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Abstract
Large language models (LLMs) have demonstrated state-of-the-art performance across various tasks. However, the
latency of inference and the large GPU memory consumption of LLMs restrict their deployment performance. Recently,
there have been some efficient attempts to quantize LLMs, yet inference with large batch size or long sequence still has
the issue of being compute-bound. Fine-grained quantization methods have showcased their proficiency in achieving
low-bit quantization for LLMs, while requiring FP16 data type for linear layer computations, which is time-consuming
when dealing with large batch size or long sequence. In this paper, we introduce a method called FlattenQuant, which
significantly reduces the maximum value of the tensor by flattening the large channels in the tensor, to achieve low bit
per-tensor quantization with minimal accuracy loss. Our experiments show that FlattenQuant can directly use 4 bits
to achieve 48.29% of the linear layer calculation in LLMs, with the remaining layers using 8 bits. The 4-bit matrix mul-
tiplication introduced in the FlattenQuant method can effectively address the compute-bound caused by large matrix
calculation. Our work achieves up to 2× speedup and 2.3× memory reduction for LLMs with negligible loss in accuracy.

Keywords: Post-Training Quantization, Inference Compute-bound, Large Language Models

1. Introduction

The impressive capabilities of large language mod-
els (LLMs) have made a significant impact in re-
cent years (OpenAI, 2023; Ge et al., 2023; Zhao
et al., 2023). Various LLMs have been released
and applied in the real-world production environ-
ment (Eloundou et al., 2023). As a result, there is
a widespread need for the deployment of LLMs.
Using LLMs for inference results in a significant con-
sumption of hardware memory resources due to the
large number of weight parameters and activation
tensor caches generated. Furthermore, inference
of transformer layers necessitates intensive matrix
calculations, posing a significant challenge to GPU
computational capabilities. The facts mentioned
above result in a memory-bound and a compute-
bound for LLM inference, respectively, which lead
to significant inference delay.
With the burgeoning use of LLMs, there is an esca-
lating need to efficiently process a significant influx
of inference requests simultaneously, necessitating
the execution of inference using large batch sizes.
A widely adopted method to optimize LLM infer-
ence is GPTQ quantization, as presented in (Fran-
tar et al., 2022), employing 4-bit quantization for
weights. This effectively mitigates memory-bound
issues, especially with small batch size or short se-
quence, resulting in impressive performance. How-
ever, GPTQ does not extend quantization to activa-
tions, still relying on FP16 for computations instead
of transitioning to lower bit levels. Consequently,
it faces compute-bound challenges as batch size

*Fei Yang is the corresponding author.
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Figure 1: As the batch size increases, the deter-
mining factor for inference latency shifts from be-
ing memory-bound to compute-bound. GPTQ pri-
oritizes memory optimization while utilizing FP16
computation, whereas W8A8’s 8-bit computation
prioritizes computation optimization.

or sequence length increases. Figure 1 visually
demonstrates this challenge, where 8-bit compu-
tation shows superior acceleration, particularly ev-
ident with a sequence length of 256, compared
to GPTQ utilizing FP16 computation. This phe-
nomenon is rooted in the compute-bound nature
of the inference process, where latency is predom-
inantly influenced by matrix computations rather
than memory access.
In small-scale models such as CNNs, 8-bit quan-

tization can ensure a small loss of accuracy and
effectively reduce inference delay (Banner et al.,
2019). However, LLMs present two challenging
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aspects when it comes to quantification:

• In the inference process of LLMs, there is a
compute-bound problem when dealing with
large batch size or long sequence. To speed
up matrix calculations, there is a practical de-
mand for using 8 bits or even 4 bits.

• Due to the significant difference in the value
distribution between each channel, most ex-
isting schemes use per-channel quantization
(Frantar et al., 2022) or group-wise quantiza-
tion (Yao et al., 2022). However, these fine-
grained quantization approaches uses differ-
ent scaling factors inside the tensor, which can
prevent the calculation of the linear layer from
using low-bit matrix multiplication directly, thus
slowing down the inference speed.

In this paper, we propose a method called Flatten-
Quant to achieve accurate and low-bit per-tensor
quantization. This method involves flattening chan-
nels with large values and adding extra channels to
accommodate these values. Through this process,
the maximum value of the tensor is considerably re-
duced while preserving complete information. The
flattened tensor can undergo per-tensor quantiza-
tion while ensuring the preservation of accuracy. In
summary, our contributions are as follows:

• We analyze the relationship between quan-
tization schemes of LLMs and inference la-
tency, especially the requirement for quan-
tization schemes to overcome the compute-
bound.

• Based on the findings, we propose Flatten-
Quant, which reduces the difficulty of per-
tensor quantization and enables low bit com-
putation to overcome compute-bound.

• We propose a quantization framework based
on FlattenQuant, which can directly use 4 bits
to achieve 48.29% linear layer computation
in LLMs, and 8 bits for the remaining. Com-
pared to baselines computed using FP16, we
achieve up to 2× speedup and 2.3× mem-
ory reduction, with only a very minor accuracy
loss.

2. Related Work

2.1. Neural Network Quantization
Quantization is an efficient method for model com-
pression during the deployment (Jacob et al., 2018).
Due to the high hardware requirements of LLMs
training, we focus on deployment-friendly post-
training quantization (PTQ) (Hubara et al., 2021).
Initiating the PTQ process requires a calibration

dataset, which is essential for collecting the numer-
ical distribution of input activation for each layer of
the network. With this dataset, we can derive the
required quantization parameters for each layer by
analyzing the value distribution of activation and
weight. The most commonly employed method
for obtaining quantization parameters can be ex-
pressed using the following equation:

Xk = round(
Xfp16

s
), s =

max(|Xfp16|)
2k−1 − 1

(1)

In the quantization process (illustrated in Equation
1), the floating-point activations of the layer input
are denoted as Xfp16, while the quantized integer
values are represented as Xk. The desired bit
width is indicated by k, and the scaling factor from
floating-point to integer is denoted by s. The final
quantization accuracy is significantly influenced by
the selection of scaling factor, which is crucial to
the process.

2.2. Per-Tensor and Fine-Grained
Quantization

Quantifying tensors can be accomplished in various
ways, each offering different levels of granularity.
When a scaling factor is for the entire tensor, it is
referred to as per-tensor quantization. Alternatively,
we can employ alternative methods to refine the
quantization granularity, such as per-token (Yao
et al., 2022), per-channel (Frantar et al., 2022),
or group-wise (Yao et al., 2022; Dai et al., 2021)
quantization. In practice, for Convolutional Neu-
ral Networks (CNNs), per-tensor quantization is
the most commonly used method because it can
meet accuracy requirements, involves fewer quan-
tization parameters, and is less computationally
demanding during inference. However, achieving
the necessary accuracy through direct per-tensor
quantization can be challenging due to the com-
plex numerical distribution of LLMs. Consequently,
numerous fine-grained quantization methods have
been explored based on data distribution charac-
teristics.

3. Bottleneck of LLMs Quantification

3.1. Outliers of Activation Tensors
Research has shown that LLMs typically possess
uniformly distributed weights, simplifying quantifi-
cation through the per-tensor method (Xiao et al.,
2023). However, quantifying activations poses
a challenge due to the varying value distribution
across channels (Xiao et al., 2023). Some chan-
nels exhibit values 20-100 times larger than the
majority, necessitating the truncation of maximum
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Table 1: Setting of the LLMs quantification

Method Activation Weight Compute data type
W8A8 per-tensor static per-tensor INT8

LLM.int8() per-token dynamic per-channel INT8+FP16
SmoothQuant per-tensor dynamic/static per-tensor INT8

RPTQ group-wise static group-wise FP16
GPTQ not quant per-channel FP16

values to establish an appropriate threshold for scal-
ing factors. If the threshold is set too small, vital
information from these larger activation channels
may be lost. Conversely, if the threshold is too large,
the quantization accuracy of most channels will be
significantly reduced. In such situations, quantiza-
tion for LLMs often adopts finer-grained methods.
These include employing varying bit widths for dif-
ferent tensor segments, per-channel quantization,
or group-wise quantization based on numerical dis-
tribution.

As shown in Table 1, various quantization ap-
proaches have been proposed for handling LLMs.
The LLM.int8() approach (Dettmers et al., 2022)
leverages the FP16 data type to handle the ten-
sor that are difficult to quantize and utilizes the
INT8 data type for the remainder. GPTQ (Fran-
tar et al., 2022) focuses on 4 or 3-bit quantization
of weights, utilizing per-channel quantization and
adjusting unquantized parameters based on the
Hessian matrix. RPTQ (Yuan et al., 2023) clus-
ters the numerical distribution of activation tensors
and groups them accordingly for low-bit quantiza-
tion, albeit at the expense of potential inference
efficiency reduction due to memory rearrangement.
In contrast, SmoothQuant (Xiao et al., 2023) seeks
to balance the difficulty of activation and weight
quantization by transferring large values from the
activation tensor to the weight. However, this may
not be effective if the activation tensor contains
excessively large outliers.

3.2. Aim for Compute-bound
Inference latency is influenced by two primary fac-
tors: compute-bound and memory-bound. Quan-
tization serves to alleviate the memory bottleneck
significantly. For example, when GPTQ quantizes
the weights of LLMs to 3 bits, it results in over a 3×
acceleration in inference on A100 GPUs. However,
as the input batch size and the sequence length
increase, the compute-bound factor becomes pre-
dominant, overshadowing the influence of memory-
bound. In such cases, matrix multiplication con-
sumes up to 80% of the inference time, as reported
by LightSeq (Wang et al., 2020). Consequently, the
primary approach to mitigate the compute-bound
challenge is to reduce the time required for matrix
multiplication.
Taking the A100 (Choquette et al., 2021) GPU as
an example, in terms of computing power, INT4

computation demonstrates a 4× acceleration com-
pared to FP16 computation, while INT8 showcases
a 2× improvement. The aforementioned statement
highlights the possibility of decreasing the bit width
in order to tackle compute-bound difficulties in the
context of large-scale matrix multiplication.
When utilizing the fine-grained quantization method,
a challenge arises concerning the compatibility of
quantization units and matrix multiplication calcula-
tions. As a result, direct utilization of TensorCore
(Markidis et al., 2018) for performing matrix multipli-
cation on quantized activation and weight becomes
unfeasible. For instance, in the case of methods
like LLM.int8() (Dettmers et al., 2022), which is im-
perative to partition the matrix multiplication calcu-
lation into separate precision-based computations,
followed by the summation of results. Techniques
employing per-channel quantization (Frantar et al.,
2022) necessitate the dequantization of tensors to
the FP16 data type before matrix multiplication cal-
culations. Similarly, methods such as RPTQ (Yuan
et al., 2023), which rely on group-wise quantiza-
tion, faces challenge when performing linear layer
calculations within a single matrix multiplication op-
eration. These above methods have limited the
quantization granularity of weights to the level of
channels or even groups, indicating that each data
unit in the tensor corresponds to different quantiza-
tion coefficients. This makes the quantized weights
unable to participate in matrix multiplication calcu-
lations directly, which necessarily requires dequan-
tization to FP16 for computation. This will cause
compute-bound under large batch sizes or long se-
quences. Consequently, when compute-bound
scenarios are anticipated, per-tensor quantiza-
tion remains the preferable choice for deploying
LLMs.

4. FlattenQuant

4.1. Flattening the Tensor

Our proposed approach, FlattenQuant, leverages
per-tensor quantization to facilitate efficient low-bit
matrix multiplication during linear layer computa-
tion in LLMs inference. By utilizing TensorCore,
we ensure optimal performance. The core aspect
of our approach involves identifying the channel
indexes containing outliers in the target tensor, ex-
panding these specific channels to accommodate
the outliers, and repeating the corresponding ma-
trix channels accordingly to ensure accurate matrix
multiplication. This strategy is underpinned by the
consistent presence of outliers between channels
and the limited variance within each channel, as
elucidated in (Bondarenko et al., 2021).
Preparing for the FlattenQuant, we employ a cali-
bration dataset to perform inference on the model
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(a)

(b)

Figure 2: The concept of FlattenQuant is illustrated in (a). The expansion of certain channels is undertaken
to accommodate those with larger values, another tensor repeats corresponding channels by the number
of extended channels. Such operation itself does not result in any precision loss. We can observe that the
activation’s maximum absolute value in FlattenQuant is two thirds of that in SmoothQuant, accompanied
by the weight’s maximum absolute value being half of that in SmoothQuant. This flatter condition leads to
a remarkable enhancement in quantization accuracy. (b) displays the activation input and weight in LLM.
After the flatten operation, the tensor becomes flat and easily per-tensor quantized.

and identify the maximum value for each activa-
tion channel. Utilizing the numerical distribution,
we establish a truncation threshold for the entire
activation. Channels exceeding this threshold in
their maximum value underwent flattening and were
assigned new channels. The number of new chan-
nels are determined based on the maximum value
of the original channel. This process is quantified
by Equation 2, which calculates the count of ex-
tended channels (Ej) for the j-th input channel,
with j ranging from 1 to C (the total number of in-
put channels), and T represents truncation thresh-
old. The aforementioned approach results in a total
count of extended channels, denoted as Cextend.

Ej = �max(|Xj |)
T

�, Cextend =

C∑
j=1

Ej (2)

Referring to Figure 2a, the activation channel is
extended, and the weight channel is repeated ac-
cordingly. Equation 3 explains how the activation
element Xij is flattened, and Equation 4 explains

how the j-th channel of weight W is repeated.

Flatten(Xij) =
−→
Xi˜j = [

�Xij
T �︷ ︸︸ ︷

T, . . . , T ,Xij mod T ]

j̃ ∈ [j ∪ (C +

j−1∑
k=1

Ek, C +

j−1∑
k=1

Ek + �Xij

T
�]]

(3)

Repeat(Wj) = Ej

⎧⎪⎨⎪⎩
⎡⎢⎣11...

⎤⎥⎦ Wj (4)

Restricting the activation maximum value to a lower
truncation threshold yields enhanced accuracy in
the context of per-tensor quantization. Additionally,
to further enhance the accuracy of per-tensor quan-
tization, we also apply the flatten operation to the
weights, which effectively decreases the maximum
values of the weights and promotes a more uniform
distribution of values.

4.2. Achieving High-precision
Smoothing across channels. To enable per-
tensor quantization, SmoothQuant utilizes a
smooth operation that relocates high-value acti-
vation data into the weights. We utilize a sim-
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Figure 3: Quantization framework based on FlattenQuant. The data flows through orange arrows, while
gray arrows indicate operation configuration dependencies. Activation operations are executed during
inference; and weight processing is done during model quantization.

ilar, albeit slightly modified, operation, as de-
picted in Equation 5, where α is the migration
strength. We define μ as

∑C
k=1 max(|Xk|)/C,

where σ is (
∑C

k=1(max(|Xk|)− μ)2/C)0.5. In con-
trast SmoothQuant, our objective is to acquire uni-
formly distributed of channel values. Upon perform-
ing normalizing on the maximum absolute value
of each channel, we obtain the relative numerical
magnitude within the tensor and apply a smooth-
ing process between activations and weights. This
promotes a more equitable distribution of channel
values, leading to flatter activations and weights.

Smooth(X,W ) = (Xdiag(s)−1, diag(s)W )

sj =
(Sigmoid((max(|Xj |)− μ)/σ))α

(Sigmoid((max(|Wj |)− μ)/σ))1−α

(5)

Selection of the truncation threshold. The trun-
cation threshold determines the maximum value
before per-tensor quantization. A smaller threshold
leads to higher precision in quantization, but also
results in increased GPU memory consumption
and linear layer computation. Our primary objec-
tive in selecting the threshold is to prevent outlier
channels from interfering with quantization scaling
factor and to avoid excessive flattening of channels.
We start by using a boxplot (Frigge et al., 1989) to
suppress outlier channels. In Equation 6, the lower
quartile (Q1) and upper quartile (Q3) divide the data
into the lowest and highest 25% respectively, while
the interquartile range (IQR) is defined as Q3−Q1.
We then derive the truncation threshold (Equation
7) by multiplying a coefficient β with the mean of
the maximum values of the channels.

∣∣∣X̃j

∣∣∣ = clip(|Xj | ,min = Q1 − 1.5 · IQR,

max = Q3 + 1.5 · IQR)
(6)

T = β ·
∑C

j=1 max(|̃Xj |)
C

(7)

Quantize some layers to INT4. Smoothing
across channels is instrumental in achieving a more

uniform distribution of values across tensor chan-
nels, further flattening of the tensor, greatly sup-
pressing the maximum value of the tensor, and
significantly reducing the difficulty of quantization.
The above operations serves as a critical prerequi-
site for 4-bit per-tensor quantization. Notably, the
INT4 data type offers a representation range that is
only 1/16 of that of INT8. As matrix multiplication is
performed after both activations and weights have
been quantized to INT4, even slight quantization
errors can have substantial impacts. Hence, it is
imperative to attain high levels of quantization ac-
curacy when employing INT4.
Our primary goal is to enable 4-bit quantization
for specific linear layers, necessitating the assess-
ment of each layer’s suitability for allocation to 4-bit
precision. To accomplish this, we have adopted a
methodology akin to that utilized in TensorRT (Van-
holder, 2016) to evaluate the quantization-induced
error, leveraging the KL divergence as a key metric
for assessment. Upon performing per-tensor quan-
tization to 4 bits and 8 bits, as outlined in Equation 8,
we obtained the KL divergence between the quan-
tized tensors distribution Q and the original data
distribution P . The resulting ratio was then com-
pared against a predefined threshold γ. If the ratio
falls below this threshold, the layer is assigned to
4-bit quantization; otherwise, it is allocated to 8-bit
quantization. It is important to note that for a layer to
be quantized to 4 bits, both activations and weights
must undergo 4-bit quantization simultaneously.

QuantBits =

{
4 KL(P,QINT4)/KL(P,QINT8) < γ

8 KL(P,QINT4)/KL(P,QINT8) ≥ γ
(8)

Once the truncation threshold and quantization bit
width are determined, a linear layer is subjected
to the quantization framework depicted in Figure
3. Our framework notably incorporates flat ten-
sors, which significantly contribute to achieving
high-precision per-tensor quantization.
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5. Experiments

5.1. Settings
Baselines. Our algorithm is designed with a spe-
cific focus on improving inference efficiency in sce-
narios where per-tensor quantization offers advan-
tages, especially in compute-bound situations. To
comprehensively assess its performance, we com-
pared it with two baseline methods: the naive quan-
tization of W8A8 and the SmoothQuant approach.
The FlattenQuant method introduces a series of
quantization levels, namely O1, O2 and O3, which
progressively increase in aggressiveness and effi-
ciency. For more detailed insights into the specific
quantization schemes employed in both the base-
lines and FlattenQuant, please refer to Table 2.

Table 2: Quantization setting of the baselines
and FlattenQuant. All weight and activations use
per-tensor static quantization. In the case of
FlattenQuant-O3, we adopt per-tensor quantiza-
tion instead of per-channel quantization, during the
GPTQ optimization process for weight.

Method Bits Additional Optimizations
W8A8 8 N/A

Smoothquant 8 N/A
FlattenQuant-O1 8 N/A
FlattenQuant-O2 4,8 mixed N/A
FlattenQuant-O3 4,8 mixed GPTQ

Models and datasets. We evaluated our pro-
posed FlattenQuant on OPT models (Zhang et al.,
2022), using five zero-shot evaluation tasks: Open-
BookQA (Mihaylov et al., 2018), LAMBADA (Ope-
nAI) (Paperno et al., 2016), PIQA (Bisk et al., 2019),
HellaSwag (Zellers et al., 2019), WinoGrande (Sak-
aguchi et al., 2021), and one language modeling
dataset WikiText (Merity et al., 2017) to validate al-
gorithm settings. We utilized lm-eval-harness (Gao
et al., 2021) to evaluate the individual models.

Implementation. We implemented FlattenQuant
in PyTorch (Paszke et al., 2019) and worked with
the HuggingFace (Wolf et al., 2019) integrations of
the OPT model families. Our experiments were car-
ried out on a server equipped with four A100 GPUs
with 80GB of memory. We implemented quantized
linear layers and the batched matrix multiplication
(BMM) function for INT8 and INT4 based on the
CUTLASS INT8 and INT4 GEMM kernels. We sim-
ply replace the original floating-point (FP16) linear
layers with our INT8 or INT4 quantized linear layers
as the quantized model.
To smooth channels, α is set to 0.5. Additionally, in
order to establish an appropriate truncation thresh-
old, β is set to 1.3. Furthermore, for determining

the quantization bit width for each layer, we assign
a value of γ as 1.86. In addition, the final number
of channels after the flatten operation is padded
to a multiple of 32 to align the matrix multiplication
block.

5.2. Accuracy Results on LLMs

As indicated by the bolded data in Table 3, it is evi-
dent that the accuracy achieved by FlattenQuant
under the O3 configuration is comparable to that of
SmoothQuant. The utilization of the flatten opera-
tion effectively reduces the maximum value, thereby
alleviating quantization challenges. In addition, the
integration of GPTQ enables efficient compensa-
tion for errors incurred during the weight quantiza-
tion process. Notably, it is important to highlight
that the GPTQ optimization is performed on the
flattened weights of each layer. Table 4 shows
the LLMs corresponding setting in our experiment.
Across the 6.7b, 13b, 30b, and 66b models of OPT,
our methods consistently achieve nearly 50% layer
quantization using INT4. Additionally, the ratio of
flattening is predominantly kept within a range of
25%. This greatly facilitates GPU memory opti-
mization and enhances inference speed.

5.3. Memory Consumption and Speedup

We applied INT4 quantization to approximately 50%
of the layers, which further reduced the GPU mem-
ory consumption of the inference process com-
pared with the SmoothQuant. The GPU memory
consumption is presented in Table 6. It is worth
noting that while the inference process for large
batch size and long sequence may consume sig-
nificant memory due to the key-value cache, this
specific component was not included in our exper-
iment. The main reason behind this decision is
that even with INT8 quantization, the calculations
of key-value pairs require a 16-bit representation,
while an 8-bit cache is more suitable for industrial
scenarios where additional quantization operations
are often required. Ensuring accuracy, however,
would necessitate a per-group quantization opera-
tion, which falls outside the scope of this paper’s
primary focus.
Figure 4 illustrates the inference speed on OPT-

13b and OPT-30b for varying batch size and se-
quence length. The results demonstrate that Flat-
tenQuant achieves nearly double the speed of
FP16 and exhibits a significantly accelerated per-
formance compared to SmoothQuant in compute-
bound scenarios. When the sequence length re-
mains constant, there is a linear correlation be-
tween inference latency and batch size. This corre-
lation arises due to the fact that, once the compute-
bound is reached, the inference latency is primarily
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Table 3: We evaluate the performance on 5 zero-shot benchmarks (by reporting the average accuracy) and
1 language modeling benchmark (perplexity). The accuracy degradation observed in the FlattenQuant-O1
setting is minimal, as the utilization of 8-bit quantization ensures the preservation of accuracy. Conversely,
the O2 setting exhibits a more noticeable loss of accuracy. However, the introduction of GPTQ in the O3
setting compensates for the accuracy loss caused by INT4 quantization.

Task OpenBookQA (↑) LAMBADA (OpenAI)(↑)
Model 125M 1.3B 6.7B 13B 30B 66B 125M 1.3B 6.7B 13B 30B 66B
FP16 27.80% 33.40% 37.40% 39.00% 40.20% 40.80% 37.84% 57.90% 67.66% 68.60% 71.39% 73.92%
W8A8 27.60% 34.20% 28.20% 25.60% 27.80% 27.33% 35.53% 54.39% 13.31% 0.05% 0.03% 0.02%

SmoothQuant 27.20% 33.60% 37.40% 38.85% 39.63% 39.82% 37.41% 55.24% 67.03% 68.02% 71.20% 72.79%
FlattenQuant-O1 27.80% 33.00% 37.80% 39.20% 39.27% 39.87% 36.73% 56.47% 66.13% 67.41% 71.22% 73.12%
FlattenQuant-O2 27.11% 31.00% 35.60% 38.11% 37.74% 36.52% 35.88% 55.63% 65.47% 66.03% 68.58% 69.91%
FlattenQuant-O3 27.60% 33.22% 37.01% 38.71% 39.11% 39.46% 36.13% 56.51% 66.41% 67.20% 70.82% 72.63%

Task PIQA (↑) HellaSwag (↑)
Model 125M 1.3B 6.7B 13B 30B 66B 125M 1.3B 6.7B 13B 30B 66B
FP16 61.53% 71.36% 76.49% 76.87% 78.12% 79.76% 31.32% 53.73% 67.18% 69.80% 72.27% 74.88%
W8A8 61.26% 69.85% 59.30% 52.50% 53.15% 53.88% 30.92% 51.89% 39.31% 27.44% 28.34% 28.01%

SmoothQuant 61.75% 71.04% 76.10% 76.12% 77.52% 79.01% 31.42% 53.50% 66.69% 67.54% 70.85% 72.89%
FlattenQuant-O1 61.47% 70.89% 75.78% 76.06% 78.01% 79.34% 31.55% 53.09% 65.97% 68.68% 71.31% 73.62%
FlattenQuant-O2 60.77% 69.04% 74.51% 75.89% 76.07% 76.52% 31.21% 50.09% 63.45% 66.38% 68.51% 70.11%
FlattenQuant-O3 61.20% 71.02% 75.43% 76.31% 77.58% 79.07% 31.56% 53.40% 66.31% 68.70% 71.35% 73.10%

Task WinoGrande (↑) WikiText2 (↓)
Model 125M 1.3B 6.7B 13B 30B 66B 125M 1.3B 6.7B 13B 30B 66B
FP16 50.43% 59.19% 65.19% 65.03% 68.42% 68.90% 27.65 14.62 10.86 10.13 9.56 9.34
W8A8 49.90% 58.40% 49.56% 51.30% 50.74% 49.72% 30.10 15.85 31.08 4551.63 2130.69 3754.28

SmoothQuant 50.03% 59.11% 64.90% 64.21% 68.52% 68.21% 28.88 15.69 11.43 10.99 10.62 10.55
FlattenQuant-O1 49.01% 58.48% 64.56% 64.24% 68.11% 68.33% 28.46 15.22 11.28 10.87 10.34 10.24
FlattenQuant-O2 48.21% 57.85% 62.96% 63.21% 65.47% 66.43% 30.86 16.80 13.30 12.26 11.72 11.37
FlattenQuant-O3 50.35% 58.90% 64.77% 64.41% 68.10% 68.12% 28.75 15.94 11.68 11.21 10.88 10.77

OPT-13b OPT-30b
Sequence Length 1024 Sequence Length 1024Batch Size 8 Batch Size 8

Figure 4: In compute-bound scenarios that involve large batch sizes and long sequences, our per-tensor
method replaced FP16 matrix multiplication with INT4 and INT8 alternatives, yielding a considerable
improvement in inference speed. This achievement is a direct result of our targeted efforts to overcome
compute-bound challenges.

Table 4: The proportion of INT4 quantized layers in
LLMs, and the average ratio of expanded channels
over original channels.

Model 125M 1.3B 6.7B 13B 30B 66B
INT4 layers 35.54% 36.42% 47.25% 45.75% 48.29% 47.37%
Flatten ratio 26.21% 24.62% 24.41% 21.50% 22.42% 21.65%

Table 5: Comparison of tensor flattening and matrix
multiplication latency with different data type. The
experimental settings involved a batch size of 8,
2048 tokens, 4096 input and output channels, and
1024 tensor expanded channels.

Operator Flatten Gemm (FP16) Gemm (INT8) Gemm (INT4)
Latency (ms) 0.19 3.12 2.35 1.57

determined by the data dimension of the matrix cal-
culations. When the batch size is held constant,
the theoretical calculation amount increases with
the square level of the sequence length, which is
also manifested in the inference latency.
We compared the latency of flatten operation and
matrix multiplication, as shown in Table 5, it can be
seen that the latency of tensor flattening operation
is very small by comparison. Hence, the introduc-
tion of low-bit calculations through FlattenQuant
leads to substantial acceleration, which aligns with
the findings depicted in Figure 4.
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Table 6: Memory consumption (GB) of LLMs on different batch size and sequence length.

Sequence Length 512 1024 2048
Batch Size 1 8 32 1 8 32 1 8 32

OPT-30b
FP16 59.2 60.4 66.2 60.1 62.3 72.3 62.8 73.4 88.6

SmoothQuant 32.3 33.2 38.2 32.6 33.5 40.5 37.2 42.1 48.9
FlattenQuant-O3 26.1 26.8 31.7 26.3 27.5 33.5 31.8 36.1 39.8

OPT-66b
FP16 126.3 126.8 133.5 127.2 129.1 140.1 130.6 143.5 162.6

SmoothQuant 67.4 68.2 73.1 67.3 72.2 75.9 69.6 79.9 91.2
FlattenQuant-O3 53.7 55.4 60.2 56.2 59.6 60.1 55.4 61.2 70.5

Table 7: The ablation study to evaluate the perfor-
mance impact of the channel smoothing.

Model OPT-1.3b OPT-6.7b OPT-13b
Smooth Yes No Yes No Yes No

Wiki PPL (↓) 15.94 16.50 11.68 12.16 11.21 11.85

Table 8: The ablation study on the parameter β with
respect to accuracy, flatten ratio and GPU memory
consumption.

β 1.1 1.2 1.3 1.4 1.5
Wiki PPL (↓) 11.32 11.38 11.68 11.89 12.08
Flatten ratio 32.25% 26.85% 24.41% 22.01% 20.56%

Memory (GB) 7.12 6.89 6.75 6.66 6.72

5.4. Ablation Study
In the FlattenQuant approach, the selection of
truncation threshold, quantization bits for each
layer (INT4 or INT8), and the presence of channel
smooth operator all contribute to the final quanti-
zation outcome. In order to determine the optimal
quantization process, we conducted a comprehen-
sive ablation study on the WikiText-2 dataset.

Channel smoothing Table 7 shows that the chan-
nel smoothing operation brings significant accuracy
improvement on three OPT models. We assert that
this operation achieves a more uniform distribu-
tion of values across activation and weight tensor
channels.

Truncation threshold In order to strike a balance
between quantization precision and resource us-
age, it is necessary to choose a suitable value for
the parameter β as shown in Equation 7. The find-
ings obtained from the OPT-6.7 model are shown in
Table 8. When the value of β is less than 1.2, the av-
erage channel flatten ratio exceeds 30%, resulting
in an increase in GPU memory use. However, the
corresponding gain in accuracy is minimal. When
the value of β exceeds 1.4, there is no substantial
change seen in the average channel flatness ratio
and GPU memory occupancy. However, a notice-
able drop in accuracy becomes evident. Hence, it
is necessary to establish the value of β within the
range of 1.2 to 1.4 in order to get a performance
that is well-balanced.

Table 9: Impact of suppressing outlier channels
during obtaining truncation threshold.

Model OPT-1.3b OPT-6.7b OPT-13b
Outlier clip Yes No Yes No Yes No

Wiki PPL (↓) 15.94 16.22 11.68 11.87 11.21 11.74

Suppressing outlier channels In the process of
obtaining the truncation threshold, we validated the
influence of suppressing outlier channels. Table 9
shows that this operation brings significant accu-
racy improvement on three OPT models. We posit
that this operation prevents some outlier channels
from excessively affecting the mean of the maxi-
mum value of each channel.

Precision selection We need to choose an ap-
propriate γ (as defined in Equation 8) to balance
quantization accuracy and resource consumption.
Table 10 shows the result on the OPT-6.7 model.
When γ falls below 1.86, the improvement of ac-
curacy becomes marginal, while the gpu memery
occupation increases. When γ exceeds 1.88, a no-
ticeable decline in accuracy ensues. Thus, optimal
performance can be achieved by setting γ between
1.86 and 1.88.

Table 10: γ determines the tolerance of the INT4
quantization that affects KL divergence.

γ 1.82 1.84 1.86 1.88 1.90
INT4 layers 31.21% 40.85% 47.25% 51.67% 55.85%
Wiki PPL (↓) 11.35 11.37 11.68 11.95 12.47
Memory (GB) 7.32 7.02 6.75 6.58 6.29

6. Conclusion and Future Work

We propose FlattenQuant, a per-tensor post-
training quantization target for the compute-bound
scenarios for large language models, which allows
precision lossless in the case of up to 48.29% linear
layer quantized to INT4. FlattenQuant can further
reduce inference latency and memory usage com-
pared to SmoothQuant. The use of per-tensor INT4
quantization by FlattenQuant significantly improves
inference performance, particularly in scenarios
where compute-bound issues arise due to huge
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batch sizes or long sequence inferences.
Furthermore, it is important to underscore some
notable constraints: our proposed method is more
advantageous for scenarios that tend to compute-
bound. It also places certain hardware prerequi-
sites, including the availability of Tensor Cores that
poses the capability to handle INT4 data types,
hence augmenting the inference efficiency. Addi-
tionally, deep operator fusion becomes essential
for industrial deployment. By fusing tensor flatten-
ing, channel repeat, and subsequent matrix mul-
tiplication operators into one single kernel, the re-
source consumption associated with flatten oper-
ations can be further mitigated. Finally, it can be
deduced that the impact of our methodology per-
sists as the model expands in size. Consequently,
it can be hypothesized that for models beyond 100
billion parameters, we expect to observe compara-
ble improvements in computational efficiency and
memory consumption via the implementation of our
proposed strategy.
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