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Abstract

Science communication, in layperson’s terms, is essential to reach the general population and also maximize

the impact of underlying scientific research. Hence, good science blogs and journalistic reviews of research

articles are so well-read and critical to conveying science. Scientific blogging goes beyond traditional research

summaries, offering experts a platform to articulate findings in layperson’s terms. It bridges the gap between

intricate research and its comprehension by the general public, policymakers, and other researchers. Amid the

rapid expansion of scientific data and the accelerating pace of research, credible science blogs serve as vital

artifacts for evidence-based information to the general non-expert audience. However, writing a scientific blog or

even a short lay summary requires significant time and effort. Here, we are intrigued by the question: What if the

process of writing a scientific blog based on a given paper could be semi-automated to produce the first draft? In

this paper, we introduce a novel task of Artificial Intelligence (AI)-based science blog generation from a research

article. We leverage the idea that presentations and science blogs share a symbiotic relationship in their aim to

clarify and elucidate complex scientific concepts. Both rely on visuals, such as figures, to aid comprehension. With

this motivation, we create a new dataset of science blogs using presentation transcript and its corresponding slides.

We create a dataset containing a paper’s presentation transcript and figures annotated from nearly 3000 papers.

We then propose a multimodal attention model to generate a blog text and select the most relevant figures to

explain a research article in layperson’s terms, essentially a science blog. Our experimental results with respect to

both automatic and human evaluation metrics show the effectiveness of our proposed approach and the usefulness

of our proposed dataset.
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1. Introduction

Social media have given rise to new opportuni-

ties for science organizations to communicate with

the public (Su et al., 2017). Online environments,

such as blogs, social networks, and online fo-

rums enable a more immediate and democratized

dissemination of scientific information. Scientists

and science communicators have new tools to en-

gage directly with various audiences, fostering di-

alogue and participation in ways that were previ-

ously challenging (Brossard and Scheufele, 2013).

Many scientists-turned-communicators continue

to see online communication environments mostly

as tools for resolving information asymmetries be-

tween experts and lay audience (Krause et al.,

2021). As a result, they blog, tweet, and post pod-

casts and videos to promote public understanding

and excitement about science.

Openness in communication can pose challenges.

The use of anecdotal data or reliance on cer-

tain scientific figures can promote misinforma-

tion (Brossard and Scheufele, 2013). Misinfor-

mation spreads quickly on social media, leading

to widespread dissemination of false information.

In areas like public health, where accuracy is vi-

tal, credible scientific communication is essen-

tial. Such communication fosters trust in scientific

professionals and institutions. The public, when

equipped with reliable information, is more inclined

to trust and understand scientific experts and their

advances.

Misinformation and conspiracy theories can distort

public perception and understanding (Joshi et al.,

2023). Credible scientific communication is key to

debunking these fallacies by providing evidence-

backed data. Such communication aids informed

decision-making across sectors from public health

to environmental conservation, enhancing societal

well-being. To enhance credible scientific com-

munication, scientists and experts should engage

the public, especially through platforms like social

media, presenting data clearly and transparently.

Collaborative efforts between scientists, journal-

ists, and communication specialists are crucial for

effective information dissemination. Prioritizing

this communication counters the adverse effects

of misinformation, leading to a more scientifically

informed society.



10791

Over the past few years, blogging (‘web log-

ging’) has become a major social movement, and

as such includes blogs by scientists about sci-

ence. Blogs are highly idiosyncratic, personal and

ephemeral means of public expression, and yet

they contribute to the current practice and repu-

tation of science as much as, if not more than,

any popular scientific work or visual presentation

(Wilkins, 2008). A survey of over 600 science

bloggers reveals that on the broadest level, sci-

ence bloggers see themselves engaging most of-

ten as explainers of science and public intellec-

tuals (Brown Jarreau, 2015). Scientific blogging,

distinct from standard research summaries, offers

experts to present scientific findings in lay lan-

guage, serving as a bridge between complex re-

search and the general public, policymakers, and

other researchers. In the expanding digital land-

scape, where the volume of scientific research is

vast, credible science blogs stand as beacons of

reliable, evidence-based information. They do not

just restate findings; they offer a deeper dive, sim-

ilar in style to presentation transcripts, where au-

thors elucidate technical content using a blend of

text and visuals to reach a broader, non-expert au-

dience. Inspired by this idea, our paper introduces

a novel task of AI-based science blog generation.

Science blogs retain critical information while

maintaining readability and appeal for a general

audience. Also, presentation transcripts natu-

rally encapsulate complex topics in lay-friendly

language and structure which is very similar to

science blogs. So, we show how presentation

transcript could be utilized to train the model and

can be converted easily in the format of science

blogs. Figures play an important role of explain-

ing a complex concept and has vital information.

Motivated by this, we propose a multimodal sys-

tem to generate the science blogs. Science blogs

also contain the the important visual figures of pa-

pers. Motivated by this, we build our system as

multimodal multioutput summarization. This mul-

timodal approach ensures a balanced representa-

tion of data, enhancing the understanding of sci-

entific concepts for the general (or lay) readers.

Inspired by this idea, we first generate the pre-

sentation transcript and then covert it into science

blog. We introduce a novel dataset containing al-

most 3k papers, presentation transcript, slides, fig-

ures of the paper and annotation whether it is in-

cluded in the presentation or not and from scien-

tific conferences and an annotated images which

they present in their slides. Further, we propose a

transformer based multimodal framework for this

task. Our proposed system leverages both text

and visual elements, such as figures and tables,

to create engaging, easily digestible summaries.

Our proposed technique is both multimodal and

multioutput, which uses the figures of the paper as

well as text to train. It gives crucial images from

the papers as an output. Our proposed system

leverages both text and visual elements, such as

figures and tables, to generate engaging, easily di-

gestible summaries and also gives out the relevant

images from the paper. The proposed framework

surpasses the traditional multimodal fusion base-

lines and reports to have achieved the best perfor-

mance on almost all metrics. Lastly, we carry out

detailed analyses, both quantitatively and qualita-

tively to compare our results.

A scientific blogs are lay and long as compared to

a normal summarization. It is similar to a presen-

tation transcript where the author tries to explain

the technical paper to a wider and non-native au-

dience. Similar to science blogs, the author ex-

plains it through images and tables. Motivated by

this idea, we introduce a novel dataset contain-

ing almost 3k presentation transcript from scien-

tific conferences and annotated images which they

present in their slides. Further, we propose a new

task, known as Longform Multimodal Lay Summa-

rization (LMLS), to bridge the gap between highly

technical scientific literature and the general pub-

lic. LMLS aims to automatically generate compre-

hensive, yet accessible, summaries of scientific

papers in the form of science blogs.

Experiments conducted on various scientific do-

mains demonstrate the system’s ability to produce

high-quality summaries that retain critical infor-

mation while maintaining readability and appeal

for a general audience. The generated summary

preservation of the original authors’ intent. In con-

clusion, the LongformMultimodal Lay Summariza-

tion offers a promising pathway towards making

scientific knowledge more accessible. The find-

ings of this research have broad implications for

science communication, education, and public en-

gagement with science, and mark a significant

step forward in the automated summarization of

technical content.
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Figure 1: The illustration of our proposed task

Longform Multimodal lay summarization. The

image and the generated text can help reader

quickly digest a paper in science blog format.
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Our summarization addresses the challenges of

both ”laysum” and ”longsum”. It is comprehen-

sive, containing detailed information, and is also

written in layman’s terms. We introduce a novel

type of summary. The generated summary is both

extensive and phrased, easily comprehensible to

laypeople. When presenting a paper, the author

emphasizes the most crucial points, elucidating

them more clearly. They ensure an informal ex-

planatory tone, considering listeners may come

from various domains. Conversely, in the writ-

ten paper, the focus is primarily on those with do-

main knowledge, using a formal tone and technical

terminology. This generated summary facilitates

easier comprehension for readers. We make the

resource and codes publicly available 12.

We summarize our contributions as follows :-

• We propose a novel task of automatically gen-

erating science blogs from research articles.

• We create an annotated dataset of nearly 3k

papers, which includes science blogs gener-

ated using presentation transcriptions and an-

notated figures from the academic research

articles.

• We introduce a pipelined multimodal multi-

output framework for the task.

• We evaluate our approach both quantitatively,

as well as qualitatively using human evalua-

tion metrics.

2. Related Work

In this section, we discuss the related works in

blog generation using AI, text summarization, mul-

timodal summarization.

2.1. AI-based Blog Generation

Chen et al. (2013) developed an Automatic Travel

Blog Generator, integrating mobile and desktop

applications with a web platform. The system fa-

cilitates capturing, sharing, and organizing travel

photographs and employs search engine and web

mining techniques for efficient travel blog genera-

tion. Haiyan et al. (2014) proposed automatic gen-

eration of micro-blog user tags based on cluster

analysis. Since science blog generation is similar

to a lay and long summary, we discuss the related

works about these below.

1https://github.com/sandeep82945/
ScienceBlogGeneration.git

2https://www.iitp.ac.in/~ai-nlp-ml/
resources.html

2.2. Text Summarization

Our proposed task bases on text summarization,

themethods of which can be divided into extractive

and abstractive methods (Widyassari et al., 2022).

Extractive models (Zhang et al., 2018; Narayan

et al., 2018; Xie et al., 2022; Narayan et al., 2018)

directly pick sentences from article and regard the

aggregate of them as the summary. In contrast,

abstractivemodels (Gehrmann et al., 2018; Gerani

et al., 2014; Oya et al., 2014; Jagan et al., 2016)

generate a summary from scratch and the abstrac-

tive summaries are typically less redundant.

Two types of summaries have been introduced,

viz. LongSumm (Long Scientific Document Sum-

marization) and LaySumm (Lay Summarization)

(Roy et al., 2021; Chandrasekaran et al., 2020).

LongSumm task focuses on generating long sum-

maries of scientific text. It is fundamentally differ-

ent than generating short summaries that mostly

aim at teasing the reader. The LongSumm task

strives to learn how to cover the salient informa-

tion conveyed in a given scientific document, tak-

ing into account the characteristics and the struc-

ture of the text. LaySumm addresses the issue

of making research results available to a larger

audience by automatically generating ‘Lay Sum-

maries’, or summaries that explain the science

contained within the paper in laymen’s terms. A

few works focused on improving the readability

of biomedical document. (Luo et al., 2022) pro-

posed adjustable readability level to cater to dif-

ferent user expertise levels. However, (Guo et al.,

2024) proposed integration of external knowledge

via retrieval-augmented methods produce lay lan-

guage. In order to improve summary of scien-

tific articles, a new way of prompting using content

plans has been proposed (Creo et al., 2023).

2.3. Multimodal Summarization

A series of works (Wang and Bai, 2014; Green-

backer, 2011; Ahmad et al., 2004; Kumar et al.,

2022) focused on generating better textual sum-

maries with the help of multimodal input. Some

of the prior research (Zhu et al., 2020; He et al.,

2023; Zhu et al., 2018) have jointly generated text

and select the most relevant image for these. A

dataset, LoRaLay (Nguyen et al., 2023) incorpo-

rated visual/layout information alongside text for

summarization. It addresses the challenges of

long texts and the complex layouts of real-world

documents.

In contrast to prior research, our work generates a

science blog which adopts a multimodal and multi-

output strategy, producing summaries that are

simultaneously accessible to general audiences

(lay) and sufficiently detailed for specialized read-

ers (long). Additionally, to complement the visual

elements, we employ an image retrieval method

https://github.com/sandeep82945/ScienceBlogGeneration.git
https://github.com/sandeep82945/ScienceBlogGeneration.git
https://www.iitp.ac.in/~ai-nlp-ml/resources.html
https://www.iitp.ac.in/~ai-nlp-ml/resources.html
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to select figures from academic papers that are re-

lated to, and essential for, the generated blog post.

As far as we know, generation of AI based science

blog has never been explored.

3. Dataset

3.1. Dataset Collection

We collect papers, video presentation and the cor-

responding slide decks from openly available aca-

demic proceedings from Papertalk website3. Pa-

pertalk is a platform where scientists share a short

video presentation (slides with narration) about a

paper they have written. The papers are from

several virtual conferences, especially in machine

learning. In total, we collected information related

to approximately 3k papers.

3.2. Extraction of Text and Figures from
Paper

To extract text from the paper (in PDF form),

we utilized a tool named Science Parse4. Sci-

ence Parse processes scientific papers and re-

turns them in a structured format. For extracting

figures5 and their corresponding captions from the

paper, we employ PDFFigures 2.06. This tool ex-

tracts figures, captions, tables, and section titles

from scholarly documents, with a notable focus on

documents within the field of computer science.

3.3. Video to Transcription Generation

In order to obtain the audio transcription of the

video, we utilize the OpenAI Whisper model (Rad-

ford et al., 2022). Whisper is a general-purpose

speech recognition model, trained on a vast

dataset of diverse audio, and is capable of multi-

tasking. It can perform multilingual speech recog-

nition, speech translation, and language identifica-

tion. We experiment with various versions of the

model, including small, medium, large, and large-

v2, and chose the model that produced the fewest

errors in the generated transcription. Specifically,

we employ theWhisper large model, named large-

v2.

We found that the generated transcript some-

times does not recognize uncommon words or

acronyms. To enhance reliability, we conducted

post-processing of the audio transcript using the

language model GPT-3.5-Turbo. We provided the

following prompt instruction:

3papertalk.org
4https://github.com/allenai/science-parse#science-

parse
5We also classified the tables from the papers as fig-

ures for our purpose.
6https://github.com/allenai/pdffigures2

Prompt: Correct the spellings in the gen-

erated audio transcript based on the pa-

per [PAPERCONTENT] and Transcript:

[Transcript].

Subsequently, to further improve reliability, we un-

dertook manual tuning of the transcription.

3.4. Transcription to Science Blog
Generation

We analyzed the presentation transcript and iden-

tified three major modifications required to trans-

form it into a blog format.

Firstly, academic paper presentations can be de-

livered from various perspectives, but they are

most often given in the first person, especially

when the presenter is an author of the paper. In

blogs, authors typically discuss others’ research,

which provides a more objective or distant per-

spective. Example: “The researchers aimed to in-

vestigate the impact of A on B...”.

Secondly, the presentation includes the author’s

introduction, such as ’Hello everyone, I am

Mishima. I present our paper...’. In contrast, blogs

adopt a neutral tone, devoid of direct author refer-

ences.

Thirdly, the presentation references its own for-

mat, indicating that it’s a presentation. Blogs, how-

ever, strategically avoid such meta-referential el-

ements, focusing on delivering content in a di-

rect and immersive way. By prompting Chat-

GPT 3.5 with specific evaluation instructions, it

achieves competitive correlation with human judg-

ments compared to existing automatic metrics (Lai

et al., 2023).

Hence, in order to convert transcription into blog

format, we utilize the following prompt:

Prompt: Given the following text from

a presentation, please: 1. Convert the

content to third person perspective. 2.

Remove any references to the author or

speaker. 3. Eliminate any mention of

it being a presentation. Presentation:

[Transcription]

Subsequently, to enhance the blog’s reliability, we

conduct manual tuning.

3.5. Figure Labelling

We hire an annotator to determine whether an im-

age was present on a presentation slide. Given

the task’s straightforward nature, we enlisted an

undergraduate student with four years of experi-

ence in scientific research publishing. We provide

numerous examples from various papers to sup-

port and guide the annotator. The annotated data

papertalk.org
https://github.com/allenai/science-parse#science-parse
https://github.com/allenai/science-parse#science-parse
https://github.com/allenai/pdffigures2
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underwent regular checks, emphasizing the iden-

tification and correction of inconsistencies or am-

biguities. We compensated the annotator at a rate

of 4 USD per paper.

Finally, we found that the average length of pa-

pers is approximately 5.6k words, while the aver-

age summary length is 732 words. Furthermore,

there is an average of 8.8 figures or tables per pa-

per and an average of 4.1 figures/tables per slide.

4. Methodology

The proposed LMLS model is divided into two

main parts, viz. Blog Generator(c.f. Figure 2) and

Figure Selector. In this section, we outline the

structure and intricacies of our model.

First, we discuss our proposed multimodal blog

generation. The primary objective is to seamlessly

integrate multimodal knowledge into the Long-

former architecture. To achieve this, we intro-

duce the Multimodal Contextual Fusion (MCF), an

adapter-based module. Given a paper’s textual

information and its associated visual data, MCF

effectively integrates multimodal information into

textual representations. This adapter module can

be effortlessly incorporated into multiple layers of

the Longformer, enabling various levels of multi-

modal interactions. Figure 2 depicts our model’s

architecture.

4.1. Feature Extraction

Similar to prior works (Zhang et al., 2023; Zhu

et al., 2023), we use the pre-trained feature ex-

traction model, BLIP 2 (Li et al., 2023) to extract

deep neural features for each figure of the paper.

Specifically, we denote the generated figure fea-

ture as F ∈ RN×C . We employ a Transformer en-

coder (Chen, 2023) to capture the sequential im-

age context in the representations.

4.2. Multimodal Context Aware Attention

The conventional dot-product-based cross-modal

attention mechanism facilitates direct interactions

between textual representations and other modal-

ities. In this setup, the textual representations act

as the query, while the multimodal representations

function as both the key and the value. Since

each modality originates from a distinct embed-

ding subspace, directly fusing multimodal informa-

tion might not preserve the maximum contextual

information. This can also introduce significant

noise into the final representations. Drawing from

the findings of (Yang et al., 2019), we advocate for

multimodal fusion using Context Aware Attention.

Initially, we produce key and value vectors condi-

tioned on multimodal information, followed by the

application of the traditional scaled dot-product at-

tention. We provide a detailed explanation of this

process below.

Given the intermediate representation H gener-

ated by the Blog Generator at a specific layer, we

calculate the query, key, and value vectors Q, K,

and V ∈ Rn×d, respectively, as given in Equation

1,

where WQ,WK , and WV ∈ Rd×d are the learn-

able parameters. Here, n denotes the maximum

sequence length of the text, and d denotes the di-
mensionality of the generated vector.

[QKV ] = H[WQWKWV ] (1)

Let C ∈ Rn×dc denotes the vector obtained from

visual representation. We generate multimodal in-

formation informed key and value vectors K̂ and

V̂ , respectively, as given by (Yang et al., 2019).

To decide how much information to integrate from

the multimodal source and how much information

to retain from the textual modality, we learn ma-

trix λ ∈ Rn×1 (Equation 2). Note that Uk and

Uv ∈ Rdc×d are learnable matrices.

[
K̂

V̂

]
= (1−

[
λk

λv

]
)

[
K
V

]
+

[
λk

λv

](
C

[
Uk

Uv

])
(2)

Using the context-aware attention mechanism, we

obtain the visual information infused vector Hv

Finally, the multimodal information infused vec-

tors K̂ and V̂ are used to compute the traditional

scaled dot-product attention.

Hv = Softmax

QK̂T
v√

dk

v

 V̂v (3)

Ĥ = H +Hv (4)

The final multimodal information fused represen-

tation Ĥ is given by Equation 4. This vector Ĥ is

inserted back into Blog Generator for further pro-

cessing.

4.3. Relevance Figure Selection

To support the textual blog generated by our pro-

posed model we set up a pipeline to retrieve the

top k images from the pool of all figures in the input

academic paper. In our corpus we had a relevance

label for each image of the paper which signified if

the paper was suitable for the presentation or not.

We propose the problem as a image-text retrieval

task since it will help us in selecting suitable im-

ages guided by the principle of relevant selection.

The Blip 2 model is capable of handling an input

of 768 Max tokens. For the first step, we split the
summary text TS into paragraphs of 768 tokens.

This ensures that a sentence does not break in be-

tween; if it does, we discard it.7

7In case a sentence breaks in between, we discard

that sentence.
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Figure 2: The architecture diagram of our proposed science blog generation (textual part).

TS = {TS1, TS2, TS3, . . . , TSn} (5)

where n is the number of paragraphs into which

TS is broken.

Suppose the figures in the paper are represented

by:

I = {I1, I2, I3, . . . , Ip} (6)

where the document contains p figures.
Then, for an image Ij , we calculate the ITM score

of that image against each text paragraph TSi:

ITMj = mean

(
ITMScore(Ij , TS1),

. . . , ITMScore(Ij , TSn)

)
(7)

Image-Text Matching (ITM) score aims to learn

fine-grained alignment between image and text

representation. Similarly, we calculate the textual

semantic similarity of the caption of the image with

the paragraph text:

SSj = mean (Cosine(Ej , E1), . . . ,Cosine(Ej , En))
(8)

Here, E represents the textual embedding ob-

tained by the sentence transformer model8.

Relevance score of a figure of a paper based on

the science blog.

8https://www.sbert.net/docs/usage/semantic_
textual_similarity.html

Rj = w1 · ITMj + w2 · SSj (9)

Here, we propose a weighted sum9 to determine

how much weight should be given to the image-to-

text similarity (ITMj) and the text-to-text similarity

(SSj).

5. Experiments and Results

In this section, we illustrate our experimental set-

tings and the comparative systems, followed by

the results and its analysis. For a quantitative

analysis of the science blog, we use the standard

metrics for generative tasks – ROUGE-1/2/L (Lin,

2004). To capture the semantic similarity, we use

the BERTScore (Zhang et al., 2020).

5.1. Experimental Setup

The number of images varies in a paper. So, while

creating the image feature embedding, we padded

with 0 in case the number of images is fewer than

N and truncated in case it is more than N. We

set the value of N to 1210. We implement our ex-

periments in PyTorch and use the bart large vari-

ant provided via the Transformers (Lewis et al.,

2020) package. Following (Yang et al., 2019), we

use two separate 4-layer encoders with 8 attention

heads to contextualize the figures.

9We set the weights as w1= 0.7 and w2= 0.3 empiri-

cally
10This was set empirically

https://www.sbert.net/docs/usage/semantic_textual_similarity.html
https://www.sbert.net/docs/usage/semantic_textual_similarity.html
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Mode Model R1 R2 RL BS

Textual

Transformers (Vaswani et al., 2017) 42.07 5.78 26.77 73.84

DANCER (Gidiotis and Tsoumakas, 2020) 43.17 6.35 27.97 74.21

BigBird (Zaheer et al., 2020) 45.37 4.83 32.46 75.90

LED-large (Beltagy et al., 2020) 47.72 14.98 33.49 76.03

Multimodality
SITA (Jiang et al., 2023) 46.66 14.12 34.67 74.92

MCF-TVA 48.42 15.02 37.03 77.06

MCF-TVC 48.69 15.17 37.38 77.47

Table 1: Experimental results. (Abbreviation: R1/2/L: ROUGE1/2/L; BS: BERT Score.

R@1 P@1 R@2 P@2 R@3 P@3 R@4 P@4 R@5 P@5

Text to Text 0.2438 0.5691 0.4344 0.5233 0.6078 0.5032 0.7284 0.4651 0.815 0.4282
Text to Image 0.2111 0.5022 0.3977 0.4854 0.5719 0.4765 0.6946 0.4472 0.7867 0.4143
Text to text + image [0.5,0.5] 0.2427 0.5575 0.4268 0.5189 0.5919 0.4915 0.7213 0.4603 0.8093 0.4265
Text to text + image [0.7,0.3] 0.2567 0.5852 0.4352 0.5226 0.6069 0.5041 0.7387 0.4698 0.8263 0.4311
Text to text + image [0.3,0.7] 0.2304 0.5342 0.4171 0.5044 0.5956 0.4896 0.7062 0.452 0.801 0.421

Table 2: Figure Relevance scores based on various combinations

5.2. Results and Analysis

5.2.1. Text Based

As evident from Table 1, Longformer Encoder De-

coder (seqlen: 16384) performs the best across all

the metrics for the textual modality. We observed

improvement of 1.44 points in the BERTScore,

3.89 points in the ROUGE-L score, 0.97 points

in the ROUGE-1 score, and 0.2 points in the

ROUGE-2 score when compared to the next best

baseline. Pegasaus, Bigbird, Dancer and Trans-

former demonstrate admissible performance, con-

sidering that they have been trained from scratch.

5.2.2. Multimodality

Visual elements help authors present detailed re-

sults and complex relationships, patterns, and

trends clearly and concisely (Schriger et al., 2006);

reduce the length of the manuscript (Durbin, 2004)

(Esteramorperez and Esteramorperez, 2020). Ta-

ble 1 also shows the improvement in fusing caption

information with the images. Thus, we gradually

merge visual modalities using MCF module and

obtain MCF-TVA and MCF-TVC for Longformer.

We observe that the inclusion of figures leads

to noticeable gains of 2-3% across the ROUGE,

BERT scores. The rise in BERTScore also sug-

gests that themultimodal variant generates amore

coherent summary. Here, ’MCF-TVA’ pertains to

the model exclusively utilize visual elements, such

as figures and tables to generate visual embed-

dings. On the other hand, ’MCF-TVC’ is the model

that also incorporates caption information and the

visual elements during the training process.

Tables and figures are an integral part of a well-

written scientific paper. We surmise that our

model, to some extent, is able to gain more in-

formation from these visual cues and establish a

relationship between text and figures of the paper

while generating a blog.

5.2.3. Figure Relevance

For image retrieval, precision (P@k) and recall

(R@k) metrics serve as pivotal indicators of a

model’s performance. We report the results in

Table 2. In the ’Text to image’ approach, we

consider only the ITM score between figures and

text as described in Equation 7. In the ”Text to

Text” approach, we take only the ITM score be-

tween text pairs as described in Equation 8. In

the ”Text to Text and image” approach, we de-

termine the relevance score as the weighted sum

of both ”Text to Text” and ”Text to image” scores

as described in Equation 9. From the results, it

is evident that combining text and figure to de-

termine relevance scores offers superior perfor-

mance compared to using either text-to-text or

text-to-image alone. This suggests that incorpo-

rating both textual and visual information can pro-

vide a more comprehensive and accurate assess-

ment of relevance. Among the various weight

combinations tested for the text-to-text and image-

to-text methods, the pairing of 0.7 and 0.3, respec-

tively, yielded the best scores in most columns.

This indicates that giving a higher emphasis on

textual information (with a weight of 0.7) combined

with a moderate consideration of visual content

(with a weight of 0.3) produces the most optimal

results.

5.2.4. Human Evaluation

Since the proposed LMLS task is a generative

task, it is imperative to manually inspect the gen-

erated results. Consequently, we perform a hu-

man evaluation for a sample of 100 instances from

our test set with the help of 5 evaluators. We ask

the evaluators to judge the generated explanation,

given the paper and the generated science blog.

Each evaluator has to read the paper and then

rate the generated science blog. We asked the

responders to evaluate the summaries by rating
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Model RI Readability Diversity Informativeness

LED-Large 3.0 4.0 4.25 3.0

MCF-TVC 3.5 4.0 4.25 3.75

Table 3: Human evaluation results. Here, RI denotes relatedness to images

them between 1 to 5 on Likert Scale (Taherdoost,

2019) based on the following four questions:

• Q1 (Readability): determines which of the

blog are most readable?

• Q2 (Diversity): determines which of the blog

contains the least amount of repetitive infor-

mation?

• Q3 (Informativeness): determines how much

useful information about the reviews does the

blog provide? You need to skim through the

original reviews to answer this.

• Q4 (RI: Relatedness to images): determines

how much information of the figures does the

blog provide?

Table 3 displays the human evaluation analysis,

providing average scores for each of the men-

tioned categories. Our analysis indicates that

MCF-TVC bimodal produces blogs that are more

syntactically informative than its textual counter-

part. Additionally, it generates blogs that relate

more closely to the figures referenced in the pa-

per (showing an increase of 0.5 points compared

to its textual counterpart). This reaffirms that

these models can integrate information not explic-

itly present in the summary, such as graphical di-

agrams, architectural visuals, or tabular results.

5.3. Error Analysis

• Error Propagation from Textual Science

Blogs: Our image retrieval framework relies

on the textual content of science blogs to fetch

relevant figures. Consequently, any genera-

tion error within the textual content may some-

times influence the image retrieval process

leading to the retrieval of incorrect images.

• Varying Length of Science Blogs: As we

have created the ’golden’ science blog for

training using transcriptions from presenta-

tions, which can inherently vary in length.

Consequently, there are instances where the

length of the generated science blogs does

not align with that of the reference or ’golden’

science blogs.

• Irrelevant Words: Given that scientific pa-

pers often contain equations and mathemat-

ical symbols, our proposed model occasion-

ally introduces irrelevant words or produces

sentences that are grammatically incorrect.

6. Conclusion and Future Work

In today’s digital era, marked by abundant informa-

tion and brief attention spans, reimagining the pre-

sentation of scientific knowledge is essential. Sci-

ence blogs have emerged as effective platforms,

translating intricate subjects into accessible narra-

tives. To amplify their impact, the integration of

multimodal summarization and image retrieval is

vital. By combining concise summaries with ap-

propriate imagery, we elevate both the clarity and

appeal of scientific content. As the demand for

effective science communication intensifies, the

synergy of expertly constructed blogs with multi-

modal elements is indispensable, ensuring scien-

tific insights are both understood and vividly de-

picted.

In the future, we would like to explore how this

dataset can be utilized for various tasks, such

as contextualizing scientific figures and tables.

Specifically, we aim to automatically retrieve and

rank snippets from the paper that are essential for

interpreting their results, with the goal of making

figures and tables more self-contained.

7. Limitations

We have proposed figure labeling system to de-

termine the relevance of these images to be in-

cluded in the generated blogs, however we have

not investigated the locations of the images. This

can be an interesting future work. Also, in some

science blogs, the writer creates visual figures on

their own. This paper limits itself to retrieving im-

ages contained within the paper solely for blog

generation. This motivates working towards im-

age generation for science blogs in the future.

8. Ethics Statement

While pre-trained language models have recently

shown promising results in generating blog con-

tent, their effectiveness largely hinges on access

to extensive annotated data. This dependency

raises concerns due to the laborious and time-

consuming nature of data annotation, which may

be impractical for smaller research teams or insti-

tutions with limited resources. Nonetheless, our

introduction of the LMLS is a preliminary step to-

wards alleviating this challenge. Beyond this, our

research contributes to a broader framework for

addressing data scarcity, thus enhancing the via-

bility of science blog generation systems in practi-

cal settings where annotated data is scarce. How-
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ever, it is crucial to acknowledge that, like all ma-

chine learning models, the framework we propose

is not foolproof and should be approached with

caution when deployed in real-world applications.

Writers should not depend on AI tools completely

for science blog generation instead use this frame-

work for a first draft generation. We have obtained

permission from Papertalk to utilize the resources

for our experiments.
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