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Abstract
Recently, influence functions present an apparatus for achieving explainability for deep neural models by
quantifying the perturbation of individual train instances that might impact a test prediction. Our objectives
in this paper are twofold. First we incorporate influence functions as a feedback into the model to improve
its performance. Second, in a dataset extension exercise, using influence functions to automatically identify
data points that have been initially ‘silver’ annotated by some existing method and need to be cross-checked
(and corrected) by annotators to improve the model performance. To meet these objectives, in this paper, we
introduce INFFEED, which uses influence functions to compute the influential instances for a target instance.
Toward the first objective, we adjust the label of the target instance based on its influencer(s) label. In doing this,
INFFEED outperforms the state-of-the-art baselines (including LLMs) by a maximum macro F1-score margin of
almost 4% for hate speech classification, 3.5% for stance classification, and 3% for irony and 2% for sarcasm
detection. Toward the second objective we show that manually re-annotating only those silver annotated data
points in the extension set that have a negative influence can immensely improve the model performance
bringing it very close to the scenario where all the data points in the extension set have gold labels. This
allows for huge reduction of the number of data points that need to be manually annotated since out of the
silver annotated extension dataset, the influence function scheme picks up ∼ 1

1000
points that need manual correction.
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Figure 1: Schematic illustrating our idea of using
influence functions to revise the annotations of the
target instance.

1. Introduction

In most of the classification problems, the real-
world data (training and test instances) are not
evenly distributed into classes (Bengio et al., 2020).
As a result, the performance of the model suffers
significantly, providing motivation to use pre-trained
large-scale models. Despite these large models’
excellent performance, most deep neural architec-
tures are implemented as a black box and lack
algorithmic transparency (Lipton, 2016). Trans-
parency in the method improves the explainability
of the model and makes it more trustworthy. Some
previous works attempt to explain the predictions
of a model (i.e., why the model takes a particular
decision) by perturbing the train instances or lo-

cally fitting the model on train data (Ribeiro et al.,
2016a). In addition, to explain the model, the au-
thors in (Koh and Liang, 2017) formulate influence
functions to understand how the model predictions
are affected by up-weighting a small amount of
training instance loss. The idea is to estimate how
much each training sample affects the model’s pre-
dictions over the test set. Any training sample that
causes the test loss to go up is considered less
useful and is down-weighted afterward. Given the
efficacy of influence-based data resampling in this
work, we set a twofold objective. First we show that
influence functions can be passed as a feedback
to the model to improve its overall performance.
Second, for the purposes of extension of anno-
tated datasets, we show that influence functions
can automatically identify those data points whose
labels need to be cross-checked (and corrected)
by annotators out of the full extension set that have
been initially ‘silver’ annotated by some existing
model.

Our main contributions to this paper are as fol-
lows.

• We propose a framework called INFFEED
where we employ the influence function as
feedback to adjust the label of a candidate
data point based on the labels of its influ-
encers in order to increase the performance
of the model.
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• We evaluate the proposed framework on six
datasets which are on subjective tasks such
as hate speech detection, stance classifica-
tion, irony, and sarcasm detection.

• We observe that our framework results in an
improvement of 4%, 3.5%, 3% and 2% F1
score in the model performance over state-of-
the-art baselines for hate speech, stance and
irony, and sarcasm classification, respectively.

• For the dataset extension exercise, we show
that just manually correcting the labels of the
data points that impart a negative influence
can result in a performance very close to the
case where the whole extension set is gold
annotated. The reduction is huge since the
negatively influencing set is ∼ 1

1000

th, of the
size of the full extension set.

This, we believe, is a first-of-its-kind approach to
use influence functions play the role of a pseudo-
annotator deciding whether to update the label of
target instances in a text classification model in
order to improve its performance over state-of-the-
art baselines.

2. Related work

One of the most critical issues with deep learn-
ing models is their interpretability (Guidotti et al.,
2018; Lipton and Steinhardt, 2018), and the prone-
ness to learn ambiguous correlations instead of
understanding the true nature of the task (Sagawa
et al., 2020). These two reasons result in poor
outcomes on datasets and cannot meet the expec-
tations (Gururangan et al., 2018; Jia and Liang,
2017; Glockner et al., 2018) resulting in severe bi-
ases in model decisions (Blodgett et al., 2020; Sun
et al., 2019). This further brings down the overall
confidence in the technology (Ribeiro et al., 2016a;
Ehsan et al., 2019). Despite great success, the
question of “why does the model predict what it
predicts?” needs a succinct answer. A satisfactory
answer to this question can result in the improve-
ment of the model (Amershi et al., 2015), lead to
the development of newer perspectives (Shriku-
mar et al., 2017), and benefit users by providing
explanations of the model actions (Goodman and
Flaxman, 2017).

Understanding black-box models by approaches
like locally fitting a simpler model around the test
point (Ribeiro et al., 2016a) or by perturbing the
train point to see how the prediction changes (Si-
monyan et al., 2013), (Li et al., 2016), (Datta et al.,
2016) do not satisfactorily indicate where the model
came from (Koh and Liang, 2017). To answer this
question, the influence function (Hampel, 1974)
was introduced; it was a classic technique based
on robust statistics through which the learning al-
gorithm can be inspected, and can be traced back

to the most influential training data points which
impacts the model to predict what it predicts. A
simple and efficient methodology was introduced
to align and fit the influence function to the ma-
chine learning paradigm, which required access to
gradients and Hessian-vector products (Koh and
Liang, 2017). It was further demonstrated by (Basu
et al., 2020) that non-convex and non-differentiable
models, which seem to have limited usefulness,
successfully provide significant information while
approximated by influence function analysis. On
linear models, it can be observed that the influence
function is useful in – explaining model predictions,
tracking and reducing errors in datasets, debug-
ging models, and even fabricating indistinguishable
training set impact1. The influence function indi-
cates ‘influential’ training data points during model
prediction and has a plethora of applications. The
authors in (Han et al., 2020a) employed them to ex-
plain model predictions and uncover data artifacts.
They were used by (Yang et al., 2020) in order to
determine the quality of synthetic training samples
within the framework of data augmentation. The
authors in (Kobayashi et al., 2020) investigated
what would happen if they used gradient-based
approaches in conjunction with influence functions
to investigate training history and test stimuli si-
multaneously. One of the drawbacks of influence
functions is that it is highly compute intensive. To
circumvent this problem FastIf (Guo et al., 2021),
a collection of simple modifications were proposed
to significantly improve the runtime for computing
influence functions.

Of late, there have been a rising inter-
est in debugging models using explainability
techniques (Teso and Kersting, 2019; Lertvit-
tayakumjorn et al., 2020; Guo et al., 2021; Xu and
Du, 2020; Nuamah and Bundy, 2020). In (Rajani
et al., 2020), the authors suggest utilizing kNN
representations to identify training instances re-
sponsible for a model’s predictions and acquire a
corpus-level knowledge of the model’s behavior. A
recent research (Zylberajch et al., 2021) (HILDIF)
has sought to use explainability feedback as input
to fine-tune the model for the MNLI dataset. Re-
cently, some comparable tests were carried out
using image data, randomly flipping two labels us-
ing the influence function (Hao et al., 2020a; Teso
et al., 2021; Wang et al., 2018). UIDS by (Wang
et al., 2020) and RDIA by (Kong et al., 2022), can
both relabel data points based on influence capa-
bility using just numeric attributes. To the best of
our knowledge, RDIA is the most recent study that
addresses the problem of data relabeling followed
by a classification task. (Mozes et al., 2023) tried
to incorporate LLM and utilized influence functions
to relabel the predictions. There is a major gap

1https://christophm.github.io/interpretable-ml-book/
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between these works and what we can accomplish
with the available textual data. Our work differs
from these in that it employs influence functions as
a pseudo-annotator and leverages the influential
instances as feedback to adjust the gold annota-
tion for a target instance, thereby, improving the
overall model performance.

3. Preliminaries

Notation: Let us consider a classification task
with input text t ∈ T = {1, 2, ...T} and the label
Y = {y1, y2, ..}. Each instance t consists of m no.
of words, i.e., t = {w1, w2, ...wm}. Let us assume
that the feature matrix for the input text T is X.
We further denote the training set (texts and their
corresponding labels) as (XTR, YTR). In this work,
we have multiple validation sets. The validation set
will be denoted by V . For the test data XTS , we
have gold labels YTS , and the predicted label will
be denoted by ŶTS .
Influence function: Let us choose an instance
(xi, yi) from (XTR, YTR). Let us have a model
θ and loss functions L((xi, yi), θ). Given n num-
ber of instances in training set (XTR, YTR), our
objective is to minimize the loss using θ̂ =
argminθ

1
n

∑n
i=1 L((xi, yi), θ). Now, the objective

attempts to identify the influence of the training
data points on the learned parameter θ and also
on the test data (xts, yts) ∈ (XTS , YTS).
The strength of an influence function is that it
attempts to identify the loss locally and tracks
the whole model behavior by perturbing or up-
weighting it. Let us consider that the loss of a par-
ticular training data point is denoted by ±δ. Thus,
the influence function for a test data point (xts, yts)
can be represented as follows.

IF{(xi, yi), (xts, yts)} ∼=
dL((xts, yts), θ̂±δ,(xi,yi))

d(±δ)
(1)

where θ̂±δ,(xi,yi) is the model which has been up-
weighted or perturbed by ±δ. The updated loss
function thus becomes

θ̂ = argminθ

1

n

n∑
i=1

{L((xts, yts), θ)+ (±δ)L((xi, yi), θ)}

(2)
(Koh and Liang, 2017) have shown that to avoid
high computation costs, we can compute the influ-
ence function using the approximation below.

IF{(xi, yi), (xts, yts)} ≈

−∇θL((xts, yts), θ̂)
TH−1

θ̂
∇θL((xi, yi), θ̂)

(3)

where Hθ̂ is the Hessian matrix of the model pa-
rameters. We are interested in identifying the most
negatively influential (helpful) data points by con-
sidering the perturbation of a data point that leads

to a lower loss in a test data point. Thus, if we de-
note the most negatively influential (helpful) train-
ing data point as (x̂i, ŷi) then it can be presented
as

(x̂i, ŷi) = argmin(xi,yi)∈(XTR,YTR)IF{(xi, yi), (xts, yts)}
(4)

According to (Guo et al., 2021) the computation
of equation 4 becomes expensive if the dataset
size increases. To overcome this issue, instead
of searching those data points in the whole set,
we search them in a smaller subset considering
minimal changes in the nearest neighbors’ quality
in retrieving influence-worthy data points. Identi-
fication of this subset was based on l2 distance
based on the highly-optimized nearest neighbor
search library FAISS (Johnson et al., 2021). So
the updated equation becomes

(x̂i, ŷi) = argmin(xi,yi)∈(X̂,Ŷ )IF{(xi, yi), (xts, yts)}
(5)

where (X̂, Ŷ ) is a subset of (X,Y ) computed using
FAISS2.
Problem definition: Our objective in this paper
is to show that the above influence function for-
mulation proposed in the literature can be used to
design a feedback mechanism in a learning model
to improve upon the performance in any classifi-
cation task and, in particular, those that are highly
subjective in nature.Examples of such subjective
tasks include hate speech detection, stance classi-
fication, sarcasm, and irony detection. Since these
tasks are subjective, there might be ‘impure’ in-
stances of data points where there are annotator
disagreements. In such cases, the idea is whether
one can identify other data points that could poten-
tially influence such impure instances. If this hy-
pothesis is valid, one can determine the influence
points for the impure point based on the influence
function formulation and use the label information
of the influence points as a silver label for the im-
pure instances to improve the overall classification
performance. We test this hypothesis by having the
silver label as feedback in the model. In the next
section, we discuss how we design this feedback
mechanism.

4. Methodology

In this section, we detail the methodology that
we adopt to incorporate the influence function as
feedback into the classification model. We also
discuss the baselines used in this paper. Our
proposals: Our proposals include two systems
– System 1 and System 2. While System 1 is
the standard classification model, System 2 is
our proposal for incorporating the influence func-
tion into the System 1. System 1 is the vanilla

2https://github.com/facebookresearch/faiss
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Figure 2: Overview of our proposed approach INFFEED along with System 1 and the vanilla fine-tuning
based ablation setup.

approach where one usually uses a transformer-
based classification model having three divisions
of a dataset marked as train (TR), valid V and test
TS . We first train a model with TR and save the
model snapshot θ where the validation loss is min-
imum and then evaluate the performance using
the test data TS . As shown in Figure 2 (System
1) the input text (post/tweet etc.) is split into to-
kens {w1, w2, w3 · · ·wm} and is passed through a
transformer encoder followed by a softmax layer to
make the final prediction.

4.1. Influence function to introduce
feedback

System 2 (INFFEED): We begin by partitioning
the training set3, denoted by TR, into a smaller
subset TCR, which we designate as a fine-tuning
set. Using the remaining part of the training set,
TPR = TR − TCR, we then train a model, θA. For
each instance in TCR, we determine the most influ-
ential training instances from TPR, with θA and the
influence function approach outlined in the preced-
ing section. We revise the label of each instance
in TCR based on the majority/weighted voting of
the labels from the top-K influential instances iden-
tified earlier, producing an updated set Tup

CR. We
proceed to fine-tune θA using Tup

CR. Afterwards, we
utilize the held-out validation set V to derive the
final model, θB. Finally, we evaluate θB using the
held-out test dataset TS (Figure 2, System 2).

3https://docs.cleanlab.ai/v2.0.0/tutorials
/pred_probs_cross_val.html

Transformer architectures: We use the BERT (De-
vlin et al., 2018) and the DistilBERT (Sanh et al.,
2019) (a lighter version of BERT) models as trans-
former architectures throughout this paper.
Baselines: In this paper, we use four state-of-
the-art baseline methods taken from the literature
– Hao et al. (2020a), Rajani et al. (Rajani et al.,
2020), Wang et al. (Wang et al., 2020), and Kong
et al. (Kong et al., 2022). As additional baselines,
we use two state-of-the-art LLMs GPT-3.5-Turbo4

and GPT-45, in a zero-shot classification setting.

4.2. Influence function to reduce
annotation cost

Imagine a scenario where we have TX training
data points already annotated by human annota-
tors and we wish to enhance the performance of
the model by extending the training data with gold
annotations of another TY points. Rather than hav-
ing all the TY points annotated by the humans, we
can use INFFEED to selectively annotate a subset
of the TY points to reduce the overall annotation
cost. To this purpose, we first train the model using
TX . Using this trained model we predict the labels
for the TY points. Thus the TY points get silver-
annotated. Now we train a fresh model using this
silver-annotated TY points. For each point in the
validation data we get a set of points from TY that
are most influential using the INFFEED algorithm.
Out of these most influential points we concentrate

4https://platform.openai.com/docs/models/gpt-3-5
5https://platform.openai.com/docs/models/gpt-4
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Dataset Size #Labels Name of labels (#instances)

HateXplain (Mathew et al., 2021) 20,148 3
• Hateful (5,935)
• Offensive (5,480)
• Normal (7,814)

HateSpeech (Davidson et al., 2017) 24,802 3
• Hate speech (1,430)
• Offensive (19,190)
• Normal (4,163)

WT-WT (Conforti et al., 2020) 51,284 4

• Support (6,663)
• Refute (4,224)
• Comment (20,864)
• Unrelated (19,533)

Stance (Mohammad et al., 2016) 4,163 3
• Favor (1,056)
• Against (2,112)
• Neither (996)

iSarcasm (Oprea and Magdy, 2020) 4,484 2 • Sarcastic (777)
• Non-sarcastic (3,707)

Irony (Van Hee et al., 2018) 3,000 4

• Ironic by clash (1,728)
• Situational irony (401)
• Other verbal irony (267)
• Non irony (604)

Table 1: Dataset details.

on those that negatively influenced the prediction
(had negative influence scores). We ask human
annotators to check these cases and, if necessary,
re-annotate only these points in TY . With this re-
vised TY we again train the model and find the
points negatively influencing the validation data
points. Once again these points are re-annotated
by humans, if they find it necessary. We repeat
this process until in an iteration there are no more
negatively influential points.

5. Dataset

The method proposed by us is generic in nature.
However, to demonstrate the real effectiveness
of the approach, we choose datasets that involve
subjective tasks. Our datasets are chosen in a
way to cover a wide spectrum of problems and
comprise both binary and multiclass scenarios.
In specific, we focus on four types of subjective
tasks – hate speech detection, stance classifica-
tion, sarcasm, and irony detection. We evaluate
our method on state-of-the-art datasets including –
(a) HateXplain (Mathew et al., 2021) and (b) David-
son (Davidson et al., 2017) for hate speech (c)
WTWT (Conforti et al., 2020) and (d) (Moham-
mad et al., 2016) for stance classification, (e) isar-
casm (Oprea and Magdy, 2020) for sarcasm detec-
tion, (f) (Van Hee et al., 2018) for irony detection.
The basic statistics for each of these datasets are
given in Table 1.

6. Experimental setup

We use three different setups in our experiment to
observe the importance of increasing data. The
setups are as follows – (i) S1: Here, we randomly
sample 2500 instances from the dataset. Then, we
split these into four parts : TPR (1000 instances),
TCR (800 instances), V (200 instances) and TS

(500 instances). (ii) S2: Here we have 6000 ran-
domly sampled instances and the number of in-
stances in TPR, TCR, V and TS are 4200, 800, 500
and 500 respectively. (iii) S3: In this case, the num-

ber of randomly sampled instances is 10000. The
number of instances in TPR, TCR, V and TS are
7500, 1500, 500 and 500 respectively. For each
setup, we sample the union of TPR, TCR, V three
times and compute the performance. We keep the
test set TS fixed across all the setups. We take the
average of the three macro F1 scores as the final
performance. This result is representative, and the
trends remain similar for setups with more than
10000 randomly sampled instances. In the case of
the datasets which have less number of instances
(less than the total instances in S2 but more than
S1), we oversample the instances in training data
(TPR) using random selection with repetition.

For the baselines (Hao et al., 2020a; Rajani et al.,
2020; Wang et al., 2020; Kong et al., 2022) also, we
have three such setups; however, during training,
we merge TPR and TCR to form a single training
set. We let the validation (V ) and test (TS) sets
remain the same. For the LLM baselines we query
the models with each entry from the test set TS

and record the classification labels in each case.
Model setup: For System 1 and System 2 (i.e.,
INFFEED), we have used two models – BERT-base
and DistilBERT. During the fine-tuning, we freeze
the first nine layers based on the findings in (Lee
et al., 2019) to limit the amount of computation.
This leaves us with approximately 14.7M trainable
parameters. In the case of DistilBERT, we freeze
the first 4 layers to bring down the overall com-
putation cost. For both models, we consider a
maximum of 350 tokens. After parameter tuning,
the learning rate is set at 2e − 5, the number of
epochs at 12, and the batch size at 64. Further, for
INFFEED, the weight decay is set to 0.005, the k in
kNN to 100, and the Hessian approximation value
to 800.

For (Hao et al., 2020a), everything else remain-
ing same as System 1, the learning rate has been
set to 5e− 5. In the case of this baseline, we treat
the hate speech datasets as a two-class classifica-
tion scenario whereby we merge the ‘hateful’ and
the ‘offensive’ classes into a single ‘abusive’ class.
Now, during classification, we randomly select 10%
of the instances from the entire dataset along with
their original labels; we then flip the label for each
instance to ‘abusive’ if the original label is ‘normal’
and vice versa. We did the same for the sarcasm
dataset. For (Rajani et al., 2020), the learning rate
and the k in kNN have been set to 5e−5 and 16, re-
spectively, while everything else remains the same
as System 1.

For the baselines UIDS (Wang et al., 2020) and
RDIA (Kong et al., 2022) we use the Newton-CG
algorithm (Martens, 2010) to calculate Influence
Functions as mentioned in the paper. For the logis-
tic regression model mentioned in RDIA, we select
the regularization term C = 0.1.
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Setup
HateXplain WT-WT IR ST iSarcasm DV

Macro F1-score
Pretrained embedding

Wang et al. (Wang et al., 2020) (Lin-UIDS) 0.519 0.490 0.574 0.498 0.502 0.411
Wang et al. (Wang et al., 2020) (Sig-UIDS) 0.562 0.511 0.624 0.523 0.541 0.497

Kong et al. (Kong et al., 2022) (RDIA) 0.574 0.536 0.611 0.519 0.546 0.531
BBU DB BBU DB BBU DB BBU DB BBU DB BBU DB

Hao et al. (Hao et al., 2020a) 0.623 0.631 - - - - - - 0.598 0.577 0.759 0.742
Rajani et al. (Rajani et al., 2020) 0.611 0.585 0.613 0.603 0.709 0.626 0.611 0.572 0.515 0.524 0.786 0.751

System 1 0.622 0.641 0.613 0.612 0.683 0.680 0.578 0.588 0.603 0.612 0.765 0.746
InfFeed (MV) 0.648 0.639 0.629 0.617 0.709 0.707* 0.611 0.603 0.623 0.629 0.784 0.749
InfFeed (WV) 0.653* 0.657* 0.631 0.622** 0.701 0.669 0.605* 0.605 0.629* 0.635* 0.799** 0.770*

Large Language Models
gpt-3.5-turbo 0.638 0.629 0.682 0.566 0.493 0.735

gpt-4 0.644 0.631 0.689 0.601 0.541 0.770

Table 2: Macro F1 score for the different models. All bold face entries represent the best performing score
and the underlined values represent the best performing baseline. IR: (Van Hee et al., 2018) dataset, ST:
(Mohammad et al., 2016) dataset, DV: (Davidson et al., 2017) dataset, BBU: BERT-base-uncased, DB:
DistilBERT, MV: majority voting, and WV: weighted Voting. *: Statistically significant results with p-value
<0.05, and **: Statistically significant results with p-value <0.01. Best results are highlighted in bold and
second best are underlined.

System setup: We run all of the models described
in this study on a Windows-based system equipped
with 64 gigabytes of RAM, two 24 gigabytes RTX
3090 GPU connected through SLI, and a Ryzen 9
with a fifth generation, twelve-core CPU.

6.1. Description of the baselines

Hao et al. (Hao et al., 2020a): In this work, authors
have proposed an automated weakly supervised
scheme along with two metric functions for identify-
ing mislabeled data in a binary classification task.
The metric functions are cross entropy loss and
the influence function. Cross entropy loss is used
to calculate the disparity between ground truth and
predicted label. The influence function is used to
identify the dependence of the model on the train-
ing data. Performance is measured after correcting
the mislabeled instances. The authors have con-
ducted the experiments on ∼10K images from the
real-world clinical questions, i.e., mammographic
breast density category classification6 and breast
cancer diagnosis.
Rajani et al. (Rajani et al., 2020): In this work, the
authors have proposed a method using k-nearest
neighbor representations to identify training in-
stances responsible for prediction. Further, they
observed that their proposed method is useful for
unveiling learned spurious associations, identifying
mislabelled instances, and improving model perfor-
mance. In order to understand the model behavior,
kNN was employed over the hidden representation
of the model to identify relevant training instances
for a test instance. They then identified the confi-
dence interval where kNN performed better than
the model. During inference, they either consider
the model’s prediction or kNN’s prediction based

6http://www.eng.usf.edu/cvprg/Mammography/
Database.html

on the confidence ranges where each performed
better than the other. They have conducted exper-
iments on multiple datasets such as the Stanford
Natural Language Inference (SNLI)7, the Adversar-
ial NLI (ANLI)8 and the Heuristic Analysis for NLI
Systems (HANS)9 datasets.
Wang et al. (Wang et al., 2020): In this work, the
authors presented a unique Unweighted Influence
Data Subsampling (UIDS) approach, and estab-
lished that the subset-model acquired using the
UIDS method can outperform the full-set-model.
They separated their whole system into two sec-
tions: computing IF and creating probabilistic sam-
pling functions. They created two probabilistic sam-
pling functions, linear sampling (inspired by (Ting
and Brochu, 2018)) and sigmoid sampling. This
probabilistic sampling strategy manages the worst-
case risk across all distributions that are close to
the empirical distribution. They demonstrated their
abilities on 14 distinct datasets from the medical,
text, social, imaging, Physics, CTR, and life do-
mains.
Kong et al. (Kong et al., 2022): In this work,
the authors present RDIA, an influence-based
relabeling framework for reusing harmful train-
ing samples in order to improve model perfor-
mance. The influence function was used to assess
how relabeling a training sample might affect the
model’s test performance. They conducted their
entire experiment on ten distinct datasets (Breast-
cancer, Diabetes, News20, Adult, Real-sim, Cov-
type, Criteo1%, Avazu, MNIST, CIFAR10)10 based
on a set of numerical features. They employed lo-
gistic regression (convex optimization) as the clas-
sifier. The average test loss with standard deviation

7https://nlp.stanford.edu/projects/snli/
8https://huggingface.co/datasets/anli
9https://github.com/tommccoy1/hans

10https://www.csie.ntu.edu.tw/cjlin/libsvmtools/datasets/
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results was used to evaluate performance.
Since UIDS and RDIA models need numerical

features as input we obtain pretrained embeddings
of all the data points present in our dataset which
are then directly fed as input to these models.

7. Influence function as a feedback

In Table 2, we summarize our main results. As
our dataset does not have numerical features, we
represent the data points using BERT based pre-
trained embeddings that are fed to UIDS and RDIA
as inputs. The BBU and DB columns show the
results using BERT-base-uncased and DistilBERT
as the transformer architectures, respectively. All
the results are averaged over the three setups
S1, S2 and S3. We observe that INFFEED (major-
ity/weighted voting) always outperforms the most
competing baselines except for the (Mohammad
et al., 2016) dataset, where it is the same as the
baseline. In all cases where our models win, the
results are statistically significant. In general, INF-
FEED weighted voting is slightly better than ma-
jority voting. Further, for both INFFEED models,
the DistilBERT architecture performs better than
BERT-base-uncased in most cases. For the base-
lines (Hao et al., 2020a) and (Rajani et al., 2020),
the trends are reversed; BERT-base-uncased gen-
erally works better than DistilBERT here.
Our models also outperform the LLM based base-
lines. The largest performance margin is for the
iSarcasm dataset with GPT-4 reporting a macro
F1 score of 0.541 compared to INFFEED (WV) at
0.635.
Effect of varying data size: Here we report the
performance of the best performing model, INF-
FEED (majority voting) separately for the three se-
tups – S1, S2 and S3. Figure 3, shows how the
performance of the model improves as we increase
the dataset size. For some datasets, e.g., (David-
son et al., 2017) and (Conforti et al., 2020), one
observes a gain close to 20% as one sweeps from
setup S1 to S3.
Remark : According to the study by (Koh and Liang,
2017), with N training data points and P param-
eters, the Hessian matrix computation requires
O(NP 2 + P 3) operations, which is unacceptably
expensive for massive datasets/models. This is the
primary reason for the popularity of the FastIf (Guo
et al., 2021) algorithm which is also what we have
used here.
Ablation studies: In order to understand the ef-
fectiveness of the influence function as a ‘pseudo-
expert’ annotator, we perform two ablation exper-
iments. These are – (a) random flipping and (b)
vanilla fine-tuning.
Random flipping: This system uses the same pa-
rameters as mentioned in System 1. However,
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Figure 3: Demonstration of how the macro F1-
score improves with increasing data. Stance: (Mo-
hammad et al., 2016) dataset, Irony: (Van Hee
et al., 2018) dataset, and Davidson:(Davidson
et al., 2017) dataset.

here we randomly flip the labels of some of the
training instances (around 5%, which is similar in
tune to the number of instances updated on aver-
age by INFFEED).
Vanilla fine-tuning: As in System 2, here also we
obtain a model θA by training it on TCR. Now rather
than computing influence functions, we fine-tune
θA using TCR.
Subsequently, we use the held-out validation set V
and save the new model θB where the validation
loss is minimum and evaluate the performance with
the held-out test set TS .
The results from the two ablations are reported
in Table 3. For random flipping, in case of the
hate speech datasets, there is an average perfor-
mance drop of almost 20%. For the stance detec-
tion datasets, we can see an average 16% drop,
while for the irony and sarcasm datasets, the aver-
age drops are nearly 13% and 18%, respectively.
In vanilla fine-tuning for all the datasets we see an
average drop in the range of 2% – 2.5%. Clearly,
both the approaches perform worse than INFFEED
showing the effectiveness of the influence func-
tions.
Example instances: In Table 4 we show some
examples where the incorrect original label gets
updated to the correct label based on the votes
from the influential instances. This is one of the
basic reasons for the better performance of our
models.

8. INFFEED to reduce annotation cost

Experimental setup: For all the datasets, we use
half of TR as TX and the other half as TY . The
validation and the test data are the same as earlier,
i.e., V and TS .
Results: We compare the performance of the
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Setup
HateXplain WT-WT IR ST iSarcasm DV

Macro F1-score
BBU DB BBU DB BBU DB BBU DB BBU DB BBU DB

Random flipping 0.543 0.510 0.497 0.432 0.590 0.553 0.419 0.397 0.442 0.437 0.543 0.523
Vanilla fine-tuning 0.637 0.656 0.612 0.616 0.691 0.694 0.589 0.599 0.588 0.621 0.770 0.749

Table 3: Ablation studies. IR:(Van Hee et al., 2018) dataset, ST:(Mohammad et al., 2016) dataset,
DV:(Davidson et al., 2017) dataset, BBU: BERT-base-uncased, DB: DistilBERT.

Instances Original label Influence label
<user> I loveũ more fa**ot Normal Offensive
moslem ban and libtard ban
but not gun ban Offensive Normal

It was her choice Mark Favor None
<user> so i got called a nappy
headed ni**er jew Normal Offensive

make nazi scum lose their jobs Normal Offensive
good these mcu fa**ots gonna
get schooled on what Normal Hatespeech

that shit doesnt even make sense
so yes for wetback lmao Hatespeech Normal

the white bitch amber guyger
has been locked away Normal Offensive

Table 4: Samples re-labelled.

BBU model trained on TY with all gold annotations
(TGOLD

Y ), the raw silver annotations of TY using the
model trained with TX (T SILVER

Y ), and the selectively
gold annotated TY (T INFFEED

Y ) using the INFFEED
algorithm repeatedly. The results are shown in
Table 5. We observe that the results obtained us-
ing T INFFEED

Y are very close to TGOLD
Y and the results

from T SILVER
Y are inferior to both of these (except for

the iSarcasm dataset). For each dataset, the num-
ber of data points in TY that had to be re-annotated
in total are exceptionally low compared to size of
TGOLD
Y .

Dataset T SILVER
Y T INFFEED

Y TGOLD
Y #re-annotated

HateXplain 61 65 67 17
WT-WT 57 60 61.5 9

IR 66 67 70 11
ST 46 48 55 17

iSarcasm 59 59 61 7
DV 74 75 77 21

Table 5: Comparison of model performance in
terms of % accuracy.

9. Error analysis

In this section, we analyze the incorrect predic-
tions from INFFEED and group them into the follow-
ing types. Here we identify the frequent mistakes
made by the model and place them into different
categories – (i) Presence of slur words may not al-
ways correspond to the text being hateful/offensive.
Thus, since the model observes such examples in
both classes during training it is sometimes con-
fused during prediction. For instance, in the Hat-
eXplain dataset, the text “kevin gates make music
for dykes and chubby ni**a” is wrongly marked as
hate speech by the model owing to the presence

of the word “ni**a”, (ii) When the major text feature
appears only once in a sentence, that feature is
given higher importance during annotation. For
example, in the (Van Hee et al., 2018) dataset, the
statement “Most of us didn’t focus in the #ADHD
lecture” is labelled as situational irony while the
correct class should be other verbal irony. The
influential instances also support this same label
even though they do not have any contextual over-
lap, (iii) If there are several targets in the dataset,
one individual target instance may be taking influ-
ence from another target cluster and producing
the incorrect collection of influential instances. For
example, in the (Mohammad et al., 2016) dataset,
“Jeb Bush is the only sane candidate in this repub-
lican lineup” has ‘Donald Trump’ as the target but
is influenced by “Letś hope the VOTERS remem-
ber" which has ‘Hilary Clinton’ as the target. This
may result in possible incorrect predictions, (iv)
If a post’s contextual information and some label-
related input are limited, influential instances are
often incapable of capturing the latent semantics of
the post. They rather pick up cues from the surface
structure. As an example, “Thank user for being
so entertaining at the Edinburgh signings! You did
not disappoint! I made my flight so will have plenty
time to read user” is influenced by instances where
the words ‘entertainment’ or ‘flight’ appear in an
instance, and (v) If the gold annotations are incor-
rect, influence functions may relate to the wrong
instance, resulting in incorrect voting. For exam-
ple, in the HateXplain dataset, “bare naked islam
brought to you by bare naked ladies” is annotated
as ‘hate speech’ while it should be actually anno-
tated as ‘offensive’. If this instance is an influencer
for a particular target instance then the silver label
of the target instance might get incorrectly updated
resulting in possible incorrect prediction.

10. Conclusion

We present INFFEED, which, by leveraging influ-
ence as feedback, attempts to simulate a pseudo-
expert annotator by updating the label of a target
instance. This simple approach results in signifi-
cantly better performance as compared to the state-
of-the-art baselines for a series of classification
tasks that are subjective in nature. In the dataset
extension setting, we observe that even by manu-
ally annotating ∼ 1

1000

th of the full dataset that need
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to be extended we obtain comparable performance
with the scenario where all the dataset to be ex-
tended is gold-annotated. In the future, we would
like to investigate if this scheme can be effectively
used to replace the need for an expert annotator
in a real-world deployment scenario through faster
computation.

11. Ethics statement

In our research, we responsibly use social sub-
jective data, originally published in another study
and used with appropriate permissions. Acknowl-
edging the sensitive nature of this data, we have
undertaken diligent steps to maintain ethical stan-
dards. Specifically, we employed expert annotators
to revisit and correct any potential misannotations,
enhancing the reliability of our data. This process
reinforces our commitment to upholding stringent
ethical guidelines in our research.

12. Bibliographical References

Naman Agarwal, Brian Bullins, and Elad Hazan.
2016. Second-order stochastic optimization for
machine learning in linear time.

Saleema Amershi, David Maxwell Chickering,
Steven Mark Drucker, Bongshin Lee, Patrice Y.
Simard, and Jina Suh. 2015. Modeltracker: Re-
designing performance analysis tools for ma-
chine learning. Proceedings of the 33rd Annual
ACM Conference on Human Factors in Comput-
ing Systems.

Leila Arras, Franziska Horn, Grégoire Montavon,
Klaus-Robert Müller, and Wojciech Samek. 2016.
Explaining predictions of non-linear classifiers in
NLP. pages 1–7, Berlin, Germany. Association
for Computational Linguistics.

Samyadeep Basu, Philip Pope, and Soheil Feizi.
2020. Influence functions in deep learning are
fragile.

Y. Bengio, T. Deleu, N. Rahaman, R. Ke,
S. Lachapelle, O. Bilaniuk, A. Goyal, and C. Pal.
2020. A meta-transfer objective for learning to
disentangle causal mechanisms. In 8th Interna-
tional Conference on Learning Representations
(ICLR).

Su Lin Blodgett, Solon Barocas, Hal Daumé III,
and Hanna Wallach. 2020. Language (technol-
ogy) is power: A critical survey of “bias” in NLP.
In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics,

pages 5454–5476, Online. Association for Com-
putational Linguistics.

Collin Burns, Jesse Thomason, and Wesley Tansey.
2020. Interpreting black box models via hypoth-
esis testing. ACM.

Tommaso Caselli, Valerio Basile, Jelena Mitrović,
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