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Abstract
Dense retrieval (DR) has become a mainstream approach to information seeking, where a system is required to
return relevant information to a user query. In real-life applications, typoed queries resulting from the users’ mistyping
words or phonetic typing errors exist widely in search behaviors. Current dense retrievers experience a significant
drop in retrieval effectiveness when they encounter typoed queries. Therefore, the search system requires the extra
introduction of spell-checkers to deal with typos and then applies the DR model to perform robust matching. Herein,
we argue that directly conducting the typos correction training would be beneficial to make an end-to-end retriever
against misspellings. To this end, we propose a novel approach that can facilitate the incorporation of the spelling
correction objective into the DR model using the encoder-decoder architecture. During typos correction training, we
also develop a prompt-based augmentation technique to enhance the DR space alignment of the typoed query and
its original query. Extensive experiments demonstrate that the effectiveness of our proposed end-to-end retriever
significantly outperforms existing typos-aware training approaches and sophisticated training advanced retrievers.
Our code is available at https://github.com/striver314/ToCoTR.
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1. Introduction

Dense retrieval has been widely applied in a va-
riety of applications, like web search (Mitra et al.,
2017), question-answering (Karpukhin et al., 2020;
Qu et al., 2021), and dialogue systems (Ji et al.,
2014). It relies on the excellent text representa-
tion capabilities of pre-trained language models
(PLMs) and learns dense representations to con-
struct the DR model that follows a dual-encoder
paradigm (Xiong et al., 2021; Karpukhin et al.,
2020). In this typical architecture, the retriever first
encodes queries and passages into a latent fixed-
dimensional embedding space using two separate
PLM-based encoders (e.g., BERT), then applies ap-
proximate nearest neighbor search (Johnson et al.,
2021; Xiong et al., 2021) to efficiently retrieve these
relevant passages given an input query.

In real-life search applications, typoed queries
are frequent resulting from users’ mistyping behav-
iors (Spink et al., 2001; Wilbur et al., 2006). Recent
studies have been discussed where the DR model
shows unexpectedly low effectiveness when con-
fronted with queries containing typos (Zhuang and
Zuccon, 2021, 2022; Sidiropoulos and Kanoulas,
2022; Chen et al., 2022). That is, even if the typos
occur in a random token of a query, there will be
a difference between the resulting typoed query
embedding and the corresponding original query
embedding, thus affecting the effectiveness of re-
trievers. As shown in Figure 1, typoed queries can

*Corresponding author

orig
inal

Ran
dIns

ert

Ran
dDe

lete

Ran
dSu

b

Swa
pNe

ighb
or

Swa
pAd

jace
nt

20.0

22.5

25.0

27.5

30.0

32.5

35.0

37.5

40.0

42.5

M
R
R
@
10

orig
inal

Ran
dIns

ert

Ran
dDe

lete

Ran
dSu

b

Swa
pNe

ighb
or

Swa
pAd

jace
nt

82

85

88

91

94

97

100

R
@
10
00

coCondenser SimLM

Figure 1: MRR@10 and R@1000 results on MS-
MARCO. These five typos are detailed in Section
4.2. A significant drop in effectiveness across dif-
ferent types of simulated typos on queries.

lead to a significant drop in retrieval effectiveness
even with these sophisticated training advanced re-
trievers like coCondenser (Gao and Callan, 2022)
and SimLM (Wang et al., 2023).

Considering those out-of-domain typoed queries,
the aforementioned works applied typos-aware
training strategies to build typo-robust retrievers.
Zhuang and Zuccon (2021) first investigated that
typos can confuse BERT-based encoders for re-
ranking and augmented the typoed queries into
training queries, ensuring a mix of queries without
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and with typos included in training queries. Later
works use either contrastive learning or information
distillation and alignment to keep the DR model
robust to queries with typos. For example, com-
bining data augmentation with contrastive learn-
ing to make the representation of typoed queries
close to their original queries in the latent space
(Sidiropoulos and Kanoulas, 2022), or utilizing dis-
tribution alignment mechanism to distill knowledge
from original queries into typoed queries (Zhuang
and Zuccon, 2022; Chen et al., 2022). These meth-
ods significantly improve the robustness of the DR
model on typoed queries by implicitly aligning la-
tent embedding, rather than directly conducting the
spelling correction. However, their effectiveness on
typoed queries is still lower than some sophisticated
training advanced retrievers, or those combinations
of utilizing advanced spell-checkers and DR retriev-
ers. (Zhuang and Zuccon, 2022). This means that
in the situation of queries with typos, the search
system still needs to utilize the two-stage solution
involving spell-checkers.

To build an end-to-end robust dense retriever, our
idea is to incorporate spelling correction into the
training pipeline of the standard DR model. In prac-
tice, spelling correction is formulated as a monolin-
gual translation task and treated with an encoder-
decoder based model (Junczys-Dowmunt et al.,
2018; Yuan et al., 2021). Most current DR models
have applied encoder-only PLMs as the backbone
encoders, which is incompatible with the general
architecture for spelling correction. On this basis,
the challenge is how to effectively incorporate the
spelling correction objective into the dual-encoder
DR model so that relevant passages can be re-
trieved given typoed queries.

Towards this end, we present a novel approach
to improve the robustness of dense text retrieval,
which incorporates Typos Correction training into
text-to-text transformer (T5) based Retrievers,
called ToCoTR. This approach builds upon recent
advances in T5 (Raffel et al., 2020) to learn text rep-
resentations for dense retrieval (Ni et al., 2022a,b).
The major contribution of ToCoTR is to provide an
integrated strategy for DR training coupled with ty-
pos correction training. During the training pipeline
of the DR, we additionally add typos correction train-
ing to achieve the alignment of misspelled words to
original words. Furthermore, we develop a prompt-
based augmentation technique to enhance the ty-
pos correction training and obtain a better repre-
sentation of the typoed queries.

Briefly, our main contributions are as follows:

• We explore different incorporating strategies to
conduct typos correction training. This estab-
lishes a feasible and effective approach that
explicitly incorporates typos correction training
into the training pipeline of dense retrieval.

• We propose a simple yet effective prompt-
based augmentation technique to enhance the
typos correction training. It adaptively realizes
the alignment of typoed words to correct words
and reduces the difference between typoed
query embedding and its corresponding cor-
rect query embedding.

• We conduct a comprehensive comparison
study to show the retrieval effectiveness of
ToCoTR on queries with typos across three
benchmark datasets.

2. Related Works

2.1. Robustness of Dense Retrievers
Traditional lexical matching methods or bag-of-
words models (e.g., BM25 and TF-IDF) cannot
solve these complex queries well due to the in-
capability of handling the term mismatch issue
(Karpukhin et al., 2020; Xiong et al., 2021). Con-
trastively, the dual-encoder DR model can solve
such problems by taking advantage of the powerful
semantic matching capabilities of PLMs, such as
BERT, RoBERTa, and ERNIE.

There are increasing concerns about the robust-
ness of the DR model to typoed queries. Zhuang
and Zuccon (2021) was the first study that shows
typos occur in queries can lead to a significant drop
in retrieval effectiveness and applies the data aug-
mentation strategy to address the issue. Sidiropou-
los and Kanoulas (2022) combined data augmenta-
tion with contrastive learning (CL) to bring the rep-
resentation of an original query close to its typoed
variations in the latent space while keeping it distant
from other distinct queries. Furtherly, Zhuang and
Zuccon (2022) provided insight into the DR model
is sensitive to typoed queries caused by the BERT
WordPiece tokenizer, and applied CharacterBERT
instead of standard BERT as the backbone en-
coders of DRs. In this work, they also introduced a
self-teaching (ST) strategy to reduce the difference
between the relevance score distribution obtained
from the typoed query and the relevance score dis-
tribution obtained from the corresponding original
query (i.e., query without typos). Similarly, RoDR
was proposed by Chen et al. (2022), which employs
the same formulations to maintain the relative po-
sitions of query-passage pairs in the DR space.
Meanwhile, hard negative mining was introduced
by RoDR to train the final retriever.

Apart from considering the above situation of
queries with typos, some works discuss the gen-
eralization ability of dense retrievers with different
techniques. Edizel et al. (2019) proposed a method
combining FastText with a supervised task to learn
misspelling patterns and obtained word embed-
dings that are resilient to misspellings. Sentence-
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T5 (Ni et al., 2022a) and GTR (Ni et al., 2022b) scale
up the model capacity while keeping the bottleneck
embedding size fixed. Notably, Sentence-T5 ex-
plores three architectures for extracting sentence
representations from T5-style models and demon-
strates that the sentence embedding capability of
the encoder-decoder architecture is a promising
technology. coCondenser (Gao and Callan, 2022)
encodes all the important information of the given
text to conduct robust matching in two-round re-
triever training manner. SimLM (Wang et al., 2023)
adapt the underlying dense encoders for retrieval
tasks with replaced language modeling objective in
pre-training architecture, which does not have skip
connections between encoder and decoder.

2.2. Spelling Correction Task

Spelling correction is the task of correcting spell
errors or misspellings of words in a given text. In
recent years, transformer-based spelling correction
approaches had become a dominant paradigm, in-
cluding sequence-to-edit (Seq2Edit) (Omelianchuk
et al., 2020; Gu et al., 2019; Awasthi et al., 2019)
and sequence-to-sequence (Seq2Seq) (Rothe
et al., 2021; Stahlberg and Kumar, 2021). Seq2Edit-
based approaches achieve correction by predict-
ing a sequence of edit operations, while Seq2Seq-
based approaches are able to condition the detec-
tion and correction of the input text as if it were text
generation. Considering the flexibility and effective-
ness of Seq2Seq-based methods, we would follow
the previous work and utilize the teacher forcing
negative log-likelihood loss to conduct typos cor-
rection training.

3. Incorporating Typos Correction
Training for T5 Retriever

In this section, we describe a novel approach for
incorporating typos correction training into the dual-
encoder dense retrieval (called ToCoTR).

3.1. T5 Dual-encoder Architecture

In order to conveniently facilitate typos correction
training, the backbone encoder of the DR model
is preferably an encoder-decoder architecture and
requires keeping the powerful representation capa-
bility. As it happened, encoder-decoder sentence
embedding models have proved to be a promising
architecture (Ni et al., 2022a).

Technically, we directly use the off-the-shelf pre-
trained T5-style model as the backbone encoder to
train the dense retrieval in a dual-encoder paradigm.
Compared with the encoder-only model, the T5-
style model does not place a special symbol (e.g.,

[CLS] in BERT) at the beginning of the text se-
quence. We follow prior work (Ni et al., 2022a)
and assume that the decoder generates the first
token prediction containing the semantics of the
entire input text sequence, so it is straightforward
to use the first token prediction of the decoder as
the representations of query or passage. The ar-
chitecture of the T5 dual-encoder is illustrated in
Figure 2.

Formally, let q denote a query and pi denote
passage from a large set D = {pi}mi=1 of m pas-
sages. Given a query, passage retrieval aims to
return a sorted list of the n most relevant passages
L = [p1, p2, ..., pn] according to the relevance score
of the retrieval model. In the phase of training
DR, we assume a set of binary positive correla-
tion judgments as supervised signals, denoted by
R =

〈
qi, p

+
i ,

{
p−i,1, p

−
i,2, ..., p

−
i,s

}〉
, where p+i denotes

the relevant passages and p−i denotes the irrele-
vant passages for query qi. To optimize the dense
retriever, the negative log-likelihood (NLL) loss is
applied as follows:

Lnll

(〈
qi, p

+
i ,

{
p−i,1, p

−
i,2, ..., p

−
i,s

}〉)
= − log esim(qi,p

+
i

)

esim(qi,p
+
i

)+
∑s

j=1 e
sim(qi,p

−
i,j)

(1)

3.2. Prompt-based Typos Correction
Training

To enable the ToCoTR to have the ability of textual
spelling correction and explicitly achieve the align-
ment of misspelled words to correct words in the
DR latent space, we introduce the prompt-based
typos correction training into the DR model training
pipeline. Figure 2 depicts the prompt-based typos
correction training framework. It consists of two
components:

• A prompt-based typos generation module that
simulates different misspelled sentences for
input samples at the token embedding layer.

• A typos correction training module that com-
putes sentence representations of each text
and optimizes the error correction objective.
During training, we use the average of decoder
outputs across all input tokens.

The spelling correction task is treated as a
Seq2Seq task. When given a source text X =
(x1, x2, ..., xt), we first pass it to the prompt-based
typos generation module, in which five genera-
tors (see Section 4.2 for details) are applied to
generate another variation Xtypo. After that, the
model takes Xtypo as input and outputs a target text
Y = (y1, y2, ..., ys). The task can be formulated as
a conditional generation problem by modeling and
maximizing the conditional probability P(Y | X).
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Figure 2: Illustration of the T5 dual-encoder architecture and the framework of prompt-based typos
correction training respectively. For prompt-based typos correction training, we use off-the-shelf pre-
trained models such as T5base. The symbols <h> and </h> denote the extra tokens from prompt-based
augmentation. The case is sourced MSMARCO corpus.

During typos generation, given a set of context
text C =

{
X1, X2, ..., X|C|

}
, typoed text Xtypo are

simulated based on the rule of injecting typos into
the source text. As follows, we first randomly select
80% of the texts from C to construct typoed texts,
and the remaining 20% are correct texts, i.e. texts
without conducting the typos simulation1. Then
for each selected source text Xk ∈ C, we choose
α |Xk| token positions at random to simulate typos,
where α denotes the proportion. If the t-th token is
chosen then use a randomly selected typos gener-
ator to inject the typos.

Additionally, we are inspired by Chan and Fan
(2019) and propose the prompt-based typos aug-
mentation technique to enhance the ability of align-
ment between typoed tokens and correct tokens.
Specifically, the prompt-based typos augmentation
technique is the optional solution, which adds sym-
bols <h> and </h> to each side of the typoed word
after it has been injected. This augmentation can
be briefly understood as the augmentation template
"<h> [X] </h>", where [X] is a placeholder to put
the misspelled word of the input text.

To allow the model to recover the typoed tokens
conditioned on texts with typos, bringing the token
embedding representation of the incorrect word
closer to the correct word. We use off-the-shelf
encoder-decoder based pre-trained models such
as T5base to initialize the model and then continue
training on typos simulation training data. Follow-
ing Cao et al. (2023), we adopt the teacher forc-
ing negative log-likelihood loss as the objective

1The sampling rate setting is consistent with the 80%
[MASK] tokens used for word replacement during masked
LM training.

and minimize the loss for a set of |C| text pairs{〈
Xtypo

k , Yk

〉}|C|
k=1

, as follows:

Ltoco = − log

|C|∑
k=1

(P(Yk | Xtypo
k ; θ)) (2)

where θ is the learning parameters of the model in
typos correction training.

3.3. Training Procedure
The training strategy of incorporating typos correc-
tion training into the DR model is an important factor
in methodology design. We propose two ways for
incorporating typos correction training:

• Joint training (joint). We jointly train the
model with the NLL loss Lnll and typos cor-
rection loss Ltoco in Ljoint = Lnll + βLtoco. β
is a hyper-parameter to balance two objectives.

• Typos correction training then DR transfer
(two-stage). We first train the spelling correc-
tion objective in a single T5-based model using
Ltoco, then train the dual-encoder retriever with
Lnll. The key is to initialize the backbone en-
coders of the DR model with the trained model
parameters after finishing the typos correction
training.

Besides typos correction training transfer, our
approach can also be incorporated with existing
training techniques to improve the robustness of
retrievers. Two direct techniques that do not intro-
duce extra training phrases are as follows:

Hard Negatives Mining. We directly employ the
open-sourced hard negatives with mined by Rock-
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etQAv2 (Ren et al., 2021) to optimize the retriever’s
representation in the training pipeline.

Coupled with Self-Teaching Training. The self-
teaching technique (Zhuang and Zuccon, 2022)
minimizes the KL-divergence between the passage
match relevance distribution obtained by the ty-
poed query qtypo and the distribution obtained from
the corresponding correct query q in the formula
LKL(sqtypo , sq) = sqtypo(qtypo, p) · log sqtypo (q

typo,p)

sq(q,p)
,

where sq(q, p) and sqtypo(qtypo, p) denote the nor-
malized similarity score of q and qtypo associated
with its passages respectively. During the retriever
training, the final loss function are L = Ljoint+LKL

for joint training, and L = Lnll + LKL for two-stage
training.

4. Experimental Setup

4.1. Datasets and Metrics
We adopt three public datasets in our experi-
ment: including MS MARCO v1 passage rank-
ing (MSMARCO) (Nguyen et al., 2016), the TREC
Deep Learning Track Passage Retrieval Task 2019
(TREC 2019) (Craswell et al., 2020), and ANTIQUE
(Hashemi et al., 2020; Penha et al., 2022). For mis-
spelled queries, the first two data are simulated
typoed queries, and the latter one is manually vali-
dated typoed queries. Table 1 shows the statistics
of the three datasets.

MSMARCO dataset contains a large number of
queries sampled from Bing search logs and anno-
tated with binary relevant passages in web docu-
ments. TREC 2019 dataset uses the same pas-
sages corpus as MSMARCO but differs in terms
of queries with four-level relevance annotations,
ranging from 0 (irrelevant) to 3 (perfectly relevant).
The shared data collection consists of 8.8 million
passages. These two aforementioned datasets will
be used to generate typoed queries via five typos
generators (repeat 10 times).

Besides, manually validated typoed queries re-
leased by Penha et al. (2022) are also used. AN-
TIQUE contains manual four-level relevance anno-
tations (from 1 to 4) and collects 2,626 non-factual
questions and 403,666 answers from a community
answering service. There are three released query
variations on misspellings2, which are used to eval-
uate the DR model in the zero-shot setting. The
average results of the three variations are reported
in the experiments.

Following previous work, we adopt the metrics
commonly used in each dataset for evaluation.
For TREC 2019, these Normalized Discounted

2NeighbCharSwap, QWERTYCharSub, Random-
CharSub are equivalent to SwapNeighbor, SwapAdja-
cent, RandSub respectively.

Dataset Train Dev Test Avg. q length
MSMARCO 400,782 6,980 6,837 6.10
TREC 2019§ - - 43 5.60

ANTIQUE 2,426 - 200 10.82

Table 1: Detailed statistics for the experimental
datasets, including the average length of queries.
Dataset marked with § indicates that only judged
queries are given.

Cumulative Gain at 10 (nDCG@10), Mean Re-
ciprocal Rank (MRR), and Mean Average Preci-
sion (MAP) are considered. For MSMARCO dev
queries, the MRR at 10 (MRR@10) and Recall
at top 1000 ranks (R@1000) to evaluate the per-
formance of passage retrieval. For the ANTIQUE
dataset, we follow RoDR (Chen et al., 2022) using
nDCG@10 and R@1000 metrics and follow the
data creators Hashemi et al. (2020) using MAP as
a recall-oriented metric. Considering that TREC
2019 and ANTIQUE are four-level relevance scores,
the first two levels are mapped as relevant and the
last two levels are mapped as irrelevant to calcu-
late binary metrics (e.g., MAP, MRR) and map the
labels as 0 to 3 to compute nDCG@10.

We employ ranx evaluation library (Bassani,
2022) to measure performance and conducted a
two-tailed paired t-test with Bonferroni correction
to measure the statistical significance (p < 0.05).

4.2. Typos Simulation
In this section, we introduce five typos generators
that simulated generated different misspelled typos.
The details are described below:

• Rand-(Insert, Delete, Sub): Randomly in-
serts, deletes, or substitutes a random charac-
ter within a randomly chosen word, e.g., typo
→ {typos, typ, type}.

• SwapNeighbor: Randomly swaps a character
with one of its neighbor characters, e.g., typo
→ tyop.

• SwapAdjacent: Randomly swaps a character
with one of its adjacent letter on the QWERTY
keyboard, e.g., typo → typp.

4.3. Methods for Comparison
To have a comprehensive comparison, we choose
as baselines the state-of-the-art methods that con-
sider both open-sourced retrievers and typos-aware
dense retrievers. The methods in our comparative
evaluation are the follows.

The open-sourced retrievers include the tradi-
tional sparse retriever BM25 (Robertson and Jones,
1976; Robertson and Zaragoza, 2009), and dense
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retrievers DPR (Karpukhin et al., 2020), Charac-
terBERT (Boukkouri et al., 2020), Sentence-T5
(Ni et al., 2022a), coCondenser (Gao and Callan,
2022), SimLM (Wang et al., 2023).

The typos-aware dense retrievers include
BERT+Aug (Zhuang and Zuccon, 2021),
BERT+Aug+CL (Sidiropoulos and Kanoulas,
2022), CharacterBERT+ST (Zhuang and Zuccon,
2022) and RoDR (Chen et al., 2022).

4.4. Implementation Details

Among all baselines, we use the Pyserini (Lin et al.,
2021) implementation to produce baseline BM25
results on all datasets. Since coCondenser and
SimLM do not report retrieval results on misspelled
queries, we use open-source retrievers to produce
the results. Besides, BERT+Aug+CL is our imple-
mentation because its code was not available when
we conducted this work. Other baselines can be
directly used in corresponding implementations for
comparison.

Our model training is based on the Tevatron DR
training toolkit (Gao et al., 2022) on a single NVIDIA
Tesla V100 GPU with 32G RAM. For the typos cor-
rection training of our model, we utilize the start
checkpoint t5-base3 to initialize the model param-
eters θ, and utilize the pre-processed passages
corpus of MSMARCO as the train data. We use
the open-source library TextAttack (Morris et al.,
2020) to simulate typos in the training phrase, and
the proportion of typos per input text α is set as 0.2
(see Figure 3).

For the DR model training, we use the AdamW
optimizer with a learning rate of 5e-5. The model is
trained up to 150,000 steps on a linear learning rate
schedule with a batch size of 8. The max query
length is 32, and the max passage length is 128.
The ratio of the positive to the hard negative is set
to 1:7. The 7 negative passages are randomly sam-
pled from the top 200 passages which are retrieved
by RocketQAv2 and in-batch negatives sampling
is applied to each training sample.

5. Results and Analysis

In this section, we first describe the comparing re-
sults, then compare ToCoTR with an alternative
two-stage search engine architecture that applies
different spell-checkers to correct spelling errors
before a query is retrieved. Finally, we present a
detailed analysis of ToCoTR, including an ablation
study.

3https://huggingface.co/t5-base

5.1. Main Results
The retrieval results on both queries without and
with typos are shown in Table 2. It can be observed
that:

Considering methods that do not deal with typos
in queries (runs a-f in Table 2) and their retrieval
effectiveness on queries without typos, all dense
retrievers outperform the BM25, which is consistent
with the conclusion of the previous study (Zhuang
and Zuccon, 2021). coCondenser and SimLM are
more significantly effective than DPR, Character-
BERT, and Sentence-T5 because they undergo so-
phisticated, computationally expensive, multi-stage
training and apply some training techniques such
as the gradient cache technique (Gao et al., 2021).

We also compare the results on queries without
typos between Sentence-T5 and ToCoTR, which
use the same start checkpoint (T5base) and the
same backbone encoder to encoder queries and
passages. The results show that ToCoTR achieves
higher effectiveness among three datasets. This
improvement may be due to the training strategy or
combination of training strategies used by ToCoTR.
We will discuss this in detail in Section 5.3.

Then turn our attention to the typos-aware dense
retrievers (runs g-k): these methods are trained
with exactly the same setting and the only differ-
ence is applied different typos-aware training strate-
gies. These results describe that, on queries with-
out typos, ToCoTR has better effectiveness across
different metrics and datasets, with the statistically
significant difference obtained on both MRR@10
and R@1000 for MSMARCO, and MAP for TREC
2019.

Next, we discuss the results of queries with ty-
pos among runs l-q in Table 2. All retrievers that
are not pertinently designed to tackle queries with
typos return results that are obviously lower than
their corresponding queries without typos (runs a-
f ). Oppositely, those dense retrievers trained using
typos-aware strategies (runs r-v) perform a smaller
average drop rate compared to the aforementioned
methods. Overall, among all methods confronting
queries with typos (runs l-v), the ToCoTR dramat-
ically outperforms the other methods and is sig-
nificantly different from almost all other methods,
including coCondenser and SimLM. This can fully
demonstrate the advantages of typos correction
training.

We further notice that both the coCondenser and
SimLM methods are competitive with other meth-
ods that conduct typos-aware training (rather than
explicit spelling correction) and are only lower than
the CharacterBERT+ST on both TREC 2019 and
MSMARCO datasets. These results show that so-
phisticated training mechanisms can also improve
the robustness of the DR model on queries with
typos. Similarly, it is expected that the adaptation
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Queries Methods PLMs TREC 2019 MSMARCO ANTIQUE
nDCG@10 MRR MAP MRR@10 R@1000 nDCG@10 MAP R@1000

w/o typos

a) BM25 (pyserini) - 50.6 70.4 30.1 18.7 85.7 23.7 15.9 46.1
b) DPR BERTbase 59.7 72.5 35.2 32.6 95.2 26.5 19.0 57.9
c) CharacterBERT CharacterBERT 61.6 78.5 33.0 32.1 94.8 25.4 17.9 55.2
d) Sentence-T5 T5base 64.3 82.4 36.4 32.1 95.9 30.0 22.1 61.8
e) coCondenser† Condenser 71.5 86.8 45.3 38.3 98.4 32.4‡ 24.4‡ 66.9‡

f ) SimLM† BERTbase 71.4 87.9 46.9 41.1‡ 98.7‡ - - -
g) BERT+Aug BERTbase 61.8 80.7 35.3 32.7 95.1 26.6 19.6 59.7
h) BERT+Aug+CL BERTbase 61.1 77.1 34.5 32.8 94.8 26.7 19.5 58.5
i) CharacterBERT+ST CharacterBERT 63.9 80.7 33.6 32.6 94.6 26.6 19.0 53.8
j) RoDR BERTbase 62.1 78.8 34.6 32.8 95.1 26.1 19.0 59.7
k) ToCoTR (two-stage) T5base 69.4 87.8 41.0‡ 34.4‡ 96.6‡ 28.6 20.1 60.5

w/ typos

l) BM25 (pyserini) - 25.9 35.3 15.0 9.5 61.1 16.9 11.3 38.0
m) DPR BERTbase 28.4 41.3 15.9 13.5 68.2 16.4 11.4 42.9
m) CharacterBERT CharacterBERT 35.9 53.5 18.9 16.0 72.2 17.2 12.4 42.7
o) Sentence-T5 T5base 40.5 56.4 21.8 18.5 80.6 20.8 15.0 52.3
p) coCondenser† Condenser 46.1 60.2 27.6 22.1 84.5‡ 24.5‡ 18.1‡ 56.2‡

q) SimLM† BERTbase 45.9 60.2 27.7 23.6‡ 83.8 - - -
r) BERT+Aug BERTbase 42.9 59.4 23.8 21.8 84.2 20.6 14.8 50.2
s) BERT+Aug+CL BERTbase 43.9 59.8 24.1 22.9 85.6 21.0 15.1 49.7
t) CharacterBERT+ST CharacterBERT 52.0 70.2 27.0 26.4 89.2 22.2 15.8 48.0
u) RoDR BERTbase 43.9 59.0 23.9 23.2 86.2 21.0 15.0 51.0
v) ToCoTR (two-stage) T5base 63.4‡ 83.5 36.6‡ 31.3‡ 94.6‡ 26.1‡ 18.6‡ 57.1‡

Table 2: Retrieval results for queries without typos and queries with typos, respectively. Results on queries
containing typos are averaged by repeating the typo simulation procedure 10 times on MSMARCO and
TREC 2019 (statistical significance computation from the first average) and averaged by three released
query variations on ANTIQUE (statistical significance computation from the NeighbCharSwap average).
Results with † are from our reproduction with open-source model checkpoints. The best result and the
second-best score are in bold and underlined font, respectively. We use ‡ indicate significant differences
at p-value < 0.05.

Methods w/o typos w/ typos
MRR@10 R@1000 MRR@10 R@1000

pyspellchecker → CharacterBERT 27.3 88.5 23.0 81.9
MS-Spellchecker → CharacterBERT 32.0 94.6 29.9 91.3
GG-Spellchecker → CharacterBERT 32.2 94.8 29.4 90.4
pyspellchecker → Sentence-T5 28.4 91.9 24.7 87.0
MS-Spellchecker → Sentence-T5 32.0 95.9 30.5 93.6
GG-Spellchecker → Sentence-T5 32.0 95.9 29.9 93.1
ToCoTR (two-stage) 34.4‡ 96.6‡ 31.3 94.6‡

Table 3: Comparison among ToCoTR and Charac-
terBERT, Sentence-T5 involving alternative three
spell-checkers on MSMARCO. Statistically signifi-
cant better than others at p-value< 0.05 are marked
with ‡.

of ToCoTR to the same training mechanisms of
coCondenser and SimLM would further improve
its effectiveness, including the situation of queries
without typos. We will confirm this hypothesis in
future work.

5.2. Comparison with the DR Model
involving Spell-checkers

In this part, we compare ToCoTR with a common
search engine architecture involving spell-checkers.
In this architecture, a spell-checker is used to de-
tect and correct typos in the pre-processing of
queries and then to conduct relevant passage re-
trieval. Some queries without typos may be in-
correctly detected and corrected, which is related

to the capability of the spell-checker. The previ-
ous study (Zhuang and Zuccon, 2022) highlighted
that the current state-of-the-art typos-aware train-
ing method returns lower effectiveness than the cor-
responding solution involving spell-checkers. Fur-
therly, we employ three spell checkers in combi-
nation with CharacterBERT and Sentence-T5 for
our experiments, including pyspellchecker4, which
is a rule-based spell-checking toolkit that relies on
dictionary-based rule sets, Microsoft Bing Spell
Check API5 (MS-Spellchecker), which utilizes ma-
chine learning and statistical machine translation
to provide accurate and contextual corrections, and
Google Search API6 (GG-Spellchecker), which has
been shown in previous research (Hagen et al.,
2017) to be possibly the most useful spell correc-
tions.

Table 3 compares ToCoTR with the pipelines of
three different spell-checkers in combination with
the CharacterBERT and Sentence-T5 dense re-
trieval models on MSMARCO. Clearly, the ToCoTR
retriever significantly outperforms all six combina-
tion solutions that involve spell-checkers, demon-
strating that the retriever benefits from our pro-

4https://github.com/barrust/pyspellchecker
5https://learn.microsoft.com/en-us/azure/cognitive-

services/bing-spell-check/overview
6https://developers.google.com/custom-

search/v1/introduction
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Methods w/o typos w/ typos
MRR@10 R@1000 MRR@10 R@1000

ToCoTR 34.4 96.6 31.3 94.6
w/o Hard Negative 33.5↓ 95.7↓ 29.8↓ 93.2↓

w/o Self-Teaching 34.1 97.0 27.3↓ 91.9 ↓

w/o Prompt 34.1 96.7 30.6↓ 94.3
w/o ToCo 33.9 96.6 28.7↓ 92.4↓

Table 4: The results of different variants of To-
CoTR retriever on MSMARCO. Statistically signifi-
cant drops at p-value < 0.05 are marked with ↓.

Methods w/o typos w/ typos
MRR@10 R@1000 MRR@10 R@1000

Two-stage 33.5‡ 95.7 29.8‡ 93.2‡

Joint 32.8 95.7 26.8 90.8

Table 5: The results of two different ways for incor-
porating typos correction training on MSMARCO.
The hyper-parameter β of balance Lnll and Ltoco

is set as 0.1 in joint training. Statistically significant
differences at p-value < 0.05 are marked with ‡.

posed prompt-based typos correction training strat-
egy, which has the capacity to implicitly correct
typos in queries and align the typoed word to the
correct word. This means that the end-to-end To-
CoTR retriever incorporating the typos correction
training is a promising approach.

5.3. Ablation Study
A detailed ablation study is conducted to demon-
strate the impact of the different training stages
in ToCoTR design. Specifically, we remove one
component at a time from the ToCoTR. First, we
name ToCoTR without the different components as
follows:

• w/o Hard Negative: ToCoTR without hard neg-
ative mining, which only apply BM25 hard neg-
atives to train retriever using Lnll, instead of us-
ing open-sourced hard negatives mined from
RocketQAv2.

• w/o Self-Teaching: ToCoTR without coupled
with self-teaching training, that is the final train-
ing loss does not include LKL during the train-
ing retrieval.

• w/o Prompt: ToCoTR without prompt-based
augmentation during typos correction training,
i.e. the misspelled words are not augmented
with the symbols <h> and </h>.

• w/o ToCo: ToCoTR without introducing the
typos correction training, which means that
the retriever is trained without using loss Ltoco.
This is equivalent to directly replacing the back-
bone encoders with the T5 model and then

0.0 0.2 0.4 0.6 0.8 1.0
Typos proportion per text α

28.0

29.5

31.0

32.5

34.0
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Figure 3: MRR@10 results of passage retrieval of
both queries with and without typos with different
typos proportion of per input text α in typos correc-
tion training on MSMARCO.

using the encoder-decoder first architecture to
train the retriever.

Results measured using MRR@10 and R@1000
on MSMARCO are shown in Table 4. Several ob-
servations from the results are worth highlighting:
(1) The contribution of the prompt-based augmenta-
tion technique (namely, w/o Prompt) is not strikingly
high, but it is still beneficial to the typoed queries
while keeping a statistically significant difference
on MRR@10. (2) Without typos correction training
(namely, w/o ToCo), the performance of ToCOTR
on both original and typoed queries is greatly af-
fected. (3) Hard negatives mining (namely, w/o
Hard Negative) and self-teaching strategy (namely,
w/o Self-Teaching) are also important in ToCoTR
since their removal leads to marked effectiveness
loss. Moreover, the adaption of hard negative min-
ing can demonstrate why advanced retrievers with
complex training can outperform typo-aware train-
ing retrievers such as BERT-Aug and RoDR, as
discussed in Section 5.1.

5.4. Analysis on Typos Correction
Training

In this section, we analyze the retrieval results by
incorporating the typos correction training in dif-
ferent training ways. Then we conduct a detailed
analysis of the injected typos proportion per input
text in typos correction training.

Joint or Two-stage? To examine the effect of ty-
pos correction training ways, we utilize the T5base

as the backbone encoders of dual-encoders cou-
pled with self-teaching training to train a retriever,
as described in Section 3.3. Table 5 shows the
performance drop on queries with typos in terms
of MRR@10 and R@1000 in the joint training way,
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indicating that the appropriate way of incorporat-
ing typos correction training into the DR model is
two-stage training. The reason is that since the
encoder-decoder first architecture only uses the
embedding of the first token as the whole sentence
representation, while spelling errors can occur any-
where in the sentence, utilizing the representation
of the first token for conducting typos correction
training is inadequate. Besides, this finding pro-
vides guidance to adapt typos correction training
to sophisticated training mechanisms like coCon-
denser and SimLM.

The Impact of the Number of Typos. During typos
correction training, we focus on the impact of the
number of injecting typos in individual input text. As
we described in the previous section, for each text,
randomly selecting words to be injected with typos
in different predetermined values (equivalent to the
hyperparameter α) to validate the contribution of
the typos correction training to train a robust DR
model. Figure 3 shows the impact of the number
of typos on both queries with and without typos.
Clearly, we can observe that the best MRR@10
metric is achieved for the typos proportion per input
text of 0.2.

6. Conclusion and Future Works

This paper has presented a novel approach to im-
prove the robustness of retrievers by incorporat-
ing typos correction training into the DR model
in a two-stage manner. To integrate the spelling
correction task, we incorporate the spelling cor-
rection objective into the training pipeline of the
dual-encoder DR model using encoder-decoder ar-
chitecture. We also implement a prompt-based
augmentation technique to enhance the typos cor-
rection training. Extensive results demonstrate the
effectiveness of ToCoTR, where the incorporation
of typos error correction training into dense retriev-
ers outperforms those with typos-aware training
retrievers, and even outperforms the combining so-
lutions involving advanced spell checkers for DR
models. This helps drive the use of end-to-end
dense retrievers in search engine systems.

For future work, we plan to integrate typos correc-
tion training with the multi-stage training process of
existing advanced retrievers to improve the retrieval
effect of DR models when these models encounter
misspelled texts. Further, we will also consider
training typos correction training in an encoder-only
architecture.

7. Limitations

One limitation of ToCoTR is that it cannot be used
in the common encoder-only architecture as the

backbone encoder for DRs, since the typos correc-
tion training is modeled as a Seq2Seq task with
an encoder-decoder architecture. Because of this,
the query latency of encoder-decoder retrievers is
higher than encoder-only retrievers (as shown in
Table 6, and the query latency on the GPU of To-
CoTR is one millisecond lower than that of DPR).
On the other hand, although the typos correction
training of ToCoTR is quite efficient on queries with
typos, it still requires extra computational costs to
conduct the typos correction training in a two-stage
manner.
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A. Latency analysis

API call Query encoding Index search
MS-Spellchecker 271.3ms - -
GG-Spellchecker⋆ 437.2ms - -
DPR - 0.2ms 226.1ms
CharacterBERT - 0.4ms 233.6ms
Sentence-T5 - 1.2ms 223.5ms
ToCoTR - 1.2ms 235.7ms

Table 6: Latency analysis for two spell-checker
APIs and four retrieval systems. We retrieve the
top 1000 results for MSMARCO dev queries with a
single thread and then average over all the queries.
The latency for two spell-checker API calls depends
on server load and is difficult to precisely measure.
For example, the latency of GG-spellchecker to call
the API to return the full web page (not only the
corrected queries) is marked ⋆.

B. Performance with Different Types
of Simulated Typos

Typoed Queries ToCoTR coCondenser SimLM
MRR@10 Recall@1000 MRR@10 Recall@1000 MRR@10 Recall@1000

w/o Typos 34.4 96.6 38.3 98.4 41.1 98.7
w/ Typos (Avg.) 31.2/-9.20% 94.5/-2.17% 22.4/-41.5% 84.9/-13.7% 23.9/-41.9% 84.2/-14.7%
RandInsert 32.4/-5.79% 95.5/-1.20% 22.9/-40.1% 85.5/-13.7% 23.8/-42.0% 84.2/-14.7%
RandDelete 30.6/-11.1% 94.5/-2.22% 22.7/-40.6% 86.2/-13.1% 24.7/-40.0% 86.0/-12.9%
RandSub 30.1/-12.3% 93.6/-3.17% 22.0/-40.6% 84.6/-12.4% 24.2/-41.1% 84.0/-14.9%
SwapNeighbor 32.1/-6.69% 95.1/-1.57% 21.6/-42.6% 83.5/-14.0% 22.9/-44.4% 82.5/-16.4%
SwapAdjacent 30.9/-10.1% 94.0/-2.68% 22.8/-43.7% 84.5/-15.1% 23.9/-42.0% 84.2/-14.7%

Table 7: Retrieval results on MSMARCO dev
queries among ToCoTR, coCondenser, and SimLM
concerning different types of simulated typos. Akin
to Zhuang and Zuccon (2021), the drop rate (loss
ratio in performance) on each misspelled query set
to the original query set (denoted as w/o Typos) is
also reported.
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