecker.
2013. The acquisition of anaphora by simple re-
current networks. Language Acquisition 20(3):181–
227.

Joe Frankel, Mirjam Wester, and Simon King. 2007.
Articulatory feature recognition using dynamic
Bayesian networks. Computer Speech & Language
21(4):620–640.

Michael Gasser and Ch Lee. 1989. Networks that learn
phonology. Technical report, Computer Science De-
partment, Indiana University.

Lieke Gelderloos and Grzegorz Chrupała. 2016. From
phonemes to images: levels of representation in
a recurrent neural model of visually-grounded lan-
guage learning. In Proceedings of COLING 2016,
the 26th International Conference on Computational
Linguistics: Technical Papers.

Kyle Gorman. 2013. Generative phonotactics. Ph.D.
thesis, University of Pennsylvania.

David Harwath and James Glass. 2015. Deep multi-
modal semantic embeddings for speech and images.
In IEEE Automatic Speech Recognition and Under-
standing Workshop.

David Harwath and James R Glass. 2017. Learn-
ing word-like units from joint audio-visual analysis.
arXiv preprint arXiv:1701.07481 .

David Harwath, Antonio Torralba, and James Glass.
2016. Unsupervised learning of spoken language
with visual context. In Advances in Neural Infor-
mation Processing Systems. pages 1858–1866.

Ákos Kádár, Grzegorz Chrupała, and Afra Alishahi.
2016. Representation of linguistic form and
function in recurrent neural networks. CoRR
abs/1602.08952.

Bahar Khalighinejad, Guilherme Cruzatto da Silva,
and Nima Mesgarani. 2017. Dynamic encoding of
acoustic features in neural responses to continuous
speech. Journal of Neuroscience 37(8):2176–2185.

Simon King and Paul Taylor. 2000. Detection of
phonological features in continuous speech using
neural networks. Computer Speech & Language
14(4):333 – 353.

Jiwei Li, Xinlei Chen, Eduard Hovy, and Dan Jurafsky.
2016a. Visualizing and understanding neural mod-
els in NLP. In Proceedings of NAACL-HLT . pages
681–691.

Jiwei Li, Will Monroe, and Dan Jurafsky. 2016b. Un-
derstanding neural networks through representation
erasure. CoRR abs/1612.08220.

Alvin M Liberman, Franklin S Cooper, Donald P
Shankweiler, and Michael Studdert-Kennedy. 1967.
Perception of the speech code. Psychological review
74(6):431.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár,
and C Lawrence Zitnick. 2014. Microsoft COCO:
Common objects in context. In Computer Vision–
ECCV 2014, Springer, pages 740–755.

Tal Linzen, Emmanuel Dupoux, and Yoav Goldberg.
2016. Assessing the ability of LSTMs to learn
syntax-sensitive dependencies. Transactions of the
Association for Computational Linguistics 4:521–
535.

L. Lisker and A.S. Abramson. 1967. The voicing di-
mension: some experiments in comparative pho-
netics. In Proceedings of the 6th International
Congress of Phonetic Sciences.

George A Miller. 1995. WordNet: a lexical
database for english. Communications of the ACM
38(11):39–41.

Abdel-rahman Mohamed, Geoffrey Hinton, and Ger-
ald Penn. 2012. Understanding how deep belief net-
works perform acoustic modelling. In Acoustics,
Speech and Signal Processing (ICASSP), 2012 IEEE
International Conference on. IEEE, pages 4273–
4276.

Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukas
Burget, Ondrej Glembek, Nagendra Goel, Mirko
Hannemann, Petr Motlicek, Yanmin Qian, Petr
Schwarz, Jan Silovsky, Georg Stemmer, and Karel
Vesely. 2011. The Kaldi speech recognition toolkit.
In IEEE 2011 Workshop on Automatic Speech
Recognition and Understanding. IEEE Signal Pro-
cessing Society. IEEE Catalog No.: CFP11SRW-
USB.

Deb K Roy and Alex P Pentland. 2002. Learning
words from sights and sounds: a computational
model. Cognitive Science 26(1):113 – 146.
https://doi.org/http://dx.doi.org/10.1016/S0364-
0213(01)00061-1.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause,
Sanjeev Satheesh, Sean Ma, Zhiheng Huang, An-
drej Karpathy, Aditya Khosla, Michael Bernstein,
Alexander C. Berg, and Li Fei-Fei. 2014. ImageNet
large scale visual recognition challenge.

Thomas Schatz, Vijayaditya Peddinti, Francis Bach,
Aren Jansen, Hynek Hermansky, and Emmanuel
Dupoux. 2013. Evaluating speech features with
the minimal-pair ABX task: Analysis of the clas-
sical MFC/PLP pipeline. In INTERSPEECH 2013:
14th Annual Conference of the International Speech
Communication Association. pages 1–5.

Karen Simonyan and Andrew Zisserman. 2014. Very
deep convolutional networks for large-scale image
recognition. CoRR abs/1409.1556.

Sabato Marco Siniscalchi, Dong Yu, Li Deng, and
Chin-Hui Lee. 2013. Exploiting deep neural net-
works for detection-based speech recognition. Neu-
rocomputing 106:148 – 157.

377

Felix Sun. 2016. Speech representation models for
speech synthesis and multimodal speech recogni-
tion. Ph.D. thesis, Massachusetts Institute of Tech-
nology.

SMM ter Schure, CMM Junge, and PPG Boersma.
2016. Semantics guide infants’ vowel learning:
computational and experimental evidence. Infant
Behavior and Development 43:44–57.

David S Touretzky and Deirdre W Wheeler. 1989. A
computational basis for phonology. In NIPS. pages
372–379.

Joe H Ward Jr. 1963. Hierarchical grouping to opti-
mize an objective function. Journal of the American
statistical association 58(301):236–244.

Leila Wehbe, Brian Murphy, Partha Talukdar, Alona
Fyshe, Aaditya Ramdas, and Tom Mitchell. 2014.
Simultaneously uncovering the patterns of brain re-
gions involved in different story reading subpro-
cesses. PloS one 9(11):e112575.

Janet F Werker and Takao K Hensch. 2015. Critical pe-
riods in speech perception: new directions. Annual
review of psychology 66:173–196.

Chen Yu and Dana H Ballard. 2004. A multimodal
learning interface for grounding spoken language in
sensory perceptions. ACM Transactions on Applied
Perception (TAP) 1(1):57–80.

Julian Georg Zilly, Rupesh Kumar Srivastava,
Jan Koutnı́k, and Jürgen Schmidhuber. 2016.
Recurrent highway networks. arXiv preprint
arXiv:1607.03474 .

378

Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017), pages 379–389,
Vancouver, Canada, August 3 - August 4, 2017. c©2017 Association for Computational Linguistics

Multilingual Semantic Parsing and Code-switching

Long Duong, Hadi Afshar, Dominique Estival, Glen Pink, Philip Cohen, Mark Johnson
Voicebox Technologies

{longd,hadia,dominiquee,glenp,philipc,markj}@voicebox.com

Abstract

Extending semantic parsing systems to
new domains and languages is a highly ex-
pensive, time-consuming process, so mak-
ing effective use of existing resources is
critical. In this paper, we describe a
transfer learning method using crosslin-
gual word embeddings in a sequence-to-
sequence model. On the NLmaps corpus,
our approach achieves state-of-the-art ac-
curacy of 85.7% for English. Most im-
portantly, we observed a consistent im-
provement for German compared with
several baseline domain adaptation tech-
niques. As a by-product of this approach,
our models that are trained on a com-
bination of English and German utter-
ances perform reasonably well on code-
switching utterances which contain a mix-
ture of English and German, even though
the training data does not contain any
code-switching. As far as we know, this
is the first study of code-switching in se-
mantic parsing. We manually constructed
the set of code-switching test utterances
for the NLmaps corpus and achieve 78.3%
accuracy on this dataset.

1 Introduction

Semantic parsing is the task of mapping a natu-
ral language query to a logical form (LF) such
as Prolog or lambda calculus, which can be ex-
ecuted directly through database query (Zettle-
moyer and Collins, 2005, 2007; Haas and Riezler,
2016; Kwiatkowksi et al., 2010).

Semantic parsing needs application or domain
specific training data, so the most straightforward
approach is to manufacture training data for each
combination of language and application domain.

However, acquiring such data is an expensive,
lengthy process.

This paper investigates ways of leveraging ap-
plication domain specific training data in one lan-
guage to improve performance and reduce the
training data needs for the same application do-
main in another language. This is an increasingly
common commercially important scenario, where
a single application must be developed for multi-
ple languages simultaneously. In this paper, we
investigate the question of transferring a seman-
tic parser from a source language (e.g. English)
to a target language (e.g. German). In particular,
we examine the situation where there is a large
amount of training data for the source language but
much less training data for the target language. It
is important to note that, despite surface language
differences, it has long been suggested that logi-
cal forms are the same across languages (Fodor,
1975), motivating transfer learning for this paper.

We conceptualize our work as a form of do-
main adaptation, where we transfer knowledge
about a specific application domain (e.g. naviga-
tion queries) from one language to another. Much
work has investigated feature-based domain adap-
tation (Daume III, 2007; Ben-David et al., 2007).
However, it is a non-trivial research question to
apply these methods to deep learning.

We experiment with several deep learning meth-
ods for supervised crosslingual domain adaptation
and make two key findings. The first is that we
can use a bilingual dictionary to build crosslin-
gual word embeddings, serving as a bridge be-
tween source and target language. The second
is that machine-translated training data can also
be used to effectively improve performance when
there is little application domain specific training
data in the target language. Interestingly, even
when training on the full dataset of the target lan-
guage, we show that it is still useful to lever-

379

age information from the source language through
crosslingual word embeddings. We set new state-
of-the-art results on the NLmaps corpus.

Another benefit of joint training of the model
is that a single model has the capacity to under-
stand both languages. We show this gives the
model the ability to parse code-switching utter-
ances, where the natural language query contains
a mixture of two languages. Being able to handle
code-switching is valuable in real-world applica-
tions that expect spoken natural language input in
a variety of settings and from a variety of speak-
ers. Many people around the world are bilingual or
multilingual, and even monolingual speakers are
liable to use foreign expressions or phrases. Real
systems must be able to handle that kind of input,
and the method we propose is a simple and effi-
cient way to extend the capabilities of an existing
system.

As far as we know, this is the first study of code-
switching in semantic parsing. We constructed a
new set of code-switching test utterances for the
NLmaps corpus. Our jointly trained model obtains
a logical form exact match accuracy of 78.3% on
this test set.

Our contributions are:

• We achieve new state-of-the-art results on the
English and German versions of the NLmaps
corpus (85.7% and 83.0% respectively).

• We propose a method to incorporate bilin-
gual word embeddings into a sequence-to-
sequence model, and apply it to semantic
parsing. To the best of our knowledge, we
are the first to apply crosslingual word em-
bedding in a sequence-to-sequence model.

• Our joint model allows us to also process in-
put with code-switching. We develop a new
dataset for evaluating semantic parsing on
code-switching input which we make pub-
licly available.1

2 Related work

Deep learning and the sequence-to-sequence ap-
proach in particular have achieved wide success in
many applications, reaching state-of-the-art per-
formance for semantic parsing (Jia and Liang,
2016; Dong and Lapata, 2016), machine transla-
tion (Luong et al., 2015b), image caption gen-

1github.com/vbtagitlab/code-switching

eration (Xu et al., 2015), and speech recogni-
tion (Chorowski et al., 2014, 2015). Nevertheless,
transferring information in a deep learning model
about a source language to a target language is still
an open research question, and is the focus of this
paper.

Our work falls under crosslingual transfer learn-
ing category: we want to transfer a semantic parser
from one language to another language. The as-
sumption is that there is sufficient application do-
main specific training data in a source language to
train a semantic parser, but only a small amount of
application domain specific training data in the tar-
get language. We would like to leverage the source
language training data to improve semantic pars-
ing in the target language. It is common to exploit
the shared structures between languages for POS
tagging and Noun Phrase bracketing (Yarowsky
and Ngai, 2001), dependency parsing (Täckström
et al., 2012; McDonald et al., 2013), named en-
tity recognition (Tsai et al., 2016; Nothman et al.,
2013) and machine translation (Zoph et al., 2016).
However, as far as we know, there is no prior
work on crosslingual transfer learning for seman-
tic parsing, which is the topic of this paper.

There are several common techniques for trans-
fer learning across domains. The simplest ap-
proach is Fine Tune, where the model is first
trained on the source domain and then fine-
tuned on the target domain (Watanabe et al.,
2016). Using some form of regularization (e.g.
L2) to encourage the target model to remain sim-
ilar to the source model is another common ap-
proach (Duong et al., 2015a). In this approach, the
model is trained in the cascade style, where the
source model is trained first and then used as in
a prior when training the target model. It is of-
ten beneficial to jointly train the source and tar-
get models under a single objective function (Col-
lobert et al., 2011; Firat et al., 2016; Zoph and
Knight, 2016). Combining source and target data
together into a single dataset is a simple way to
jointly train for both domains. However, this ap-
proach might not work well in the crosslingual
case, i.e. transfer from one language to another,
because there may not be many shared features
between the two languages. We show how to
use crosslingual word embeddings (§3.3.1) as the
bridge to better share information between lan-
guages.

Instead of combining data, a more sophisticated

380

GeoQuery ATIS

Number of utterances 880 5410

Jia and Liang (2016) 89.3 83.3
Zettlemoyer and Collins (2007) 86.1 84.6
Kočiský et al. (2016) 87.3 -
Dong and Lapata (2016) 87.1 84.6
Liang et al. (2011) 91.1 -
Kwiatkowksi et al. (2010) 88.6 82.8
Zhao and Huang (2015) 88.9 84.2

TGT Only 86.1 86.1

Table 1: Performance of the baseline attentional
model (TGT Only) on GeoQuery (Zettlemoyer
and Collins, 2005) and ATIS (Zettlemoyer and
Collins, 2007) dataset compared with prior work.
The best performance is shown in bold.

approach for joint training is to modify the model
to adapt for both domains (or languages). Watan-
abe et al. (2016) propose a dual output model
where each output is used for one domain. Kim
et al. (2016) extend the feature augmentation ap-
proach of Daume III (2007) for deep learning by
augmenting different models for each domain. In
this paper we experiment with multiple encoders
for the sequence-to-sequence attentional model, as
described in §3.2. While some of the methods we
investigate in this paper have been explored in the
domain of syntactic parsing - Tiedemann (2014)
used machine translation for cross-lingual trans-
fer, and Ammar et al. (2016) show that a single
parser can produce syntactic analyses in multiple
languages - our work applies them to semantic
parsing.

3 Model

We base our approach on the bidirectional
sequence-to-sequence (seq2seq) model with atten-
tion of Bahdanau et al. (2014). This attentional
model encodes a source as a sequence of vectors,
and generates output by decoding these sequences.
At each decoding time step, it “attends” to differ-
ent parts of the encoded sequence.

On a large dataset, it is difficult to improve
on a properly tuned seq2seq model with atten-
tion. As Table 1 shows, our baseline attentional
seq2seq model (described below), which we call
TGT Only in the figures and tables, achieves
competitive results on standard semantic parsing

Utterance

Representation S1 SmS2 S3

Ci

<s>

Encoder

Attention

Decoder

w1 wi-1 wn

HT

HS

wi

How many Japanese restaurants are there in Paris ?

Figure 1: The baseline attentional model as ap-
plied to our tasks. The input is the natural lan-
guage utterance and the output is the logical form.

datasets. We begin by describing the basic at-
tentional model and then present our methods for
transfer learning to different languages.

3.1 Baseline attentional model

The baseline attentional seq2seq model (TGT
Only) is shown in Figure 1. The source ut-
terance is represented as a sequence of vectors
S1, S2, . . . , Sm. Each Si is the output of an em-
beddings lookup. The model has two main com-
ponents: an encoder and a decoder. For the
encoder, we use a bidirectional recurrent neu-
ral network (RNN) with Gated Recurrent Units
(GRU) (Pezeshki, 2015). The source utterance
is encoded as a sequence of vectors HS =
(H1

S , H
2
S , . . . ,H

m
S) where each vector Hj

S (1 ≤
j ≤ m) is the concatenation of the hidden states
of the forward and backward GRU at time j.

The attention mechanism is added to the model
through an alignment matrix α ∈ Rn×m, where n
is the number of target tokens in the logical form.
We add <s> and </s> to mark the start and end
of the target sentence. The “glimpse” vector ci of
the source when generating wi is ci =

∑
j αijH

j
S .

The decoder is another RNN with GRU unit. At
each time step, the decoder RNN receives ci in
addition to the previously-output word. Thus, the
hidden state2 at time i of the decoder is defined
as H i

T = GRU(H i−1
T , ci, wi−1), which is used to

2The GRU also carries a memory cell, along with the hid-
den state; we exclude this from the presentation for clarity of
notation.

381

Train

Utt-original: What is the homepage of the cinema Cinéma Chaplin in Paris?

LF-original:
query(area(keyval(‘name’,‘Paris’),keyval(‘is in:country’,‘France’)),nwr(keyval(‘name’,
‘Cinéma Chaplin’)), qtype(findkey(‘website’)))

Utt-converted: What is the homepage of the cinema UNK UNK in Paris?

LF-converted:
query(area(keyval(‘name’,‘Paris’),keyval(‘is in:country’,‘France’)),nwr(keyval(‘name’,‘UNK UNK’)),
qtype(findkey(‘website’)))

Test
Utt-original: Would you tell me the phone number of Guru Balti in Edinburgh?
Utt-converted: Would you tell me the phone number of UNK UNK in Edinburgh?
LF-predicted: query(area(keyval(name,City of Edinburgh)),nwr(keyval(name,UNK UNK)),qtype(findkey(phone)))

LF-lexicalised:
query(area(keyval(name,City of Edinburgh)),nwr(keyval(name,‘Guru Balti’)),
qtype(findkey(phone)))

Figure 2: Handling of unknown word at train and test times. Training examples containing capitalised
low-frequency words are duplicated: in one copy, the capitalised low-frequency words are kept in both
the utterance (Utt-original) and the LF (LF-original), while in the other copy they are replaced with the
symbol UNK in both the utterance (Utt-converted) and the LF (LF-converted). At test time, unknown
words in the input utterance are replaced with UNK symbols (in Utt-converted); the UNK symbols in the
predicted LF (LF-predicted) are then replaced with the unknown words (LF-lexicalised).

predict word wi:

p(wi | w1 · · ·wi−1, HS) = softmax(g(H i
T)) (1)

where g is a linear transformation.
We use 70 dimensions for both the hidden states

and memory cells in the source GRUs and 60 di-
mensions for target GRUs. We train this model
using RMSprop (Tieleman and Hinton, 2012) to
minimize the negative log-likelihood using a mini-
batch of 256 and early stopping on development
data. The initial learning rate is 0.002 and is de-
cayed with decay rate 0.1 if we did not observe any
improvement after 1000 iterations. The gradients
are rescaled if theirL2 norm is greater than 10. We
implemented dropout for both source and target
GRU units (Srivastava et al., 2014) with input and
output dropout rates of 40% and 25% respectively.
The initial state of the source GRU is trainable,
and the initial state of target GRU is initialized
with the final states of the source GRUs. The non-
embeddings weights are initialized using Xavier
initialization (Glorot and Bengio, 2010). We also
tried stacking several layers of GRUs but did not
observe any significant improvement. Choice of
hyper-parameters will be discussed in more detail
in §4.2.

We initialize the word embeddings in the
model with pre-trained monolingual word em-
beddings trained on a Wikipedia dump using
word2vec (Mikolov et al., 2013). We use mono-
lingual word embeddings for all models except for

the jointly trained model, where we instead use
crosslingual word embeddings (§3.3.1).

In order to handle unknown words, during train-
ing, all words that are low frequency and capital-
ized are replaced with the special symbol UNK in
both utterance and logical form. Effectively, we
target low-frequency named entities in the dataset.
This is a simple but effective version of delexi-
calization, which does not require a named entity
recognizer.3 However, unlike previous work (Jia
and Liang, 2016; Gulcehre et al., 2016; Gu et al.,
2016), we also retain the original sentence in the
training data, which results in a substantial per-
formance improvement. The intuition is that the
model is capable of learning a useful signal even
for very rare words. During test time, we replace
(from left to right) the UNK in the logical form with
the corresponding word in the source utterance.
Figure 2 shows examples of handling unknown
words during training and testing. At train time,
the two words Cinéma and Chaplin are replaced
with UNK in both utterance and logical form. At
test time, the first and second UNK in the logical
form are replaced with the unknown words Guru
and Balti from the test utterance. We implement
this attentional model as our baseline. We now de-
tail our methods for transferring learning to other
languages.

3Using named entity recognition would be another solu-
tion but we did not want to rely on additional resources.

382

Ci

<s>

Attention

Decoder

w1 wi-1 wn

HT

wi

English encoder German encoder

Where are exhibition centres? Wo gibt es Kindergärten in Hamburg?

Figure 3: Dual encoder model where each lan-
guage has a separate encoder but both share the
same decoder. Each training mini-batch only has
monolingual input, so only one encoder is used for
each mini-batch.

3.2 Dual encoder model

Multi-task learning is a common approach for
neural domain adaptation (Watanabe et al., 2016;
Duong et al., 2015b; Collobert et al., 2011; Luong
et al., 2015a). In this approach, the source and
target domains are jointly trained under a single
objective function. The idea is that many param-
eters can be shared between the source and target
domains, and the errors in the source domain can
inform the target domain and vice versa. Follow-
ing this idea, we extend the baseline attentional
model (§3.1) to dual encoders, one for the source
language and another for the target language. In
this work, we perform the evaluation with English
and German as both source and target languages,
i.e. in both directions (depending on the model).
The decoder is shared across languages as shown
in Figure 3. We refer to this as our Dual model.
The glimpse vector ci will be calculated using ei-
ther the source or target RNN encoder, motivated
by the fact that both source and target languages
use the same target logical form. The model is
trained on the combined data of both the source
and target languages. For each mini-batch, we
only use the source or target language data, and
make use of the corresponding RNN encoder.

3.3 All model

Another straightforward domain adaptation tech-
nique is to combine the source and target lan-
guage data. We create a new training data set

Dall = Ds ∪Dt where Ds and Dt are the training
data for source and target language. We refer to
this as our All model. The All model is a Dual
model, but both source and target RNNs are shared
and only the embedding matrices are different be-
tween source and target languages.

3.3.1 Crosslingual word embeddings
Overcoming lexical differences is a key challenge
in crosslingual domain adaptation. Prior work on
domain adaptation found features that are com-
mon across languages, such as high-level linguis-
tic features extracted from the World Atlas of Lan-
guage Structures (Dryer and Haspelmath, 2013),
crosslingual word clusters (Täckström et al., 2012)
and crosslingual word embeddings (Ammar et al.,
2016). Here, we extend crosslingual word em-
beddings as the crosslingual features for semantic
parsing.

We train crosslingual word embeddings across
source and target languages following the ap-
proach of Duong et al. (2016), who achieve high
performance on several monolingual and crosslin-
gual evaluation metrics. Their work is essentially
a multilingual extension of word2vec, where they
use a context in one language to predict a tar-
get word in another language. The target words
in the other language are obtained by looking up
that word in a bilingual dictionary. Thus, the in-
put to their model is monolingual data in both
languages and a bilingual dictionary. We use
monolingual data from pre-processed Wikipedia
dump (Al-Rfou et al., 2013) with bilingual dictio-
nary from Panlex (Kamholz et al., 2014).

We initialize the seq2seq source embeddings of
both languages with the crosslingual word embed-
dings. However, we do not update these embed-
dings. We apply crosslingual word embeddings
(+XlingEmb) to the All model (§3.3) and the
Dual encoder model (§3.2) and jointly train for
the source and target language. For other models
described in this paper, we initialize with mono-
lingual word embeddings.

3.4 Trans model

The above crosslingual word embeddings need a
bilingual dictionary to connect between the source
and target language. In addition, we can also lever-
age a machine translation system as the connec-
tion between languages. For this case, we de-
fine a Trans model, which applies the baseline
attentional model with training data Dtrans =

383

English utterance (from NLmaps) How many universities are there in Paris?
German utterance (from NLmaps) Wie viele Universitäten hat Paris?
Code-switching (constructed) Wie viele Universitäten are there in Paris?

Logical form
query(area(keyval(‘name’,‘Paris’),keyval(‘is in:country’,‘France’)),
nwr(keyval(‘amenity’,‘university’)),qtype(count))

Table 2: Example of data from the NLmaps corpus. The English and German utterances are translations
of each other and they share the same logical form. We constructed code-switching utterances for all the
logical forms in the NLmaps test corpus.

translate(Ds) ∪ Dt, where translate is
the function to translate the data from the source
language to the target language. For the experi-
ments reported in this paper, we use Google Trans-
late (Wu et al., 2016).

4 Experiments

In this section, we evaluate the methods proposed
in §3 for transfer learning for semantic parsing.
The aim is to build a parser for a target language
with minimum supervision given application do-
main specific training data for a source language.
The question we want to answer is whether it is
possible to share information across languages to
improve the performance of semantic parsing.

4.1 Dataset
We use the NLmaps corpus (Haas and Riezler,
2016), a semantic parsing corpus for English and
German. We evaluated our approach on this cor-
pus because it is the only dataset which provides
data in both English and German. Table 2 presents
typical examples from this dataset, together with
a constructed code-switching utterance. Utter-
ances from different languages are assigned the
same logical forms, thus motivating the approach
taken in this paper. We tokenize in way simi-
lar to Kočiský et al. (2016).4 For each language,
the corpus contains 1500 pairs of natural language
queries and corresponding logical forms for train-
ing and 880 pairs for testing. We use 10% of the
training set as development data for early stop-
ping and hyper-parameter tuning. For evalua-
tion, we use exact match accuracy for the logical
form (Kočiský et al., 2016).

4.2 Hyper-parameter tuning
Hyper-parameter tuning is important for good per-
formance. We tune the baseline attentional model

4We remove quotes, add spaces around parenthesis and
separate the question mark at the end of the utterance.

(§3.1) on the development data by generating 100
configurations which are permutations of different
optimizers, source and target RNN sizes, RNN cell
type5, dropout rates and mini-batch sizes. We then
use the same configuration for all other models.

4.3 Learning curves

We experimented with transfer learning from
English→ German and German→ English.
We use all the data in the NLmaps corpus for the
source language and vary the amount of data for
the target language. Figure 4 shows the learning
curve for transfer learning in both directions.

The first observation is that the baseline at-
tentional model trained on the target only (TGT
Only) is very robust when trained on large
datasets but performs poorly on small datasets.
The Dual model performs similarly to the base-
line attentional model for English and slightly
worse for German. The simple method of com-
bining the data (All model) performs surpris-
ingly well, especially on small datasets where
this model is ≈ 20% better than the baseline at-
tentional model for both languages. Incorporat-
ing crosslingual word embeddings (+XlingEmb)
consistently improves the performance for all data
sizes. The improvement is more marked for the
English → German direction. Finally, if we
have a machine translation system, we can fur-
ther improve the performance on a target language
by augmenting the data with translations from the
source language. This simple method substan-
tially improves performance on a target language,
especially in the small dataset scenario. More
surprisingly, if we don’t use any target language
data and train on Dtrans = translate(Ds) we
achieve 61.3% and 48.2% accuracy for English
and German respectively (Figure 4). This corre-
sponds to a distant supervision baseline where the

5We tried with LSTM, GRU and Highway networks.

384

●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ● ●

●

●
●

● ●

0

15
0

30
0

45
0

60
0

75
0

90
0

10
50

12
00

13
50

15
00

Data size (sentences)

0
20

40
60

80
A

cc
ur

ac
y

●

●

TGT Only
Dual
All

All+XlingEmb
Trans

(a) German→ English

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

● ●

● ●
● ●

●

0

15
0

30
0

45
0

60
0

75
0

90
0

10
50

12
00

13
50

15
00

Data size (sentences)

0
20

40
60

80
A

cc
ur

ac
y

●

●

TGT Only
Dual
All

All+XlingEmb
Trans

(b) English→ German

Figure 4: Learning curves for English and German with various models. TGT Only applies the baseline
attentional mode (§3.1) to the target language data alone. Dual uses the dual encoders from §3.2. All is
similar with TGT Only but trained on the combined data of both languages. All+XlingEmb, instead
of monolingual word embeddings, uses crosslingual word embeddings (§3.3.1). Trans model uses a
machine translation system (§3.4). At 1500 sentences, since we do not have development data for early
stopping, we train the model for exactly 10k iterations.

training data is “silver standard” given by a ma-
chine translation system. This baseline is equiv-
alent to supervised learning on 600 and 450 gold
sentences on English and German respectively.

We also tried several other models such as Fine
Tune, where the model is trained on the source lan-
guage first and then fine tuned on the target lan-
guage but the performance is similar to the TGT
Only model. The other baseline we implemented
is L2, where we use the source language model as
the prior to the target language objective function
through anL2 regularization. However, we did not
observe any performance gain, as was also noticed
by Watanabe et al. (2016).

4.4 Discussion

Figure 4 shows the learning curves at various data
points. Table 3 presents the results for mod-
els trained on all target language data (1500 sen-
tences). The Dual encoder performs the worst.
The baseline supervised learning on target data
only (TGT Only) performs surprisingly well,
probably because it is highly tuned. When train-
ing on combined English and German data (All
model), we observe a slight decrease in perfor-
mance for both English and German. Even when
training on the full target language dataset, using
crosslingual word embeddings improves the per-

English German

Haas and Riezler (2016) 68.3 -
Kočiský et al. (2016) 78.0 -
Dual 82.3 78.1
TGT Only 84.2 81.3
All 83.6 80.3
All+XlingEmb 85.7 82.3
Trans 83.8 83.0

Table 3: Results on the full datasets. The best re-
sult is shown in bold.

formance by about 2% in both English and Ger-
man which highlights the effectiveness of crosslin-
gual word embeddings. As shown in Figure 4,
adding a machine translation system helps im-
mensely for small datasets. On a full dataset, how-
ever, we only observe a small improvement for
German but degradation in performance for En-
glish using Trans model. This might be because
machine translations are hardly perfect. With a
high level of confidence when training on full
dataset, added translations do not contribute much
to the model. Importantly, however, these results
are substantially better than the previous state-of-
the-art result reported in Kočiský et al. (2016).

385

Model Accuracy

German TGT Only 14.5
English TGT Only 16.3
All 76.8
All+XlingEmb 78.3

Table 4: Accuracy of seq2seq models on the code-
switching test utterances. The monolingual En-
glish and German seq2seq models (TGT Only)
are trained only on English and German utterances
respectively, while the All and All+XlingEmb
models are trained on both sets of utterances. The
best result is shown in bold.

5 Code-switching

An interesting result is that by jointly training
the model on both English and German, we can
now also handle code-switching data, where a nat-
ural language utterance is a mixture of English
and German. We evaluate our jointly trained
model’s ability to parse utterances consisting of
both English and German on our manually con-
structed code-switching testset.6 An example of
constructed code-switching utterance is shown in
Table 2. Note that our models are only trained on
“pure” English and German utterances; there are
no code-switching training examples in the input.

Code-switching is a complex linguistic phe-
nomenon and there are different accounts of
the socio-linguistic conventions governing its
use (Poplack, 2004; Isurin et al., 2009; MacSwan,
2017), as well as of the structural properties of ut-
terances with code-switching (Joshi, 1982). Here
we focus on the simple kind of code-switching
where a single phrase is produced in a different
language than the rest of the utterance. Our dataset
was created by a fluent bilingual speaker who gen-
erated code-switching utterances for each of the
880 examples in the NLmaps test set. Approxi-
mately half of the utterances are “Denglish” (i.e.,
a German phrase embedded in an English ma-
trix sentence) and half are “Gamerican” (an En-
glish phrase embedded in a German matrix sen-
tence). NLmaps includes English and German ut-
terances for each test example, and where possible
our code-switching utterance was a combination
of these (some of our code-switching examples di-
verge from the corresponding English and German

6github.com/vbtagitlab/code-switching

utterances if this improves fluency).
Table 4 presents the results of our models on

this new test set. This makes clear that the
All+XlingEmb model performs noticeably bet-
ter than the baseline monolingual models on the
code-switching test examples, even though there
were no such examples in the training set.

6 Conclusion

In this paper, we investigate ways to transfer in-
formation from one (source) language to another
(target) language in a single semantic parsing ap-
plication domain. This paper compared various
transfer learning models with a strong sequence-
to-sequence baseline. We found that a simple
method of combining source and target language
data works surprisingly well, much better than
more complicated methods such as a Dual model
or L2 regularization. If bilingual dictionaries are
available, crosslingual word embeddings can be
constructed and used to further improve the per-
formance. We observed ≈ 20% improvement for
small datasets compared to the strong baseline at-
tentional model. Moreover, this improvement can
almost be doubled if we leverage some machine
translation system. Even on the full dataset, our
jointly trained model with crosslingual word em-
beddings gives state-of-the-art results for seman-
tic parsing of the English and German versions of
NLmaps corpus.

This paper also investigated the performance
of semantic parsers on code-switching utterances
that combine English and German. We created
a new code-switching test set, and showed that
our simple jointly trained model with crosslingual
word embeddings achieves 78.3% exact match ac-
curacy on this set, which is more than 60% bet-
ter than a corresponding monolingual sequence-
to-sequence model.

For future work, we would like to try delexical-
ization as part of training and experiment with bet-
ter ways of handling unknown word such as a copy
mechanism (Jia and Liang, 2016; Gu et al., 2016;
Gulcehre et al., 2016). Investigating a more so-
phisticated network architecture that can perform
multilingual semantic parsing more accurately, or
with less training data is another fruitful research
direction. This work has only scratched the sur-
face in terms of code switching. We would like to
exploit the pragmatic and socio-linguistic context
to better handle code-switching.

386

Acknowledgments

We thank the anonymous reviewers for their in-
sightful comments.

References
Rami Al-Rfou, Bryan Perozzi, and Steven Skiena.

2013. Polyglot: Distributed word representations
for multilingual NLP. In Proceedings of the Seven-
teenth Conference on Computational Natural Lan-
guage Learning. pages 183–192.

Waleed Ammar, George Mulcaire, Miguel Ballesteros,
Chris Dyer, and Noah Smith. 2016. Many lan-
guages, one parser. Transactions of the Association
for Computational Linguistics 4:431–444.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua
Bengio. 2014. Neural machine translation by
jointly learning to align and translate. CoRR
abs/1409.0473.

Shai Ben-David, John Blitzer, Koby Crammer, and Fer-
nando Pereira. 2007. Analysis of representations for
domain adaptation. In P. B. Schölkopf, J. C. Platt,
and T. Hoffman, editors, Advances in Neural In-
formation Processing Systems 19, MIT Press, pages
137–144.

Jan Chorowski, Dzmitry Bahdanau, Kyunghyun Cho,
and Yoshua Bengio. 2014. End-to-end continuous
speech recognition using attention-based recurrent
NN: first results. CoRR abs/1412.1602.

Jan Chorowski, Dzmitry Bahdanau, Dmitriy Serdyuk,
KyungHyun Cho, and Yoshua Bengio. 2015.
Attention-based models for speech recognition.
CoRR abs/1506.07503.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. J. Mach. Learn. Res. 12:2493–2537.

Hal Daume III. 2007. Frustratingly easy domain adap-
tation. In Proceedings of the 45th Annual Meeting
of the Association of Computational Linguistics. As-
sociation for Computational Linguistics, pages 256–
263.

Li Dong and Mirella Lapata. 2016. Language to logi-
cal form with neural attention. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers). Asso-
ciation for Computational Linguistics, pages 33–43.

Matthew S. Dryer and Martin Haspelmath, editors.
2013. WALS Online – walls.info. Max Planck In-
stitute for Evolutionary Anthropology.

Long Duong, Trevor Cohn, Steven Bird, and Paul
Cook. 2015a. Low resource dependency parsing:
Cross-lingual parameter sharing in a neural network

parser. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Natu-
ral Language Processing. pages 845–850.

Long Duong, Trevor Cohn, Steven Bird, and Paul
Cook. 2015b. A neural network model for low-
resource universal dependency parsing. In Proceed-
ings of the 2015 Conference on Empirical Meth-
ods in Natural Language Processing. Association
for Computational Linguistics, pages 339–348.

Long Duong, Hiroshi Kanayama, Tengfei Ma, Steven
Bird, and Trevor Cohn. 2016. Learning crosslingual
word embeddings without bilingual corpora. In Pro-
ceedings of the 2016 Conference on Empirical Meth-
ods in Natural Language Processing. Association
for Computational Linguistics, pages 1285–1295.

Orhan Firat, Kyunghyun Cho, and Yoshua Bengio.
2016. Multi-way, multilingual neural machine
translation with a shared attention mechanism. In
Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies.
pages 866–875.

Jerry A. Fodor. 1975. The Language of Thought. Har-
vard University Press.

Xavier Glorot and Yoshua Bengio. 2010. Understand-
ing the difficulty of training deep feedforward neural
networks. In Yee Whye Teh and Mike Titterington,
editors, Proceedings of the Thirteenth International
Conference on Artificial Intelligence and Statistics.
PMLR, volume 9 of Proceedings of Machine Learn-
ing Research, pages 249–256.

Jiatao Gu, Zhengdong Lu, Hang Li, and Victor O.K.
Li. 2016. Incorporating copying mechanism in
sequence-to-sequence learning. In Proceedings of
the 54th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers).
pages 1631–1640.

Caglar Gulcehre, Sungjin Ahn, Ramesh Nallapati,
Bowen Zhou, and Yoshua Bengio. 2016. Pointing
the unknown words. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). Association
for Computational Linguistics, pages 140–149.

Carolin Haas and Stefan Riezler. 2016. A corpus and
semantic parser for multilingual natural language
querying of openstreetmap. In Proceedings of the
2016 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies. Association for Com-
putational Linguistics, pages 740–750.

Ludmila Isurin, Donald Winford, and Kees De Bot.
2009. Multidisciplinary Approaches to Code
Switching. John Benjamins Publishing.

387

Robin Jia and Percy Liang. 2016. Data recombination
for neural semantic parsing. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers). Asso-
ciation for Computational Linguistics, pages 12–22.

Aravind K Joshi. 1982. Processing of sentences with
intra-sentential code-switching. In Proceedings of
the 9th conference on Computational linguistics-
Volume 1. Academia Praha, pages 145–150.

David Kamholz, Jonathan Pool, and Susan Colowick.
2014. PanLex: Building a resource for panlin-
gual lexical translation. In Proceedings of the Ninth
International Conference on Language Resources
and Evaluation (LREC’14). European Language Re-
sources Association, pages 3145–50.

Young-Bum Kim, Karl Stratos, and Ruhi Sarikaya.
2016. Frustratingly easy neural domain adaptation.
In Proceedings of COLING 2016, the 26th Inter-
national Conference on Computational Linguistics:
Technical Papers. pages 387–396.

Tomáš Kočiský, Gábor Melis, Edward Grefenstette,
Chris Dyer, Wang Ling, Phil Blunsom, and
Karl Moritz Hermann. 2016. Semantic parsing with
semi-supervised sequential autoencoders. In Pro-
ceedings of the 2016 Conference on Empirical Meth-
ods in Natural Language Processing. Association
for Computational Linguistics, pages 1078–1087.

Tom Kwiatkowksi, Luke Zettlemoyer, Sharon Goldwa-
ter, and Mark Steedman. 2010. Inducing probabilis-
tic CCG grammars from logical form with higher-
order unification. In Proceedings of the 2010 Con-
ference on Empirical Methods in Natural Language
Processing. Association for Computational Linguis-
tics, pages 1223–1233.

Percy Liang, Michael Jordan, and Dan Klein. 2011.
Learning dependency-based compositional seman-
tics. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Hu-
man Language Technologies. Association for Com-
putational Linguistics, pages 590–599.

Minh-Thang Luong, Quoc V. Le, Ilya Sutskever,
Oriol Vinyals, and Lukasz Kaiser. 2015a. Multi-
task sequence to sequence learning. CoRR
abs/1511.06114.

Thang Luong, Hieu Pham, and Christopher D. Man-
ning. 2015b. Effective approaches to attention-
based neural machine translation. In Proc. Em-
pirical Method in Natural Language Processing
(EMNLP). pages 1412–1421.

Jeff MacSwan. 2017. A multilingual perspective on
translanguaging. American Educational Research
Journal 54(1):167–201.

Ryan McDonald, Joakim Nivre, Yvonne Quirmbach-
Brundage, Yoav Goldberg, Dipanjan Das, Kuz-
man Ganchev, Keith Hall, Slav Petrov, Hao
Zhang, Oscar Täckström, Claudia Bedini, Núria

Bertomeu Castelló, and Jungmee Lee. 2013. Uni-
versal dependency annotation for multilingual pars-
ing. In Proceedings of the 51st Annual Meeting
of the Association for Computational Linguistics.
pages 92–97.

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig.
2013. Linguistic regularities in continuous space
word representations. In Proceedings of the 2013
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies. pages 746–751.

Joel Nothman, Nicky Ringland, Will Radford, Tara
Murphy, and James R. Curran. 2013. Learning mul-
tilingual named entity recognition from Wikipedia.
Artificial Intelligent 194:151–175.

Mohammad Pezeshki. 2015. Sequence modeling
using gated recurrent neural networks. CoRR
abs/1501.00299.

Shana Poplack. 2004. Code-switching. In Soziolin-
guistik: an international handbook of the science
of language (2nd edition), Walter de Gruyter, pages
589–596.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. Journal of Machine Learning Re-
search 15:1929–1958.

Oscar Täckström, Ryan McDonald, and Jakob Uszko-
reit. 2012. Cross-lingual word clusters for direct
transfer of linguistic structure. In Proceedings of the
2012 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies. Association for Com-
putational Linguistics, pages 477–487.

Jörg Tiedemann. 2014. Rediscovering annotation
projection for cross-lingual parser induction.
In Proceedings of COLING 2014, the 25th
International Conference on Computational
Linguistics: Technical Papers. Dublin City
University and Association for Computational
Linguistics, Dublin, Ireland, pages 1854–1864.
http://www.aclweb.org/anthology/C14-1175.

T. Tieleman and G. Hinton. 2012. Lecture 6.5—
RmsProp: Divide the gradient by a running average
of its recent magnitude. COURSERA: Neural Net-
works for Machine Learning.

Chen-Tse Tsai, Stephen Mayhew, and Dan Roth. 2016.
Cross-lingual named entity recognition via Wikifica-
tion. In The SIGNLL Conference on Computational
Natural Language Learning.

Yusuke Watanabe, Kazuma Hashimoto, and Yoshimasa
Tsuruoka. 2016. Domain adaptation for neural net-
works by parameter augmentation. In Proceedings
of the 1st Workshop on Representation Learning
for NLP. Association for Computational Linguistics,
pages 249–257.

388

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V.
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, Jeff Klingner, Apurva Shah, Melvin
Johnson, Xiaobing Liu, Lukasz Kaiser, Stephan
Gouws, Yoshikiyo Kato, Taku Kudo, Hideto
Kazawa, Keith Stevens, George Kurian, Nishant
Patil, Wei Wang, Cliff Young, Jason Smith, Jason
Riesa, Alex Rudnick, Oriol Vinyals, Greg Corrado,
Macduff Hughes, and Jeffrey Dean. 2016. Google’s
neural machine translation system: Bridging the gap
between human and machine translation. CoRR
abs/1609.08144.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun
Cho, Aaron C. Courville, Ruslan Salakhutdinov,
Richard S. Zemel, and Yoshua Bengio. 2015. Show,
attend and tell: Neural image caption generation
with visual attention. In Proceedings of the 32nd In-
ternational Conference on Machine Learning, ICML
2015, Lille, France, 6-11 July 2015. pages 2048–
2057.

David Yarowsky and Grace Ngai. 2001. Inducing mul-
tilingual POS taggers and NP bracketers via robust
projection across aligned corpora. In Proceedings of
the Second Meeting of the North American Chapter
of the Association for Computational Linguistics on
Language technologies. pages 1–8.

Luke Zettlemoyer and Michael Collins. 2007. On-
line learning of relaxed CCG grammars for parsing
to logical form. In Proceedings of the 2007 Joint
Conference on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Lan-
guage Learning (EMNLP-CoNLL). pages 678–687.

Luke S. Zettlemoyer and Michael Collins. 2005.
Learning to map sentences to logical form: Struc-
tured /classification with probabilistic categorial
grammars. In UAI ’05, Proceedings of the 21st Con-
ference in Uncertainty in Artificial Intelligence, Ed-
inburgh, Scotland, July 26-29, 2005. pages 658–666.

Kai Zhao and Liang Huang. 2015. Type-driven in-
cremental semantic parsing with polymorphism. In
Proceedings of the 2015 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies.
Association for Computational Linguistics, pages
1416–1421.

Barret Zoph and Kevin Knight. 2016. Multi-source
neural translation. In Proceedings of the 2016 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies. pages 30–34.

Barret Zoph, Deniz Yuret, Jonathan May, and Kevin
Knight. 2016. Transfer learning for low-resource
neural machine translation. In Proceedings of the
2016 Conference on Empirical Methods in Natural
Language Processing. pages 1568–1575.

389

Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017), pages 390–399,
Vancouver, Canada, August 3 - August 4, 2017. c©2017 Association for Computational Linguistics

Optimizing Differentiable Relaxations of Coreference Evaluation Metrics

Phong Le1 Ivan Titov1,2

1ILLC, University of Amsterdam
2ILCC, School of Informatics, University of Edinburgh
p.le@uva.nl ititov@inf.ed.ac.uk

Abstract

Coreference evaluation metrics are hard
to optimize directly as they are non-
differentiable functions, not easily decom-
posable into elementary decisions. Con-
sequently, most approaches optimize ob-
jectives only indirectly related to the end
goal, resulting in suboptimal performance.
Instead, we propose a differentiable re-
laxation that lends itself to gradient-based
optimisation, thus bypassing the need for
reinforcement learning or heuristic mod-
ification of cross-entropy. We show that
by modifying the training objective of a
competitive neural coreference system, we
obtain a substantial gain in performance.
This suggests that our approach can be re-
garded as a viable alternative to using rein-
forcement learning or more computation-
ally expensive imitation learning.

1 Introduction

Coreference resolution is the task of identifying all
mentions which refer to the same entity in a docu-
ment. It has been shown beneficial in many natural
language processing (NLP) applications, includ-
ing question answering (Hermann et al., 2015) and
information extraction (Kehler, 1997), and often
regarded as a prerequisite to any text understand-
ing task.

Coreference resolution can be regarded as a
clustering problem: each cluster corresponds to
a single entity and consists of all its mentions in
a given text. Consequently, it is natural to eval-
uate predicted clusters by comparing them with
the ones annotated by human experts, and this
is exactly what the standard metrics (e.g., MUC,
B3, CEAF) do. In contrast, most state-of-the-
art systems are optimized to make individual co-

reference decisions, and such losses are only indi-
rectly related to the metrics.

One way to deal with this challenge is to op-
timize directly the non-differentiable metrics us-
ing reinforcement learning (RL), for example, re-
lying on the REINFORCE policy gradient algo-
rithm (Williams, 1992). However, this approach
has not been very successful, which, as suggested
by Clark and Manning (2016a), is possibly due
to the discrepancy between sampling decisions
at training time and choosing the highest rank-
ing ones at test time. A more successful alter-
native is using a ‘roll-out’ stage to associate cost
with possible decisions, as in Clark and Manning
(2016a), but it is computationally expensive. Imi-
tation learning (Ma et al., 2014b; Clark and Man-
ning, 2015), though also exploiting metrics, re-
quires access to an expert policy, with exact poli-
cies not directly computable for the metrics of in-
terest.

In this work, we aim at combining the best of
both worlds by proposing a simple method that
can turn popular coreference evaluation metrics
into differentiable functions of model parameters.
As we show, this function can be computed re-
cursively using scores of individual local deci-
sions, resulting in a simple and efficient estima-
tion procedure. The key idea is to replace non-
differentiable indicator functions (e.g. the mem-
ber function I(m ∈ S)) with the corresponding
posterior probabilities (p(m ∈ S)) computed by
the model. Consequently, non-differentiable func-
tions used within the metrics (e.g. the set size
function |S| =

∑
m I(m ∈ S)) become differ-

entiable (|S|c =
∑

m p(m ∈ S)). Though we
assume that the scores of the underlying statis-
tical model can be used to define a probability
model, we show that this is not a serious limita-
tion. Specifically, as a baseline we use a prob-
abilistic version of the neural mention-ranking

390

model of Wiseman et al. (2015b), which on its own
outperforms the original one and achieves similar
performance to its global version (Wiseman et al.,
2016). Importantly when we use the introduced
differentiable relaxations in training, we observe
a substantial gain in performance over our prob-
abilistic baseline. Interestingly, the absolute im-
provement (+0.52) is higher than the one reported
in Clark and Manning (2016a) using RL (+0.05)
and the one using reward rescaling1 (+0.37). This
suggests that our method provides a viable alter-
native to using RL and reward rescaling.

The outline of our paper is as follows: we intro-
duce our neural resolver baseline and the B3 and
LEA metrics in Section 2. Our method to turn a
mention ranking resolver into an entity-centric re-
solver is presented in Section 3, and the proposed
differentiable relaxations in Section 4. Section 5
shows our experimental results.

2 Background

2.1 Neural mention ranking

In this section we introduce neural mention rank-
ing, the framework which underpins current state-
of-the-art models (Clark and Manning, 2016a).
Specifically, we consider a probabilistic version of
the method proposed by Wiseman et al. (2015b).
In experiments we will use it as our baseline.

Let (m1,m2, ..,mn) be the list of mentions in a
document. For each mentionmi, let ai ∈ {1, ..., i}
be the index of the mention that mi is coreferent
with (if ai = i, mi is the first mention of some
entity appearing in the document). As standard in
coreference resolution literature, we will refer to
mai as an antecedent of mi.2 Then, in mention
ranking the goal is to score antecedents of a men-
tion higher than any other mentions, i.e., if s is the
scoring function, we require s(ai = j) > s(ai =
k) for all j, k such that mi and mj are coreferent
but mi and mk are not.

Let φa(mi) ∈ Rda and φp(mi,mj) ∈ Rdp be
respectively features of mi and features of pair

1Reward rescaling is a technique that computes error val-
ues for a heuristic loss function based on the reward differ-
ence between the best decision according to the current model
and the decision leading to the highest metric score.

2This slightly deviates from the definition of antecedents
in linguistics (Crystal, 1997).

(mi,mj). The scoring function is defined by:

s(ai = j) =

uT
[

ha(mi)
hp(mi,mj)

]
+ u0 if j < i

vTha(mi) + v0 if j = i

where

ha(mi) = tanh(Waφa(mi) + ba)
hp(mi,mj) = tanh(Wpφp(mi,mj) + bp)

and u,v,Wa,Wp,ba,bp are real vectors and
matrices with proper dimensions, u0, v0 are real
scalars.

Unlike Wiseman et al. (2015b), where the max-
margin loss is used, we define a probabilistic
model. The probability3 that mi and mj are coref-
erent is given by

p(ai = j) =
exp{s(ai = j)}∑i
j′=1 exp{s(ai = j′)} (1)

Following Durrett and Klein (2013) we use the fol-
lowing softmax-margin (Gimpel and Smith, 2010)
loss function:

L(Θ) = −
n∑
i=1

log
(∑
j∈C(mi)

p′(ai = j)
)
+λ||Θ||1,

where Θ are model parameters, C(mi) is the set
of the indices of correct antecedents of mi, and
p′(ai = j) ∝ p(ai = j)e∆(j,C(mi)). ∆ is a
cost function used to manipulate the contribution
of different error types to the loss function:

∆(j, C(mi)) =


α1 if j 6= i ∧ i ∈ C(mi)
α2 if j = i ∧ i /∈ C(mi)
α3 if j 6= i ∧ j /∈ C(mi)
0 otherwise

The error types are “false anaphor”, “false new”,
“wrong link”, and “no mistake”, respectively. In
our experiments, we borrow their values from Dur-
rett and Klein (2013): (α1, α2, α3) = (0.1, 3, 1).
In the subsequent discussion, we refer to the loss
as mention-ranking heuristic cross entropy.

3For the sake of readability, we do not explicitly mark
in our notation that all the probabilities are conditioned on
the document (e.g., the mentions) and dependent on model
parameters.

391

2.2 Evaluation Metrics

We use five most popular metrics4,

• MUC (Vilain et al., 1995),

• B3 (Bagga and Baldwin, 1998),

• CEAFm, CEAFe (Luo, 2005),

• BLANC (Luo et al., 2014),

• LEA (Moosavi and Strube, 2016).

for evaluation. However, because MUC is the least
discriminative metric (Moosavi and Strube, 2016),
whereas CEAF is slow to compute, out of the five
most popular metrics we incorporate into our loss
only B3. In addition, we integrate LEA, as it has
been shown to provide a good balance between
discriminativity and interpretability.

Let G = {G1, G2, ..., GN} and S =
{S1, S2, ..., SM} be the gold-standard entity set
and an entity set given by a resolver. Recall that
an entity is a set of mentions. The recall and pre-
cision of the B3 metric is computed by:

RB3 =

∑N
v=1

∑M
u=1

|Gv∩Su|2
|Gv |∑N

v=1 |Gv|

PB3 =

∑M
u=1

∑N
v=1

|Gv∩Su|2
|Su|∑M

u=1 |Su|

The LEA metric is computed as:

RLEA =

∑N
v=1

(|Gv| ×∑M
u=1

link(Gv∩Su)
link(Gv)

)∑N
v=1 |Gv|

PLEA =

∑M
u=1

(|Su| ×∑N
v=1

link(Gv∩Su)
link(Su)

)∑M
u=1 |Su|

where link(E) = |E| × (|E| − 1)/2 is the num-
ber of coreference links in entity E. Fβ , for both
metrics, is defined by:

Fβ = (1 + β2)
P ×R
β2P +R

β = 1 is used in the standard evaluation.

4All are implemented in Pradhan et al.
(2014), https://github.com/conll/
reference-coreference-scorers.

......
m1 mu mimu+1

......

E1 Eu EiEu+1

mention

entity

Figure 1: For each mention mu there is a po-
tential entity Eu so that mu is the first mention
in the chain. Computing p(mi ∈ Eu), u < i
takes into the account all directed paths from mi

to Eu (black arrows). Noting that there is no di-
rected path from any mk, k < u to Eu because
p(mk ∈ Eu) = 0. (See text for more details.)

3 From mention ranking to entity
centricity

Mention-ranking resolvers do not explicitly pro-
vide information about entities/clusters which is
required by B3 and LEA. We therefore propose a
simple solution that can turn a mention-ranking re-
solver into an entity-centric one.

First note that in a document containing n men-
tions, there are n potential entities E1, E2, ..., En
where Ei has mi as the first mention. Let p(mi ∈
Eu) be the probability that mention mi corre-
sponds to entity Eu. We now show that it can be
computed recursively based on p(ai = j) as fol-
lows:

p(mi ∈ Eu) =
∑i−1

j=u p(ai = j)× p(mj ∈ Eu) if u < i

p(ai = i) if u = i

0 if u > i

In other words, if u < i, we consider all possible
mj with which mi can be coreferent, and which
can correspond to entity Eu. If u = i, the link to
be considered is the mi’s self-link. And, if u > i,
the probability is zero, as it is impossible formi to
be assigned to an entity introduced only later. See
Figure 1 for extra information.

We now turn to two crucial questions about this
formula:

• Is p(mi ∈ •) a valid probability distribution?

• Is it possible for a mention mu to be mostly
anaphoric (i.e. p(mu ∈ Eu) is low) but
for the corresponding cluster Eu to be highly

392

probable (i.e. p(mi ∈ Eu) is high for some
i)?

The first question is answered in Proposition 1.
The second question is important because, intu-
itively, when a mention mu is anaphoric, the po-
tential entity Eu does not exist. We will show that
the answer is “No” by proving in Proposition 2
that the probability that mu is anaphoric is always
higher than any probability that mi, i > u refers
to Eu.

Proposition 1. p(mi ∈ •) is a valid probability
distribution, i.e.,

∑n
u=1 p(mi ∈ Eu) = 1, for all

i = 1, ..., n.

Proof. We prove this proposition by induction.
Basis: it is obvious that

∑n
u=1 p(m1 ∈ Eu) =

p(a1 = 1) = 1.
Assume that

∑n
u=1 p(mj ∈ Eu) = 1 for all

j < i. Then,

i−1∑
u=1

p(mi ∈ Eu)

=
i−1∑
u=1

i−1∑
j=u

p(ai = j)× p(mj ∈ Eu)

Because p(mj ∈ Eu) = 0 for all j < u, this
expression is equal to

i−1∑
u=1

i−1∑
j=1

p(ai = j)× p(mj ∈ Eu)

=
i−1∑
j=1

p(ai = j)×
i−1∑
u=1

p(mj ∈ Eu)

=
i−1∑
j=1

p(ai = j)

Therefore,

n∑
u=1

p(mi ∈ Eu) =
i−1∑
j=1

p(ai = j)+p(ai = i) = 1

(according to Equation 1).

Proposition 2. p(mi ∈ Eu) ≤ p(mu ∈ Eu) for
all i > u.

Proof. We prove this proposition by induction.
Basis: for i = u+ 1,

p(mu+1 ∈ Eu) = p(au+1 = u)× p(mu ∈ Eu)
≤ p(mu ∈ Eu)

Assume that p(mj ∈ Eu) ≤ p(mu ∈ Eu) for
all j ≥ u and j < i. Then

p(mi ∈ Eu) =
i−1∑
j=u

p(ai = j)× p(mj ∈ Eu)

≤
i−1∑
j=u

p(ai = j)× p(mu ∈ Eu)

≤ p(mu ∈ Eu)×
i∑

j=1

p(ai = j)

= p(mu ∈ Eu)

3.1 Entity-centric heuristic cross entropy loss

Having p(mi ∈ Eu) computed, we can consider
coreference resolution as a multiclass prediction
problem. An entity-centric heuristic cross entropy
loss is thus given below:

Lec(Θ) = −
n∑
i=1

log p′(mi ∈ Ee(mi)) + λ||Θ||1

where Ee(mi) is the correct entity that mi belongs
to, p′(mi ∈ Eu) ∝ p(mi ∈ Eu)eΓ(u,e(mi)). Sim-
ilar to ∆ in the mention-ranking heuristic loss in
Section 2.1, Γ is a cost function used to manip-
ulate the contribution of the four different error
types (“false anaphor”, “false new”, “wrong link”,
and “no mistake”):

Γ(u, e(mi)) =
γ1 if u 6= i ∧ e(mi) = i

γ2 if u = i ∧ e(mi) 6= i

γ3 if u 6= e(mi) ∧ u 6= i ∧ e(mi) 6= i

0 otherwise

4 From non-differentiable metrics to
differentiable losses

There are two functions used in computing B3

and LEA: the set size function |.| and the
link function link(.). Because both of them
are non-differentiable, the two metrics are non-
differentiable. We thus need to make these two
functions differentiable.

There are two remarks. Firstly, both func-
tions can be computed using the indicator function

393

0 1 2 3 4 5 6
class

0.0

0.2

0.4

0.6

0.8

1.0
p
ro

b
a
b
ili

ty
T= 1

T= 0. 5

T= 0. 3

T→ 0

Figure 2: Softmax exp{πi/T}∑
j exp{πj/T} with different val-

ues of T . The softmax becomes more peaky when
the value of T gets smaller. As T → 0 the softmax
converges to the indicator function that chooses
arg maxi πi.

I(mi ∈ Su):

|Su| =
n∑
i=1

I(mi ∈ Su)

link(Su) =
∑
j<i

I(mi ∈ Su)× I(mj ∈ Su)

Secondly, given πi,u = log p(mi ∈ Su),
the indicator function I(mi ∈ Su∗), u∗ =
arg maxu p(mi ∈ Su) is the converging point of
the following softmax as T → 0 (see Figure 2):

p(mi ∈ Su;T) =
exp{πi,u/T}∑
v exp{πi,v/T}

where T is called temperature (Kirkpatrick et al.,
1983).

Therefore, we propose to represent each Su as a
soft-cluster:

Su = {p(m1 ∈ Eu;T), ..., p(mn ∈ Eu;T)}
where, as defined in Section 3, Eu is the potential
entity that has mu as the first mention. Replacing
the indicator function I(mi ∈ Su) by the proba-
bility distribution p(mi ∈ Eu;T), we then have a
differentiable version for the set size function and
the link function:

|Su|d =
n∑
i=1

p(mi ∈ Eu;T)

linkd(Su) =
∑
j<i

p(mi ∈ Eu;T)× p(mj ∈ Eu;T)

|Gv∩Su|d and linkd(Gv∩Su) are computed sim-
ilarly with the constraint that only mentions in
Gv are taken into account. Plugging these func-
tions into precision and recall of B3 and LEA in
Section 2.2, we obtain differentiable F̂β,B3 and
F̂β,LEA, which are then used in two loss functions:

Lβ,B3(Θ;T) = −F̂β,B3(Θ;T) + λ||Θ||1
Lβ,LEA(Θ;T) = −F̂β,LEA(Θ;T) + λ||Θ||1

where λ is the hyper-parameter of the L1 regular-
ization terms.

It is worth noting that, as T → 0, F̂β,B3 →
Fβ,B3 and F̂β,LEA → Fβ,LEA.5 Therefore, when
training a model with the proposed losses, we can
start at a high temperature (e.g., T = 1) and anneal
to a small but non-zero temperature. However, in
our experiments we fix T = 1. Annealing is left
for future work.

5 Experiments

We now demonstrate how to use the proposed
differentiable B3 and LEA to train a corefer-
ence resolver. The source code and trained mod-
els are available at https://github.com/
lephong/diffmetric_coref.

Setup

We run experiments on the English portion of
CoNLL 2012 data (Pradhan et al., 2012) which
consists of 3,492 documents in various domains
and formats. The split provided in the CoNLL
2012 shared task is used. In all our resolvers,
we use not the original features of Wiseman et al.
(2015b) but their slight modification described in
Wiseman et al. (2016) (section 6.1).6

Resolvers

We build following baseline and three resolvers:

• baseline: the resolver presented in Sec-
tion 2.1. We use the identical configuration
as in Wiseman et al. (2016): Wa ∈ R200×da ,
Wp ∈ R700×dp , λ = 10−6 (where da, dp are
respectively the numbers of mention features
and pair-wise features). We also employ their
pretraining methodology.

5We can easily prove this using the algebraic limit theo-
rem.

6https://github.com/swiseman/nn_coref/

394

• Lec: the resolver using the entity-centric
cross entropy loss introduced in Section 3.1.
We set (γ1, γ2, γ3) = (α1, α2, α3) =
(0.1, 3, 1).

• Lβ,B3 and Lβ,LEA: the resolvers using the
losses proposed in Section 4. β is tuned on
the development set by trying each value in
{√0.8, 1,

√
1.2,
√

1.4,
√

1.6,
√

1.8, 1.5, 2}.

To train these resolvers we use AdaGrad (Duchi
et al., 2011) to minimize their loss functions with
the learning rate tuned on the development set and
with one-document mini-batches. Note that we
use the baseline as the initialization point to train
the other three resolvers.

5.1 Results

We firstly compare our resolvers against Wiseman
et al. (2015b) and Wiseman et al. (2016). Re-
sults are shown in the first half of Table 1. Our
baseline surpasses Wiseman et al. (2015b). It is
likely due to using features from Wiseman et al.
(2016). Using the entity-centric heuristic cross en-
tropy loss and the relaxations are clearly benefi-
cial: Lec is slightly better than our baseline and
on par with the global model of Wiseman et al.
(2016). Lβ=1,B3 , Lβ=1,LEA outperform the base-
line, the global model of Wiseman et al. (2016),
and Lec. However, the best values of β are

√
1.4,√

1.8 respectively for Lβ,B3 , and Lβ,LEA. Among
these resolvers, Lβ=

√
1.8,LEA achieves the highest

F1 scores across all the metrics except BLANC.
When comparing to Clark and Manning (2016a)

(the second half of Table 1), we can see that
the absolute improvement over the baselines (i.e.
‘heuristic loss’ for them and the heuristic cross
entropy loss for us) is higher than that of reward
rescaling but with much shorter training time:
+0.37 (7 days7) and +0.52 (15 hours) on the
CoNLL metric for Clark and Manning (2016a) and
ours, respectively. It is worth noting that our ab-
solute scores are weaker than these of Clark and
Manning (2016a), as they build on top of a similar
but stronger mention-ranking baseline, which em-
ploys deeper neural networks and requires a much
larger number of epochs to train (300 epochs, in-
cluding pretraining). For the purpose of illustrat-
ing the proposed losses, we started with a simpler
model by Wiseman et al. (2015b) which requires

7As reported in https://github.com/
clarkkev/deep-coref

(a) [...] that 13[the virus] could mutate [...] /.
In fact some health experts say 17[it]13∗

17,17 ’s
just a matter of time [...]
(b) Walk a mile in 157[our] shoes that
’s all I have to say because anybody
who works in a nursing home will very
quickly learn that these are very fragile pa-
tients /. 165[We]157

165∗,157 did the very best
167[we]165

165,165 could in these situations [...]

Figure 3: Example predictions: the subscript be-
fore a mention is its index. The superscript /
subscript after a mention indicates the antecedent
predicted by the baseline / Lβ=1,B3 , Lβ=

√
1.4,B3 .

Mentions with the same color are true coreferents.
“*”s mark incorrect decisions.

a much smaller number of epochs, thus faster, to
train (20 epochs, including pretraining).

5.2 Analysis

Table 2 shows the breakdown of errors made
by the baseline and our resolvers on the de-
velopment set. The proposed resolvers make
fewer “false anaphor” and “wrong link” errors but
more “false new” errors compared to the base-
line. This suggests that loss optimization prevents
over-clustering, driving the precision up: when an-
tecedents are difficult to detect, the self-link (i.e.,
ai = i) is chosen. When β increases, they make
more “false anaphor” and “wrong link” errors but
less “false new” errors.

In Figure 3(a) the baseline, but not Lβ=1,B3

nor Lβ=
√

1.4,B3 , mistakenly links 17[it] with 13[the
virus]. Under-clustering, on the other hand, is a
problem for our resolvers with β = 1: in exam-
ple (b), Lβ=1,B3 missed 165[We]. This behaviour
results in a reduced recall but the recall is not dam-
aged severely, as we still obtain a better F1 score.
We conjecture that this behaviour is a consequence
of using the F1 score in the objective, and, if un-
desirable, Fβ with β > 1 can be used instead. For
instance, also in Figure 3, Lβ=

√
1.4,B3 correctly

detects 17[it] as non-anaphoric and links 165[We]
with 157[our].

Figure 4 shows recall, precision, F1 (average
of MUC, B3, CEAFe), on the development set
when training with Lβ,B3 and Lβ,LEA. As ex-
pected, higher values of β yield lower precisions
but higher recalls. In contrast, F1 increases until

395

MUC B3 CEAFm CEAFe BLANC LEA CoNLL
Wiseman et al. (2015b) 72.60 60.52 - 57.05 - - 63.39
Wiseman et al. (2016) 73.42 61.50 - 57.70 - - 64.21
Our proposals
baseline (heuristic loss) 73.22 61.44 65.12 57.74 62.16 57.52 64.13
Lec 73.2 61.75 65.77 57.8 63.3 57.89 64.25
Lβ=1,B3 73.37 61.94 65.79 58.22 63.19 58.06 64.51
Lβ=

√
1.4,B3 73.48 61.99 65.9 58.36 63.1 58.13 64.61

Lβ=1,LEA 73.3 61.88 65.69 57.99 63.27 58.03 64.39
Lβ=

√
1.8,LEA 73.53 62.04 65.95 58.41 63.09 58.18 64.66

Clark and Manning (2016a)
baseline (heuristic loss) 74.65 63.03 - 58.40 - - 65.36
REINFORCE 74.48 63.09 - 58.67 - - 65.41
Reward Rescaling 74.56 63.40 - 59.23 - - 65.73

Table 1: Results (F1) on CoNLL 2012 test set. CoNLL is the average of MUC, B3, and CEAFe.

Non-Anaphoric (FA) Anaphoric (FN + WL)
Proper Nominal Pronom. Proper Nominal Pronom.

baseline 630 714 1051 374 + 190 821 + 238 347 + 779
Lec 529 609 904 438 + 182 924 + 220 476 + 740
Lβ=1,B3 545 559 883 433 + 172 951 + 192 457 + 761
Lβ=

√
1.4,B3 557 564 926 426 + 178 941 + 194 431 + 766

Lβ=1,LEA 513 547 843 456 + 170 960 + 191 513 + 740
Lβ=

√
1.8,LEA 577 591 1001 416 + 176 919 + 198 358 + 790

Table 2: Number of: “false anaphor” (FA, a non-anaphoric mention marked as anaphoric), “false new”
(FN, an anaphoric mention marked as non-anaphoric), and “wrong link” (WL, an anaphoric mention is
linked to a wrong antecedent) errors on the development set.

reaching the highest point when β =
√

1.4 ≈ 1.18
for Lβ,B3 (β =

√
1.8 ≈ 1.34 for Lβ,LEA), it then

decreases gradually.

5.3 Discussion
Because the resolvers are evaluated on F1 score
metrics, it should be that Lβ,B3 and Lβ,LEA per-
form the best with β = 1. Figure 4 and Table 1
however do not confirm that: β should be set with
values a little bit larger than 1. There are two hy-
potheses. First, the statistical difference between
the training set and the development set leads to
the case that the optimal β on one set can be sub-
optimal on the other set. Second, in our experi-
ments we fix T = 1, meaning that the relaxations
might not be close to the true evaluation metrics
enough. Our future work, to confirm/reject this,
is to use annealing, i.e., gradually decreasing T
down to (but larger than) 0.

Table 1 shows that the difference betweenLβ,B3

and Lβ,LEA in terms of accuracy is not substan-

tial (although the latter is slightly better than the
former). However, one should expect that Lβ,B3

would outperform Lβ,LEA on B3 metric while it
would be the other way around on LEA metric. It
turns out that, B3 and LEA behave quite similarly
in non-extreme cases. We can see that in Figure 2,
4, 5, 6, 7 in Moosavi and Strube (2016).

6 Related work

Mention ranking and entity centricity are two
main streams in the coreference resolution liter-
ature. Mention ranking (Denis and Baldridge,
2007; Durrett and Klein, 2013; Martschat and
Strube, 2015; Wiseman et al., 2015a) considers lo-
cal and independent decisions when choosing a
correct antecedent for a mention. This approach
is computationally efficient and currently domi-
nant with state-of-the-art performance (Wiseman
et al., 2016; Clark and Manning, 2016a). Wise-
man et al. (2015b) propose to use simple neural

396

Figure 4: Recall, precision, F1 (average of MUC, B3, CEAFe), on the development set when training
with Lβ,B3 (left) and Lβ,LEA (right). Higher values of β yield lower precisions but higher recalls.

networks to compute mention ranking scores and
to use a heuristic loss to train the model. Wiseman
et al. (2016) extend this by employing LSTMs to
compute mention-chain representations which are
then used to compute ranking scores. They call
these representations global features. Clark and
Manning (2016a) build a similar resolver as in
Wiseman et al. (2015b) but much stronger thanks
to deeper neural networks and “better mention
detection, more effective, hyperparameters, and
more epochs of training”. Furthermore, using re-
ward rescaling they achieve the best performance
in the literature on the English and Chinese por-
tions of the CoNLL 2012 dataset. Our work is
built upon mention ranking by turning a mention-
ranking model into an entity-centric one. It is
worth noting that although we use the model pro-
posed by Wiseman et al. (2015b), any mention-
ranking models can be employed.

Entity centricity (Wellner and McCallum, 2003;
Poon and Domingos, 2008; Haghighi and Klein,
2010; Ma et al., 2014a; Clark and Manning,
2016b), on the other hand, incorporates entity-
level information to solve the problem. The ap-
proach can be top-down as in Haghighi and Klein
(2010) where they propose a generative model. It
can also be bottom-up by merging smaller clusters
into bigger ones as in Clark and Manning (2016b).
The method proposed by Ma et al. (2014a) greed-
ily and incrementally adds mentions to previously
built clusters using a prune-and-score technique.
Importantly, employing imitation learning these
two methods can optimize the resolvers directly
on evaluation metrics. Our work is similar to Ma
et al. (2014a) in the sense that our resolvers incre-
mentally add mentions to previously built clusters.

However, different from both Ma et al. (2014a);
Clark and Manning (2016b), our resolvers do not
use any discrete decisions (e.g., merge operations).
Instead, they seamlessly compute the probability
that a mention refers to an entity from mention-
ranking probabilities, and are optimized on differ-
entiable relaxations of evaluation metrics.

Using differentiable relaxations of evaluation
metrics as in our work is related to a line of
research in reinforcement learning where a non-
differentiable action-value function is replaced by
a differentiable critic (Sutton et al., 1999; Silver
et al., 2014). The critic is trained so that it is as
close to the true action-value function as possible.
This technique is applied to machine translation
(Gu et al., 2017) where evaluation metrics (e.g.,
BLUE) are non-differentiable. A disadvantage of
using critics is that there is no guarantee that the
critic converges to the true evaluation metric given
finite training data. In contrast, our differentiable
relaxations do not need to train, and the conver-
gence is guaranteed as T → 0.

7 Conclusions

We have proposed

• a method for turning any mention-ranking re-
solver into an entity-centric one by using a
recursive formula to combine scores of indi-
vidual local decisions, and

• differentiable relaxations for two coreference
evaluation metrics, B3 and LEA.

Experimental results show that our approach out-
performs the resolver by Wiseman et al. (2016),
and gains a higher improvement over the baseline

397

than that of Clark and Manning (2016a) but with
much shorter training time.

Acknowledgments

We would like to thank Raquel Fernández, Wilker
Aziz, Nafise Sadat Moosavi, and anonymous
reviewers for their suggestions and comments.
The project was supported by the European Re-
search Council (ERC StG BroadSem 678254),
the Dutch National Science Foundation (NWO
VIDI 639.022.518) and an Amazon Web Services
(AWS) grant.

References

Amit Bagga and Breck Baldwin. 1998. Algorithms
for scoring coreference chains. In The first in-
ternational conference on language resources and
evaluation workshop on linguistics coreference. vol-
ume 1, pages 563–566.

Kevin Clark and Christopher D. Manning. 2016a.
Deep reinforcement learning for mention-ranking
coreference models. In Proceedings of the
2016 Conference on Empirical Methods in Natu-
ral Language Processing. Association for Computa-
tional Linguistics, Austin, Texas, pages 2256–2262.
https://aclweb.org/anthology/D16-1245.

Kevin Clark and Christopher D. Manning. 2016b. Im-
proving coreference resolution by learning entity-
level distributed representations. In Proceed-
ings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume
1: Long Papers). Association for Computational
Linguistics, Berlin, Germany, pages 643–653.
http://www.aclweb.org/anthology/P16-1061.

Kevin Clark and D. Christopher Manning. 2015.
Entity-centric coreference resolution with model
stacking. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers).
Association for Computational Linguistics, pages
1405–1415. https://doi.org/10.3115/v1/P15-1136.

David Crystal. 1997. Dictionary of Linguistics and
Phonetics. Blackwell Publishers, Cambrindge, MA.

Pascal Denis and Jason Baldridge. 2007. A ranking
approach to pronoun resolution. In IJCAI. volume
158821593.

John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine
Learning Research 12(Jul):2121–2159.

Greg Durrett and Dan Klein. 2013. Easy victories and
uphill battles in coreference resolution. In Proceed-
ings of the 2013 Conference on Empirical Meth-
ods in Natural Language Processing. Association
for Computational Linguistics, pages 1971–1982.
http://aclweb.org/anthology/D13-1203.

Kevin Gimpel and Noah A. Smith. 2010. Softmax-
margin crfs: Training log-linear models with cost
functions. In Human Language Technologies:
The 2010 Annual Conference of the North Ameri-
can Chapter of the Association for Computational
Linguistics. Association for Computational Lin-
guistics, Los Angeles, California, pages 733–736.
http://www.aclweb.org/anthology/N10-1112.

Jiatao Gu, Kyunghyun Cho, and Victor OK Li. 2017.
Trainable greedy decoding for neural machine trans-
lation. arXiv preprint arXiv:1702.02429 .

Aria Haghighi and Dan Klein. 2010. Coreference res-
olution in a modular, entity-centered model. In
Human Language Technologies: The 2010 Annual
Conference of the North American Chapter of the
Association for Computational Linguistics. Associ-
ation for Computational Linguistics, pages 385–393.

Karl Moritz Hermann, Tomáš Kočiský, Edward
Grefenstette, Lasse Espeholt, Will Kay, Mustafa
Suleyman, and Phil Blunsom. 2015. Teaching
machines to read and comprehend. In Advances
in Neural Information Processing Systems (NIPS).
http://arxiv.org/abs/1506.03340.

Andrew Kehler. 1997. Second Conference on Empiri-
cal Methods in Natural Language Processing, chap-
ter Probabilistic Coreference in Information Extrac-
tion. http://aclweb.org/anthology/W97-0319.

Scott Kirkpatrick, C Daniel Gelatt, Mario P Vecchi,
et al. 1983. Optimization by simulated annealing.
science 220(4598):671–680.

Xiaoqiang Luo. 2005. On coreference resolution per-
formance metrics. In Proceedings of Human Lan-
guage Technology Conference and Conference on
Empirical Methods in Natural Language Process-
ing. http://aclweb.org/anthology/H05-1004.

Xiaoqiang Luo, Sameer Pradhan, Marta Recasens,
and Eduard Hovy. 2014. An extension of blanc
to system mentions. In Proceedings of the 52nd
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 2: Short Papers). Asso-
ciation for Computational Linguistics, pages 24–29.
https://doi.org/10.3115/v1/P14-2005.

Chao Ma, Janardhan Rao Doppa, J. Walker Orr,
Prashanth Mannem, Xiaoli Fern, Tom Diet-
terich, and Prasad Tadepalli. 2014a. Prune-
and-score: Learning for greedy coreference res-
olution. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language
Processing (EMNLP). Association for Computa-
tional Linguistics, Doha, Qatar, pages 2115–2126.
http://www.aclweb.org/anthology/D14-1225.

398

Chao Ma, Rao Janardhan Doppa, Walker J. Orr,
Prashanth Mannem, Xiaoli Fern, Tom Dietterich,
and Prasad Tadepalli. 2014b. Prune-and-score:
Learning for greedy coreference resolution. In Pro-
ceedings of the 2014 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP).
Association for Computational Linguistics, pages
2115–2126. https://doi.org/10.3115/v1/D14-1225.

Sebastian Martschat and Michael Strube. 2015. La-
tent structures for coreference resolution. Transac-
tions of the Association for Computational Linguis-
tics 3:405–418.

Nafise Sadat Moosavi and Michael Strube. 2016.
Which coreference evaluation metric do you trust?
a proposal for a link-based entity aware metric.
In Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers). Association for Computa-
tional Linguistics, Berlin, Germany, pages 632–642.
http://www.aclweb.org/anthology/P16-1060.

Hoifung Poon and Pedro Domingos. 2008. Joint unsu-
pervised coreference resolution with markov logic.
In Proceedings of the conference on empirical meth-
ods in natural language processing. Association for
Computational Linguistics, pages 650–659.

Sameer Pradhan, Xiaoqiang Luo, Marta Recasens,
Eduard Hovy, Vincent Ng, and Michael Strube.
2014. Scoring coreference partitions of predicted
mentions: A reference implementation. In Pro-
ceedings of the 52nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume
2: Short Papers). Association for Computational
Linguistics, Baltimore, Maryland, pages 30–35.
http://www.aclweb.org/anthology/P14-2006.

Sameer Pradhan, Alessandro Moschitti, Nianwen Xue,
Olga Uryupina, and Yuchen Zhang. 2012. Joint
Conference on EMNLP and CoNLL - Shared Task,
Association for Computational Linguistics, chapter
CoNLL-2012 Shared Task: Modeling Multilingual
Unrestricted Coreference in OntoNotes, pages 1–40.
http://aclweb.org/anthology/W12-4501.

David Silver, Guy Lever, Nicolas Heess, Thomas
Degris, Daan Wierstra, and Martin A. Riedmiller.
2014. Deterministic policy gradient algorithms.
In Proceedings of the 31th International Con-
ference on Machine Learning, ICML 2014,
Beijing, China, 21-26 June 2014. pages 387–395.
http://jmlr.org/proceedings/papers/v32/silver14.html.

Richard S Sutton, David A McAllester, Satinder P
Singh, Yishay Mansour, et al. 1999. Policy gradient
methods for reinforcement learning with function
approximation. In NIPS. volume 99, pages 1057–
1063.

Marc Vilain, John Burger, John Aberdeen, Den-
nis Connolly, and Lynette Hirschman. 1995. A
model-theoretic coreference scoring scheme.
In Sixth Message Understanding Conference

(MUC-6): Proceedings of a Conference Held
in Columbia, Maryland, November 6-8, 1995.
http://aclweb.org/anthology/M95-1005.

B Wellner and A McCallum. 2003. Towards condi-
tional models of identity uncertainty with applica-
tion to proper noun coreference. In IJCAI Workshop
on Information Integration and the Web.

Ronald J Williams. 1992. Simple statistical gradient-
following algorithms for connectionist reinforce-
ment learning. Machine learning 8(3-4):229–256.

Sam Wiseman, Alexander M Rush, Stuart M Shieber,
and Jason Weston. 2015a. Learning anaphoricity
and antecedent ranking features for coreference res-
olution. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguis-
tics. Association for Computational Linguistics, vol-
ume 1, pages 92–100.

Sam Wiseman, M. Alexander Rush, and M. Stu-
art Shieber. 2016. Learning global features for
coreference resolution. In Proceedings of the
2016 Conference of the North American Chap-
ter of the Association for Computational Linguis-
tics: Human Language Technologies. Association
for Computational Linguistics, pages 994–1004.
https://doi.org/10.18653/v1/N16-1114.

Sam Wiseman, M. Alexander Rush, Stuart Shieber,
and Jason Weston. 2015b. Learning anaphoricity
and antecedent ranking features for coreference res-
olution. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers).
Association for Computational Linguistics, pages
1416–1426. https://doi.org/10.3115/v1/P15-1137.

399

Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017), pages 400–410,
Vancouver, Canada, August 3 - August 4, 2017. c©2017 Association for Computational Linguistics

Neural Structural Correspondence Learning for Domain Adaptation

Yftah Ziser and Roi Reichart
Faculty of Industrial Engineering and Management, Technion, IIT

syftah@campus.technion.ac.il, roiri@ie.technion.ac.il

Abstract

We introduce a neural network model that
marries together ideas from two prominent
strands of research on domain adaptation
through representation learning: structural
correspondence learning (SCL, (Blitzer
et al., 2006)) and autoencoder neural net-
works (NNs). Our model is a three-layer
NN that learns to encode the non-pivot
features of an input example into a low-
dimensional representation, so that the ex-
istence of pivot features (features that are
prominent in both domains and convey
useful information for the NLP task) in the
example can be decoded from that repre-
sentation. The low-dimensional represen-
tation is then employed in a learning al-
gorithm for the task. Moreover, we show
how to inject pre-trained word embed-
dings into our model in order to improve
generalization across examples with simi-
lar pivot features. We experiment with the
task of cross-domain sentiment classifica-
tion on 16 domain pairs and show substan-
tial improvements over strong baselines.1

1 Introduction

Many state-of-the-art algorithms for Natural Lan-
guage Processing (NLP) tasks require labeled
data. Unfortunately, annotating sufficient amounts
of such data is often costly and labor intensive.
Consequently, for many NLP applications even
resource-rich languages like English have labeled
data in only a handful of domains.

Domain adaptation (Daumé III, 2007; Ben-
David et al., 2010), training an algorithm on
labeled data taken from one domain so that it

1Our code is at: https://github.com/yftah89/Neural-SCL-
Domain-Adaptation.

can perform properly on data from other do-
mains, is therefore recognized as a fundamental
challenge in NLP. Indeed, over the last decade
domain adaptation methods have been proposed
for tasks such as sentiment classification (Bolle-
gala et al., 2011b), POS tagging (Schnabel and
Schütze, 2013), syntactic parsing (Reichart and
Rappoport, 2007; McClosky et al., 2010; Rush
et al., 2012) and relation extraction (Jiang and
Zhai, 2007; Bollegala et al., 2011a), if to name just
a handful of applications and works.

Leading recent approaches to domain adapta-
tion in NLP are based on Neural Networks (NNs),
and particularly on autoencoders (Glorot et al.,
2011; Chen et al., 2012). These models are be-
lieved to extract features that are robust to cross-
domain variations. However, while excelling on
benchmark domain adaptation tasks such as cross-
domain product sentiment classification (Blitzer
et al., 2007), the reasons to this success are not
entirely understood.

In the pre-NN era, a prominent approach to do-
main adaptation in NLP, and particularly in sen-
timent classification, has been structural corre-
spondence learning (SCL) (Blitzer et al., 2006,
2007). Following the auxiliary problems ap-
proach to semi-supervised learning (Ando and
Zhang, 2005), this method identifies correspon-
dences among features from different domains by
modeling their correlations with pivot features:
features that are frequent in both domains and are
important for the NLP task. Non-pivot features
from different domains which are correlated with
many of the same pivot features are assumed to
correspond, providing a bridge between the do-
mains. Elegant and well motivated as it may be,
SCL does not form the state-of-the-art since the
neural approaches took over.

In this paper we marry these approaches,
proposing NN models inspired by ideas from both.

400

Particularly, our basic model receives the non-
pivot features of an input example, encodes them
into a hidden layer and then, instead of decod-
ing the input layer as an autoencoder would do,
it aims to decode the pivot features. Our more
advanced model is identical to the basic one ex-
cept that the decoding matrix is not learned but is
rather replaced with a fixed matrix consisting of
pre-trained embeddings of the pivot features. Un-
der this model the probability of the i-th pivot fea-
ture to appear in an example is a (non-linear) func-
tion of the dot product of the feature’s embedding
vector and the network’s hidden layer vector. As
explained in Section 3, this approach encourages
the model to learn similar hidden layers for docu-
ments that have different pivot features as long as
these features have similar meaning. In sentiment
classification, for example, although one positive
review may use the unigram pivot feature excellent
while another positive review uses the pivot great,
as long as the embeddings of pivot features with
similar meaning are similar (as expected from high
quality embeddings) the hidden layers learned for
both documents are biased to be similar.

We experiment with the task of cross-domain
product sentiment classification of (Blitzer et al.,
2007), consisting of 4 domains (12 domain pairs)
and further add an additional target domain, con-
sisting of sentences extracted from social media
blogs (total of 16 domain pairs). For pivot feature
embedding in our advanced model, we employ the
word2vec algorithm (Mikolov et al., 2013). Our
models substantially outperform strong baselines:
the SCL algorithm, the marginalized stacked de-
noising autoencoder (MSDA) model (Chen et al.,
2012) and the MSDA-DAN model (Ganin et al.,
2016) that combines the power of MSDA with a
domain adversarial network (DAN).

2 Background and Contribution

Domain adaptation is a fundamental, long stand-
ing problem in NLP (e.g. (Roark and Bacchiani,
2003; Chelba and Acero, 2004; Daume III and
Marcu, 2006)). The challenge stems from the fact
that data in the source and the target domains are
often distributed differently, making it hard for a
model trained in the source domain to make valu-
able predictions in the target domain.

Domain adaptation has various setups, differing
with respect to the amounts of labeled and unla-
beled data available in the source and target do-

mains. The setup we address, commonly referred
to as unsupervised domain adaptation is where
both domains have ample unlabeled data, but only
the source domain has labeled training data.

There are several approaches to domain adapta-
tion in the machine learning literature, including
instance reweighting (Huang et al., 2007; Man-
sour et al., 2009), sub-sampling from both do-
mains (Chen et al., 2011) and learning joint target
and source feature representations (Blitzer et al.,
2006; Daumé III, 2007; Xue et al., 2008; Glorot
et al., 2011; Chen et al., 2012).

Here, we discuss works that, like us, take the
representation learning path. Most works under
this approach follow a two steps protocol: First,
the representation learning method (be it SCL,
an autoencoder network, our proposed network
model or any other model) is trained on unlabeled
data from both the source and the target domains;
Then, a classifier for the supervised task (e.g. sen-
timent classification) is trained in the source do-
main and this trained classifier is applied to test
examples from the target domain. Each input ex-
ample of the task classifier, at both training and
test, is first run through the representation model
of the first step and the induced representation is
fed to the classifier. Recently, end-to-end mod-
els that jointly learn to represent the data and
to perform the classification task have also been
proposed. We compare our models to one such
method (MSDA-DAN, (Ganin et al., 2016)).

Below, we first discuss two prominent ideas in
feature representation learning: pivot features and
autoencoder neural networks. We then summarize
our contribution in light of these approaches.

Pivot and Non-Pivot Features The definitions
of this approach are given in Blitzer et al. (2006,
2007), where SCL is presented in the context of
POS tagging and sentiment classification, respec-
tively. Fundamentally, the method divides the
shared feature space of both the source and the
target domains to the set of pivot features that are
frequent in both domains and are prominent in the
NLP task, and a complementary set of non-pivot
features. In this section we abstract away from the
actual feature space and its division to pivot and
non-pivot subsets. In Section 4 we discuss this is-
sue in the context of sentiment classification.

For representation learning, SCL employs the
pivot features in order to learn mappings from the
original feature space of both domains to a shared,

401

low-dimensional, real-valued feature space. This
is done by training classifiers whose input consists
of the non-pivot features of an input example and
their binary classification task (the auxiliary task)
is predicting, every classifier for one pivot feature,
whether the pivot associated with the classifier ap-
pears in the input example or not. These classifiers
are trained on unlabeled data from both the target
and the source domains: the training supervision
naturally occurs in the data, no human annotation
is required. The matrix consisting of the weight
vectors of these classifiers is then post-processed
with singular value decomposition (SVD), to fa-
cilitate final compact representations. The SVD
derived matrix serves as a transformation matrix
which maps feature vectors in the original space
into a low-dimensional real-valued feature space.

Numerous works have employed the SCL
method in particular and the concept of pivot fea-
tures for domain adaptation in general. A promi-
nent method is spectral feature alignment (SFA,
(Pan et al., 2010)). This method aims to align
domain-specific (non-pivot) features from differ-
ent domains into unified clusters, with the help of
domain-independent (pivot) features as a bridge.

Recently, Gouws et al. (2012) and Bollegala
et al. (2015) implemented ideas related to those
described here within an NN for cross-domain
sentiment classification. For example, the latter
work trained a word embedding model so that for
every document, regardless of its domain, pivots
are good predictors of non-pivots, and the piv-
ots’ embeddings are similar across domains. Yu
and Jiang (2016) presented a convolutional NN
that learns sentence embeddings using two auxil-
iary tasks (whether the sentence contains a posi-
tive or a negative domain independent sentiment
word), purposely avoiding prediction with respect
to a large set of pivot features. In contrast to these
works our model can learn useful cross-domain
representations for any type of input example and
in our cross-domain sentiment classification ex-
periments it learns document level embeddings.
That is, unlike Bollegala et al. (2015) we do not
learn word embeddings and unlike Yu and Jiang
(2016) we are not restricted to input sentences.

Autoencoder NNs An autoencoder is comprised
of an encoder function h and a decoder function
g, typically with the dimension of h smaller than
that of its argument. The reconstruction of an in-
put x is given by r(x) = g(h(x)). Autoencoders

are typically trained to minimize a reconstruction
error loss(x, r(x)). Example loss functions are
the squared error, the Kullback-Leibler (KL) di-
vergence and the cross entropy of elements of x
and elements of r(x). The last two loss functions
are appropriate options when the elements of x or
r(x) can be interpreted as probabilities of a dis-
crete event. In Section 3 we get back to this point
when defining the cross-entropy loss function of
our model. Once an autoencoder has been trained,
one can stack another autoencoder on top of it, by
training a second model which sees the output of
the first as its training data (Bengio et al., 2007).
The parameters of the stack of autoencoders de-
scribe multiple representation levels for x and can
feed a classifier, to facilitate domain adaptation.

Recent prominent models for domain adapta-
tion for sentiment classification are based on a
variant of the autoencoder called Stacked Denois-
ing Autoencoders (SDA, (Vincent et al., 2008)).
In a denoising autoencoder (DEA) the input vec-
tor x is stochastically corrupted into a vector x̃,
and the model is trained to minimize a denoising
reconstruction error loss(x, r(x̃)). SDA for cross-
domain sentiment classification was implemented
by Glorot et al. (2011). Later, Chen et al. (2012)
proposed the marginalized SDA (MSDA) model
that is more computationally efficient and scalable
to high-dimensional feature spaces than SDA.

Marginalization of denoising autoencoders has
gained interest since MSDA was presented. Yang
and Eisenstein (2014) showed how to improve ef-
ficiency further by exploiting noising functions de-
signed for structured feature spaces, which are
common in NLP. More recently, Clinchant et al.
(2016) proposed an unsupervised regularization
method for MSDA based on the work of Ganin
and Lempitsky (2015) and Ganin et al. (2016).

There is a recent interest in models based on
variational autoencoders (Kingma and Welling,
2014; Rezende et al., 2014), for example the vari-
ational fair autoencoder model (Louizos et al.,
2016), for domain adaptation. However, these
models are still not competitive with MSDA on the
tasks we consider here.

Our Contribution We propose an approach that
marries the above lines of work. Our model is sim-
ilar in structure to an autoencoder. However, in-
stead of reconstructing the input x from the hidden
layer h(x), its reconstruction function r receives
a low dimensional representation of the non-pivot

402

features of the input (h(xnp), where xnp is the
non-pivot representation of x (Section 3)) and pre-
dicts whether each of the pivot features appears in
this example or not. As far as we know, we are the
first to exploit the mutual strengths of pivot-based
methods and autoencoders for domain adaptation.

3 Neural SCL Models

We propose two models: the basic Autoencoder
SCL (AE-SCL, 3.2)), that directly integrates ideas
from autoencoders and SCL, and the elaborated
Autoencoder SCL with Similarity Regularization
(AE-SCL-SR, 3.3), where pre-trained word embed-
dings are integrated into the basic model.

3.1 Definitions

We denote the feature set in our problem with f ,
the subset of pivot features with fp ⊆ {1, . . . , |f |}
and the subset of non-pivot features with fnp ⊆
{1, . . . , |f |} such that fp∪fnp = {1, . . . , |f |} and
fp ∩ fnp = ∅. We further denote the feature repre-
sentation of an input example X with x. Follow-
ing this notation, the vector of pivot features of X
is denoted with xp while the vector of non-pivot
features is denoted with xnp.

In order to learn a robust and compact feature
representation for X we will aim to learn a non-
linear prediction function from xnp to xp. As dis-
cussed in Section 4 the task we experiment with
is cross-domain sentiment classification. Follow-
ing previous work (e.g. (Blitzer et al., 2006, 2007;
Chen et al., 2012) our feature representation con-
sists of binary indicators for the occurrence of
word unigrams and bigrams in the represented
document. In what follows we hence assume that
the feature representation x of an example X is a
binary vector, and hence so are xp and xnp.

3.2 Autoencoder SCL (AE-SCL)

In order to solve the prediction problem, we
present an NN architecture inspired by autoen-
coders (Figure 1). Given an input example X with
a feature representation x, our fundamental idea
is to start from a non-pivot feature representation,
xnp, encode xnp into an intermediate representa-
tion hwh(xnp), and, finally, predict with a function
rwr(hwh(xnp)) the occurrences of pivot features,
xp, in the example.

As is standard in NN modeling, we introduce
non-linearity to the model through a non-linear
activation function denoted with σ (the sigmoid

function in our models). Consequently we get:
hwh(xnp) = σ(whxnp) and rwr(hwh(xnp)) =
σ(wrhwh(xnp)). In what follows we denote the
output of the model with o = rwr(hwh(xnp)).

Since the sigmoid function outputs values in the
[0, 1] interval, o can be interpreted as a vector of
probabilities with the i-th coordinate reflecting the
probability of the i-th pivot feature to appear in the
input example. Cross-entropy is hence a natural
loss function to jointly reason about all pivots:

L(o, xp) =
1
|fp|

|fp|∑
i=1

xp
i·log(oi)+(1−xp

i)·log(1−oi)

As xp is a binary vector, for each pivot fea-
ture, xp

i, only one of the two members of the sum
that take this feature into account gets a non-zero
value. The higher the probability of the correct
event is (whether or not xp

i appears in the input
example), the lower is the loss.

Input
layer

Hidden
layer
(h)

Output
layer
(o)

...

xnp
1

xnp
2

xnp
3

o1

o|fp|... ...

wh wr

xnp
|fnp|

xnp
|fnp|−1

Figure 1: A Sketch of the AE-SCL and AE-SCL-
SR models. While in AE-SCL both the encoding
matrix wh and the reconstruction matrix wr are
optimized, in AE-SCL-SR wr is pre-trained by a
word embedding model. See full details in text.

3.3 Autoencoder SCL with Similarity
Regularization (AE-SCL-SR)

An important observation of Blitzer et al. (2007),
is that some pivot features are similar to each other
to the level that they indicate the same information
with respect to the classification task. For exam-
ple, in sentiment classification with word unigram
features, the words (unigrams) great and excellent
are likely to serve as pivot features, as the meaning
of each of them is preserved across domains. At
the same time, both features convey very similar
(positive) sentiment information to the level that a
sentiment classifier should treat them as equals.

403

The AE-SCL-SR model is based on two crucial
observations. First, in many NLP tasks the pivot
features can be pre-embeded into a vector space
where pivots with similar meaning have similar
vectors. Second, the set fp

Xi of pivot features that
appear in an exampleXi is typically much smaller
than the set ˆfp

Xi of pivot features that do not ap-
pear in it. Hence, if the pivot features of X1 and
X2 convey the same information about the NLP
task (e.g. that the sentiment of both X1 and X2 is
positive), then even if fp

X1 and fp
X2 are not iden-

tical, the intersection between the larger sets ˆfp
X1

and ˆfp
X2 is typically much larger than the sym-

metric difference between fp
X1 and fp

X2 .
For instance, consider two examples, X1 with

the single pivot feature f1 = great, and X2, with
the single pivot feature f2 = excellent. Crucially,
even though X1 and X2 differ with respect to the
existence of f1 and f2, due to the similar mean-
ing of these pivot features, we expect both X1 and
X2 not to contain many other pivot features, such
as terrible, awful and mediocre, whose meanings
conflict with that of f1 and f2.

To exploit these observations, in AE-SCL-SR
the reconstruction matrix wr is pre-trained with
a word embedding model and is kept fixed dur-
ing the training and prediction phases of the neu-
ral network. Particularly, the i-th row of wr is set
to be the vector representation of the i-th pivot fea-
ture as learned by the word embedding model. Ex-
cept from this change, the AE-SCL-SR model is
identical to the AE-SCL model described above.

Now, denoting the encoding layer for X1 with
h1 and the encoding layer for X2 with h2, we ex-
pect both σ(wr

~ki
· h1) and σ(wr

~ki
· h2) to get low

values (i.e. values close to 0), for those ki conflict-
ing pivot features: pivots whose meanings conflict
with that of fp

X1 and fp
X2 . By fixing the repre-

sentations of similar conflicting features to sim-
ilar vectors, AE-SCL-SR provides a strong bias
for h1 and h2 to be similar, as its only way to
bias the predictions with respect to these features
to be low is by pushing h1 and h2 to be similar.
Consequently, under AE-SCL-SR the vectors that
encode the non-pivot features of documents with
similar pivot features are biased to be similar to
each other. As mentioned in Section 4 the vector
h̃ = σ−1(h) forms the feature representation that
is fed to the sentiment classifier to facilitate do-
main adaptation. By definition, when h1 and h2

are similar so are their h̃1 and h̃2 counterparts.

4 Experiments

In this section we describe our experiments. To
facilitate clarity, some details are not given here
and instead are provided in the appendices.
Cross-domain Sentiment Classification To
demonstrate the power of our models for domain
adaptation we experiment with the task of cross-
domain sentiment classification (Blitzer et al.,
2007). The data for this task consist of Amazon
product reviews from four product domains:
Books (B), DVDs (D), Electronic items (E) and
Kitchen appliances (K). For each domain 2000
labeled reviews are provided: 1000 are classified
as positive and 1000 as negative, and these are
augmented with unlabeled reviews: 6000 (B),
34741 (D), 13153 (E) and 16785 (K).

We also consider an additional target domain,
denoted with Blog: the University of Michigan
sentence level sentiment dataset, consisting of sen-
tences taken from social media blogs.2 The dataset
for the original task consists of a labeled training
set (3995 positive and 3091 negative) and a 33052
sentences test set for which sentiment labels are
not provided. We hence used the original test set
as our target domain unlabeled set and the original
training set as our target domain test set.

Baselines Cross-domain sentiment classifica-
tion has been studied in a large number of papers.
However, the difference in preprocessing methods,
dataset splits to train/dev/test subsets and the dif-
ferent sentiment classifiers make it hard to directly
compare between the numbers reported in past.

We hence compare our models to three strong
baselines, running all models under the same con-
ditions. We aim to select baselines that repre-
sent the state-of-the-art in cross-domain sentiment
classification in general, and in the two lines of
work we focus at: pivot based and autoencoder
based representation learning, in particular.

The first baseline is SCL with pivot features
selected using the mutual information criterion
(SCL-MI, (Blitzer et al., 2007)). This is the SCL
method where pivot features are frequent in the
unlabeled data of both the source and the target do-
mains, and among those features are the ones with
the highest mutual information with the task (sen-
timent) label in the source domain labeled data.
We implemented this method. In our implementa-
tion unigrams and bigrams should appear at least

2https://inclass.kaggle.com/c/si650winter11

404

10 times in both domains to be considered fre-
quent. For non-pivot features we consider uni-
grams and bigrams that appear at least 10 times
in their domain. The same pivot and non-pivot se-
lection criteria are employed for our AE-SCL and
AE-SCL-SR models.

Among autoencoder models, SDA has shown
by Glorot et al. (2011) to outperform SFA and
SCL on cross-domain sentiment classification and
later on Chen et al. (2012) demonstrated supe-
rior performance for MSDA over SDA and SCL
on the same task. Our second baseline is hence
the MSDA method (Chen et al., 2012), with code
taken from the authors’ web page.3

To consider a regularization scheme on top of
MSDA representations we also experiment with
the MSDA-DAN model (Ganin et al., 2016) which
employs a domain adversarial network (DAN)
with the MSDA vectors as input. In Ganin et al.
(2016) MSDA-DAN has shown to substantially
outperform the DAN model when DAN is ran-
domly initialized. The DAN code is taken from
the authors’ repository. 4

For reference we compare to the No-DA case
where the sentiment classifier is trained in the
source domain and applied to the target domain
without adaptation. The sentiment classifier we
employ, in this case as well as with our methods
and with the SCL-MI and MSDA baselines, is a
standard logistic regression classifier.5 6

Experimental Protocol Following the unsuper-
vised domain adaptation setup (Section 2), we
have access to unlabeled data from both the source
and the target domains, which we use to train the
representation learning models. However, only the
source domain has labeled training data for sen-
timent classification. The original feature set we
start from consists of word unigrams and bigrams.

All methods (baselines and ours), except from
MSDA-DAN, follow a two-step protocol at both
training and test time. In the first step, the input
example is run through the representation model
which generates a new feature vector for this ex-
ample. Then, in the second step, this vector is con-
catenated with the original feature vector of the ex-

3http://www.cse.wustl.edu/˜mchen
4https://github.com/GRAAL-Research/

domain_adversarial_neural_network
5http://scikit-learn.org/stable/
6We tried to compare to (Bollegala et al., 2015) but failed

to replicate their results despite personal communication with
the authors.

ample and the resulting vector is fed into the sen-
timent classifier (this concatenation is a standard
convention in the baseline methods).

For MSDA-DAN all the above holds, except
from one exception. MSDA-DAN gets an input
representation that consists of a concatenation of
the original and the MSDA-induced feature sets.
As this is an end-to-end model that predicts the
sentiment class jointly with the new feature repre-
sentation, we do not employ any additional senti-
ment classifier. As in the other models, MSDA-
DAN utilizes source domain labeled data as well
as unlabeled data from both the source and the tar-
get domains at training time.

We experiment with a 5-fold cross-validation on
the source domain (Blitzer et al., 2007): 1600 re-
views for training and 400 reviews for develop-
ment. The test set for each target domain of Blitzer
et al. (2007) consists of all 2000 labeled reviews of
that domain, and for the Blog domain it consists of
the 7086 labeled sentences provided with the task
dataset. In all five folds half of the training exam-
ples and half of the development examples are ran-
domly selected from the positive reviews and the
other halves from the negative reviews. We report
average results across these five folds, employing
the same folds for all models.

Hyper-parameter Tuning The details of the
hyper-parameter tuning process for all models (in-
cluding data splits to training, development and
test sets) are described in the appendices. Here
we provide a summary.
AE-SCL and AE-SCL-SR: For the stochastic gra-
dient descent (SGD) training algorithm we set the
learning rate to 0.1, momentum to 0.9 and weight-
decay regularization to 10−5. The number of piv-
ots was chosen among {100, 200, . . . , 500} and
the dimensionality of h among {100, 300, 500}.
For the features induced by these models we take
their whxnp vector. For AE-SCL-SR, embeddings
for the unigram and bigram features were learned
with word2vec (Mikolov et al., 2013). Details
about the software and the way we learn bigram
representations are in the appendices.
Baselines: For SCL-MI, following (Blitzer et al.,
2007) we tuned the number of pivot features
between 500 and 1000 and the SVD dimen-
sions among 50,100 and 150. For MSDA we
tuned the number of reconstructed features among
{500, 1000, 2000, 5000, 10000}, the number of
model layers among {1, 3, 5} and the corrup-

405

Model|Source→Target D→B E→B K→B B→D E→D K→D
AE-SCL-SR 0.773∗+� 0.7115 0.730∗+ 0.811+� 0.745∗+� 0.763∗+�

AE-SCL 0.758� 0.701 0.742‡� 0.794 0.732‡ 0.743‡�

MSDA 0.761 0.719 0.7 0.783 0.71 0.714
MSDA-DAN 0.75 0.71 0.712 0.797 0.731 0.738
SCL-MI 0.732 0.685 0.693 0.788 0.704 0.722
No-DA 0.736 0.679 0.677 0.76 0.692 0.702

Mod.|So.→Tar. B→E D→E K→E B→K D→K E→K Test-All
AE-SCL-SR 0.768∗+� 0.781∗+� 0.84∗+� 0.801∗+� 0.803+� 0.846 0.781∗+�

AE-SCL 0.744 0.763‡� 0.828� 0.795‡� 0.8‡� 0.848 0.770‡

MSDA 0.746 0.75 0.824 0.788 0.774 0.845 0.759
MSDA-DAN 0.747 0.745 0.821 0.754 0.776 0.85 0.761
SCL-MI 0.719 0.715 0.822 0.772 0.74 0.829 0.743
No-DA 0.7 0.709 0.816 0.74 0.732 0.824 0.731

Mod.|So.→Tar. B→Blog D→Blog E→Blog K→Blog Test-All
AE-SCL-SR 0.705∗+ 0.793+� 0.703∗+� 0.841∗+� 0.769∗+�

AE-SCL 0.691 0.787‡� 0.645� 0.747� 0.718
MSDA 0.698 0.775 0.646 0.75 0.717
MSDA-DAN 0.694 0.737 0.764 0.672 0.716
SCL-MI 0.687 0.767 0.662 0.704 0.705
NO-DA 0.627 0.747 0.620 0.616 0.652

Table 1: Sentiment classification accuracy for the Blitzer et al. (2007) task (top tables), and for adaptation
from the Blitzer’s product review domains to the Blog domain (bottom table). Test-All presents average
results across setups. Statistical significance (with the McNemar paired test for labeling disagreements
(Gillick and Cox, 1989; Blitzer et al., 2006), p < 0.05) is denoted with: ∗ (AE-SCL-SR vs. AE-SCL), +
(AE-SCL-SR vs. MSDA), � (AE-SCL-SR vs. MSDA-DAN), ‡ (AE-SCL vs. MSDA) and � (AE-SCL
vs. MSDA-DAN). All the differences between any model and No-DA are statistically significant.

tion probability among {0.1, 0.2, . . . , 0.5}. For
MSDA-DAN, we followed Ganin et al. (2016): the
λ adaptation parameter is chosen among 9 values
between 10−2 and 1 on a logarithmic scale, the
hidden layer size l is chosen among {50, 100, 200}
and the learning rate µ is 10−3.

5 Results

Table 1 presents our results. In the Blitzer et al.
(2007) task (top tables), AE-SCL-SR is the best
performing model in 9 of 12 setups and on a uni-
fied test set consisting of the test sets of all 12
setups (the Test-All column). AE-SCL, MSDA
and MSDA-DAN perform best in one setup each.
On the unified test set, AE-SCL-SR improves
over SCL-MI by 3.8% (error reduction (ER) of
14.8%) and over MSDA-DAN by 2% (ER of
8.4%), while AE-SCL improves over SCL-MI and
MSDA-DAN by 2.7% (ER of 10.5%) and 0.9%
(ER of 3.8%), respectively. MSDA-DAN and
MSDA perform very similarly on the unified test
set (0.761 and 0.759, respectively) with generally
minor differences in the individual setups.

When adapting from the product review do-
mains to the Blog domain (bottom table), AE-

SCL-SR performs best in 3 of 4 setups, provid-
ing particularly large improvements when training
is in the Kitchen (K) domain. The average im-
provement of AE-SCL-SR over MSDA is 5.2%
and over a non-adapted classifier is 11.7%. As
before, MSDA-DAN performs similarly to MSDA
on the unified test set, although the differences in
the individual setups are much higher. The differ-
ences between AE-SCL-SR and the other models
are statistically significant in most cases.7

Class Based Analysis Table 3 presents a class-
based comparison between model pairs. Results
are presented for the unified test set of the Blitzer
et al. (2007) task. The table reveals that the
strength of AE-SCL-SR comes from its improved
accuracy on positive examples: in 3.97% of the
cases over AE-SCL (compared to 2.19% of the
positive examples where AE-SCL is better) and
in 6.40% of the cases over MSDA (compared to
2.80%). While on negative examples the pattern is
reversed and AE-SCL and MSDA outperform AE-

7The difference between two models in a given setup is
considered to be statistically significant if and only if it is
significant in all five folds of that setup.

406

Setup Gold Pivots (First doc.) Pivots (Second doc.) AE-SCL (Fir.,Sec.) Rank Diff
E→B 1 very good, good great (1,0) 58058 (2.90%)
E→D 1 fantastic wonderful (1,0) 44982 (2.25%)
K→E 1 excellent, works fine well, works well (1,0) 75222 (3.76%)
K→D 1 the best,best perfect (1,0) 98554 (4.93%)
D→B 0 boring, waste of dull, can’t recommend (1,0) 78999 (3.95%)
B→D 0 very disappointing, disappointing disappointed (1,0) 139851 (6.99%)
D→K 0 sadly unfortunately (1,0) 63567 (3.17%)
B→K 0 unhappy disappointed (1,0) 110544 (5.52%)

Table 2: Document pair examples from eight setups (1st column) with the same gold sentiment class.
In all cases, AE-SCL-SR correctly classifies both documents, while AE-SCL misclassifies one (5th col-
umn). The 6th column presents the difference in the ranking of the cosine scores between the represen-
tation vectors h̃ of the documents according to both models (the rank of AE-SCL minus the rank of AE-
SCL-SR), both in absolute values and as a percentage of the 1,999,000 document pairs (2000 · 1999/2)
in the test set of each setup. As h̃ is feeded to the sentiment classifer we expect documents that belong
to the same class to have more similar h̃ vectors. The differences are indeed positive in all 8 cases.

Positive Negative
AE-SCL-SR 954 (3.97 %) 576 (2.40 %)
AE-SCL 527 (2.19 %) 754 (3.14 %)

Positive Negative
AE-SCL-SR 1538 (6.40 %) 765 (3.18 %)
MSDA 673 (2.80 %) 1109 (4.60 %)

Table 3: Class based analysis for the unified test
set of the Blitzer et al. (2007) task. A (model,class)
presents the number of test examples from the
class, for which the model is correct while the
other model in the table is wrong.

SCL-SR, this is a weaker effect which only mod-
erates the overall superiority of AE-SCL-SR.8

The unlabeled documents from all four domains
are strongly biased to convey positive opinions
(Section 4). This is indicated, for example, by the
average score given to these reviews by their au-
thors: 4.29 (B), 4.33 (D), 3.96 (E) and 4.16 (K), on
a scale of 1 to 5. This analysis suggests that AE-
SCL-SR better learns from of its unlabeled data.

Similar Pivots Recall that AE-SCL-SR aims to
learn more similar representations for documents
with similar pivot features. Table 2 demonstrates
this effect through pairs of test documents from 8
product review setups.9 The documents contain
pivot features with very similar meaning and in-
deed they belong to the same sentiment class. Yet,
in all cases AE-SCL-SR correctly classifies both

8The reported numbers are averaged over the 5 folds and
rounded to the closest integer, if necessary. The comparison
between AE-SCL-SR and MSDA-DAN yields a very similar
pattern and is hence excluded from space considerations.

9We consider for each setup one example pair from one
of the five folds such that the dimensionality of the hidden
layers in both models is identical.

documents, while AE-SCL misclassifies one.
The rightmost column of the table presents the

difference in the ranking of the cosine similarity
between the representation vectors h̃ of the docu-
ments in the pair, according to each of the mod-
els. Results (in numerical values and percentage)
are given with respect to all cosine similarity val-
ues between the h̃ vectors of any document pair
in the test set. As the documents with the highest
similarity are ranked 1, the positive difference be-
tween the ranks of AE-SCL and those of AE-SCL-
SR indicate that AE-SCL’s rank is lower. That is,
AE-SCL-SR learns more similar representations
for documents with similar pivot features.

6 Conclusions and Future Work

We presented a new model for domain adaptation
which combines ideas from pivot based and au-
toencoder based representation learning. We have
demonstrated how to encode information from
pre-trained word embeddings to improve the gen-
eralization of our model across examples with
semantically similar pivot features. We demon-
strated strong performance on cross-domain senti-
ment classification tasks with 16 domain pairs and
provided initial qualitative analysis that supports
the intuition behind our model. Our approach is
general and applicable for a large number of NLP
tasks (for AE-SCL-SR this holds as long as the
pivot features can be embedded in a vector space).

In future we would like to adapt our model to
more general domain adaptation setups such as
where adaptation is performed between sets of
source and target domains and where some labeled
data from the target domain(s) is available.

407

A Hyperparameter Tuning

This appendix describes the hyper-parameter tun-
ing process for the models compared in our paper.
Some of these details appear in the full paper, but
here we provide a detailed description.

AE-SCL and AE-SCL-SR We tuned the pa-
rameters of both our models in two steps. First,
we randomly split the unlabeled data from both
the source and the target domains in a 80/20 man-
ner and combine the large subsets together and
the small subsets together so that to generate unla-
beled training and validation sets. On these train-
ing/validation sets we tune the hyperparameters of
the stochastic gradient descent (SGD) algorithm
we employ to train our networks: learning rate
(0.1), momentum (0.9) and weight-decay regular-
ization (10−5). Note that these values are tuned on
the fully unsupervised task of predicting pivot fea-
tures occurrence from non-pivot input representa-
tion, and are then employed in all the source-traget
domain combinations, across all folds. 10

After tuning the SGD parameters, in the second
step we tuned the model’s hyper-parameters for
each fold of each source-target setup. The hyper-
parameters are the number of pivots (100 to 500 in
steps 100) and the dimensionality of h (100 to 500
in steps of 200). We select the values that yield
the best performing model when training on the
training set and evaluating on the training domain
development set of each fold.11

We further explored the quality of the vari-
ous intermediate representations generated by the
models as sources of features for the sentiment
classifier. The vectors we considered are: whxnp,
h = σ(whxnp), wrh and r = σ(wrh). We chose
thewhxnp vector, denoted in the paper in the paper
with h̃.

For AE-SCL-SR, embeddings for the unigram
and bigram features were learned with word2vec
(Mikolov et al., 2013). 12 To learn bigram repre-
sentations, in cases where a bigram pivot (w1,w2)
is included in a sentence we generate the triplet

10Both AE-SCL and AE-SCL-SR converged to the same
values. This is probably because for each parameter we con-
sider only a handful of values: learning rate (0.01,0.1,1),
momentum (0.1,0.,5,0.9) and weight-decay regularization
(10−4,10−5, 10−6).

11When tuning the SGD parameters we experimented with
100 and 500 pivots and dimensionality of 100 and 500 for h.

12We employed the Gensim package and trained the
model on the unlabeled data from both the source and
the target domains of each adaptation setup (https://
radimrehurek.com/gensim/).

w1,w1-w2, w2. For example, the sentence It was a
very good book with the bigram pivot very good is
re-written as: It was a very very-good good book.
The revised corpus is then fed into word2vec. The
dimension of the hidden layer h of AE-SCL-SR is
the dimension of the induced embeddings.

In both parameter tuning steps we use the unla-
beled validation data for early stopping: the SGD
algorithm stops at the first iteration where the val-
idation data error increases rather then when the
training error or the loss function are minimized.

SCL-MI Following (Blitzer et al., 2007) we
used 1000 pivot features .13 The number of SVD
dimensions was tuned on the labeled development
data to the best value among 50,100 and 150.

MSDA Using the labeled dev. data we tuned
the number of reconstructed features (among 500,
1000, 2000, 5000 and 10000) the number of model
layers (among {1, 3, 5}) and the corruption prob-
ability (among {0.1, 0.2, . . . , 0.5}). For details on
these hyper-parameters see (Chen et al., 2012).

MSDA-DAN Following Ganin et al. (2016) we
tuned the hyperparameters on the labeled develop-
ment data as follows. The λ adaptation parameter
is chosen among 9 values between 10−2 and 1 on
a logarithmic scale. The hidden layer size l is cho-
sen among {50, 100, 200} and the learning rate µ
is fixed to 10−3.

B Experimental Choices

Variants of the Product Review Data
There are two releases of the datasets of
the Blitzer et al. (2007) cross-domain prod-
uct review task. We use the one from
http://www.cs.jhu.edu/˜mdredze/
datasets/sentiment/index2.html
where the data is imbalanced, consisting of more
positive than negative reviews. We believe that
our setup is more realistic as when collecting
unlabeled data, it is hard to get a balanced set.
Note that Blitzer et al. (2007) used the other
release where the unlabeled data consists of the
same number of positive and negative reviews.

Test Set Size While Blitzer et al. (2007) used
only 400 target domain reviews for test, we use
the entire set of 2000 reviews. We believe that this
decision yields more robust and statistically sig-
nificant results.

13Results with 500 pivots were very similar.

408

References
Rie Kubota Ando and Tong Zhang. 2005. A

framework for learning predictive structures from
multiple tasks and unlabeled data. Journal of
Machine Learning Research 6(Nov):1817–1853.
http://www.jmlr.org/papers/v6/ando05a.html.

Shai Ben-David, John Blitzer, Koby Crammer, Alex
Kulesza, Fernando Pereira, and Jennifer Wortman
Vaughan. 2010. A theory of learning from differ-
ent domains. Machine learning 79(1-2):151–175.
https://doi.org/10.1007/s10994-009-5152-4.

Yoshua Bengio, Pascal Lamblin, Dan Popovici,
and Hugo Larochelle. 2007. Greedy layer-
wise training of deep networks. In Proc.
of NIPS. http://papers.nips.cc/paper/3048-greedy-
layer-wise-training-of-deep-networks.

John Blitzer, Mark Dredze, Fernando Pereira,
et al. 2007. Biographies, bollywood, boom-
boxes and blenders: Domain adaptation for
sentiment classification. In Proc. of ACL.
http://aclweb.org/anthology/P07-1056.

John Blitzer, Ryan McDonald, and Fernando Pereira.
2006. Domain adaptation with structural cor-
respondence learning. In Proc. of EMNLP.
http://aclweb.org/anthology/W06-1615.

Danushka Bollegala, Takanori Maehara, and Ken-ichi
Kawarabayashi. 2015. Unsupervised cross-domain
word representation learning. In Proc. of ACL.
https://doi.org/10.3115/v1/P15-1071.

Danushka Bollegala, Yutaka Matsuo, and Mit-
suru Ishizuka. 2011a. Relation adapta-
tion: learning to extract novel relations with
minimum supervision. In Proc. of IJCAI.
https://doi.org/10.1109/TKDE.2011.250.

Danushka Bollegala, David Weir, and John Car-
roll. 2011b. Using multiple sources to con-
struct a sentiment sensitive thesaurus for cross-
domain sentiment classification. In Proc. of ACL.
http://aclweb.org/anthology/P11-1014.

Ciprian Chelba and Alex Acero. 2004. Adap-
tation of maximum entropy capitalizer: Little
data can help a lot. In Proc. of EMNLP.
http://aclweb.org/anthology/W04-3237.

Minmin Chen, Yixin Chen, and Kilian Q Weinberger.
2011. Automatic feature decomposition for single
view co-training. In Proc. of ICML. http://dblp.uni-
trier.de/rec/bib/conf/icml/ChenWC11.

Minmin Chen, Zhixiang Xu, Kilian Weinberger, and
Fei Sha. 2012. Marginalized denoising autoen-
coders for domain adaptation. In Proc. of ICML.
http://icml.cc/2012/papers/416.pdf.

Stéphane Clinchant, Gabriela Csurka, and Boris
Chidlovskii. 2016. A domain adaptation regulariza-
tion for denoising autoencoders. In Proc. of ACL

(short papers). https://doi.org/10.18653/v1/P16-
2005.

Hal Daumé III. 2007. Frustratingly easy
domain adaptation. In Proc. of ACL.
http://aclweb.org/anthology/P07-1009.

Hal Daume III and Daniel Marcu. 2006. Domain
adaptation for statistical classifiers. Journal
of Artificial Intelligence Research 26:101–126.
http://dl.acm.org/citation.cfm?id=1622559.1622562.

Yaroslav Ganin and Victor Lempitsky. 2015. Un-
supervised domain adaptation by backpropaga-
tion. In Proc. of ICML. http://dblp.uni-
trier.de/rec/bib/conf/icml/GaninL15.

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan,
Pascal Germain, Hugo Larochelle, François Lavio-
lette, Mario Marchand, and Victor Lempitsky. 2016.
Domain-adversarial training of neural networks.
Journal of Machine Learning Research 17(59):1–
35. http://jmlr.org/papers/v17/15-239.html.

Laurence Gillick and Stephen J Cox. 1989. Some sta-
tistical issues in the comparison of speech recog-
nition algorithms. In Proc. of ICASSP. IEEE.
https://doi.org/10.1109/ICASSP.1989.266481.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio.
2011. Domain adaptation for large-scale sentiment
classification: A deep learning approach. In In
proc. of ICML. pages 513–520. http://dblp.uni-
trier.de/rec/bib/conf/icml/GlorotBB11.

Stephan Gouws, GJ Van Rooyen, MIH Medialab, and
Yoshua Bengio. 2012. Learning structural corre-
spondences across different linguistic domains with
synchronous neural language models. In Proc. of
the xLite Workshop on Cross-Lingual Technologies,
NIPS.

Jiayuan Huang, Arthur Gretton, Karsten M Borgwardt,
Bernhard Schölkopf, and Alex J Smola. 2007.
Correcting sample selection bias by unlabeled data.
In Proc. of NIPS. http://papers.nips.cc/paper/3075-
correcting-sample-selection-bias-by-unlabeled-
data.

Jing Jiang and ChengXiang Zhai. 2007. Instance
weighting for domain adaptation in nlp. In Proc.
of ACL. http://aclweb.org/anthology/P07-1034.

Diederik P Kingma and Max Welling.
2014. Auto-encoding variational bayes.
In Proc. of ICLR. http://dblp.uni-
trier.de/rec/bib/journals/corr/KingmaW13.

Christos Louizos, Kevin Swersky, Yujia Li, Max
Welling, and Richard Zemel. 2016. The
variational fair autoencoder http://dblp.uni-
trier.de/rec/bib/journals/corr/LouizosSLWZ15.

Yishay Mansour, Mehryar Mohri, and Af-
shin Rostamizadeh. 2009. Domain adap-
tation with multiple sources. In Proc. of

409

NIPS. http://papers.nips.cc/paper/3550-domain-
adaptation-with-multiple-sources.

David McClosky, Eugene Charniak, and Mark
Johnson. 2010. Automatic domain adap-
tation for parsing. In Proc. of NAACL.
http://aclweb.org/anthology/N10-1004.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg
Corrado, and Jeffrey Dean. 2013. Distributed
representations of words and phrases and
their compositionality. In Proc. of NIPS.
http://papers.nips.cc/paper/5021-distributed-
representations-of-words-and-phrases-and-their-
compositionality.

Sinno Jialin Pan, Xiaochuan Ni, Jian-Tao Sun, Qiang
Yang, and Zheng Chen. 2010. Cross-domain sen-
timent classification via spectral feature alignment.
In Proceedings of the 19th international confer-
ence on World wide web. ACM, pages 751–760.
https://doi.org/10.1145/1772690.1772767.

Roi Reichart and Ari Rappoport. 2007. Self-training
for enhancement and domain adaptation of statistical
parsers trained on small datasets. In Proc. of ACL.
http://aclweb.org/anthology/P07-1078.

Danilo Jimenez Rezende, Shakir Mohamed, and
Daan Wierstra. 2014. Stochastic backpropaga-
tion and approximate inference in deep genera-
tive models. In Proc. of ICML. http://dblp.uni-
trier.de/rec/bib/conf/icml/RezendeMW14.

Brian Roark and Michiel Bacchiani. 2003. Su-
pervised and unsupervised pcfg adaptation to
novel domains. In Proc. of HLT-NAACL.
http://aclweb.org/anthology/N03-1027.

Alexander M Rush, Roi Reichart, Michael Collins,
and Amir Globerson. 2012. Improved pars-
ing and pos tagging using inter-sentence consis-
tency constraints. In Proc. of EMNLP-CoNLL.
http://aclweb.org/anthology/D12-1131.

Tobias Schnabel and Hinrich Schütze. 2013. To-
wards robust cross-domain domain adaptation for
part-of-speech tagging. In Proc. of IJCNLP.
http://aclweb.org/anthology/I13-1023.

Pascal Vincent, Hugo Larochelle, Yoshua Ben-
gio, and Pierre-Antoine Manzagol. 2008. Ex-
tracting and composing robust features with de-
noising autoencoders. In Proc. of ICML.
https://doi.org/10.1145/1390156.1390294.

Gui-Rong Xue, Wenyuan Dai, Qiang Yang, and
Yong Yu. 2008. Topic-bridged plsa for cross-
domain text classification. In Proc. of SIGIR.
https://doi.org/10.1145/1390334.1390441.

Yi Yang and Jacob Eisenstein. 2014. Fast easy unsu-
pervised domain adaptation with marginalized struc-
tured dropout. In Proc. of ACL (short papers).
https://doi.org/10.3115/v1/P14-2088.

Jianfei Yu and Jing Jiang. 2016. Learning sentence
embeddings with auxiliary tasks for cross-domain
sentiment classification. In Proc. of EMNLP.
http://aclweb.org/anthology/D16-1023.

410

Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017), pages 411–420,
Vancouver, Canada, August 3 - August 4, 2017. c©2017 Association for Computational Linguistics

A Simple and Accurate Syntax-Agnostic Neural Model for
Dependency-based Semantic Role Labeling

Diego Marcheggiani1, Anton Frolov2, Ivan Titov1,3

1ILLC, University of Amsterdam
2Machine Intelligence Department, Yandex

3ILCC, School of Informatics, University of Edinburgh
marcheggiani@uva.nl

anton-fr@yandex-team.ru
ititov@inf.ed.ac.uk

Abstract

We introduce a simple and accurate neu-
ral model for dependency-based seman-
tic role labeling. Our model predicts
predicate-argument dependencies relying
on states of a bidirectional LSTM en-
coder. The semantic role labeler achieves
competitive performance on English, even
without any kind of syntactic information
and only using local inference. How-
ever, when automatically predicted part-
of-speech tags are provided as input, it
substantially outperforms all previous lo-
cal models and approaches the best re-
ported results on the English CoNLL-
2009 dataset. We also consider Chi-
nese, Czech and Spanish where our
approach also achieves competitive re-
sults. Syntactic parsers are unreliable
on out-of-domain data, so standard (i.e.,
syntactically-informed) SRL models are
hindered when tested in this setting. Our
syntax-agnostic model appears more ro-
bust, resulting in the best reported results
on standard out-of-domain test sets.

1 Introduction

The task of semantic role labeling (SRL), pio-
neered by Gildea and Jurafsky (2002), involves
the prediction of predicate argument structure, i.e.,
both identification of arguments as well as their as-
signment to an underlying semantic role. These
representations have been shown to be benefi-
cial in many NLP applications, including ques-
tion answering (Shen and Lapata, 2007) and in-
formation extraction (Christensen et al., 2011).
Semantic banks (e.g., PropBank (Palmer et al.,
2005)) often represent arguments as syntactic con-
stituents or, more generally, text spans (Baker

Sequa makes and repairs jet engines.
01 01 01

A0

A1
A0

A1
A1

Figure 1: A semantic dependency graph.

et al., 1998). In contrast, CoNLL-2008 and
2009 shared tasks (Surdeanu et al., 2008; Hajic
et al., 2009) popularized dependency-based se-
mantic role labeling where the goal is to iden-
tify syntactic heads of arguments rather than entire
constituents. Figure 1 shows an example of such a
dependency-based representation: node labels are
senses of predicates (e.g., “01” indicates that the
first sense from the PropBank sense repository is
used for predicate makes in this sentence) and edge
labels are semantic roles (e.g., A0 is a proto-agent,
‘doer’).

Until recently, state-of-the-art SRL systems
relied on complex sets of lexico-syntactic fea-
tures (Pradhan et al., 2005) as well as declara-
tive constraints (Punyakanok et al., 2008; Roth
and Yih, 2005). Neural SRL models instead ex-
ploited feature induction capabilities of neural net-
works, largely eliminating the need for complex
hand-crafted features. Initially achieving state-
of-the-art results only in the multilingual setting,
where careful feature engineering is not practi-
cal (Gesmundo et al., 2009; Titov et al., 2009),
neural SRL models now also outperform their tra-
ditional counterparts on standard benchmarks for
English (FitzGerald et al., 2015; Roth and Lapata,
2016; Swayamdipta et al., 2016; Foland and Mar-
tin, 2015).

Recently, it has been shown that an accurate
span-based SRL model can be constructed without
relying on syntactic features (Zhou and Xu, 2015).

411

Nevertheless, the situation with dependency-based
SRL has not changed: even recent state-of-the-art
methods for this task heavily rely on syntactic fea-
tures (Roth and Lapata, 2016; FitzGerald et al.,
2015; Lei et al., 2015; Roth and Woodsend, 2014;
Swayamdipta et al., 2016). In particular, Roth
and Lapata (2016) argue that syntactic features
are necessary for the dependency-based SRL and
show that performance of their model degrades
dramatically if syntactic paths between arguments
and predicates are not provided as an input. In
this work, we are the first to show that it is possi-
ble to construct a very accurate dependency-based
semantic role labeler which either does not use
any kind of syntactic information or uses very lit-
tle (automatically predicted part-of-speech tags).
This suggests that our LSTM model can largely
implicitly capture syntactic information, and this
information can, to a large extent, substitute tree-
bank syntax.

Similarly to the span-based model of Zhou and
Xu (2015) we use bidirectional LSTMs to encode
sentences and rely on their states when predicting
arguments of each predicate.1 We predict seman-
tic dependency edges between predicates and ar-
guments relying on LSTM states corresponding to
the predicate and the argument positions (i.e. both
edge endpoints). As semantic roles are often spe-
cific to predicates or even predicate senses (e.g.,
in PropBank (Palmer et al., 2005)), instead of pre-
dicting the role label (e.g., A0 for Sequa in our ex-
ample), we predict predicate-specific roles (e.g.,
make-A0) using a compositional model. Both
these aspects (predicting edges and compositional
embeddings of roles) contrast our approach with
that of Zhou and Xu (2015) who essentially treat
the SRL task as a generic sequence labeling task.
We empirically show that using these two ideas is
crucial for achieving competitive performance on
dependency SRL (+1.0% semantic F1 in our ab-
lation studies on English). Also, unlike the span-
based version, we observe that using automatically
predicted POS tags is also important (+0.7% F1).

The resulting SRL model is very simple. Not
only we do not rely on syntax, our model is
also local, i.e., we do not globally score or con-
strain sets of arguments. On the standard English
in-domain CoNLL-2009 benchmark we achieve

1In the CoNLL-2009 benchmark, predicates do not need
to be identified: their positions are provided as input at test
time. Consequently, as standard for dependency SRL, we ig-
nore this subtask in further discussion.

87.7 F1 which compares favorable to the best lo-
cal model (86.7% F1 for PathLSTM (Roth and La-
pata, 2016)) and approaches the best results over-
all (87.9% for an ensemble of 3 PathLSTM mod-
els with a reranker on top). When we experiment
with Chinese, Czech and Spanish portions of the
CoNLL-2009 dataset, we also achieve competitive
results, even without any extra hyper-parameter
tuning.

Moreover, as syntactic parsers are not reli-
able when used out-of-domain, standard (i.e.,
syntactically-informed) dependency SRL models
are crippled when applied to such data. In contrast,
our syntax-agnostic model appears to be consider-
ably more robust: we achieve the best result so far
on the English and Czech out-of-domain test set
(77.7% and 87.2% F1, respectively). For English,
this constitutes a 2.4% absolute improvement over
the comparable previous model (75.3% for the lo-
cal PathLSTM) and substantially outperforms any
previous method (76.5% for the ensemble of 3
PathLSTMs). We believe that out-of-domain per-
formance may in fact be more important than in-
domain one: in practice linguistic tools are rarely,
if ever, used in-domain.

The key contributions can be summarized as
follows:

• we propose the first effective syntax-agnostic
model for dependency-based SRL;

• it achieves the best results among local mod-
els on the English, Chinese and Czech in-
domain test sets;

• it substantially outperforms all previous
methods on the out-of-domain test set on both
English and Czech.

Despite the effectiveness of our syntax-agnostic
version, we believe that both integration of tree-
bank syntax and global inference are promising
directions and leave them for future work. In fact,
the proposed SRL model, given its simplicity and
efficiency, may be used as a natural building block
for future global and syntactically-informed SRL
models.2

2 Our Model

The focus of this paper is on argument identifica-
tion and labeling, as these are the steps which have

2The code is available at https://github.com/
diegma/neural-dep-srl.

412

A1
Classifier

k layers
BiLSTM

Mary eats an apple

�

Figure 2: Predicting an argument and its label
with an LSTM encoder.

been previously believed to require syntactic infor-
mation. For the predicate disambiguation subtask
we use models from previous work.

In order to identify and classify arguments, we
propose a model composed of three components:

• a word representation component that from a
word wi in a sentence w build a word repre-
sentation xi;

• a Bidirectional LSTM (BiLSTM) encoder
which takes as input the word representation
xi and provide a dynamic representation of
the word and its context in a sentence;

• a classifier which takes as an input the BiL-
STM representation of the candidate argu-
ment and the BiLSTM representation of the
predicate to predict the role associated to the
candidate argument.

2.1 Word representation

We represent each word w as the concatenation
of four vectors: a randomly initialized word em-
bedding xre ∈ Rdw , a pre-trained word embed-
ding xpe ∈ Rdw , a randomly initialized part-of-
speech tag embedding xpos ∈ Rdp and a randomly
initialized lemma embedding xle ∈ Rdl that is
only active if the word is one of the predicates.
The randomly initialized embeddings xre, xpos,
and xle are fine-tuned during training, while the
pre-trained ones are kept fixed, as in Dyer et al.
(2015). The final word representation is given by

x = xre ◦ xpe ◦ xpos ◦ xle, where ◦ represents the
concatenation operator.

2.2 Bidirectional LSTM encoder

One of the most effective ways to model se-
quences are recurrent neural networks (RNN) (El-
man, 1990), more precisely their gated versions,
for example, Long Short-Term Memory (LSTM)
networks (Hochreiter and Schmidhuber, 1997).

Formally, we can define an LSTM as a function
LSTMθ(x1:i) that takes as input the sequence x1:i

and returns a hidden state hi ∈ Rdh . This state
can be regarded as a representation of the sen-
tence from the start to the position i, or, in other
words, it encodes the word at position i along with
its left context. Bidirectional LSTMs make use of
two LSTMs: one for the forward pass, and another
for the backward pass, LSTMF and LSTMB , re-
spectively. In this way the concatenation of for-
ward and backward LSTM states encodes both left
and right contexts of a word,BiLSTM(x1:n, i) =
LSTMF (x1:i) ◦ LSTMB(xn:i). In this work we
stack k layers of bidirectional LSTMs, each layer
takes the lower layer as its input.

2.3 Predicate-specific encoding

As we will show in the ablation studies in Sec-
tion 3, encoding a sentence with a bidirectional
LSTM in one shot and using it to predict the en-
tire semantic dependency graph does not result in
competitive SRL performance. Instead, similarly
to Zhou and Xu (2015), we produce predicate-
specific encodings of a sentence and use them
to predict arguments of the corresponding predi-
cate. This contrasts with most other applications
of LSTM encoders (for example, in syntactic pars-
ing (Kiperwasser and Goldberg, 2016; Cross and
Huang, 2016) or machine translation (Sutskever
et al., 2014)), where sentences are typically en-
coded once and then used to predict the entire
structured output (e.g., a syntactic tree or a tar-
get sentence). Specifically, when identifying ar-
guments of a given predicate, we add a predicate-
specific feature to the representation of each word
in the sentence by concatenating a binary flag to
the word representation of Section 2.1. The flag is
set to 1 for the word corresponding to the currently
considered predicate, it is set to 0 otherwise. In
this way, sentences with more than one predicate
will be re-encoded by bidirectional LSTMs multi-
ple times.

413

2.4 Role classifier

Our goal is to predict and label arguments for a
given predicate. This can be accomplished by la-
beling each word in a sentence with a role, includ-
ing the special ‘NULL’ role to indicate that it is
not an argument of the predicate. We start with
explaining the basic role classifier and then dis-
cuss two extensions, which we will later show to
be crucial for achieving competitive performance.

2.4.1 Basic role classifier
The basic role classifier takes the hidden state of
the top-layer bidirectional LSTM corresponding
to the considered word at position i and uses it
to estimate the probability of the role r. Though
we experimented with multilayer perceptrons, we
obtained the best results with a simple log-linear
model:

p(r|vi, p) ∝ exp(Wrvi), (1)

where vi is the hidden state calculated by
BiLSTM(x1:n, i), p refers to the predicate and
the symbol ∝ signifies proportionality. This is es-
sentially equivalent to the approach used in Zhou
and Xu (2015) for span-based SRL.3

2.4.2 Incorporating predicate state
Since the context of a predicate in the sentence is
highly informative for deciding if a word is its ar-
gument and for choosing its semantic role, we pro-
vide the predicate’s hidden state (vp) as another
input to the classifier (as in Figure 2):

p(r|vi, vp) ∝ exp(Wr(vi ◦ vp)), (2)

where, as before, ◦ denotes concatenation. Note
that we are effectively predicting an edge between
words i and p in the sentence, so it is quite natu-
ral to exploit hidden states corresponding to both
endpoints.4

Since we use predicate information within the
classifier, it may seem that predicate-specific sen-
tence encoding (Section 2.3) is not needed any-
more. Moreover, predicting dependency edges re-
lying on LSTM states of endpoints was shown
effective in the context of syntactic dependency

3Since they considered span-based SRL, they used BIO
encoding (Ramshaw and Marcus, 1995) and ensured the con-
sistency of B, I and O labels with a 1-order Markov CRF. For
dependency SRL both BIO encoding and the 1-order Markov
CRF would be useless.

4We abuse the notation and refer as p both to the predicate
word and to its position in the sentence.

parsing without any form of re-encoding (Kiper-
wasser and Goldberg, 2016). Nevertheless, in
our ablation studies we observed that forego-
ing predicate-specific encoding results in large
performance degradation (-6.2% F1 on English).
Though this dramatic drop in performance seems
indeed surprising, the nature of the semantic
dependencies, especially for nominal predicates,
is different from general syntactic dependencies,
with many arguments being far away from the
predicates. Relations of these arguments to the
predicate may be hard to encode with this simpler
mechanism.

The two ways of encoding predicate informa-
tion, using predicate-specific encoding and incor-
porating the predicate state in the classifier, turn
out to be complementary.

2.4.3 Compositional modeling of roles
Instead of using a matrixWr we found it beneficial
to jointly embed the role r and predicate lemma l
using a non-linear transformation:

p(r|vi, vp, l) ∝ exp(Wl,r(vi ◦ vp)), (3)

Wl,r = ReLU(U(ul ◦ vr)), (4)

where ReLU is the rectilinear activation func-
tion, U is a parameter matrix, whereas ul ∈ Rd′

l

and vr ∈ Rdr are randomly initialized embed-
dings of predicate lemmas and roles. In this way
each role prediction is predicate-specific, and at
the same time we expect to learn a good represen-
tation for roles associated to infrequent predicates.
This form of compositional embedding is similar
to the one used in FitzGerald et al. (2015).

3 Experiments

We applied our model to the English, Chinese,
Czech and Spanish CoNLL-2009 datasets with the
standard split into training, test and development
sets. For English, we used external embeddings of
Dyer et al. (2015) learned using the structured skip
n-gram approach of Ling et al. (2015), for Chi-
nese, we used external embeddings produced with
the neural language model of Bengio et al. (2003).
For Czech and Spanish, we used embeddings cre-
ated with the model proposed by Bojanowski et al.
(2016).

Similarly to Kiperwasser and Goldberg (2016)
we used word dropout (Iyyer et al., 2015); we re-
placed a word with the UNK token with probabil-
ity α

fr(w)+α , where α is an hyper-parameter and

414

fr(w) is the frequency of the word w. The pre-
dicted POS tags were provided by the CoNLL-
2009 shared-task organizers. We used the same
predicate disambiguator as in Roth and Lapata
(2016) for English, the one used in Zhao et al.
(2009) for Czech and Spanish, and the one used
in Björkelund et al. (2009) for Chinese. The train-
ing objective was the categorical cross-entropy,
and we optimized it with Adam (Kingma and Ba,
2015). The hyperparameter tuning and all model
selection was performed on the English develop-
ment set; the chosen values are shown in Table 1.

Semantic role labeler

dw (English word embeddings) 100
dw (Chinese word embeddings) 128
dw (Czech word embeddings) 300
dw (Spanish word embeddings) 300
dpos (POS embeddings) 16
dl (lemma embeddings) 100
dh (LSTM hidden states) 512
dr (role representation) 128
d′l (output lemma representation) 128
k (BiLSTM depth) 4
α (word dropout) .25
learning rate .01

Table 1: Hyperparameter values.

3.1 Results
We compared our full model (with POS tags and
the classifier defined in Section 2.4.3) against
state-of-the-art models for dependency-based SRL
on English, Chinese, Czech and Spanish. For
English, our model significantly outperformed all
the local counter-parts (i.e., models which do not
perform global inference) on the in-domain tests
(see Table 2) with 87.6% F1 for our model vs.
86.7% for PathLSTM (Roth and Lapata, 2016).
When compared with global models, our model
performed on-par with the state-of-the-art global
version of PathLSTM.

Though we had not done any parameter selec-
tion for other languages (i.e., used the same pa-
rameters as for English), our model performed
competitively across all languages we considered.

For Chinese (Table 4), the proposed model out-
performed the best previous model (PathLSTM)
with an improvement of 1.8% F1.

For Czech (Table 5), our model, even though
unlike previous work it does not use any kind

System P R F1

Lei et al. (2015) (local) - - 86.6
FitzGerald et al. (2015) (local) - - 86.7
Roth and Lapata (2016) (local) 88.1 85.3 86.7
Ours (local) 88.7 86.8 87.7

Björkelund et al. (2010) (global) 88.6 85.2 86.9
FitzGerald et al. (2015) (global) - - 87.3
Foland and Martin (2015) (global) - - 86.0
Swayamdipta et al. (2016) (global) - - 85.0
Roth and Lapata (2016) (global) 90.0 85.5 87.7

FitzGerald et al. (2015) (ensemble) - - 87.7
Roth and Lapata (2016) (ensemble) 90.3 85.7 87.9

Table 2: Results on the English in-domain test
set.

System P R F1

Lei et al. (2015) (local) - - 75.6
FitzGerald et al. (2015) (local) - - 75.2
Roth and Lapata (2016) (local) 76.9 73.8 75.3
Ours (local) 79.4 76.2 77.7

Björkelund et al. (2010) (global) 77.9 73.6 75.7
FitzGerald et al. (2015) (global) - - 75.2
Foland and Martin (2015) (global) - - 75.9
Roth and Lapata (2016) (global) 78.6 73.8 76.1

FitzGerald et al. (2015) (ensemble) - - 75.5
Roth and Lapata (2016) (ensemble) 79.7 73.6 76.5

Table 3: Results on the English out-of-domain
test set.

of morphological features explicitly,5 was able to
outperform the system that achieved the best score
in the CoNLL-2009 shared task. The improve-
ment is 0.8% F1.

Finally, for Spanish (Table 6), our system,
though again achieved competitive results, did
not outperform the best CoNLL-2009 model and
yielded results very similar to those of PathLSTM.
One possible reason for this slightly weaker per-
formance is the relatively small size of the Span-
ish training set (less then half of the English one).
This suggests that our model, tuned on English, is
likely over-parametrized or under-regularized for
Spanish.

The results are especially strong on out-of-
domain data. As shown in Table 3, our approach
outperformed even ensemble models on the out-
of-domain English data (77.7% vs. 76.5% for

5However, character level information is encoded in the
external embeddings, see (Bojanowski et al., 2016).

415

System P R F1

Björkelund et al. (2009) 82.4 75.1 78.6
Zhao et al. (2009) 80.4 75.2 77.7
Roth and Lapata (2016) 83.2 75.9 79.4
Ours 83.4 79.1 81.2

Table 4: Results on the Chinese test set.

In-domain P R F1

Björkelund et al. (2009) 88.1 82.9 85.4
Zhao et al. (2009) 88.2 82.4 85.2
Ours 86.6 85.4 86.0

Out-of-domain P R F1

Björkelund et al. (2009) 86.1 81.9 83.9
Zhao et al. (2009) 88.6 82.5 85.4
Ours 88.0 86.5 87.2

Table 5: Results on the Czech test sets.

the ensemble of PathLSTMs). Similarly, it per-
formed very well on the out-of-domain Czech
dataset scoring 87.2% F1, with a 1.8% F1 improve-
ment over the best CoNLL-2009 participant (see
Table 5, bottom). The favorable results on out-
of-domain test sets are not surprising, as syntac-
tic parsers, even the most accurate ones, usually
struggle on domains different from the ones they
have been trained on. This means that the syntactic
trees they produce are unreliable and compromise
the accuracy of SRL systems which rely on them.
The error propagation can in principle be miti-
gated by exploiting a distribution over parse trees
(e.g., encoded in a parse forest) rather than using
a single (’Viterbi’) parse. However, this is rarely
feasible in practice. Since our model does not
use predicted parse trees and instead relies on the
ability of LSTMs to capture long distance depen-
dencies and syntactic phenomena (Linzen et al.,
2016), it is less brittle in this setting.

3.2 Ablation studies and analysis

In order to show the contribution of the model-
ing choices we made, we performed an ablation
study on the English development set (Table 7). In
these experiments we made individual changes to
the model (one by one) and measured their influ-
ence on the model performance.

First, we observed that POS tag information is
highly beneficial for obtaining competitive perfor-
mance.

System P R F1

Björkelund et al. (2009) 78.9 74.3 76.5
Zhao et al. (2009) 83.1 78.0 80.5
Roth and Lapata (2016) 83.2 77.4 80.2
Ours 81.4 79.3 80.3

Table 6: Results on the Spanish test set.

System P R F1

Ours (local) 87.7 85.5 86.6

w/o POS tags 87.3 84.5 85.9
w/o predicate-specific encoding 80.9 79.8 80.4
with basic classifier 86.7 84.5 85.6

Table 7: Ablation study on the English develop-
ment set.

Not using predicate-specific encoding (Sec-
tion 2.3), or, in other words, doing one-pass en-
coding with no predicate flags, hurts the perfor-
mance even more badly (6% drop in F1 on the de-
velopment set). This is somewhat surprising given
that one-pass LSTM encoders performed com-
petitively for syntactic dependencies (Kiperwasser
and Goldberg, 2016; Cross and Huang, 2016) and
suggests that major differences between the two
problems require the use of different modeling ap-
proaches.

We also observed a 1.0% drop in F1 when we
follow Zhou and Xu (2015) and use the basic role
classifier (Section 2.4.1). These results show that
both predicate-specific encoding (Section 2.3) and
exploiting predicate information in the classifier
(Sections 2.4.2-2.4.3) are complementary.

We also studied how performance varies de-
pending on the distance between a predicate
and an argument (Figure 3). We compared
our approach to the global PathLSTM model:
PathLSTM is a natural reference point as it is
the most accurate previous model, exploits simi-
lar modeling and representation techniques (e.g.,
word embeddings, LSTMs) but, unlike our ap-
proach, relies on predicted syntax. Contrary to
our expectations, syntactically-driven and global
PathLSTM was weaker for longer distances. We
may speculate that syntactic paths for arguments
further away from the predicate become unreli-
able. Though LSTMs are likely to be affected by
a similar trend, their states may be able to capture
the uncertainty about the structure and thus let the

416

0
7%

1
42%

2
17%

3
10%

4
6%

5
5%

6
 3%

7
2%

8
2%

9
2%

10
1%

12
2%

15
2%

Syntactic Distance

0.65

0.70

0.75

0.80

0.85

0.90
F1

Ours
PathLSTM (global)

Figure 3: F1 as function of word distance. Per-
centages indicate the amount of arguments at a
specific distance from a predicate.

Ours PathLSTM Freq. (%)

V
er

ba
l

A0 90.5 90.4 15%
A1 92.0 91.8 21%
A2 80.3 80.2 5%
AM-* 77.9 77.0 16%
All 86.4 86.1 61%

Ours PathLSTM Freq. (%)

N
om

in
al

A0 81.8 81.5 10%
A1 85.1 85.5 16%
A2 78.5 79.8 7%
AM-* 72.5 73.2 5%
All 81.1 81.8 39%

Table 8: F1 results on the English test set broken
down into verbal and nominal predicates.

role classifier account for this uncertainty without
the need to explicitly sum over potential syntactic
analysis. In contrast, PathLSTM will have access
only to the single (top scoring) parse tree and, thus,
may be more brittle.

In Table 8, we break down F1 results on the En-
glish test set into verbal and nominal predicates,
and again compare our results with PathLSTM.
First, as expected, we observe that both models
are less accurate in predicting semantic roles of
nominal predicates. For verbal predicates, our
model slightly outperformed PathLSTM in core
roles (A0-2) and performed much better (0.9% F1)
in predicting modifiers (AM-*). This is very sur-
prising as some information about modifiers is ac-
tually explicitly encoded in syntactic dependen-

System P R F1

V
er

ba
l PathLSTM 93.4 87.8 90.5

Ours 92.7 89.8 91.2

System P R F1

N
om

. PathLSTM 92.0 83.9 87.8
Ours 89.4 86.6 88.0

Table 9: Argument recognition results broken
down into verbal and nominal predicates.

0
19%

1
64%

2
10%

3
7%

Syntactic Distance

0.60

0.65

0.70

0.75

0.80

0.85

0.90

F1

Ours
PathLSTM (global)

Figure 4: F1 as function of syntactic distance
for nominal predicates. Percentages indicate the
amount of arguments at a specific distance from a
nominal predicate.

cies exploited by PathLSTM (e.g., the syntactic
dependency TMP is predictive of the modifier role
AM-TMP). Note though that the syntactic parser
was trained on the same sentences (both data orig-
inates from WSJ sections 02-22 of Penn Tree-
bank), and this can explain why these syntactic
dependencies (e.g., TMP) may convey little bene-
ficial information to the semantic role labeler. For
nominal predicates, PathLSTM was more accurate
than our model for all roles excluding A0. To
get a better idea for what is happening, we plot-
ted the F1 scores as a function of the length of
the shortest path between nominal predicates and
their arguments. On one hand, Figure 4 shows that
PathLSTM is more accurate on roles one syntac-
tic arc away from the nominal predicate. Note that
these are the majority (78%) of arguments. On the
other hand, our model appears to be more accurate
for arguments syntactically far from nominal pred-
icates. This again suggests that PathLSTM strug-
gles with harder cases.

417

System Example

Manual Most of the stock [A2]selling[\A2] pressure came [A0]from[\A0] Wall Street professionals.

PathLSTM Most of the stock [A2]selling[\A2] pressure came from Wall Street professionals.

Ours Most of the stock [A0]selling[\A0] pressure came [A0]from[\A0] Wall Street professionals.

Table 10: Example of errors for the nominal predicate pressure: A0 is a presser (proto-agent) and A2 is
a goal .

Unlike verbal predicates, syntactic structure is
less predictive of semantic roles for nominals (e.g.,
many arguments are noun modifiers). Conse-
quently, we hypothesized that our model should be
weaker than PathLSTM in recognizing arguments
but should be on par with PathLSTM in assign-
ing their roles. To test this, we looked into argu-
ment identification performance (i.e., ignored la-
bels). Table 9 shows the accuracy of both models
in recognizing arguments of nominal and verbal
predicates. Our model appears more accurate in
recognizing arguments of both nominal (88.0% vs
87.8% F1) and verbal predicates (91.2% vs. 90.5%
F1). This, when taken together with weaker la-
beled F1 of our model for nominal predicates (Ta-
ble 8), implies that, contrary to our expectations,
it is the role labeling performance for nominals
which is problematic for our model. Examples of
this behavior can be seen in Table 10: all argu-
ments of the predicate pressure are correctly rec-
ognized by our model but the role for the argu-
ment selling is not predicted correctly. In contrast,
PathLSTM does not make any mistake with the
labeling of the argument selling but fails to recog-
nize from as an argument.

4 Related Work

Earlier approaches to SRL heavily relied on com-
plex sets of lexico-syntactic features (Gildea and
Jurafsky, 2002). Pradhan et al. (2005) used a
support vector machine classifier and relied on
two syntactic views (obtained with two different
parsers), for feature extraction. In addition to
hand-crafted features, Roth and Yih (2005) en-
riched CRFs with an integer linear programming
inference procedure in order to encode non-local
constraints in SRL; Toutanova et al. (2008) em-
ployed a global reranker for dealing with structural
constraint; while Surdeanu et al. (2007) studied
several combination strategies of local and global
features obtained from several independent SRL

models.
In the last years there has been a flurry of

work that employed neural network approaches
for SRL. FitzGerald et al. (2015) used hand-
crafted features within an MLP for calculating po-
tentials of a CRF model; Roth and Lapata (2016)
extended the features of a non-neural SRL model
with LSTM representations of syntactic paths be-
tween arguments and predicates; Lei et al. (2015)
relied on low-rank tensor factorization that cap-
tured interactions between arguments, predicate,
their syntactic path and semantic roles; while Col-
lobert et al. (2011) and Foland and Martin (2015)
used convolutional networks as sentence encoder
and a CRF as a role classifier, both approaches em-
ployed a rich set of features as input of the con-
volutional encoder. Finally, Swayamdipta et al.
(2016) jointly modeled syntactic and semantic
structures; they extended one of the earliest neu-
ral approaches for SRL (Henderson et al., 2008;
Titov et al., 2009; Gesmundo et al., 2009), with
more sophisticated modeling techniques, for ex-
ample, using LSTMs instead of vanilla RNNs.

Another related line of work (Naradowsky et al.,
2012; Gormley et al., 2014), instead of relying on
treebank syntax, integrated grammar induction as
a sub-component into their statistical model. In
this way, similarly to us, they do not use tree-
bank syntax but rather rely on the ability of their
joint model to induce syntax appropriate for SRL.
Their focus was primarily on the low resource set-
ting (where syntactic annotation is not available),
whereas in standard set-ups their performance was
not as strong. It would be interesting to see if ex-
plicit modeling of latent syntax is also beneficial
when used in conjunction with LSTMs.

5 Conclusions

We proposed a neural syntax-agnostic method for
dependency-based SRL. Our model is simple and
fast, and surpasses comparable approaches (no

418

system combination, local inference) on the stan-
dard in-domain CoNLL-2009 benchmark for En-
glish, Chinese, Czech and Spanish. Moreover, it
outperforms all previous methods (including en-
sembles) in the arguably more realistic out-of-
domain setting in both English and Czech. In the
future, we will consider integration of syntactic in-
formation and joint inference.

Acknowledgments

The project was supported by the European Re-
search Council (ERC StG BroadSem 678254),
the Dutch National Science Foundation (NWO
VIDI 639.022.518) and an Amazon Web Services
(AWS) grant. The authors would like to thank
Michael Roth for his helpful suggestions.

References
Collin F. Baker, Charles J. Fillmore, and John B. Lowe.

1998. The Berkeley FrameNet project. In Proceed-
ings of COLING-ACL.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Janvin. 2003. A neural probabilistic lan-
guage model. Journal of Machine Learning Re-
search 3:1137–1155.

Anders Björkelund, Bernd Bohnet, Love Hafdell, and
Pierre Nugues. 2010. A high-performance syntactic
and semantic dependency parser. In Proceedings of
COLING.

Anders Björkelund, Love Hafdell, and Pierre Nugues.
2009. Multilingual semantic role labeling. In Pro-
ceedings of CoNLL.

Piotr Bojanowski, Edouard Grave, Armand Joulin,
and Tomas Mikolov. 2016. Enriching word vec-
tors with subword information. arXiv preprint
arXiv:1607.04606 .

Janara Christensen, Mausam, Stephen Soderland, and
Oren Etzioni. 2011. An analysis of open informa-
tion extraction based on semantic role labeling. In
Proceedings of the 6th International Conference on
Knowledge Capture (K-CAP) 2011.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. JMLR 12:2493–2537.

James Cross and Liang Huang. 2016. Incremental
parsing with minimal features using bi-directional
LSTM. In Proceedings of ACL.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A. Smith. 2015. Transition-
based dependency parsing with stack long short-
term memory. In Proceedings of ACL.

Jeffrey L. Elman. 1990. Finding structure in time.
Cognitive Science 14(2):179–211.

Nicholas FitzGerald, Oscar Täckström, Kuzman
Ganchev, and Dipanjan Das. 2015. Semantic role la-
beling with neural network factors. In Proceedings
of EMNLP.

William Foland and James Martin. 2015. Dependency-
based semantic role labeling using convolutional
neural networks. In Joint Conference on Lexical and
Computational Semantics.

Andrea Gesmundo, James Henderson, Paola Merlo,
and Ivan Titov. 2009. Latent variable model of
synchronous syntactic-semantic parsing for multiple
languages. In Proceedings of CoNLL.

Daniel Gildea and Daniel Jurafsky. 2002. Automatic
labeling of semantic roles. Computational linguis-
tics 28(3):245–288.

Matthew R. Gormley, Margaret Mitchell, Ben-
jamin Van Durme, and Mark Dredze. 2014. Low-
resource semantic role labeling. In Proceedings of
ACL.

Jan Hajic, Massimiliano Ciaramita, Richard Johans-
son, Daisuke Kawahara, Maria Antònia Martı́, Lluı́s
Màrquez, Adam Meyers, Joakim Nivre, Sebastian
Padó, Jan Stepánek, Pavel Stranák, Mihai Surdeanu,
Nianwen Xue, and Yi Zhang. 2009. The CoNLL-
2009 shared task: Syntactic and semantic depen-
dencies in multiple languages. In Proceedings of
CoNLL.

James Henderson, Paola Merlo, Gabriele Musillo, and
Ivan Titov. 2008. A latent variable model of syn-
chronous parsing for syntactic and semantic depen-
dencies. In Proceedings of CoNLL.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Computation
9(8):1735–1780.

Mohit Iyyer, Varun Manjunatha, Jordan Boyd-Graber,
and Hal Daumé III. 2015. Deep unordered compo-
sition rivals syntactic methods for text classification.
In Proceedings of ACL.

Diederik Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In Proceedings
of ICLR.

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Sim-
ple and accurate dependency parsing using bidirec-
tional LSTM feature representations. TACL .

Tao Lei, Yuan Zhang, Lluı́s Màrquez, Alessandro Mos-
chitti, and Regina Barzilay. 2015. High-order low-
rank tensors for semantic role labeling. In Proceed-
ings of NAACL.

Wang Ling, Chris Dyer, Alan W Black, and Isabel
Trancoso. 2015. Two/too simple adaptations of
word2vec for syntax problems. In Proceedings of
NAACL.

419

Tal Linzen, Emmanuel Dupoux, and Yoav Goldberg.
2016. Assessing the ability of LSTMs to learn
syntax-sensitive dependencies. TACL 4:521–535.

Jason Naradowsky, Sebastian Riedel, and David A
Smith. 2012. Improving nlp through marginaliza-
tion of hidden syntactic structure. In Proceedings of
EMNLP.

Martha Palmer, Paul Kingsbury, and Daniel Gildea.
2005. The proposition bank: An annotated cor-
pus of semantic roles. Computational Linguistics
31(1):71–106.

Sameer Pradhan, Kadri Hacioglu, Wayne H. Ward,
James H. Martin, and Daniel Jurafsky. 2005. Se-
mantic role chunking combining complementary
syntactic views. In Proceedings of CoNLL.

Vasin Punyakanok, Dan Roth, and Wen-tau Yih. 2008.
The importance of syntactic parsing and inference in
semantic role labeling. Computational Linguistics
34(2):257–287.

Lance A. Ramshaw and Mitchell P. Marcus. 1995. Text
chunking using transformation-based learning. In
Proceedings of the Third ACL Workshop on Very
Large Corpora.

Dan Roth and Wen-tau Yih. 2005. Integer linear pro-
gramming inference for conditional random fields.
In Proceedings of ICML.

Michael Roth and Mirella Lapata. 2016. Neural se-
mantic role labeling with dependency path embed-
dings. In Proceedings of ACL.

Michael Roth and Kristian Woodsend. 2014. Composi-
tion of word representations improves semantic role
labelling. In Proceedings of EMNLP.

Dan Shen and Mirella Lapata. 2007. Using semantic
roles to improve question answering. In Proceed-
ings of EMNLP-CoNLL.

Mihai Surdeanu, Richard Johansson, Adam Meyers,
Lluı́s Màrquez, and Joakim Nivre. 2008. The
CoNLL 2008 shared task on joint parsing of syn-
tactic and semantic dependencies. In Proceedings
of CoNLL.

Mihai Surdeanu, Lluı́s Màrquez, Xavier Carreras, and
Pere Comas. 2007. Combination strategies for se-
mantic role labeling. Journal of Artificial Intelli-
gence Research 29:105–151.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural net-
works. In Proceedings of NIPS.

Swabha Swayamdipta, Miguel Ballesteros, Chris Dyer,
and Noah A. Smith. 2016. Greedy, joint syntactic-
semantic parsing with stack LSTMs. In Proceedings
of CoNLL.

Ivan Titov, James Henderson, Paola Merlo, and
Gabriele Musillo. 2009. Online projectivisation for
synchronous parsing of semantic and syntactic de-
pendencies. In Proceedings of IJCAI.

Kristina Toutanova, Aria Haghighi, and Christopher D.
Manning. 2008. A global joint model for semantic
role labeling. Computational Linguistics 34(2):161–
191.

Hai Zhao, Wenliang Chen, Jun’ichi Kazama, Kiyotaka
Uchimoto, and Kentaro Torisawa. 2009. Multilin-
gual dependency learning: Exploiting rich features
for tagging syntactic and semantic dependencies. In
Proceedings of CoNLL.

Jie Zhou and Wei Xu. 2015. End-to-end learning of
semantic role labeling using recurrent neural net-
works. In Proceedings of ACL.

420

Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017), pages 421–431,
Vancouver, Canada, August 3 - August 4, 2017. c©2017 Association for Computational Linguistics

Joint Prediction of Morphosyntactic Categories for Fine-Grained Arabic
Part-of-Speech Tagging Exploiting Tag Dictionary Information

Go Inoue, Hiroyuki Shindo and Yuji Matsumoto
Graduate School of Information and Science

Nara Institute of Science and Technology
8916-5 Takayama, Ikoma, Nara, 630-0192, Japan

{inoue.go.ib4, shindo, matsu}@is.naist.jp

Abstract

Part-of-speech (POS) tagging for morpho-
logically rich languages such as Arabic is a
challenging problem because of their enor-
mous tag sets. One reason for this is that
in the tagging scheme for such languages,
a complete POS tag is formed by com-
bining tags from multiple tag sets defined
for each morphosyntactic category. Previ-
ous approaches in Arabic POS tagging ap-
plied one model for each morphosyntactic
tagging task, without utilizing shared in-
formation between the tasks. In this pa-
per, we propose an approach that utilizes
this information by jointly modeling mul-
tiple morphosyntactic tagging tasks with a
multi-task learning framework. We also
propose a method of incorporating tag dic-
tionary information into our neural models
by combining word representations with
representations of the sets of possible tags.
Our experiments showed that the joint
model with tag dictionary information re-
sults in an accuracy of 91.38% on the Penn
Arabic Treebank data set, with an abso-
lute improvement of 2.11% over the cur-
rent state-of-the-art tagger. 1

1 Introduction

Part-of-speech (POS) tagging is a fundamental
task in natural language processing. The granu-
larity of the POS tag set that reflects language-
specific information varies from language to lan-
guage. In morphologically simple languages such
as English, the size of the tag set is typically less
than a hundred. On the other hand, in morpholog-
ically rich languages such as Arabic, the number

1Our code is available at https://github.com/
go-inoue/FineGrainedArabicPOSTagger

of theoretically possible tags can be up to 333,000,
of which only 2,200 tags might appear in an actual
corpus (Habash and Rambow, 2005). One reason
for this is that in the tagging scheme for such lan-
guages, a complete POS tag is formed by com-
bining tags from multiple tag sets defined for each
morphosyntactic category. For example, a com-
plete POS tag for the word Hb (“love”)2 can be de-
fined as the combination of a noun from the coarse
POS category, a nominative (n) from the case cat-
egory, “not applicable” (na) from the mood cat-
egory, and so on. The enormous number of re-
sulting tags causes fine-grained POS tagging for
Arabic to be more challenging.

In order to perform this task, it is beneficial
to utilize information from other morphosyntac-
tic categories when predicting a label for one cat-
egory. For example, if a word is a noun, it should
take one of three tags from the case category:
nominative (n), accusative (a), or genitive (g),
while it should take “not applicable” (na) from the
mood category since mood is not defined for nom-
inals. However, most of the previous approaches
in Arabic did not utilize this information, applying
one model for each task (Habash and Rambow,
2005; Pasha et al., 2014; Shahrour et al., 2015).
To make use of this information, we propose an
approach that jointly models multiple morphosyn-
tactic prediction tasks using a multi-task learning
scheme. Specifically, we adopt parameter sharing
in our bi-directional LSTM model in the hope that
the shared parameters will store information ben-
eficial to multiple tasks. To further boost the per-
formance, we propose a method of incorporating
tag dictionary information into our neural models
by combining word representations with represen-
tations of the sets of possible tags.

Our experiments showed that the joint model
2We use the Buckwalter transliteration scheme (Buckwal-

ter, 2002) to represent Arabic characters.

421

pos (n = 35) noun, noun num, noun quant, noun prop, adj, adj comp, adj num, adv, adv interrog, adv rel, pron, pron dem,
pron exclam, pron interrog, pron rel, verb, verb pseudo, part, part dem, part det, part focus, part fut,
part interrog, part neg, part restrict, part verb, part voc, prep, abbrev, punc, conj, conj sub, interj, digit, latin

gen (n = 3) m (masculine), f (feminine), na (not applicable)
num (n = 5) s (singular), d (dual), p (plural), u (undefined), na
cas (n = 5) n (nominative), a (accusative), g (genitive), u, na
mod (n = 5) i (indicative), j (jussive), s (subjunctive), u, na
asp (n = 4) i (imperfective), p (perfective), c (command), na
per (n = 4) 1, 2, 3, na
vox (n = 4) a (active), p (passive), u, na
stt (n = 5) i (indefinite), d (definite), c (constructive/poss/idafa), u, na
prc0 (n = 10) 0, na, Aa prondem, AlmA detneg, lA neg, mA neg, mA part, mA rel
prc1 (n = 27) 0, na,<i$ interrog, bi part, bi prep, bi prog, Ea prep, EalaY prep, fiy prep, hA dem, Ha fut, ka prep, la emph,

la prep, la rc, libi prep laHa emphfut, laHa rcfut, li jus, li prep, min prep, sa fut, ta prep, wa part, wa prep,
wA voc, yA voc

prc2 (n = 9) 0, na, fa conj, fa conn, fa rc, fa sub, wa conj, wa part, wa sub
prc3 (n = 3) 0, na, >a ques
enc (n = 54) 0, na, 1p dobj, 1p poss, 1p pron, 1s dobj, 1s poss, 1s pron, 2d dobj, 2d poss, 2d pron, 2p dobj, 2p poss,

2p pron, 2fp dobj, 2fp poss, 2fp pron, 2fs dobj, 2fs poss, 2fs pron, 2mp dobj, 2mp poss, 2mp pron, 2ms dobj,
2ms poss, 2ms pron, 3d dobj, 3d poss, 3d pron, 3p dobj, 3p poss, 3p pron, 3fp dobj, 3fp poss, 3fp pron,
3fs dobj, 3fs poss, 3fs pron, 3mp dobj, 3mp poss, 3mp pron, 3ms dobj, 3ms poss, 3ms pron, Ah voc, lA neg,
ma interrog, mA interrog, man interrog, man rel, ma rel, mA rel, ma sub, mA sub

Table 1: The 14 morphosyntactic categories and their possible values used in Pasha et al. (2014). n
indicates the size of the tag set.

with tag dictionary information yields the best ac-
curacy on the Penn Arabic Treebank data set with
91.38%, an absolute improvement of 2.11% over
the current state-of-the-art.

2 Fined-Grained Arabic POS Tagging

POS tagging takes a sequence of n words x1:n as
input and outputs a corresponding sequence of la-
bels y1:n, where xt is the t-th word in a sentence
and yt ∈ T is the tag of xt. In English, a POS
tag is typically taken from a single tag set T . By
contrast, in morphologically rich languages such
as Arabic, a complete POS tag is formed by com-
bining tags from multiple tag sets defined for each
morphosyntactic category.

For example, a complete POS tag for the word
Hb (“love”) can be defined as the combination of a
noun from the coarse POS category, a nominative
(n) from the case category, “not applicable” (na)
from the mood category, and so on. Formally, the
fine-grained POS tag yfine

t for a word xt is defined
as the conjunction of the tags y(1)

t ∧y(2)
t ∧ ...∧y(k)

t

from k tag sets T (1), T (2), ..., T (k). Our purpose
is then to predict all morphosyntactic categories
for each word — in other words, this can be seen
as a multi-class and multi-label sequential labeling
problem.

In this paper, we use the 14 morphosyntac-
tic categories3 used in Pasha et al. (2014), a

3The categories are: coarse POS (pos), gender (gen),
number (num), case (cas), mood (mod), aspect (asp), person
(per), voice (vox), state (stt), four proclitics (prc0, prc1, prc2,

framework widely used in modern Arabic NLP
tools (Pasha et al., 2014; Shahrour et al., 2015;
Khalifa et al., 2016). The 14 categories and their
possible values are shown in Table 1.

3 Model

In this section, we first briefly describe bi-
directional LSTMs. We then present our models
which use bi-LSTMs for fine-grained Arabic POS
tagging4. We also propose a method of incorpo-
rating tag dictionary information into our neural
models by combining word representations with
representations of the sets of possible tags.

3.1 Bi-directional LSTMs

Recurrent neural networks (RNN) (Elman, 1990)
are a class of neural networks that are capable of
handling sequences of any length. An RNN can
be seen as a function that reads the input vector
xt at time step t and calculates a hidden state ht

using xt and the previous hidden state ht−1. In
classification tasks, the vector ht is then fed into
the output layer and produces a probability distri-
bution over the possible classes. One of the draw-
backs of basic RNNs is their difficulty to train due
to the so-called vanishing gradient problem. Long
short term memory (LSTM) networks (Hochreiter
and Schmidhuber, 1997) address this issue by in-

prc3), and one enclitic (enc).
4We do not consider a model that directly predicts full

complex tags, since complex tags only found in the test set
cannot be predicted by such a model.

422

troducing memory cells and gate units that capture
long-term dependencies.

A bi-directional LSTM network (Graves and
Schmidhuber, 2005) is an extension of an LSTM
network that allows modeling of past and future
dependencies in arbitrary-length input sequences.
The output vector ht of a bi-LSTM is calculated
by concatenating the output vector of the forward
directional LSTM that reads the sequence from be-
ginning to end with the output vector of the back-
ward directional LSTM that reads the sequence in
the reverse direction.

cas:n

LSTM

LSTM

OUT(cas)

wt ctrt

cas:na

LSTM

LSTM

OUT(cas)

<w>

ct

H </w>b

Character Lookup Table

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

Concat

LSTM

wt+1 ct+1rt+1

Hb (“love”)

Hb (“love”) fy (“in”)

Figure 1: Top: Our baseline model for the cat-
egory “cas”. We have one model for each cate-
gory, resulting in 14 models in total. Bottom: How
to create character-level embeddings. <w> and
</w> indicates the beginning and the end of a
word.

3.2 Independent Prediction Model

For our baseline method, we use a model that inde-
pendently predicts each morphosyntactic category
using bi-LSTMs. Our baseline is similar to the
basic model in Plank et al. (2016). The top part
of Figure 1 illustrates an overview of our base-
line model. Given a sequence of n words x1:n,
we encode each word xt into a vector represen-

tation rt = [wt; ct], which is the concatenation
of the word embedding wt and the character-level
embedding ct. The character-level embedding is
computed by concatenating hidden states of the
character-level forward LSTM and those of the
backward LSTM as depicted in the bottom part of
Figure 1.

The vector representation rt is then fed into
our bi-LSTM model, giving the forward hidden
state

−→
h t and the backward hidden state

←−
h t. Both

hidden states are concatenated into single vector
vt = [−→h t;

←−
h t] and fed into the output layer. Fi-

nally, we obtain the output label yt by performing
a softmax over the tag set vocabulary. We train
models separately for each morphosyntactic cate-
gory, resulting in 14 models in total.

3.3 Joint Prediction Model

Our baseline model does not share any informa-
tion between morphosyntactic prediction tasks, as
it is trained separately. However, it is beneficial
to utilize information from other morphosyntactic
categories when predicting a label for one cate-
gory. In order to do this, we adopt a multi-task
learning approach (Collobert et al., 2011; Yang
et al., 2016; Søgaard and Goldberg, 2016; Bingel
and Søgaard, 2017; Martı́nez Alonso and Plank,
2017). Specifically, we use parameter sharing in
the hidden layers of our bi-LSTM model so that
we can generate a unified model that can carry in-
formation beneficial to each task.

•••

pos:noun gen:mcas:n

•••

••••••

LSTM

LSTM

OUT(cas) OUT(gen)OUT(pos) •••

pos:prep gen:nacas:na

•••

••••••

LSTM

LSTM

OUT(cas) OUT(gen)OUT(pos)

!t ctrt rt+1

Hb (“love”) fy (“in”)

!t+1 ct+1

Figure 2: Multi-task bi-directional LSTM model
for fine-grained Arabic POS tagging.

Figure 2 shows an overview of our joint model.
The output vectors of the bi-LSTMs are fed into
multiple output layers, each performing a corre-
sponding morphosyntactic prediction task. Our
model trains to minimize the cross-entropy loss

423

averaged across all the tasks. The loss function
for each input word is defined as follows:

L(ŷfine, yfine) =
1
|M |

∑
m∈M

L(ŷm, ym)

where M = {pos, cas, gen, ...} is the set of mor-
phosyntactic prediction tasks andL(ŷm, ym) is the
cross-entropy loss for the category m.

3.4 Encoding Tag Dictionary Information

One of our contributions is to incorporate tag
dictionary information into our neural models by
combining word representations with representa-
tions of the sets of possible tags. Unlike pre-
vious approaches that use tag dictionary infor-
mation provided by a morphological analyzer as
a hard constraint (Habash and Rambow, 2005;
Pasha et al., 2014; Shahrour et al., 2015), we use it
as a soft constraint, as well as an additional feature
for our model.

The drawback of using a morphological ana-
lyzer in a pipeline fashion is that the model cannot
find the correct tag in the disambiguation step if
the analyzer does not return any tag candidates.
Habash et al. (2016) report in their error analy-
sis that 31.3% of their tagging errors were due to
this problem. To cope with this issue, we propose
a method of encoding tag dictionary information
into our neural models instead of using a morpho-
logical analyzer in a pipeline fashion. As such, the
output of our tagger is not restricted by the output
candidates that are generated by the analyzer, and
our method can be applied to POS tagging with an
arbitrary tag set.

The bottom part of Figure 3 illustrates how to
encode tag dictionary information for the word
Hb (“love”). First, the input word is given to a
tag dictionary that generates sets of possible tags
for each morphosyntactic category. The outputs
from the dictionary are then fed into the corre-
sponding lookup tables, giving vector representa-
tions for possible tags. For each category, we sum
over the outputs from the lookup table and then
concatenate all the summed vectors into a single
vector.

Formally, the encoded vector representation dt

for the input word xt is computed by concate-
nating all the sub-vectors defined for each mor-
phosyntactic category m:

dt = [d(pos)
t ; ... ;d(cas)

t ; ... ;d(gen)
t]

cas

Sum

{noun, verb} {m}{n, g, a, u, na}

pos gen

 •••		•••	

Concat

Lookup
Table

Tag Dictionary

Input Word

••• •••

••• •••

!

Hb (“love”)

!(#$%) !('(%) !()*+)

•••

pos:noun gen:mcas:n

•••

••••••

LSTM

LSTM

OUT(cas) OUT(gen)OUT(pos)

z,t ct dtrt

•••

pos:prep gen:nacas:na

•••

••••••

LSTM

LSTM

OUT(cas) OUT(gen)OUT(pos)

rt+1 ,t+1 ct+1 dt+1

Hb (“love”) fy (“in”)

 •••		•••	

Figure 3: Top: An overview of our proposed
model with tag dictionary embeddings. Bottom:
Example of how tag dictionary information is en-
coded.

The sub-vector d(m)
t is computed with the follow-

ing equation:

d(m)
t =

∑
d∈D

(m)
t

W(m)e(m)
d

where D(m)
t is the set of possible tags for the cat-

egory m given the word xt, W(m) is the embed-
ding matrix for the category m, and e(m)

d is a one-
hot vector representing the tag d for the category
m. Finally, the resulting vector dt is concatenated
with the word embedding wt and the character-
level embedding ct, forming the input word repre-
sentation rt = [wt; ct;dt] for our model. The top
part of Figure 3 illustrates the overall architecture
of our proposed model.

4 Experiments

In this section, we present our experimental setup
and results. We report tagging accuracy on two
data sets: the Penn Arabic Treebank (PATB) data

424

set and the Arabic Universal Dependencies Tree-
bank (UD Arabic) data set. We also report the
effects of tag dictionary information in both data
sets.

4.1 Experimental Setup
4.1.1 Implementation Details
We implement all bi-LSTM models using the
DyNet library (Neubig et al., 2017). We use the
same hyperparameters throughout the independent
and joint models, i.e., Adam with cross entropy
loss, mini-batch size of a single sentence, 100 di-
mensions for word embeddings, 50 for character-
level embeddings, 10 for each morphosyntactic
dictionary embedding, 500 hidden states, 100 di-
mensions for output layers, random initialization
for the embeddings, and no dropout regularization.
We do not use external resources for the word em-
beddings in order to emulate the data availability
of earlier work as much as possible. The number
of epochs is optimized based on evaluation over
the development set, to a maximum of 10 epochs.
We use ALMOR (Habash, 2007), which is part of
the MADAMIRA distribution (Pasha et al., 2014),
alongside the SAMA database (Maamouri et al.,
2010c) to create the tag dictionary.

4.1.2 Data Sets
The PATB Data Set
In order to compare our models with the current
state-of-the-art tagger, we use the Penn Arabic
Treebank (PATB, parts 1, 2 and 3) (Maamouri
et al., 2010a, 2011, 2010b) with the same parti-
tioning as Diab et al. (2013). The statistics of
the data set are shown in Table 2. The data sets
are pre-processed as in Pasha et al. (2014) to cor-
rect annotation inconsistencies and to obtain the
morphosyntactic feature representation for each
word. All the Arabic characters are transliter-
ated according to the Buckwalter transliteration
scheme (Buckwalter, 2002) and each numerical
digit is substituted with 0.

Train Dev Test
Sentences 15789 1986 1963
Words 502991 63136 63168
Tags 2028 1034 1069

Table 2: Number of sentences, space-delimited
words, and fine-grained POS tags in the Penn Ara-
bic Treebank data set.

The UD Arabic Data Set
In order to evaluate the performance of our models

on different data in a different tagging scheme, we
use the Arabic portion of Universal Dependencies
Version 1.4 (Nivre et al., 2016) with the provided
gold tokenization. We assume gold tokenization
for the sake of simplicity. The statistics of the data
set are shown in Table 3.

Train Dev Test
Sentences 6174 786 704
Tokens 225853 28263 28268
Tags 327 214 213

Table 3: Number of sentences, tokens, and fine-
grained POS tags in the UD Arabic data set.

For the fine-grained POS tag set, we use the uni-
versal POS tags and 16 of the morphological fea-
tures defined in the UD Arabic data set. The an-
notations in the UD Arabic data set are automat-
ically converted from the Prague Arabic Depen-
dency Treebank (Smrž et al., 2008). Table 4 shows
the lists of possible values for each morphosyn-
tactic category. The annotations in UD Arabic are
different from those in PATB with regard to the
choice of categories and their granularity, although
there are some overlaps in categories such as gen-
der and person. For pre-processing, each numeri-
cal digit is substituted with 0.

POS (n = 17) ADJ, ADP, ADV, AUX, CONJ,
DET, INTEJ, NOUN, NUM,
PART, PRON, PROPN, PUNCT,
SCONJ, SYM, VERB, X

Gender (n = 3) Fem, Masc, EMPTY
Number (n = 4) Dual, Plur, Sing, EMPTY
Case (n = 4) Acc, Gen, Nom, EMPTY
Mood (n = 5) Imp, Ind, Jus, Sub, EMPTY
Aspect (n = 3) Imp, Perf, EMPTY
Person (n = 4) 1, 2, 3, EMPTY
Voice (n = 3) Act, Pass, EMPTY
Definite (n = 5) Com, Cons, Def, Ind, EMPTY
Abbr (n = 2) Yes, EMPTY
AdpType (n = 2) Prep, EMPTY
Foreign (n = 2) Yes, EMPTY
Negative (n = 2) Negative, EMPTY
NumForm (n = 3) Digit, Word, EMPTY
NumValue (n = 4) 1, 2, 3, EMPTY
PronType (n = 4) Dem, Prs, Rel, EMPTY
VerbForm (n = 2) Fin, EMPTY

Table 4: The 17 morphosyntactic categories in the
UD scheme (i.e., the universal POS tags and 16
morphological features) and their possible values.
n indicates the size of the tag set.

4.1.3 Evaluation
Tagging Accuracy on the PATB data set
We report tagging accuracy over the 14 mor-
phosyntactic categories and their combination,

425

pos gen num cas mod asp per vox stt prc0 prc1 prc2 prc3 enc All
CamelParser 96.78 99.41 99.43 92.68 99.13 99.27 99.23 99.08 97.54 99.67 99.63 99.59 99.90 99.61 89.27
Independent 96.31 99.05 99.26 93.17 99.07 99.08 99.10 98.80 97.23 99.62 99.64 99.73 99.97 99.44 87.74

+Dict 97.07 99.33 99.51 94.70 99.31 99.34 99.35 99.18 98.11 99.48 99.78 99.78 99.97 99.68 90.17
Joint 96.24 99.27 99.16 93.48 99.18 99.19 99.20 98.91 97.70 99.66 99.64 99.68 99.97 99.58 89.49

+Dict 97.21 99.50 99.59 94.76 99.41 99.44 99.47 99.25 98.24 99.71 99.81 99.73 99.96 99.71 91.38

Table 5: Tagging accuracies on the PATB data set. All is the percentage where all categories were correct
(i.e., the fine-grained POS tag). +Dict indicates the use of the tag dictionary embeddings. Best results
are in boldface.

pos gen num cas mod asp per vox stt prc0 prc1 prc2 prc3 enc All
Joint 96.24 99.27 99.16 93.48 99.18 99.19 99.20 98.91 97.70 99.66 99.64 99.68 99.97 99.58 89.49

+pos +0.96 +0.25 +0.27 +1.00 +0.25 +0.21 +0.23 +0.38 +0.46 +0.04 +0.09 +0.09 0.00 +0.08 +1.48
+gen +0.35 +0.10 +0.18 +0.34 +0.12 +0.12 +0.09 +0.21 +0.19 0.00 -0.06 0.00 -0.01 +0.02 +0.33
+num +0.36 +0.10 +0.43 +0.45 +0.06 +0.07 +0.08 +0.17 +0.13 +0.03 -0.02 +0.02 -0.01 +0.01 +0.63
+cas +0.51 +0.13 +0.25 +0.82 +0.25 +0.22 +0.23 +0.32 +0.41 -0.01 +0.08 +0.04 0.00 +0.06 +0.99
+mod +0.38 +0.10 +0.14 +0.77 +0.23 +0.23 +0.21 +0.31 +0.39 -0.01 +0.04 +0.05 -0.01 +0.06 +0.82
+asp +0.47 +0.12 +0.22 +0.48 +0.22 +0.22 +0.24 +0.33 +0.33 +0.02 +0.06 +0.03 0.00 +0.03 +0.68
+per +0.26 +0.16 +0.18 +0.72 +0.24 +0.28 +0.29 +0.36 +0.32 +0.01 +0.08 +0.06 0.00 +0.07 +0.78
+vox +0.27 +0.13 +0.15 +0.65 +0.21 +0.21 +0.19 +0.31 +0.29 +0.01 -0.07 -0.01 -0.01 +0.04 +0.60
+stt +0.60 +0.12 +0.20 +0.87 +0.23 +0.23 +0.22 +0.35 +0.47 +0.03 +0.07 +0.05 -0.01 +0.05 +0.99
+prc0 +0.31 +0.10 +0.16 +0.56 +0.06 +0.08 +0.08 +0.16 +0.16 +0.06 +0.06 +0.05 0.00 0.00 +0.56
+prc1 +0.40 +0.09 +0.21 +0.50 +0.06 -0.02 +0.06 +0.14 +0.11 +0.02 +0.15 +0.02 0.00 0.00 +0.69
+prc2 +0.23 +0.04 +0.16 +0.23 0.00 -0.01 +0.04 +0.12 +0.05 +0.04 -0.09 +0.10 -0.01 -0.02 +0.35
+prc3 +0.14 +0.05 +0.16 +0.33 +0.07 +0.04 +0.04 +0.15 +0.09 +0.01 -0.05 +0.05 -0.01 +0.01 +0.28
+enc +0.26 +0.02 +0.12 +0.53 +0.09 +0.07 +0.07 +0.21 +0.22 +0.02 0.00 +0.04 -0.01 +0.12 +0.63
+all +0.97 +0.23 +0.43 +1.28 +0.23 +0.25 +0.27 +0.34 +0.54 +0.05 +0.17 +0.05 -0.01 +0.13 +1.89

Table 6: Performance comparison of the different models, each of which uses a single morphosyntactic
category in its tag dictionary embeddings, on the PATB data set. +m in the leftmost column indicates
the use of the category m to form the tag dictionary embeddings. +all indicates the use of all categories
to form the tag dictionary embeddings. Boldfaced numbers represent the largest improvement in the
category to predict (minimum of 0.05% absolute).

i.e., the fine-grained POS tag (All). For compari-
son, we use CamelParser (Shahrour et al., 2015),
the current state-of-the-art tagger. CamelParser
is an improved version of the previous state-of-
the-art tagger MADAMIRA (Pasha et al., 2014),
which ranks the possible analyses provided by
a morphological analyzer using SVMs. Camel-
Parser adjusts the outputs of MADAMIRA by
utilizing case-state classifiers that incorporate
additional syntactic information provided by a
dependency parser and hand-written rules. The
tag set used in CamelParser is compatible with the
14 morphosyntactic categories we use.

Tagging Accuracy on the UD Arabic data set
For the UD Arabic data set, we report tagging
accuracy over the 17 morphosyntactic categories
(i.e., the universal POS tags and 16 morphological
features) and their combination (All). We use in-
dependent models with and without tag dictionary
information and joint models with and without tag
dictionary information for this data set.

Most Influential Categories
For both data sets, we conduct additional experi-
ments to investigate which morphosyntactic cate-
gory in the tag dictionary embeddings contributes

most to the performance. Specifically, instead of
using all morphosyntactic categories to create the
tag dictionary embeddings, we use only one at a
time. In other words, we skip the last step of
concatenating all the sub-vectors defined for each
morphosyntactic category, and use only one of the
sub-vectors for the tag dictionary embeddings.

4.2 Results

4.2.1 The PATB Data Set
Our Models vs CamelParser
Table 5 illustrates our experimental results on
the PATB data set. The best performing model
was the joint model with tag dictionary embed-
dings (+Dict), achieving an accuracy of 91.38%
on the strictest metric “All” (i.e., the fine-grained
POS tag) with an absolute improvement of 2.11%
over CamelParser, the current state-of-the-art tag-
ger. This model outperforms CamelParser in ev-
ery morphosyntactic category. Among these cate-
gories, the most notable improvement is the case
category (cas) with an absolute improvement of
2.08% over the current state-of-the-art system.
Leaving out the dictionary embeddings (+Dict) re-
duces the performance by 1.89% absolute, but still
outperforms CamelParser without using any addi-

426

POS Gender Number Case Mood Aspect Person Voice Definite
Independent 95.15 97.28 96.38 93.76 99.56 99.35 99.37 99.14 96.40
+Dict 96.08 98.06 97.23 94.86 99.68 99.51 99.47 99.16 97.09

Joint 95.92 97.96 96.69 94.60 99.67 99.50 99.45 99.21 96.67
+Dict 96.64 98.32 97.47 95.43 99.69 99.58 99.59 99.32 97.35

Abbr AdpType Foreign Negative NumForm NumValue PronType VerbForm All
Independent 99.88 99.75 99.16 99.99 99.88 99.80 99.76 99.69 86.45
+Dict 100.00 99.84 99.58 99.99 99.90 99.80 99.79 99.73 89.17

Joint 99.99 99.85 99.47 99.99 99.90 99.98 99.81 99.78 90.36
+Dict 99.99 99.86 99.66 99.99 99.89 99.98 99.84 99.84 91.68

Table 7: Tagging accuracies on the UD Arabic data set. All is the percentage where all categories were
correct (i.e., the fine-grained POS tag). +Dict indicates the use of the tag dictionary embeddings.

tional resources such as a morphological analyzer
or a dependency parser, indicating the effective-
ness of joint modeling of morphosyntactic cate-
gories. On the other hand, the independent model
gives an accuracy of 87.74%, which is 1.53% ab-
solute worse than CamelParser. However, adding
dictionary embeddings (+Dict) enhances the per-
formance with an absolute improvement of 2.43%
and yields the second-best accuracy, showing the
impact of the additional dictionary feature.

Most Influential Categories

Which morphosyntactic category in the tag dic-
tionary embeddings contributes most to the per-
formance? Table 6 compares the performance of
the different models, each of which uses a single
morphosyntactic category in its tag dictionary em-
beddings. The category that contributes most in
the tag dictionary embeddings is the coarse POS
category (+pos) with an absolute improvement of
1.48% on the metric “All”. It is worth mention-
ing that case and state categories are tied for the
second most contributing category, which supports
CamelParser’s idea that improving the prediction
of case and state categories will provide further
performance gains.

Looking at the effects on each category to pre-
dict, the embeddings for coarse POS (+pos) give
the best improvement in 5 categories: coarse POS
(pos), gender (gen), case (cas), mood (mod), and
voice (vox). We can see that the information
carried by the coarse POS category plays a cen-
tral role for predicting other morphosyntactic cat-
egories, especially for the case category. On the
other hand, in 8 categories, the best improvement
was achieved when the category used for the tag
dictionary embeddings was the same as the cat-
egory to predict. The 8 categories were: coarse
POS (pos), number (num), person (per), state (stt),
three of the proclitics (prc0, prc1, prc2), and en-

clitic (enc). This result suggests that the tag dictio-
nary embeddings of a given category behave as a
soft constraint when predicting the same category,
which makes intuitive sense.

4.2.2 The UD Arabic Data Set
Results of Our Models
Table 7 illustrates our experimental results on the
UD Arabic data set. The independent model gives
an accuracy of 86.34% on the metric “All” (i.e.,
the fine-grained POS tag). Adding the tag dictio-
nary embeddings (+Dict) improves the accuracy
with an absolute improvement of 2.72%. Unlike
the PATB data set, the joint model outperformed
both independent models regardless of the use of
the tag dictionary embeddings. The best perform-
ing model was the joint model with the tag dictio-
nary embeddings (+Dict), achieving an accuracy
of 91.68%. We can observe that the overall re-
sults show similar tendencies to the results on the
PATB data set in spite of the different annotation
schemes.

Most Influential Categories
Table 8 compares the performance of the different
models, each of which uses a single morphosyn-
tactic category in its tag dictionary embeddings,
on the UD Arabic data set. As in the results on the
PATB data set, the coarse POS category (+pos)
is the category that contributes the most in the
tag dictionary embeddings, giving an absolute im-
provement of 0.92% on the metric “All”. It also
gives the best improvement in 8 categories: POS,
Aspect, Case, Definite, Foreign, Gender, Number,
Person, and Voice. This result confirmed that the
possible tag information from the POS category
is more effective than information from the other
categories.

On the other hand, unlike in the PATB data set,
we do not observe a relationship between the cat-

427

POS Gender Number Case Mood Aspect Person Voice Definite
Joint 95.92 97.96 96.69 94.60 99.67 99.50 99.45 99.21 96.67

+pos +0.55 +0.30 +0.49 +0.58 +0.04 +0.07 +0.14 +0.15 +0.56
+gen -0.20 +0.01 -0.07 +0.05 +0.06 +0.09 +0.09 +0.13 -0.01
+num +0.12 +0.06 +0.44 +0.32 +0.04 +0.01 +0.13 +0.04 +0.25
+cas +0.19 +0.01 +0.33 +0.33 +0.02 +0.02 +0.08 +0.04 +0.37
+mod +0.15 -0.09 +0.24 +0.26 +0.02 +0.07 +0.13 +0.14 +0.19
+asp +0.19 0.00 +0.23 +0.33 -0.02 +0.06 +0.11 +0.09 +0.29
+per +0.20 +0.03 +0.26 +0.38 +0.01 +0.07 +0.12 +0.07 +0.28
+vox +0.08 +0.01 +0.17 +0.13 -0.01 +0.05 +0.09 +0.14 +0.21
+stt +0.08 -0.06 +0.25 +0.48 -0.04 +0.04 +0.08 +0.07 +0.41
+prc0 -0.03 -0.06 +0.27 +0.10 +0.04 +0.02 +0.08 -0.02 +0.31
+prc1 -0.01 -0.01 +0.18 +0.20 +0.03 +0.02 +0.06 +0.07 +0.14
+prc2 -0.17 -0.12 +0.21 +0.15 +0.03 0.00 +0.01 -0.03 +0.22
+prc3 +0.07 -0.14 +0.29 +0.21 -0.02 +0.02 +0.08 +0.06 +0.25
+enc -0.01 -0.22 +0.40 +0.10 -0.02 -0.04 -0.03 -0.05 +0.28
+all +0.72 +0.36 +0.78 +0.83 +0.02 +0.08 +0.14 +0.11 +0.68

Abbr AdpType Foreign Negative NumForm NumValue PronType VerbForm All
Joint 99.99 99.85 99.47 99.99 99.90 99.98 99.81 99.78 90.36

+pos +0.01 -0.01 +0.16 0.00 +0.01 -0.02 +0.03 +0.03 +0.92
+gen +0.01 0.00 +0.03 0.00 0.00 0.00 +0.01 +0.04 +0.08
+num 0.00 -0.02 +0.06 0.00 +0.02 0.00 +0.01 +0.03 +0.34
+cas +0.01 0.00 +0.08 0.00 +0.02 0.00 0.00 +0.03 +0.30
+mod 0.00 -0.04 +0.03 0.00 0.00 -0.01 +0.01 +0.04 +0.33
+asp +0.01 -0.01 +0.07 0.00 -0.01 0.00 +0.01 +0.02 +0.48
+per 0.00 -0.01 +0.16 0.00 +0.02 0.00 0.00 +0.02 +0.50
+vox +0.01 -0.03 +0.09 0.00 -0.01 0.00 +0.01 +0.01 +0.06
+stt +0.01 -0.03 +0.06 0.00 -0.01 -0.01 +0.01 +0.01 +0.28
+prc0 +0.01 -0.01 +0.09 0.00 0.00 -0.01 +0.01 +0.03 +0.13
+prc1 +0.01 -0.01 +0.12 +0.01 -0.03 -0.01 +0.01 0.00 +0.30
+prc2 +0.01 -0.02 +0.11 0.00 -0.02 -0.01 0.00 0.00 -0.02
+prc3 +0.01 -0.03 -0.02 0.00 0.00 -0.03 0.00 -0.02 -0.01
+enc +0.01 -0.04 +0.03 -0.01 0.00 0.00 0.00 +0.01 -0.02
+all 0.00 +0.01 +0.19 0.00 -0.01 0.00 +0.03 +0.06 +1.32

Table 8: Performance comparison of the different models, each of which uses a single morphosyntactic
category in its tag dictionary embeddings, on the UD Arabic data set. +m in the leftmost column indicates
the use of the category m to form the tag dictionary embeddings. +all indicates the use of all categories
to form the tag dictionary embeddings. Boldfaced numbers represent the largest improvement in the
category to predict (minimum of 0.05% absolute).

egory used for the tag dictionary embeddings and
the category to predict, presumably because of the
difference in the annotation schemes.

5 Related Work

Diab et al. (2004) proposed a segmentation-
based approach, in which they tag each clitic-
segmented token using SVMs. Mohamed and
Kübler (2010) proposed a word-based approach
which takes space-delimited words as inputs
and uses memory-based learning. Their experi-
ment showed that the word-based approach per-
formed better than the segmentation-based ap-
proach, avoiding segmentation error propagation.
Zhang et al. (2015) proposed joint modeling of
segmentation, POS tagging, and dependency pars-
ing using a randomized greedy algorithm. The
aforementioned studies were focused on tagging

with reduced POS tag sets whose sizes ranged
from 12 to 993. However, we use one of the most
fine-grained POS tag sets, with about 2,000 tags
appearing in our training set.

In the context of fine-grained POS tagging,
Mueller et al. (2013) presented an approximated
higher-order CRF for morphosyntactic tagging
across six languages, assuming gold clitic segmen-
tation. Pasha et al. (2014) used an analyze-and-
disambiguate approach, in which they ranked the
possible analyses provided by a morphological an-
alyzer for each space-delimited word. The state-
of-the-art tagger (Shahrour et al., 2015) extended
their model by adjusting the outputs of Pasha et
al.’s tagger by utilizing case-state classifiers that
incorporate additional syntactic information pro-
vided by a dependency parser and hand-written
rules.

428

Compared to their approaches, our model is
simple but powerful: It does not assume gold clitic
segmentation, since segmentation is also modeled
as part of the morphosyntactic categories, nor does
it require the additional pipeline process of syntac-
tic parsing. Nonetheless, it is more accurate than
the current state-of-the-art.

Another related line of work tackles sequen-
tial labeling problems using multi-task learning
with deep neural networks and investigates situ-
ations where multi-task learning leads to improve-
ments in performance (Søgaard and Goldberg,
2016; Bingel and Søgaard, 2017; Martı́nez Alonso
and Plank, 2017). Although our main focus is not
on investigating the most effective task combina-
tion, it can be worth experimenting with various
configurations in our settings.

With regard to the use of outputs from a mor-
phological analyzer as additional features, our
work is closely related to Bohnet et al. (2013) and
Shen et al. (2016). Bohnet et al. (2013) presented
a joint approach for morphological and syntactic
analysis for morphologically rich languages, inte-
grating additional features that encode whether a
tag is in the dictionary or not. Shen et al. (2016)
proposed an approach in which they encode a se-
quence of possible morphosyntactic tags provided
by a morphological analyzer using bi-directional
LSTMs. In contrast, we provide an alternative way
of encoding this information, as well as an analysis
on the most influential categories in the encoded
tag embeddings.

6 Conclusions

We presented an approach for fine-grained Ara-
bic POS tagging that jointly models each mor-
phosyntactic tagging task using a multi-task learn-
ing framework. We also proposed a method of
incorporating tag dictionary information into our
neural models by combining word representations
with representations of the sets of possible tags.
The joint model with tag dictionary information
results in the best accuracy of 91.38% with an
absolute improvement of 2.11% over the current
state-of-the-art tagger. In addition, our experi-
ments showed that the proposed method of encod-
ing tag dictionary information improves the tag-
ging accuracy even on a data set with different an-
notations.

One potential future direction to explore is do-
main adaptation to Arabic dialects, since our ap-

proach is easily applicable as it does not require
construction of a morphological analyzer for each
dialect. Another direction is to make use of pub-
licly available dictionaries such as Wiktionary to
construct a tag dictionary.

Acknowledgments

We would like to thank the anonymous reviewers,
Hiroki Ouchi, Yuichiro Sawai, Taishi Ikeda, Hi-
toshi Manabe, and Michael Wentao Li for their
valuable comments and suggestions. We also
appreciate Nizar Habash and Salam Khalifa for
providing the pre-processed data and running the
CamelParser experiment.

References
Joachim Bingel and Anders Søgaard. 2017. Identi-

fying beneficial task relations for multi-task learn-
ing in deep neural networks. In Proceedings of
the 15th Conference of the European Chapter of
the Association for Computational Linguistics: Vol-
ume 2, Short Papers. Association for Computa-
tional Linguistics, Valencia, Spain, pages 164–169.
http://www.aclweb.org/anthology/E17-2026.

Bernd Bohnet, Joakim Nivre, Igor Boguslavsky,
Richárd Farkas, Filip Ginter, and Jan Hajič. 2013.
Joint Morphological and Syntactic Analysis for
Richly Inflected Languages. Transactions of the As-
sociation for Computational Linguistics 1:415–428.

Tim Buckwalter. 2002. Buckwalter Arabic Morpho-
logical Analyzer Version 1.0 LDC2002L49. Lin-
guistic Data Consortium (LDC, Philadelphia US).

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural Language Processing (Almost) from
Scratch. Journal of Machine Learning Research
12(Aug):2493–2537.

Mona Diab, Nizar Habash, Owen Rambow, and Ryan
Roth. 2013. LDC Arabic Treebanks and Associated
Corpora: Data Divisions Manual. In arXiv preprint
arXiv:1309.5652.

Mona Diab, Kadri Hacioglu, and Daniel Jurafsky.
2004. Automatic Tagging of Arabic Text: From
Raw Text to Base Phrase Chunks. In Proceed-
ings of the 2004 Conference of the North Ameri-
can Chapter of the Association for Computational
Linguistics: Human Language Technologies: Short
Papers. Association for Computational Linguis-
tics, Boston, Massachusetts, USA, pages 149–152.
http://anthology.aclweb.org/N/N04/N04-4038.pdf.

Jeffrey L Elman. 1990. Finding structure in time. Cog-
nitive Science 14(2):179–211.

429

Alex Graves and Jürgen Schmidhuber. 2005. Frame-
wise Phoneme Classification with Bidirectional
LSTM and Other Neural Network Architectures.
Neural Networks 18(5):602–610.

Nizar Habash. 2007. Arabic Morphological Represen-
tations for Machine Translation. Arabic Computa-
tional Morphology: Knowledge-based and Empiri-
cal Methods pages 263–285.

Nizar Habash and Owen Rambow. 2005. Arabic
Tokenization, Part-of-Speech Tagging and Mor-
phological Disambiguation in One Fell Swoop.
In Proceedings of the 43rd Annual Meeting
of the Association for Computational Linguistics
(ACL’05). Association for Computational Linguis-
tics, Ann Arbor, Michigan, USA, pages 573–580.
https://doi.org/10.3115/1219840.1219911.

Nizar Habash, Anas Shahrour, and Muhamed Al-
Khalil. 2016. Exploiting Arabic Diacritization
for High Quality Automatic Annotation. In
Proceedings of the Tenth International Confer-
ence on Language Resources and Evaluation
(LREC’16). pages 4298–4303. http://www.lrec-
conf.org/proceedings/lrec2016/pdf/878 Paper.pdf.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long Short-Term Memory. Neural Computation
9(8):1735–1780.

Salam Khalifa, Nasser Zalmout, and Nizar Habash.
2016. YAMAMA: Yet Another Multi-Dialect
Arabic Morphological Analyzer. In Proceed-
ings of COLING 2016, the 26th International
Conference on Computational Linguistics: Sys-
tem Demonstrations. The COLING 2016 Orga-
nizing Committee, Osaka, Japan, pages 223–227.
http://aclweb.org/anthology/C16-2047.

Mohamed Maamouri, Ann Bies, Seth Kulick, Fatma
Gaddeche, Wigdan Mekki, Sondos Krouna, Basma
Bouziri, and Wadji Zaghouani. 2010a. Arabic Tree-
bank: Part 1 v 4.1. Linguistic Data Consortium
(LDC, Philadelphia US).

Mohamed Maamouri, Ann Bies, Seth Kulick, Fatma
Gaddeche, Wigdan Mekki, Sondos Krouna, Basma
Bouziri, and Wadji Zaghouani. 2011. Arabic Tree-
bank: Part 2 v 3.1. Linguistic Data Consortium
(LDC, Philadelphia US).

Mohamed Maamouri, Ann Bies, Seth Kulick, Sondos
Krouna, Fatma Gaddeche, and Wadji Zaghouani.
2010b. Arabic Treebank: Part 3 v 3.2. Linguistic
Data Consortium (LDC, Philadelphia US).

Mohamed Maamouri, David Graff, Basma Bouziri,
Sondos Krouna, Ann Bies, and Seth Kulick. 2010c.
LDC Standard Arabic Morphological Analyzer
(SAMA) Version 3.1 LDC2010L01. Linguistic Data
Consortium (LDC, Philadelphia US).

Héctor Martı́nez Alonso and Barbara Plank. 2017.
When is multitask learning effective? seman-
tic sequence prediction under varying data con-
ditions. In Proceedings of the 15th Con-
ference of the European Chapter of the As-
sociation for Computational Linguistics: Vol-
ume 1, Long Papers. Association for Computa-
tional Linguistics, Valencia, Spain, pages 44–53.
http://www.aclweb.org/anthology/E17-1005.

Emad Mohamed and Sandra Kübler. 2010. Is
Arabic Part of Speech Tagging Feasible With-
out Word Segmentation? In Proceedings of
Human Language Technologies: The 2010 An-
nual Conference of the North American Chap-
ter of the Association for Computational Linguis-
tics. Association for Computational Linguistics,
Los Angeles, California, USA, pages 705–708.
http://www.aclweb.org/anthology/N10-1105.

Thomas Mueller, Helmut Schmid, and Hinrich
Schütze. 2013. Efficient Higher-Order CRFs for
Morphological Tagging. In Proceedings of the 2013
Conference on Empirical Methods in Natural Lan-
guage Processing. Association for Computational
Linguistics, Seattle, Washington, USA, pages 322–
332. http://www.aclweb.org/anthology/D13-1032.

Graham Neubig, Chris Dyer, Yoav Goldberg, Austin
Matthews, Waleed Ammar, Antonios Anastasopou-
los, Miguel Ballesteros, David Chiang, Daniel
Clothiaux, Trevor Cohn, Kevin Duh, Manaal
Faruqui, Cynthia Gan, Dan Garrette, Yangfeng Ji,
Lingpeng Kong, Adhiguna Kuncoro, Gaurav Ku-
mar, Chaitanya Malaviya, Paul Michel, Yusuke
Oda, Matthew Richardson, Naomi Saphra, Swabha
Swayamdipta, and Pengcheng Yin. 2017. Dynet:
The Dynamic Neural Network Toolkit. arXiv
preprint arXiv:1701.03980 .

Joakim Nivre, Željko Agić, Lars Ahrenberg, Maria Je-
sus Aranzabe, Masayuki Asahara, Aitziber Atutxa,
Miguel Ballesteros, John Bauer, Kepa Ben-
goetxea, Yevgeni Berzak, Riyaz Ahmad Bhat, Eck-
hard Bick, Carl Börstell, Cristina Bosco, Gosse
Bouma, Sam Bowman, Gülşen Cebirolu Eryiit,
Giuseppe G. A. Celano, Fabricio Chalub, Çar
Çöltekin, Miriam Connor, Elizabeth Davidson,
Marie-Catherine de Marneffe, Arantza Diaz de
Ilarraza, Kaja Dobrovoljc, Timothy Dozat, Kira
Droganova, Puneet Dwivedi, Marhaba Eli, Tomaž
Erjavec, Richárd Farkas, Jennifer Foster, Claudia
Freitas, Katarı́na Gajdošová, Daniel Galbraith, Mar-
cos Garcia, Moa Gärdenfors, Sebastian Garza, Filip
Ginter, Iakes Goenaga, Koldo Gojenola, Memduh
Gökrmak, Yoav Goldberg, Xavier Gómez Guino-
vart, Berta Gonzáles Saavedra, Matias Grioni, Nor-
munds Grūzītis, Bruno Guillaume, Jan Hajič, Linh
Hà M, Dag Haug, Barbora Hladká, Radu Ion,
Elena Irimia, Anders Johannsen, Fredrik Jørgensen,
Hüner Kaşkara, Hiroshi Kanayama, Jenna Kanerva,
Boris Katz, Jessica Kenney, Natalia Kotsyba, Si-
mon Krek, Veronika Laippala, Lucia Lam, Phng
Lê Hng, Alessandro Lenci, Nikola Ljubešić, Olga

430

Lyashevskaya, Teresa Lynn, Aibek Makazhanov,
Christopher Manning, Cătălina Mărănduc, David
Mareček, Héctor Martı́nez Alonso, André Martins,
Jan Mašek, Yuji Matsumoto, Ryan McDonald, Anna
Missilä, Verginica Mititelu, Yusuke Miyao, Simon-
etta Montemagni, Keiko Sophie Mori, Shunsuke
Mori, Bohdan Moskalevskyi, Kadri Muischnek,
Nina Mustafina, Kaili Müürisep, Lng Nguyn Th,
Huyn Nguyn Th Minh, Vitaly Nikolaev, Hanna
Nurmi, Petya Osenova, Robert Östling, Lilja Øvre-
lid, Valeria Paiva, Elena Pascual, Marco Passarotti,
Cenel-Augusto Perez, Slav Petrov, Jussi Piitulainen,
Barbara Plank, Martin Popel, Lauma Pretkalnia,
Prokopis Prokopidis, Tiina Puolakainen, Sampo
Pyysalo, Alexandre Rademaker, Loganathan Ra-
masamy, Livy Real, Laura Rituma, Rudolf Rosa,
Shadi Saleh, Baiba Saulīte, Sebastian Schuster,
Wolfgang Seeker, Mojgan Seraji, Lena Shakurova,
Mo Shen, Natalia Silveira, Maria Simi, Radu
Simionescu, Katalin Simkó, Mária Šimková, Kiril
Simov, Aaron Smith, Carolyn Spadine, Alane Suhr,
Umut Sulubacak, Zsolt Szántó, Takaaki Tanaka,
Reut Tsarfaty, Francis Tyers, Sumire Uematsu,
Larraitz Uria, Gertjan van Noord, Viktor Varga,
Veronika Vincze, Lars Wallin, Jing Xian Wang,
Jonathan North Washington, Mats Wirén, Zdeněk
Žabokrtský, Amir Zeldes, Daniel Zeman, and
Hanzhi Zhu. 2016. Universal Dependencies 1.4.
LINDAT/CLARIN digital library at the Institute of
Formal and Applied Linguistics, Charles University.
http://hdl.handle.net/11234/1-1827.

Arfath Pasha, Mohamed Al-Badrashiny, Mona T
Diab, Ahmed El Kholy, Ramy Eskander, Nizar
Habash, Manoj Pooleery, Owen Rambow, and Ryan
Roth. 2014. MADAMIRA: A Fast, Comprehen-
sive Tool for Morphological Analysis and Disam-
biguation of Arabic. In Proceedings of the Ninth
International Conference on Language Resources
and Evaluation (LREC’14). Reykjavik, Iceland,
volume 14, pages 1094–1101. http://www.lrec-
conf.org/proceedings/lrec2014/pdf/593 Paper.pdf.

Barbara Plank, Anders Søgaard, and Yoav Goldberg.
2016. Multilingual Part-of-Speech Tagging with
Bidirectional Long Short-Term Memory Models
and Auxiliary Loss. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers). Association
for Computational Linguistics, Berlin, Germany,
pages 412–418. http://anthology.aclweb.org/P16-
2067.

Anas Shahrour, Salam Khalifa, and Nizar Habash.
2015. Improving Arabic Diacritization through
Syntactic Analysis. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing. Association for Computational
Linguistics, Lisbon, Portugal, pages 1309–1315.
http://aclweb.org/anthology/D15-1152.

Qinlan Shen, Daniel Clothiaux, Emily Tagtow, Patrick
Littell, and Chris Dyer. 2016. The Role of
Context in Neural Morphological Disambiguation.

In Proceedings of COLING 2016, the 26th In-
ternational Conference on Computational Linguis-
tics: Technical Papers. The COLING 2016 Orga-
nizing Committee, Osaka, Japan, pages 181–191.
http://aclweb.org/anthology/C16-1018.

Otakar Smrž, Viktor Bielicky, and Jan Hajic. 2008.
Prague Arabic Dependency Treebank: A Word on
the Million Words. In Proceedings of the Work-
shop on Arabic and Local Languages (LREC 2008).
pages 16–23.

Anders Søgaard and Yoav Goldberg. 2016. Deep
multi-task learning with low level tasks supervised
at lower layers. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers). Association for
Computational Linguistics, Berlin, Germany, pages
231–235. http://anthology.aclweb.org/P16-2038.

Zhilin Yang, Ruslan Salakhutdinov, and William
Cohen. 2016. Multi-Task Cross-Lingual Se-
quence Tagging from Scratch. arXiv preprint
arXiv:1603.06270 .

Yuan Zhang, Chengtao Li, Regina Barzilay, and Ka-
reem Darwish. 2015. Randomized Greedy Inference
for Joint Segmentation, POS Tagging and Depen-
dency Parsing. In Proceedings of the 2015 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies. Association for Computational
Linguistics, Denver, Colorado, USA, pages 42–52.
http://www.aclweb.org/anthology/N15-1005.

431

Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017), pages 432–441,
Vancouver, Canada, August 3 - August 4, 2017. c©2017 Association for Computational Linguistics

Learning from Relatives: Unified Dialectal Arabic Segmentation
Younes Samih1, Mohamed Eldesouki3, Mohammed Attia2, Kareem Darwish3,

Ahmed Abdelali3, Hamdy Mubarak3, and Laura Kallmeyer1

1Dept. of Computational Linguistics,University of Düsseldorf, Düsseldorf, Germany
2Google Inc., New York City, USA

3Qatar Computing Research Institute, HBKU, Doha, Qatar
1{samih,kallmeyer}@phil.hhu.de

2attia@google.com
3{mohamohamed,hmubarak,aabdelali,kdarwish}@hbku.edu.qa

Abstract

Arabic dialects do not just share a com-
mon koiné, but there are shared pan-
dialectal linguistic phenomena that allow
computational models for dialects to learn
from each other. In this paper we build
a unified segmentation model where the
training data for different dialects are
combined and a single model is trained.
The model yields higher accuracies than
dialect-specific models, eliminating the
need for dialect identification before seg-
mentation. We also measure the degree
of relatedness between four major Ara-
bic dialects by testing how a segmenta-
tion model trained on one dialect performs
on the other dialects. We found that lin-
guistic relatedness is contingent with ge-
ographical proximity. In our experiments
we use SVM-based ranking and bi-LSTM-
CRF sequence labeling.

1 Introduction

Segmenting Arabic words into their constituent
parts is important for a variety of applications such
as machine translation, parsing and information
retrieval. Though much work has focused on seg-
menting Modern Standard Arabic (MSA), recent
work began to examine dialectal segmentation in
some Arabic dialects. Dialectal segmentation is
becoming increasingly important due to the ubiq-
uity of social media, where users typically write
in their own dialects as opposed to MSA. Dialec-
tal text poses interesting challenges such as lack
of spelling standards, pervasiveness of word merg-
ing, letter substitution or deletion, and foreign
word borrowing. Existing work on dialectal seg-
mentation focused on building resources and tools
for each dialect separately (Habash et al., 2013;

Pasha et al., 2014; Samih et al., 2017). The ratio-
nal for the separation is that different dialects have
different affixes, make different lexical choices,
and are influenced by different foreign languages.
However, performing reliable dialect identifica-
tion to properly route text to the appropriate seg-
menter may be problematic, because conventional
dialectal identification may lead to results that are
lower than 90% (Darwish et al., 2014). Thus,
building a segmenter that performs reliably across
multiple dialects without the need for dialect iden-
tification is desirable.

In this paper we examine the effectiveness of us-
ing a segmenter built for one dialect in segmenting
other dialects. Next, we explore combining train-
ing data for different dialects in building a joint
segmentation model for all dialects. We show that
the joint segmentation model matches or outper-
forms dialect-specific segmentation models. For
this work, we use training data in four different di-
alects, namely Egyptian (EGY), Levantine (LEV),
Gulf (GLF), and Maghrebi (MGR). We utilize two
methods for segmentation. The first poses seg-
mentation as a ranking problem, where we use an
SVM ranker. The second poses the problem as a
sequence labeling problem, where we use a bidi-
rectional Long Short-Term Memory (bi-LSTM)
Recurrent Neural Network (RNN) that is coupled
with Conditional Random Fields (CRF) sequence
labeler.

2 Background

Work on dialectal Arabic is fairly recent compared
to MSA. A number of research projects were de-
voted to dialect identification (Biadsy et al., 2009;
Zbib et al., 2012; Zaidan and Callison-Burch,
2014; Eldesouki et al., 2016). There are five major
dialects including Egyptian, Gulf, Iraqi, Levantine
and Maghrebi. Few resources for these dialects

432

are available such as the CALLHOME Egyptian
Arabic Transcripts (LDC97T19), which was made
available for research as early as 1997. Newly
developed resources include the corpus developed
by Bouamor et al. (2014), which contains 2,000
parallel sentences in multiple dialects and MSA
as well as English translation. These sentences
were translated by native speakers into the target
dialects from an original dialect, the Egyptian.

For segmentation, Mohamed et al. (2012) built a
segmenter based on memory-based learning. The
segmenter has been trained on a small corpus of
Egyptian Arabic comprising 320 comments con-
taining 20,022 words from www.masrawy.com
that were segmented and annotated by two na-
tive speakers. They reported a 91.90% accuracy
on the segmentation task. MADA-ARZ (Habash
et al., 2013) is an Egyptian Arabic extension of
the Morphological Analysis and Disambiguation
of Arabic (MADA) tool. They trained and eval-
uated their system on both Penn Arabic Treebank
(PATB) (parts 1-3) and the Egyptian Arabic Tree-
bank (parts 1-5) (Maamouri et al., 2014) and they
achieved 97.5% accuracy. MADAMIRA1 (Pasha
et al., 2014) is a new version of MADA that
includes the functionality for analyzing dialectal
Egyptian. Monroe et al. (2014) used a single
dialect-independent model for segmenting Egyp-
tian dialect in addition to MSA. They argue that
their segmenter is better than other segmenters that
use sophisticated linguistic analysis. They evalu-
ated their model on three corpora, namely parts
1-3 of Penn Arabic Treebank (PATB), Broadcast
News Arabic Treebank (BN), and parts 1-8 of the
BOLT Phase 1 Egyptian Arabic Treebank (ARZ)
reporting an F1 score of 92.1%.

3 Segmentation Datasets

We used datasets for four dialects, namely
Egyptian (EGY), Levantine (LEV), Gulf (GLF),
and Maghrebi (MGR) which are available at
http://alt.qcri.org/resources/da_
resources/. Each dataset consists of a sets
of 350 manually segmented tweets. Briefly, we
obtained a large Arabic collection composed of
175 million Arabic tweets by querying the Twitter
API using the query “lang:ar” during March
2014. Then, we identified tweets whose authors
identified their location in countries where the
dialects of interest are spoken (e.g. Morocco,

1MADAMIRA release 20160516 2.1

Algeria, Tunisia, and Libya for MGR) using a
large location gazetteer (Mubarak and Darwish,
2014) which maps each region/city to its country.
Then we filtered the tweets using a list containing
10 strong dialectal words per dialect, such as the
MGR word AÒJ
» “kymA” (like/as in) and the LEV

word ½J
ë “hyk” (like this). Given the filtered
tweets, we randomly selected 2,000 unique tweets
for each dialect, and we asked a native speaker of
each dialect to manually select 350 tweets that are
heavily dialectal, i.e. contain more dialectal than
MSA words. Table 1 lists the number of tweets
that we obtained for each dialect and the number
of words they contain.

Dialect No of Tweets No of Tokens
Egyptian 350 6,721
Levantine 350 6,648

Gulf 350 6,844
Maghrebi 350 5,495

Table 1: Dataset size for the different dialects

We manually segmented each word in the cor-
pus while preserving the original characters. This
decision was made to allow processing real dialec-
tal words in their original form. Table 2 shows
segmented examples from the different dialects.

3.1 Segmentation Convention

In some research projects, segmentation of DA is
done on a CODA’fied version of the text, where
CODA is a standardized writing convention for
DA (Habash et al., 2012). CODA guidelines pro-
vide directions on to how to normalize words, cor-
rect spelling and unify writing. Nonetheless, these
guidelines are not available for all dialects. In
the absence of such guidelines as well as the dy-
namic nature of the language, we choose to op-
erate directly on the raw text. As in contrast to
MSA, where guidelines for spelling are common
and standardized, written DA seems to exhibit a
lot of diversity, and hence, segmentation systems
need to be robust enough to handle all the variants
that might be encountered in such texts.

Our segmentation convention is closer to stem-
ming rather than tokenization in that we separate
all prefixes (with the exception of imperfective
prefixes with verbs) and suffixes from the stems.
The following is a summary to these instructions
that were given to the native speakers to segment
the data:

433

Word Glossary Segmentation Dialect
½Ëñ�®J
K. “byqwlk” Is telling you ½+Ëñ�®J
+K. “b+yqwl+k” EGY

ú
m.
�'
ð “wyjy” And he comes ù
 +m.�'
+ ð “w+yj+y” GLF

XQK. “brd” I’ll return XQ+K. “b+rd” LEV

Ñê«A 	® 	J�J 	ªÓ “mgtnfAEhm” It will not benefit them Ñê+«A 	® 	J�J+ 	ª+Ó “m+g+tnfAE+hm” MGR

Table 2: Dialect annotation example

• Separate all prefixes for verbs, nouns, and adjec-
tives, e.g. the conjunction ð “w” (and), preposi-

tion È “l” (to), definite article È@ “Al” (the), etc.

• Separate all suffixes for verbs, nouns, and adjec-
tives, e.g. the feminine marker �é� “p”, number

marker 	àð “wn”, object or genitive pronouns �ë
“h” (him), etc.

• Emoticons, user names, and hash-tags are
treated as single units.

• Merged words are separated, e.g. 	QK
 	Qª+Ë@+ YJ.«
“Ebd+Al+Ezyz” (Abd Al-Aziz).

• When there is an elongation of a short vowel
“a, u ,i” with a preposition, the elongated vowel
is segmented with the preposition, e.g. ÑîD
Ë
“lyhm” (for them)⇒ Ñê+J
Ë “ly+hm”.

Complete list of guidelines is found at:
http://alt.qcri.org/resources/
da_resources/seg-guidelines.pdf.

4 Arabic Dialects

4.1 Similarities
There are some interesting observations which
show similar behavior of different Arabic dialects
(particularly those in our dataset) when they di-
verge from MSA. These observations show that
Arabic dialects do not just share commonalities
with MSA, but they also share commonalities
among themselves. It seems that dialects share
some built-in functionalities to generate words,
some of which may have been inherited from clas-
sical Arabic, where some of these functionalities
are lost or severely diminished in MSA. Some of
these commonalities include:

• Dialects have eliminated case endings.

• Dialects introduce a progressive particle, e.g.
Èñ�®J
+K. “b+yqwl” (EGY), Èñ�®J
+Ô« “Em+yqwl”

(LEV), Èñ�®J
+» “k+yqwl” (MGR), and Èñ�®K
+ X
“d+yqwl” (Iraqi) for “he says”. This does not
exist in MSA.

• Some dialects use a post-negation particle, e.g.
��+J. m�&
+Ó “m+yHb+$” (does not like) (EGY,

LEV and MGR). This does not also exist in
MSA as well as GLF.

• Dialects have future particles that are differ-
ent from MSA, such as h “H” (LEV), �ë “h”

(EGY), and
	̈

“g” (MGR). Similar to the MSA

future particle � “s” that may have resulted

from shortening the particle
	¬ñ� “swf” and

then using the shortened version as a prefix, di-
alectal future particles may have arisen using a
similar process, where the Levantine future par-
ticle “H” is a shortened version of the word h@P
“rAH” (he will) (Persson, 2008; Jarad, 2014).

• Dialects routinely employ word merging, par-
ticularly when two identical letters appear con-
secutively. In MSA, this is mostly restricted to
the case of the preposition È “l” (to) when fol-

lowed by the determiner È@ “Al” (the), where the
“A” in the determiner is silent. This is far more
common in dialects as in ½Ë ÉÒªK
 “yEml lk” (he

does for you)⇒ ½ÊÒªK
 “yEmlk”.

• Dialects often change short vowels to long vow-
els or vice verse (vowel elongation and reduc-
tion). This phenomenon infrequently appears in
poetry, particularly classical Arabic poetry, but
is quite common in dialects such as converting
éË “lh” (to him) to éJ
Ë “lyh”.

• Dialects have mostly eliminated dual forms ex-
cept with nouns, e.g. ú

	æJ
« “Eyny” (my two

eyes) and 	á�
 ��Q�̄ “qr$yn” (two piasters). Conse-
quently dual agreement markers on adjectives,
relative pronouns, demonstrative adjectives, and

434

verbs have largely disappeared. Likewise, mas-
culine nominative plural noun and verb suffix	àð “wn” has been largely replaced with the ac-

cusative/genitive forms 	áK
 “yn” and @ð “wA” re-
spectively.

Phenomena that appear in multiple dialects, but
may not necessarily appear in MSA, may provide
an indication that segmented training data for one
dialect may be useful in segmenting other dialects.

4.2 Differences
In this section, we show some differences between
dialects that cover surface lexical and morpholog-
ical features in light of our datasets. Deep lexi-
cal and morphological analysis can be applied af-
ter POS-tagging of these datasets. Differences can
explain why some dialects are more difficult than
others, which dialects are closer to each other, and
the possible effect of cross-dialect training. The
differences may also aid future work on dialect
identification.

We start by comparing dialects with MSA to
show how close a dialect to MSA is. We randomly
selected 300 words from each dialect and we
analyzed them using the Buckwalter MSA mor-
phological analyzer (BAMA) (Buckwalter, 2004).
Table 3 lists the percentage of words that were
analyzed, analysis precision, and analysis recall,
which is the percentage of actual MSA words that
BAMA was able to analyze. Results show that
BAMA was most successful, in terms of coverage
and precision, in analyzing GLF, while it faired
the worst on MGR, in terms of coverage, and the
worst on LEV, in terms of precision. Some di-
alectal words are incorrectly recognized as MSA
by BAMA, such as èY» “kdh” (like this), where
BAMA analyzed it as “kd+h” (his toil). It seems
that GLF is the closest to MSA and MGR is the
furthest away.

Dialect Percent
Analyzed

Analysis
Precision

Analysis
Recall

EGY 83 81 94
LEV 83 76 91
GLF 86 88 94

MGR 78 78 95

Table 3: Buckwalter analysis

Table 4 shows the overlap between unique
words and all words for the different dialect pairs

Figure 1: Distribution of segment count per word
(percentages are overlaid on the graph)

in our datasets. As the table shows, EGY, LEV,
and GLF are closer together and MGR is further
away from all of them. Also, LEV is closer to both
EGY and GLF than the last two to each other. We
also looked at the common words between dialects
to see if they had different segmentations. Aside
from two words, namely éJ
Ë “lyh” (to him, why)

and éJ
K. “byh” (with it, gentleman), that both ap-
pear in EGY and LEV, all other common words
have identical segmentations. This is welcome
news for the lookup scheme that we employ in
which we use segmentations that are seen in train-
ing directly during testing.

Dialect pairs Unique Overlap All Overlap
EGY-GLF 16.1% 41.6%
EGY-LEV 18.1% 43.3%

EGY-MGR 14.3% 36.7%
GLF-LEV 17.0% 41.4%

GLF-MGR 15.9% 37.8%
LEV-MGR 16.2% 38.5%

Table 4: Common words across dialects

Figure 1 shows the distribution of segment
counts per word for words in our datasets. We
obtained the MSA segment counts from the Ara-
bic Penn Treebank (parts 1-3) (Maamouri et al.,
2014). The figure shows that dialectal words tend
to have a similar distribution of word segment
counts and they generally have fewer segments
than MSA. This may indicate that dialects may
have simpler segmentations than MSA, and cases
where words have 4 or more segments, such as

435

��+ñ+Ë+ Aê+�JÊ�®+Ó “m+qlt+hA+l+w+$” (I did not
say it to him), are infrequent.

Tables 5 and 6 respectively show the number of
prefixes or suffixes, the top 5 prefixes and suffixes
(listed in descending order), and the unique pre-
fixes and suffixes for each dialect in comparison
to MSA. As the tables show, MGR has the most
number of prefixes, while GLF has the most num-
ber of suffixes. Further, there are certain prefixes
and suffixes that are unique to dialects. While the
prefix “Al” (the) leads the list of prefixes for all di-
alects, the prefix H. “b” in LEV and EGY, where
it is either a progressive particle or a preposition,
is used more frequently than in MSA, where it is
used strictly as a preposition. Similarly, the suffix
	á» “kn” (your) is more frequent in LEV than any

other dialect. The Negation suffix �� “$” (not) and

feminine suffix marker ú
» “ky” (your) are used in

EGY, LEV, and MGR, but not in GLF or MSA.
The appearance of some affixes in some dialects
and their absence in others may seem to compli-
cate cross dialect training, and the varying fre-
quencies of affixes across dialects may seem to
complicate joint training.

Dialect No. Top 5 Unique
MSA 8 Al,w,l,b,f >, s
EGY 11 Al,b,w,m,h hA, fA
LEV 11 Al,b,w,l,E Em
GLF 14 Al,w,b,l,mA mw,mb,$
MGR 19 Al,w,l,b,mA kA,t,tA,g

Table 5: Prefixes statistics

Dialect No. Top 5 Unique
MSA 23 p,At,A,h,hA hmA
EGY 24 h,p,k,$,hA Y,kwA,nY,kY
LEV 27 p,k,y,h,w -
GLF 30 h,k,y,p,t j
MGR 24 p,w,y,k,hA Aw

Table 6: Suffixes statistics

5 Learning Algorithms

We present here two different systems for word
segmentation. The first uses SVM-based rank-
ing (SVMRank)2 to rank different possible seg-

2https://www.cs.cornell.edu/people/tj/
svm_light/svm_rank.html

mentations for a word using a variety of features.
The second uses bi-LSTM-CRF, which performs
character-based sequence-to-sequence mapping to
predict word segmentation.

5.1 SVMRank Approach

We used the SVM-based ranking approach pro-
posed by Abdelali et al. (2016), in which they used
SVM based ranking to ascertain the best segmen-
tation for Modern Standard Arabic (MSA), which
they show to be fast and of high accuracy. The
approach involves generating all possible segmen-
tations of a word and then ranking them. The pos-
sible segmentations are generated based on pos-
sible prefixes and suffixes that are observed dur-
ing training. For example, if hypothetically we
only had the prefixes ð “w” (and) and È “l” (to)

and the suffix �ë “h” (his), the possible segmen-

tations of èYJ
Ëð “wlydh” (his new born) would be

{wlydh, w+lydh, w+l+ydh, w+l+yd+h, w+lyd+h,
wlyd+h} with “wlyd+h” being the correct seg-
mentation. SVMRank would attempt to rank the
correct segmentation higher than all others. To
train SVMRank, we use the following features:

• Conditional probability that a leading character
sequence is a prefix.
• Conditional probability that a trailing character

sequence is a suffix.
• probability of the prefix given the suffix.
• probability of the suffix given the prefix.
• unigram probability of the stem.
• unigram probability of the stem with first suffix.
• whether a valid stem template can be obtained

from the stem, where we used Farasa (Abdelali
et al., 2016) to guess the stem template.
• whether the stem that has no trailing suffixes

and appears in a gazetteer of person and loca-
tion names (Abdelali et al., 2016).
• whether the stem is a function word, such as úÎ«

“ElY” (on) and 	áÓ “mn” (from).

• whether the stem appears in the AraComLex3

Arabic lexicon (Attia et al., 2011) or in the
Buckwalter lexicon (Buckwalter, 2004). This is
sensible considering the large overlap between
MSA and DA.
• length difference from the average stem length.

3http://sourceforge.net/projects/
aracomlex/

436

The segmentations with their corresponding
features are then passed to the SVM ranker
(Joachims, 2006) for training. Our SVMRank uses
a linear kernel and a trade-off parameter between
training error and margin of 100. All segmen-
tations are ranked out of context. Though some
words may have multiple valid segmentations in
different contexts, previous work on MSA has
shown that it holds for 99% of the cases (Abde-
lali et al., 2016). This assumption allows us to im-
prove segmentation results by looking up segmen-
tations that were observed in the dialectal train-
ing sets (DA) or segmentations from the training
sets with a back off to segmentation in a large seg-
mented MSA corpus, namely parts 1, 2, and 3 of
the Arabic Penn Treebank Maamouri et al. (2014)
(DA+MSA).

5.2 Bi-LSTM-CRF Approach

In this subsection we describe the different com-
ponents of our Arabic segmentation bi-LSTM-
CRF based model, shown in Figure 2. It is a slight
variant of the bi-LSTM-CRF architecture first pro-
posed by Huang et al. (2015), Lample et al. (2016),
and Ma and Hovy (2016)

5.2.1 Recurrent Neural Networks
A recurrent neural network (RNN) together with
its variants, i.e. LSTM, bi-LSTM, GRU, belong to
a family of powerful neural networks that are well
suited for modeling sequential data. Over the last
several years, they have achieved many ground-
breaking results in many NLP tasks. Theoretically,
RNNs can learn long distance dependencies, but in
practice they fail due to vanishing/exploding gra-
dients (Bengio et al., 1994).

LSTMs LSTMs (Hochreiter and Schmidhuber,
1997) are variants of the RNNs that can efficiently
overcome difficulties with training and efficiently
cope with long distance dependencies. Formally,
the output of the LSTM hidden layer ht given in-
put xt is computed via the following intermediate
calculations: (Graves, 2013):

it = σ(Wxixt +Whiht−1 +Wcict−1 + bi)
ft = σ(Wxfxt +Whfht−1 +Wcfct−1 + bf)
ct = ftct−1 + it tanh(Wxcxt +Whcht−1 + bc)
ot = σ(Wxoxt +Whoht−1 +Wcoct + bo)
ht = ot tanh(ct)

where σ is the logistic sigmoid function, and i, f ,

Figure 2: Architecture of our proposed neural net-
work Arabic segmentation model applied to the
word éJ. Ê�̄ “qlbh” and output “qlb+h”.

o and c are respectively the input gate, forget gate,
output gate and cell activation vectors. More in-
terpretation about this architecture can be found
in (Graves and Schmidhuber, 2005) and(Lipton
et al., 2015).

Bi-LSTMs Another extension to the single
LSTM networks are the bi-LSTMs (Schuster and
Paliwal, 1997). They are also capable of learn-
ing long-term dependencies and maintain contex-
tual features from both past and future states. As
shown in Figure 2, they are comprised of two sep-
arate hidden layers that feed forwards to the same
output layer.

CRF In many sequence labeling tasks bi-
LSTMs achieve very competitive results against
traditional models, still when they are used
for some specific sequence classification tasks,
such as segmentation and named entity detection,
where there is a strict dependence between the out-
put labels, they fail to generalize perfectly. Dur-
ing the training phase of the bi-LSTM networks,
the resulting probability distribution of each time
step is independent from each other. To over-
come this independence assumptions imposed by
the bi-LSTM and to exploit this kind of label-
ing constraints in our Arabic segmentation system,
we model label sequence logic jointly using Con-
ditional Random Fields (CRF) (Lafferty et al.,
2001)

5.2.2 DA segmentation Model
The concept we followed in bi-LSTM-CRF se-
quence labeling is that segmentation is a one-to-

437

one mapping at the character level where each
character is annotated as either beginning a seg-
ment (B), continues a previous segment (M),
ends a segment (E), or is a segment by itself
(S). After the labeling is complete we merge
the characters and labels together. For example,
@ñËñ�®J
K. “byqwlwA” (they say) is labeled as “SBM-
MEBE”, which means that the word is segmented
as b+yqwl+wA. The architecture of our segmenta-
tion model, shown in Figure 2, is straightforward.
At the input layer a look-up table is initialized with
randomly uniform sampled embeddings mapping
each character in the input to a d-dimensional vec-
tor. At the hidden layer, the output from the char-
acter embeddings is used as the input to the bi-
LSTM layer to obtain fixed-dimensional represen-
tations of characters. At the output layer, a CRF
is applied on the top of bi-LSTM to jointly de-
code labels for the whole input characters. Train-
ing is performed using stochastic gradient (SGD)
descent with momentum 0.9 and batch size 50, op-
timizing the cross entropy objective function.

Optimization To mitigate overfitting, given the
small size of the training data, we employ
dropout (Hinton et al., 2012), which prevents co-
adaptation of hidden units by randomly setting
to zero a proportion of the hidden units during
training. We also employ early stopping (Caruana
et al., 2000; Graves et al., 2013) by monitoring the
models performance on a development set.

6 Experimental Setup and Results

Using the approaches described earlier, we per-
form several experiments, serving two main ob-
jectives. First we want to see how closely related
the dialects are and whether we can use one di-
alect for the augmentation of training data in an-
other dialect. The second objective is to find out
whether we can build a one-fits-all model that does
not need to know which specific dialect it is deal-
ing with.

In the first set of experiments shown in Table 7,
we build segmentation models for each dialect and
tested them on all the other dialects. We compare
these cross dialect training and testing to training
and testing on the same dialect, where we use 5
fold cross validation with 70/10/20 train/dev/test
splits. We also use the Farasa MSA segmenter as
a baseline. We conduct the experiments at three
levels: pure system output (without lookup), with
DA lookup, and with DA+MSA lookup. We mean

by “lookup” a post-processing add-on step where
we feed segmentation solutions in the test files
directly from the training data when a match is
found. This is based on the assumption that seg-
mentation is a context-free problem and therefore
the utilization of observed data can be maximized.

Using both algorithms (SVM and LSTM) the
results show a general trend where EGY segmen-
tation yields better results from the LEV model
than from the GLF’s. The GLF data benefits
more from the LEV model than from the EGY
one. For the LEV data both GLF and EGY mod-
els are equally good. MGR seems relatively dis-
tant in that it does not contribute to or benefit
from other dialects independently. This shows a
trend where dialects favor geographical proxim-
ity. In the case with no lookup, LSTM fairs bet-
ter than SVM when training and testing is done
on the same dialect. However, the opposite is
true when training on one dialect and testing on
another. This may indicate that the SVM-ranker
has better cross-dialect generalization than the bi-
LSTM-CRF sequence labeler. When lookup is
used, SVM yields better results across the board
except in three cases, namely when training and
testing on Egyptian with DA+MSA lookup, when
training with Egyptian and testing on MGR, and
when training with GLF and testing on MGR with
DA+MSA lookup. Lastly, the best SVM cross-
dialect results with lookup consistently beat the
Farasa MSA baseline often by several percent-
age points for every dialect. The same is true
for LSTM when training with relatively related di-
alects (EGY, LEV, and GLF), but the performance
decreases when training or testing using MGR.

In the second set of experiments, we wanted to
see whether we can train a unified segmenter that
would segment all the dialects in our datasets. For
the results shown in Table 8, we also used 5-fold
cross validation (with the same splits generated
earlier) where we trained on the combined train-
ing splits from all dialects and tested on all the test
splits with no lookup, DA lookup, and MSA+DA
lookup. We refer to these models as “joint” mod-
els. Using SVM, the combined model drops
by 0.3% to 1.3% compared to exclusively using
matching dialectal training data. We also con-
ducted another SVM experiment in which we use
the joint model in conjunction with a dialect iden-
tification oracle to restrict possible affixes only to
those that are possible for that dialect (last two row

438

Test Set
Farasa 85.7 82.6 82.9 82.6
Training EGY LEV GLF MGR

SVM LSTM SVM LSTM SVM LSTM SVM LSTM
with no lookup

EGY 91.0 93.8 87.7 87.1 86.5 85.8 81.3 82.5
LEV 85.2 85.5 87.8 91.0 85.5 85.7 83.42 80.0
GLF 85.7 85.0 86.4 86.9 87.7 89.4 82.6 81.6
MGR 85.0 78.6 85.7 78.8 84.5 78.4 84.7 87.1

with DA lookup
EGY 94.5 94.2 89.2 87.6 87.5 86.5 81.5 82.8
LEV 89.7 85.9 92.9 91.8 89.6 86.3 83.5 80.4
GLF 89.7 85.5 89.2 87.5 92.8 90.8 83.0 82.4
MGR 88.6 78.9 86.9 78.8 87.3 79.0 90.5 88.5

with DA+MSA lookup
EGY 94.6 95.0 90.5 89.2 88.8 88.3 83.5 89.2
LEV 90.1 87.5 93.3 93.0 89.7 87.8 84.3 82.4
GLF 90.3 87.3 89.6 88.6 93.1 91.9 84.1 84.8
MGR 88.6 81.2 88.1 80.3 88.1 80.7 91.2 90.1

Table 7: Cross dialect results.

Test Set
Lookup EGY LEV GLF MGR

SVM LSTM SVM LSTM SVM LSTM SVM LSTM
No lookup 91.4 94.1 89.8 92.4 88.8 91.7 83.82 89.1
DA 94.1 94.8 92.8 93.3 91.8 92.6 89.6 90.7
DA+MSA 94.3 95.3 93.0 93.9 92.2 93.1 90.0 91.4

Joint with restricted affixes
DA 94.5 - 92.8 - 91.9 - 89.7 -
DA+MSA 94.8 - 93.0 - 92.4 - 90.3 -

Table 8: Joint model results.

in Table 8). The results show improvements for all
dialects, but aside for EGY, the improvements do
not lead to better results than those for single di-
alect models. Conversely, the bi-LSTM-CRF joint
model with DA+MSA lookup beats every other
experimental setup that we tested, leading to the
best segmentation results for all dialects, without
doing dialect identification. This may indicate that
bi-LSTM-CRF benefited from cross-dialect data
in improving segmentation for individual dialects.

7 Conclusion

This paper presents (to the best of our knowledge)
the first comparative study between closely related
languages with regards to their segmentation. Ara-
bic dialects diverged from a single origin, yet they
maintained pan-dialectal common features which

allow them to cross-fertilize.

Our results show that a single joint segmenta-
tion model, based on bi-LSTM-CRF, can be devel-
oped for a group of dialects and this model yields
results that are comparable to, or even superior
to, the performance of single dialect-specific mod-
els. Our results also show that there is a degree
of closeness between dialects that is contingent
with the geographical proximity. For example,
we statistically show that Gulf is closer to Lev-
antine than to Egyptian, and similarly Levantine is
closer to Egyptian than to Gulf. Cross dialect seg-
mentation experiments also show that Maghrebi is
equally distant from the other three regional di-
alects. This sheds some light on the degree of mu-
tual intelligibility between the speakers of Arabic
dialects, assuming that the level of success in inter-

439

dialectal segmentation can be an indicator of how
well speakers of the respective dialects can under-
stand each others.

References
Ahmed Abdelali, Kareem Darwish, Nadir Durrani, and

Hamdy Mubarak. 2016. Farasa: A fast and furious
segmenter for arabic. In Proceedings of the 2016
Conference of the North American Chapter of the
Association for Computational Linguistics: Demon-
strations. Association for Computational Linguis-
tics, San Diego, California, pages 11–16.

Mohammed Attia, Pavel Pecina, Antonio Toral, Lamia
Tounsi, and Josef van Genabith. 2011. An open-
source finite state morphological transducer for
modern standard arabic. In Proceedings of the
9th International Workshop on Finite State Methods
and Natural Language Processing. Association for
Computational Linguistics, pages 125–133.

Yoshua Bengio, Patrice Simard, and Paolo Frasconi.
1994. Learning long-term dependencies with gradi-
ent descent is difficult. IEEE transactions on neural
networks 5(2):157–166.

Fadi Biadsy, Julia Hirschberg, and Nizar Habash. 2009.
Spoken arabic dialect identification using phonotac-
tic modeling. In Proceedings of the EACL 2009
Workshop on Computational Approaches to Semitic
Languages. Association for Computational Linguis-
tics, Stroudsburg, PA, USA, Semitic ’09, pages 53–
61.

Houda Bouamor, Nizar Habash, and Kemal Oflazer.
2014. A multidialectal parallel corpus of arabic.
In Nicoletta Calzolari (Conference Chair), Khalid
Choukri, Thierry Declerck, Hrafn Loftsson, Bente
Maegaard, Joseph Mariani, Asuncion Moreno, Jan
Odijk, and Stelios Piperidis, editors, Proceedings of
the Ninth International Conference on Language Re-
sources and Evaluation (LREC’14). European Lan-
guage Resources Association (ELRA), Reykjavik,
Iceland.

Tim Buckwalter. 2004. Buckwalter arabic morpholog-
ical analyzer version 2.0 .

Rich Caruana, Steve Lawrence, and Lee Giles. 2000.
Overfitting in neural nets: Backpropagation, conju-
gate gradient, and early stopping. In NIPS. pages
402–408.

Kareem Darwish, Hassan Sajjad, and Hamdy Mubarak.
2014. Verifiably effective arabic dialect identifica-
tion. In EMNLP. pages 1465–1468.

Mohamed Eldesouki, Fahim Dalvi, Hassan Sajjad, and
Kareem Darwish. 2016. Qcri@ dsl 2016: Spoken
arabic dialect identification using textual features.
VarDial 3 page 221.

Alex Graves. 2013. Generating sequences with
recurrent neural networks. arXiv preprint
arXiv:1308.0850 .

Alex Graves, Abdel-rahman Mohamed, and Geoffrey
Hinton. 2013. Speech recognition with deep recur-
rent neural networks. In Acoustics, speech and sig-
nal processing (icassp), 2013 ieee international con-
ference on. IEEE, pages 6645–6649.

Alex Graves and Jürgen Schmidhuber. 2005. Frame-
wise phoneme classification with bidirectional lstm
and other neural network architectures. Neural Net-
works 18(5):602–610.

Nizar Habash, Mona T Diab, and Owen Rambow.
2012. Conventional orthography for dialectal ara-
bic. In LREC. pages 711–718.

Nizar Habash, Ryan Roth, Owen Rambow, Ramy Es-
kander, and Nadi Tomeh. 2013. Morphological
analysis and disambiguation for dialectal arabic. In
Hlt-Naacl. pages 426–432.

Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky,
Ilya Sutskever, and Ruslan R Salakhutdinov. 2012.
Improving neural networks by preventing co-
adaptation of feature detectors. arXiv preprint
arXiv:1207.0580 .

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation
9(8):1735–1780.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidi-
rectional LSTM-CRF models for sequence tagging.
CoRR abs/1508.01991.

Najib Ismail Jarad. 2014. The grammaticalization of
the motion verb ”ra” as a prospective aspect marker
in syrian arabic. Al-’Arabiyya 47:101–118.

Thorsten Joachims. 2006. Training linear svms in lin-
ear time. In Proceedings of the 12th ACM SIGKDD
international conference on Knowledge discovery
and data mining. ACM, pages 217–226.

John D. Lafferty, Andrew McCallum, and Fernando
C. N. Pereira. 2001. Conditional random fields:
Probabilistic models for segmenting and labeling se-
quence data. In Proc. ICML.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
arXiv preprint arXiv:1603.01360 .

Zachary C Lipton, David C Kale, Charles Elkan, and
Randall Wetzell. 2015. A critical review of recur-
rent neural networks for sequence learning. CoRR
abs/1506.00019.

Xuezhe Ma and Eduard Hovy. 2016. End-to-end
sequence labeling via bi-directional lstm-cnns-crf.
In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume

440

1: Long Papers). Association for Computational
Linguistics, Berlin, Germany, pages 1064–1074.
http://www.aclweb.org/anthology/P16-1101.

Mohamed Maamouri, Ann Bies, Seth Kulick, Michael
Ciul, Nizar Habash, and Ramy Eskander. 2014. De-
veloping an egyptian arabic treebank: Impact of di-
alectal morphology on annotation and tool develop-
ment. In LREC. pages 2348–2354.

Emad Mohamed, Behrang Mohit, and Kemal Oflazer.
2012. Annotating and learning morphological seg-
mentation of egyptian colloquial arabic. In LREC.
pages 873–877.

Will Monroe, Spence Green, and Christopher D Man-
ning. 2014. Word segmentation of informal arabic
with domain adaptation. In ACL (2). pages 206–211.

Hamdy Mubarak and Kareem Darwish. 2014. Using
twitter to collect a multi-dialectal corpus of arabic.
In Proceedings of the EMNLP 2014 Workshop on
Arabic Natural Language Processing (ANLP). pages
1–7.

Arfath Pasha, Mohamed Al-Badrashiny, Mona Diab,
Ahmed El Kholy, Ramy Eskander, Nizar Habash,
Manoj Pooleery, Owen Rambow, and Ryan M Roth.
2014. Madamira: A fast, comprehensive tool for
morphological analysis and disambiguation of Ara-
bic. Proc. LREC .

Maria Persson. 2008. The role of the b-prefix in gulf
arabic dialects as a marker of future, intent and/or
irrealis 8:26–52.

Younes Samih, Mohammed Attia, Mohamed Eldes-
ouki, Hamdy Mubarak, Ahmed Abdelali, Laura
Kallmeyer, and Kareem Darwish. 2017. A neu-
ral architecture for dialectal arabic segmentation.
WANLP 2017 (co-located with EACL 2017) page 46.

Mike Schuster and Kuldip K Paliwal. 1997. Bidirec-
tional recurrent neural networks. IEEE Transactions
on Signal Processing 45(11):2673–2681.

Omar F Zaidan and Chris Callison-Burch. 2014. Ara-
bic dialect identification. Computational Linguistics
40(1):171–202.

Rabih Zbib, Erika Malchiodi, Jacob Devlin, David
Stallard, Spyros Matsoukas, Richard Schwartz, John
Makhoul, Omar F. Zaidan, and Chris Callison-
Burch. 2012. Machine translation of arabic dialects.
In Proceedings of the 2012 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies.
Association for Computational Linguistics, Strouds-
burg, PA, USA, NAACL HLT ’12, pages 49–59.

441

Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017), pages 442–451,
Vancouver, Canada, August 3 - August 4, 2017. c©2017 Association for Computational Linguistics

Natural Language Generation for Spoken Dialogue System
using RNN Encoder-Decoder Networks

Van-Khanh Tran1,2 and Le-Minh Nguyen1

1Japan Advanced Institute of Science and Technology, JAIST
1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
{tvkhanh, nguyenml}@jaist.ac.jp

2University of Information and Communication Technology, ICTU
Thai Nguyen University, Vietnam
tvkhanh@ictu.edu.vn

Abstract

Natural language generation (NLG) is a
critical component in a spoken dialogue
system. This paper presents a Recurrent
Neural Network based Encoder-Decoder
architecture, in which an LSTM-based de-
coder is introduced to select, aggregate se-
mantic elements produced by an attention
mechanism over the input elements, and
to produce the required utterances. The
proposed generator can be jointly trained
both sentence planning and surface real-
ization to produce natural language sen-
tences. The proposed model was exten-
sively evaluated on four different NLG
datasets. The experimental results showed
that the proposed generators not only con-
sistently outperform the previous methods
across all the NLG domains but also show
an ability to generalize from a new, un-
seen domain and learn from multi-domain
datasets.

1 Introduction

Natural Language Generation (NLG) plays a crit-
ical role in Spoken Dialogue Systems (SDS) with
task is to convert a meaning representation pro-
duced by the Dialogue Manager into natural lan-
guage utterances. Conventional approaches still
rely on comprehensive hand-tuning templates and
rules requiring expert knowledge of linguistic rep-
resentation, including rule-based (Mirkovic et al.,
2011), corpus-based n-gram models (Oh and Rud-
nicky, 2000), and a trainable generator (Stent
et al., 2004).

Recently, Recurrent Neural Networks (RNNs)
based approaches have shown promising perfor-
mance in tackling the NLG problems. The RNN-
based models have been applied for NLG as a joint

training model (Wen et al., 2015a,b) and an end-
to-end training model (Wen et al., 2016c). A re-
curring problem in such systems is requiring anno-
tated datasets for particular dialogue acts1 (DAs).
To ensure that the generated utterance representing
the intended meaning of the given DA, the previ-
ous RNN-based models were further conditioned
on a 1-hot vector representation of the DA. Wen
et al. (2015a) introduced a heuristic gate to en-
sure that all the slot-value pair was accurately cap-
tured during generation. Wen et al. (2015b) sub-
sequently proposed a Semantically Conditioned
Long Short-term Memory generator (SC-LSTM)
which jointly learned the DA gating signal and
language model.

More recently, Encoder-Decoder networks
(Vinyals and Le, 2015; Li et al., 2015), especially
the attentional based models (Wen et al., 2016b;
Mei et al., 2015) have been explored to solve
the NLG tasks. The Attentional RNN Encoder-
Decoder (Bahdanau et al., 2014) (ARED) based
approaches have also shown improved perfor-
mance on a variety of tasks, e.g., image captioning
(Xu et al., 2015; Yang et al., 2016), text summa-
rization (Rush et al., 2015; Nallapati et al., 2016).

While the RNN-based generators with DA
gating-vector can prevent the undesirable seman-
tic repetitions, the ARED-based generators show
signs of better adapting to a new domain. How-
ever, none of the models show significant advan-
tage from out-of-domain data. To better analyze
model generalization to an unseen, new domain
as well as model leveraging the out-of-domain
sources, we propose a new architecture which is
an extension of the ARED model. In order to
better select, aggregate and control the seman-
tic information, a Refinement Adjustment LSTM-
based component (RALSTM) is introduced to the

1A combination of an action type and a set of slot-value
pairs. e.g. inform(name=’Bar crudo’; food=’raw food’)

442

decoder side. The proposed model can learn from
unaligned data by jointly training the sentence
planning and surface realization to produce natural
language sentences. We conducted experiments
on four different NLG domains and found that
the proposed methods significantly outperformed
the state-of-the-art methods regarding BLEU (Pa-
pineni et al., 2002) and slot error rate ERR scores
(Wen et al., 2015b). The results also showed
that our generators could scale to new domains by
leveraging the out-of-domain data. To sum up, we
make three key contributions in this paper:

• We present an LSTM-based component
called RALSTM cell applied on the decoder
side of an ARED model, resulting in an end-
to-end generator that empirically shows sig-
nificant improved performances in compari-
son with the previous approaches.

• We extensively conduct the experiments to
evaluate the models training from scratch on
each in-domain dataset.

• We empirically assess the models’ ability to:
learn from multi-domain datasets by pool-
ing all available training datasets; and adapt
to a new, unseen domain by limited feeding
amount of in-domain data.

We review related works in Section 2. Following
a detail of proposed model in Section 3, Section 4
describes datasets, experimental setups, and eval-
uation metrics. The resulting analysis is presented
in Section 5. We conclude with a brief summary
and future work in Section 6.

2 Related Work

Recently, RNNs-based models have shown
promising performance in tackling the NLG
problems. Zhang and Lapata (2014) proposed
a generator using RNNs to create Chinese po-
etry. Xu et al. (2015); Karpathy and Fei-Fei
(2015); Vinyals et al. (2015) also used RNNs in
a multi-modal setting to solve image captioning
tasks. The RNN-based Sequence to Sequence
models have applied to solve variety of tasks:
conversational modeling (Vinyals and Le, 2015;
Li et al., 2015, 2016), machine translation (Luong
et al., 2015; Li and Jurafsky, 2016)

For task-oriented dialogue systems, Wen et al.
(2015a) combined a forward RNN generator, a
CNN reranker, and a backward RNN reranker to

generate utterances. Wen et al. (2015b) proposed
SC-LSTM generator which introduced a control
sigmoid gate to the LSTM cell to jointly learn the
gating mechanism and language model. A recur-
ring problem in such systems is the lack of suffi-
cient domain-specific annotated data. Wen et al.
(2016a) proposed an out-of-domain model which
was trained on counterfeited data by using seman-
tically similar slots from the target domain in-
stead of the slots belonging to the out-of-domain
dataset. The results showed that the model can
achieve a satisfactory performance with a small
amount of in-domain data by fine tuning the tar-
get domain on the out-of-domain trained model.

More recently, RNN encoder-decoder based
models with attention mechanism (Bahdanau
et al., 2014) have shown improved performances
in various tasks. Yang et al. (2016) proposed a
review network to the image captioning, which
reviews all the information encoded by the en-
coder and produces a compact thought vector.
Mei et al. (2015) proposed RNN encoder-decoder-
based model by using two attention layers to
jointly train content selection and surface realiza-
tion. More close to our work, Wen et al. (2016b)
proposed an attentive encoder-decoder based gen-
erator which computed the attention mechanism
over the slot-value pairs. The model showed a
domain scalability when a very limited amount of
data is available.

Moving from a limited domain dialogue system
to an open domain dialogue system raises some
issues. Therefore, it is important to build an open
domain dialogue system that can make as much
use of existing abilities of functioning from other
domains. There have been several works to tackle
this problem, such as (Mrkšić et al., 2015) using
RNN-based networks for multi-domain dialogue
state tracking, (Wen et al., 2016a) using a pro-
cedure to train multi-domain via multiple adapta-
tion steps, or (Gašić et al., 2015; Williams, 2013)
adapting of SDS components to new domains.

3 Recurrent Neural Language Generator

The recurrent language generator proposed in this
paper is based on a neural language generator
(Wen et al., 2016b), which consists of three main
components: (i) an Encoder that incorporates the
target meaning representation (MR) as the model
inputs, (ii) an Aligner that aligns and controls the
semantic elements, and (iii) an RNN Decoder that

443

Figure 1: Unrolled presentation of the RNNs-
based neural language generator. The Encoder
part is a BiLSTM, the Aligner is an attention
mechanism over the encoded inputs, and the De-
coder is the proposed RALSTM model condi-
tioned on a 1-hot representation vector s. The fad-
ing color of the vector s indicates retaining infor-
mation for future computational time steps.

generates output sentences. The generator archi-
tecture is shown in Figure 1. The Encoder first en-
codes the MR into input semantic elements which
are then aggregated and selected by utilizing an
attention-based mechanism by the Aligner. The
input to the RNN Decoder at each time step is a
1-hot encoding of a token2 wt and an attentive DA
representation dt. At each time step t, RNN De-
coder also computes how much the feature value
vector st�1 retained for the next computational
steps, and adds this information to the RNN output
which represents the probability distribution of the
next token wt+1. At generation time, we can sam-
ple from this conditional distribution to obtain the
next token in a generated sentence, and feed it as
the next input to the RNN Decoder. This process
finishes when an end sign is generated (Karpa-
thy and Fei-Fei, 2015), or some constraints are
reached (Zhang and Lapata, 2014). The model can
produce a sequence of tokens which can finally be
lexicalized3 to form the required utterance.

2Input texts are delexicalized where slot values are re-
placed by its corresponding slot tokens.

3The process in which slot token is replaced by its value.

Figure 2: The RALSTM cell proposed in this pa-
per, which consists of three components: an Re-
finement Cell, a traditional LSTM Cell, and an
Adjustment Cell. At time step t, while the Refine-
ment cell computes new input tokens xt based on
the original input tokens and the attentional DA
representation dt, the Adjustment Cell calculates
how much information of the slot-value pairs can
be generated by the LSTM Cell.

3.1 Encoder

The slots and values are separated parameters used
in the encoder side. This embeds the source infor-
mation into a vector representation zi which is a
concatenation of embedding vector representation
of each slot-value pair, and is computed by:

zi = ui � vi (1)

where ui, vi are the i-th slot and value embedding
vectors, respectively, and � is vector concatena-
tion. The i index runs over the L given slot-value
pairs. In this work, we use a 1-layer, Bidirectional
LSTM (Bi-LSTM) to encode the sequence of slot-
value pairs4 embedding. The Bi-LSTM consists
of forward and backward LSTMs which read the
sequence of slot-value pairs from left-to-right and
right-to-left to produce forward and backward se-
quence of hidden states (�!e1 , ..,�!eL), and (�e1 , .., �eL),
respectively. We then obtain the sequence of en-
coded hidden states E = (e1, e2, .., eL) where ei

4We treated the set of slot-value pairs as a sequence and
use the order specified by slot’s name (e.g., slot address
comes first, food follows address). We have tried treating
slot-value pairs as a set with natural order as in the given DAs.
However, this yielded even worse results.

444

is a sum of the forward hidden state �!ei and the
backward one �ei as follows:

ei = �!ei + �ei (2)

3.2 Aligner
The Aligner utilizes attention mechanism to calcu-
late the DA representation as follows:

�t,i =
exp et,iP
j exp et,j

(3)

where
et,i = a(ei, ht�1) (4)

and �t,i is the weight of i-th slot-value pair calcu-
lated by the attention mechanism. The alignment
model a is computed by:

a(ei, ht�1) = v>a tanh(Waei + Uaht�1) (5)

where va, Wa, Ua are the weight matrices to learn.
Finally, the Aligner calculates dialogue act embed-
ding dt as follows:

dt = a�
X

i
�t,iei (6)

where a is vector embedding of the action type.

3.3 RALSTM Decoder
The proposed semantic RALSTM cell applied for
Decoder side consists of three components: a Re-
finement cell, a traditional LSTM cell, and an Ad-
justment cell:

Firstly, instead of feeding the original input to-
ken wt into the RNN cell, the input is recomputed
by using a semantic gate as follows:

rt = �(Wrddt + Wrhht�1)
xt = rt � wt

(7)

where Wrd and Wrh are weight matrices.
Element-wise multiplication � plays a part in
word-level matching which not only learns the
vector similarity, but also preserves information
about the two vectors. Wrh acts like a key phrase
detector that learns to capture the pattern of gener-
ation tokens or the relationship between multiple
tokens. In other words, the new input xt consists
of information of the original input token wt, the
DA representation dt, and the hidden context ht�1.
rt is called a Refinement gate because the input to-
kens are refined by a combination gating informa-
tion of the attentive DA representation dt and the

previous hidden state ht�1. By this way, we can
represent the whole sentence based on the refined
inputs.

Secondly, the traditional LSTM network pro-
posed by Hochreiter and Schmidhuber (2014) in
which the input gate ii, forget gate ft and output
gates ot are introduced to control information flow
and computed as follows:0BB@

it
ft
ot

ĉt

1CCA =

0BB@
�
�
�

tanh

1CCAW4n,4n

0@ xt

dt

ht�1

1A (8)

where n is hidden layer size, W4n,4n is model pa-
rameters. The cell memory value ct is modified to
depend on the DA representation as:

ct = ft � ct�1 + it � ĉt + tanh(Wcrrt)

h̃t = ot � tanh(ct)
(9)

where h̃t is the output.
Thirdly, inspired by work of Wen et al. (2015b)

in which the generator was further conditioned on
a 1-hot representation vector s of given dialogue
act, and work of Lu et al. (2016) that proposed a
visual sentinel gate to make a decision on whether
the model should attend to the image or to the sen-
tinel gate, an additional gating cell is introduced
on top of the traditional LSTM to gate another
controlling vector s. Figure 6 shows how RAL-
STM controls the DA vector s. First, starting from
the 1-hot vector of the DA s0, at each time step t
the proposed cell computes how much the LSTM
output h̃t affects the DA vector, which is computed
as follows:

at = �(Waxxt + Wahh̃t)
st = st�1 � at

(10)

where Wax, Wah are weight matrices to be
learned. at is called an Adjustment gate since its
task is to control what information of the given DA
have been generated and what information should
be retained for future time steps. Second, we con-
sider how much the information preserved in the
DA st can be contributed to the output, in which
an additional output is computed by applying the
output gate ot on the remaining information in st

as follows:

ca = Wosst

h̃a = ot � tanh(ca)
(11)

445

where Wos is a weight matrix to project the DA
presentation into the output space, h̃a is the Ad-
justment cell output. Final RALSTM output is
a combination of both outputs of the traditional
LSTM cell and the Adjustment cell, and computed
as follows:

ht = h̃t + h̃a (12)

Finally, the output distribution is computed by
applying a softmax function g, and the distribution
can be sampled to obtain the next token,

P (wt+1 | wt, ...w0, DA) = g(Whoht)
wt+1 ⇠ P (wt+1 | wt, wt�1, ...w0, DA)

(13)

where DA = (s, z).

3.4 Training

The objective function was the negative log-
likelihood and computed by:

F(✓) = �
TX

t=1

y>t log pt (14)

where: yt is the ground truth token distribution, pt

is the predicted token distribution, T is length of
the input sentence. The proposed generators were
trained by treating each sentence as a mini-batch
with l2 regularization added to the objective func-
tion for every 5 training examples. The models
were initialized with a pretrained Glove word em-
bedding vectors (Pennington et al., 2014) and op-
timized by using stochastic gradient descent and
back propagation through time (Werbos, 1990).
Early stopping mechanism was implemented to
prevent over-fitting by using a validation set as
suggested in (Mikolov, 2010).

3.5 Decoding

The decoding consists of two phases: (i) over-
generation, and (ii) reranking. In the over-
generation, the generator conditioned on both rep-
resentations of the given DA use a beam search
to generate a set of candidate responses. In the
reranking phase, cost of the generator is computed
to form the reranking score R as follows:

R = F(✓) + �ERR (15)

where � is a trade off constant and is set to a
large value in order to severely penalize nonsensi-
cal outputs. The slot error rate ERR, which is the

number of slots generated that is either missing or
redundant, and is computed by:

ERR =
p + q

N
(16)

where N is the total number of slots in DA, and
p, q is the number of missing and redundant slots,
respectively.

4 Experiments

We extensively conducted a set of experiments to
assess the effectiveness of the proposed models by
using several metrics, datasets, and model archi-
tectures, in order to compare to prior methods.

4.1 Datasets

We assessed the proposed models on four differ-
ent NLG domains: finding a restaurant, finding
a hotel, buying a laptop, and buying a television.
The Restaurant and Hotel were collected in (Wen
et al., 2015b), while the Laptop and TV datasets
have been released by (Wen et al., 2016a) with a
much larger input space but only one training ex-
ample for each DA so that the system must learn
partial realization of concepts and be able to re-
combine and apply them to unseen DAs. This
makes the NLG tasks for the Laptop and TV do-
mains become much harder. The dataset statistics
are shown in Table 1.

Table 1: Dataset statistics.

Restaurant Hotel Laptop TV
train 3,114 3,223 7,944 4,221

validation 1,039 1,075 2,649 1,407
test 1,039 1,075 2,649 1,407

distinct DAs 248 164 13,242 7,035
DA types 8 8 14 14

slots 12 12 19 15

4.2 Experimental Setups

The generators were implemented using the Ten-
sorFlow library (Abadi et al., 2016) and trained
with training, validation and testing ratio as 3:1:1.
The hidden layer size, beam size were set to be
80 and 10, respectively, and the generators were
trained with a 70% of dropout rate. We performed
5 runs with different random initialization of the
network and the training is terminated by using
early stopping. We then chose a model that yields
the highest BLEU score on the validation set as
shown in Table 2. Since the trained models can

446

Table 2: Performance comparison on four datasets in terms of the BLEU and the error rate ERR(%)
scores. The results were produced by training each network on 5 random initialization and selected
model with the highest validation BLEU score.] denotes the Attention-based Encoder-Decoder model.
The best and second best models highlighted in bold and italic face, respectively.

Model
Restaurant Hotel Laptop TV

BLEU ERR BLEU ERR BLEU ERR BLEU ERR
HLSTM 0.7466 0.74% 0.8504 2.67% 0.5134 1.10% 0.5250 2.50%

SCLSTM 0.7525 0.38% 0.8482 3.07% 0.5116 0.79% 0.5265 2.31%
Enc-Dec] 0.7398 2.78% 0.8549 4.69% 0.5108 4.04% 0.5182 3.18%

w/o A] 0.7651 0.99% 0.8940 1.82% 0.5219 1.64% 0.5296 2.40%
w/o R] 0.7748 0.22% 0.8944 0.48% 0.5235 0.57% 0.5350 0.72%

RALSTM] 0.7789 0.16% 0.8981 0.43% 0.5252 0.42% 0.5406 0.63%

Table 3: Performance comparison of the proposed models on four datasets in terms of the BLEU and the
error rate ERR(%) scores. The results were averaged over 5 randomly initialized networks. bold denotes
the best model.

Model
Restaurant Hotel Laptop TV

BLEU ERR BLEU ERR BLEU ERR BLEU ERR
w/o A 0.7619 2.26% 0.8913 1.85% 0.5180 1.81% 0.5270 2.10%
w/o R 0.7733 0.23% 0.8901 0.59% 0.5208 0.60% 0.5321 0.50%

RALSTM 0.7779 0.20% 0.8965 0.58% 0.5231 0.50% 0.5373 0.49%

differ depending on the initialization, we also re-
port the results which were averaged over 5 ran-
domly initialized networks. Note that, except the
results reported in Table 2, all the results shown
were averaged over 5 randomly initialized net-
works. We set � to 1000 to severely discourage the
reranker from selecting utterances which contain
either redundant or missing slots. For each DA,
we over-generated 20 candidate sentences and se-
lected the top 5 realizations after reranking. More-
over, in order to better understand the effectiveness
of our proposed methods, we: (i) performed an ab-
lation experiments to demonstrate the contribution
of each proposed cells (Tables 2, 3), (ii) trained the
models on the Laptop domain with varied propor-
tion of training data, starting from 10% to 100%
(Figure 3), (iii) trained general models by merg-
ing all the data from four domains together and
tested them in each individual domain (Figure 4),
and (iv) trained adaptation models on merging data
from restaurant and hotel domains, then fine tuned
the model on laptop domain with varied amount of
adaptation data (Figure 5).

4.3 Evaluation Metrics and Baselines

The generator performance was assessed on the
two evaluation metrics: the BLEU and the slot
error rate ERR by adopting code from an open
source benchmark toolkit for Natural Language

Generation5. We compared the proposed mod-
els against three strong baselines which have been
recently published as state-of-the-art NLG bench-
marks5.

• HLSTM proposed by Wen et al. (2015a)
which used a heuristic gate to ensure that all
of the slot-value information was accurately
captured when generating.

• SCLSTM proposed by Wen et al. (2015b)
which can jointly learn the gating signal and
language model.

• Enc-Dec proposed by Wen et al. (2016b)
which applied the attention-based encoder-
decoder architecture.

5 Results and Analysis

5.1 Results
We conducted extensive experiments on our mod-
els and compared against the previous methods.
Overall, the proposed models consistently achieve
the better performance regarding both evaluation
metrics across all domains in all test cases.

Model Comparison in an Unseen Domain
The ablation studies (Tables 2, 3) demonstrate
the contribution of different model components

5https://github.com/shawnwun/RNNLG

447

Figure 3: Performance comparison of the models trained on Laptop domain.

Figure 4: Performance comparison of the general models on four different domains.

Figure 5: Performance on Laptop domain with varied amount of the adaptation training data when adapt-
ing models trained on Restaurant+Hotel dataset.

in which the models were assessed without Ad-
justment cell (w/o A), or without Refinement cell
(w/o R). It clearly sees that the Adjustment cell
contributes to reducing the slot error rate ERR
score since it can effectively prevent the undesir-
able slot-value pair repetitions by gating the DA
vector s. A comparison between the ARED-based
models (denoted by] in Table 2) shows that the
proposed models not only have better performance
with higher the BLEU score but also significantly
reduce the slot error rate ERR score by a large
margin about 2% to 4% in every datasets. More-
over, a comparison between the models with gat-
ing the DA vector also indicates that the proposed
models (w/o R, RALSTM) have significant im-
proved performance on both the evaluation metrics
across the four domains compared to the SCLSTM
model. The RALSTM cell without the Refine-
ment cell is similar as the SCLSTM cell. How-
ever, it obtained the results much better than the

SCLSTM baselines. This stipulates the neces-
sary of the LSTM encoder and the Aligner in ef-
fectively partial learning the correlated order be-
tween slot-value representation in the DAs, espe-
cially for the unseen domain where there is only
one training example for each DA. Table 3 fur-
ther demonstrates the stable strength of our mod-
els since the results’ pattern stays unchanged com-
pared to those in Table 2.

Figure 3 shows a comparison of three models
(Enc-Dec, SCLSTM, and RALSTM) which were
trained from scratch on the unseen laptop domain
in varied proportion of training data, from 1% to
100%. It clearly shows that the RALSTM outper-
forms the previous models in all cases, while the
Enc-Dec has a much greater ERR score comparing
to the two models.

A comparison of top responses generated for
some input DAs between different models are
shown in Table 4. While the previous models still

448

Table 4: Comparison of top responses generated for some input dialogue acts between different models.
Errors are marked in color (missing, misplaced information). All2* are general models.

Model Generated Responses from Laptop Domain
1 Input DA ?compare(name=”satellite notus 19”, pricerange=”budget”, drive=”500 gb”, name=”portege thanatos 98”,

pricerange=”expensive”, drive=”128 gb”)
Reference the satellite notus 19 has a 500 gb drive and is in the budget price range . on the other hand the portege thanatos 98

has a 128 gb drive and is in the expensive price range . which would you prefer
HLSTM the satellite notus 19 is a budget priced laptop with a 500 gb drive and a 128 gb drive . which one do you prefer

[portege thanatos 98, expensive]
Enc-Dec the satellite notus 19 is in the budget price range . the portege thanatos 98 has a 500 gb drive and is in the expensive

price range . which one do you prefer [128 gb]
SCLSTM the satellite notus 19 is in the budget price range and has a 500 gb drive and the portege thanatos 98 has a 128 gb

drive . which one do you prefer [expensive]
RALSTM the satellite notus 19 is in the budget price range with a 500 gb drive , while the portege thanatos 98 is in the

expensive price range and has a 128 gb drive . which one do you prefer
All2Laptop the satellite notus 19 is a budget price range with a 500 gb drive and the portege thanatos 98 has a 128 gb drive and

is in the expensive price range . which one do you prefer
Model Generated Responses from TV Domain
2 Input DA inform count(count=”73”, type=”television”, hasusbport=”dontcare”, hdmiport=”2”, screensizerange=”dontcare”)

Reference there are 73 televisions if you do not care about whether it has usb port or not, with 2 hdmi ports and if you do not
care about the screen size

HLSTM there are 73 televisions with 2 hdmi ports and if you do not care about the number of usb ports [screensizerange]
Enc-Dec there are 73 televisions with 2 hdmi ports if you do not care about usb ports [screensizerange]
SCLSTM there are 73 televisions with 2 hdmi ports if you do not care about the screen size and if you do not care about the

number of usb ports
RALSTM there are 73 televisions with 2 hdmi ports if you do not care about screen size or usb ports
All2Tv there are 73 televisions with 2 hdmi ports if you do not care about screen size or usb ports

produce some errors (missing and misplaced in-
formation), the proposed models (RALSTM and
the models All2* trained by pooling all datasets
together) can generate appropriate sentences. We
also found that the proposed models tend to gener-
ate more complete and concise sentences than the
other models.

All these prove the importance of the proposed
components: the Refinement cell in aggregating
and selecting the attentive information, and the
Adjustment cell in controlling the feature vector
(see Examples in Figure 6).

General Models

Figure 4 shows a comparison performance of gen-
eral models as described in Section 4.2. The re-
sults are consistent with the Figure 3, in which the
RALSTM has better performance than the Enc-Dec
and SCLSTM on all domains in terms of the BLEU
and the ERR scores, while the Enc-Dec has diffi-
culties in reducing the ERR score. This indicates
the relevant contribution of the proposed compo-
nent Refinement and Adjustment cells to the orig-
inal ARED architecture, in which the Refinement
with attentional gating can effectively select and
aggregate the information before putting them into
the traditional LSTM cell, while the Adjustment
with gating DA vector can effectively control the

(a) An example from the Laptop domain.

(b) An example from the TV domain.

Figure 6: Example showing how RALSTM drives
down the DA feature value vector s step-by-step,
in which the model generally shows its ability to
detect words and phases describing a correspond-
ing slot-value pair.

information flow during generation.

Adaptation Models
Figure 5 shows domain scalability of the three
models in which the models were first trained on

449

the merging out-of-domain Restaurant and Hotel
datasets, then fine tuned the parameters with var-
ied amount of in-domain training data (laptop do-
main). The RALSTM model outperforms the pre-
vious model in both cases where the sufficient in-
domain data is used (as in Figure 5-left) and the
limited in-domain data is used (Figure 5-right).
The Figure 5-right also indicates that the RALSTM
model can adapt to a new, unseen domain faster
than the previous models.

6 Conclusion and Future Work

We present an extension of ARED model, in
which an RALSTM component is introduced to
select and aggregate semantic elements produced
by the Encoder, and to generate the required sen-
tence. We assessed the proposed models on four
NLG domains and compared to the state-of-the-
art generators. The proposed models empirically
show consistent improvement over the previous
methods in both the BLEU and ERR evaluation
metrics. The proposed models also show an abil-
ity to extend to a new, unseen domain no mat-
ter how much the in-domain training data was
fed. In the future, it would be interesting to ap-
ply the proposed model to other tasks that can be
modeled based on the encoder-decoder architec-
ture, i.e., image captioning, reading comprehen-
sion, and machine translation.

Acknowledgements

This work was supported by JSPS Kakenhi
Grant Number JP15K16048 and JST CREST JP-
MJCR1513. The first author would like to thank
the Vietnamese Government Scholarship (911
project).

References
Martın Abadi, Ashish Agarwal, Paul Barham, Eugene

Brevdo, Zhifeng Chen, Craig Citro, Greg S Corrado,
Andy Davis, Jeffrey Dean, Matthieu Devin, et al.
2016. Tensorflow: Large-scale machine learning on
heterogeneous distributed systems. arXiv preprint
arXiv:1603.04467 .

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473 .

Milica Gašić, Dongho Kim, Pirros Tsiakoulis, and
Steve Young. 2015. Distributed dialogue poli-
cies for multi-domain statistical dialogue manage-
ment. In Acoustics, Speech and Signal Processing

(ICASSP), 2015 IEEE International Conference on.
IEEE, pages 5371–5375.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation .

Andrej Karpathy and Li Fei-Fei. 2015. Deep visual-
semantic alignments for generating image descrip-
tions. In Proceedings of the IEEE Conference
CVPR. pages 3128–3137.

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao,
and Bill Dolan. 2015. A diversity-promoting objec-
tive function for neural conversation models. arXiv
preprint arXiv:1510.03055 .

Jiwei Li, Michel Galley, Chris Brockett, Georgios P
Spithourakis, Jianfeng Gao, and Bill Dolan. 2016.
A persona-based neural conversation model. arXiv
preprint arXiv:1603.06155 .

Jiwei Li and Dan Jurafsky. 2016. Mutual information
and diverse decoding improve neural machine trans-
lation. arXiv preprint arXiv:1601.00372 .

Jiasen Lu, Caiming Xiong, Devi Parikh, and Richard
Socher. 2016. Knowing when to look: Adaptive at-
tention via a visual sentinel for image captioning.
arXiv preprint arXiv:1612.01887 .

Minh-Thang Luong, Quoc V Le, Ilya Sutskever, Oriol
Vinyals, and Lukasz Kaiser. 2015. Multi-task
sequence to sequence learning. arXiv preprint
arXiv:1511.06114 .

Hongyuan Mei, Mohit Bansal, and Matthew R Walter.
2015. What to talk about and how? selective gen-
eration using lstms with coarse-to-fine alignment.
arXiv preprint arXiv:1509.00838 .

Tomas Mikolov. 2010. Recurrent neural network based
language model.

Danilo Mirkovic, Lawrence Cavedon, Matthew Purver,
Florin Ratiu, Tobias Scheideck, Fuliang Weng,
Qi Zhang, and Kui Xu. 2011. Dialogue manage-
ment using scripts and combined confidence scores.
US Patent 7,904,297.

Nikola Mrkšić, Diarmuid O Séaghdha, Blaise Thom-
son, Milica Gašić, Pei-Hao Su, David Vandyke,
Tsung-Hsien Wen, and Steve Young. 2015. Multi-
domain dialog state tracking using recurrent neural
networks. arXiv preprint arXiv:1506.07190 .

Ramesh Nallapati, Bowen Zhou, Caglar Gulcehre,
Bing Xiang, et al. 2016. Abstractive text summa-
rization using sequence-to-sequence rnns and be-
yond. arXiv preprint arXiv:1602.06023 .

Alice H Oh and Alexander I Rudnicky. 2000. Stochas-
tic language generation for spoken dialogue sys-
tems. In Proceedings of the 2000 ANLP/NAACL
Workshop on Conversational systems-Volume 3. As-
sociation for Computational Linguistics, pages 27–
32.

450

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of the
40th ACL. Association for Computational Linguis-
tics, pages 311–318.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word
representation. In EMNLP. volume 14, pages 1532–
43.

Alexander M Rush, Sumit Chopra, and Jason We-
ston. 2015. A neural attention model for ab-
stractive sentence summarization. arXiv preprint
arXiv:1509.00685 .

Amanda Stent, Rashmi Prasad, and Marilyn Walker.
2004. Trainable sentence planning for complex in-
formation presentation in spoken dialog systems. In
Proceedings of the 42nd ACL. Association for Com-
putational Linguistics, page 79.

Oriol Vinyals and Quoc Le. 2015. A neural conversa-
tional model. arXiv preprint arXiv:1506.05869 .

Oriol Vinyals, Alexander Toshev, Samy Bengio, and
Dumitru Erhan. 2015. Show and tell: A neural im-
age caption generator. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recog-
nition. pages 3156–3164.

Tsung-Hsien Wen, Milica Gašić, Dongho Kim, Nikola
Mrkšić, Pei-Hao Su, David Vandyke, and Steve
Young. 2015a. Stochastic Language Generation
in Dialogue using Recurrent Neural Networks with
Convolutional Sentence Reranking. In Proceedings
SIGDIAL. Association for Computational Linguis-
tics.

Tsung-Hsien Wen, Milica Gasic, Nikola Mrksic,
Lina M Rojas-Barahona, Pei-Hao Su, David
Vandyke, and Steve Young. 2016a. Multi-domain
neural network language generation for spoken dia-
logue systems. arXiv preprint arXiv:1603.01232 .

Tsung-Hsien Wen, Milica Gašic, Nikola Mrkšic,
Lina M Rojas-Barahona, Pei-Hao Su, David
Vandyke, and Steve Young. 2016b. Toward multi-
domain language generation using recurrent neural
networks .

Tsung-Hsien Wen, Milica Gašić, Nikola Mrkšić, Pei-
Hao Su, David Vandyke, and Steve Young. 2015b.
Semantically conditioned lstm-based natural lan-
guage generation for spoken dialogue systems. In
Proceedings of EMNLP. Association for Computa-
tional Linguistics.

Tsung-Hsien Wen, David Vandyke, Nikola Mrksic,
Milica Gasic, Lina M Rojas-Barahona, Pei-Hao Su,
Stefan Ultes, and Steve Young. 2016c. A network-
based end-to-end trainable task-oriented dialogue
system. arXiv preprint arXiv:1604.04562 .

Paul J Werbos. 1990. Backpropagation through time:
what it does and how to do it. Proceedings of the
IEEE 78(10):1550–1560.

Jason Williams. 2013. Multi-domain learning and gen-
eralization in dialog state tracking. In Proceedings
of SIGDIAL. Citeseer, volume 62.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho,
Aaron Courville, Ruslan Salakhudinov, Rich Zemel,
and Yoshua Bengio. 2015. Show, attend and tell:
Neural image caption generation with visual at-
tention. In International Conference on Machine
Learning. pages 2048–2057.

Zhilin Yang, Ye Yuan, Yuexin Wu, William W Cohen,
and Ruslan R Salakhutdinov. 2016. Review net-
works for caption generation. In Advances in Neural
Information Processing Systems. pages 2361–2369.

Xingxing Zhang and Mirella Lapata. 2014. Chinese
poetry generation with recurrent neural networks. In
EMNLP. pages 670–680.

451

Proceedings of the 21st Conference on Computational Natural Language Learning (CoNLL 2017), pages 452–462,
Vancouver, Canada, August 3 - August 4, 2017. c©2017 Association for Computational Linguistics

Graph-based Neural Multi-Document Summarization

Michihiro Yasunaga1 Rui Zhang1 Kshitijh Meelu1

Ayush Pareek2 Krishnan Srinivasan1 Dragomir Radev1

1Department of Computer Science, Yale University
2The LNM Institute of Information Technology

{michihiro.yasunaga,r.zhang,kshitijh.meelu}@yale.edu
{ayush.original}@gmail.com

{krishnan.srinivasan,dragomir.radev}@yale.edu

Abstract

We propose a neural multi-document sum-
marization (MDS) system that incorpo-
rates sentence relation graphs. We employ
a Graph Convolutional Network (GCN)
on the relation graphs, with sentence em-
beddings obtained from Recurrent Neural
Networks as input node features. Through
multiple layer-wise propagation, the GCN
generates high-level hidden sentence fea-
tures for salience estimation. We then use
a greedy heuristic to extract salient sen-
tences while avoiding redundancy. In our
experiments on DUC 2004, we consider
three types of sentence relation graphs
and demonstrate the advantage of combin-
ing sentence relations in graphs with the
representation power of deep neural net-
works. Our model improves upon tradi-
tional graph-based extractive approaches
and the vanilla GRU sequence model with
no graph, and it achieves competitive re-
sults against other state-of-the-art multi-
document summarization systems.

1 Introduction
Document summarization aims to produce fluent
and coherent summaries covering salient informa-
tion in the documents. Many previous summa-
rization systems employ an extractive approach by
identifying and concatenating the most salient text
units (often whole sentences) in the document.

Traditional extractive summarizers produce the
summary in two steps: sentence ranking and
sentence selection. First, they utilize human-
engineered features such as sentence position and
length (Radev et al., 2004a), word frequency
and importance (Nenkova et al., 2006; Hong and
Nenkova, 2014), among others, to rank sentence

salience. Then, they select summary-worthy sen-
tences using a range of algorithms, such as graph
centrality (Erkan and Radev, 2004), constraint op-
timization via Integer Linear Programming (Mc-
Donald, 2007; Gillick and Favre, 2009; Li et al.,
2013), or Support Vector Regression (Li et al.,
2007) algorithms. Optionally, sentence reordering
(Lapata, 2003; Barzilay et al., 2001) can follow to
improve coherence of the summary.

Recently, thanks to their strong representation
power, neural approaches have become popular in
text summarization, especially in sentence com-
pression (Rush et al., 2015) and single-document
summarization (Cheng and Lapata, 2016). Despite
their popularity, neural networks still have issues
when dealing with multi-document summarization
(MDS). In previous neural multi-document sum-
marizers (Cao et al., 2015, 2017), all the sentences
in the same document cluster are processed inde-
pendently. Hence, the relationships between sen-
tences and thus the relationships between differ-
ent documents are ignored. However, Christensen
et al. (2013) demonstrates the importance of con-
sidering discourse relations among sentences in
multi-document summarization.

This work proposes a multi-document summa-
rization system that exploits the representational
power of deep neural networks and the sentence
relation information encoded in graph representa-
tions of document clusters. Specifically, we apply
Graph Convolutional Networks (Kipf and Welling,
2017) on sentence relation graphs. First, we dis-
cuss three different techniques to produce sentence
relation graphs, where nodes represent sentences
in a cluster and edges capture the connections be-
tween sentences. Given a relation graph, our sum-
marization model apples a Graph Convolutional
Network (GCN), which takes in sentence embed-
dings from Recurrent Neural Networks as input
node features. Through multiple layer-wise prop-

452

agation, the GCN generates high-level hidden fea-
tures for the sentences. We then obtain sentence
salience estimations through a regression on top,
and extract salient sentences in a greedy manner
while avoiding redundancy.

We evaluate our model on the DUC 2004 multi-
document summarization (MDS) task. Our model
shows a clear advantage over traditional graph-
based extractive summarizers, as well as a base-
line GRU model that does not use any graph, and
achieves competitive results with other state-of-
the-art MDS systems. This work provides a new
gateway to incorporating graph-based techniques
into neural summarization.

2 Related Work
2.1 Graph-based MDS

Graph-based MDS models have traditionally em-
ployed surface level (Erkan and Radev, 2004; Mi-
halcea and Tarau, 2005; Wan and Yang, 2006) or
deep level (Pardo et al., 2006; Antiqueira et al.,
2009) approaches based on topological features
and the number of nodes (Albert and Barabási,
2002). Efforts have been made to improve de-
cision making of these systems by using dis-
course relationships between sentences (Radev,
2000; Radev et al., 2001). Erkan and Radev (2004)
introduce LexRank to compute sentence impor-
tance based on the eigenvector centrality in the
connectivity graph of inter-sentence cosine simi-
larity. Mei et al. (2010) propose DivRank to bal-
ance the prestige and diversity of the top ranked
vertices in information networks and achieve im-
proved results on MDS. Christensen et al. (2013)
build multi-document graphs to identify pairwise
ordering constraints over the sentences by ac-
counting for discourse relationships between sen-
tences (Mann and Thompson, 1988). In our work,
we build on the Approximate Discourse Graph
(ADG) model (Christensen et al., 2013) and ac-
count for macro level features in sentences to im-
prove sentence salience prediction.

2.2 Summarization Using Neural Networks

Neural networks have recently been popular for
text summarization (Kågebäck et al., 2014; Rush
et al., 2015; Yin and Pei, 2015; Cao et al., 2016;
Wang and Ling, 2016; Cheng and Lapata, 2016;
Nallapati et al., 2016, 2017; See et al., 2017). For
example, Rush et al. (2015) introduce a neural
attention feed-forward network-based model for
sentence compression. Wang and Ling (2016)

employ encoder-decoder RNNs to effectively pro-
duce short abstractive summaries for opinions.
Cao et al. (2016) develop a query-focused sum-
marization system called AttSum which deals
with saliency ranking and relevance ranking using
query-attention-weighted CNNs.

Very recently, thanks to the large scale news
article datasets (Hermann et al., 2015), Cheng
and Lapata (2016) train an extractive summariza-
tion system with attention-based encoder-decoder
RNNs to sequentially label summary-worth sen-
tences in single documents. See et al. (2017),
adopting an abstractive approach, augment the
standard attention-based encoder-decoder RNNs
with the ability to copy words from the source text
via pointing and to keep track of what has been
summarized. These models (Cheng and Lapata,
2016; See et al., 2017) achieve state-of-the-art per-
formance on the DUC 2002 single-document sum-
marization task. However, scaling up these RNN
sequence-to-sequence approaches to the multi-
document summarization task has not been suc-
cessful, 1) due to the lack of large multi-document
summarization datasets needed to train the compu-
tationally expensive sequence-to-sequence model,
and 2) because of the inadequacy of RNNs to cap-
ture the complex discourse relations across multi-
ple documents. Our multi-document summariza-
tion model resolves these issues 1) by breaking
down the summarization task into salience estima-
tion and sentence selection that do not require an
expensive decoder architecture, and 2) by utilizing
sentence relation graphs.

3 Method
Given a document cluster, our method extracts
sentences as a summary in two steps: sentence
salience estimation and sentence selection. Figure
1 illustrates our architecture for sentence salience
estimation. Given a document cluster, we first
build a sentence relation graph, where interact-
ing sentence nodes are connected by edges. For
each sentence, we apply an RNN with Gated Re-
current Units (GRUsent) (Cho et al., 2014; Chung
et al., 2014) and extract the last hidden state as the
sentence embedding. We then apply Graph Con-
volutional Networks (Kipf and Welling, 2017) on
the sentence relation graph with the sentence em-
beddings as the input node features, to produce
final sentence embeddings that reflect the graph
representation. Thereafter, a second level GRU
(GRUdoc) produces the entire cluster embedding

453

pdfcrowd.comPRO version Are you a developer? Try out the HTML to PDF API

 w1

 h1 h2

 w2

 h3

 w3

 h4

.

Sentences

GRUsent

Sentence Relation Graph

 h0

Graph Convolutional Networks Salience Estimation

 h1 h2 h1 h2 h0

CSentence
Embedding

Cluster
Embedding

Estimated Scores

GRUdoc

Cluster

 h0

GRUdoc

doc1
d1s1

d1s2

doc2
d2s1

d2s2

Figure 1: Illustration of our architecture for sentence salience estimation. In this example, there are two
documents in the cluster and each document has two sentences. Sentences are processed by the GRUsent

to get input sentence embeddings. The GCN takes the input sentence embeddings and the sentence
relation graph, and outputs high-level hidden features for individual sentences. GRUdoc produces the
cluster embedding from the output sentence embeddings. The salience is estimated from the output
sentence embeddings and the cluster embedding. wi: the word embedding for i-th word. hi: the hidden
state of GRU at i-th step.

by sequentially connecting the final sentence em-
beddings. We estimate the salience of each sen-
tence from the final sentence embeddings and the
cluster embedding. Finally, based on the estimated
salience scores, we select sentences in a greedy
way until reaching the length limit.

3.1 Graph Representation of Clusters

To best evaluate the architecture, we consider
three graph representation methods to model sen-
tence relationships within clusters. First, as prior
methods in representing document clusters often
adhere to the standard of cosine similarity (Erkan
and Radev, 2004), our initial baseline approach
naturally used this representation. Specifically, we
add an edge between two sentences if the tf-idf co-
sine similarity measure between them, using the
bag-of-words model, is above a threshold of 0.2.

Secondly, the G-Flow system (Christensen
et al., 2013) utilizes discourse relationships be-
tween sentences to create its graph representa-
tions, known as Approximate Discourse Graph
(ADG). The ADG constructs edges between sen-
tences by counting discourse relation indicators
such as deverbal noun references, event and entity
continuations, discourse markers, and co-referent
mentions. These features allow characterization
of sentence relationships, rather than simply their
similarity.

While G-Flow’s ADG provides many improve-
ments from baseline graph representations, it suf-
fers several disadvantages that diminish its ability

Personalization Features

• Position in Document
• From 1st 3 Sentences?
• No. of Proper Nouns
• > 20 Tokens in Sentence?
• Sentence Length
• No. of Co-referent Verb Mentions
• No. of Co-referent Common Noun Mentions
• No. of Co-referent Proper Noun Mentions

Table 1: List of features that were input to the re-
gression function in obtaining sentence personal-
ization scores.

to aid salience prediction when given to the neu-
ral network. Specifically, the ADG lacks much di-
versity in its assigned edge weights. Because the
weights are discretely incremented, they are multi-
ples of 0.5; many edge weights are 1.0. While the
presence of an edge provides a remarkable amount
of underlying knowledge on the discourse rela-
tionships, edge weights can further include infor-
mation about the strength — and, similarly, im-
portance — of these relationships. We hope to
improve the edge weights by making them more
diverse, while infusing more information in the
weights themselves. In doing so, we contribute
our Personalized Discourse Graph (PDG). To ad-
vance the ADG’s performance in providing pre-
dictors for sentence salience, we apply a multi-
plicative effect to the ADG’s edge weights via sen-
tence personalization.

454

A baseline sentence personalization score s(v),
which can be viewed as weighting of sentences,
is calculated for every sentence v to account for
surface features in each sentence. These features,
listed in Table 1, are used as input for linear re-
gression, as per Christensen et al. (2013). The re-
gression is applied to each sentence to obtain the
personalization score, s(v). Each edge weight in
the original ADG is then transformed by this sen-
tence personalization score and normalized over
the total outgoing scores. That is, for directed edge
(u, v) ∈ E, the weight is

wPDG(u, v) =
wADG(u, v)s(v)∑

u′∈V wADG(u′, v)s(u′)
(1)

The inclusion of the sentence personalization
scores allows the PDG to account for macro-level
features in each sentence, augmenting information
for salience estimation. To provide more clarity,
we include a figure of the PDG in later sections.

Although it may be possible to incorporate the
sentence personalization features later into the
salience estimation network, we chose to encode
them in the PDG to improve the edge weight dis-
tribution of sentence relation graphs and to make
our salience estimation architecture methodically
consistent. Additionally, in order to maintain con-
sistency between graph representations, follow-
ing two modifications are made to the discourse
graphs. First, the directed edges of both the ADG
and PDG are made undirected by averaging the
edges weights in both directions. Second, edge
weights are rescaled to a maximum edge weight
of 1 prior to being fed to the GCN.

3.2 Graph Convolutional Networks

We apply Graph Convolutional Networks (GCN)
from Kipf and Welling (2017) on top of the sen-
tence relation graph. In this subsection, we ex-
plain in detail the formulation of GCN, and how
GCN produces the final sentence embeddings.

The goal of GCN is to learn a function f(X,A)
that takes as input:

• A ∈ RN×N , the adjacency matrix of graph G,
where N is the number of nodes in G.

• X ∈ RN×D, the input node feature matrix,
whereD is the dimension of input node feature
vectors.

and outputs high-level hidden features for each
node, Z ∈ RN×F , that encapsulate the graph
structure. F is the dimension of output feature

vectors. The function f(X,A) takes a form of
layer-wise propagation based on neural networks.
We compute the activation matrix in the (l + 1)th

layer as H(l+1), starting from H0 = X . The out-
put of L-layer GCN is Z = f(X,A) = H(L).

To introduce the formulation, consider a simple
form of layer-wise propagation:

H(l+1) = σ
(
AH(l)W (l)

)
(2)

where σ is an activation function such as ReLU(·)
= max(0, ·). W (l) is the parameter to learn in the
lth layer. Eq 2 has two limitations. First, mul-
tiplying by A means that for each node, we sum
up the feature vectors of all neighboring nodes but
not the node itself. We fix this by adding self-loops
in the graph. Second, since A is not normalized,
multiplying by A will change the scale of feature
vectors. To overcome this, we apply a symmet-
ric normalization by using D−

1
2AD−

1
2 where D

is the node degree matrix. These two renormaliza-
tion tricks result in the following propagation rule:

H(l+1) = σ
(
D̃−

1
2 ÃD̃−

1
2H(l)W (l)

)
(3)

where Ã = A + IN is the adjacency matrix of
the graph G with added self-loops (IN is the iden-
tity matrix). D̃ is the degree matrix with D̃ii =∑

j Ãij . Kipf and Welling (2017) also provide a
theoretical justification of Eq 3 as a first-order ap-
proximation of spectral graph convolution (Ham-
mond et al., 2011; Defferrard et al., 2016).

As an example, if we have a two-layer GCN,
we first calculate Â = D̃−

1
2 ÃD̃−

1
2 in a pre-

processing step, and then produce

Z = f(X,A) = σ
(
Â σ

(
ÂXW (0)

)
W (1)

)
3.3 Sentence Embeddings

As the input node featuresX of GCN, we use sen-
tence embeddings calculated by GRUsent.

Given a document cluster C with N sentences
(s1, s2, ..., sN) in total, for each sentence si of L
words (w1, w2, ..., wL), GRUsent recurrently up-
dates hidden states at each time step t:

hsent
t = GRUsent(hsent

t−1 ,wt) (4)

where wt is the word embedding for wt, hsent
t is

the hidden state of GRUsent. h0 is initialized as a
zero vector, and the input sentence embedding xi

is the last hidden state:

xi = hsent
L (5)

455

All sentence embeddings from the given document
cluster are grouped as the node feature matrix X:

X =


xT

1

xT
2
...

xT
N

 (6)

X is fed into GCN subsequently to obtain the final
sentence embeddings si that incorporate the graph
representation of sentence relationships:

Z = f(X,A) =


sT
1

sT
2
...

sT
N

 (7)

3.4 Cluster Embedding

Additionally, in order to have a global view of
the entire document cluster, we apply a second-
level RNN, GRUdoc, to encode the entire docu-
ment cluster. Given a document cluster C with M
documents (d1, d2, ..., dM), for document di with
|di| sentences, GRUdoc first builds the document
embedding di on top of sentence embeddings:

hdoc
t = GRUdoc(hdoc

t−1, st) (8)

di = hdoc
|di| (9)

where st is the sentence embedding in the docu-
ment di. In Eq 9, we extract the last hidden state
as the document embedding for di. In Eq 10, we
average over document embeddings to produce the
cluster embedding C:

C =
1
M

M∑
i=1

di (10)

All the GRUs we used are forward. We also exper-
imented with backward GRUs and bi-directional
GRUs, but neither of them meaningfully improved
upon forward GRUs.

3.5 Salience Estimation

For the sentence si in the cluster C, we calculate
the salience of si as the following, similarly to the
attention mechanism in neural machine translation
(Bahdanau et al., 2015):

f(si) = vT tanh(W1C + W2si) (11)

salience(si) =
f(si)∑

sj∈C f(sj)
(12)

where v,W1,W2 are learnable parameters. In
Eq 11, we first calculate the score f(si) by con-
sidering the sentence embedding itself, si, and the
cluster embedding C for the global context of the
multi-document. The score is then normalized as
salience(si) via softmax in Eq 12.

3.6 Training

The model parameters include the parameters
in GRUsent and GRUdoc, the weights in GCN
layers, and the parameters for salience estima-
tion (v,W1,W2). Parameters in GRUsent and
GRUdoc are not shared. The model is trained end-
to-end to minimize the following cross-entropy
loss between the salience prediction and the nor-
malized ROUGE score of each sentence:

L = −
∑
C

∑
si∈C

R(si) log(salience(si)) (13)

R(si) is calculated by R(si) = softmax(α r(si)),
where r(si) is the average of ROUGE-1 and
ROUGE-2 Recall scores of sentence si by mea-
suring with the ground-truth human-written sum-
maries. α is a constant rescaling factor to make the
distribution sharper. The value of α is determined
from the validation data set. αr(si) is then nor-
malized across the cluster via softmax, similarly
to Eq 12.

3.7 Sentence Selection

Given the salience score estimation, we apply a
simple greedy procedure to select sentences. Sen-
tences with higher salience scores have higher pri-
orities. First, we sort sentences in descending or-
der of the salience scores. Then, we select one
sentence from the top of the list and append to the
summary if the sentence is of reasonable length (8-
55 words, as in (Erkan and Radev, 2004)) and is
not redundant. The sentence is redundant if the tf-
idf cosine similarity between the sentence and the
current summary is above 0.5 (Hong and Nenkova,
2014). We select sentences this way until we reach
the length limit.

4 Experiments
In this section, we evaluate our model on bench-
mark MDS data sets, and compare with other
state-of-the-art systems. We aim to show that our
model, by combining sentence relations in graphs
with the representation power of deep neural net-
works, can improve upon other traditional graph-
based extractive approaches and the vanilla GRU
model which does not use any graph. In addition,

456

DUC’01 DUC’02 DUC’03 DUC’04

of Clusters 30 59 30 50

of Documents 309 567 298 500

of Sentences 24498 16090 7721 13270

Vocabulary Size 28188 22174 13248 18036

Summary Length 100
words

100
words

100
words

665
Bytes

Table 2: Statistics for DUC Multi-Document Sum-
marization Data Sets.

we further study the effect of graph and different
graph representations on the summarization per-
formance and investigate the correlation of graph
structure and sentence salience estimation.

4.1 Data Set and Evaluation

We use the benchmark data sets from the Docu-
ment Understanding Conferences (DUC) contain-
ing clusters of English news articles and human
reference summaries. Table 2 shows the statistics
of the data sets. We use DUC 2001, 2002, 2003
and 2004 containing 30, 59, 30 and 50 clusters of
nearly 10 documents each respectively. Our model
is trained on DUC 2001 and 2002, validated on
2003, and tested on 2004. For evaluation, we use
the ROUGE-1,2 metric, with stemming and stop
words not removed as suggested by Owczarzak
et al. (2012).

4.2 Experimental Setup

We conduct four experiments on our model: three
using each of the three types of graphs discussed
earlier, and one without using any graph. In the
experiments with graphs, for each document clus-
ter, we tokenize all the documents into sentences
and generate a graph representation of their re-
lations by the three methods: Cosine Similar-
ity Graph, Approximate Discourse Graph (ADG)
from G-Flow, and our Personalized Discourse
Graph (PDG). Note that for the Cosine Similar-
ity Graph, we compute the tf-idf cosine similarity
for every pair of sentences using the bag-of-word
model and add an edge for similarity above 0.2.
The weight of the edge is the value of similarity.
We apply GCNs with the graphs in the final step
of sentence encoding. For the experiment without
any graph, we omit the GCN part and simply use
the GRU sentence and cluster encoders.

We use 300-dimensional pre-trained word2vec
embeddings (Mikolov et al., 2013) as input to
GRUsent in Eq 4. The word embeddings are fine-
tuned during training. We use three GCN hidden

R-1 R-2

SVR (Li et al., 2007) 36.18 9.34

CLASSY11 (Conroy et al., 2011) 37.22 9.20

CLASSY04 (Conroy et al., 2004) 37.62 8.96

GreedyKL (Haghighi and Vanderwende, 2009) 37.98 8.53

TsSum (Conroy et al., 2006) 35.88 8.15

G-Flow (Christensen et al., 2013) 35.30 8.27

FreqSum (Nenkova et al., 2006) 35.30 8.11

Centroid (Radev et al., 2004b) 36.41 7.97

Cont. LexRank (Erkan and Radev, 2004) 35.95 7.47

RegSum (Hong and Nenkova, 2014) 38.57 9.75

GRU 36.64±0.11 8.47

GRU+GCN: Cosine Similarity Graph 37.33±0.23 8.78

GRU+GCN: ADG from G-Flow 37.41±0.32 8.97

GRU+GCN: Personalized Discourse Graph 38.23±0.22 9.48

Table 3: ROUGE Recalls on DUC 2004. We show
mean (and standard deviation for R-1) over 10 re-
peated trials for each of our experiments.

layers (L = 3). The hidden states in GRUsent,
GCN hidden layers, and GRUdoc are all 300-
dimensional vectors (D = F = 300).

The rescaling factor α in the objective func-
tion (Eq 13) is chosen as 40 from {10, 20, 30,
40, 50, 100} based on the validation performance.
The objective function is optimized using Adam
(Kingma and Ba, 2015) stochastic gradient de-
scent with a learning rate of 0.001 and a batch size
of 1. We use gradient clipping with a maximum
gradient norm of 1.0. The model is validated ev-
ery 10 iterations, and the training is stopped early
if the validation performance does not improve for
10 consecutive steps. We trained using a single
Tesla K80 GPU. For all the experiments, the train-
ing took approximately 30 minutes until a stop.

4.3 Results

Table 3 summarizes our results. First we take our
simple GRU model as the baseline of the RNN-
based regression approach. As seen from the table,
the addition of Cosine Similarity Graph on top of
the GRU clearly boosts the performance. Further-
more, the addition of ADG from G-Flow gives a
slighly better performance. Our Personalized Dis-
course Graph (PDG) enhances the R-1 score by
more than 1.50. The improvement indicates that
the combination of graphs and GCNs processes
sentence relations across documents better than
the vanilla RNN sequence models.

To gain a global view of our performance,
we also compare our result with other baseline
multi-document summarizers and the state-of-the-

457

PDG ADG Cosine
Similarity

No
Graph

Num of Iterations 200 280 310 250

Train Cost 4.286 5.460 5.458 5.310

Validation Cost 4.559 5.077 5.099 5.214

Table 4: Training statistics for the four experi-
ments. The first row shows the number of itera-
tions the model took to reach the best validation
result before an early stop. The train cost and val-
idation cost at that time step are shown in the sec-
ond row and third row, respectively. All the values
are the average over 10 repeated trials.

art systems related to our regression method. We
compute ROUGE scores from the actual output
summary of each system. We run the G-Flow
code released by Christensen et al. (2013) to get
the output summary of the G-Flow system. The
output summary of other systems are compiled in
Hong et al. (2014). To ensure fair comparison, we
use ROUGE-1.5.5 with the same parameters as in
Hong et al. (2014) across all methods: -n 2 -m -l
100 -x -c 95 -r 1000 -f A -p 0.5 -t 0.

From Table 3, we observe that our GCN sys-
tem significantly outperforms the commonly used
baselines and traditional graph approaches such
as Centroid, LexRank, and G-Flow. This indi-
cates the advantage of the representation power
of neural networks used in our model. Our sys-
tem also exceeds CLASSY04, the best peer sys-
tem in DUC 2004, and Support Vector Regres-
sion (SVR), a widely used regression-based sum-
marizer. We remain at a comparable level to Reg-
Sum, the state-of-the-art multi-document summa-
rizer using regression. The major difference is
that RegSum performs regression on word level
and estimates the salience of each word through a
rich set of word features, such as frequency, gram-
mar, context, and hand-crafted dictionaries. Reg-
Sum then computes sentence salience based on the
word scores. On the other hand, our model simply
works on sentence level, spotlighting sentence re-
lations encoded as a graph. Incorporating more
word-level features into our discourse graphs may
be an interesting future direction to explore.

4.4 Discussion

As shown in Table 3, our graph-based models
outperform the vanilla GRU model, which has
no graph. Additionally, for the three graphs we
consider, PDG improves R-1 score by 0.82 over
ADG, and ADG outperforms the Cosine Similar-

0 50 100 150 200 250 300 350 400
4

4.5

5

5.5

6

6.5

7

Number of Iterations

V
al
id
at
io
n
C
os
t

No Graph

Similarity Graph

ADG

PDG

Figure 1: Learning curves of the four experiments based on the validation costs.
Note that the vertical axis is only displaying the interval 4.0 - 7.0.

1 Introduction

1

Figure 2: Visualization of the learning curves for
the four experiments. The vertical axis displays
the validation costs in the interval 4.0 - 7.0.

PDG ADG Cosine
Similarity

Number of nodes 265 265 265

Number of edges 1023 1050 884

Average edge weight 0.075 0.295 0.359

Average node degree 0.171 5.136 2.260

ρ of degree and salience 0.136 0.113 0.093

Table 5: Characteristics of the three graph repre-
sentations, averaged over the clusters (i.e. graphs)
in DUC 2004. Note that max edge weight in all
three representations is 1.0 due to rescaling for
consistency. The degree of each node is calculated
as the sum of edge weights.

ity Graph by 0.08 on the R-1 score. While the Co-
sine Similarity Graph encodes general word-level
connections between sentences, discourse graphs,
especially our personalized version, specialize in
representing the narrative and logical relations be-
tween sentences. Therefore, we hypothesize that
the PDG provides a more informative guide to es-
timating the importance of each sentence. In an at-
tempt to better understand the results and validate
the effect of sentence relation graphs (especially
of the PDG), we have conducted the analysis that
follows.

Training Statistics. We compare the learning
curves of the four different settings: GRU without
any graph, GRU+GCN with the Cosine Similarity
Graph, GRU+GCN with ADG, and GRU+GCN
with PDG (see Table 4 & Figure 2). Without a
graph, the model converges faster and achieves
lower training cost than the Cosine Similarity
Graph and ADG. This is most likely due to the
simplicity of the architecture, but it is also less
generalizable, yielding a higher validation cost

458

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Salience scores

Correlation Coefficient: 0.45

0.0

0.5

1.0

1.5

2.0
N

o
d
e
 D

e
g
re

e
s

PDG

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Salience scores

Correlation Coefficient: 0.37

0
5

10
15
20
25
30
35
40
45

N
o
d
e
 D

e
g
re

e
s

ADG

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Salience scores

Correlation Coefficient: 0.13

0

1

2

3

4

5

6

N
o
d
e
 D

e
g
re

e
s

Similarity Graph

Figure 3: Visualization of the relationship between salience score and node degree for the three graph
representation methods. Cluster d30011t from DUC 2004 is chosen as an example.

than the models with graphs. For the three graph
methods, ADG converges faster and has better
validation performance than the Cosine Similar-
ity Graph. PDG converges even faster than “No
Graph” and achieves the lowest training cost and
validation cost amongst all methods. This shows
that the PDG has particularly strong representation
power and generalizability.

Graph Statistics. We also analyze the charac-
teristics of the three graph representation methods
on DUC 2004 document clusters. Table 5 summa-
rizes the following basic statistics: the number of
nodes (i.e. sentences), the number of edges, av-
erage edge weight, and average node degree per
graph. We include the correlation between node
degree and salience, as well.

As seen from the table, PDG and ADG have ap-
proximately the same number of edges. This is
expected since the PDG is built by transforming
the edge weights in ADG. The Cosine Similarity
Graph has slightly fewer edges, simply due to the
implemented threshold.

Moreover, note that the ADG has significantly
higher average edge weight and node degree as
compared to the PDG. These values reflect the
discrete nature of the ADG’s edge assignment —
further evidence of this can be seen in Figure 3.
Because the ADG’s raw edge weight assignment
is done by increments of 0.5, the average node
degree tends to be significantly large. This mo-
tivated the construction of our PDG, which cor-
rects for this by coercing the average edge weight
and node degree to be more diverse and, conse-
quently, smaller (after rescaling). The process of
including sentence personalization scores in edge
weight assignments of the PDG leads to a select
number of edges gaining markedly large distinc-
tion. This aids the GCN in identifying the most
important edge connections along with the affili-

ated sentences.

Node Degree and Salience. In Table 5, we also
calculate the correlation coefficient ρ, per graph,
between the degree of each sentence node and its
salience score. We observe that all the graph rep-
resentations show positive correlation between the
node degree and the salience score. Moreover, the
order of correlation strength is PDG > ADG > Co-
sine Similarity Graph. Though node degree is a
simple measure of these graphs, this observation
supports our hypothesis on the efficacy of sentence
relation graphs, particularly of PDGs, to provide a
guide to salience estimation. 1

As a case study to illustrate our observation, we
chose one cluster (d30011t) from DUC 2004. Fig-
ure 3 shows the scatter plots of the node degree
and salience score of each sentence.

Visualization of the PDG. Finally, to demon-
strate the functionality of the PDG and comple-
ment our discussion from Section 3.1, we visual-
ize the PDG on cluster d30011t with the salience
score on each node in Figure 4 (also see Figure 5
for the actual sentences).

From the visualization, it can be observed that
the nodes representing salient sentences (such as
(d6, s8), (d6, s7), and (d2, s4)) tend to have higher
degrees in the PDG. We can also observe that
the PDG represents edges which connect nodes
of sentences from different documents, in contrast
with the traditional sequence model.

From Figure 5, we note that the most salient
sentence (d6, s8) actually describes much of the
reference summary. As an example of discourse
relation, (d6, s7) and (d2, s4), the two nodes con-
nected to (d6, s8), provide the background for

1 However, we shall add that simply selecting sentences
of highest node degrees in PDGs did not itself produce good
summaries, compared to our GCN model. Hence, we utilize
the graph representations specifically as inputs to the GCN.

459

Figure 4: Visualization of the PDG on cluster d30011t. Each node is a sentence, with label (DocumentID,
SentenceID). The node color represents the salience score (see the color bar). For simplicity, we only
display edges of weight above 0.03. Best viewed in color.

Reference Summary (truncated): Malaysian
Prime Minister Mahathir Mohamad ruled adroitly
for 17 years until September 1998 when he
suddenly reversed his economic policy and fired
his popular deputy and heir apparent, Anwar
Ibrahim. Anwar organized a political opposition,
leading Mahathir to arrest him. (...) Anwar
remained in custody as lawyers appealed. (...)
Sent-label (6,8): Anwar was ... after two weeks
of nationwide rallies at which he called for
government reform and Mahathir's resignation,
he was arrested
Sent-label (6,7): The two had differed over
economic policy and Anwar has said Mahathir
feared he was a threat to his 17-year rule.
Sent-label (2,4): Mahathir and Anwar had
differed over economic policy and Anwar says
Mahathir feared him as an alternative leader.
Sent-label (0,22): Before his arrest, Anwar
designated his wife, Azizah Ismail, as the leader
of his new ``reform'' movement.

Figure 5: Reference summary and illustrative sen-
tences from cluster d30011t.

(d6, s8), even though they do not share many
words in common with it. On the other hand,
(d0, s22), which is only connected with (d2, s4), is
not salient as it does not provide a central message
for the summary.

5 Conclusion

In this paper, we presented a novel multi-document
summarization system that exploits the represen-
tational power of neural networks and graph rep-
resentations of sentence relationships. On top of
a simple GRU model as an RNN-based regression

baseline, we build a Graph Convolutional Network
(GCN) architecture applied on a Personalized Dis-
course Graph. Our model, unlike traditional RNN
models, can capture sentence relations across doc-
uments and demonstrates improved salience pre-
diction and summarization, achieving competitive
performance with current state-of-the-art systems.
Furthermore, through multiple analyses, we have
validated the efficacy of sentence relation graphs,
particularly of PDG, to help to learn the salience
of sentences. This work shows the promise of the
GCN models and of discourse graphs applied to
processing multi-document inputs.

Acknowledgements
We would like to thank the members of the Sap-
phire Project (University of Michigan and IBM),
as well as all the anonymous reviewers for their
helpful suggestions on this work. This material
is based in part upon work supported by IBM
under contract 4915012629. Any opinions, find-
ings, conclusions, or recommendations expressed
herein are those of the authors and do not neces-
sarily reflect the views of IBM.

References
Réka Albert and Albert-László Barabási. 2002. Statis-

tical mechanics of complex networks. Reviews of
modern physics 74(1):47.

Lucas Antiqueira, Osvaldo N Oliveira, Luciano da Fon-
toura Costa, and Maria das Graças Volpe Nunes.
2009. A complex network approach to text summa-
rization. Information Sciences 179(5):584–599.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

460

gio. 2015. Neural machine translation by jointly
learning to align and translate. In ICLR.

Regina Barzilay, Noemie Elhadad, and Kathleen R
McKeown. 2001. Sentence ordering in multidocu-
ment summarization. In Proceedings of the first in-
ternational conference on Human language technol-
ogy research.

Ziqiang Cao, Wenjie Li, Sujian Li, and Furu Wei. 2017.
Improving multi-document summarization via text
classification. In AAAI.

Ziqiang Cao, Wenjie Li, Sujian Li, Furu Wei, and Yan-
ran Li. 2016. Attsum: Joint learning of focusing and
summarization with neural attention. In COLING.

Ziqiang Cao, Furu Wei, Li Dong, Sujian Li, and Ming
Zhou. 2015. Ranking with recursive neural net-
works and its application to multi-document sum-
marization. In AAAI.

Jianpeng Cheng and Mirella Lapata. 2016. Neural
summarization by extracting sentences and words.
In ACL.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder–decoder
for statistical machine translation. In EMNLP.

Janara Christensen, Mausam, Stephen Soderland, and
Oren Etzioni. 2013. Towards coherent multi-
document summarization. In NAACL.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho,
and Yoshua Bengio. 2014. Empirical evaluation of
gated recurrent neural networks on sequence model-
ing. NIPS 2014 Deep Learning and Representation
Learning Workshop .

John M Conroy, Judith D Schlesinger, Jade Gold-
stein, and Dianne P Oleary. 2004. Left-brain/right-
brain multi-document summarization. In Proceed-
ings of the Document Understanding Conference
(DUC 2004).

John M Conroy, Judith D Schlesinger, Jeff Kubina, Pe-
ter A Rankel, and Dianne P O’Leary. 2011. Classy
2011 at tac: Guided and multi-lingual summaries
and evaluation metrics. TAC 11:1–8.

John M Conroy, Judith D Schlesinger, and Dianne P
O’Leary. 2006. Topic-focused multi-document
summarization using an approximate oracle score.
In COLING/ACL.

Michaël Defferrard, Xavier Bresson, and Pierre Van-
dergheynst. 2016. Convolutional neural networks on
graphs with fast localized spectral filtering. In NIPS.

Günes Erkan and Dragomir R Radev. 2004. Lexrank:
Graph-based lexical centrality as salience in text
summarization. Journal of Artificial Intelligence
Research 22:457–479.

Dan Gillick and Benoit Favre. 2009. A scalable global
model for summarization. In Proceedings of the
Workshop on Integer Linear Programming for Nat-
ural Langauge Processing. Association for Compu-
tational Linguistics, pages 10–18.

Aria Haghighi and Lucy Vanderwende. 2009. Explor-
ing content models for multi-document summariza-
tion. In NAACL.

David K Hammond, Pierre Vandergheynst, and Rémi
Gribonval. 2011. Wavelets on graphs via spec-
tral graph theory. Applied and Computational Har-
monic Analysis 30(2):129–150.

Karl Moritz Hermann, Tomas Kocisky, Edward
Grefenstette, Lasse Espeholt, Will Kay, Mustafa Su-
leyman, and Phil Blunsom. 2015. Teaching ma-
chines to read and comprehend. In NIPS.

Kai Hong, John M Conroy, Benoit Favre, Alex
Kulesza, Hui Lin, and Ani Nenkova. 2014. A repos-
itory of state of the art and competitive baseline sum-
maries for generic news summarization. In LREC.

Kai Hong and Ani Nenkova. 2014. Improving the
estimation of word importance for news multi-
document summarization. In EACL.

Mikael Kågebäck, Olof Mogren, Nina Tahmasebi, and
Devdatt Dubhashi. 2014. Extractive summariza-
tion using continuous vector space models. In Pro-
ceedings of the 2nd Workshop on Continuous Vector
Space Models and their Compositionality (CVSC)@
EACL. Citeseer, pages 31–39.

Diederik Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In ICLR.

Thomas N Kipf and Max Welling. 2017. Semi-
supervised classification with graph convolutional
networks. In ICLR.

Mirella Lapata. 2003. Probabilistic text structuring:
Experiments with sentence ordering. In ACL.

Chen Li, Xian Qian, and Yang Liu. 2013. Using super-
vised bigram-based ilp for extractive summarization.
In ACL.

Sujian Li, You Ouyang, Wei Wang, and Bin Sun. 2007.
Multi-document summarization using support vec-
tor regression. In Proceedings of DUC. Citeseer.

William C Mann and Sandra A Thompson. 1988.
Rhetorical structure theory: Toward a functional the-
ory of text organization. Text-Interdisciplinary Jour-
nal for the Study of Discourse 8(3):243–281.

Ryan McDonald. 2007. A study of global inference al-
gorithms in multi-document summarization. In Eu-
ropean Conference on Information Retrieval.

Qiaozhu Mei, Jian Guo, and Dragomir Radev. 2010.
Divrank: the interplay of prestige and diversity in
information networks. In SIGKDD.

461

Rada Mihalcea and Paul Tarau. 2005. A language inde-
pendent algorithm for single and multiple document
summarization. In IJCNLP.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In NIPS.

Ramesh Nallapati, Feifei Zhai, and Bowen Zhou. 2017.
Summarunner: A recurrent neural network based se-
quence model for extractive summarization of docu-
ments. AAAI .

Ramesh Nallapati, Bowen Zhou, Caglar Gulcehre,
Bing Xiang, et al. 2016. Abstractive text summa-
rization using sequence-to-sequence rnns and be-
yond. In CoNLL.

Ani Nenkova, Lucy Vanderwende, and Kathleen McK-
eown. 2006. A compositional context sensitive
multi-document summarizer: exploring the factors
that influence summarization. In SIGIR.

Karolina Owczarzak, John M Conroy, Hoa Trang
Dang, and Ani Nenkova. 2012. An assessment of
the accuracy of automatic evaluation in summariza-
tion. In Proceedings of Workshop on Evaluation
Metrics and System Comparison for Automatic Sum-
marization. Association for Computational Linguis-
tics, pages 1–9.

Thiago Pardo, Lucas Antiqueira, Maria Nunes, Os-
valdo Oliveira, and Luciano da Fontoura Costa.
2006. Modeling and evaluating summaries using
complex networks. Computational Processing of
the Portuguese Language pages 1–10.

Dragomir R Radev. 2000. A common theory of infor-
mation fusion from multiple text sources step one:
cross-document structure. In Proceedings of the
1st SIGdial workshop on Discourse and dialogue-
Volume 10. Association for Computational Linguis-
tics, pages 74–83.

Dragomir R Radev, Timothy Allison, Sasha Blair-
Goldensohn, John Blitzer, Arda Celebi, Stanko
Dimitrov, Elliott Drabek, Ali Hakim, Wai Lam,
Danyu Liu, et al. 2004a. Mead-a platform for
multidocument multilingual text summarization. In
LREC.

Dragomir R Radev, Sasha Blair-Goldensohn, Zhu
Zhang, and Revathi Sundara Raghavan. 2001.
Newsinessence: A system for domain-independent,
real-time news clustering and multi-document sum-
marization. In Proceedings of the first interna-
tional conference on Human language technology
research. Association for Computational Linguis-
tics, pages 1–4.

Dragomir R Radev, Hongyan Jing, Małgorzata Styś,
and Daniel Tam. 2004b. Centroid-based summa-
rization of multiple documents. Information Pro-
cessing & Management 40(6):919–938.

Alexander M Rush, Sumit Chopra, and Jason Weston.
2015. A neural attention model for abstractive sen-
tence summarization. In EMNLP.

Abigail See, Peter J. Liu, and Christopher D. Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In ACL.

Xiaojun Wan and Jianwu Yang. 2006. Improved affin-
ity graph based multi-document summarization. In
NAACL.

Lu Wang and Wang Ling. 2016. Neural network-based
abstract generation for opinions and arguments. In
NAACL.

Wenpeng Yin and Yulong Pei. 2015. Optimizing sen-
tence modeling and selection for document summa-
rization. In IJCAI.

462

Author Index

Abdelali, Ahmed, 432
Afshar, Hadi, 379
Alishahi, Afra, 368
Anand, Ashish, 311
Attia, Mohammed, 432
Augenstein, Isabelle, 195

Baldwin, Timothy, 206
Barking, Marie, 368
Bhatia, Shraey, 206

Camacho-Collados, Jose, 100
Chaturvedi, Snigdha, 173
Chen, Henry Y., 216
Chen, Huadong, 90
Chen, I-Hsuan, 36
CHEN, Jiajun, 90
Chiang, David, 90
Choi, Eunsol, 333
Choi, Jinho D., 216
Choi, Yejin, 15
Chrupała, Grzegorz, 368
Clark, Peter, 69
Cohen, Noam, 58
Cohen, Philip, 379
Collins, Ed, 195

DAI, XIN-YU, 90
Darwish, Kareem, 432
Dong, Fei, 153
Du, Yantao, 26
Duong, Long, 379
Dyer, Chris, 1

Eckmann, Stefanie, 354
Eisner, Jason, 238
Eldesouki, Mohamed, 432
Enguehard, Émile, 3
Eshel, Yotam, 58
Estival, Dominique, 379

Feldman, Naomi, 2
Frolov, Anton, 411

Goldberg, Yoav, 3

Hammond, Michael, 69
Hole, Daniel, 354
Huang, Chu-Ren, 36
Huang, Shujian, 90
Hulden, Mans, 290

Iacobacci, Ignacio, 100
Inoue, Go, 421

JAMEEL, SHOAIB, 123
Jansen, Peter, 69
Jaradat, Israa, 226
Johnson, Mark, 322, 379
Jones, Michael, 134
Joty, Shafiq, 226

Kallmeyer, Laura, 432
Khashabi, Daniel, 80
Khot, Tushar, 80
Koehn, Philipp, 238
Konstas, Ioannis, 15
Korhonen, Anna, 112

Lau, Jey Han, 206
Le, Phong, 390
Lee, Chia-Jung, 143
Levy, Omer, 58, 333
Li, Quanzhi, 301
Linzen, Tal, 3
Long, Yunfei, 36
Lu, Qin, 36

Mancini, Massimiliano, 100
Marcheggiani, Diego, 411
Markovitch, Shaul, 58
Màrquez, Lluís, 226
Matsumoto, Yuji, 421
Meelu, Kshitijh, 452
Mitchell, Tom, 248
Moschitti, Alessandro, 47, 260
Mubarak, Hamdy, 432

Nakov, Preslav, 226
Navigli, Roberto, 100
Neves, Mariana, 281

463

Nguyen, Le-Minh, 442
Nicosia, Massimo, 260

Pareek, Ayush, 452
Paul, Michael J., 163
Peng, Haoruo, 173
Piguet, Olivier, 322
Pink, Glen, 379

Radev, Dragomir, 452
Radinsky, Kira, 58
Raj, Desh, 311
Rappoport, Ari, 112
Reichart, Roi, 112, 400
Renduchintala, Adithya, 238
Riedel, Sebastian, 195
Roth, Dan, 80, 173
Ruzsics, Tatyana, 184

Sabharwal, Ashish, 80
SAHU, SUNIL, 311
Samardzic, Tanja, 184
Samih, Younes, 432
Santus, Enrico, 354
Sap, Maarten, 15
Saparov, Abulhair, 248
Saraswat, Vijay, 248
Schlechtweg, Dominik, 354
SCHOCKAERT, STEVEN, 123
Schulte im Walde, Sabine, 354
Schwartz, Roy, 15, 112
Seiffe, Laura, 271
Seo, Minjoon, 333
Shah, Sameena, 301
Sharp, Rebecca, 69
Shindo, Hiroyuki, 421
Sirts, Kairit, 322
Smith, Noah A., 15
Song, Yan, 143
Srinivasan, Krishnan, 452
Sun, Weiwei, 26, 343
Surdeanu, Mihai, 69

Titov, Ivan, 390, 411
Torabi Asr, Fatemeh, 134
Tran, Van-Khanh, 442

Uryupina, Olga, 47

Valenzuela-Escárcega, Marco A., 69
Vulić, Ivan, 112

Wan, Xiaojun, 26, 343
Weissenborn, Dirk, 271, 281

Wiese, Georg, 271, 281

Xia, Fei, 143

Yamada, Ikuya, 58
Yang, Jie, 153
Yasunaga, Michihiro, 452

Zettlemoyer, Luke, 333
Zhang, Rui, 452
Zhang, Xun, 343
Zhang, Yue, 153
Zhou, Ethan, 216
Zilles, Leila, 15
Ziser, Yftah, 400

	Program
	Should Neural Network Architecture Reflect Linguistic Structure?
	Rational Distortions of Learners' Linguistic Input
	Exploring the Syntactic Abilities of RNNs with Multi-task Learning
	The Effect of Different Writing Tasks on Linguistic Style: A Case Study of the ROC Story Cloze Task
	Parsing for Grammatical Relations via Graph Merging
	Leveraging Eventive Information for Better Metaphor Detection and Classification
	Collaborative Partitioning for Coreference Resolution
	Named Entity Disambiguation for Noisy Text
	Tell Me Why: Using Question Answering as Distant Supervision for Answer Justification
	Learning What is Essential in Questions
	Top-Rank Enhanced Listwise Optimization for Statistical Machine Translation
	Embedding Words and Senses Together via Joint Knowledge-Enhanced Training
	Automatic Selection of Context Configurations for Improved Class-Specific Word Representations
	Modeling Context Words as Regions: An Ordinal Regression Approach to Word Embedding
	An Artificial Language Evaluation of Distributional Semantic Models
	Learning Word Representations with Regularization from Prior Knowledge
	Attention-based Recurrent Convolutional Neural Network for Automatic Essay Scoring
	Feature Selection as Causal Inference: Experiments with Text Classification
	A Joint Model for Semantic Sequences: Frames, Entities, Sentiments
	Neural Sequence-to-sequence Learning of Internal Word Structure
	A Supervised Approach to Extractive Summarisation of Scientific Papers
	An Automatic Approach for Document-level Topic Model Evaluation
	Robust Coreference Resolution and Entity Linking on Dialogues: Character Identification on TV Show Transcripts
	Cross-language Learning with Adversarial Neural Networks
	Knowledge Tracing in Sequential Learning of Inflected Vocabulary
	A Probabilistic Generative Grammar for Semantic Parsing
	Learning Contextual Embeddings for Structural Semantic Similarity using Categorical Information
	Making Neural QA as Simple as Possible but not Simpler
	Neural Domain Adaptation for Biomedical Question Answering
	A phoneme clustering algorithm based on the obligatory contour principle
	Learning Stock Market Sentiment Lexicon and Sentiment-Oriented Word Vector from StockTwits
	Learning local and global contexts using a convolutional recurrent network model for relation classification in biomedical text
	Idea density for predicting Alzheimer's disease from transcribed speech
	Zero-Shot Relation Extraction via Reading Comprehension
	The Covert Helps Parse the Overt
	German in Flux: Detecting Metaphoric Change via Word Entropy
	Encoding of phonology in a recurrent neural model of grounded speech
	Multilingual Semantic Parsing And Code-Switching
	Optimizing Differentiable Relaxations of Coreference Evaluation Metrics
	Neural Structural Correspondence Learning for Domain Adaptation
	A Simple and Accurate Syntax-Agnostic Neural Model for Dependency-based Semantic Role Labeling
	Joint Prediction of Morphosyntactic Categories for Fine-Grained Arabic Part-of-Speech Tagging Exploiting Tag Dictionary Information
	Learning from Relatives: Unified Dialectal Arabic Segmentation
	Natural Language Generation for Spoken Dialogue System using RNN Encoder-Decoder Networks
	Graph-based Neural Multi-Document Summarization

