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Abstract
Handling graph data is one of the most difficult tasks. Traditional techniques, such as those based on geometry
and matrix factorization, rely on assumptions about the data relations that become inadequate when handling
large and complex graph data. On the other hand, deep learning approaches demonstrate promising results in
handling large graph data, but they often fall short of providing interpretable explanations. To equip the graph
processing with both high accuracy and explainability, we introduce a novel approach that harnesses the power of
a large language model (LLM), enhanced by an uncertainty-aware module to provide a confidence score on the
generated answer. We experiment with our approach on two graph processing tasks: few-shot knowledge graph
completion and graph classification. Our results demonstrate that through parameter efficient fine-tuning, the LLM
surpasses state-of-the-art algorithms by a substantial margin across ten diverse benchmark datasets. Moreover, to
address the challenge of explainability, we propose an uncertainty estimation based on perturbation, along with a
calibration scheme to quantify the confidence scores of the generated answers. Our confidence measure achieves
an AUC of 0.8 or higher on seven out of the ten datasets in predicting the correctness of the answer generated by LLM.

Keywords: Graph Processing, LLM, Uncertainty, Knowledge Graph, Model Calibration

1. Introduction

Graph structure is one of the most common data
structures in industry applications. It can store a
large amount of information. Each node (vertex)
in the graph represents an individual entity, point,
or sample. Each edge (link) represents the rela-
tionships between the nodes in the graph. How
to efficiently utilize the graph data on the down-
stream task is an active research area. Through-
out time, researchers have proposed many ap-
proaches to make graph data processing more effi-
cient and capable of handling larger graphs. There
are three popular categories of graph process-
ing techniques: matrix factorization methods, ge-
ometric methods, and deep learning-based algo-
rithms. The matrix factorization methods formulate
the graph structure data into adjacency matrices.
The decomposition of such adjacency matrices
can be used to indicate the potential links between
nodes in the graph. This is developed based on
the assumption that the relationship in the graph is
mostly linear which can be represented by a low-
rank matrix factorization (Nickel et al., 2011). Its
simplicity enables the matrix factorization-based
method ideal for processing small graphs but suf-
fers scalability issues on large complex graphs.

† Authors contribute equally to this work
*Corresponding author

The geometric-based methods assume the rela-
tion between nodes or entities can be expressed
as a linear combination (Bordes et al., 2013) or
follows a certain topological pattern (Ebisu and
Ichise, 2018). This assumption may not hold for
graphs with complex data relations. To process
large amounts of graph data with complex entity
relations, deep learning-based methods, such as
Graph Convolutional Networks (GCN) (Duvenaud
et al., 2015), become widely used. It is a data-
driven approach that does not rely on any assump-
tions about the entity relation structure. It enables
graph processing algorithms to handle exponen-
tially larger graphs. As the size of the model in-
creases, the deep learning-based approach can
handle complex data more accurately.

In this work, we follow the idea of leveraging
large deep-learning models to handle graph data.
Instead of using a widely recognized GCN or
GNN model, we utilized pre-trained LLMs and then
fine-tuned them with parameter efficient fine-tune
(PEFT) which only 0.06% of the parameter was up-
dated. We hypothesized that LLM pre-trained on
billions of tokens already learned high-level abili-
ties such as causal reasoning, learning with few
examples, and language comprehension. We ver-
ified our hypothesis on two complex graph process-
ing tasks: few-shot knowledge graph completion
and graph classification.
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Few-shot Knowledge Graph Completion is a
task that enables the model to learn graph com-
pletion on new relations with a small set of data (1-
10 samples). It helps with the problem of a large
portion of knowledge graph relations being long-
tail (Xiong et al., 2018). Furthermore, it enables
applications that need to add new relations with a
limited number of samples.

Graph Classification is a task that categorizes
the graph into different classes. It has been widely
used in medicine and science research where it
is employed for tasks like analyzing small molecu-
lar properties analysis (Rodrigues et al., 2016), or
large molecular protein classification (Borgwardt
et al., 2005).

We conducted experiments using ten publicly
available graph datasets in common knowledge,
drug discovery, and organic chemistry. Our re-
sults demonstrate that fine-tuning a large lan-
guage model with a simple LoRa (Hu et al., 2022)
prompt tuning and a carefully designed prompt can
greatly improve performance compared to current
state-of-the-art algorithms.

Furthermore, we introduced an innovative un-
certainty estimation method based on perturba-
tion, along with a kernel density estimation (KDE)
calibration approach to assess the model’s confi-
dence in its generated answers. Our results re-
veal that this confidence score can serve as a valu-
able feature for determining the correctness of the
generated responses. Our algorithm achieved an
impressive AUC of over 0.8 on seven of the ten
datasets we investigated.

The contributions of our work can be summa-
rized as follows:

1. We verified the scale-law holds for the few-
shot learning setting on graph structure where
the pre-trained LLMs with a higher number
of parameters and pre-trained with larger
datasets exhibit higher performance in graph
processing tasks.

2. Our experiments conducted across diverse
datasets covering various scientific domains
indicate that a pre-trained LLM model with the
LoRa prompt tuning and carefully designed
prompt outperforms current state-of-the-art al-
gorithms.

3. We propose a novel approach for uncertainty
estimation based on perturbation, along with
a model calibration scheme using Kernel Den-
sity Estimation (KDE) to quantify confidence
scores.

2. Related Work

2.1. Graph Processing
Graph processing is a well-studied area. Re-
searchers widely adopt three major categories
of approaches: matrix factorization, geometric-
based methods, and deep learning methods.

2.1.1. Matrix Factorization

The knowledge graph can be reformatted into
an adjacency matrix, and decomposing this ad-
jacency matrix into components can infer rela-
tionships between entities in incomplete graphs.
Nickel et al., 2011 proposed a method called
RESCAL, which is a three-way tensor χ with k
slices. Each slice χk is factorized as χk ≈
ARkA

T , for k to , m. r is the rank of the factorized
matrix. A is n × r matrix that contains the latent-
component representation of the entities corre-
sponding to the row and column of the matrix χk.
Rk is an asymmetric r × r matrix that models the
interactions of the latent components in the k-th
predicates. The score measures the relation k be-
tween the subject s and object o formulated as
χsok = AsRkA

T
o . Trouillon et al., 2016 suggested

the relation presented in A can also be antisym-
metric which decomposition only exists in the com-
plex space. To handle this situation, the formula-
tion is revised to χsok = Re(

〈
Rk, As, Āo

〉
), where

Hermitian product is applied to handle the dot prod-
uct with complex numbers. The real part of the
Hermitian product is used as the relation score.

2.1.2. Geometric-based Methods

The other widely used approach for processing
graph data is geometric-based methods. Bor-
des et al., 2013 proposed a method called TransE,
which suggests that each entity within the graph
can be expressed as a linear combination of its
adjacent entity and relational attribute. However,
this linear combination method encounters signifi-
cant inaccuracies when entities engage in one-to-
many (1− to−N ) or many-to-many (N − to−N )
relationships with other entities. To tackle this
challenge, Wang et al., 2014 proposed a method
named TransH, which offers a solution by project-
ing the entity vector onto a hyperplane. This trans-
formation effectively preserves the topological re-
lationships between vectors. Both TransE and
TransH assumed that entities and relations share
the same vector space. However, this assumption
may not always hold, as a single entity can pos-
sess multiple attributes. To overcome this limita-
tion, Lin et al., 2015 proposed TransR, which elim-
inates this assumption by projecting the entity and
relation vectors into different spaces. TransD (Ji
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et al., 2015) took a step further, offering a refined
approach to the separation between entity and re-
lation projections. Later, Ebisu and Ichise, 2018
proposed TorusE, which suggests that creating
embedding in torus space brings the benefits of
eliminating the need for regularization and avoid-
ing embedding diverging into the same point.

2.1.3. Deep Learning-based Methods

As the availability of data increases, deep learning
algorithms become the next optimal choice. The
first natural choice is Graph Convolutional Network
(GCN) (Duvenaud et al., 2015), which utilizes con-
volutional modules for processing graph structural
data. Schlichtkrull et al., 2018 showed that the re-
lational GCN structure is a well-fit candidate for
tasks such as link completion and entity classifi-
cation. Dettmers et al., 2018 suggested the work
of heavy-duty GCN structure can be achieved by
a lightweight convolutional neural network. Other
network structures such as the capsule network-
based model (Vu et al., 2019) and BERT (Yao et al.,
2019) model achieved promising results as well. In
recent years, LLMs have demonstrated strong ca-
pabilities in language generation, summarization,
and other generative tasks. Leveraging the capa-
bilities of LLMs (Yao et al., 2023) in knowledge
graph completion has begun to demonstrate supe-
rior performance compared to previous methods in
general large-scale knowledge graph completion
tasks. Zhang et al., 2023a demonstrated that by
using a prefix adapter, LLMs are capable of effec-
tively discerning the correctness of triplets.

2.2. Model Uncertainty
Associations such as the European Commis-
sion have approved a law on AI system regula-
tion (COMMISSION, 2021) which requires high
levels of explainability in the AI model for many
critical industry applications. In the field of ex-
plainability for large language models, the confi-
dence or uncertainty score that LLM has on its
generated answer is in focus. Four primary meth-
ods for generating uncertainty measures in LLMs
include prompt design, answer consistency, to-
ken probability method, and supervised learning-
based method.

Prompt design employs carefully designed
prompts (Lin et al., 2022) to generate text together
with its confidence score. Prompting strategies
such as top-K (Tian et al., 2023) and chain-of-
thought (Wei et al., 2022) can be utilized to further
improve the performance.

Answer consistency measures the consis-
tency of the generated answer under different LLM
configurations, where higher consistency indicates
the model has higher confidence in its answers.

Methods such as different reasoning paths (Wang
et al., 2023), self-generate variations (Ling et al.,
2023), and perturbation of key tokens (Huang et al.,
2023) enable LLMs to produce diverse answers for
consistency measurement. Additionally, changing
model configurations, such as adjusting tempera-
ture (Xiong et al., 2023) or enabling dropout during
inference (Mo and Xin, 2023), can also generate
answer variations.

Token probability method provides another
way to measure the confidence of model outputs.
The probability associated with each output token
is leveraged to calculate uncertainties using meth-
ods such as mean token log-probability (Malinin
and Gales, 2020), semantic entropy (Kuhn et al.,
2023) and attention weighted entropy (Duan et al.,
2023).

Supervised learning-based method uti-
lizes human annotations to train a scoring
model (Mielke et al., 2022) that predicts the
probability of the model’s response being correct.

3. Datasets

Our study focuses on evaluating the performance
of LLMs on two tasks: few-shot knowledge graph
completion (FKGC) and graph classification (GC),
across 10 datasets.

Few-shot knowledge graph completion is
evaluated on three datasets: NELL, Wiki and
FB15K. The NELL and Wiki were proposed by
Xiong et al., 2018, and we followed their instruc-
tion to split the dataset into training, validation, and
testing three parts. The FB15K dataset is obtained
from Toutanova and Chen, 2015, and the exper-
imental setup is adapted from REFORM (Wang
et al., 2021). The statistics of three datasets are
summarized in Table 1.

Dataset Ents. Rels. Triples Few-Rels.
NELL 68,545 358 181,109 67

Wiki 4,838,244 822 5,859,240 183

FB15k 14,541 237 281,624 119

Table 1: Datasets statistics for few-shot knowledge
graph completion task.

Graph classification on small graphs is eval-
uated on three molecular property prediction
datasets: Tox21 (Huang et al., 2016), Sider (Kuhn
et al., 2016) and ClinTox (Wu et al., 2018). The
statistics of these three datasets are summarized
in Table 2.

Graph classification on large graphs is evalu-
ated on four datasets including two protein classi-
fication datasets: PROTEINS and ENZYMES ob-
tained from Borgwardt et al., 2005, and two drug
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Dataset Tasks Molecules
Tox21 12 7,831

Sider 27 1,427

ClinTox 2 1,478

Table 2: Dataset statistics for graph classification
task on small graphs.

classification datasets: AIDS (Riesen and Bunke,
2008) and NCI1 (Wale et al., 2008). The statistics
of these four datasets are summarized in Table 3.

Dataset Graphs Avg. |V| Avg. |E| Classes
PROTEINS 1,113 39.06 72.82 2

ENZYMES 600 32.63 62.14 6

AIDS 2,000 16.20 15.69 2

NCI1 4,110 32.30 29.87 2

Table 3: Dataset statistics for graph classification
task on large graphs.

The train, validation, and test dataset splits for
all datasets are summarized in Table 4.

Task Dataset # Train # Val. # Test

FKGC
Wiki 61,498 6,694 15,359

NELL 8,526 1,004 2,213
FB15k 14,221 3,056 8,320

GC

Tox21 65,005 7,208 7,360
Sider 30,807 3,861 3,861

ClinTox 2,364 296 296
PROTEINS 889 112 112
ENZYMES 480 60 60

AIDS 1,440 360 200
NCI1 2,960 739 411

Table 4: A summary of the dataset used in our ex-
periments on few-shot knowledge graph comple-
tion (FKGC) and graph classification (GC) tasks.
The number of train/validation/test samples are
listed.

4. Method

The capabilities of pre-trained LLMs are widely
recognized for effectively handling various tasks,
such as sentiment analysis (Xu et al., 2019a), text

summarization (Liu and Lapata, 2019), named en-
tity recognition (Li et al., 2020b), sentence en-
coding (Reimers and Gurevych, 2019) et al. In
this study, we investigate the feasibility of utilizing
LLMs for processing knowledge graphs. We for-
mulate the two knowledge graph tasks namely few-
shot knowledge graph completion and graph clas-
sification as a classification problem. Moreover,
we propose a novel uncertainty measure, which
aims to assess the quality of the classification out-
come.

4.1. Prompt Preparation

The models are fine-tuned through prompt tuning
where we follow the template from Alpaca (Taori
et al., 2023) to construct prompts. As shown in Ta-
ble 5, the Alpaca template consists of four parts:
task description, instruction, input, and response.
We formulate the graph completion and graph clas-
sification tasks as multiple-choice questions. The
task description section provides the information
for the tasks. The instruction section provides the
task requirements and available choices for the
question. The input section contains the input sam-
ples. For example, in the graph completion task,
the head and tail entities are used as input. While
in the graph classification on the chemical molec-
ular property analysis dataset, we use the target
and SMILES string(Weininger, 1988) as input. The
response section contains the index of the correct
choice. We use the index instead of the actual an-
swer as an easy way to help us catch the answer
with incorrect formats. Additional examples of de-
tailed prompts can be found in the Appendix.

Below is an instruction that describes a task,
paired with an input that provides further con-
text. Write a response that appropriately com-
pletes the request.

### Instruction:
{instruction}

### Input:
{input}

### Response:

Table 5: Alpaca Template for prompt tuning.

4.2. Model Selection

In 2017, the transformer (Vaswani et al., 2017)
model surpassed models such as LSTM and RNN,
becoming the primary backbone model for NLP
tasks. Since then, many variances of transformer
models have come out such as the unsupervised
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trained BERT (Devlin et al., 2019), and its im-
proved version RoBerta (Liu et al., 2019). As
NLP research progresses, exponentially larger lan-
guage models such as the encoder-decoder struc-
ture T5 (Raffel et al., 2020) model and decoder-
only structure OPT (Zhang et al., 2022) model
are gaining traction. This indicates that the com-
bination of a large amount of high-quality data
and a large model size can achieve superior re-
sults. When it comes to text generation tasks,
decoder-only structure models have become a
more popular choice due to their capability to
handle multiple tasks. Among the open-sourced
language language models, the LLaMa (Touvron
et al., 2023a) and the subsequent model LLaMa2
(Touvron et al., 2023b) are the most frequently
used by researchers. It’s worth mentioning that
compared to LLaMa, the LLaMa2 model is trained
with 40% more data and fine-tuned on over 1 mil-
lion human preferences.

Our study focuses on investigating the feasi-
bility of utilizing LLMs on two graph processing
tasks. To select the best LLM, we test eight differ-
ent representative LLMs on three datasets. The
number of parameters for each selected model
is 355M for RoBerta-L, 340M for BERT-L, 1.3B
for OPT-1.3b, 6.7B for OPT-6.7b, 770M for T5-L,
and 7B for Mistral-7b, LLaMa and LLaMa2. The
performance of LLMs is summarized in Table 6.
The ClinTox, ENZYMES, and NELL datasets are
used to evaluate LLMs’ performance on graph clas-
sification with small graphs, graph classification
with large graphs, and few-shot knowledge graph
completion tasks respectively. The results show
LLaMa2-7b model achieves the highest average
performance across tasks. Based on this observa-
tion, we choose the LLaMa2-7b model for all sub-
sequent evaluations.

Models ClinTox ENZYMES NELL
RoBerta-L 98.9% 81.7% 97.6%

BERT-L 97.6% 40.0% 90.1%

OPT-1.3b 99.5% 98.3% 91.8%

OPT-6.7b 99.4% 99.2% 95.4%

T5-L 99.2% 43.3% 29.1%

Mistral-7b 99.7% 98.3% 98.8%

LLaMa-7b 99.8% 93.3% 89.4%

LLaMa2-7b 99.6% 99.2% 99.2%

Table 6: The eight selected LLMs’ performance
on graph processing tasks. AUC is utilized as the
metric for the ClinTox dataset, while hits@1 is em-
ployed as the metric for other datasets.

4.3. Model Fine-tuning
Due to the hardware resource limitation, we em-
ploy a parameter efficient fine-tuning method,
LoRA (Hu et al., 2022), to fine-tune LLMs. The
LoRA method freezes the weight of the pre-trained
model and adds a small amount of additional
weight to the existing model layers. For the se-
lected LLaMa2 model, 0.06% (4.2M out of 7B) pa-
rameters are trained through the LoRa fine-tuning
process.

5. Experiments

5.1. Implement Details
Our experiment is conducted on a server with four
Tesla V100 32GB GPUs, Intel(R) Xeon(R) Gold
5117 CPU @2.00GHz, and 256GB RAM. FP16 is
used during the experiment. The settings for LoRA
fine-tuning are as follows: lr=0.0003, LoRA R=8,
LoRA Alpha=16, LoRA Dropout=0.05, and the tar-
get modules for LoRA are q_proj and v_proj. 1

5.2. Few-shot Knowledge Graph
Completion

We follow the standard process as GMatching
(Xiong et al., 2018) where the training comes in two
steps. In the first step, we utilized the background
data to train the system. Then the model is fine-
tuned 5-shot learning where each type of relation
has five samples. We evaluated three few-shot
learning datasets of the graph completion task.

We compared our method with six baselines:
Relation Network (Sung et al., 2018), Prototypi-
cal Network (Snell et al., 2017), GMatching (Xiong
et al., 2018), FSRL (Zhang et al., 2020), FAAN
(Sheng et al., 2020) and REFORM (Wang et al.,
2021). As shown in Table 7, our LLaMa2-7b -
based method achieves the best performance on
all three datasets.

To conduct further analysis of the performance
of LLMs in few-shot learning scenarios, we con-
ducted experiments training the model with differ-
ent background datasets. The term ”background
dataset” refers to triplets that belong to the same
field as subsequent training samples. Although
they will not appear in later training, validation,
or test sets, training the large language model
on the background dataset first can provide the
model with some basic knowledge of that field.
We conducted experiments with 0-shot and 1-shot
learning settings. The results are shown in Ta-
ble 8. When the training and testing set are con-
ducted on the different datasets, our performance

1The code is available at
https://github.com/code4paper-2024/code4paper

https://github.com/code4paper-2024/code4paper
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Dataset NELL Wiki FB15k
Relation Network 67.9 51.6 62.2

Prototypical Network 84.6 66.1 84.1

GMatching 90.8 75.2 84.8

FSRL 87.9 63.7 83.3

FAAN 94.7 74.3 86.3

REFORM 94.4 78.8 88.1

Ours 99.2 83.1 89.9

Table 7: Experimental results of 5-shot learning on
knowledge graph completion task.(hits@1)

drops between 5 to 20%. It indicates training with
background knowledge is important even for the
LLaMa2-7b model that is pre-trained on 2 Trillion
tokens. When the background dataset and the test
dataset come from the same background, com-
pared with 1-shot learning, the results of 0-shot
learning immediately dropped around 20%. This
indicates that the LLM can adapt to new graph links
even with just one sample.

BG Mode Test LLaMa2

NELL 1-shot NELL 0.905

Wiki 1-shot NELL 0.808

FB15k 1-shot NELL 0.819

NELL 0-shot NELL 0.616

NELL 1-shot Wiki 0.614

Wiki 1-shot Wiki 0.641

FB15k 1-shot Wiki 0.597

Wiki 0-shot Wiki 0.415

NELL 1-shot FB15k 0.583

Wiki 1-shot FB15k 0.806

FB15k 1-shot FB15k 0.808

FB15k 0-shot FB15k 0.580

Table 8: Few-shot learning graph completion ac-
curacy(hits@1) with different background (BG)
datasets.

5.3. Small Graph Classification
To evaluate the efficiency of LLM for graph clas-
sification on small graphs, we chose three chem-
ical molecular property prediction datasets. The
input of those datasets are strings in SMILES for-
mat (Weininger, 1988). Due to the small size of

those datasets, a 10-fold nested cross-validation
is utilized in the evaluation.

Our baselines include GraphLoG (Xu et al.,
2021), AD-GCL (Suresh et al., 2021b), GraphCL
(You et al., 2020), JOAO (You et al., 2021), Sim-
GRACE (Xia et al., 2022a), GraphMAE (Hou et al.,
2022), GraphMVP (Liu et al., 2022), MGSSL
(Zhang et al., 2021), MoMu (Su et al., 2022), Mole-
BERT (Xia et al., 2022b) and GIT-Mol (Liu et al.,
2023). The evaluation results are shown in Table
9. Our LLM-based method outperformed all the
baseline methods by a large margin.

Models Tox21 Sider ClinTox
GraphLoG 75.1 59.6 75.7

AD-GCL 74.9 61.5 77.2

JOAO 74.8 60.4 66.6

SimGRACE 74.4 60.2 75.5

GraphCL 75.1 59.8 77.5

GraphMAE 75.2 60.5 76.5

GraphMVP 74.9 60.2 79.1

MGSSL 75.2 61.6 77.1

MoMu 75.6 60.5 79.9

Mole-BERT 76.8 62.8 78.9

GIT-Mol 75.9 63.4 88.3

Ours 79.6 82.1 99.6

Table 9: Experimental results of graph classi-
fication on three molecular property prediction
datasets. (AUC)

5.4. Large Graph Classification
We also evaluate the LLM’s performance on large-
scale graph classification. In the experiments,
we use two protein-related datasets (ENZYMES,
PROTEINS), and two drug classification datasets
(NCI1, AIDS). For the protein-related datasets,
since the amino acid sequences have long lengths
and few types of amino acids, direct training on
these datasets generated poor results. To solve
this issue, we employ a technique similar to feature
engineering, where consecutive identical amino
acids are merged. For example, a sequence like
[1, 1, 1, 2, 2, 3, 3, ...], where 1, 2, 3 represent dif-
ferent types of amino acids, is merged into [1(3),
2(2), 3(2), ...], with the numbers in parentheses in-
dicating the consecutive occurrences.

We compared our methods with several base-
lines includes GCN (Kipf and Welling, 2017), GC-
NII (Chen et al., 2020), GIN (Xu et al., 2019b),
HGP-SL (Zhang et al., 2023b), SAGE (Hamilton
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et al., 2017), DeeperGCN (Li et al., 2020a), GT
(Dwivedi and Bresson), SAN (Kreuzer et al., 2021),
SAT (Chen et al., 2022), GPS (Rampášek et al.,
2022), UGT (Hoang et al., 2023), RW (Gärtner,
2003), FGW (Titouan et al., 2019), HSGE (Dutta
et al., 2020), SGE (Dutta and Sahbi, 2018), Comm-
POOL (Tang et al., 2021), linearFGW (Nguyen and
Tsuda, 2023), WL (Shervashidze et al., 2011) and
XGraphBoost (Deng et al., 2021). As shown in Ta-
ble 10, and 11, our method outperformed all the
baselines on four datasets. As the datasets come
from different domains, these results demonstrate
the robustness of LLM to handle graph classifica-
tion tasks across diverse domains.

Models ENZYMES PROTEINS
GCN 18.2 59.2

SAGE 21.5 62.8

GCNII 31.5 62.5

GIN 33.6 64.1

DeeperGCN 25.4 61.2

GT 41.7 77.3

SAN 22.5 68.5

SAT 50.9 62.9

GPS 62.7 53.8

UGT 67.2 80.1

HGP-SL 68.8 84.9

Ours 99.2 99.6

Table 10: Experimental results of graph classifica-
tion on two protein datasets.(hits@1)

Models NCI1 Models AIDS
XGraphBoost 61.9 FGW 91.0

RW 69.0 RW 98.5
WL 82.5 HSGE 99.0

GCN 76.0 CommPOOL 98.5
SGE 82.5 SGE 98.7
GIN 79.1 linearFGW 98.7
Ours 99.5 Ours 99.2

Table 11: Experimental results of graph classifica-
tion on NCI1 and AIDS datasets.(hits@1)

6. Model Uncertainty

In this work, we also propose to measure the
model uncertainty from two perspectives: dataset
level and sample level.

6.1. Dataset Level Uncertainty
Information entropy (Cover, 1999) is a well-known
metric for quantifying the uncertainty of algorithm
output. Notably, our observations reveal that the
LLM exhibits a high degree of confidence in its
output, with the cumulative probability of the top
two selections accounting for approximately 99%.
In our method, for each sample denoted as x, we
extract the top two probabilities (p1(x) and p2(x))
from the selection of outputs. Then, we compute
the average information entropy across the test set,
denoted as H(χ), for each sample.

H(χ) = − 1

m

∑
x∈χ

(p1(x) log p1(x) + p2(x) log p2(x))

(1)
where x ∈ χ, m denote the number of samples
in the dataset χ. This process is iterated across
all ten datasets. Figure 1 illustrates the relation-
ship between entropy and the LLM’s accuracy on
different datasets. We observe a clear trend that
datasets with higher information entropy tend to
have lower accuracy.
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Figure 1: Evaluation of mean information entropy
of the dataset vs. mean dataset accuracy.

6.2. Sample Level Uncertainty

6.2.1. Sample Uncertainty Extraction

We also proposed a novel approach for assess-
ing sample-level uncertainty. This sample-level
uncertainty can be used as a confidence score
to indicate the correctness of the model’s output.
For a given sample denoted as x, we introduce a
small random perturbation ϵ to create a new sam-
ple x′ = x + ϵ. The perturbation ϵ is chosen to be
sufficiently small so that not have a material influ-
ence on the algorithm’s output. Then, we use this
new sample x′ as an input for an LLM L to obtain
the top-1 probability for the selection. This process
is iterated k times, resulting in a list of probabili-
ties denoted as P = {p1, p2, . . . pk}. The sample’s
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standard deviation, x, is then defined as follows:

σx =

√√√√1

k

k∑
i=1

(pi − P̄ ) (2)

A challenge associated with using standard devi-
ation as a measure of uncertainty is the absence
of a reference point to determine whether it repre-
sents a substantial value. To address this issue,
we suggest employing the validation set for cali-
brating the uncertainty metric.

6.2.2. Uncertainty Model Calibration

To illustrate the calculation process, we use the
largest dataset Wiki-One as an example. The stan-
dard deviation σx of each example is collected
from the validation set. A negative log is applied
to each σx, and the histogram of the validation set
for σx is shown in Fig. 2. From this histogram,
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Figure 2: Histogram of negative log standard devi-
ation for Wiki-One validation set.

we observe that the − log(σ) does not follow a nor-
mal distribution. To make our approach more flex-
ible, we apply kernel density estimation (KDE) to
estimate the probability density function (PDF). Let
(x1, x2, . . . , xn) be independent and identically dis-
tributed samples drawn from the validation dataset
Xv where we set n = 100. The PDF of input vari-
able x is estimated as follows:

f̂(x) =
1

nh

n∑
i=1

K(
x− xi

h
) (3)

where K is the Gaussian kernel. The bandwidth is
defined by Scott’s rule (Scott, 1979):

h =
X̄v

0.6745
(
4

3m
)

1
5 (4)

where m is the number of points in Xv. We hypoth-
esize that answers with higher standard deviation
(lower negative log standard deviation) will have a
higher probability of being a wrong answer to the
query. Based on this hypothesis, we utilize the
function f̂(x) to estimate cumulative density func-

tion (CDF) F̂ (x) (shown in Fig. 3) which is formu-
lated as follows:

F̂ (x) =

∫ −∞

x

f̂(t)dt (5)
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Figure 3: The cumulative density function esti-
mated from the validation set of the Wiki-One
dataset.

The CDF probability estimated indicates the con-
fidence score for sample x. The distribution of con-
fidence score from the test set is shown in Fig. 4.
The positive label indicates the samples that re-
ceived a correct answer from the LLM, while the
negative label indicates the samples that received
a wrong answer. This confirmed our hypothesis
that the negative samples concentrate at lower
confidence scores.
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Figure 4: Distribution of confidence score for the
positive (model gives a correct answer) and nega-
tive (model gives a wrong answer) from the Wiki-
One test set.

We experimented with the confidence scores
and ran a classification that categorizes samples
as positive or negative labels. As shown in Fig. 5,
our method received 0.82 AUC on the Wiki-One
test set.

We expanded the experiments to all 10 datasets.
The results are shown in Fig. 6. Our
method achieved high AUC scores across various
datasets, in which 7 out of 10 datasets achieved
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Figure 5: The ROC curve of using confidence
score to classify the answer from samples from
Wiki-One test set.

an AUC score higher than 0.8. This reveals our
uncertainty measurement has the potential appli-
cation to evaluate the quality of output without any
additional changes to LLM.
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Figure 6: Results of applying our confidence score
to classify positive and negative samples on 10
datasets.

7. Conclusion

In this paper, we introduced an approach that
harnesses the power of a large language model
for processing graph data. We conducted exper-
iments across ten diverse datasets, on few-shot
knowledge graph completion and graph classifica-
tion tasks. Our method consistently outperformed
state-of-the-art approaches across all ten datasets
by a significant margin. Furthermore, we proposed
a novel uncertainty-aware confidence scoring algo-
rithm, which serves as an indicator of the correct-
ness of answers generated by the large language
model to enhance the model’s explainability.

8. Acknowledgement

This paper has been supported by the Na-
tional Natural Science Foundation of China (No.

62362023). We express our sincere gratitude for
the financial assistance provided, which greatly fa-
cilitated the progress of our work.

9. References

Ivana Balazevic, Carl Allen, and Timothy
Hospedales. 2019. TuckER: Tensor factor-
ization for knowledge graph completion. In
Proceedings of the 2019 Conference on Empir-
ical Methods in Natural Language Processing
and the 9th International Joint Conference
on Natural Language Processing (EMNLP-
IJCNLP), pages 5185–5194, Hong Kong, China.
Association for Computational Linguistics.

Camille Bilodeau, Wengong Jin, Tommi Jaakkola,
Regina Barzilay, and Klavs F Jensen. 2022.
Generative models for molecular discovery: Re-
cent advances and challenges. Wiley Interdisci-
plinary Reviews: Computational Molecular Sci-
ence, 12(5):e1608.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Duran, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling
multi-relational data. In Advances in Neural Infor-
mation Processing Systems, volume 26. Curran
Associates, Inc.

Karsten M Borgwardt, Cheng Soon Ong, Stefan
Schönauer, SVN Vishwanathan, Alex J Smola,
and Hans-Peter Kriegel. 2005. Protein func-
tion prediction via graph kernels. Bioinformatics,
21:i47–i56.

Shaked Brody, Uri Alon, and Eran Yahav. 2022.
How attentive are graph attention networks? In
ICLR. OpenReview.net.

Dexiong Chen, Leslie O’Bray, and Karsten Borg-
wardt. 2022. Structure-aware transformer for
graph representation learning. In International
Conference on Machine Learning, pages 3469–
3489. PMLR.

Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin
Ding, and Yaliang Li. 2020. Simple and deep
graph convolutional networks. In International
conference on machine learning, pages 1725–
1735. PMLR.

Mingyang Chen, Wen Zhang, Wei Zhang, Qiang
Chen, and Huajun Chen. 2019. Meta relational
learning for few-shot link prediction in knowl-
edge graphs. In EMNLP/IJCNLP (1), pages
4216–4225. Association for Computational Lin-
guistics.



8044

Wenhu Chen, Wenhan Xiong, Xifeng Yan, and
William Yang Wang. 2018. Variational knowl-
edge graph reasoning. In Proceedings of the
2018 Conference of the North American Chap-
ter of the Association for Computational Linguis-
tics: Human Language Technologies, Volume 1
(Long Papers), pages 1823–1832.

EUROPEAN COMMISSION. 2021. Proposal for a
regulation of the european parliament and of the
council.

Thomas M Cover. 1999. Elements of information
theory. John Wiley.

Daiguo Deng, Xiaowei Chen, Ruochi Zhang, Zen-
grong Lei, Xiaojian Wang, and Fengfeng Zhou.
2021. Xgraphboost: extracting graph neural
network-based features for a better prediction of
molecular properties. Journal of chemical infor-
mation and modeling, 61(6):2697–2705.

Tim Dettmers, Pasquale Minervini, Pontus Stene-
torp, and Sebastian Riedel. 2018. Convolutional
2d knowledge graph embeddings. In Proceed-
ings of the AAAI conference on artificial intelli-
gence, volume 32.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language un-
derstanding. In NAACL-HLT (1), pages 4171–
4186. Association for Computational Linguistics.

Jinhao Duan, Hao Cheng, Shiqi Wang, Chenan
Wang, Alex Zavalny, Renjing Xu, Bhavya
Kailkhura, and Kaidi Xu. 2023. Shifting atten-
tion to relevance: Towards the uncertainty esti-
mation of large language models. arXiv preprint
arXiv:2307.01379.

Anjan Dutta, Pau Riba, Josep Lladós, and Alicia
Fornés. 2020. Hierarchical stochastic graphlet
embedding for graph-based pattern recognition.
Neural Computing and Applications, 32:11579–
11596.

Anjan Dutta and Hichem Sahbi. 2018. Stochas-
tic graphlet embedding. IEEE Transactions
on Neural Networks and Learning Systems,
30(8):2369–2382.

David K Duvenaud, Dougal Maclaurin, Jorge
Iparraguirre, Rafael Bombarell, Timothy Hirzel,
Alán Aspuru-Guzik, and Ryan P Adams. 2015.
Convolutional networks on graphs for learning
molecular fingerprints. Advances in neural infor-
mation processing systems, 28.

VP Dwivedi and X Bresson. A generalization
of transformer networks to graphs. arxiv 2020.
arXiv preprint arXiv:2012.09699.

Takuma Ebisu and Ryutaro Ichise. 2018. Toruse:
Knowledge graph embedding on a lie group. In
Proceedings of the AAAI conference on artificial
intelligence, volume 32.

Thomas Gärtner. 2003. A survey of kernels for
structured data. ACM SIGKDD explorations
newsletter, 5(1):49–58.

Will Hamilton, Zhitao Ying, and Jure Leskovec.
2017. Inductive representation learning on large
graphs. Advances in neural information process-
ing systems, 30.

Frank L Hitchcock. 1927. The expression of a ten-
sor or a polyadic as a sum of products. Journal
of Mathematics and Physics, 6(1-4):164–189.

Van Thuy Hoang, O Lee, et al. 2023. Transitivity-
preserving graph representation learning for
bridging local connectivity and role-based simi-
larity. arXiv preprint arXiv:2308.09517.

Zhenyu Hou, Xiao Liu, Yukuo Cen, Yuxiao Dong,
Hongxia Yang, Chunjie Wang, and Jie Tang.
2022. Graphmae: Self-supervised masked
graph autoencoders. In Proceedings of the 28th
ACM SIGKDD Conference on Knowledge Dis-
covery and Data Mining, pages 594–604.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2022. Lora: Low-rank adap-
tation of large language models. In ICLR. Open-
Review.net.

Ruili Huang, Menghang Xia, Dac-Trung Nguyen,
Tongan Zhao, Srilatha Sakamuru, Jinghua
Zhao, Sampada A Shahane, Anna Rossoshek,
and Anton Simeonov. 2016. Tox21challenge to
build predictive models of nuclear receptor and
stress response pathways as mediated by ex-
posure to environmental chemicals and drugs.
Frontiers in Environmental Science, 3:85.

Yuheng Huang, Jiayang Song, Zhijie Wang, Huam-
ing Chen, and Lei Ma. 2023. Look before you
leap: An exploratory study of uncertainty mea-
surement for large language models. arXiv
preprint arXiv:2307.10236.

Guoliang Ji, Shizhu He, Liheng Xu, Kang Liu, and
Jun Zhao. 2015. Knowledge graph embedding
via dynamic mapping matrix. In Proceedings
of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th Inter-
national Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages
687–696, Beijing, China. Association for Com-
putational Linguistics.



8045

Xiaotian Jiang, Quan Wang, and Bin Wang. 2019.
Adaptive convolution for multi-relational learn-
ing. In Proceedings of the 2019 Conference
of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short
Papers), pages 978–987.

Thomas N. Kipf and Max Welling. 2017. Semi-
supervised classification with graph convolu-
tional networks. In ICLR (Poster). OpenRe-
view.net.

Devin Kreuzer, Dominique Beaini, Will Hamil-
ton, Vincent Létourneau, and Prudencio Tossou.
2021. Rethinking graph transformers with spec-
tral attention. Advances in Neural Information
Processing Systems, 34:21618–21629.

Lorenz Kuhn, Yarin Gal, and Sebastian Farquhar.
2023. Semantic uncertainty: Linguistic invari-
ances for uncertainty estimation in natural lan-
guage generation. In The Eleventh International
Conference on Learning Representations.

Michael Kuhn, Ivica Letunic, Lars Juhl Jensen,
and Peer Bork. 2016. The sider database of
drugs and side effects. Nucleic acids research,
44(D1):D1075–D1079.

Guohao Li, Chenxin Xiong, Ali Thabet, and
Bernard Ghanem. 2020a. Deepergcn: All
you need to train deeper gcns. arXiv preprint
arXiv:2006.07739.

Jing Li, Aixin Sun, Jianglei Han, and Chenliang Li.
2020b. A survey on deep learning for named
entity recognition. IEEE Transactions on Knowl-
edge and Data Engineering, 34(1):50–70.

Yuling Li, Kui Yu, Yuhong Zhang, and Xindong Wu.
2022. Learning relation-specific representations
for few-shot knowledge graph completion. arXiv
preprint arXiv:2203.11639.

Stephanie Lin, Jacob Hilton, and Owain Evans.
2022. Teaching models to express their uncer-
tainty in words. Transactions on Machine Learn-
ing Research.

Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu,
and Xuan Zhu. 2015. Learning entity and rela-
tion embeddings for knowledge graph comple-
tion. Proceedings of the AAAI Conference on
Artificial Intelligence, 29(1).

Chen Ling, Xujiang Zhao, Xuchao Zhang, Yanchi
Liu, Wei Cheng, Haoyu Wang, Zhengzhang
Chen, Takao Osaki, Katsushi Matsuda, Haifeng
Chen, et al. 2023. Improving open information
extraction with large language models: A study
on demonstration uncertainty. arXiv preprint
arXiv:2309.03433.

Pengfei Liu, Yiming Ren, and Zhixiang Ren. 2023.
Git-mol: A multi-modal large language model for
molecular science with graph, image, and text.
arXiv preprint arXiv:2308.06911.

Shengchao Liu, Hanchen Wang, Weiyang Liu,
Joan Lasenby, Hongyu Guo, and Jian Tang.
2022. Pre-training molecular graph represen-
tation with 3d geometry. In ICLR. OpenRe-
view.net.

Yang Liu and Mirella Lapata. 2019. Text summa-
rization with pretrained encoders. In Proceed-
ings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the
9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), pages
3730–3740, Hong Kong, China. Association for
Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei
Du, Mandar Joshi, Danqi Chen, Omer Levy,
Mike Lewis, Luke Zettlemoyer, and Veselin
Stoyanov. 2019. Roberta: A robustly opti-
mized bert pretraining approach. arXiv preprint
arXiv:1907.11692.

Andrey Malinin and Mark Gales. 2020. Uncertainty
estimation in autoregressive structured predic-
tion. In International Conference on Learning
Representations.

Sabrina J. Mielke, Arthur Szlam, Emily Dinan, and
Y-Lan Boureau. 2022. Reducing Conversational
Agents’ Overconfidence Through Linguistic Cali-
bration. Transactions of the Association for Com-
putational Linguistics, 10:857–872.

Shentong Mo and Miao Xin. 2023. Tree of uncer-
tain thoughts reasoning for large language mod-
els. arXiv preprint arXiv:2309.07694.

Dai Hai Nguyen and Koji Tsuda. 2023. On a
linear fused gromov-wasserstein distance for
graph structured data. Pattern Recognition,
138:109351.

Maximilian Nickel, Volker Tresp, Hans-Peter
Kriegel, et al. 2011. A three-way model for col-
lective learning on multi-relational data. In Icml,
volume 11, pages 3104482–3104584.

Guanglin Niu, Yang Li, Chengguang Tang, Ruiying
Geng, Jian Dai, Qiao Liu, Hao Wang, Jian Sun,
Fei Huang, and Luo Si. 2021. Relational learn-
ing with gated and attentive neighbor aggrega-
tor for few-shot knowledge graph completion. In
Proceedings of the 44th International ACM SI-
GIR conference on research and development
in information retrieval, pages 213–222.



8046

Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan
Chang, Yu Lei, and Bo Yang. 2020. Geom-
gcn: Geometric graph convolutional networks.
In ICLR. OpenReview.net.

Colin Raffel, Noam Shazeer, Adam Roberts,
Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J Liu. 2020. Ex-
ploring the limits of transfer learning with a uni-
fied text-to-text transformer. The Journal of Ma-
chine Learning Research, 21(1):5485–5551.

Ladislav Rampášek, Michael Galkin, Vi-
jay Prakash Dwivedi, Anh Tuan Luu, Guy
Wolf, and Dominique Beaini. 2022. Recipe for
a general, powerful, scalable graph transformer.
Advances in Neural Information Processing
Systems, 35:14501–14515.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
bert: Sentence embeddings using siamese bert-
networks. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language
Processing. Association for Computational Lin-
guistics.

Kaspar Riesen and Horst Bunke. 2008. Iam
graph database repository for graph based pat-
tern recognition and machine learning. In Struc-
tural, Syntactic, and Statistical Pattern Recogni-
tion: Joint IAPR International Workshop, SSPR,
pages 287–297. Springer.

Tiago Rodrigues, Daniel Reker, Petra Schneider,
and Gisbert Schneider. 2016. Counting on nat-
ural products for drug design. Nature chemistry,
8(6):531–541.

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem,
Rianne Van Den Berg, Ivan Titov, and Max
Welling. 2018. Modeling relational data with
graph convolutional networks. In The Seman-
tic Web: 15th International Conference, ESWC
2018, Heraklion, Crete, Greece, June 3–7, 2018,
Proceedings 15, pages 593–607. Springer.

David W Scott. 1979. On optimal and data-based
histograms. Biometrika, 66(3):605–610.

Jiawei Sheng, Shu Guo, Zhenyu Chen, Juwei
Yue, Lihong Wang, Tingwen Liu, and Hongbo
Xu. 2020. Adaptive attentional network for few-
shot knowledge graph completion. In EMNLP
(1), pages 1681–1691. Association for Compu-
tational Linguistics.

Nino Shervashidze, Pascal Schweitzer, Erik Jan
Van Leeuwen, Kurt Mehlhorn, and Karsten M
Borgwardt. 2011. Weisfeiler-lehman graph ker-
nels. Journal of Machine Learning Research,
12(9).

Jake Snell, Kevin Swersky, and Richard Zemel.
2017. Prototypical networks for few-shot learn-
ing. Advances in neural information processing
systems, 30.

Bing Su, Dazhao Du, Zhao Yang, Yujie Zhou,
Jiangmeng Li, Anyi Rao, Hao Sun, Zhiwu Lu,
and Ji-Rong Wen. 2022. A molecular multi-
modal foundation model associating molecule
graphs with natural language. arXiv preprint
arXiv:2209.05481.

Flood Sung, Yongxin Yang, Li Zhang, Tao Xi-
ang, Philip HS Torr, and Timothy M Hospedales.
2018. Learning to compare: Relation network
for few-shot learning. In Proceedings of the
IEEE conference on computer vision and pattern
recognition, pages 1199–1208.

Susheel Suresh, Vinith Budde, Jennifer Neville,
Pan Li, and Jianzhu Ma. 2021a. Breaking the
limit of graph neural networks by improving the
assortativity of graphs with local mixing patterns.
In Proceedings of the 27th ACM SIGKDD Con-
ference on Knowledge Discovery, pages 1541–
1551.

Susheel Suresh, Pan Li, Cong Hao, and Jennifer
Neville. 2021b. Adversarial graph augmenta-
tion to improve graph contrastive learning. Ad-
vances in Neural Information Processing Sys-
tems, 34:15920–15933.

Haoteng Tang, Guixiang Ma, Lifang He, Heng
Huang, and Liang Zhan. 2021. Commpool: An
interpretable graph pooling framework for hier-
archical graph representation learning. Neural
Networks, 143:669–677.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang,
Yann Dubois, Xuechen Li, Carlos Guestrin,
Percy Liang, and Tatsunori B Hashimoto. 2023.
Stanford alpaca: An instruction-following llama
model.

Katherine Tian, Eric Mitchell, Allan Zhou, Archit
Sharma, Rafael Rafailov, Huaxiu Yao, Chelsea
Finn, and Christopher D. Manning. 2023. Just
ask for calibration: Strategies for eliciting cali-
brated confidence scores from language mod-
els fine-tuned with human feedback. In EMNLP,
pages 5433–5442. Association for Computa-
tional Linguistics.

Vayer Titouan, Nicolas Courty, Romain Tavenard,
and Rémi Flamary. 2019. Optimal transport for
structured data with application on graphs. In
International Conference on Machine Learning,
pages 6275–6284. PMLR.

Kristina Toutanova and Danqi Chen. 2015. Ob-
served versus latent features for knowledge



8047

base and text inference. In Proceedings of
the 3rd Workshop on Continuous Vector Space
Models and their Compositionality, pages 57–
66, Beijing, China. Association for Computa-
tional Linguistics.

Hugo Touvron, Thibaut Lavril, Gautier Izacard,
Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric
Hambro, Faisal Azhar, et al. 2023a. Llama:
Open and efficient foundation language models.
arXiv preprint arXiv:2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava,
Shruti Bhosale, et al. 2023b. Llama 2: Open
foundation and fine-tuned chat models. arXiv
preprint arXiv:2307.09288.

Théo Trouillon, Johannes Welbl, Sebastian Riedel,
Eric Gaussier, and Guillaume Bouchard. 2016.
Complex embeddings for simple link prediction.
In Proceedings of The 33rd International Confer-
ence on Machine Learning, volume 48, pages
2071–2080, New York, New York, USA. PMLR.

Ashish Vaswani, Noam Shazeer, Niki Parmar,
Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. 2017. At-
tention is all you need. Advances in neural infor-
mation processing systems, 30.

Petar Velickovic, Guillem Cucurull, Arantxa
Casanova, Adriana Romero, Pietro Lio, Yoshua
Bengio, et al. 2017. Graph attention networks.
stat, 1050(20):10–48550.

Thanh Vu, Tu Dinh Nguyen, Dat Quoc Nguyen,
Dinh Phung, et al. 2019. A capsule network-
based embedding model for knowledge graph
completion and search personalization. In Pro-
ceedings of the 2019 Conference of the North
American Chapter of the Association for Compu-
tational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), pages
2180–2189.

Nikil Wale, Ian A Watson, and George Karypis.
2008. Comparison of descriptor spaces for
chemical compound retrieval and classification.
Knowledge and Information Systems, 14:347–
375.

Song Wang, Xiao Huang, Chen Chen, Liang Wu,
and Jundong Li. 2021. Reform: Error-aware few-
shot knowledge graph completion. In Proceed-
ings of the 30th ACM International Conference
on Information, pages 1979–1988.

Xuezhi Wang, Jason Wei, Dale Schuurmans,
Quoc V Le, Ed H. Chi, Sharan Narang,

Aakanksha Chowdhery, and Denny Zhou. 2023.
Self-consistency improves chain of thought rea-
soning in language models. In The Eleventh In-
ternational Conference on Learning Representa-
tions.

Zhen Wang, Jianwen Zhang, Jianlin Feng, and
Zheng Chen. 2014. Knowledge graph embed-
ding by translating on hyperplanes. Proceedings
of the AAAI Conference on Artificial Intelligence,
28(1).

Jason Wei, Xuezhi Wang, Dale Schuurmans,
Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le,
Denny Zhou, et al. 2022. Chain-of-thought
prompting elicits reasoning in large language
models. Advances in Neural Information Pro-
cessing Systems, 35:24824–24837.

David Weininger. 1988. Smiles, a chemical lan-
guage and information system. 1. introduction
to methodology and encoding rules. Journal
of chemical information and computer sciences,
28(1):31–36.

Zhenqin Wu, Bharath Ramsundar, Evan N
Feinberg, Joseph Gomes, Caleb Geniesse,
Aneesh S Pappu, Karl Leswing, and Vijay
Pande. 2018. Moleculenet: a benchmark for
molecular machine learning. Chemical science,
9(2):513–530.

Jun Xia, Lirong Wu, Jintao Chen, Bozhen Hu, and
Stan Z Li. 2022a. Simgrace: A simple frame-
work for graph contrastive learning without data
augmentation. In Proceedings of the ACM Web
Conference 2022, pages 1070–1079.

Jun Xia, Chengshuai Zhao, Bozhen Hu,
Zhangyang Gao, Cheng Tan, Yue Liu, Siyuan Li,
and Stan Z Li. 2022b. Mole-bert: Rethinking pre-
training graph neural networks for molecules.
In The Eleventh International Conference on
Learning Representations.

Miao Xiong, Zhiyuan Hu, Xinyang Lu, Yifei Li, Jie
Fu, Junxian He, and Bryan Hooi. 2023. Can llms
express their uncertainty? an empirical eval-
uation of confidence elicitation in llms. arXiv
preprint arXiv:2306.13063.

Wenhan Xiong, Mo Yu, Shiyu Chang, Xiaoxiao
Guo, and William Yang Wang. 2018. One-
shot relational learning for knowledge graphs.
In EMNLP, pages 1980–1990. Association for
Computational Linguistics.

Hu Xu, Bing Liu, Lei Shu, and Philip Yu. 2019a.
BERT post-training for review reading compre-
hension and aspect-based sentiment analysis.
In Proceedings of the 2019 Conference of the
North American Chapter of the Association for



8048

Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Pa-
pers), pages 2324–2335, Minneapolis, Min-
nesota. Association for Computational Linguis-
tics.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Ste-
fanie Jegelka. 2019b. How powerful are graph
neural networks? In ICLR. OpenReview.net.

Minghao Xu, Hang Wang, Bingbing Ni, Hongyu
Guo, and Jian Tang. 2021. Self-supervised
graph-level representation learning with local
and global structure. In International Con-
ference on Machine Learning, pages 11548–
11558. PMLR.

Liang Yao, Chengsheng Mao, and Yuan Luo. 2019.
Kg-bert: Bert for knowledge graph completion.
arXiv preprint arXiv:1909.03193.

Liang Yao, Jiazhen Peng, Chengsheng Mao, and
Yuan Luo. 2023. Exploring large language
models for knowledge graph completion. arXiv
preprint arXiv:2308.13916.

Yuning You, Tianlong Chen, Yang Shen, and
Zhangyang Wang. 2021. Graph contrastive
learning automated. In International Conference
on Machine Learning, pages 12121–12132.
PMLR.

Yuning You, Tianlong Chen, Yongduo Sui, Ting
Chen, Zhangyang Wang, and Yang Shen. 2020.
Graph contrastive learning with augmentations.
Advances in neural information processing sys-
tems, 33:5812–5823.

Hanwen Zha, Zhiyu Chen, and Xifeng Yan. 2022.
Inductive relation prediction by bert. In Proceed-
ings of the AAAI Conference on Artificial Intelli-
gence, pages 5923–5931.

Chuxu Zhang, Huaxiu Yao, Chao Huang, Meng
Jiang, Zhenhui Li, and Nitesh V. Chawla. 2020.
Few-shot knowledge graph completion. In Pro-
ceedings of AAAI Conference on Artificial Intelli-
gence.

Susan Zhang, Stephen Roller, Naman Goyal,
Mikel Artetxe, Moya Chen, Shuohui Chen,
Christopher Dewan, Mona Diab, Xian Li, Xi Vic-
toria Lin, et al. 2022. Opt: Open pre-trained
transformer language models. arXiv preprint
arXiv:2205.01068.

Yichi Zhang, Zhuo Chen, Wen Zhang, and Huajun
Chen. 2023a. Making large language models
perform better in knowledge graph completion.
arXiv preprint arXiv:2310.06671.

Zaixi Zhang, Qi Liu, Hao Wang, Chengqiang Lu,
and Chee-Kong Lee. 2021. Motif-based graph
self-supervised learning for molecular property
prediction. Advances in Neural Information Pro-
cessing Systems, 34:15870–15882.

Zhen Zhang, Jiajun Bu, Martin Ester, Jianfeng
Zhang, Zhao Li, Chengwei Yao, Huifen Dai, Zhi
Yu, and Can Wang. 2023b. Hierarchical multi-
view graph pooling with structure learning. IEEE
Trans. Knowl. Data Eng., 35(1):545–559.



8049

A. Appendix: prompt examples
dataset prompt example

Nell

Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.

### Instruction:
Select the most likely relationship between the two entities
1. automobilemakerdealersincountry
2. animal such as invertebrate
3...
### Input:
sports league/mlb, coach/joe_torre

### Response:
17

Wiki

Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.

### Instruction:
Select the most likely relationship between the two entities
1.series spin-off
2.partnership with
3...
### Input:
Royal Clipper, Valletta

### Response:
131

FB15K

Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.

### Instruction:
Select the most likely relationship between the two entities
1./government/political_party_tenure/politician
2./film/film_set_designer/film_sets_designed
3...

### Input:
Austria, Vienna

### Response:
53

Tox21, ClinTox

Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.

### Instruction:
Classify if the given target will be activated by the molecular or not. Output 1 for activate, and 0 for not.

### Input:
target:NR-AR, molecular:NC(=S)Nc1ccccc1

### Response:
0

Sider

Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.

### Instruction:
Classify if the given side effect will be caused by the molecular or not. Output 1 for cause, and 0 for not.

### Input:
side effect:Reproductive system and breast disorders, molecular:CN1CCCC1C2=CN=CC=C2

### Response:
1

Enzymes

Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.

### Instruction:
Given a protein ID, sequence, and related protein IDs, classify the given protein as one of the enzyme types. Output a number between 0 and 5.

### Input:
protein_id:131, sequence:1(5),2(9),3(4)

### Response:
4

Proteins

Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.

### Instruction:
Given a protein ID and its sequence, classify if the given protein is an enzyme or not. Output 1 for enzyme, and 0 for not.

### Input:
protein_id:855, sequence:0(4),1(10)

### Response:
1

AIDS

Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.

### Instruction:
Given a compound ID and its sequence, classify if the given compound is AIDS antiviral or not. Output 1 for antiviral, and 0 for not.

### Input:
compound_id:655, sequence:3(1),0(2),3(1),0(1),2(1),0(1),5(1)

### Response:
1

NCI1

Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.

### Instruction:
Given a compound ID and its sequence, classify if the given compound is positive or negative to cell lung cancer. Output 1 for positive, and 0 for negative.

### Input:
compound_id:3858, sequence:1(6),2(5),3(12)

### Response:
1
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