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Abstract
In Grammatical Error Correction (GEC), it is crucial to ensure the user’s comprehension of a reason for correction.
Existing studies have offered indirect explaination for corrections, such as tokens, examples, and clues, but do
not explicitly explain the reasons. While a lot of researches have proposed to employ Large Language Models
(LLMs) for generating direct natural language explanations across a range of tasks, GEC currently lacks such a
method. Generating explanations for corrections necessitates the alignment of input and output tokens, identification
of corrected spans, and then generation of explanations corresponding to those identified points. However, it is
difficult for LLMs to achieve such a complex task to generate explanations. In this study, we introduce controlled
generation with Prompt Insertion (PI), a method that enables LLMs to provide explanations for corrections in natural
language. In PI, LLMs first correct the input text, and then we automatically extract the corrected spans based on
the rules. Subsequently, we incorporate the spans into the prompt and insert it into the generation process, with
an aim to generate explanations for the corrected spans. We also create an Explainable GEC (XGEC) dataset of
correction reasons by annotating NUCLE, CoNLL2013, and CoNLL2014.Although generated texts from GPT-3.5
and ChatGPT using original prompts cannot cover all the corrected spans, our proposed method can steer LLMs to
explicitly provide explanations for every corrected span. Moreover, this enhancement boosts the model’s performance.
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1. Introduction

Grammatical Error Correction (GEC) is the task of
correcting grammatical errors in a text. In GEC,
various methods have been proposed from a wide
range of perspectives, including correction per-
formance (Grundkiewicz and Junczys-Dowmunt,
2019; Chollampatt et al., 2019; Omelianchuk et al.,
2020; Kaneko et al., 2020; Qorib et al., 2022), con-
trolling (Hotate et al., 2019; Yang et al., 2022; Loem
et al., 2023), diversity (Xie et al., 2018; Hotate et al.,
2020; Han and Ng, 2021), and efficiency (Malmi
et al., 2019; Chen et al., 2020). It is also important
in GEC for the model to provide explanations that
allow users to understand the reasons behind the
corrections. Improving explainability leads to a bet-
ter judgment of whether the correction reflects the
intended result, learning of grammatical knowledge,
and overall enhancement of GEC systems.

Kaneko et al. (2022b) introduced a method of
presenting the retrieved examples as the basis for
correction, in contrast to a method of retrieving
data similar to the correction target from the train-
ing data set and using it for prediction. Fei et al.
(2023) proposed a method that presents the token
positions that are the basis of errors and error types,
and showed that they are useful for learners. Na-
gata (2019) proposed the task of generating useful
hints and feedback for language learning on essays
written by language learners. This task does not
necessarily generate a correction result or reason,

because it is not intended for correction. Since
these existing studies do not directly explain the
reason for the correction, the user must infer the
reason from the system output.

Large Language Models (LLMs) such as Chat-
GPT (OpenAI, 2023) and GPT-3.5 (Brown et al.,
2020) have advanced language capabilities and
can explain the inference reasons in natural lan-
guage in various tasks (Wei et al., 2022; Wiegreffe
et al., 2022; Kaneko et al., 2023b). With natural lan-
guage, the model can directly explain the details of
the inference reasons to the user. LLMs are also ef-
fective in GEC, achieving state-of-the-art in both un-
supervised (Loem et al., 2023) and supervised set-
tings (Kaneko and Okazaki, 2023). Explicability in
GEC first requires the alignment of input and output
tokens and identifies all error and correction pairs.
Then, it is necessary to generate an explanation
for each of the extracted pairs. However, it is hard
to control the generation of to LLMs with prompts
in a specified format for GEC. Fang et al. (2023)
showed that ChatGPT improves performance by us-
ing natural language to generate step-by-step error
detection and correction processes for each span.
On the other hand, they found that it is difficult for
ChatGPT to generate step-by-step according to the
specified format with simple prompt instructions.
Loem et al. (2023) showed that prompting did not
contribute significantly to the control of correction
style for GPT-3.5.

In this study, we introduce a method to explain



Figure 1: How to generate an explanation of the proposed method PI.

the reason for correction in natural language by a
controlled generation with Prompt Insertion (PI). As
shown in Figure 1, we guide LLMs to the desired for-
mat output by inserting prompts during inference.
First, LLM corrects grammatical errors in the in-
put text. Then, we automatically align the error
and corrected spans from the input and output text
using rules and extract error-correction pairs. By
inserting these error-correction pairs as additional
prompts, we explicitly control the LLM’s explana-
tion of the reasons for all pairs. Furthermore, we
created an Explainable GEC (XGEC) dataset for ex-
plaining correction reasons in natural language by
annotating NUCLE, CoNLL2013, and CoNLL2014
datasets (Dahlmeier et al., 2013; Ng et al., 2013,
2014).

In our experiments on GPT-3.5 and ChatGPT,
we found that the original prompt-based generation
resulted in pair omissions and ambiguity as to which
pair the explanation was for. On the other hand, the
control of generation by PI can explicitly control the
LLM to generate explanations for all the corrections,
which contributes to the performance improvement
of the explanation of correction reasons.

2. Generate Natural Language
Explanations with PI

For a GEC system to be valuable for learners, it
is essential to have natural language explanations
that are precisely aligned with all corrected spans.
Existing methods generate explanations from the
input in a single step (Wei et al., 2022; Wiegreffe
et al., 2022; Chen et al., 2023; Kaneko et al., 2023b).
However, addressing this complex task in such way
may prove challenging. Our method tackle this
challenge by inserting prompts of edits into gener-
ation process, thereby explicitly guiding the LLM to
generate explanations for all corrections.

Specifically, the LLM receives the instruction to
rewrite the input text (e.g. “What is the difference
between genetic disorder and other disorders .”)
into grammatically correct text (e.g. “What is the dif-
ference between genetic disorders and other disor-
ders ?”) and provide explanations for the performed
corrections. We compute the token alignment be-

tween the input and the corrected output text, which
allows us to extract the edits, such as (“disorder” →
“disorders”) or (“.” → “?”). The extracted edits are
consecutively provided to the LLM, prompting the
LLM to generate an explanation for each edit. To
make it easier to distinguish each edit, we assign
numerical identifiers to edits, such as (“1. disorder
→ disorders:”) or (“2. . → ?:”).

3. Creating XGEC Dataset

The XGEC dataset includes incorrect texts, correct
texts, and explanations for each edit. We annotated
explanations for the original edits in existing GEC
datasets. We examine the performance of LLMs
with few-shot learning to create training, develop-
ment, and test datasets.

We adopted NUCLE (Dahlmeier et al., 2013),
CoNLL2013 (Ng et al., 2013), and CoNLL2014 (Ng
et al., 2014) for XGEC dataset. NUCLE and
CoNLL2013 contain only one correct text per in-
correct text. We randomly selected 362 correct
texts and annotated explanations for them. On the
other hand, CoNLL2014 contains multiple correct
texts per incorrect text because it is commonly used
to evaluate GEC models. Specifically, CoNLL2014
consists of a and b datasets, which were created
by different annotators. To reduce the number of
test instances with low annotator agreement on the
editing results, we selected edits that are regarded
as appropriate by most humans. CoNNL2014 also
includes additional 8 annotations (Bryant and Ng,
2015), bringing the total count to 10 annotations.
We annotated explanations only for those corrected
spans that exhibited an agreement of 7 or higher
out of 10 within CoNLL2014 a and b, resulting in a
total of 444 correct texts.

We assigned two native English speakers1 for an-
notating explanations for the edits. Annotators were
provided with incorrect texts, correct texts, and the
corresponding edits. They were tasked with writing
an explanation for each edit in a free-writing format.
We provided 10 example explanations that were
not included in the annotation dataset, serving as

1We compensated each annotator with a payment of
$4 per explanation.



XGECa XGECb
Precision Recall F1 Precision Recall F1

ChatGPT
Post w/ PI 83.2 85.5 84.3 83.9 84.5 84.2
Post w/o PI 62.1 79.6 70.0 62.6 78.2 69.6
Pre w/o PI 60.9 75.2 68.1 61.1 74.4 67.7

GPT-3.5
Post w/ IP 81.2 83.8 82.4 82.0 83.0 82.5
Post w/o IP 61.2 79.4 69.1 61.8 78.1 69.0
Pre w/o IP 59.9 75.6 67.7 60.7 75.5 68.1

Table 1: The BERTScore of GPT-3.5 and ChatGPT in generating explanations with and without PI on the
XGEC test datasets.

references for the annotators. For both NUCLE and
CoNLL2013, we devided dataset into two parts and
assigned one annotator for each. For CoNLL2014,
two annotators write one explanation each. In total,
we obtained 888 texts.

4. Experiment

4.1. Setting

We used the following text as the instruction: “Cor-
rect the input text grammatically and explain the
reason for each correction. If the input text is gram-
matically correct, only the input text should be gen-
erated as is.”. We used text-davinci-003 for
GPT-3.5 and gpt-3.5-turbo-16k for ChatGPT
in OpenAI API2. The number of examples for few-
shot is 16. The examples contain input texts, cor-
rect texts, edits, and explanations. We used the
ERRANT (Felice et al., 2016; Bryant et al., 2017)3

as the token alignment. We automatically evalu-
ated the performance to generate explanations with
the BERTScore (Zhang et al., 2019) of reference
text and output text on CoNLL2014.

We compare our method, which generates the ex-
planation text with PI after generating the corrected
text (Post w/ PI), with two baselines that generate
explanations without inserting edit prompts. The
first baseline generates the explanation text with-
out PI after generating the corrected text (Post w/o
PI). We demonstrate the effectiveness of explic-
itly providing edits and generating explanation text
through a comparison with Post w/o PI. The second
baseline generates explanation text before gener-
ating corrected text (Pre w/o PI). We compare Pre
w/o PI that generates edits and explanations step
by step before generating the entire corrected text,
like a chain of thought (Wei et al., 2022), with a
model that generates explanations after the entire
corrected text. This demonstrates the effectiveness

2https://platform.openai.com/docs/
models/overview

3https://github.com/chrisjbryant/
errant

Validity Coverage

ChatGPT
Post w/ PI 1.5 2.0
Post w/o PI 1.2 1.4
Pre w/o PI 1.1 0.9

GPT-3.5
Post w/ PI 1.4 2.0
Post w/o PI 1.1 1.5
Pre w/o PI 1.1 1.0

Table 2: Human evaluations of GPT-3.5 and Chat-
GPT with and without PI on the XGEC test dataset.

of generating explanations after correction.4

4.2. The Performance of Generating
Explanations

Table 1 shows precision, recall, and F1 scores with
BERTScore of GPT-3.5 and ChatGPT in generating
explanations with and without PI on XGECa and
XGECb datasets. The scores of the GPT-3.5 and
ChatGPT with PI are better than the models without
PI in all scores on both datasets. The performance
improvement is believed to result from enhanced
coverage of edits included in the explanations gen-
erated by the PI. Moreover, it can be seen from the
results of Post w/o PI and Pre w/o PI that generat-
ing explanations after correction is more effective
than generating them before correction.

5. Analysis

5.1. Human Evaluation
We examine the quality of LLM-generated explana-
tions by human evaluation. We sample 200 expla-
nations from CoNLL2013, and four human annota-
tors evaluate those explanations from validity and
coverage perspectives. The validity perspective
refers to the accuracy and usefulness of grammati-
cal information in LLM-generated explanations for

4The proposed method cannot be applied to the pro-
cess of generating explanations before correction, as
it requires edits extracted from correction to generate
explanations.

https://platform.openai.com/docs/models/overview
https://platform.openai.com/docs/models/overview
https://github.com/chrisjbryant/errant
https://github.com/chrisjbryant/errant


CoNLL2014 W&I JFLEG

ChatGPT

Pre Human 55.2 51.2 61.7
Post Human 54.8 51.5 61.5
Pre PI 54.9 51.7 61.5
Post PI 54.7 49.7 61.8
No explanation 52.3 40.1 55.3

GPT-3.5

Pre Human 54.0 44.2 57.8
Post Human 54.5 44.0 57.3
Pre PI 53.7 44.2 57.1
Post PI 54.1 39.9 57.1
No explanation 50.1 35.8 53.7

Table 3: The GEC performance of GPT-3.5 and ChatGPT when using explanation text as examples for
few-shot methods.

language learners. It is scored on three levels: 0 if
the explanation for more than half of corrections is
incorrect and unuseful, 1 if the explanation for more
than half of corrections is correct and useful but
not perfect, 2 if the explanation for all corrections is
perfect. The coverage perspective means that the
LLM-generated explanation mentions all grammati-
cal corrections. It is scored on three levels: 0 if the
explanation does not cover more than half of the
corrections, 1 if the explanation covers more than
half of the corrections but not all corrections, 2 if
the explanation covers all corrections. We evaluate
the methods by averaging the annotated scores for
validity and coverage, respectively.

Table 2 shows the results of validity and cover-
age scores from human annotators for GPT-3.5 and
ChatGPT, both with and without PI. Both the valid-
ity and coverage scores for GPT-3.5 and ChatGPT
using PI are better than those not using PI. The
PI makes it clear to LLM the corrections that need
to be explained, and allows for specific explana-
tions tied to each correction, improving the quality
of LLM’s explanations. The coverage scores show
that by explicitly instructing correction positions us-
ing the proposed method, LLM can generate expla-
nations that completely cover the edits. Moreover,
comparing the post-generating models and the pre-
generation model demonstrates that generating an
explanation before a correction has more negative
effects in terms of the coverage of edits than gen-
erating an explanation after a correction.

5.2. Impact of Explanation on GEC
performance

Providing explanations in addition to gold texts to
the LLM as few-shot examples improves perfor-
mance for tasks (Wei et al., 2022; Kaneko et al.,
2023b). We evaluate a model’s ability to generate
explanations by assessing their impact on GEC
performance using generated explanations as ex-
amples of few-shot. If the quality of the generated
explanation is high, the GEC performance will im-

prove to the same extent as with human-created
explanations. Conversely, if the quality is poor, the
performance will not be as good as with human-
created explanations. We randomly sample 8 in-
stances from the XGEC valid dataset to use as
few-shot examples. To include more generated ex-
planatory text for evaluation, we perform random
sampling for each instance in the test data to se-
lect few-shot examples. These examples consist
of human-written explanations and explanations
generated by the PI, inserted both before and af-
ter the corrected text, allowing us to compare their
effectiveness, respectively.

Table 3 displays the GEC performance of GPT-
3.5 and ChatGPT using explanatory texts as ex-
amples for few-shot learning in the CoNLL2014,
W&I, and JFLEG test datasets. Comparing the
results without explanations to the results with ex-
planations, it is evident that using explanations as
examples for few-shot learning improves GEC per-
formance. When comparing the results of human-
authored explanatory text and text generated by
the PI, both achieve nearly equivalent GEC per-
formance. This suggests that the explanatory text
generated by the PI is of the same quality as the
explanatory text authored by humans. Furthermore,
it can be observed that adding explanatory text be-
fore or after correction for few-shot learning has
little influence.

6. Conclusion

In this study, we introduce a method for generat-
ing comprehensive and high-quality explanatory
text in LLMs by explicitly instructing the edits. Ad-
ditionally, we have created the XGEC dataset for
explanatory text generation. The experimental re-
sults demonstrate that our approach, compared to
methods that do not explicitly provide edits to LLMs
for explanatory text generation, yields benefits in
both human evaluation and automated evaluation.
In future work, we plan to investigate the impact



of LLM-generated explanatory text on language
learners.

7. Ethical Considerations

We paid each annotator $4 per explanation, totaling
approximately $6,700 for the creation of the XGEC
dataset. Therefore, we provided an adequate wage
to the annotators.

While we do not foresee any ethical risks caused
by our research, LLMs not only exhibit biased li ke-
lihood based on surface-level information such as
words and sentence structure but also on informa-
tion like gender, religion, and race (Kaneko et al.,
2022a; Zhou et al., 2022; Kaneko et al., 2023a;
Anantaprayoon et al., 2023; Oba et al., 2024). For
instance, LLMs might assign a higher likelihood
to "She is a nurse" compared to "He is a nurse".
Reducing likelihood bias could potentially address
social bias in evaluators. However, it is worth noting
that this study does not investigate such aspects,
and this remains a task for future research.
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