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Abstract
The first 24 hours’ medication plan is critical to patients with serious or life-threatening illnesses and injuries.
An appropriate medication can result in a lower mortality, a shorter length stay and a higher APACHE score.
However, in clinical practice, the medication plan is often error-prone, especially when a decision must be made
quickly for life-threatening situations in Intensive Care Unit (ICU). Therefore, predicting the effectiveness of the
first 24 hours’ medication plan is of great importance in assisting doctors to make proper decisions. Existing
effectiveness prediction works usually focus on one specific medicine, one specific disease, or one specific lab
test, making it hard to extend to general medicines and diseases in hospital/ICU scenarios. In this paper, we
propose to predict medication effectiveness of the first 24 hours in hospital/ICU based on patients’ information.
Specifically, we use a knowledge enhanced module to incorporate external knowledge about medications
and a medical feature learning module to determine the interaction between diagnosis and medications. To
handle the data imbalance problem, we further optimize the proposed model with a contrastive loss. Exten-
sive experimental results on a public dataset show that our model can significantly outperform state-of-the-art methods.

Keywords: contrastive learning, representation learning

1. Introduction

Patients with serious medical conditions need to
stay in hospitals for immediate and overnight care,
while emergent patients will be sent to an Intensive
Care Unit (ICU) for special care. During a hospi-
tal/ICU admission, the medication plan of the first
24 hours is extremely important. For example, the
management of burn cases in the first 24 hours
is one of the greatest challenges and affect the
mortality rate dramatically (Alharbi et al., 2012);
For acute coronary syndrome patients, the first 24
hours’ medication plan is deterministic to patients’
lives (de Matos Soeiro et al., 2016).

However, in clinical practice, the medication plan
is not always correct. The medication errors can
cause disability and death up to 6.5% hospital ad-
missions (Lisby et al., 2005), and occur more fre-
quently in ICU than other departments. The Sen-
tinel Events Evaluation (SEE) study reviewed errors
recorded in more than 200 ICUs and found 10.5
medication errors per 100 patient days (Valentin
et al., 2006). Therefore, an assessment of the ef-
fectiveness is quite important to guide doctors in
establishing a more appropriate medication plan.

To tackle this problem, we propose to predict
the effectiveness of medication plan for the first 24
hours in hospital/ICU. As shown in Figure 1, we for-
mulate effectiveness prediction as a classification
problem. Given a patient, we extract two type of
information: (1) the medication plan of the first 24
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Figure 1: Tasks of first 24 hours’ medication effec-
tiveness prediction in hospitals/ICUs

hours; (2) the initial diagnosis given by doctors in
admission. Based on these information, we predict
the value of three core metrics: mortality, length
of stay, and APACHE, i.e., Acute Physiology, Age,
and Chronic Health Evaluation score (Zimmerman
et al., 2006). Since a more appropriate medica-
tion plan can result in a lower mortality, a shorter
length of stay and a higher APACHE score, we can
use the prediction on these metrics to evaluate the
effectiveness of the medication plan.

Existing works on medication effectiveness pre-
diction can be classified into two categories: 1) sin-
gle medicine effectiveness prediction: these works
either leverage genomics information (Alyass et al.,
2015; Brown et al., 2017) or chemical-protein inter-
actome (Luo et al., 2016) to infer the effectiveness.
However, these works only focus on the information
of a single medicine and ignore the specific condi-
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tions of a patient. In other words, these works fo-
cus on drug research rather than evaluate whether
a medicine plan is suitable for a specific patient;
2) lab test effectiveness prediction: these works
mainly use a linear fixed model to estimate the ef-
fects for a certain type of outcome (Ghalwash et al.,
2017; Dey et al., 2019). For example, DELT (Ghal-
wash et al., 2017) aims to determine the effects of
exposure of the medicine to laboratory measure-
ments along with other confounding factors using a
fixed effect model, and designs some penalties for
regularization based on prior knowledge, such as
drug sparsity and drug similarity; PerDREP (Dey
et al., 2019) further provides personalized medi-
cation effectiveness prediction that incorporates a
patient similarity graph as a network regularization.
These methods require a lot of expert knowledge
to identify the correlation between laboratory test
results and the medicines. Therefore, they cannot
be easily generalized to more diseases and drugs.
In addition, patients in the hospital/ICU often suffer
from multiple diseases at the same time. For exam-
ple, hypertension and hyperlipidemia often occur
together. Therefore, these drug effectiveness pre-
diction methods could hardly be used for prediction
in early hospital/ICU admission.

Since existing works cannot be directly adapted
to predict the medication effectiveness of the first
24 hours, in this paper, we propose to predict the
medication effectiveness using multiple sources of
information: 1) current medication plan and prior
knowledge of medicines; 2) the initial diagnosis
upon hospital/ICU admission. Firstly, we use a
knowledge-enhanced module to incorporate exter-
nal knowledge about medicines in modeling. Exter-
nal knowledge contains information such as drug-
drug interaction and what diseases the drug can
treat. These external information are represented in
the form of a knowledge graph; Secondly, we mine
the interaction between diagnosis and medicines
to conduct the prediction. To alleviate the data
imbalance problem, we further propose a hybrid
loss of a contrastive loss and a cross-entropy loss.
The contrastive learning loss incorporates different
within-class samples as positives for each sample;
therefore, it can help learn better representation of
medication. The major contributions of this paper
can be summarized as follows:

• We propose a novel task: the effectiveness
prediction of the medication plan for first 24
hours in hospital/ICU, which could help doctors
to improve the treatment and in turn reduce
the mortality rate.

• In this proposed model, we integrate external
knowledge into data driven prediction which
can provide credibility for prediction.

• We introduce a contrastive loss together with

a cross-entropy loss to relieve the data imbal-
ance problem. According to the experimental
results on a public real dataset, our model out-
performs state-of-the-art works.

2. Related Work

2.1. EHR-based Prediction
The Electronic Health Record (EHR) contains abun-
dant patient information, which can be leveraged to
predict the diagnosis (Peng et al., 2021; Ma et al.,
2017), mortality (Hur et al., 2022b; Lyu et al., 2022),
and length of stay (Lyu et al., 2022) of a specific
patient. The main challenge in modeling medical
data in the EHR is learning unstructured and het-
erogeneous information in the EHR. To deal with
unstructured medical data, previous research uses
deep learning architectures, such as convolutional
neural networks (Nguyen et al., 2017; Yao et al.,
2019) and recurrent neural networks (Choi et al.,
2016a). They follow the ideas of processing sen-
tences in documents to treat a patient’s admission
as a document and a medical record as a sentence.
However, unlike normal sequential learning tasks,
the intervals between two recordings can be dif-
ferent, which is an important factor in clinical stud-
ies. Attention-based models (Choi et al., 2016b;
Song et al., 2018; Shang et al., 2019; Hur et al.,
2022b) have been successfully used for healthcare
tasks to model sequential EHR data. For exam-
ple, SAnD (Song et al., 2018) uses an attention
mechanism (Vaswani et al., 2017) to capture long-
term dependencies for sequential medical events.
BiteNet (Peng et al., 2020) uses a masked attention
mechanism network to capture temporal informa-
tion and an interval encoding module to encode the
interval between recordings. To resolve heteroge-
neous challenge in EHR systems, DescEmb (Hur
et al., 2022a) and UniHPF (Hur et al., 2022b) ad-
dress heterogeneous information in medical codes
with text embeddings. Furthermore, VGNN (Zhu
and Razavian, 2021) and MedGTX (Park et al.,
2022) construct a graph of diagnoses and medical
events and utilize graph neural networks to acquire
the embedding of the admission records.

2.2. Medication Effectiveness Prediction
Existing works on medication effectiveness predic-
tion can be grouped in two categories: (1) single
medicine effectiveness prediction and (2) lab test
effectiveness prediction.

Single medicine effectiveness prediction works
either leverage genomics information (Alyass et al.,
2015; Brown et al., 2017) or chemical-protein inter-
actome (Luo et al., 2016) to infer the effectiveness.
However, these works focus only on the informa-
tion of a single medicine and ignore the specific
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conditions of a patient. In other words, they are not
designed for clinical use.

With increasing use of EHR, another research
line is to discover drugs associated with labora-
tory test results (Ghalwash et al., 2017; Dey et al.,
2019). DELT (Ghalwash et al., 2017) uses a fixed-
effect model and considers prior knowledge as a
penalty, such as drug sparsity, temporal smooth-
ness, drug group structure, and drug similarity. Per-
DREP (Dey et al., 2019) also uses patient-specific
time-invariant parameters to represent medication
effects and learn personalized drug response pre-
dictions. Liu et al. (2021) performed an early predic-
tion of mortality in patients with rhabdomyolysis in
the ICU. However, these studies require expertise
to determine the relationship between laboratory
test results and medication effect and are difficult to
generalize to other diseases. Our proposed med-
ication effectiveness prediction model is generic
and can be easily extended to different diseases.

3. Methodology

3.1. Problem Definition

In this subsection, we introduce the notation and
formulate the targeted task. Considering the medi-
cation sequence, our goal is to predict the effective-
ness of the medication. The medication that each
patient takes within the first 24 hours after an ad-
mission can be represented as a sequence of med-
ication records [m1,m2, . . . ,mN ], where N is the
total number of medications throughout the first 24
hours of admission, and the mi’s are sorted by the
timing of the events. The ith medication record con-
tains multiple medication-related attributes, such as
drug name, dosage, and drug infusion rate. There-
fore, each attribute in mi can be considered as a
tuple of an attribute key nk

i and its value vki . The
diagnoses corresponding to the inclusion are de-
noted as [x1, . . . , xL], where L is the number of
the diagnoses, since a patient may have multiple
diagnoses in an admission.

Different types of medications are recorded in dif-
ferent medical records and attributes have different
schemas. For example, in the eICU dataset (Pol-
lard et al., 2018), continuous infusions are recorded
in the infusionDrug table and prescribed medica-
tions are recorded in the medication table. The
rows in the infusionDrug table contain attributes
such as the drug infusion rate and the total drug
quantity, while the medication table contains drug
dosage and frequency.

Additionally, to distinguish medications from dif-
ferent charts, each medication record has its cor-
responding medication type ti. Thus, the sin-
gle medication record mi can be denoted as
{ti, {(nk

i , v
k
i ), k ∈ {1, . . . , |mi|}}}, where |mi| is the

number of attributes of the medication mi.

3.2. Overall Framework
In this section, as shown in Figure 2, we present
a framework for predicting drug effectiveness that
includes three parts:

• Knowledge enhanced module: Knowledge
enhanced module is used to enhance external
knowledge information for drugs.

• Medication feature learning: Medication fea-
ture learning module learns consistent drug
embedding through text description and inte-
grate diagnosis information in modeling.

• Loss Function: the model is optimized with
a hybrid loss of contrastive loss and cross-
entropy loss to alleviate the data imbalance
problem.

3.3. Incorporating Knowledge Graph
As we assess the effect of medication during ICU
admission, we mainly focus on the drug information
in the medication. Among the two types of medi-
cations (infusionDrug and medication), there is a
common attribute, namely “drug name” (n0

i ), the
value of the attribute can be denoted as v0i .

To enrich the representation of the drug, we intro-
duce external medical knowledge graph. We use
BIOS (Yu et al., 2022) as our additional medical
knowledge graph. It is an automatically generated
comprehensive biomedical knowledge graph. It
contains more than 54 million terms and 69 million
triples that contain relation types such as “is a”, “is
part of”, and “may treat”.

Given the knowledge graph G = {V, E}, we first
use TorusE (Ebisu and Ichise, 2018) to obtain the
entity’s representation. In this manner, the entity
representation contains the connection information
in the knowledge graph. Then we retrieve related
entities of the medicine name v0i according to the
textual similarity, their representations can be de-
noted as e ∈ RM×d, where M is the number of re-
lated entities, and d is the dimension of the embed-
dings. Then we generate the knowledge-enhanced
drug representation ci,drug corresponding to the
related entities with the mean pooling operation:

ci,drug = Pooling(e),where ci,drug ∈ Rd. (1)

3.4. Medication Representation Learning
Inspired by DescEmb (Hur et al., 2022a) and
UniHPF (Hur et al., 2022b), we use text embedding
to account for heterogeneity in the different charts.
Given the single medication mi = {ti, {(nk

i , v
k
i ), k ∈
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Figure 2: The overall framework. It includes three parts: (1) The input includes a medical knowledge graph,
and a list of medications and initial diagnoses. A knowledge enhanced module is designed to enhance
external knowledge information for drugs. (2) The medication feature learning module includes several
encoders and a cross attention module. It learns consistent drug embedding through text description
and integrates diagnosis information. (3) The model is trained with a hybrid loss of contrastive loss and
cross-entropy loss to alleviate the data imbalance problem.

{1, . . . , |mi|}}, we can generate a description of
the medication. The description is a sequence of
words (wi,1, wi,2, . . . , wi,s), consisting of tokens of
attributes name nk

i , value vki and medication type ti.
As shown in Figure 2, the description of mi can be
represented as (“drug name”, “nitroglycerin”, “drug
rate”,. . .,“infusion”). We use a TokenEncoder to
generate the representation of mi corresponding
to the word sequence:

ci,token = TokenEncoder(wi,1, wi,2, . . . , wi,s). (2)

The final representation of ci is the combina-
tion of the token representation ci,token and the
knowledge-enhanced drug representation ci,drug:

ci = f([ci,token||ci,drug]), (3)

where ci ∈ Rd and f(·) is a 3-layer linear transfor-
mation with the tanh activation, and || denotes the
concatenation operation. Then we use a SeqEn-
coder to encode the sequential information:

c = SeqEncoder(c1, c2, . . . , cN ),where c ∈ RL×d.
(4)

The TokenEncoder and SeqEncoder can be any
sequential representation learning models, such as
Bi-RNN and BERT (Devlin et al., 2019). Here, we
use BERT-small (4-layers) as the backbone.

3.5. Incorporating Diagnosis Information
We first learn the representation of diagnoses
[x1, . . . , xL] using a DXEncoder:

x = DXEncoder([x1, . . . , xL]),where x ∈ RL×d.
(5)

The initial embedding of xj is derived from a ran-
domly initialized embedding matrix. The DXEn-
coder can be any representation learning model.
Here, we use a 3-layer linear transformation with
the tanh activation.

To incorporate diagnosis information into predic-
tion and find the relationship between diagnosis and
medication, we use a cross-attention layer to intro-
duce diagnostic information. The attention between
the medication (c) and the diagnosis (x) helps the
model figure out how the medication and the diag-
nosis are related.

The general attention mechanism (Vaswani et al.,
2017) is defined as follows:

Attention(Q,K, V ) = softmax(
QKT

√
d

)V, (6)

where Q, K, and V stand for query, key and value.
Then the cross-attention between the diagnosis

and medication is as follows:

xatt = Attention(x, c, c),where xatt ∈ RN×d, (7)
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catt = Attention(c,x,x),where catt ∈ RL×d. (8)

Finally, we use mean pooling to make xatt and
catt the same shape

x̄att = Pooling(xatt),where x̄att ∈ Rd, (9)

c̄att = Pooling(catt),where c̄att ∈ Rd. (10)

3.6. Optimization
After acquiring the attended diagnosis representa-
tion x̄att and the attended medication representa-
tion c̄att, we perform a classification task to esti-
mate the effectiveness of the drug:

a = x̄att||c̄att, ŷ = g(a), (11)
where || is the concatenation operation and g(·) is
a 3-layer linear transformation with the tanh activa-
tion. We adopt the cross entropy loss for the binary
classifier:

LCE =
−1

|B|

|B|∑
i=1

[yi log(ŷi)+(1−yi) log(1−ŷi)], (12)

where B denotes the samples in a batch.
Moreover, we use a contrastive loss to deal with

the data imbalance problem. Contrastive learning
can pull together samples from the same class in
the normalized embedding space and push apart
the samples from different classes (Wang et al.,
2021). It incorporates different within-class sam-
ples as positives for each sample. Therefore, it can
learn a better representation of the medication.

For the ith sample in a batch B, we first acquire
its representation ai according to Eq. (11). Then we
generate k perturbed views of ai using the 3-layer
liner transformation with the tanh activation:

z
(1)
i = f1(ai), . . . , z

(k)
i = fk(ai) (13)

where z
(1)
i , ... ,z(k)i denotes k different views

of ai and f1, ... ,fk denote k different func-
tions without sharing any parameters. In this
manner, the representations of sampels within a
batch is changed from {a1, a2, . . . , a|B|} to Z =

{z(1)1 , . . . , z
(k)
1 , z

(1)
2 , . . . , z

(k)
2 , . . . , z

(1)
|B| , . . . , z

(k)
|B|} with

|B| × k elements. For each element zi in this new
batch set Z, we select the positive and negative
pairs for constrastive learning. The set of posi-
tive sample of zi is z+i = {zj |yj = yi, i ̸= j} (the
same label) and the set of negative sample of zi
are z−i = {zj |yj ̸= yi, i ≠ j} (different labels). We
set the number of views k = 2, to avoid |z+i | being
zero when there is only one sample of the long-
tailed class in the batch. The contrastive loss can
be formulated as follows:

LCL =
−1

|B|

|B|∑
i=1

1

|z+
i |

∑
zj∈z+

i

log
ezi·zj/τ∑

zk∈{z+
i ,z−

i } e
zi·zk/τ

,

(14)
where τ is the temperature scalar. The final loss
is the combination of the contrastive loss and the
cross-entropy loss:

L = α · LCL + (1− α) · LCE , (15)

where α is a weighting coefficient inversely propor-
tional to the number of epochs.

4. Experiments

4.1. Dataset
We use a publicly available dataset: eICU (Pol-
lard et al., 2018). It consists of ICU records from
multiple US-based hospitals with up to 140,000
unique patients admitted between 2014 and 2015.
We filter the admissions if their corresponding di-
agnoses or prediction targets (APACHE/ mortality/
LOS) are missing. Finally, there are 128,874 unique
patients with 135,495 admissions. The dataset is
divided into three sets with an 8: 1: 1 ratio, in-
cluding 108,379 admissions for training, 13,544
for validation, and 13,572 for testing. The aver-
age number of tokens per medication is 59.59, the
average number of medications per admission is
26.83, and the average number of diagnoses per
admission is 3.55.

4.2. Prediction Tasks
To evaluate our framework on a variety of predictive
tasks, we formulate three binary prediction tasks
following (McDermott et al., 2021; Hur et al., 2022b)
based on ICU admissions. The positive and neg-
ative ratio in three tasks is shown in Table 1. All
evaluations are scored with micro-F1, macro pre-
cision, macro recall, and macro F1. There tasks
are as follows: (1) Mortality Prediction: A sample
is flagged as positive for mortality if the discharge
state is “expired”. The ratio between “alive” and
“expired” is approximately 10: 1. (2) Length-of-Stay
Prediction (LOS7): Whether a given ICU admission
has lasted longer than 7 days. The ratio between
“LOS≤ 7” and “LOS>7” is about 3: 2. (3) APACHE
: APACHE is the abbreviation for Acute Physiology,
Age, and Chronic Health Evaluation (Zimmerman
et al., 2006), an instrument used to assess the risk
of ICU patients for performance comparisons and
quality improvement analysis in the ICU. The clas-
sification task is to assess whether the APACHE
score is greater than 50. The ratio between two
classes is approximately 1: 1.
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Training Validation Test
Mortality 98,326 : 10,053 12,235 : 1,209 12,266 : 1,306

LOS7 65,093 : 43,286 8,166 : 5,378 8,141 : 5,431
APACHE 53,557 : 54,882 6,883 : 6,661 6,690 : 6,882

Table 1: Statistics of training, validation and test sets. The numbers before and after “:” denote the
numbers of positive and negative samples, respectively.

Mortality LOS7 APACHE
Micro F1 Macro F1 Micro F1 Macro F1 Micro F1 Macro F1

DescEmb 0.8369 0.6273 0.6672 0.6673 0.7184 0.7183
UniHPF 0.9116 0.6813 0.6775 0.6676 0.7169 0.7166
VGNN 0.8444 0.6693 0.6652 0.6586 0.6561 0.6759
MedGTX 0.9045 0.6199 0.6340 0.6310 0.6587 0.6589
GCT 0.8068 0.6594 0.6664 0.6538 0.6983 0.6983
BERT 0.7669 0.6337 0.6489 0.6151 0.6756 0.6756
UniHPFcl 0.9142 0.6937 0.6850 0.6681 0.7231 0.7241
ours 0.9114 0.6988 0.6974 0.6799 0.7288 0.7296

Table 2: Prediction results for the hospital mortality prediction, the hospital length of stay within 7 days
(LOS7), and APACHE score task.

4.3. Baselines
Our model is compared with several baselines to
evaluate performance in medication effectiveness
prediction tasks, including the text embedding meth-
ods BERT (Devlin et al., 2019), DescEmb (Hur et al.,
2022a) and UniHPF (Hur et al., 2022b), the knowl-
edge enhanced method MedGTX (Park et al., 2022)
and the diagnosis-based methods GCT (Choi et al.,
2020) and VGNN (Zhu and Razavian, 2021).

• DescEmb (Hur et al., 2022a): It utilizes text
embedding for clinical descriptions linked to
each medical diagnosis to overcome the het-
erogeneity of codes.

• UniHPF (Hur et al., 2022b): It handles hetero-
geneous EHR with a unified framework without
feature selection.

• VGNN (Zhu and Razavian, 2021): It introduces
variational regularization for node representa-
tion to ease the insufficiency of self-attention
in graph-based models.

• MedGTX (Park et al., 2022): It uses a graph
encoder to exploit the graphical nature of struc-
tured EHR data, a text encoder to handle un-
structured text, and a cross-modal encoder to
learn a joint representation space.

• GCT (Choi et al., 2020): It uses guided self-
attention to learn the hidden graph structure
of the EHR.

• BERT (Devlin et al., 2019): It concatenates all
drug information and then feeds them to the
BERT encoder.

• UniHPFcl: It replace UniHPF’s loss function
by hybrid loss defined in Eq.(15) as a baseline
to verify the effectiveness of contrastive loss.

• Ours: The full model contains diagnosis and
knowledge graph information and trains with
both LCE and LCL.

4.4. Implementation Details
The embedding dim d is set to 768, and the dropout
rate is set to 0.1. We use the Adam algorithm to
optimize our model. The learning rate is set to
10−5 for all models. The batch size is 16. For
the curriculum coefficient α, we use a parabolic
decay with respect to the epoch number (Wang
et al., 2021) and set α = 1 − (T/Tmax)

2, where
T denotes the current epoch number and Tmax

indicates the max epoch number, which is set to 40
for all methods. Methods except for ours (+cl) and
ours (full) use an early stop strategy with 10-epoch
patience. The temperature parameter τ in Eq. (14)
is set to 0.07.

4.5. Results

4.5.1. Quantitative Analysis

Table 2 shows our experimental results for the three
prediction tasks, respectively. Compared to the
baselines, we can find that:

• Our method outperforms all baselines on all
metrics for the APACHE and LOS7 predic-
tion tasks. On the mortality prediction task,



9805

Components Mortality LOS7 APACHE
kg cl dx mirco F1 marco F1 mirco F1 marco F1 mirco F1 marco F1

0.9116 0.6813 0.6775 0.6676 0.7169 0.7166
✓ 0.9131 0.6851 0.6896 0.6729 0.7217 0.7233

✓ 0.9142 0.6937 0.6850 0.6681 0.7231 0.7241
✓ 0.9147 0.6883 0.6934 0.6753 0.7222 0.7239

✓ ✓ 0.9101 0.6846 0.6851 0.6701 0.7233 0.7239
✓ ✓ 0.9148 0.6901 0.6912 0.6836 0.7262 0.7270

✓ ✓ 0.9081 0.6881 0.6956 0.6753 0.7260 0.7273
✓ ✓ ✓ 0.9114 0.6988 0.6974 0.6799 0.7288 0.7296

Table 3: Ablation study for three tasks.
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Figure 3: Attention weights between drugs and
diagnoses.

our method and its variants outperform the
baselines on both micro and macro F1 scores,
achieving a better balance between precision
and recall. There are several possible rea-
sons. First, our model introduces external
knowledge of drug by a knowledge-enhanced
module, which enriches the representations of
medicines with external knowledge like rela-
tions with diseases and other medicines; Sec-
ond, our model mines the relationship between
diagnosis and medications, thus capturing use-
ful information about the diagnosis; Third, our
model uses a hybrid of contrastive loss and
cross-entropy loss, which can learn better fea-
tures for long-tailed class, and thus learn a
better classifier.

• Contrastive loss is more effective for dealing
with imbalanced data. Compared to UniHPF,
UniHPFcl gains 1.2% macro F1 on the mor-
tality prediction task, while on APACHE and
LOS7 prediction tasks, the performance gain
are relatively smaller, 0.8% and 0.1%, respec-
tively. Furthermore, our proposed model out-
performs the contrastive learning-based base-
line UniHPFcl.

• BERT performs the worst among all methods,
as it does not capture sequential information
in the medications.

• Compared to knowledge-enhanced method
MedGTX, our model gains about 4%–7% im-
provement on three tasks. This is probably
due to our model utilizes the relation among
entities in the external knowledge graph.

• Compared to methods that use graphs to em-
bed diagnosis information like GCT and VGNN,
our model obtains better performance. This
shows that the co-attention layer can better
capture the relationship between diagnosis
and the related medication, thus learn better
embeddings of an admission for drug effective-
ness prediction.

4.5.2. Ablation Study

To verify the effectiveness of each component in
our model, we perform ablation study on all three
tasks. Table 3 shows the results with the model
equipped with different components, where “kg”
stands for knowledge enhanced module, “cl” stands
for contrastive loss and “dx” means the model are
enhanced with diagnosis.

As shown in Table 3, the complete model outper-
forms all the variants. Models equipped with any
component outperforms the baseline model. For
most cases, models with two components are better
than one components. These results demonstrate
that the introduction of external knowledge, diagno-
sis information, and contrastive loss promotes the
capacity to handle EHR data in medication effec-
tiveness prediction.

4.5.3. Attention Visualization

Figure 3 shows the attention between the medica-
tion and diagnosis. The X-axis is the drug used in
admission, and the Y-axis is the diagnosis. The
deeper the color of the cell, the higher the attention
score between diagnosis and medication. From the
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Figure 4: Performance with different weighting coefficient α on the mortality prediction task of long-tailed
“expired” class. The red horizontal dashed line is the result of α with a strategy that decays with regard to
the epoch number.
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Figure 5: Embedding visualizations with t-SNE for
different methods. Each dot represents one admis-
sion, and the dot color represents the target label
for the LOS7 binary classification task.

figure, we can find out that the last cell “Aspirin” gets
the highest score in the second row “cellulitis and
localized soft tissue infections” since it is one of the
antibiotics and is effective for curing infections. It
shows our model can figure out which combination
of medication is useful in early medication.

4.5.4. Parameter Analysis

Figure 4 shows the prediction results for the long-
tailed “expired” class when the weighting coefficient
α in Eq. (15) varies from 0.1 to 0.9 on the mortality
prediction task. The red horizontal line is the result
of α with a strategy that decays with regard to the
epoch number. We can see that the best precision
appears when α is 0.1, while the worst recall and
F1 appears when α is 0.5 and 0.6. When α decays
with regard to the epoch number, the recall and F1
is the best. This is probably because a well-trained
representation or classifier layer can both achieve

better results, since when α > 0.5, it focuses on
representation learning, while when α < 0.5, it
focuses on classifier learning. The decay of α helps
the model learn better universal features first, then
learn robust classifier. Therefore, the adopted α
decay strategy can benefit the learning process.

4.5.5. Embedding Visualization

Figure 5 visualizes the learned embeddings of dif-
ferent methods. We take the last layer before the
classification layer as input and use the t-SNE algo-
rithm (van der Maaten and Hinton, 2008) to trans-
form d-dim embedding to two dimensions. Each
dot represents one admission, and the color of the
dot represents the target label for the binary length-
of-stay classification task. Compared with other
baselines, the embeddings of different classes gen-
erated by our method are well clustered and sepa-
rated, therefore easier to be classified. This shows
that our model learns better embedding for each
admission, thus can provide accurate prediction for
medication effectiveness.

5. Conclusion

In this paper, we proposed to predict the effective-
ness of first 24 hours’ medication plan for patients.
This is especially useful for patients with serious
illness who needs immediate treatment. In mod-
eling, we used a knowledge-enhanced module to
incorporate external knowledge and a medication
feature learning module to find the interaction be-
tween diagnosis and medication. To alleviate the
data imbalance problem, the model is optimized
with a contrastive loss to learn better features and
a cross-entropy loss for classifier learning. Ex-
tensive experimental results on the eICU dataset
demonstrated that our model could significantly out-
perform state-of-the-art methods. The proposed
model can be applied to evaluate the medication
plan for emergent patients and assists doctors in
establishing a quick and probable treatment.
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