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Abstract
Sentence embeddings produced by Pretrained Language Models (PLMs) have received wide attention from the
NLP community due to their superior performance when representing texts in numerous downstream applications.
However, the high dimensionality of the sentence embeddings produced by PLMs is problematic when representing
large numbers of sentences in memory- or compute-constrained devices. As a solution, we evaluate unsupervised
dimensionality reduction methods to reduce the dimensionality of sentence embeddings produced by PLMs. Our
experimental results show that simple methods such as Principal Component Analysis (PCA) can reduce the
dimensionality of sentence embeddings by almost 50%, without incurring a significant loss in performance in multiple
downstream tasks. Surprisingly, reducing the dimensionality further improves performance over the original high
dimensional versions for the sentence embeddings produced by some PLMs in some tasks.
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1. Introduction

Sentence embedding models represent a given
input sentence using a fixed dimensional vector,
which is independent of the length of the input sen-
tence (Reimers and Gurevych, 2019a; Gao et al.,
2021a). Sentence embeddings have significantly
improved performance in numerous downstream
NLP tasks such as information retrieval (Kong
et al., 2022; Palangi et al., 2016), question an-
swering (Hao et al., 2019), and machine trans-
lation (Wang et al., 2017) to name a few (Choi
et al., 2021). However, compared to static word em-
beddings (Pennington et al., 2014; Mikolov et al.,
2013), which typically have a smaller number of
dimensions (ca. 50-300), sentence embeddings
produced by PLMs are usually high dimensional
(ca. 1024-4096). This is problematic due to several
reasons as described next.

First, storing pre-computed sentence embed-
dings requires larger memory/disk space. For ex-
ample, in dense retrieval systems (Kong et al.,
2022; Nigam et al., 2019), documents must be pre-
embedded and stored in order to efficiently process
queries at retrieval time. Therefore, the storage re-
quirements increase linearly with the number of
documents in the collection. Although it is efficient
to store all the embeddings in memory to reduce
the search latency as opposed to reading from a
disk-based storage, this is not possible due to the
high dimensionality of the sentence/document em-
beddings. Moreover, training deep learning mod-
els with high-dimensional sentence embeddings is
problematic because GPUs have limited memory
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buffers. This requires carefully selecting training
data batches and results in latency overheads when
transferring sentence embeddings back-and-forth
between GPUs.

Second, the computation time of the inner-
products between two sentence embeddings in-
creases linearly with the dimensionality of the em-
bedding. For example, in dense retrieval, we must
compute the inner-product (or equivalently cosine
similarity if the embeddings are ℓ2 normalised) be-
tween the query embedding and each of the docu-
ment embeddings to rank the documents that are
relevant to a query (Menon et al., 2022; Nigam
et al., 2019). This is prohibitively expensive when a
large number of documents must be ranked within
millisecond order retrieval times.

Given this trade-off between the dimensionality
and the accuracy of sentence embeddings, in this
paper, we consider the following question: Can we
reduce the dimensionality of pre-computed sen-
tence embeddings without significantly sacrific-
ing the performance in downstream tasks that
use those dimensionality-reduced sentence
embeddings? Although a diverse set of dimen-
sionality reduction methods have been proposed,
from a real-world large-scale application perspec-
tive, dimensionality reduction methods that satisfy
the following properties are desirable:
(a) In contrast to training lower-dimensional sen-
tence embeddings from scratch or training lower-
dimensional student models via distillation (Anil
et al., 2018), we would prefer dimensionality reduc-
tion methods that are computationally lightweight
such that they can be applied in a post-processing
stage to reduce the dimensionality of pre-computed
sentence embeddings. Distillation-based methods
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require additional training data for training the stu-
dent model, as well as a larger memory to load
the teacher model. Moreover, the inference time
required by the student model, which will be used
after distillation must also be taken into account.
On the other hand, dimensionality reduction meth-
ods are particularly desirable when we have a large
and continuously growing number of sentences as
in the case of dense information retrieval.
(b) We would prefer unsupervised dimensionality
reduction methods over supervised ones such that
no labelled data are required for a specific down-
stream task (Zhao et al., 2022). Such labelled in-
stances might not be available in specialised do-
mains and in larger quantities. This helps us to
produce dimensionality-reduced sentence embed-
dings that are independent of a particular task, thus
more likely to generalise well to multiple different
tasks.

We present a novel analysis of unsupervised
dimensionality reduction methods for sentence em-
beddings: truncated Singular Value Decomposi-
tion (SVD; Petersen and Petersen, 2012), Princi-
pal Component Analysis (PCA; Andrews, 2016),
Kernel PCA (KPCA; Schölkopf et al., 1998), Gaus-
sian Random Projections (GRP; Bingham and Man-
nila, 2001) and Autoencoders (Vincent et al., 2008).
Lower-dimensional projections can be learnt in an
inductive setting (uses only the train sentences to
learn the projection), or in a transductive setting
(uses unlabelled test sentences in addition to the
train sentences). The inductive setting is desirable
in scenarios where we have a continuous stream of
test sentences such as in dense retrieval, whereas
the transductive setting is sufficient when the test
sentences are fixed and known in advance during
projection learning time.

We use six popular sentence encoders in three
tasks: semantic textual similarity (STS) mea-
surement (Cer et al., 2017), entailment predic-
tion (Marelli et al., 2014), and TREC question-type
classification (Hovy et al., 2001). In particular, se-
mantic textual similarity is a popular NLP task that
is frequently used to measure the accuracy of sen-
tence embeddings (Cer et al., 2017). The ability to
recognise textual entailment is also considered a
fundamental task for evaluating natural language
understanding (Dzikovska et al., 2013; Yokote et al.,
2012). Moreover, question classification is a sen-
tence classification task, which requires an accu-
rate sentence representation to obtain good accu-
racy (Li and Roth, 2002). Overall, PCA proves to be
the most effective method for sentence embedding
compression. Previous research has demonstrated
the effectiveness of PCA for various compression
tasks (Raunak et al., 2019; Reddy et al., 2020),
but we are the first to conduct a systematic study
specifically for sentence embedding compression.

Our experimental results show that in both trans-
ductive as well as inductive settings, we can use
PCA to reduce the dimensionality of diverse sen-
tence embeddings by ca. 50% within a 1% loss in
performance in the target tasks. Interestingly, re-
ducing dimensionality improves accuracy for some
sentence encoders such as all-mpnet-base-v2 for
STS and msmarco-roberta-base-v2 for TREC.

2. Related Work

Neural Network Compression: The majority of
work for compression focuses on learning neural
network models with fewer parameters. Different
techniques have been proposed for this purpose
such as pruning (neuron/layer/weight dropout) (Han
et al., 2015; Li et al., 2017; Lee et al., 2019), quan-
tization (Han et al., 2016; Chen et al., 2016), dis-
tillation (Jiao et al., 2020; Sanh et al., 2019), etc.
However, in this paper we do not consider the prob-
lem of compressing PLMs, but focus only on the
dimensionality reduction of the sentence embed-
dings produced by a given sentence encoder.

Word Embedding Compression: Several prior
work has considered the problem of compress-
ing pre-trained static word embeddings. Andrews
(2016) adds sparsity and non-negative encoding to
a specific autoencoder scheme, thereby compress-
ing original dense vector embeddings. Kim et al.
(2020) propose an adaptive compression method
that uses code-book to represent words as discrete
codes of different lengths. To reduce the number
of parameters, Shu and Nakayama (2018) assign
a small set of basis vectors to each word, with the
storage efficiency maximised by a composition cod-
ing approach. However, our focus in this paper is
sentence embeddings and not word embeddings.

Sentence Embedding Compression: Com-
pared to model/word embedding compression work
described above, lower-dimensional sentence em-
beddings are understudied. Zhao et al. (2022) pro-
posed homomorphic projective distillation to com-
press sentence embeddings using labelled training
instances for textual entailment to learn a projec-
tion layer for a transformer-based encoder. In con-
trast, the dimensionality reduction methods that we
evaluate are all unsupervised, thus not requiring
labelled data. Moreover, the methods we consider
do not require student network training, which can
be computationally expensive.

3. Dimensionality Reduction Methods

Let us assume that we are given a sentence em-
bedding model, M , which returns a d-dimensional
embedding, s(∈ Rd) to a sentence s. Given a
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set of (train) sentences, Dtrain, we will learn a d′-
dimensional projection (d′ < d), f : Rd → Rd′

that would project a given sentence embedding.
We consider SVD, PCA, GRP, KPCA and Autoen-
coders as the unsupervised dimensionality reduc-
tion methods for the purpose of learning this pro-
jection.1 These methods have been selected due
to their superior performance and popular applica-
tions. For example, PCA has been used for com-
pressing word embeddings (Raunak et al., 2019),
KPCA has been used for feature extraction (Ayesha
et al., 2020; Gupta et al., 2019), SVD has shown
excellent performance in diverse word embedding-
related tasks (Levy et al., 2015), random projection
is a popular lightweight lower-dimensional projec-
tion method (Schmidt, 2018), and autoencoders
have been used to learn embeddings (Socher et al.,
2011; Chandar AP et al., 2014). In our preliminary
experiments, we observed that an autoencoder with
a single hidden layer was producing comparable
performance to ones with more than two hidden
layers, despite the former being fast to train and
infer with. Therefore, in the remainder of our exper-
iments, we use autoencoders with a single hidden
layer. The learnt f is then used to project test sen-
tences, Dtest, to a d′-dimensional space.

4. Experiments

To evaluate the efficiency and effectiveness of the
dimensionality reduction methods described in §3,
we apply them to reduce the dimensionality of sen-
tence embeddings which are produced by six trans-
former PLMs2: all-mpnet-base-v2 (mpnet), stsb-
bert-base (sbert-b), msmarco-roberta-base-v2
(roberta), paraphrase-xlm-r-multilingual-v1 (xml-r),
stsb-bert-large (sbert-l), and sup-simcse-roberta-
large (simcse). We evaluate using three datasets:
STS-B for STS, TREC for question-type classifi-
cation, and SICK-E for entailment prediction. We
use an NVIDIA RTX A6000 GPU. The scikit-learn
(0.24.2) is used for SVD, PCA, KPCA and GRP,
and Keras (2.2.4) is used for the autoencoder. We
fix these settings in all experiments.

4.1. Evaluation Tasks and Datasets
We use SentEval (Conneau and Kiela, 2018), an
evaluation toolkit, to evaluate the quality of sen-
tence embeddings. Following the implementation
of sentence transformers to encode the sentences,
we apply dimensionality reduction methods as a
post-processing step to map the embeddings into
a lower-dimensional space.

1Details of each method are in Appendix
2All models are available at huggingface.co/

sentence-transformers and https://huggingface.co/
princeton-nlp

Three different tasks and corresponding datasets
are selected.
Semantic Textual Similarity Prediction: STS-B

is a set of pairwise sentences, provided with
a standard benchmark of semantic similarity.
The standard protocol when evaluating
sentence embeddings on STS datasets is to
first independently encode each sentence in a
pair of sentences into a sentence embedding,
and then compute the similarity between
the two sentences in the pair using cosine
similarity. The predicted similarity scores are
compared against the human similarity ratings
in the STS datasets using some correlation
coefficient. The Spearman rank correlation
coefficient is often used for this purpose. It
is a metric between -1 and +1, where higher
positive correlations indicate better agreement
with human similarity ratings. Therefore, a
sentence embedding method that produces
high positive Spearman correlations on an
STS dataset is considered to be better at
preserving the semantic information of the
sentences in the embedding space.

Question Classification: To correctly answer
free-form factual questions given a large
collection of texts, one must first understand
the type of information that should be included
in the answer to a question. For example,
given the question What Canadian city has
the largest population?, we would classify
it as having the answer type city, implying
that only cities are valid as the candidate
answers. Li and Roth (2002) created a
dataset from four question datasets including
TREC collections and manually labelled into a
hierarchical taxonomy of question types. Each
question is classified into the the following
six top-level types: ABBREVIATION, ENTITY,
DESCRIPTION, HUMAN, LOCATION and
NUMERIC.3 The classification accuracy is
measured for the effectiveness of embeddings
to grasp the underlying intent of questions.

Textual Entailment: Given a premise and a hy-
pothesis expressed by two sentences, in NLI,
we are expected to predict whether the hy-
pothesis has an entailment, contradiction or
a neutral relation with the premise. For ex-
ample, given the premise “A small girl wear-
ing a pink jacket is riding on a carousel” and
the hypothesis “The carousel is moving”, there
exists an entailment relationship between the
premise and the hypothesis. Unlike the NLP

3Details of the full hierarchy is available at
https://cogcomp.seas.upenn.edu/Data/QA/QC/
definition.html.

huggingface.co/sentence-transformers
huggingface.co/sentence-transformers
https://huggingface.co/princeton-nlp
https://huggingface.co/princeton-nlp
https://cogcomp.seas.upenn.edu/Data/QA/QC/definition.html
https://cogcomp.seas.upenn.edu/Data/QA/QC/definition.html
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Figure 1: Performance of the original sup-simcse-roberta-large sentence embeddings and its dimension-
ality reduced versions produced using different methods on STS-B (top), TREC (middle) and SICK-E
(bottom) datasets. Results for the transductive and inductive settings are shown respectively on the left
and right.

tasks discussed above, NLI prediction requires
us to represent each sentence in a pair of sen-
tences, and make a prediction for the pair as
a whole instead of individual sentences in the
pair. We use the SICK Entailment (SICK-E)
dataset (Marelli et al., 2014) for evaluating the
performance of sentence embeddings for NLI.
SICK-E is a set of pairwise sentences, pro-
vided with a standard benchmark of relation-
ships (contradiction, neutral and entailment).
The accuracy evaluates the ability of embed-
dings to discern semantic relations.

4.2. Results
Three factors are considered in our evaluations:
tasks, sentence embeddings, and dimensions. Re-
sults for the SoTA simcse sentence embeddings
are shown in Figure 1 (Other models are shown
in Appendix). Overall, PCA reports good perfor-
mance with a smaller number of dimensions across
tasks and sentence embeddings. In particular, PCA
reduces dimensionality by almost 50% without in-
curring a significant loss in task performance. Sur-
prisingly, when the dimensionality is greater than
150, PCA even performs better than the original
sentence embeddings in STS-B.

SVD’s performance is similar to PCA in TREC,
but SVD underperforms PCA for mpnet and simcse
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Method Training Time (s) Inference time (s)
PCA 2.08 0.0049
KPCA 37.98 0.7883
SVD 2.57 0.0089
Autoencoder 101.16 0.1479
GRP 0.03 0.0080

Table 1: Training and inference times (wall-clock)
for the different dimensionality reduction methods
measured on the test set of STS-B under the induc-
tive setting, with all-mpnet-base-v2 reduced to 300
dimensions.

on STS-B. KPCA has comparable performance
to PCA in TREC and STS-B with simcse. How-
ever, KPCA performs poorly in TREC and SICK-E
with mpnet. The number of elements in the ker-
nel matrix grows quadratically with the number of
training instances. In particular, we observed that
the kernel matrix does not always become positive
definite due to the noise in the sentence embed-
dings, resulting in negative eigenvalues. Although
it is possible to overcome this instability of the ker-
nel matrix to an extent by applying small random
perturbation prior to approximate eigenvalue de-
composition (Halko et al., 2010), it still affects the
performance of KPCA.

GRP never outperforms the original sentence em-
beddings in any task with simcse. Its performance
is identical in both inductive and transductive set-
tings because GRP does not learn the projection
from the data. The performance of the Autoen-
coder with a single layer is unstable across differ-
ent dimensionalities, compared to other methods,
especially in TREC and SICK-E. Overall, the trans-
ductive setting is superior to the inductive setting
due to its test data awareness.

We see that for some tasks (e.g. simcse and
mpnet on STS-B, roberta on TREC, roberta and
xlm-r on SICK-E) the performance increases when
dimensions have been reduced. Such trends have
been previously observed when SVD was used
to obtain lower dimensional embeddings from co-
occurrence-based word embeddings (Deerwester
et al., 1990; Turney, 2005; Duc et al., 2010). Co-
occurrences between word embeddings tend to be
sparse, and applying SVD collapses dimensions
that are similar, thereby creating dense word em-
beddings that produce non-zero cosine similarity
scores. However, this does not explain the behavior
observed with dense sentence embeddings used
in our experiments. Although further investigations
are required as the trend is observed with specific
sentence encoders and on some datasets only, we
believe this is due to a form of noise reduction due
to PCA.

Table 1 compares the training and inference
times for the dimensionality reduction methods

measured on the test data from STS-B. We re-
duce sentence embeddings produced by mpnet
from 768 to 300 dimensions, selected according to
Figure 1, where most methods converge at. GRP
does not use training data to learn the projection,
hence reports the lowest training time among all
methods.

On the other hand, KPCA reports the lowest infer-
ence time. Indeed, all PCA, SVD and GRP can be
seen as multiplying a projection matrix onto the sen-
tence embeddings corresponding to the test sen-
tences to reduce the output dimensionality. This
operation can be naively parallelised via vectori-
sation, which results in extremely fast and compa-
rable inference times for those methods. On the
other hand, Autoencoders and KPCA are both slow
to train and infer with. Autoencoders are trained
with mini-batch backpropagation and require multi-
ple iterations to converge. Moreover, training and
inference times of autoencoders further increase
with the number of hidden layers. KPCA must first
compute the kernel matrix, which requires all pair-
wise inner products to be computed for the training
instances, resulting in increased training times.

5. Conclusion

We evaluated unsupervised dimensionality reduc-
tion methods for pre-trained sentence embeddings
using multiple NLP tasks and benchmarks under
transductive and inductive settings. The experi-
mental results show that PCA performs consistently
well across encoders and tasks. We hope our find-
ings will encourage the use of sentence encoders
in memory/compute-constrained applications and
devices.

6. Limitations

In this paper, we considered the problem of
reducing the dimensionality of sentence em-
beddings computed from PLMs. All PLMs
we considered were trained specifically on
the English language, with the exception of
paraphrase-xlm-r-multilingual-v1 , which is a
multilingual sentence embedding model. However,
all benchmark datasets that we used for evaluations
(i.e. STS-B, TREC and SICK-E) cover only English,
which is a morphologically limited language. There-
fore, whether the findings reported in this paper
scale to sentence embeddings for languages other
than English remains an open question. Never-
theless, we note that all dimensionality reduction
methods considered in this paper are unsupervised
and hence do not use any labelled data for a par-
ticular task nor a language.

Although we focused on unsupervised dimen-
sionality reduction methods, which can be applied
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as a post-processing stage in this paper, as we al-
ready noted in §2 there are other methods for learn-
ing models that produce lower-dimensional sen-
tence embeddings such as supervised dimension-
ality reduction methods and knowledge distillation-
based methods. Conducting a comparison against
all such methods is beyond the scope of this short
paper and is deferred to future work. On the other
hand, our experimental results show for the first
time in published literature that even with simple un-
supervised dimensionality reduction methods such
as PCA one can obtain surprisingly accurate lower-
dimensional sentence embeddings.

7. Ethics and Broader Impact

All datasets we used in our evaluations are col-
lected, annotated and made publicly available in
prior work on evaluating sentence embeddings. In
particular, we have not collected nor annotated any
data during this project. However, it has been
reported that unfair social biases are found in
STS (Rudinger et al., 2017; Webster et al., 2021)
and NLI (Dev et al., 2019) datasets such as gender
and racial biases. It is possible that such biases
are reflected in our evaluations.

We use a broad range of pretrained sentence
embedding models as inputs in this work. Unfortu-
nately, it has been reported that sentence encoders
have unfair social biases (May et al., 2019; Kurita
et al., 2019; Kaneko et al., 2022). It remains un-
clear how such social biases are affected by the
dimensionality reduction methods we evaluate in
this paper. Although there has been prior work on
evaluating social biases in text embeddings, to the
best knowledge of ours, no work has evaluated the
effect of dimensionality reduction in social biases.
Therefore, we consider it to be an important task to
evaluate the effect on social biases due to dimen-
sionality reduction before the methods we consider
in this paper are used widely in downstream NLP
tasks that require compressed sentence embed-
dings.
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Appendix

A. Dimensionality Reduction
Methods

A.1. Truncated SVD
Singular value decomposition (SVD) is a matrix
factorization method that finds a lower-rank ap-
proximation to the original matrix by minimizing the
squared Frobenious norm between the original ma-
trix and its low-rank factorization. SVD generalizes
the eigenvalue decomposition of square matrices
to rectangular matrices. Specifically, given a matrix
X(∈ Rm×n) where m is the number of observations
and n is the number of features, SVD decomposes
it into the product of three matrices as given by (1).

X = UΣV∗ (1)

Here, U is an m ×m unitary matrix (columns are
known as left singular vectors), Σ is an m×n diag-
onal matrix (diagonal values are known as singular
values), V is an n× n unitary matrix, and V∗ is the
conjugate transpose of V (rows are known as right
singular vectors). To obtain a lower-dimensional
approximation, suppose the projection dimension is
selected as k (k ≤ n) and the first k columns of V∗

of the training vector space are retained as a n× k
matrix Vk, known as the projection matrix. The tar-
get vector space of the original m× n matrix X will
be projected as XVk The final dimensionality then
becomes m× k. For each sample, dimensionality
is reduced to k.

A.2. PCA
Principal component analysis (PCA) is a process
of projecting data into a new basis, by comput-
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ing the principal components. PCA is an unsuper-
vised orthogonal statistical technique where the
interactions between features can be extracted by
computing the covariance matrix of the original
data. Specifically, suppose an m × n matrix X
is represented by the original points where m is
the number of observations and n is the number of
features. PCA first standardizes X. Suppose the
target projection dimension is k (k ≤ n). The nor-
malised largest k eigenvectors of the covariance
matrix (XXT) are chosen to form the new axes,
forming a n× k vector space U. The correspond-
ing eigenvalues are used to order the eigenvectors.
The variance of the projected data in the chosen
direction is maximised to preserve the diversity of
data in each dimension. This is, the information
structure in the data is retained to the maximum
extent. The target vector space of the original m×n
matrix X will be projected as

XU (2)

The final dimensionality then becomes m× k.

A.3. Kernel PCA
Kernel principal component analysis (KPCA) is a
non-linear dimensionality reduction method, which
is an extension of PCA. Since PCA is limited to lin-
ear projections, KPCA uses kernel functions to deal
with non-linear data and make it linearly separable
(Anowar et al., 2021). KPCA works by first project-
ing original data to higher-dimensional space with
kernel functions such as Polynomial and Sigmoid
kernels. Specifically, suppose an m× n matrix X
is represented by the original points. Suppose the
target projection dimension is k (k ≤ n). KPCA
maps X into a higher feature space by function
Φ : Rn → Rd (d > n), where Φ makes data linearly
separable. Then a kernel matrix is generated

K = Φ(X)TΦ(X).

After centering the kernel matrix, eigendecompo-
sition is utilized to compute the eigenvectors and
eigenvalues like PCA. Procedures of PCA is thus
applied in the following calculation to reduce the
sample dimension to k (k < n).

A.4. Gaussian random projection
Gaussian Random Projection is a technique used
to reduce the dimensions by projecting the orig-
inal high-dimensional input space using a ran-
domly generated matrix. The core idea be-
hind random projection is Johnson-Lindenstrauss
lemma, which states that distances between points
can be nearly preserved when embedding high-
dimensional space into a much lower-dimensional
space. Specifically, suppose the original dataset

is defined as a m × n matrix X. Suppose the tar-
get projection dimension is k (k ≤ n). To obtain a
lower-dimensional projection of the input data, first
a set of k-dimensional normally distributed random
vectors is generated. Then the projection matrix
n× k matrix R is produced by stacking those vec-
tors. Finally, the original matrix m× n matrix X will
be projected as in (3).

XR (3)

The final dimensionality then becomes m× k.

A.5. Autoencoders
Autoencoders can be seen as a non-linear version
of PCA, where an encoder network first projects
the inputs to a (possibly lower-dimensional) space.
Next, some non-linear function is applied elemen-
twise on the encoded input. Finally, a decoder
network attempts to reconstruct the input. The en-
coder and decoder network parameters are jointly
learned such that the reconstruction loss (e.g. mea-
sured by the squared ℓ2 distance between the input
and its corresponding reconstruction) is minimized.
To compress the input, we can constrain the dimen-
sionality of the hidden layer (Wang et al., 2016) to
be smaller than the input dimensionality.

B. Sentence Encoders

SentenceTransformers (Reimers and Gurevych,
2019b) is a Python framework to embed sen-
tences with state-of-the-art models. Spcific sen-
tence encoders we use are all-mpnet-base-v2
(Song et al., 2020), msmarco-roberta-base-v2
(Reimers and Gurevych, 2019b), paraphrase-xlm-
r-multilingual-v1 (Conneau et al., 2020), stsb-bert-
base (Reimers and Gurevych, 2019b) and stsb-
bert-large (Reimers and Gurevych, 2019b). Addi-
tionally, all-mpnet-base-v2 is fine-tuned on a sen-
tence pairs dataset, based on microsoft/mpnet-
base model (Song et al., 2020). stsb-bert-base and
stsb-bert-large are fine-tuned on STS-B dataset,
based on BERT (Devlin et al., 2018). msmarco-
roberta-base-v2 is fine-tuned on Microsoft Machine
Reading Comprehension (MS MARCO) dataset
(Nguyen et al., 2016), based on RoBERTa (Liu et al.,
2019). Princeton-NLP provides a Python-version
sentence encoder sup-simcse-roberta-large (Gao
et al., 2021b).

C. Experiment Results for Sentence
Encoders

PCA outperforms uncompressed embeddings for
some sentence encoders such as xlm-r on TREC.
SVD performs comparably to PCA in most cases.
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Figure 2: Spearman correlation coefficients on STS-B vs. the dimensionality of the sentence embeddings
produced by applying different dimensionality reduction methods. Sentence embeddings are created
using pre-trained stsb-bert-base (uppermost), stsb-bert-large (supper-middle), all-mpnet-base-v2
(lower-middle) and sup-simcse-roberta-large (lowermost) models. Results for the transductive and
inductive settings are shown respectively on the left and right.
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Figure 3: Classification accuracy on TREC vs. the dimensionality of the sentence embeddings
produced by applying different dimensionality reduction methods. Sentence embeddings are cre-
ated using pre-trained all-mpnet-base-v2 (uppermost), msmarco-roberta-base-v2 (supper-middle),
paraphrase-xlm-r-multilingual-v1 (lower-middle) and sup-simcse-roberta-large (lowermost) mod-
els. Results for the transductive and inductive settings are shown respectively on the left and right.
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Figure 4: Accuracy on SICK-E vs. the dimensionality of the sentence embeddings pro-
duced by applying different dimensionality reduction methods. Sentence embeddings are cre-
ated using pre-trained all-mpnet-base-v2 (uppermost), msmarco-roberta-base-v2 (supper-middle),
paraphrase-xlm-r-multilingual-v1 (lower-middle) and sup-simcse-roberta-large (lowermost) mod-
els. Results for the transductive and inductive settings are shown respectively on the left and right.
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However, SVD improves accuracy for both trans-
ductive and inductive settings for xlm-r on SICK-E.
Meanwhile, PCA shows poor performance in the
transductive setting in this case compared to the
remainder of the methods.

KPCA shows varying levels of performance for
different sentence encoders on different tasks.
KPCA performs similarly to PCA in some situations,
especially for mpnet and simcse on STS-B. KPCA
reports excellent performance for some sentence
encoders such as roberta on TREC and SICK-E
and xlm-r on SICK-E, by even outperforming the
original uncompressed embeddings.

GRP reports suboptimal performance in many
settings. In particular, mpnet on STS-B, GRP pre-
serves much information in the original embed-
dings without a significant loss for dimensionalities
over 200, but shows a much lower performance
than other methods. However, its performance on
roberta and xlm-r for SICK-E is noteworthy.

Autoencoder gives relatively poor performance
in many cases, especially for sentence encoders
simcse, sbert-b, sbert-l and mpnet. Additionally,
autoencoder has the most expensive train and in-
fer costs among all the dimensionality reduction
compared in this paper.
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