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Abstract
Knowledge graph embedding (KGE) models provide a low-dimensional representation of knowledge graphs in
continuous vector spaces. This representation learning enables different downstream AI tasks such as link prediction
for graph completion. However, most embedding models are only designed considering the algebra and geometry
of the entity embedding space, the algebra of the relation embedding space, and the interaction between relation
and entity embeddings. Neglecting the geometry of relation embedding limits the optimization of entity and relation
distribution leading to suboptimal performance of knowledge graph completion. To address this issue, we propose a
new perspective in the design of KGEs by looking into the geometry of relation embedding space. The proposed
method and its variants are developed on top of an existing framework, RotatE, from which we leverage the geometry
of the relation embeddings by mutating the unit circle to an ellipse, and further generalize it with the concept of a
butterfly curve, consecutively. Besides the theoretical abilities of the model in preserving topological and relational
patterns, the experiments on the WN18RR, FB15K-237 and YouTube benchmarks showed that this new family of
KGEs can challenge or outperform state-of-the-art models.

Keywords: Knowledge graph, Knowledge graph embeddings, Knowledge graph representation learning,
Knowledge geogebra, Link prediction, Many-to-many problem.

1. Introduction
Knowledge Graphs (KGs) are one of the leading
knowledge representation methods where every
fact about entities and the relations between them
is represented in the form (head, relation, tail) of
triples (Weikum et al., 2021). Following this struc-
ture, very many KGs have been published in dif-
ferent domains, such as WordNet (Miller, 1995),
Freebase (Bollacker et al., 2008), WikiData (Vran-
dečić and Krötzsch, 2014), DBpedia (Lehmann
et al., 2015), and PrimeKG (Chandak et al., 2023).
KGs play an important role in AI, specifically NLP
downstream tasks, including question answering,
language modelling, entity linking (Bollacker et al.,
2008). Despite the large quantities of triples, knowl-
edge graphs remain incomplete (i.e., they do not
contain all facts about the world or the particu-
lar domain). This is due to the evolving nature
of knowledge and limitations in capturing existing
ones. One of the most prominent approaches to
deal with KG incompleteness is knowledge graph
embeddings (KGEs). These models use a scoring
function that defines the degree to which a relation
between two entities is plausible. In order to do so,
the KG is transferred into a low dimensional continu-
ous vector space by assigning latent feature vectors
to each entity and relation of the underlying KG. The
choice of the vector space is important from the
algebraic and geometric point of views as different
spaces provide diverse interactions between rela-

tion and entity embeddings through the algebraic
products they are mathematically equipped with.
Therefore, different representation spaces such as
real, complex (C), and hypercomplex (H) are used
in the design of state-of-the art KGE models.

However, the algebraic and geometric aspects of
the underlying spaces are not used to their full
potential when dealing with relation embeddings.
Firstly, in most of the KGE models the relation
embeddings are parameterized by real vectors re-
gardless of the main vector space of the model.
For instance, since the complex space Cn is iso-
morphic to R2n, KGEs in this space use implicitly
the Cartesian product of 2-dimensional Euclidean
spaces. Despite this, the geometry of relation em-
beddings has never aroused any interest in the
existing works. Secondly, while both the algebra
and geometry aspects of the space are consid-
ered in entity embeddings (e.g., TransE, RotatE
(focused on the algebra), ATTH (focused on the
geometry), QuatE (focused on both)), only the al-
gebra (e.g., Lie Group Embeddings) is utilized for
relation embeddings. These two algebraic and ge-
ometrical limitations of the existing KGE models
lead to suboptimal performance of the downstream
tasks depending on knowledge graph completion.
We propose a paradigm shift in design of KGEs
and introduce a new perspective of considering
geometry of relation embedding space. For this,
we introduce the concept of Knowledge GeoGebra,
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and investigate the theoretical aspects of TransE (a
pioneer KGE model) and RotatE (a state-of-the-art
KGE model) from the aspects of probing the ge-
ometry and algebra. We further extend the RotatE
framework by considering Ellipse for relation em-
beddings, and generalize it based on the concept
of butterfly curve. A family of KGE models with 4
versions is proposed as EllipsE and Butterfly KGE
models. The evaluation show the impact of consid-
ering the geometry of relation embedding beside
algebra. The main contributions of this work can
be listed:
(1) introducing a new paradigm of Knowledge Ge-
oGebra in KGE models
(2) proposing a family of KGE models with extend-
ing geometry of relation embeddings,
(3) analysing theoretical aspects of the EllipsE and
Butterfly,
(4) empirical performance analysis of the proposed
models in per,
(5) empirical analysis of the interaction between the
baseline and our model characteristics and dataset
properties.

2. Related Work
In general, KGE models are divided into three cat-
egories according to relation-entity interactions,
mainly: tensor decomposition, deep learning, and
geometric models. Geometric models can be fur-
ther classified upon the geometry of the entity
embedding space, mainly: Euclidean, and non-
Euclidean geometry based models, or upon the
algebra of the embedding spaces, mainly: real-,
complex-, and hypercomplex-valued models. In
this section, we briefly present geometric models.
Geometric models see relations as geometric trans-
formations between head and the tail entities.
TransE (Bordes et al., 2013), a pioneering work
of art, encodes relations by straight line transla-
tion transformations in Euclidean space. Despite
its success in Knowledge graph completion, it is
limited in preserving some sub-graph structures.
These limitations give rise to new translational mod-
els such as TransH (Wang et al., 2014), TransA
(Xiao et al., 2015), TransR (Lin et al., 2015), and
RotatE (Sun et al., 2019a). In contrary to TransE,
RotatE uses complex product to rotate head en-
tities. It therefore populates the Euclidean space
by concentric circles and achieves translation of
head entities on circles, which enables RotatE to
preserve symmetry and antisymmetric relational
patterns. Subsequently, QuatE (Zhang et al., 2019)
extends the algebraic structure of RotatE to hy-
percomplex structure; relation-entity interaction is
represented by quaternion product. DualE (Zhang
et al., 2019) uses the dual-quaternion product to
simultaneously achieve rotation and translation of
head entities by relations. DualE and QuatE sub-

sume RotatE, and moreover, they introduced non-
commutative relation representation learning. Re-
cently, it has been shown that hyperbolic geometry
has the potential to facilitate hierarchical relational
pattern learning (Nickel and Kiela, 2017; Sala et al.,
2018; Le et al., 2019). These models define and
project relation and entity embeddings onto relation-
specific manifolds in the Poincaré ball. MuRP (Bal-
azevic et al., 2019) models relations by Möbius
addition and Möbius matrix-vector multiplication of
the tail and head entities, respectively. They as-
sessed the importance of using hyperbolic space by
comparing the model against its reduced version,
MuRE, which uses real addition and real matrix
multiplication in Euclidean. Chami et al. (2020) in-
troduced, in their model ATTH, hyperbolic rotation
and reflection to conjointly learn relational and hier-
archical patterns. Cao et al. (2022) extend ATTH
to GIE by considering its Euclidean and spherical
space versions in addition to its original version in
the hyperbolic space. By interactively learning the
spatial structures in the three spaces, GIE is able
to simultaneously learn multiple types of geomet-
ric structures. However, they only learn relation-
specific geometry in the entity embedding vector
space.

3. Knowledge GeoGebra
Let us consider a knowledge graph as a multi-
relational directed graph G = (E ,R, T+) where
E ,R, and T+ are the set of nodes (entities), edges
(relations between entities), and triples formed as
(head entity, relation, tail entity) respectively. We
use h to refer to the head entity and t to the tail
entity. Borrowed from GeoGebra (a portmanteau
of geometry and algebra), we introduce Knowledge
GeoGebra, a concept that consists of probing the
geometry and algebra induced by relation embed-
dings of KGE models. By geometry, we mean ge-
ometrical shapes (manifold) defined by relational
position vectors when varying relation embeddings
along a number of dimensions; and by algebra, we
mean the algebraic structure exhibited by the set
of relational position vectors when equipped with
a composition product. This is called relational set
throughout this work. If relation embeddings are in
Rk×n or a vector space isomorphic to the Euclidean
space Rk×n, then in Knowledge GeoGebra (KGG)
we consider the manifold of the relational set, de-
fined in X = Rk. However, for the sake of simplicity,
we only focus on studying one- or two-dimensional
manifolds; that is k ≤ 2. In the following, we first
look into the Knowledge GeoGebra of KGEs using
the TransE, and RotatE models as examples.

3.1. Knowledge GeoGebra of Line
In most of the translation-based models (such as
TransE, TransH, TransR), relations are embedded
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Figure 1: Ellipse defined by a conic section and type of elliptical curves on a plane (2 figures on the left side) and
Butterfly curve with graph of the function ρ(−θ)ρ(θ)− 1 (2 figures on the right side).

with r ∈ Rn. Thus, X = R and the relational sets
Lk = {rk ∈ R} where rk represents the projection
of r onto the k’th real space. Therefore, the mani-
fold of the relational position vectors in the TransE
model is a line. TransE uses relation-specific trans-
lation to model the relation-entity interactions in the
KG. Two consecutive triples (h, r1,m) and (m, r2, t)
induce composition of the involved relation embed-
dings: r1, r2. Since in TransE, the composition of r1
and r2 is r2 + r1, the relational set Lk is therefore
equipped with the addition operation and is closed
under this operation. The existence of an inverse
of a translation, and the commutativity property of
translations, induces an Abelian group structure
on the relational sets. The implicit geometry and
algebra of the relational sets empower TransE with
a remarkable performance on the KG completion
task, regardless of the scale of the underlying KG.
Nevertheless, TransE fails to learn relational and
structural patterns such as symmetry, and loop.

3.2. Knowledge GeoGebra of Circle
To mitigate the limitations of TransE in modelling
more complex relational and topological patterns,
the RotatE model represents relations by unit com-
plex numbers. By doing so, RotatE changes the
underlying manifold from a line to a circle, conse-
quently the algebraic product becomes a complex
product instead of addition.
RotatE embeds a relation r with a low dimension
unit vector r = eiθ

r where θr ∈ (−π, π]n. We de-
note by rk = eiθ

r
k = cos θrk + i sin θrk the projection

of r onto the k’th complex space. It follows that θrk
is the rotation angle in the corresponding complex
plane. Relational sets are defined and denoted by,

Ck := {cos θrk + i sin θrk | r ∈ G}. (1)

Composite transformation r of r2 and r1 is given
by the complex number r = r2 ⊙ r1 where ⊙ is
the element-wise complex product. We obtain
rk = [r2 ⊙ r1]k = cos(θr2k + θr1k ) + i sin(θr2k + θr1k ).
In other words, the sets Ck are endowed with com-
plex products. Elements in Ck and their mutual
composition lay on the unit circle centred at the
origin, since Ck is closed under complex product.
In this way, the manifold is a circle which remains
invariant under arbitrary variation of relation em-
beddings. RotatE preserves triple plausibility by

evaluating the distance between the transformed
head

rh = eiθ
r

⊙ h (2)
and the embedded tail t. Equation 2 could be ex-
pressed in terms of a matrix product. In fact, the
k’th projection of Equation 2 is(

Re(rh)k
Im(rh)k

)
=

(
cos θrk − sin θrk
sin θrk cos θrk

)(
Re(h)k
Im(h)k

)
(3)

where Re and Im are the element-wise real and
imaginary part operators. Complex embedding of
entities allows RotatE to explore both magnitude
and direction during representation learning com-
pare to TransE which explores only the magnitude.
Despite this, RotatE inherits the 1-to-1 property
of the rotation transformation, which prevents the
model to properly learn the underlying structure of
datasets rich in topological patterns.

4. Methodolog
In this section, we extend the study of lines and cir-
cles done in the state-of-the-art models, to ellipse
and butterfly curves in terms of Knowledge GeoGe-
bra concept. The proposed models 1 consider the
geometry of relation embeddings.

4.1. Knowledge GeoGebra of Ellipse
Geometrically, an ellipse (Fig. 1) is a generalization
of a circle. It is a collection of complex point vectors
defined as follows:

Eab = {a cos θ + ib sin θ | θ ∈ (−π, π]} (4)

where a > 0 and b > 0 are the vertex and co-vertex
respectively. The real number e = a2 − b2 is called
linear eccentricity. A negative or positive value of
e means the ellipse major axis is the y-axis or the
x-axis respectively; otherwise the ellipse is a circle
of radius a = b. We denote by eabθ elements of the
ellipse Eab. For a fixed value of a and b, the complex
product exyσ of eabθ1 and eabθ2 is given by,

exyσ = x cosσ + yi sinσ (5)

where σ = θ1 + θ2, x cosσ = 1
2

(
(a2 + b2) cos(θ1 +

θ2) + (a2 − b2) cos(θ1 − θ2)
)
, y = ab. This implies

1https://github.com/amouzard/KGeoGebra
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that the sets Eab is not invariant under complex
product as C does. On the one hand side, one
could attempt to enforce the invariance by devising
an algebraic product that would preserve the ellipti-
cal shape. On the other hand, one could consider
E∗∗ = ∪a,bEab which is close under complex prod-
uct. We adopt the latter approach which seems
simpler to us and design two KGE models, namely
EllipsE and EllipsEs.

4.1.1. EllipsE Model
We propose EllipsE as our first Knowledge Ge-
oGebra model. EllipsE embeds entities in a d-
dimensional complex space just like RotatE, but
relations are embedded in Ed

ab. That is, EllipsE
defines two d-dimensional learnable positive real
vectors a and b whose k’th components represent
the vertex and co-vertex of a planar ellipse. Fol-
lowing Equation 3, we define the transformed head
as

rhk :=

(
ak cos θ

r
k −bk sin θ

r
k

bk sin θ
r
k ak cos θ

r
k

)(
Re(h)k
Im(h)k

)
. (6)

4.1.2. EllipsEs Model
In contrary to EllipsE, EllipsEs embeds relations
in Ed

∗∗ by defining three relation embeddings; the
vertex and co-vertex representations ar,br ∈ Rd

+,

and eiθ
r ∈ Cd to represent high dimension rotation.

It is noteworthy that in EllipsEs, the vertex and co-
vertex embeddings are relation-specific, whereas
they are hyperparameters in EllipsE. EllipsEs trans-
forms head entities following Equation 6. EllipsE
and EllipsEs used RotatE scoring function to eval-
uate triple plausibility, and Adam optimizer to opti-
mize the lost function based on adversarial negative
sampling.

4.2. Knowledge GeoGebra of Butterfly
Curve

The butterfly curve (Fig. 1) is among the planar
curves which could not be described algebraically.
One of the many equations to define points lying
on the butterfly curve is the polar equation defined
as follows,

ρ(θ) = esin θ − 2 cos(4θ) + sin5
(2θ − π

24

)
(7)

where ρ is the distance between the origin and
a point on the butterfly curve, and θ is the angle
between the vector representing the point and the
x-axis. Let

B = {eθ1 = ρθ(cos θ + i sin θ) | θ ∈ (0, 24π]} (8)

be the butterfly curve. B is not invariant under com-
plex product since

eθ1 · eθ2 = ρ(θ2)ρ(θ1)e
i(θ2+θ1)

̸= ρ(θ2 + θ1)e
i(θ2+θ1) = eθ2+θ1 (9)

holds for some (θ1, θ2) ∈ (0, 24π]2.
The butterfly model, as it can be deduced from
its name, is a model which uses Bd for relation
embeddings. Thus, the d-dimensional complex
head entity embeddings are transformed as follows

rh =
(
ρ(θr)⊗ eiθ

r
)
⊙ h (10)

where ⊗ is element-wise scalar multiplication. (For
simplicity, we may omit an explicit use of the scalar
product.) We deemed this model ButtErfly. ButtEr-
fly is also a distance based model which evaluates
−∥rh− t∥ to distinguish the true and false triples.
Furthermore, we develop ButtErflies a variant of
ButtErfly to address the problem of non-invariance
of B. In addition to θr, ButtErflies has relation-
specific bias br ∈ Rd

+. These bias adjust the mod-
ulus ρ in such away that

(br2 ⊗ ρ(θr2))⊗ (br1 ⊗ ρ(θr1)) = br ⊗ρ(θr2 ⊕ θr1).
(11)

In Equation 11, ⊕ is element-wise complex addi-
tion, and r is the composition of r2 and r1. With
this formalism, B becomes invariant under complex
product, and the transformed head becomes

rh = (br ⊗ ρ(θr)) eiθ
r

⊙ h. (12)

5. Theoretical Analysis
In this section, we analysed properties of our mod-
els which enable them to preserve structural and
relational patterns.
Theoretically, EllipsE and EllipsEs are reduced to
RotatE when the vertices and co-vertices are set to
1. Thus they are able to preserve (anti-)symmetry,
commutativity and inversion of relations. The de-
pendence of the modulus ρ in terms of the rotation
angle, prevent our Butterfly related models to sub-
sume RotatE. However, the transcendental function
used to express the modulus enriched the analysis
of these two models.
Instead of simply ending our analysis with the sub-
sumption argument, which will not profit from the
change of manifolds, we conduct additional study
on the effective use of elliptical and butterfly man-
ifolds. The commutativity of the complex product
and the use of trigonometric functions to define rela-
tion embeddings entail the ability of our four models
to infer commutative, symmetric, and antisymmet-
ric relational patterns. In the following subsections,
we only focus on proving the ability of our models to
preserve inversion and composition relational pat-
terns, and many-to-many structural and topological
patterns.

5.1. Relational Patterns
Inversion: A relation r′ is the inverse of the relation
r if (t, r′, h) holds whenever (h, r, t) holds. Let Mr

be the block diagonal matrix made of the blocks
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Mr
k =

(
ark cos θ

r
k −br

k sin θ
r
k

br
k sin θ

r
k ark cos θ

r
k

)
. We denote by ∆r

its block-wise determinant, i.e. ∆r
k = detMr

k . El-
lipsEs infers inverse relations since detMr

k is non-
zero for all k. The inverse embeddings of ar,br,
and θr are ar ⊘∆r,br ⊘∆r, and −θr where ⊘ is
the element-wise division. The expression of the
inverse embeddings, shows relations and their in-
verses do lay on the same elliptical manifold if only
∆r = 1. Therefore, EllipsE enforces a2 + b2 ≥ 1 to
enable inversion inference on Eab.
On the one hand, the complex inverse represen-
tation of ρ(θr)eiθr is e−iθr ⊘ ρ(θr) which does not
necessarily lay on the butterfly curves for all θrk.
That is, we do not always have ρ(−θr) = 1⊘ ρ(θr).
On the other hand, Fig. 1 shows that the equation
ρ(−θ)ρ(θ)− 1 = 0 admits many non-trivial roots. In
summary, the variants of butterfly models proposed
in this work infer inversion relational patterns.
Composition: A relation r is the compose relation
of r2 and r1 if the triple (h, r, t) exists whenever
(h, r1,m) and (m, r2, t) exist. The closure prop-
erties of Eab,E∗∗, and B under complex product
carried on in Sections 4.1 and 4.2 are the roots to
our discussion about relational composition learn-
ing by our models. Stating that the relation em-
bedding spaces are closed under complex product
means composition of two relation embeddings ex-
ists and belongs to the same space. Therefore,
EllipsEs and ButtErflies preserve composition pat-
terns, whereas Ellipse and ButtErfly fail to.

5.2. Topological Patterns: Many-to-Many
In the following, we discuss how the butterfly mod-
els theoretically address the many-to-many prob-
lem. Relations are correspondences between head
and tail entities. A relation that can assign only one
(1) or many (M) tails to a single head is called a
1-to-1 or 1-to-M relation, respectively. Conversely,
the relation is called 1-to-1 or N-to-1. In case, many
heads (N) can be assigned to many tails (M), the
relation is called N-to-M. The class of a relation
is known by solving the equation ∥rh − t∥ = 0.
Straightforwardly, it can be seen that this equation
implies ρ(θr)rh = rt and θt − θh = θr modulo 2π;
where rx and θx are the modulus and the angle of
the complex vector x for x = h, t, r. This is equiv-
alent to solving ρ(θt − θh + 2kπ)rh = rt, with k an
integer. Given the fact that ρ has a period of 24π,
for a fixed tail (respectively head) entity, the rela-
tion r could assign at most 12 head (respectively
tail) entity candidates. Thus, the butterfly models
are able to preserve many-to-many structural and
topological patterns.

6. Experiments
We evaluated our models on the downstream task
of KG completion (KGC) through link prediction.

The goal of this task is to predict the missing en-
tity (?) in the queries (h, r, ?) or (?, r, t). The miss-
ing entity is replaced by all entities is the KG to
obtain corrupted triples. We filter the set of cor-
rupted triples following TransE model (Bordes et al.,
2013). The models score these triples and rank
them in a decreasing order. The missing entity is
finally chosen from the lowest ranked corrupted
triples, i.e. the triple whose score is the closest
to 0. To compare our models against the base-
lines, we used the mean reciprocal rank (MRR)
given by

∑nt

j=1
1
rj
, where rj is the rank of the j-

th test triple and nt - the number of triples in the
test dataset; and Hits@N which is the percentage
of triples whose rank is equal or smaller than N
(N = 1, 3, 10). We conduct an extensive hyper-
parameters grid search of the four models on the
selected datasets and the optimal hyperparameter
sets were fixed based on the best MRR. The batch
size β is tuned in the range of {256, 512, 1024},
the number of negative sample η in {128, 256}, the
margin γ in {1, 6, 9, 12, 24}, the self-adversarial tem-
perature α in {0, 0.5, 1}, and the learning rate λ
in {0.00005, 0.0001, 0.0005, 0.001}. We selected the
embedding dimensions d ∈ {500, 800} on FB15k-
237 and WN18RR, and we fixed d = 300. The
maximum step size σ is set to 120000. The Adam
optimizer was used as the optimization function.
Table 4 contains the optimal hyperparameter set
for the datasets of interest.

6.1. Datasets, Pattern Specific Datasets,
and Baselines

In our experiments, we used three benchmark
datasets: WN18RR (Dettmers et al., 2018), FB15k-
237 (Toutanova and Chen, 2015), YouTube (Cen
et al., 2019). Tables 2 summarizes the statistical
information of the size of the benchmark datasets.
WN18RR (Dettmers et al., 2018) is a subset of
WN18 (Bordes et al., 2013), which only contains
11 relations. FB15k-237 is a subset of Freebase,
which contains general knowledge facts and a few
inverse relations. YouTube contains the interac-
tions between its users, including contacts, shared
friends and so on. In addition, we created pat-
tern specific datasets accordingly to the relational
patterns: symmetric, composition, and antisym-
metric (Ali et al., 2021). We designed new test
datasets based on the relational patterns present
ín the WN18RR and FB15k-237 datasets. We first
grouped all the relations into 9 categories based on
the symmetric (S), antisymmetric (A), composition
(C) patterns and their four mutual combinations (AC,
AS, CS, ACS). Our categorization logic is straight-
forward as follows: A relation r is classified as an (i)
X type: if it exclusively exhibits the X characteristic.
(ii) XY type: if r displays both X and Y characteris-
tics, and (iii) XY Z type: if r embodies X, Y, and Z
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FB15K-237 WN18RR YouTube

Model MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10
ConvE .325 .237 .356 .501 .430 .400 .440 .520 - - - -
MuRE .336 .245 .370 .521 .465 .436 .487 .554 - - - -
DisMult .241 .155 .263 .419 .430 .390 .440 .490 .040 .010 .030 .100
TransE .294 - - .465 .226 - - .501 .180 - .280 .470
ComplEx .247 .158 .275 .428 .440 .410 .460 .510 .320 .210 .360 .540
RotatE .338 .241 .375 .533 .476 .428 .492 .571 .250 .140 .300 .460

EllipsE .344 .248 .382 .539 .487 .441 .503 .574 .288 .135 .380 .553
EllipsEs .346 .248 .386 .542 .481 .436 .500 .568 .299 .149 .385 .560
Butterfly .344 .252 .380 .531 .470 .413 .500 .569 .302 .169 .372 .536
ButtErflies .344 .250 .381 .531 .456 .413 .478 .532 .318 .183 .390 .558

Table 1: Link prediction results on FB15h-237, WN18RR, and YouTube datasets in high dimension. The results of
baseline models were reported from (Balazevic et al., 2019; Nayyeri et al., 2021).

Dataset WN18RR FB15k-237 YouTube
entities 41k 15k 2k
relations 11 237 5
Training 87k 272k 1114k
Validation 3k 18k 66k
Test 3k 20k 131k

Table 2: Statistics of the datasets.
Pattern WN18RR FB15k-237
Symmetric 3 3
Antisymmetric 7 205
Composition 1 147

Table 3: Statistics of relational patterns across WN18RR
and Fb15k-237.

characteristics. We use (iv) Ux for representing the
union of relations with the specific property X. Thus,
UA which includes A,AC,AS, and ACS type rela-
tions, is the ordinal set of antisymmetric relations.
Similarly, the set of symmetric and composition re-
lations are US and UC since both encompasses
S,AS,CS,ACS types, and C,AC,CS,ACS types
respectively. The statistics of the relational patterns
UA, US , and UC in the benchmark datasets are
shown in Table 3. We shall note that some relational
categories can be empty given the characteristics
of the dataset at hand. We compare our model with
state-of-the-art models, including ConvE (Dettmers
et al., 2018), MuRE (Balazevic et al., 2019), Dis-
Mult (Yang et al., 2015), TransE (Bordes et al.,
2013), ComplEx (Trouillon et al., 2016), and Ro-
tatE (Sun et al., 2019b) on the original and the cat-
egorized datasets. More advanced KGE models
(such as QuatE, ATTH, and GIE) partially or com-
pletely represent the interaction of relations with
entities by rotation transformations. They either
used Euclidean geometry (QuatE), non-Euclidean
geometry (ATTH), or the combination of the two or
more geometries (GIE) to define the rotation trans-
formation. Consequently, they can be viewed as

EllipsE
Dataset d β η γ α λ

WN18RR 500 256 100 6 1 0.00005
FB15k-237 800 256 256 6 1 0.0001
YouTube 300 1024 256 12 1 0.0001

EllipsEs
Dataset d β η γ α λ

WN18RR 800 1024 256 6 1 0.00005
FB15k-237 800 1024 256 12 0.5 0.0001
YouTube 300 1024 256 12 1 0.0001

ButtErfly
Dataset d β η γ α λ

WN18RR 500 256 100 6 10 0.0001
FB15k-237 800 1024 256 9 1 0.00005
YouTube 300 1024 256 12 1 0.00005

ButtErflies
Dataset d β η γ α λ

WN18RR 800 1024 256 12 0.5 0.0001
FB15k-237 800 512 256 12 1 0.00005
YouTube 300 1024 256 12 1 0.0001

Table 4: Optimal hyperparameter setting of our models.

implicit extensions of the RotatE and TransE mod-
els, where their relational set, or at least a signifi-
cant portion of it, forms a geometrical circle or line.
Given this underlying similarity, we hypothesized
that a more relevant comparison would be between
these advanced models and their counterparts in
KG GeoGebra variants.

6.2. Results and Analysis
Table 1 shows the performance comparison of
our models and the baseline models on the three
datasets. Overall, we majorly achieve significant
improvement, or comparable results. Our mod-
els outperform all the baseline models for all the
evaluation metrics on the FB15K-237 dataset, and
for the H@3 and H@10 metrics on YouTube. On
WN18RR, the two ellipse Knowledge GeoGebra
models considerably out stand baselines. We no-
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Figure 2: Distribution of relations in the first ten relational sets.

Figure 3: Distribution and classification of elliptical shapes based on the eccentricities e = a2 − b2. Eccentricity of
relational points in class, -1, 0. and 1 satisfies e ∈ (−∞,−10−5), e ∈ [−10−5, 105], and e ∈ (105,+∞) respectively.

Task Head Tail
MRR H@10 MRR H@10

TransE .251 .469 .365 .610
DistMult .231 .422 .346 .560
ComplEx .247 .453 .353 .588
RotatE .258 .471 .373 .611
EllipsE .269 .481 .376 .613
EllipsEs .267 .480 .374 .616
ButtErfly .274 .473 .373 .609
ButtErflies .268 .464 .376 .618

Table 5: Head and tail prediction tasks on many-to-many
test data set extracted from FB15k-237. The results of
the baseline models were reported from (Li et al., 2022).

ticed a net superior performance of our models
compare to TransE and RotatE. This proves that
the non consideration of the relational set manifold
led to suboptimal performance of KG completion.
Geometry of Relational Set Effective Learning.
Fig. 2 contains the projection of the first ten rela-
tional sets into a single complex plane for EllipsE,
EllipsEs, and ButtErfly models on the FB15K-237
dataset. It therefore shows the distribution of re-
lations. We observed that EllipsE learned an el-
liptical distribution of relation embeddings in each
dimension. ButttErfly mostly distributes relations
on the lower part of the wings of the butterfly curve.
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Type A C AC UA UC US

Metric MRR H10 MRR H10 MRR H10 MRR H10 MRR H10 MRR H10
TransE .284 .490 .236 .702 .353 .537 .330 .522 .353 .545 1.00 1.00
DistMult .248 .438 .265 .689 .340 .498 .310 .478 .338 .505 .341 .770
ComplEx .269 .468 .262 .709 .350 .525 .323 .506 .349 .532 .714 .878
RotatE .286 .493 .239 .694 .360 .542 .336 .526 .360 .548 1.00 1.00
EllipsE .341 .770 .259 .709 .364 .547 .339 .527 .365 .554 1.00 1.00
EllipsEs .295 .501 .236 .684 .371 .552 .346 .535 .370 .559 1.00 1.00
ButtErfly .304 .498 .267 .728 .363 .535 .344 .523 .364 .543 1.00 1.00
ButtErflies .300 .497 .271 .726 .361 .531 .341 .520 .362 .539 1.00 1.00

Table 6: Evaluation results on pattern specific datasets derived from FB15K-237. The test datasets S,AS and ACS
are empty. Thus, US and CS are identical.

Type A UA UC US

Metric MRR H10 MRR H10 MRR H10 MRR H10
TransE .101 .271 .103 .276 .122 .328 .438 .963
DistMult .141 .275 .142 .279 .155 .320 .957 .973
ComplEx .182 .308 .185 .311 .217 .337 .960 .973
RotatE .196 .339 .197 .380 .200 .392 .957 .971
EllipsE .207 .342 .207 .343 .205 .352 .958 .969
EllipsEs .207 .332 .206 .334 .200 .358 .956 .969
ButtErfly .200 .321 .199 .321 .199 .326 .935 .969
ButtErflies .174 .279 .174 .280 .169 .288 .944 .969

Table 7: Evaluation results on pattern specific datasets derived from WN18RR. The test datasets C,AS,CS, and
ACS are all empty sets. Thus, US and S, as well as UC and AC, are identical sets.

r1 = /award…/award_winner   r2 = …/award_nominee/nominated_for     r3 =  …/award_category/nominated_for

 r_1 = /base/…/current_club                        r_2  =  r_3 = /sports/sports_team/sport

Figure 4: Histograms of composition of relation embeddings r1, r2, and r3 = r2◦r1; where ri are the names of relations
in the FB15k-237 dataset. The evaluation of r1 = /award/award_category/winners./award/award_honor/award_winner,
r2 = /award/award_nominee/award_nominations./award/award_nomination/nominated_for and r3 =
/award/award_category/nominees./award/award_nomination/nominated_for are displayed along the first row; while
the second row reports on r1 = /base/. . . /current_club, r2 = r3 =/sports/sports_team/sport. The results from each
model are displayed column-wise.

We could not deduce an elliptical distribution learn-
ing from the EllipsEs model, since the distributions
along each dimension are relation based. In other
words, only a single relational point lies on the
relation-specific curve in a given dimension. We

only show the visualization of the results on the
FB15K-237 dataset since WN18RR and YouTube
datasets contains only 11 and 5 relations respec-
tively; this results into a sparse distribution of re-
lations. In order to reach a global appreciation
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of the effective use of ellipses, we plotted vertex
against co-vertex embeddings for all the relations in
FB15K-237. We then classified the points into three
categories based on the eccentricity e = a2−b2. An
eccentricity less than -1, bigger than 1, or equals 0
means the point lies on an ellipse with major axis
the y-axis (a < b), the x-axis (a > b), or it lies on a
circle (a = b). The top and bottom rows of Fig. 3
display the distribution of the vertex against co-
vertex embeddings learned by EllipsE and EllipsEs
respectively. It is noteworthy that vertex and co-
vertex are relation-independent hyperparameters
for the EllipsE model; therefore, both are learned
dimension-wise. This explains the sparse distribu-
tion we observe in the top row plots. In the top row,
points in class 0 are almost inexistent. This shows
that EllipsE learned pure elliptical curves during
training throughout the three datasets. EllipsEs
also shows similar results, except the distribution
on WN18RR dataset, where it can barely discrim-
inate against circular shapes. We argue that this
is the reason EllipsEs under-performs EllipsE on
WN18RR, although it is the overall best performing
model on the FB15K-237 dataset.
On Theoretical Evidence of Relation Compo-
sition. The evaluation of the ability of a model
to infer relation composition patterns (r1, r2, r3) re-
quires comparing the embeddings of the composite
relation (r3) against the embeddings of the compo-
sition (r2 ◦ r1). For the RotatE model, this means
θr3 ⊖ (θr2 ⊕ θr1) is a multiple of 2π; where θr are
the relation embeddings. For our four models, we
use the complex representation of the relation em-
beddings. That is,

zr =


ρ(θr)eiθ

r for ButtErfly;
brρ(θr)eiθ

r for ButtErflies;
a cos θr ⊕ ib sin θr for EllipsE;
ar cos θr ⊕ ibr sin θr for EllipsEs.

Our models infer composition by imposing zr3 ⊖
(zr2 ⊙ zr1) = 0. Fig. 4 shows evidence of implicit
inference on two composition relational patterns ex-
tracted from FB15k-237. For comparison reasons,
we also reported the evaluation of RotatE. The su-
periority of EllipsEs on EllipsE and ButtErflies on
ButtErfly in preserving composition patterns can be
apprehended from the columns of this figure.
Evaluation on Pattern Specific Datasets We
observed from Tables 6 and 7 that antisymmetry is
the dominant pattern in the WN18RR dataset, and
in the FB15K-237 dataset, antisymmetry and com-
position patterns are dominants. WN18RR is richer
in symmetric patterns than FB15K-237, however,
FB15K-237 is much richer in antisymmetric and
composition patterns. We are interested in these
details since they help in understanding the inter-
action between model characteristics and dataset

properties. The link prediction analyses on each
one type shows that all of our proposed models per-
form better than the state of the art models RotatE,
ComplEx, TransE, and DistMult on FB15K-237. El-
lipsE, RotatE and ComplEx are the best performing
models on WN18RR, however, the difference in
models’ performances is not statistically significant.
In particular, (i) our ellipse models are the best per-
forming models in preserving all relational patterns
except relations of type C on FB15K-237 and re-
lations of type UC and US on WN18RR. (ii) The
butterfly models are superior in handling type C re-
lations, and so are more convenient in embedding
datasets rich in relations of type C.
Many-To-Many Pattern Modelling. As explained
in Section 5.2, the H@3 and H@10 performances
of ButtErflies on YouTube (Table 1) unveils the abil-
ity of the butterfly models to learn many-to-many
patterns. We moreover experimentally showcased
the ability of all our KGG models to learn many-to-
many structural and topological patterns. We used
the average number of head per tail and tail per
head to group relations into four categories: 1-to-1,
1-to-M, N-to-1, and N-to-M. We therefore assess
the MRR and H@10 average performances of each
group on head and tail prediction tasks. The results
on FB15K-237 are shown in Table 5. We noticed
that our models consistently and significantly out-
perform the baselines for the N-to-M tail prediction,
and this for both MRR and H@10. In particular, two
of the proposed models, namely the ButtErfly or But-
tErflies models showed outstanding performance
for N-to-M relational subgraph link prediction.

7. Conclusion
In this paper, we propose a new perspective on
the design of knowledge graph embedding mod-
els. To the best of our knowledge the GeoGebra
framework is the first effort to consider the geom-
etry of relation embeddings in KG representation
learning. Compared to RotatE which distributes
relation embeddings on a circle, our methods are
obtained by replacing the circle with elliptical and
butterfly curves. The evaluation of the performance
of our models on link prediction tasks shows that
our models can considerably improve upon the re-
sults of RotatE on three benchmark datasets. Fur-
thermore, our analysis of the geometry of the rela-
tional set, and the ability of the models to preserve
many-to-many and composition relational patterns
demonstrate the effectiveness of the Knowledge
GeoGebra approach.
Though we only considered two manifolds in this pa-
per, we plan to extend this and increase the dimen-
sion of the manifolds. It is evident that geometric
knowledge graph embedding models, which utilise
rotation transformations, can be straightforwardly
implemented in this framework.
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