
LREC-COLING 2024, pages 16897–16906
20-25 May, 2024. © 2024 ELRA Language Resource Association: CC BY-NC 4.0

16897

Two Counterexamples to Tokenization and the Noiseless Channel

Marco Cognetta Vilém ZouharE Sangwhan Moon Naoaki Okazaki
Tokyo Institute of Technology, School of Computing
EETH Zurich, Department of Computer Science

cognetta.marco@gmail.com, vzouhar@ethz.ch, sangwhan@iki.fi, okazaki@c.titech.ac.jp

Abstract
In Tokenization and the Noiseless Channel (Zouhar et al., 2023a), Rényi efficiency is suggested as an intrinsic
mechanism for evaluating a tokenizer: for NLP tasks, the tokenizer which leads to the highest Rényi efficiency
of the unigram distribution should be chosen. The Rényi efficiency is thus treated as a predictor of downstream
performance (e.g., predicting BLEU for a machine translation task), without the expensive step of training multiple
models with different tokenizers. Although useful, the predictive power of this metric is not perfect, and the authors
note there are additional qualities of a good tokenization scheme that Rényi efficiency alone cannot capture.
We describe two variants of BPE tokenization which can arbitrarily increase Rényi efficiency while decreasing the
downstream model performance. These counterexamples expose cases where Rényi efficiency fails as an intrinsic
tokenization metric and thus give insight for building more accurate predictors.

Keywords: machine-translation, tokenization, byte-pair-encoding, evaluation

1. Introduction

The tokenizer choice strongly impacts the down-
stream NLP model performance (Domingo et al.,
2019). At the same time, it is difficult to select
the best one, because comparing two tokenizers
typically requires fully training a model on top of
each tokenizer, which can be prohibitively expen-
sive, taking days or weeks of compute times. This
motivates the search for an intrinsic evaluation of
tokenizers — finding easy-to-compute metrics that
can be evaluated using only the tokenized text and
which signal if the tokenization will be good for the
downstream task (see Figure 1).

In Tokenization and the Noiseless Channel,
Zouhar et al. (2023a) propose a new metric based
on a generalization of Shannon Entropy — Rényi
efficiency of the unigram distribution. This quantity
is slightly better correlated to downstream model
performance (BLEU score on a translation task)
than a percentile frequency metric, which they
adopted based on Gowda and May (2020). It is
also much better correlated than Shannon Entropy
(Shannon, 1948) and average sequence length.
The authors suggest a characteristic of good tok-
enizers: not only should a tokenizer contain few
rare tokens (tokens that appear infrequently in to-
kenized texts), but they should also not contain
many very high-frequency tokens. While they pro-
pose this metric for intrinsically evaluating tokeniz-
ers before training, they note that it does not fully
account for the relative performances of tokenizers
and leave the search for other metrics as an open
problem. This means there is some variance in the
performances of all possible tokenizers which the
Rényi efficiency does not capture.

In this work, we introduce two variants of BPE to-

text

tokenizer 1 tokenized
text 1

model
training perf. 1

score 1metric

tokenizer 2 tokenized
text 2

model
training perf. 2

score 2metric

Figure 1: The same model is trained on two differ-
ent tokenizations. We are looking for metric such
that, across multiple settings, score 1 > score 2 if
and only if performance 1 > performance 2.

kenizers for which we can explicitly increase Rényi
efficiency while degrading the downstream model
performance. This goes against the aforemen-
tioned hypothesis where high Rényi efficiency im-
plies better expected performance. We hope that
these examples will help spur more research into
where Rényi efficiency and other related metrics
accurately predict performance and where they fail.
Ultimately, these efforts are intended to create a
better predictor of downstream performance for
NLP tasks based on the tokenized text.

Structure:
2) Introduction to Byte-Pair Encoding.
3) Rényi efficiency, other metrics and their respec-

tive tokenization hypotheses.
4) Two families of counterexamples to the Rényi

efficiency tokenization hypothesis and proofs.
5) Empirical verification of counterexamples with

machine translation performance1.

1Code to reproduce all experiments:
github.com/mcognetta/TokenizationNoiselessCounterexamples

mailto:cognetta.marco@gmail.com
mailto:vzouhar@ethz.ch
mailto:sangwhan@iki.fi
mailto:okazaki@c.titech.ac.jp
https://github.com/mcognetta/TokenizationNoiselessCounterexamples

16898

2. Byte-Pair Encoding

Byte-Pair Encoding was proposed as a compres-
sion algorithm (Gage, 1994), repurposed in NLP
for machine translation (Sennrich et al., 2016),
and later formalized and bounded mathematically
(Zouhar et al., 2023b). The BPE algorithm has
two parts: (1) training, where the merges are con-
structed, and (2) tokenization, where the merges
are applied to new text. In this paper, we focus only
on the tokenization side and we use the standard
BPE training algorithm for all experiments.

BPE Training. A trained BPE tokenizer is a triplet
(,V,μ), where is a set of atomic characters,
V ⊂ + is the subword vocabulary, and μ ∈ V×V
is an ordered list of merges. The μ defines how
subwords combine to form new subwords. We use
the notation of APPLY([, b], t) to apply a merge
to a sequence – that is, to replace each instance of
consequent symbols b with b in the sequence.

See examples of notation:

 a, b, c, d, . . .

V a, the, cow, token, -ization, . . .

μ [t, h], [[t, h], e], . . .

APPLY([c, -o], c -o -w)→ co -w, . . .

We construct a BPE tokenizer using the standard
algorithm described by Gage (1994); Sennrich et al.
(2016); Zouhar et al. (2023b). In our notation, μ is
ordered by the order in which a merge was added
to the BPE vocabulary during construction. The
first element of μ is the first pair that merged during
BPE initialization, and we proceed in decreasing or-
der from there. To see how the merge sequence μ
is constructed. For completeness, the BPE training
algorithm is provided in Appendix A.

BPE Tokenization. We describe the standard
BPE tokenization procedure in Algorithm 1, which
serves as the baseline. The BPE tokenization al-
gorithm is applied independently on all words in
the corpus, and so Algorithm 1 describes an algo-
rithm that takes a single word (as a sequence of
characters from) as input along with the BPE to-
kenizer. We modify this algorithm and its inputs for
our experiments later. In words, the BPE tokeniza-
tion algorithm starts with a sequence of characters
and iteratively merges the first pair in μ, then the
second and ultimately the last.

3. Rényi Efficiency and Other Metrics

The performance-from-tokenization prediction task
can be formalized as finding a scalar metric m
over a sequence of tokens from V+ , therefore m :
V+ → R. The goal for this metric is to correlate with

Algorithm 1: Standard BPE tokenization
Inputs: word ∈ ∗, merges μ,

 ∪
⋃

[,b]∈μ{b} = V
Output: tokenized sequence t ∈ V∗

1: t← CHARACTERSEQUENCE()
2: for [, b] ∈ μ do
3: t← APPLY([, b], t)
4: end for
5: return t

some downstream performance, such as BLEU of
a machine translation system.
Baseline. The simplest metric, denoted C, is to
use the average number of tokens per line. The
hypothesis is that given the same vocabulary size,
if the tokenized text contains fewer tokens, then the
tokenization is likely better. In the following exam-
ple, the first tokenization is likely better because
the text is tokenized into fewer pieces.

C(the quick fox jump -ed) = 5
C(th -e br -own fox j -u -m -ped) = 9

With a large enough vocabulary size, one could
represent each word as a separate token. This
tokenization would obtain the lowest possible score
by C and be marked as the best one, even though
it would yield very poor downstream task results
because of the lack of generalization to unseen
words (Sennrich et al., 2016).

Percentile Frequency. For more nuanced met-
rics, we turn to the unigram distribution of the to-
kenized text, pV . For example pV(“the”) = 0.02.
Given the start and end percentiles γ1 and γ2, the
quantity is defined as:

Fγ1,γ2(V) =
∑

∈PERC.pV (γ1,γ2)

pV(), (1)

and the higher the sum, the better the tokenizer
should be (Gowda and May, 2020). We use
F0.03,0.83 based on (Zouhar et al., 2023a), which
performed a hyperparameter scan to determine the
percentiles which best correlated with downstream
performance.

Rényi Efficiency. Finally, we bring to attention
the Rényi entropy of the random variable WV dis-
tributed according to pV and its associated quantity,
Rényi efficiency:

Hα(WV) = lim
α′→α

1

1 − α′
log

�

∑

∈V
pV()α

′
�

(2)

Effα(WV) ≊
Hα(WV)

log |V |
(3)

16899

The higher the Rényi entropy, the more “bal-
anced” the unigram distribution is, meaning there
is a less pronounced difference between the fre-
quencies of the most common and least common
tokens. We use the Rényi efficiency instead of
Rényi entropy to normalize the effect of vocabulary
size. This works similarly with Shannon entropy
and Shannon efficiency (when α = 1). This met-
ric is found by Zouhar et al. (2023a) to correlate
the highest with the downstream performance on
a translation task.

4. Counterexamples

The Rényi Efficiency tokenization hypothesis states
that the higher the Rényi efficiency of the unigram
distribution, the better the downstream model per-
formance. To provide counterexamples, we want
to find tokenizers that increase the Rényi efficiency
while worsening the performance. We provide two
such counterexamples: RANDOM-DROP BPE and
DUPLICATE BPE. In the Appendix we will also in-
clude a naïve method which can arbitrarily lower
the Rényi efficiency of a tokenizer (by inflating V)
while not affecting the performance, thus also serv-
ing as a counterexample.

4.1. RANDOM-DROP BPE

Given a BPE tokenizer (,V,μ), we form a new
tokenizer by selecting integer hyperparameters
1 ≤ k ≤ N ≤ |V |. Then, we randomly select k
subwords from the top N most frequent subwords
in V (restricted to non-atomic subwords) to form
a set D. Setting N = |V | would allow any non-
atomic token to be a candidate for inclusion in D.
A RANDOM-DROP BPE tokenizer is then defined
as (,V,μ,D). The elements of D are marked
for decomposition via a function DEC. We omit the
parameterization of DEC on (,V,μ,D) for brevity.

DEC(z)=

¨

DEC() DEC(y), z = [, y] ∧ z ∈ D
z, otherwise (4)

Given a subword z ∈ D, DEC recursively undoes
merges, splitting tokens into their merge pairs, until
none of the tokens remaining in the sequence are
in D. This decomposition is applied after the regu-
lar BPE tokenization is complete. See an example
of the two-stage process in Figure 2. The RANDOM-
DROP BPE tokenizer inference is implemented by
replacing Line 5 of Algorithm 1 with:

return 〈DEC(t) | 1 ≤ ≤ |t|〉 (5)

This tokenizer modification is distinct from BPE-
Dropout regularization (Provilkov et al., 2020).
RANDOM-DROP BPE is entirely deterministic (the
set D is selected after vocabulary construction and

is never changed), and so tokenizing a sequence
multiple times will always result in the same se-
quence. Also, the decomposition happens after
the standard BPE tokenization. In contrast, BPE-
Dropout is performed during tokenization at each
iteration of the merging algorithm by selectively
blocking merges. Given the same input, BPE-
Dropout can produce different final tokenizations.

Figure 2: An example of RANDOM-DROP BPE with
D = {ENCOD, COD}. The tokenization process is
two-staged: (1) a regular BPE tokenizer is used
to produce a tokenization, and (2) RANDOM-DROP
BPE recursively decomposes subwords that ap-
pear in the set D (first ENCOD, and then COD). Since
ING is not in D, it is unchanged during the decom-
position step. The final tokenized text is EN -CO
-D -ING. If D was just {ENCOD}, then the final tok-
enization would have been EN -COD -ING, and if it
was just {COD}, the final tokenization would have
been ENCOD -ING, since -COD was not in the final
tokenization produced by the initial BPE pass.

Efficiency Increase. In all of our experiments
(Section 5), the RANDOM-DROP BPE tokenizer im-
proves Rényi efficiency compared to its underlying
BPE tokenizer. Now, we give some intuition for why
this should happen empirically — specifically, in
the form of a proof of the sufficient conditions for
a token to, if dropped, increase the Rényi entropy.
The condition does not rely on the vocabulary size,
and so does not relate directly to Rényi efficiency,
which introduces a divisor of log(|V |). Under the
assumption that all subwords in the vocabulary ap-
pear at least once in the final tokenized corpus,2

increasing Rényi entropy always increases Rényi

2A subword can be a valid merge but not appear in
any final tokenization if it always appears as a part of
a longer subword. In this case, RANDOM-DROP BPE

16900

efficiency, because we are effectively removing
one token from the vocabulary and the normalizing
factor is reduced to log(|V | − 1).
Theorem 4.1. Let cV () be the unigram fre-
quency of ∈V, and TV =

∑

∈V c() so that
pV () =

cV ()
TV

is the unigram distribution. Sup-
pose subword = (y, z) ∈ V is chosen for de-
composition, resulting in a new vocabulary V ′ =
V\{}. Let WV and WV ′ be the corresponding
random variables and let α > 1 be the parameter
for Rényi entropy. Then Hα[WV] < Hα[WV ′] if
�

1 +
cV ()

TV

�α

> 1

+ ((cV () + cV (y))α + (cV () + cV (z))α

− cV ()α − cV (y)α − cV (z)α)/
�

∈VcV ()α
�

4.2. DUPLICATION BPE

Zouhar et al. (2023a) sought to find the Rényi En-
tropy parameter α that was best correlated with
the downstream task performance. In their setup,
the best α = 2.7 but α = 3, the closest integer, is
the default in their released toolkit and we use it for
all our experiments. Because this value is greater
than 1, it suggests that not only the existence of
many very low-frequency tokens hurt performance,
but also that having very high-frequency tokens
can degrade the performance.

The elimination of rare tokens seems straightfor-
ward. If they are not single-character (atomic), they
can be replaced with their constituent parts. For
example markup → mark -up. In some cases this
decomposition can increase the frequency of an
already-high-frequency token, such as again→ a
-gain, which would increase the frequency of the
already common subword a. In addition, replacing
all instances of the high-frequency token will simply
add its frequency to two other subwords, making
them both appear at least as frequently as the now-
eliminated token. We propose a way to eliminate
high-frequency tokens while avoiding these issues.

Given a BPE tokenizer (,V,μ), we select high-
frequency tokens and replace them with tokens
that have identical surface form (i.e., they spell the
same thing) but with different indices (i.e., they
have different embeddings in the neural model).
For presentation purposes, we modify the surface
form of the token to disambiguate them. For ex-
ample, given a high-frequency subword -ing, we
denote the duplicates -ing1, -ing2, . . . , -ingk .

Formally, a DUPLICATION BPE tokenizer is
formed by choosing integers 1 ≤ N ≤ |V | and

can increase the vocabulary size if a specific drop is
performed where both component subwords have 0 fre-
quency. If the increase in entropy is too small, the larger
normalizing factor can decrease the efficiency.

2 ≤ k. For each of the top N most frequent to-
kens (measured by their frequency in the corpus),
denoted by X , we add k duplicated tokens to V.
Then, during BPE inference, in the final tokenized
sequence of a word, if any of the N duplicated sub-
words appear, we uniformly at random replace it
with one of the k duplicates.

SUB(z) =

¨

z′ ∼ U({z}1≤≤k) z ∈ X
z otherwise

(16)

Where U is the discrete uniform distribution (each
of the k duplicates have the same probability). DU-
PLICATION BPE inference is implemented by re-
placing Line 5 of Algorithm 1 with

return 〈SUB(t) | 1 ≤ ≤ |t|〉 (17)

During the downstream evaluation (e.g., BLEU),
we renormalize the tokens by replacing all dupli-
cated tokens with their original surface form (i.e.,
reverting -ing3 to -ing). Detokenization and eval-
uation is then done as normal. See an example of
this modification in Example 1.

Explanation. We are eliminating high-frequency
subwords by spreading their probability mass
across the duplicate tokens. On the other hand,
the downstream model performance should be
bounded above by the baseline due to the fact
that the model is not aware that the tokens are du-
plicates of each other and will learn a distribution
that spreads the probability mass between them.
In particular, during beam search, the pessimal
case is that the cumulative probability mass of the
duplicates is higher than any other token, but in-
dividually, they are all below the threshold to be
included in the beam.

XXX Tokenization

∅ (original) the apple the berry the citrus the
dill the elderberry

{the, apple} the3 apple4 the5 berry the4 citrus
the3 dill the7 elderberry

Example 1: DUPLICATION BPE with k=10 (sec-
ond row) changes the token but the surface form
remains the same (apple4 = apple3).

Rényi Entropy. Formally, we treat the algorithm
as modifying repeatedly some element and
changing its frequency from pV() to pV ()

k . It
is easy to see that for k = 1, the algorithm does
not change the unigram distribution. Therefore, for
the following two theorems, assume k > 1.

Theorem 4.2. Let pV be the unigram distribution
of a tokenizer and let p′

V
be the DUPLICATION BPE

unigram distribution with k > 1. Let WV and W′
V

16901

Let α > 1. When removing from the vocabulary, every instance of in the tokenized sequence gets replaced with (y, z).
Thus, in V ′, y and z’s counts are increased by cV () and the overall total number of tokens is increased by cV () (as the total
change is 2cV () − cV ()), and so TV′ = TV + cV (), cV′ () = 0, cV′ (y) = cV () + cV (), cV′ (z) = cV () + cV (z), and
cV′ () = cV () for all other ∈ V\{, y, z}. Then:

Hα[WV] < Hα[W′V] (6)
1

1 − α
log

�

∑

∈V
pV ()α
�

<
1

1 − α
log

�

∑

∈V
pV′ ()α
�

(7)

∑

∈V
pV ()α >
∑

∈V
pV′ ()α (8)

∑

∈V cV ()α

TαV
>

∑

∈V′ cV′ ()α

Tα
V′

(9)

�

TV′

TV

�α

>

∑

∈V′ cV′ ()α
∑

∈V cV ()α
(10)
�

TV′

TV

�α

=
�

TV + cV ()

TV

�α

=
�

1 +
cV ()

TV

�α

>

∑

∈V′ cV′ ()α
∑

∈V cV ()α
(11)

In Equation (11) the left-hand side is in the form we want. The right-hand-side numerator,
∑

∈V′ cV′ ()α , can be rewritten as:

∑

∈V′
cV′ ()α =
�

∑

∈V
\{,y,z}

cV ()α
�

+cV′ (y)α+cV′ (z)α =
�

∑

∈V
cV ()α
�

+cV′ (y)α+cV′ (z)α−cV ()α − cV (y)α−cV (z)α (12)

Noting that cV′ (y) = cV () + cV (y) and cV′ (z) = cV () + cV (z) and that
∑

∈V cV ()α is the right-hand-side denominator
of Equation (11). We arrive at our final right-hand side:

∑

∈V′ cV′ ()α
∑

∈V cV ()α
= 1 +

cV′ (y)α + cV′ (z)α − cV ()α − cV (y)α − cV (z)α
∑

∈V cV ()α
(13)

= 1 +
(cV () + cV (y))α + (cV () + cV (z))α − cV ()α − cV (y)α − cV (z)α

∑

∈V cV ()α
(14)

Combining the two sides of the equation gives our final result:
�

1 +
cV ()

TV

�α

> 1 +
(cV () + cV (y))α + (cV () + cV (z))α − cV ()α − cV (y)α − cV (z)α

∑

∈V cV ()α
(15)

Proof of Theorem 4.1 — Rényi Entropy increases from RANDOM-DROP BPE.

be the corresponding random variables. Then
H[WV] < H[W′

V
].

Theorem 4.3. Let pV be the unigram distribution
of a tokenizer and let p′

V
be the DUPLICATION BPE

unigram distribution with k > 1. Let WV and W′
V

be the corresponding random variables. Then,
Hα[WV] < Hα[W′V].

An illustration of how one application affects the
Shannon and Rényi entropies is in Example 2.

k Unigram Distribution H H0.5 H3 Eff Eff0.5 Eff3

- 〈0.4, 0.3, 0.2, 0.1〉 1.85 1.92 1.66 1.33 1.38 1.20

2 〈0.2, 0.2, 0.3, 0.2, 0.1〉 2.25 2.28 2.13 1.40 1.42 1.33

10 〈0.04, ..., 0.04, 0.3, ... 〉 3.18 3.45 2.39 1.24 1.35 0.93

Example 2: Entropy/efficiency change after apply-
ing DUPLICATION BPE to the first element in the
original sequence (first row) which is expanded to
two or ten elements. Note the case where effi-
ciency decreases, despite entropy increase, which
is an artifact of the small initial vocabulary size.

Rényi Efficiency. We do not have a formal proof
that this algorithm increases efficiency because
of the change to the denominator log |V | in Equa-
tion (2). In fact, we show a counterexample where

this algorithm decreases the efficiency in Exam-
ple 2. When the duplication factor k is high and the
vocabulary small, the size of the resulting vocabu-
lary grows too quickly. Even if H grows (as it does
in every example), log(|V ′|) = log(|V |+(k−1)N)
grows faster and Eff decreases. For realistic vo-
cabulary sizes, ≥ 4k, the relative increase in vo-
cabulary size is much smaller and so H increasing
tends to imply that Eff will also increase. We later
(Tables 1 and 2) show empirically that for larger
vocabularies the efficiency increases.

5. Experiments

We use the same MT Transformer model as Zouhar
et al. (2023a), transformer-iwslt in fairseq, and
the iwslt14 German→English corpus for training.3

We do not use a joint vocabulary between the
source and target languages so that we can tune
them both independently. Through hyperparameter
search, we found that the 6k/6k BPE model per-
formed the best among all BPE vocabulary sizes
(even with different source and target sizes), and
we use it as a baseline. We also experiment with
4k/4k, 9k/9k, and 14k/14k baselines to demon-
strate that our results hold across a variety of hyper-

3This is different than the dataset used by Zouhar
et al. (2023a), but we chose to use a smaller corpus due
to the computational costs.

16902

Assume the algorithm modifies the frequency of token .

H[W′V] = −
∑

∈V
pV () log(pV) + pV () log(pV ()) − k

pV ()

k
log
�

pV ()

k

�

(18)

= H[WV] + pV ()
�

log(pV ()) − log
�

pV ()

k

��

= H[WV] + pV () log(k) > H[WV] (19)

Proof of Theorem 4.2 — Shannon Entropy increases from DUPLICATION BPE.

Assume the algorithm modifies the frequency of token . For α > 1: Hα[WV] < Hα[W′V].

1

1 − α
log

�

∑

∈V
pV ()α
�

<
1

1 − α
log

�

∑

∈V
pV ()α − pV ()α + k ·

�

pV ()

k

�α�

(20)

log

�

∑

∈V
pV ()α
�

>>>>>>>>> log

�

∑

∈V
pV ()α − pV ()α + k ·

�

pV ()

k

�α�

(from α > 1) (21)

∑

∈V
pV ()α >
∑

∈V
pV ()α − pV ()α + k ·

�

pV ()

k

�α

(22)

0 > −pV ()α + k ·
�

pV ()

k

�α

(23)

0 > pV ()α · (k1−α − 1) (24)

1 > k1−α (holds from α > 1 and k > 1) (25)

The proof follows by reversing the order of equivalent inequalities. Conversely, for α < 1: Hα[WV] < Hα[W′V].

1

1 − α
log

�

∑

∈V
pV ()α
�

<
1

1 − α
log

�

∑

∈V
pV ()α − pV ()α + k ·

�

pV ()

k

�α�

(26)

log

�

∑

∈V
pV ()α
�

< log

�

∑

∈V
pV ()α − pV ()α + k ·

�

pV ()

k

�α�

(from α < 1) (27)

∑

∈V
pV ()α <
∑

∈V
pV ()α − pV ()α + k ·

�

pV ()

k

�α

(28)

0 < −pV ()α + k ·
�

pV ()

k

�α

(29)

0 < pV ()α · (k1−α − 1) (30)

1 < k1−α (holds from α < 1 and k > 1) (31)

The proof follows by reversing the order of equivalent inequalities. For α = 1 the Theorem 4.2 applies. This covers all cases of
admissible α > 0 and therefore concludes the proof.

Proof of Theorem 4.3 — Rényi Entropy increases from DUPLICATION BPE.

parameters and vocabulary sizes. For both of our
proposed tokenizer families, we use the baseline
BPE tokenizers as the starting point.

All reported predictor metrics were computed us-
ing tokenization-scorer4 in their default settings
and on the concatenated source+target tokenized
training corpora. In particular, we use α = 3 for all
Rényi efficiency metrics.

5.1. RANDOM-DROP BPE

For this family, for each baseline BPE tokenizer
(each of the baseline vocabulary sizes), we exper-
imented with four hyperparameter settings. We
varied the range of tokens that were candidates for
being chosen for decomposition (N) with two set-
tings: 2000 and |V |. We also varied the number of

4github.com/zouharvi/tokenization-scorer

tokens that were chosen to be marked for decom-
position (k) with two settings: 500 and 1000. For
each configuration, we created three models using
different seeds to choose D. These three models
have the same vocabulary size, but have different
D and therefore produce different tokenizations.
We train each configuration with three different
seeds and take take the average BLEU score (of all
nine models) as the representative score (Overall
in Table 1). To mimic a more real-life setup, we also
include the models with the best average scores
for each configuration (Best in Table 1).

Table 1 contains the experimental results for
this family. Across nearly every experiment, the
RANDOM-DROP BPE tokenizers increase Rényi
efficiency compared to their baseline BPE tokeniz-
ers and the average BLEU scores are higher. In
one case, (6k/6k, N = 2000, k = 1000), the

https://github.com/zouharvi/tokenization-scorer

16903

Overall Best
Tokenizer N k Effα BLEU Effα* BLEU*

BASELINE (4K/4K) - - 0.474 33.74 - -

RANDOM-DROP
(4k/4k)

2k 500 0.500 33.39 0.504 33.48
2k 1k 0.474 32.76 0.483 32.89
4k 500 0.497 33.72 0.498 33.85
4k 1k 0.506 33.40 0.518 33.48

RANDOM-DROP
(4.5k/4.5k)

2k 500 0.491 33.35 0.495 33.37
4.5k 500 0.485 33.69 0.487 33.81

BASELINE (6K/6K) - - 0.444 33.94 - -

RANDOM-DROP
(6k/6k)

2k 500 0.468 33.46 0.471 33.46
2k 1k 0.441 32.86 0.445 33.03
6k 500 0.458 33.69 0.458 33.94
6k 1k 0.473 33.60 0.472 33.71

RANDOM-DROP
(6.5k/6.5k)

2k 500 0.462 33.37 0.464 33.44
6.5k 500 0.451 33.69 0.453 33.70

BASELINE (9K/9K) - - 0.418 33.60 - -

RANDOM-DROP
(9k/9k)

2k 500 0.441 33.35 0.440 33.45
2k 1k 0.426 32.73 0.440 32.87
9k 500 0.426 33.68 0.425 33.74
9k 1k 0.435 33.59 0.436 33.66

RANDOM-DROP
(9.5k/9.5k)

2k 500 0.440 33.31 0.440 33.33
9.5k 500 0.423 33.60 0.423 33.71

BASELINE (14K/14K) - - 0.394 33.59 - -

RANDOM-DROP
(14k/14k)

2k 500 0.415 33.05 0.417 33.09
2k 1k 0.409 32.63 0.416 32.84
14k 500 0.399 33.41 0.399 33.54
14k 1k 0.405 33.35 0.404 33.45

RANDOM-DROP
(14.5k/14.5k)

2k 500 0.412 33.11 0.415 33.17
14.5k 500 0.396 33.49 0.396 33.54

Table 1: Experimental results for the RANDOM-
DROP. For each BASELINE tokenizer, we compare
to RANDOM-DROP (based on the respective BASE-
LINE) with various hyperparameters. Overall and
Best are based on three tokenizer seeds.

overall Rényi efficiency is lower than the baseline.
However, the efficiency difference is very slight (a
-0.68% relative difference), while the correspond-
ing drop in BLEU is still very large (-1.08 BLEU).
In four cases, the best performing model in a hy-
perparameter setting outperformed the BASELINE,
but in all of these cases, it was when all tokens
were available to be marked for decomposition. It
is likely that infrequent tokens which are unimpact-
ful were selected for decomposition, and so the
model performance was not negatively impacted.
When restricted to only the top 2000 most frequent
tokens, all models underperform the baseline.

To demonstrate that this finding is not caused
purely by the smaller vocabulary size, we also ex-
perimented with setting k = 500 and using a new
vocab size of |V | + 500 for each BASELINE. In
these cases, we observe the same negative cor-
relation between Rényi efficiency and BLEU, indi-
cating that the effective vocabulary size is not the
salient factor.

In every case, the RANDOM-DROP BPE mod-
els had higher Rényi efficiency than the baseline

Tokenizer N k Effα BLEU

BASELINE (4K/4K) - - 0.474 33.74

DUPLICATION
(4K/4K)

100 3 0.594 32.37
100 5 0.648 31.32
500 3 0.583 32.26
500 5 0.627 N/A

BASELINE (6K/6K) - - 0.444 33.94

DUPLICATION
(6K/6K)

100 3 0.560 32.27
100 5 0.612 31.60
500 3 0.552 32.43
500 5 0.598 30.57

BASELINE (9K/9K) - - 0.418 33.60

DUPLICATION
(9K/9K)

100 3 0.530 32.48
100 5 0.581 31.64
500 3 0.525 32.42
500 5 0.572 30.93

BASELINE (14K/14K) - - 0.394 33.59

DUPLICATION
(14K/14K)

100 3 0.501 32.49
100 5 0.551 31.45
500 3 0.498 32.55
500 5 0.545 30.70

Table 2: Experimental results for the DUPLICA-
TION. For each BASELINE tokenizer, we compare
to DUPLICATION (based on the respective BASE-
LINE) with various hyperparameters. The average
over three training runs is used for all experiments.
N/A: This configuration achieved less than 5 BLEU
across several trials, so it is omitted.

but performed worse. Therefore, this provides a
counterexample to Zouhar et al. (2023a).

5.2. DUPLICATION BPE

Again, we vary the hyperparameters to form differ-
ent DUPLICATION BPE models. In particular, we
set N (the top frequent tokens to duplicate) to 100
or 500 and k (the duplication factor) to 3 or 5.
We train each configuration with three seeds and
report the averages (see Table 2).5

In all cases, the DUPLICATION BPE tokenizer
improves Rényi efficiency over the baseline and
dramatically reduces BLEU (by at least 1 BLEU).
The largest drops in BLEU — and simultaneously
the largest gains in efficiency — are with a larger
duplication factor: k = 5. In the pessimal case
(4k/4k, N = 500, k = 5), the model was unable to
converge (across 10 trials, none had higher than 5
BLEU). We conjecture that this is due to the large
percentage of tokens (1/8 of the total vocabulary
size) being duplicated 5 times, so the model is es-
sentially forced to spread the marginal probability
of a subword sequence over |S|5 identical-surface-

5We do not report a Best for DUPLICATION BPE, as
the choice of N and k represents a specific tokenizer.
For RANDOM-DROP BPE, the choice of N and k repre-
sent a family of tokenizers (as D is selected at random
each time, based on those hyperparameters).

16904

form sequences (where |S| is the sequence length).
In other words, while the duplicated tokens com-
bined might have the largest probability, this prob-
ability is divided by 5 which prevents the beam
search from selecting any of the correct tokens.

In all cases, we increased the Rényi efficiency
while decreasing BLEU, providing yet another
counterexample to Zouhar et al. (2023a).

5.3. Other Metrics

Zouhar et al. (2023a) considered several other in-
trinsic metrics, introduced in Section 3, before de-
termining that Rényi efficiency was the best cor-
related with downstream performance. In Table 3,
we list all of these metrics to show which properly
correlate with the downstream performance.

For RANDOM-DROP BPE, in all cases both PCT
and SEQ correctly predict that the BPE variant
will be worse than the baseline. This means that
PCT is always lower than the baseline, SEQ is al-
ways higher than the baseline, and BLEU is always
worse. Thus, these non-entropy-based predictors
succeed where Rényi efficiency fails.

On the other hand, both PCT and SEQ fail to ac-
curately predict the performance of DUPLICATION
BPE models. For SEQ, the DUPLICATION BPE
models always have the same value as the base-
line. This is because these models do not change
the surface form of the tokenization, and so, the
sequence lengths are always the same. For PCT,
the duplication of the most frequent tokens has the
effect of replacing the lowest frequency tokens in
the percentile range, thus raising the overall proba-
bility mass of the range and increasing the metric.
Since all DUPLICATION BPE models have lower
BLEU than the baseline, these metrics fail similarly
to Rényi efficiency on this family.

6. Conclusion

We proposed two families of BPE modifications
which break the Rényi efficiency hypothesis by
Zouhar et al. (2023a). We were able to construct
tokenizers such that the Rényi efficiency nega-
tively correlates with the downstream performance.
Our tokenizer families are designed specifically
to increase Rényi efficiency over their baseline
tokenizers, and, across all experiments, produce
models that have much lower performance on a
German→English translation task. That our results
hold across a range of hyperparameter settings
indicates that our tokenizer families serve as coun-
terexamples to the Rényi efficiency hypothesis. We
also find that the other metrics by Zouhar et al.
(2023a) fail to correctly predict the performance of
our synthetic tokenizer families.

Tokenizer N k PCT ↑ SEQ ↓ BLEU

BASE. (4k/4k) - - 0.461 25.50 33.74

RANDOM-DROP

2k 500 0.356 31.46 33.39
2k 1k 0.233 40.37 32.76
4k 500 0.405 29.23 33.72
4k 1k 0.352 33.37 33.40

RANDOM-DROP
(4.5k/4.5k)

2k 500 0.356 31.46 33.35
4.5k 500 0.402 27.93 33.69

DUPLICATE

100 3 0.590 25.50 32.37
100 5 0.633 25.50 31.32
500 3 0.571 25.50 32.26
500 5 0.605 25.50 N/A

BASE. (6k/6k) - - 0.405 24.05 33.94

RANDOM-DROP

2k 500 0.312 29.46 33.46
2k 1k 0.210 37.64 32.86
6k 500 0.383 25.79 33.69
6k 1k 0.354 27.92 33.60

RANDOM-DROP
(6.5k/6.5k)

2k 500 0.303 29.19 33.37
6.5k 500 0.376 25.35 33.69

DUPLICATE

100 3 0.525 24.05 32.27
100 5 0.574 24.05 31.60
500 3 0.522 24.05 32.43
500 5 0.562 24.05 30.57

BASE. (9k/9k) - - 0.356 22.91 33.60

RANDOM-DROP

2k 500 0.275 28.04 33.35
2k 1k 0.190 35.56 32.73
9k 500 0.347 23.81 33.68
9k 1k 0.332 25.07 33.59

RANDOM-DROP
(9.5k/9.5k)

2k 500 0.273 27.70 33.31
9.5k 500 0.339 23.83 33.60

DUPLICATE

100 3 0.456 22.91 32.48
100 5 0.507 22.91 31.64
500 3 0.469 22.91 32.42
500 5 0.514 22.91 30.93

BASE. (14k/14k) - - 0.308 21.95 33.59

RANDOM-DROP

2k 500 0.244 26.61 33.05
2k 1k 0.178 33.03 32.63

14k 500 0.301 22.67 33.41
14k 1k 0.295 23.33 33.35

RANDOM-DROP
(14.5k/14.5k)

2k 500 0.241 26.50 33.11
14.5k 500 0.301 22.43 33.49

DUPLICATE

100 3 0.377 21.95 32.49
100 5 0.432 21.95 31.45
500 3 0.411 21.95 32.55
500 5 0.458 21.95 30.70

Table 3: The Percentile Frequency (PCT) and Se-
quence Length (SEQ) predictors compared with
the BLEU score. PCT positively correlates with
BLEU, while SEQ correlates negatively.

Application. Despite our work showing coun-
terexamples of where Rényi efficiency fails, it
should not be interpreted as a discouragement to
use this metric for estimation of tokenization qual-
ity. We show that there exist synthetic counterex-
amples in the space of all possible tokenizations.
However, a practitioner might be deciding between
two real tokenizers, based on BPE variants and
hyperparameters. Our counterexample lie outside
of the space of commonly used tokenizers.

16905

Related Work. In our setup, we assumed a strict
separation between the tokenization and model
training step. However, this need not be the case
and (Xiao et al., 2010; Hiraoka et al., 2021) suc-
cessfully merge these two steps into one, creating
a single pipeline which jointly optimizes the tok-
enizer and model for the downstream task. There
are also plethora mechanisms by which tokeniza-
tion problems can be circumvented during training
or inference, such as marginalization over possi-
ble tokenizations (Kudo, 2018; He et al., 2020;
Provilkov et al., 2020). These are not currently
taken into consideration and their interaction with
the hypotheses surrounding predicting NLP model
performance based on the tokenization is unknown.
We further acknowledge tokenization-less NLP
models which do not necessitate a tokenization
metric, though as of 2023 they remain a minority.

Future Work. We identified a variance dimension
which contradicts the Rényi efficiency hypothesis.
However, the Rényi efficiency tokenization hypoth-
esis itself was created to replace the Rényi entropy
tokenization hypothesis because the latter did not
take the dimension of vocabulary size into account.
In the same vein, we hope the original hypothesis
can be further refined to incorporate the variance
from our two counterexamples.

Acknowledgements

These research results were obtained from the
commissioned research (No.22501) by National
Institute of Information and Communications Tech-
nology (NICT), Japan.

Bibliographical References

Miguel Domingo, Mercedes García-Martínez,
Alexandre Helle, Francisco Casacuberta, and
Manuel Herranz. 2019. How much does tok-
enization affect neural machine translation? In
International Conference on Computational Lin-
guistics and Intelligent Text Processing, pages
545–554. Springer.

Philip Gage. 1994. A new algorithm for data com-
pression. The C Users Journal archive, 12:23–
38.

Thamme Gowda and Jonathan May. 2020. Finding
the optimal vocabulary size for neural machine
translation. In Findings of the Association for
Computational Linguistics: EMNLP 2020, pages
3955–3964.

Xuanli He, Gholamreza Haffari, and Mohammad
Norouzi. 2020. Dynamic programming encod-
ing for subword segmentation in neural machine
translation. In Proceedings of the 58th Annual
Meeting of the Association for Computational
Linguistics, pages 3042–3051, Online. Associa-
tion for Computational Linguistics.

Tatsuya Hiraoka, Sho Takase, Kei Uchiumi, Atsushi
Keyaki, and Naoaki Okazaki. 2021. Joint opti-
mization of tokenization and downstream model.
In Findings of the Association for Computational
Linguistics: ACL-IJCNLP 2021, pages 244–255,
Online. Association for Computational Linguis-
tics.

Taku Kudo. 2018. Subword regularization: Improv-
ing neural network translation models with multi-
ple subword candidates. In Proceedings of the
56th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 66–75, Melbourne, Australia. Association
for Computational Linguistics.

Ivan Provilkov, Dmitrii Emelianenko, and Elena
Voita. 2020. BPE-dropout: Simple and effective
subword regularization. In Proceedings of the
58th Annual Meeting of the Association for Com-
putational Linguistics, pages 1882–1892, Online.
Association for Computational Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words
with subword units. In Proceedings of the 54th
Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers),
pages 1715–1725, Berlin, Germany. Association
for Computational Linguistics.

Claude E. Shannon. 1948. A mathematical theory
of communication. The Bell System Technical
Journal, 27(3):379–423.

Xinyan Xiao, Yang Liu, Young-Sook Hwang, Qun
Liu, and Shouxun Lin. 2010. Joint tokenization
and translation. In Proceedings of the 23rd Inter-
national Conference on Computational Linguis-
tics (Coling 2010), pages 1200–1208, Beijing,
China. Coling 2010 Organizing Committee.

Vilém Zouhar, Clara Meister, Juan Gastaldi, Li Du,
Mrinmaya Sachan, and Ryan Cotterell. 2023a.
Tokenization and the noiseless channel. In Pro-
ceedings of the 61st Annual Meeting of the As-
sociation for Computational Linguistics (Volume
1: Long Papers), pages 5184–5207, Toronto,
Canada. Association for Computational Linguis-
tics.

Vilém Zouhar, Clara Meister, Juan Gastaldi, Li Du,
Tim Vieira, Mrinmaya Sachan, and Ryan Cot-
terell. 2023b. A formal perspective on byte-pair

https://link.springer.com/chapter/10.1007/978-3-031-24337-0_38
https://link.springer.com/chapter/10.1007/978-3-031-24337-0_38
https://www.derczynski.com/papers/archive/BPE_Gage.pdf
https://www.derczynski.com/papers/archive/BPE_Gage.pdf
https://aclanthology.org/2020.findings-emnlp.352/
https://aclanthology.org/2020.findings-emnlp.352/
https://aclanthology.org/2020.findings-emnlp.352/
https://doi.org/10.18653/v1/2020.acl-main.275
https://doi.org/10.18653/v1/2020.acl-main.275
https://doi.org/10.18653/v1/2020.acl-main.275
https://doi.org/10.18653/v1/2021.findings-acl.21
https://doi.org/10.18653/v1/2021.findings-acl.21
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/2020.acl-main.170
https://doi.org/10.18653/v1/2020.acl-main.170
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6773024
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6773024
https://aclanthology.org/C10-1135
https://aclanthology.org/C10-1135
https://doi.org/10.18653/v1/2023.acl-long.284
https://doi.org/10.18653/v1/2023.findings-acl.38

16906

encoding. In Findings of the Association for
Computational Linguistics: ACL 2023, pages
598–614, Toronto, Canada. Association for Com-
putational Linguistics.

Vilém Zouhar, Clara Meister, Juan Gastaldi, Li Du,
Tim Vieira, Mrinmaya Sachan, and Ryan Cot-
terell. 2023c. A formal perspective on byte-pair
encoding. In Findings of the Association for
Computational Linguistics: ACL 2023, pages
598–614, Toronto, Canada. Association for Com-
putational Linguistics.

A. BPE Training

Algorithm 2 gives pseudocode for how a BPE vo-
cabulary is constructed. As noted in (Zouhar et al.,
2023c), this formulation overcounts repeated char-
acters — e.g., a a a, which would count [,]
twice, even though that sequence can only form
one aa merge. However, we use subword-nmt (Sen-
nrich et al., 2016) as our baseline BPE implemen-
tation, which also includes this overcounting.

Algorithm 2: Standard BPE Training
Inputs: Corpus C, Character-set , # merges n,
Output: Vocabulary V, Merges μ

1: V ←
2: for ∈ 1 . . . n do
3: (, y)← rgmx

[,b]∈×
COUNT([, b], C)

4: APPEND(V, y)
5: APPEND(μ, (, y))
6: C ← APPLY([, y], C)
7: end for
8: return V, μ

https://doi.org/10.18653/v1/2023.findings-acl.38
https://doi.org/10.18653/v1/2023.findings-acl.38
https://doi.org/10.18653/v1/2023.findings-acl.38

	Introduction
	Byte-Pair Encoding
	Rényi Efficiency and Other Metrics
	Counterexamples
	Random-Drop BPE
	Duplication BPE

	Experiments
	Random-Drop BPE
	Duplication BPE
	Other Metrics

	Conclusion
	BPE Training

